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Mir143 expression inversely correlates with
nuclear ERKS immunoreactivity in clinical
prostate cancer

| Ahmad', L B Singh1, ZH Yangz, G Kalna', J Fleming1, G Fisher?, C CooperB, J Cuzick*’, DM Berney4'7,
H Mgller>’, P Scardino®’ and H Y Leung™’

"Beatson Institute for Cancer Research, Bearsden, Glasgow G617 1BD, UK; 2Centre for Cancer Prevention, Queen Mary, University
of London, London ECTM 6BQ, UK; 3Institute for Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK; *Department of
Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London ECTM éBQ, UK; 5King’s College London,
Thames Cancer Registry, London SE1 3QD, UK; 6Depari“mer)t‘ of Urology, Memorial Sloan-Kettering Cancer Center, 1275 York
Avenue, New York, NY 10021, USA and “on behalf of the Transatlantic Prostate Group

Background: Aberrant mitogen/extracellular signal-regulated kinase 5 (MEKS5)-extracellular signal-regulated protein kinase 5
(ERKS5)-mediated signalling has been implicated in a number of tumour types including prostate cancer (CaP). The mechanism for
ERKS5 activation in CaP remains to be fully elucidated. Studies have recently implicated the role of microRNA (miRNA) mir143
expression in the regulation of ERKS expression.

Methods: We utilised a tissue microarray (TMA) of 530 CaP cores from 168 individual patients and stained for both mir143 and
ERKS5. These TMAs were scored by a combination of observer and automated methods.

Results: We observed a strong inverse relation between ERKS and mir143, which manifested itself most strongly in the subgroup
of 417 cores with non-zero mir143 and ERK5 immunoreactivity, or with only one of mir143 or ERK5 being zero (cc =0.2558 and
P<0.0001). Mir143 neither correlate with Gleason scores or prostate-specific antigen levels, nor was it a predictor of disease-
specific survival on univariate analysis.

Conclusion: Although the mechanism for ERK5 activation in CaP remains to be fully elucidated, we have further validated the
potential role of mir143 in regulating ERK5 levels in the clinical context. In addition, we demonstrate that the automated counting
method for nuclear ERK5 is a clinically useful alterative to observer counting method in patient stratification in the context of ERK5
targeting therapy.

Prostate cancer (CaP) is a major cause of cancer morbidity and
mortality in the Western world, and its incidence continues to rise
worldwide with routine prostate-specific antigen (PSA) testing and
aging populations (Hsing et al, 2000; Andriole et al, 2009; Schroder
et al, 2009). Prostate carcinogenesis represents a complex multistep
process, initiated by the accumulation of mutations in cancer genes
to transform the benign prostatic epithelium to locally invasive
disease, which ultimately may progress to form metastasis (Abate-

Shen and Shen, 2000). CaP is heterogeneous with highly variable
risk for disease progression. It is therefore important to study how
key cellular signalling pathways drive the development of CaP, and
to define potential and biological relevant biomarkers to identify
patients with poor prognosis and/or predict tumour response to
conventional or novel targeted therapies.

Recent work by our laboratory has demonstrated the impor-
tance of the MEK5/ERK5 (mitogen/extracellular signal-regulated
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kinase 5/extracellular signal-regulated protein kinase 5) cascade
in invasive CaP (Mehta et al, 2003; McCracken et al, 2008;
Ramsay et al, 2011). ERK5 is a member of the mitogen-activated
protein kinase (MAPK) family, and is a specific substrate of
MEKS, responding to a number of mitogens, cytokines and
stresses (Ranganathan et al, 2006). Work from our research group
and others have proposed that the MEK5-ERK5 pathway
represents an attractive potential target for cancer therapy, with
application in both untreated (primary and metastatic) CaP
and castrate-resistant disease (McCracken et al, 2008; Ramsay
et al, 2011).

The mechanism for ERK5 activation in CaP remains to be fully
elucidated. MicroRNA (miRNA) mirl43 expression has recently
been implicated to regulate ERK5 expression (Clape et al, 2009;
Ramsay et al, 2011). MicroRNAs are a class of evolutionary
conserved small non-coding RNAs, critically involved in the
regulation of mRNA function by controlling the stability and/or
translation efficiency of the target transcripts (He and Hannon,
2004; Lim et al, 2005). Target recognition is mediated by the RNA-
induced silenced complex that allows the matching between
mature miRNAs and mRNA 3'-untranslated region. Recent
evidence suggests that miRNAs control a plethora of basic cellular
functions, ranging from survival to apoptosis (Bartel, 2004; Care
et al, 2007; Thum et al, 2008). By targeting oncogenes or tumour
suppressors, miRNA are classified as anti-oncomiRs or oncomiRs,
respectively. miRNA143 represents one of the best-characterised
anti-oncomiRs. miR143 is located at a fragile site, often deleted in
cancers, and its expression is frequently downregulated in cancer
cell lines and in clinical tumours including colon and gastric cancer
and B cell lymphoma. Of particular interest to us, data from a
number of independent studies have revealed that mirl43
expression is consistently downregulated in CaP (Clape et al,
2009; Leite et al, 2011; Peng et al, 2011; Xu et al, 2011; Wach et al,
2012). However, whether the expression of mirl143 and ERK5 are
indeed inversely associated in a large clinical cohort of prostate
tumours has not been previously been tested. Here, we report our
findings showing a significant correlation between low mir143 and
elevated ERK5 levels in primary human prostate cancers.

MATERIALS AND METHODS

Clinical samples. Five hundred thirty cancer cores from 168
individual patients within the entire TAPG cohort were studied
(Cuzick et al, 2006; Berney et al, 2009). National approval was
obtained from the Northern Multi Research Ethics Committee,
MREC/99/3/40 followed by local ethics committee approval at each
of the collaborating hospital trusts. In short, men were included in
this study if they were under 76 years of age at diagnosis and had
clinically localised CaP diagnosed between January 1990 and
December 1996. Patients who had a radical prostatectomy or
radiation therapy within 6 months of diagnosis, or clear evidence
of metastatic disease (by bone scan, X-ray, CT scan, MRI, bone
biopsy, lymph node biopsy or pelvic lymph node dissection) or
clinical indications of metastatic disease (including pathologic
fracture, soft tissue metastasis, spinal compression or bone pain) at
or within 6 months of diagnosis, were excluded. Eligibility was
established by review of patient records by registry data collection
officers and trained medical staff. Clinical staging was centrally
reviewed. All patients had centralised Gleason grading by a panel
of genitourinary pathologists and had initial diagnostic serum PSA
available. Blocks from the trans-urethral resection specimens,
which were available, were identified and the corresponding
haematoxylin and eosin sections marked for cancerous areas.
These were microarrayed in a series of 24 blocks using 0.6-mm
cylinders of tissue. Four cores were taken from different areas of

tumour to account for tumour heterogeneity in each case, and
areas of adjacent normal tissue were also sampled.

Immunohistochemical  analysis. Immunohistochemistry  for
ERK5 was performed as previously described (Gnanapragasam
et al, 2003). For automated image analysis for ERK5 immuno-
reactivity, digitised slides were accessed through the Slidepath
Digital Image Hub (Dublin, Ireland) and evaluated with the
program’s nuclear scoring algorithm (Mohammed et al, 2012).
Individual tissue microarray (TMA) cores were identified,
annotated on the scanned image and associated with TMA map
entries. Individual nuclei stained with polymerised diaminobenzi-
dine were identified by a thresholding and segmentation algorithm
that outlined the individual nuclei and separated touching nuclei.
A nuclear size limit unique to these samples was specified to accept
or reject individual nuclei to be quantified. Staining for ERK5 in
each nucleus was classified as positive or negative, based on
thresholds specified by the observer. Pseudo-colours (red/blue)
display these staining intensity measurements for individual nuclei,
allowing thresholds to be chosen appropriately (Mohammed et al,
2012). These thresholds were chosen using a sample of TMA cores
from the entire patient cohort, and once chosen they were used for
analysis for the rest of the study without further adjustment.

Similarly, in situ hybridisation for mir143 mRNA was per-
formed as previously reported (Clape et al, 2009). Stained slides
were scanned using a Hamamatsu NanoZoomer (Hertfordshire,
UK). Visualisation was carried out using the Slidepath Tissue IA
system version 3.0. The score for staining signals were measured
manually using the histoscore scale from 0 (no staining) to 300
(very strong staining), and then converted to a scale from 0 to 3
depending on the histoscore (0=0, 1=1-100, 2=101-200,
3=201-300).

Statistics. Variation between human and automated methods of
nuclear ERK5 and mir143 was examined to facilitate comparisons
with published studies using the interclass correlation coefficients.
The inter-observer reliability analysis using the Kappa statistic ()
was performed to determine consistency between the human and
automated methods (values of x from 0.40 to 0.59 are considered
to represent at best moderate agreement; 0.60-0.79 good; and 0.80
or more, very good agreement) (Landis and Koch, 1977). Analysis
was performed using STATA version 11.2 (StataCorp LP, College
Station, TX, USA). Additional analysis to test for potential
correlation between the expression of mirl43 and Ki67 in the
patient cohort studied was carried out based on previously data on
Ki67 (Berney et al, 2009).

In silico analysis of mirl43 gene targets. In silico prediction of
gene targets for mirl43 was performed using the TargetScan
(www.targetscan.org, Release 6.2: June 2012) and verified using
both miRanda (http://www.microrna.org, August 2010 Release)
and PicTar (http://pictar.mdc-berlin.de/). The target gene list was
ranked according to the Pcr, the probability of conserved targeting,
as described by Friedman et al (2009). Using the method, Pcr
scores reflect the Bayesian estimate of the probability that a site is
conserved because of selective maintenance of miRNA targeting
rather than by chance or any other reason not pertinent to miRNA
targeting. Pathway analysis was carried out using Genego software
(www.genego.com) to highlight the pathways that were over-
represented. The list of the mirl43 targets was uploaded to the
GeneGo, and the function for ‘Enrichment by Protein Function’
was applied.

RESULTS

Patients demographics. Immunohistochemical staining for ERK5
and mirl43 was recorded for 530 tumour rich cores from 168
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individual patients. Majority of the cases were represented by at  (which were considered ‘not informative’), among these 417 cores,
least three independent tissue cores, with >3 tissue cores for 116  there was a strong inverse correlation between mirl43 and ERK5
out of 168 (70%) patients (Supplementary Figure 1). expression (cc= —0.2558 and P<0.0001). Thus, the inverse

relation between the two markers manifests itself most strongly
Loss of mirl43 expression correlates with upregulated ERK5 in the subgroup of 417 cores with non-zero mir143 and ERKS5
immunoreactivity but not with Ki67 level. As previously readings, or with only one of mir143 or ERK5 being zero.
mentioned a number of independent studies have revealed that As mir143 modulates the expression of a large number of target
mirl43 expression is consistently downregulated in CaP (Clape genes (Wach et al, 2012), we wished to test the impact of mir143 as
et al, 2009; Leite ef al, 2011; Peng et al, 2011; Xu ef al, 2011; Wach ~ an anti-oncomiR and test whether its expression was related to
et al, 2012) (summarised in Supplementary Table 1). In our patient ~ Ki67 status (Supplementary Figure 2). Corroborating against data
cohort (530 CaP cores representing samples from 168 patients), from previous analysis Ki67 expression (Berney et al, 2009), we
nuclear ERK5 immunoreactivity and mirl43 mRNA expression found no evidence of inverse correlation between mir143 and Ki67
were studied. Initially, the ERK5 samples were scored using the (treated dichotomous with cutoff 5). Data on 428 tissue cores
Slidepath Image Analysis software. The data was then converted representing 133 cases were available for both mir143 expression
into scores ranging from 0 to 3, to facilitate correlative analysis and Ki67 immunoreactivity, with Pearson y* =4.7353 and 4.7619
with data from mir143 expression. We found that majority of the for tissue cores and individual cases, respectively (with corre-
cores studied exhibited ERK5 score of 1 (simplified from histoscore ~ sponding P-values at 0.192 and 0.190), signifying the absence of
range 0-300, median 110), whereas majority of the cases were overall impact on cancer cell proliferation with reduced mir143
negative for mir143 expression with score of 0 (Figures 1A and B). ~ expression.

ERK5 immunoreactivity was observed in the malignant epi- Among the studied tumour samples, mirl43 expression did not
thelium as previously reported. Of note, a proportion of ERK5  correlate with tumour Gleason scores (differentiation) (Spearman’s
expressing cells are also noted to have significant nuclear ERK5 p=0.114, P=0.172) or PSA levels (Spearman’s p=0.139,
localisation (Figure 2), which signifies activated ERK5. Mirl43 P=0.099). In a univariate analysis, mir143 was not a predictor
mRNA expression was detected by in situ hybridisation and of disease-specific survival.
identified as punctate signals predominantly within the cytoplasm
(Figure 2). Figure 1D-G illustrated the inverse relationship bet-  In silico analysis of mir413 target genes. Despite the significant
ween ERKS5 immunoreactivity and mirl43 expression in sequential  inverse correlation between mirl43 and ERKS5 expression, the
histology sections. levels of mir143 was not found to correlative with neither tumour

As the two variables (mirl43 and ERK5 expression) are not parameters nor patient survivals. We next performed a compre-
normally distributed, Spearman’s correlation was applied for the hensive survey for target genes according to consensus mirl43
analysis. Analysing the entire 530 CaP cores, the Spearman binding sites using three independent informatics softwares. On
correlation tests were significant (cc=0.0982, P=0.0238) the basis of analyses using TargetScan, a total of 404 conserved
(Figure 1C). However, if we restricted the analysis to the cancer target genes (containing 421 conserved sites and 210 poorly
cores (n=116) with both non-zero mirl43 and non-zero ERK5 conserved sites) were identified to be putative mirl43-targeted
readings, we only observed an insignificant trend for inverse genes (Supplementary Table 2). Supporting data in the literature
correlation (cc= —0.1817 and P=0.0509). Finally, if we only and consistent with findings in our study, ERK5 (or MAPK7) was
excluded cores with both mirl43 and ERK5 readings being zero among the highest ranked target genes based on TargetScan
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Figure 1. Bar charts summarising the distribution (in percentage) among the CaP cases with different expression scores (0-3) for mir143 (A) and
ERKS (B). (C) The correlative analysis for mir143 and ERK5 expression (Spearman’s p =0.098, P=0.0238). Yellow box highlights samples with
scores for mir143>0, whereas red box highlights samples with scores for ERK>0. The inverse relationship between the two markers manifests
itself most strongly in the subgroup of 417 cores with non-zero mir143 and ERK5 readings (yellow and red boxes combined), or with only one of
mir143 or ERK5 being zero (yellow and red boxes, respectively). Representative images showing an inverse relationship between mir143 and ERK5
expression. D/E (Gleason 5) and F/G (Gleason 3) are paired images from two individual patients. For each patient’s samples, namely D/E and F/G,
represent tissue from sequential sections were analysed. D shows suppressed mir143 expression, whereas F demonstrated detectable mir143
transcript expression (red arrows). E and G demonstrate upregulated and negligible nuclear ERK5 immunoreactivity, respectively. Black bar
measures 200 mm ( x 20 objective).
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Low ERK5

High ERK5

Green = all positive nuclei
Red = selected positive nuclei
Blue/yellow = unselected positive nuclei

Figure 2. Gleason pattern grade 3 (A-C) and Gleason pattern grade 5 (D-F) tumours were scored using the automated system. A and D
demonstrate low and high ERK5 immunoreactivity in Gleason grade 3 and 5 tumours, respectively. B and E show all of the epithelial nuclei
highlighted green, whereas C and F show the classification of ERK5 within each core as positive (red) or negative (blue) based on the adjustable
input parameters (see details in Materials and Method section). Scores for sections represented in A-C were negative (0), weak (1), moderate (2)
and strong (3) for nuclear immunoreactivity at 88%, 0%, 11%, 1%, respectively, giving a histoscore of 25. Score for sections in D-F were negative,
weak, moderate and strong nuclei at 17%, 0%, 31%, 52%, respectively, giving a histoscore of 218. G-I represent typical in situ hybridisation images
for mir143 expression: high, moderate to low for G, H and I, respectively. Black bar measures 200 mm ( x 20 objective).

analysis, with an aggregate Pcr score of 0.78, which is the 7th
highest Pcr score. Similarly, out of the 7990 predicted targets for
mirl43, analysis using miRanda identified ERK5 to be 6th highest
ranked with mirSVR score of — 0.7511. Interestingly, analysis with
PicTar did not identify ERK5 as one of the targets. However, only
217 predicted targets were suggested by PicTar, and it is possible
that the stringency of this analysis may result in false negative in
identifying mir143 target genes. It is worth noting that kinases, in
which ERK5 belongs, is among the most over-represented pathway
an mirl43 target (Supplementary Table 3).

Owing to the lack of correlation between mir143 expression and
clinical correlates despite its association with ERK5 expression, we
hypothesised that, due to the large number of putative target genes,
the overall effects of mir143 on growth and tumourigenesis may be
balanced out due to effects on genes with opposing function. On
the basis of the gene list from TargetScan analysis, we carried out
analysis utilising the ‘Enrichment by Protein Function’ tool within
GeneGo software to examine enrichment of mirl43 targets by
objects from different protein classes. The three most enriched
protein classes were kinases, transcription factors and phophatases
(Table 1). Although enzymes represented the most abundant single
protein class by function (at 11%) within the gene list, this protein
class was however not over-represented in the mirl43 target gene
list (observed ratio = 0.95). Kinases were over-represented with 27
of 450 objects (6%) present within the target gene list (P = 0.003).
Similarly, transcription factors were also significantly over-
represented with 34 of 450 objects (7.56%; P=0.0008). Hence,
our working hypothesis is that the functional impact of mir143 loss
is modulated by the overall effects of regulated kinases and
transcription factors.

DISCUSSION

In this study, we demonstrate an inverse correlation between the
miRNA mirl43 and the MAPK ERK5 in a large multi-centre
human prostate tumour TMA resource. Indeed we observe an
inverse relation between ERKS5 and mir143, manifesting itself most
strongly in the subgroup of 417 cores with non-zero mirl43 and
ERKS5 readings, or with only one of mirl43 or ERK5 being zero.
We have previously observed that, in sequential sections, the
pattern of reduced mirl43 expression closely matched that of
enhanced ERK5 expression within the malignant epithelium (and
vice versa for benign tissue) (Ramsay et al, 2011). This strongly
implicates a role for mirl43 at least partially contributing to
abnormal ERK5 expression in CaP. Clape et al (2009) have
previously demonstrated that mir143 has a tumour suppressor role
in CaP by controlling cell proliferation and survival through
modulation of ERKS5. For the first time, we have validated the
proposed inverse association between mirl43 and ERK5 expres-
sion. The basis of loss of mirl43 expression in prostate cancer
remains to be defined. Besides gene deletion, mirl55 has recently
been identified as a potent repressor of mirl43 expression by
targeting C/EBPb, a transcriptional activator for mirl43 (Jiang
et al, 2012). Immunoreactivity for nuclear ERK5 was used as a
surrogate for activated ERKS5. p-ERK5 can be detected by western
blot analysis in in vitro cell models either with activated ERK via
constitutively active MEK5 or following exogenous stimulation
with growth factors such as EGF (Supplementary Figure 3).
However, despite extensive attempt to optimise available anti-
bodies against p-ERK5, immune reactivity for p-ERK5 suffered
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Table 1. Analysis of mir143 target gene set using GeneGo for enrichment of genes according to their protein function categories

| Enrichment by protein function [ Percentage |

. . In data | In protein |Protein function
Protein class Actual| n R N Expected| Ratio P-value | z-score prot .

set function in database

Kinases 27 450 651 22771 12.87 2.099 2.634E - 04 4.038 6.00% 4.15% 2.86%
Transcription factors 34 450 959 22771 18.95 1.794 7.836E — 04 3.567 7.56% 3.55% 4.21%
Phosphatases 7 450 230 22771 4.545 1.54 1.719E-01 1.169 1.56% 3.04% 1.01%
Proteases 13 450 554 22771 10.95 1.187 3.030E - 01 0.6341 2.89% 2.35% 2.43%
Enzymes 51 450 2715 22771 53.65 0.9505 3.820E-01| —0.3899 11.33% 1.88% 11.92%
Receptors 25 450 1522 22771 30.08 0.8312 1.930E—-01| —0.968 5.56% 1.64% 6.68%
Ligands 8 450 512 22771 10.12 0.7907 3.147E-01| —0.6802 1.78% 1.56% 2.25%
Other 288 450 15680 22771 309.9 0.9294 1.479E—-02 | —2.248 64.00% 1.84% 68.86%
Columns have the following meaning: Protein class, a broadly defined protein function. Actual, number of network objects from the activated data set(s) for a given protein class. n, number of
network objects in the activated data set(s). R, number of network objects of a given protein class in the complete database or background list. N, total number of network objects in the
complete database or background list. Expected, mean value for hypergeometric distribution (n*R/N). Ratio, connectivity ratio (Actual/expected). z-score, z-score ((actual-expected)/sqrt
(variance)). P-value, probability to have the given value of Actual or higher (or lower for negative z-score). In data set, fraction of network objects with a selected function in the activated data set.
In protein function, fraction of network with a selected function in the activated data set among network objects with this function in the complete database or background list. Protein function
in database, fraction of network objects with a selected function in the complete database or background list.

from high background and was not useful to analyse endogenous
levels of p-ERKS5 in clinical samples. In fact, besides the significant
numbers of non-specific bands recognised on the western blot
(Supplementary Figure 3), p-ERKS5 also binds to p-ERK1/2 due to
the high homology among the ERKI, 2 and 5. Hence, as a
surrogate for ERK5 function, immunoreactivity for nuclear ERK5
is studied in this study. In addition, such an approach provides the
basis to study translocated ERK5 in the nucleus with or without the
required canonical activating phosphorylation by MEKS5 (discussed
below).

Amplification or mutation of the MEK5 and ERKS5 genes is
infrequent; within the data available at catalogue of somatic
mutations in cancer (COSMIC, Sanger Institute, UK; www.
sanger.ac.uk/genetics/CGP/cosmic), they are relatively uncommon
events seen in the skin, prostate, liver and breast cancer. Our
finding of reduced mirl43 expression with corresponding
enhanced ERK5 expression in the tissue sections strongly argue
for a role of mirl43 at least partly contributing to abnormal ERK5
expression. In support of our data, a recent report in colorectal
cancer revealed correlation in 63 cancer specimens between
reduced mirl43 levels and upregulated ERKS5 expression (Akao
et al, 2010). However, downregulation of mir143 may be acting via
mechanisms other than modulation of ERK5 and the exact mode
of interaction has yet to be elucidated. Interestingly, recent studies
in cervical carcinoma and osteosarcoma have demonstrated
downregulation of mir143 expression and its impact in enhancing
Bcl-2 expression. It is suggested that, in normal circumstances,
mirl43 downregulates the level of Bcl-2, an anti-apoptotic
molecule, thus reducing cell viability and tumourigenicity by
promoting apoptosis (Akao et al, 2010; Liu et al, 2012). Thus, re-
expression of mirl43 in HeLa cells significantly induced apoptosis
and reduced proliferation. Similarly, in nude mice, increased
mirl43 expression suppressed the levels of Bcl-2 (Liu et al, 2012).
When Bcl-2 levels were overexpressed, there was a partial reversal
of the mirl43-induced anti-mitotic and pro-apoptotic effects in the
HeLa cells. In mesenchymal stem cells, cell cycle progression
driven by co-overexpression of Akt and Ang-1 was found to be
mediated by the upregulation of miR143 expression, which in turn
promoted FoxO1 and Erk5 signalling (Lai et al, 2012). In contrast
to our findings in prostate cancer, miR143 inhibition in
mesenchymal stem cells repressed phosphorylation of Erk5 and
abrogated cyclin D1 with concomitant reduction in cells entering

cell cycle (Lai et al, 2012), thus further support a complex
relationship between mirl43 expression and its functional impact
on cellular proliferation.

We found no evidence for correlation between the levels of
expression between mirl43 and Ki67 (a marker of proliferation).
Considering its role as an anti-oncomiR, we would expect a
mitogenic effect upon reduced mir143 expression. This may reflect
the complex pattern of target genes regulated by mir143, including
oncogenic kinases, inactivating phosphatases and transcription
factors. In addition, the role of ERK5 in control of cell cycle
progression is complicated by the relative role of MEK5-mediated
ERK5 phosphorylation and nuclear localisation. Intriguingly,
nuclear ERK5 may be induced independent of canonical MEK5-
ERKS5 activity via cyclin-dependent kinases (Inesta-Vaquera et al,
2010).

On the basis of GeneGo analysis, phosphastases as a protein
group ranked as the third most enriched functional group,
implicating seven phosphatases out of 230 genes, which is however
not statistically significant. Hence, our working hypothesis is that
mirl43 target genes within the categories of kinases and
transcription factors may in fact have opposing effects in
modulating cell growth and possibly carcinogenesis. This may
have implication on the potential application of miRNA as
prognostic or diagnostic markers.On the basis of the complexity
of miRNA targets genes, it is therefore likely that exploitation of
miRNA as biomarkers will require the use of a panel of miRNAs,
perhaps along with other biomarkers at mRNA, DNA and protein
levels, rather than individual miRNA as isolated biomarkers. Our
data from in situ hybridisation for mir143 and automated detection
of (nuclear) ERK5 expression provide a model to develop future
strategies in stratifying patients for targeted therapy in prostate
cancer. We propose that ERK5 immunoreactivity, rather than
mirl43 expression, is a valid approach to guide targeted therapies
aimed at the MEK5-ERKS5 pathway.
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