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Abstract 
Smoking is one of the most significant modifiable environmental risk factors for 

many diseases. Smoking causes excessive mortality worldwide. Despite the 

decades long research, there has not been clear understanding of what is the 

molecular mechanism that makes smoking harmful to the health. Some recent 

studies have found that smoking influences most significantly the expression and 

methylation of GPR15. GPR15 is an orphan receptor that is involved in the 

regulation of the innate immunity and the T-cell trafficking in the intestinal 

epithelium. Further studies have confirmed that GPR15 is very strongly involved 

in smoking and smoking-induced molecular changes. Therefore, the altered 

expression and epigenetic regulation of GPR15 could have a significant role in 

the health impact of smoking. 
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Impact statement 
The review describes an orphan receptor GPR15 that has recently been found to 

be influenced by smoking. This makes GPR15 very sensitive and adequate 

biomarker for smoking and smoking studies. Also, activation of GPR15 by 

smoking could help to explain its effects on health. 
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Introduction 
G-protein-coupled receptor 15 (GPR15) was found during an attempt to identify 

novel opioid and peptide receptors sharing the similarities with other G-protein 

coupled receptors (1). In this initial study, the gene for GPR15 was localised to 

the chromosome 3 region 3q11.2-q13.1 (Figure 1). In human genome, GPR15 

gene is in between the claudin domain containing 1 (CLDND1) and 

coproporphyrinogen oxidase (CPOX) genes. The amino acid sequence of GPR15 

shares identity with the angiotensin II AT1 and AT2 receptors, the interleukin 8b 

receptor and the orphan receptors GPR1 and AGTL1 (1). GPR15 is an orphan 

chemokine receptor whose natural ligand is not identified. Another orphan 

receptor, GPR25, was identified later to have the highest identity to GPR15 (2). 

GPR15 gene is an intronless single-exon gene with 1252 nucleotides and encodes 

the 360 amino acid protein (1). The protein is expressed on the cell membrane 

and it is considered a chemokine receptor (also designated as BOB/GPR15) and 

it functions as a co-receptor for the human immunodeficiency virus types 1 and 2 

(HIV-1 and HIV-2) (3, 4). GPR15 is a heterotrimeric G-protein-coupled receptor, 

that controls the specific homing of FOXP3-positive regulatory T-cells (T-regs) 

(5). Accumulating evidence indicate that GPR15 regulates the innate immunity 

and it is involved in pathogenesis of diverse diseases like Crohn’s disease and 

rheumatoid arthritis (6-8). Several recent studies have found that smoking 

significantly increases expression of GPR15 making it one of the most interesting 

biomarker of smoking. In the present paper we review the knowledge about 

functions of GPR15 receptor and its potential impact in human diseases caused 

by smoking. 
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G protein-coupled receptor 15 (GPR15) 
Early studies found that GPR15 is co-receptor for the CD4-dependent simian 

immunodeficiency virus (SIV), HIV-1 and HIV-2 (9, 10). In an expression cloning 

study, two new chemokine receptors for SIV and HIV were identified (11). One 

was named “Bonzo” and the second was designated BOB (for brother of Bonzo). 

Sequence analysis indicated that both molecules were members of the G-protein-

coupled receptor family (11). In this original research report, BOB was identified 

as previously cloned GPR15, but for Bonzo no identity was found. Another study 

identified STRL33 as a co-factor for macrophage-tropic and T cell line-tropic 

HIV-1 (12). Bonzo was recognized as STRL33 in the original study of its 

discovery (11). Eventually Bozo/STRL33 was identified as C-X-C motif 

chemokine receptor 6 (CXCR6) (13). Therefore, GPR15 is a chemokine receptor 

with high similarity to other members of the chemokine receptor family. GPR15 

lacks the third extracellular loop that is thought to be disulphide linked. 

Although the sequence of GPR15 is divergent from the other identified primate 

immunodeficiency virus co-receptors, its amino terminus contains three 

tyrosines which align with similarly positioned tyrosines in CCR5 (10). These 

tyrosines are necessary for the efficient SIV and HIV-1 entry. Further studies 

were performed to analyse the importance of GPR15 in the virus entry and 

replication. Compared to the Bonzo/CXCR6, GPR15 was more frequently used as 

a co-factor for the HIV-1 envelop mediated entry (14). Despite the lower 

efficiency of GPR15 usage, it mediated majority of the HIV-1 entries (14). This 

indicates that GPR15 is used for productive infection and HIV-1 transmission. In 

case of HIV-2 infection, the recruitment of GPR15 is not that important and it 

plays minor role as a co-factor for the pathogenicity of the HIV-2 infections (15). 
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Expression of GPR15 and its regulation 
Initial study found GPR15 to be expressed in lymphatic tissues and in colon (11). 

Similar results are evident also in the GTEx portal (http://www.gtexportal.org/). 

RNAseq data from various human tissue samples indicate that the highest 

expression of GPR15 is in the transformed lymphocytes, median RPKM is 99. It is 

also expressed in a colon (RPKM 3.6) and in the terminal part of small intestine 

(RPKM 5.3). According to this database, the expression of GPR15 is very low in 

the other tissues. In the Figure 1, small overview of the expression profile of 

GPR15 is given. However, the comprehensive analysis of the expressional 

pattern of GPR15 is missing and GPR15 expression has been detected also in the 

bladder, heart and skin (16, 17). Couple of studies have addressed the question 

of GPR15 tissue specificity and its involvement in the pathogenesis of diseases. In 

one study immunoblots for several human tissues were performed (17). Clear 

expression of GPR15 protein was detected in colonic mucosa, lymph node, 

prostate, testis and liver. No bands were detected in the brain, placenta, lung, 

uterus, heart, pancreas or skeletal muscle (17). Moreover, the same study 

indicated that HIV-1 envelope surface protein gp120 is able to induce GPR15 

activation and this is considered to be plausible mechanism for HIV-induced 

enteropathy (17). This allowed authors to propose the GPR15-dependent 

virotoxin model of HIV-1 enteropathy (18). 

In another study, comprehensive analysis of the expression of genes for different 

chemokine receptors in human and simian astrocytes was performed using 

semiquantitative RT-PCR technology(19). Authors found robust and significant 

expression of the GPR15 in human fetal, human adult and simian astrocytes. 

Moreover, authors found that stimulation with TNFα and IL-1β significantly 

http://www.gtexportal.org/
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increased the expression of GPR15 (19). This finding suggests that the activation 

of GPR15 could also be responsible for the brain pathology caused by HIV 

infection or for the HIV dissemination in the brain parenchyma (19). 

There are studies that indicate involvement of GPR15 in the apoptosis of 

different cells. The higher expression of GPR15 in the surface of 

polymorphonuclear neutrophils (PMN) has been found to account for the 

increased death induced by the SIV infection in macaques (20). The SIV infection 

induced death of the PMNs by the mitochondrial membrane permeabilization. 

This damage occurs independently in the Bax and Bak. Therefore SIV induced 

death is mediated via GPR15 without involving the major mechanism inducing 

the loss of the mitochondrial membrane potential (20). The same study used 

specific antibodies and found the engagement of GPR15 induced death of PMNs 

in a manner similar to the virus itself (20). This experimental finding suggests 

that GPR15 is not only involved in the SIV entry, but participates significantly 

(with unknown mechanism) in the cell death caused by the immunodeficiency 

virus (20). 

In addition to the induction of apoptosis in PMNs, infection with SIV or HIV-1 

causes enteropathy in early stages of infection. Gut epithelial cell apoptosis was 

found to coincide with the interaction between virus and GPR15 (21). Only 

background levels of viral RNA were detectable before and at the onset of the gut 

infection. Similarly, GPR15 expression was mainly detectable in the basal 

surfaces of epithelium. On the contrary, at the peak of apoptosis, significantly 

increased virion binding to the basal surfaces of the gut epithelium was 

observed. Increased virion binding was accompanied by the transcytosis and 

shedding of GPR15 into intestinal lumen (21). This increase was reverse for the 
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28th day after infection. Authors speculated that the peak apoptosis is the result 

of virotoxic effects that virion pg120 has on gut epithelial cells shown in previous 

in vitro studies (17, 18). The finding in gut epithelial cells is in a very good line 

with the data from the previously discussed PMN study that indicated GPR15 

involvement in apoptosis (20). Taken together all these data suggest that 

activation of GPR15 can induce apoptosis in the immune and epithelial cells.  

The expression of GPR15 has been identified to be induced by infection in a 

variety of human immune cells like CD4+, CD8+ and CD19+ (22). Viral 

components can induce the expression of GPR15, but this is not necessary for the 

SIV or HIV infection of CD4+ cells (22). Expression of GPR15 in the central 

memory T cells expanded the potential role of GPR15 from the HIV/SIV target 

cell population to a bigger part of another CD4+ cell population. This finding 

initiated great interest to find what other factors in addition to the virus 

components are able to induce the expression of GPR15. Indeed, it was soon 

found that GPR15 expression is up regulated by the Toll-receptor 3 (TLR3) 

signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF) (23). 

This finding is in a good line with earlier studies, where phosphoinositide-3 

kinase (PI3K) activation was shown to induce GPR15 surface expression (24). At 

the same time, the PI3K can be activated via TLR3 signaling pathway and 

therefore the regulation of GPR15 expression by TLR3 was suggested (25). Up-

regulation of GPR15 was most prominent in gut homing CD4+ T cells and it is 

highly expressed on intestinal CD4+ T cells. Taking into account that GPR15 has 

also role in apoptosis, it was proposed that it has importance in gut inflammation 

and in the destruction of the intestinal epithelium (23). 
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GPR15 and its involvement in diseases 
In addition to the role of HIV and SIV infection, GPR15 has a more general role in 

the regulation of innate immunity and regulation of the homing of the T-cell in 

gut epithelium (5, 8). The homing regulation is most clearly indicated in case of a 

large intestine where regulation of FOXP3+ regulatory T-cells by GPR15 was 

found. The GPR15 expression in a large intestine can be modified by gut 

microbiota and TGFβ1 (5). GPR15 is specifically responsive for the large 

intestine homing. When GPR15+ cells and control cell were mixed at 1:1 ratio and 

then transferred into C57BL/6 mice, all tissues exhibited 1:1 ratio except large 

intestine where around 10-fold enrichment for GPR15 was found (5). In the 

same report it was described that GPR15 knockout (KO) mice had increased 

proportion of IFN-γ and IL-17A producing cells in the lamina propria of the large 

intestine indicating inflammation. Subsequent infection of mice with the 

Citrobacter rodentium revealed that most mice lacking GPR15 suffered from 

severe weight loss and died due to the infection (5). Wild-type mice survived and 

resolved the inflammation. GPR15 KO mice exhibited increased inflammation, 

tissue damage and inflammatory cytokine expression. Also, the number of Treg 

cells was reduced in the GPR15 KO mice (5). Moreover, GPR15 is able to 

suppress noninfectious inflammation. Transfer of Tregs from wild-type mice, but 

not from the GPR15-deficient mice, reduced colitis severity and tissue damage 

induced by CD40 antibody. These experiments indicated that GPR15 is critical to 

prevent pathological inflammation in the large intestine during colitis and is 

most likely mediated by the regulation of the homing of Treg  (5). 

The intestinal mucosa is the largest body surface exposed to the environment 

and microbial diversity. In addition to the inflammatory signals, normal gut 
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microbiota can have an impact on the GPR15 expression and therefore, GPR15 

could have a role in the normal intestinal balance in micorbiome. Indeed, the 

treatment of mice with broad-spectrum antibiotics decreased the expression of 

GPR15 (5). Immune responses between the small bowel and colon have many 

common features, but there are also striking differences in their mechanisms of 

immune regulation. For instance, retinoic acid (RA) signaling via RA nuclear 

receptors plays a key role in immune homeostasis in the small bowel (26). 

Recent work indicates that RA is required for establishing immune tolerance to 

dietary antigens in the upper intestinal tract by inducing gut-tropic Treg. On the 

other hand, microbiota-specific Treg in the colon can be regulated by short-chain 

fatty acids (SCFA). Moreover, for homing Treg utilize GPR15, which is up 

regulated by SCFA (5, 26). Thus, dietary SCFAs are playing key roles in the 

mechanisms governing intestinal tolerance to dietary antigens in the colon by 

recruiting GPR15 receptors (26). 

In addition to the inflammatory and dietary signals, the GPR15 has been found to 

be up-regulated in response to the dioxin-stimulation in several different cell 

lines (27). This activation was rapid and it is the primary response to the dioxin 

because it was evident also in the presence of cycloheximide, the protein 

synthesis inhibitor (27). This indicates that GPR15 can respond to more common 

environmental signals. 

While the expression of GPR15 was found to be specific for the Treg cells, another 

study found GPR15 also in the TH17 and TH1 effector cells in mouse. Expression 

of GPR15 in effector T cells makes it very important regulator for the 

development of colitis. Indeed, GPR15 was found to be required in the colitis 

models that depend on the trafficking of the TH17 and TH1 cells (8, 28). In 
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humans, GPR15 is also expressed in pathogenic TH2 cells in case of ulcerative 

colitis and this finding is in striking contrast with mouse data (8). In the study 

focusing on the role of GPR15 in the colitis, its role in the T cell trafficking and 

specifically in the recruitment of effector T cells was described. Namely, T cells 

from colons of individuals with ulcerative colitis have a much higher proportion 

of GPR15+ cells and these cells also express IL-5 and IL-13 (8). 

Differential expression of GPR15 between the mice and humans was found to be 

caused by differences in the regulatory sequences. Namely, in humans, GPR15 is 

regulated with the GATA3 enhancer in TH2 cells and with FOXP3 in Treg cells (8, 

28). In TH2 cell of mice, the GATA3 enhancer sequence is altered that makes it 

inefficient, but in Treg cells, FOXP3 can stimulate the expression of GPR15 (8, 28). 

These differences can explain why GPR15 regulates more Treg cells in mice and  

regulates Teff cells (6) in humans. Taken together, GPR15 is involved in the 

trafficking of T cells in the colon, but additional detailed information is needed. 

While most of the studies have described the homing of T cells in the intestine 

and the role of GPR15 in the intestinal inflammation, other studies have found 

GPR15 activity in other tissues. One earlier study found GPR15 expression in 

synovial membrane specific to the rheumatoid arthritis (29). This is a new 

finding and has not been challenged by any other similar study. 

In another study the GPR15 was shown to be involved in the homing of dendritic 

epidermal T cells (DETC) (16). GPR15 is highly expressed in fetal thymus DETC 

precursors and on recently recruited DETCs. It was postulated that GPR15 

mediates the earliest seeding of the epidermis. However, it is not clear if GPR15 

participates in the cutaneous T-cell homing of the adult. Taken together, GPR15 

seems to have a role in the homing of resident immune cells in the epithelial 
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tissues, both in the intestinal epithelium and in the skin. As a result, GPR15 is 

very likely to be involved in the inflammation of these target tissues, colitis and 

dermatitis. For colitis, there is convincing evidence for GPR15 involvement, for 

dermatitis and arthritis, further studies are required. 
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Smoking-induced molecular changes 
Tobacco smoking is a single major cause of premature death worldwide (30, 31). 

Despite substantial reduction in the use of tobacco, smoking still causes globally 

more deaths than diseases like tuberculosis, HIV and malaria together, making it 

the largest preventable health risk factor (32, 33). The use of tobacco is legally 

allowed and therefore the prevalence of smoking behaviour is still very high. 

While in the developed countries tobacco use is reduced and restricted, in the 

developing countries the tobacco epidemic is still in a growing phase (30, 34). It 

has been estimated that tobacco smoking causes globally 6 million deaths in a 

year (35). 80% of these deaths are premature and hit the population with lower 

income (34). All this makes tobacco smoking the largest single avoidable cause of 

mortality. Reducing the prevalence of smoking increases the health of general 

population and avoids premature disability and death. Quitting of smoking and 

supporting to stop smoking are the easiest tools to improve the quality of life in 

population (36, 37). The molecular mechanisms of how smoking causes harm to 

the health have been extensively studied and a large amount of data have been 

produced. The effect of smoking on health is very complex and several different 

long-lasting molecular changes occur. GPR15 has recently been identified to be 

one of the most significantly and reproducibly induced alteration by smoking. 
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GPR15 and smoking 
While it’s clear that smoking increases mortality, the association between 

smoking and mortality is different across specific causes of death. Cancers, 

chronic obstructive diseases of respiratory system and cardiovascular diseases 

are the most commonly referred smoking-induced causes of death. The impact of 

smoking to these causes of death can persist for prolonged periods after smoking 

cessation. The involvement of epigenetic reprogramming in long term smoking 

impact has been proposed. Identification of the molecular pathways that 

contribute to the biological influence and disease-causing effects of smoking may 

offer opportunities for diagnostics and therapeutics. Therefore, recently several 

genomic analyses have been performed to find molecular targets responsible for  

smoking induced reprogramming. Most of the studies used methylation analysis, 

few studies have analysed genome-wide transcriptome changes. 

The first study that found hypomethylation of the GPR15 locus was performed 

on a cross-sectional cohort and altogether 1454 people were analysed (38). The 

study identified 15 methylated sites significantly associated with the current 

smoking, 2 sites with cumulative smoke exposure, 3 sites were associated with 

the time since quitting of smoking. Two loci were significantly changed for all 

three conditions, factor II receptor-like 3 (F2RL3) and G-protein-coupled 

receptor 15 (GPR15) (38). Another study with African Americans confirmed this 

initial finding (39). They used 972 persons in discovery sample and 239 persons 

in replication sample. Differential methylation of GPR15 locus by smoking was 

independently found in another study (40). Methylation analysis of the 111 

African American females identified two major loci to be differently methylated 

between smoker and non-smokers – aryl hydrocarbon receptor (AHRR) and 
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GPR15. This study also found an activation of immune response in smokers. 

According to this work smoking induces extensive effects on peripheral 

mononuclear cell DNA methylation and this is related to the molecular pathways 

of coagulation, CNS and immune function (40). They concluded very precisely, 

that smoking is important confounder and should be included in future 

diagnostic models in epidemiologic and clinical research to accurately 

understand diseases. In their next study, the same authors found that 

methylation of GPR15 locus that was dependent on the ethnicity and 

hypomethylation was found only in African Americans (41). However, several 

following studies have found the highly significant (with genome-wide 

significance) hypomethylation and increased expression of GPR15 in smokers 

(42-44). 

Another study analyzed RNA expression form the whole blood together with 

methylation profile and found highly significant up-regulation of GPR15 

expression in the blood that correlated with the hypomethylation of the GPR15 

locus (45). These authors found that the methylation was reversible after 

smoking cessation. In addition, one more focused study analyzed the effect of 

smoking to the different cell subtypes in the blood (43, 44). Smoking clearly 

increased the expression of GPR15. The main cell population expressing GPR15 

are CD3+ cells (44). The authors also found that smoking increases the 

proportion of GPR15+ cells among CD3+ T cells, from 3.7% of non-smokers to 

15.5% of smokers (44). The authors even suggest that the cutoff of 9% for 

GPR15 on the expressing cells can distinguish smokers from non-smokers with 

high sensitivity and high specificity. Thus, the tobacco smoke induced 

methylation changes at single CpG site are due to an increased proportion of 
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specialized cell subtypes rather than a direct effect of tobacco smoke on DNA 

methylation (44). Moreover, authors also show that in vitro stimulation of 

PBMCs with the cigarette smoke extract (CSE) did not increase the expression of 

GPR15 or the proportion of GPR15+ cells. Therefore, CSE is not directly 

responsible for the hypomethylation of GPR15 locus (cg19859270) and there is 

no causative effect of smoking to the DNA methylation. By excluding the direct 

action, more complex cascade of tobacco-smoking-induced disturbance of tissue 

homeostasis was proposed (44). 

One recent systematic review analyzed all the methylation studies performed in 

relation to smoking and found that three loci are the most consistently found to 

be differentially methylated – GPR15, AHRR and F2RL3 (46). While GPR15 

hypomethylation correlates very well with the increased RNA expression, with 

AHRR only methylation changes have been described and no difference in gene 

expression has been found (42). Therefore, GPR15 is almost the only gene 

related to smoking and having a clear correlation of methylation and expression. 
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Conclusions 
Altogether, GPR15 seems to be a very good biomarker for the studies of smoking. 

The cutoff of 9% for GPR15+ cells has been suggested and GPR15 is almost the 

only gene which expression correlates with biologically verified smoking status 

(exhaled carbon monoxide) (44, 47). GPR15 regulates immunity and our 

knowledge about its function is still very limited. As GPR15 is clearly involved in 

the biological effects of smoking (chronic inflammatory diseases) and the effect 

is not caused by direct action to GPR15, more studies on the functions of GPR15 

and its relations to tobacco smoking are needed. 
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Figure legend 
 

Figure 1. The overview of the genomic locus of GPR15 gene indicates single 

exon. Also several human mRNAs are shown, they all have similar structure. 

Barplot indicates gene expression profile in different tissue. It is evident that 

GPR15 has very specific expression pattern and is expressed in limited number 

of tissues. 
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