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Abstract 

A Bayesian modal identification method has been proposed in the companion paper that 

allows the most probable values of modal parameters to be determined using asynchronous 

ambient vibration data. This paper investigates the identification uncertainty of modal 

parameters in terms of their posterior covariance matrix. Computational issues are addressed. 

Analytical expressions are derived to allow the posterior covariance matrix to be evaluated 

accurately and efficiently. Synthetic, laboratory and field data examples are presented to 

verify the consistency, investigate potential modelling error and demonstrate practical 

applications. 
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1. Introduction 

The identification uncertainty of modal parameters (e.g. natural frequencies, damping ratios 

and mode shapes) provides important information for risk assessment and structural health 

monitoring [1,2]. In operational modal analysis (OMA), the loading information is unknown 

and its intensity and frequency characteristics cannot be directly controlled. The identification 

uncertainty is often significantly larger than those in known input modal tests (like forced 

vibration or free vibration tests). Quantifying and Managing the uncertainty of identified 

modal parameters then becomes important for OMA. 
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For non-Bayesian or ‘frequentist’ methods, identification uncertainty is often assessed in 

terms of the ensemble variance of estimates over repeated experiments. Some challenges are 

discussed in [3]. For stochastic subspace idenfication (SSI), computational methods have 

been developed based on first-order perturbation for single setup data [4,5] and multi-setup 

data [6]. See also [7] for the variance of maximum likelihood modal parameter estimator in 

the state-space time domain. In a Bayesian context [8], identification uncertainty is quantified 

in terms of the covariance matrix associated with the ‘posterior’ (i.e. given data) distribution 

of modal parameters. For globally identifiable problems where the distribution has a single 

peak, the ‘posterior covariance matrix’ can be approximated by the inverse of Hessian of the 

negative log-likelihood function (NLLF) [9]. For OMA with synchronous data, efficient 

methods have been developed in different settings, e.g., well-separated modes [10], close 

modes [11] and multiple setups [12]. Mathematical connection between Bayesian and 

frequentist quantification of identification uncertainty has also been discussed [13]. 

Analytical expressions for the posterior covariance matrix have been derived under 

asymptotic conditions of long data and small damping, revealing the achievable identification 

precision of OMA [14]. See also [15] for work on related objectives but approached from a 

frequentist perspective for free vibration data. 

A fast Bayesian OMA formulation for asynchronous data has been proposed in the 

companion paper; and an efficient method for determining the most probable values (MPV) 

of modal parameters has been developed. This paper investigates the posterior uncertainty of 

modal parameters and its efficient computation. Synthetic and laboratory data examples are 

presented to illustrate and verify the proposed OMA method. A field data example is also 

presented to illustrate real applications.  

This paper is organized as follow. In Section 2, the NLLF for asynchronous data developed in 

the companion paper is briefly reviewed. In Section 3, computational issues associated with 

the posterior covariance matrix are discussed. Analytical expressions for the Hessian of  

NLLF (whose inverse gives the covariance matrix) are derived to allow accurate and efficient 

computation. The procedure for calculating the posterior covariance matrix is also 

summarised. In Section 4, synthetic, laboratory and field test examples are presented to 

illustrate the proposed method. Computational time is addressed in Section 5. Some 

comments regarding the practical issues are discussed in Section 6. The paper is concluded in 

Section 7. 
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2. NLLF for Asynchronous OMA Data 

The posterior covariance matrix of modal parameters can be obtained as the inverse of the 

Hessian of negative log-likelihood function (NLLF). Consider the case of a well-separate 

mode where only one mode is dominant in the selected frequency band. Assume zero 

coherence among data of different synchronous data groups,  it is shown in the companion 

paper that the NLLF is given by 
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In the above equations, ikF  is the FFT of measured data associated with the i th synchronous 

group corresponding to frequency kf  in the selected frequency band; fN  is the number of 

FFT data in the band; f  and   denote the natural frequency and damping ratio of the mode, 

respectively; in

i Ru  is the mode shape measured by the i th group with in  degrees of 

freedom (DOF) ; gn  is the total number of synchronous data groups; 
2

iic u  and 

iii uuu /  so that 1iu ; S  is the modal force PSD (power spectral density) and eiS  is 

the prediction error PSD of the i th group.  

3. Posterior Uncertainty 

The Hessian matrix of NLLF is a symmetric matrix containing the second derivatives of L  

with respect to (w.r.t.)   φθ ,,,,
1
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  . These derivatives will be derived analytically 
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in this section, allowing an accurate and efficient determination of Hessian without resorting 

to finite difference method. 

The function iL  in Eq.(2) is first written explicitly in terms of the global mode shape φ  to 

facilitate differentiation. Let 
nn

i
iR


L  be a selection matrix so that φLi  gives the local 

mode shape confined to the DOFs in the i th group. The  kj, -entry of iL  is equal to 1 if 

DOF k  is measured by the j th channel in the i th synchronous group, and zero otherwise. 

Then ic  and iu  can be expressed in terms of φ : 
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The global mode shape is subjected to unit norm constraint, i.e., 

1
2

 φφφ
T

 (9) 

This needs to be accounted for when evaluating Hessian to give posterior covariance matrix. 

One conventional way is to replace φ  in the NLLF by its normalised counterpart 

φφφ
1

  (10) 

so that the NLLF can be differentiated w.r.t. the free parameter φ  without any constraints. 

Substituting Eq. (7) and (8) into the NLLF in Eq.(1) and replacing φ  by φφ
1

 gives: 
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The NLLF in Eq.(11) now is invariant to the scaling of φ . Its Hessian at MPV is singular 

along the direction of φ [10]. This singularity is immaterial to posterior uncertainty because 

mode shape uncertainty is by definition orthogonal to such direction. The posterior 

covariance matrix is the ‘pseudo-inverse’ of the Hessian, i.e., via eigenvector representation 
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ignoring the singular component. Let   
n

ii 1
 and   
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w  be respectively the eigenvalues 

(in ascending order) and eigenvectors of the Hessian of the NLLF at MPV, where 

3 gnnn  is the number of modal parameters. Then 01   (singularity due to norm 

constraint) and  
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The posterior covariance matrix is given by 








n

i

T

iii

2

1
wwC  (14) 

 

3.1 Derivatives of NLLF 

Analytical expressions for the derivatives of NLLF have been obtained by direct 

differentiation of  Eq.(11). To facilitate analysis, the NLLF is first rewritten in terms of ika , 

ikb  and ikp : 

    
 















g gg n

i

n

i k

ikikikei

k

ik

n

i

eifi padSbSNnL
1 1

1

1

lnln1  (15) 

where 

1
2


















k

ei

T

i

ik
SD

S
a

φφ

φL
 

(16) 

eiT

i

kik SSDb 
φφ

φL
2

 (17) 

φφ

φLDLφ
T

iik

T

i

T

ikp   (18) 

appear frequently and their derivatives will be presented later in Section 3.2 to 3.4. In the 

following, a superscripted symbol denote the derivative w.r.t. that variable.  

Auto-derivatives 
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(similar expression for  L  and  SSL ) 
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Cross derivative 
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(similar expressions for  fSL  and  SL  ) 
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3.2 Derivatives of ika  

Note that ika  is in the form of 
1x . It is easier to evaluate the derivatives of its reciprocal 

1
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In Eq.(27), when 1x  and 2x  are both equal to φ , the second derivative of ika  with respect to 

φ  is given by 
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It remains to determine the first and second derivatives of 
1

ika , which are given in Table 1 

and Table 2, respectively. The expressions involve the derivatives of kD , which are given in 

the Appendix. 
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Table 2. Second Derivatives of 
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3.3 Derivatives of ikbln  

The derivatives of ikbln  can be expressed through those of ikb , which is easier to derive. For 

any two parameters 1x  and 2x  in   φ,,,, eiSSf  , 
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In Eq.(30), when 1x  and 2x  are both equal to φ , the second derivative of ikbln  with respect 

to φ  is given by 
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It remains to determine the first and second derivatives of ikb , which are given in Table 3 and 

Table 4, respectively.  

Table 3. First Derivatives of ikb  
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Table 4. Second Derivatives of ikb  

 xy

ikb  y  ,f  S  eiS  φ  

x       

,f    

φφ

φL
T

ixy

kSD

2

 
 

φφ

φL
T

ix

kD

2

 0 
 

  














2

2

2
φφ

φLφ

φφ

LLφ

T

i

T

T

i

T

i

T
x

kSD  

S    0 0 
  















2

2

2
φφ

φLφ

φφ

LLφ

T

i

T

T

i

T

i

T

kD  

eiS   sym.  0 0  

φ      See note 

Note: 
 

        












 n

T

i

T

T

i

T

i

T

i

T

T

i

T

i

T

T

i

T

i
kik SDb I

φφ

φL

φφ

φφLL

φφ

φLφφ

φφ

LLφφ

φφ

LLφφ

2

2

23

2

2

24842
. 



 

9 / 30 

 

3.4 Derivatives of ikp  

The first and second derivatives of ikp  w.r.t. the global mode shape φ  are given by 
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3.5 Dimensionless Scaling 

The modal parameters have different units and hence different orders of magnitude and 

sensitivity in the NLLF. Different entries in the Hessian of NLLF will have large disparity in 

magnitude, which makes the matrix ill-conditioned when calculating inverse. One way to 

overcome this problem is to normalise the entries by the corresponding MPVs so that the 

resulting Hessian is dimensionless.  Let ];;...;;;;[ 1 φθ
gene SSSf   denote the vector of modal 

parameters and ]ˆ;...;ˆ;ˆ;ˆ;ˆ[ˆ
1 gene SSSf θ  denote the vector of MPVs except the global mode 

shape. Define the dimensionless vector  

Tθa   (34) 

where 
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That is, except for the global mode shape (which is already scaled to unit norm), the 

remaining entries of a  is the ratio of the modal parameters to the corresponding MPVs. The 

NLLF now can be expressed as  aT
1L  and the Hessian matrix w.r.t. a  at MPV is given by  

1 THTH L

T

L  (36) 

which is dimensionless. The posterior covariance matrix of a , i.e., pseudo-inverse of LH , is 

also dimensionless. Its diagonal entry gives directly the square of coefficient of variation 

(c.o.v.) of the corresponding modal parameter.  
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3.6 Summary of Procedure 

The procedure of determining the posterior covariance matrix of modal parameters is 

summarised as follow: 

1. Calculate the entries of the Hessian matrix using the equations in Section 3.1 with 

the help of the equations in Section 3.2, 3.3 and 3.4. 

2. Assemble the Hessian matrix and calculate the dimensionless one according to 

Eq.(36). 

3. Perform eigenvector decomposition of the Hessian matrix and calculate the 

posterior covariance matrix according to Eq.(14). 

4. The posterior c.o.v. can be directly obtained from the square root of the 

corresponding diagonal term of the posterior covariance matrix. 

5. The posterior c.o.v. of the overall mode shape can be expressed as the square root 

sum of the eigenvalues of its covariance matrix, equal to the corresponding 

partition in the full posterior covariance matrix [16].  

4. Illustrative Examples 

Four examples are presented in this section to illustrate the proposed method and its practical 

applications. The first example investigates potential modelling error due to zero coherence 

approximation. The next two examples are continuations of Section 9.1 and 9.2 in the 

companion paper, respectively, but now the focus is on identification uncertainty. The last 

example applies the proposed method to a full-scale building. It illustrates the issues 

encountered in real applications with asynchronous data. 

4.1 Effect of Zero Coherence Approximation 

The proposed modal identification algorithm in this work assumes zero coherence between 

different synchronous groups so that efficient strategies can be developed. However, this 

assumption may not hold for real asynchronous data, causing potential modelling errors.  

Potential bias in the MPVs and posterior c.o.v.s is investigated in this section through a 

parametric study with synthetic data. Potential modelling error is investigated here by 

comparing Bayesian and frequentist statistics [13]. It has been reasoned mathematically, and 

demonstrated numerically and experimentally with laboratory and field data, that if there is 

no modelling error then the ensemble average of modal parameter MPV is approximately 

equal to the exact value that generated the synthetic data; and the ensemble mean of posterior 
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variance is approximately equal to the ensemble variance of MPV. In the general case, the 

discrepancy between the two sets of quantities indicates modelling error.  

Consider a six-storey shear building structure with uniform inter-storey stiffness 3000kN/mm 

and floor mass 600 tons. The natural frequency of the first mode is calculated to be 2.71Hz.  

The damping ratios of all the modes are assumed to be 1%. The structure is subjected to 

independent and identically distributed (i.i.d.) Gaussian white noise excitation with a PSD of 

HzN/8.11  in the horizontal direction. The resulting acceleration response is in the order of 

few tens of Hzμg/  around the resonance peak of a mode. Uniaxial accelerometers are 

distributed on each storey measuring the structural response in horizontal direction. The 

measured data comprises two synchronous groups measuring 1/F to 3/F (Group 1) and 4/F to 

6/F (Group 2). To simulate imperfect synchronisation, the modal excitation between these 

two groups are correlated with a coherence of  , which will be varied in the parametric 

study. This was done by generating two independent modal excitations (say 1p  and 2p ), 

using 1p  as the modal excitation of Group 1 and 2

2

1 1 pp    as the modal excitation of 

Group 2. The measured acceleration data is contaminated by Gaussian white noise with PSDs 

/Hzμg40 2 and /Hzμg90 2 for Group 1 and 2, respectively.  

Four scenarios with increasing coherence are considered, i.e. 0  (totally asynchronous, no 

modelling error), 0.2 (low coherence), 0.6 (high coherence) and 1 (perfectly synchronous). 

For each scenario, acceleration data is sampled at 100Hz for a duration of 500s. 

Figure 1 shows the singular value spectrum of a typical set of data with a coherence of 0.2. 

The two lines associated with each resonance peak are indicative of two asynchronous groups. 

The horizontal bars ‘[-]’ indicate the selected frequency bands for modal identification and 

the squares denote the initial guesses of the natural frequencies. The six modes indicated in 

the figure are identified separately using the FFT data within each selected frequency band. 
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Figure 1. Root Singular Value Spetrum of a Typical Data Set, Coherence=0.2 

Table 5. Sample and Bayesian Statistics, Coherence=0 (Perfectly Incoherent Data). 

Mode 
Exact 

(A) 

Sample 

Mean 

(B) 

A/B 
Freq. (%) 

(C) 

Bay. (%) 

(D) 
C/D 

 Hzf  1 2.713 2.713 1.00 0.09 0.10 0.98 

 2 7.981 7.981 1.00 0.06 0.06 1.05 

 3 12.786 12.786 1.00 0.04 0.04 0.95 

 4 16.847 16.847 1.00 0.04 0.04 1.04 

 5 19.930 19.931 1.00 0.04 0.04 0.99 

 6 21.854 21.846 1.00 0.04 0.04 0.96 

 %  1 1 1.02 0.98 11.55 11.20 1.03 

 2 1 1.01 0.99 6.35 6.36 1.00 

 3 1 1.01 0.99 5.44 5.38 1.01 

 4 1 1.00 1.00 5.77 5.78 1.00 

 5 1 1.02 0.98 5.64 5.48 1.03 

 6 1 1.05 0.95 4.75 4.86 0.98 
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Table 6. Sample and Bayesian Statistics, Coherence=0.2 (Low Coherence Data). 

Mode 
Exact 

(A) 

Sample 

Mean 

(B) 

A/B 
Freq. (%) 

(C) 

Bay. (%) 

(D) 
C/D 

 Hzf  1 2.713 2.713 1.00 0.10 0.10 1.02 

 2 7.981 7.981 1.00 0.06 0.06 1.06 

 3 12.786 12.786 1.00 0.04 0.04 1.00 

 4 16.847 16.847 1.00 0.04 0.04 1.03 

 5 19.930 19.931 1.00 0.04 0.04 1.05 

 6 21.854 21.846 1.00 0.04 0.04 1.02 

 %  1 1 1.02 0.98 11.62 11.20 1.04 

 2 1 1.01 0.99 6.32 6.35 1.00 

 3 1 1.00 1.00 5.59 5.38 1.04 

 4 1 1.00 1.00 5.81 5.78 1.01 

 5 1 1.03 0.97 5.78 5.48 1.05 

 

Table 7. Sample and Bayesian Statistics, Coherence=0.6 (High Coherence Data). 

Mode 
Exact 

(A) 

Sample 

Mean 

(B) 

A/B 
Freq. (%) 

(C) 

Bay. (%) 

(D) 
C/D 

 Hzf  1 2.713 2.713 1.00 0.11 0.10 1.16 

 2 7.981 7.981 1.00 0.06 0.06 1.14 

 3 12.786 12.786 1.00 0.05 0.04 1.09 

 4 16.847 16.847 1.00 0.05 0.04 1.11 

 5 19.930 19.932 1.00 0.05 0.04 1.13 

 6 21.854 21.846 1.00 0.04 0.04 1.08 

 %  1 1 1.02 0.98 13.02 11.20 1.16 

 2 1 1.01 0.99 7.26 6.36 1.14 

 3 1 1.00 1.00 6.20 5.38 1.15 
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 4 1 1.00 1.00 6.42 5.78 1.11 

 5 1 1.03 0.97 6.12 5.48 1.12 

 6 1 1.05 0.95 5.58 4.86 1.15 

 

Table 8. Sample and Bayesian Statistics, Coherence=1 (Synchronous Data). 

Mode 
Exact 

(A) 

Sample 

Mean 

(B) 

A/B 
Freq. (%) 

(C) 

Bay. (%) 

(D) 
C/D 

 Hzf  1 2.713 2.713 1.00 0.13 0.10 1.36 

 2 7.981 7.982 1.00 0.08 0.06 1.38 

 3 12.786 12.786 1.00 0.06 0.04 1.33 

 4 16.847 16.846 1.00 0.06 0.04 1.36 

 5 19.930 19.932 1.00 0.05 0.04 1.35 

 6 21.854 21.846 1.00 0.05 0.04 1.33 

 %  1 1 1.02 0.98 15.26 11.22 1.36 

 2 1 1.01 0.99 8.47 6.36 1.33 

 3 1 1.00 1.00 7.57 5.38 1.41 

 4 1 1.01 0.99 8.04 5.78 1.39 

 5 1 1.03 0.97 7.66 5.48 1.40 

 6 1 1.05 0.95 6.47 4.86 1.33 

 

Bias in MPV 

Table 5 to Table 8 compare the frequentist and Bayesian statistics of modal identification 

results among 1000 i.i.d. data sets. The column ‘Exact’ shows the exact values that generated 

the data. The next column shows the sample mean of the MPV among the 1000 data sets. The 

ratio between these two values are shown in the column ‘A/B’. The ratios are all close to 1, 

suggesting little or practically no bias in the MPV of natural frequency and damping ratio.  

Bias in identification uncertainty 

The column ‘Freq.’ (short for ‘frequentist’) shows the sample c.o.v. of the MPV, i.e., the ratio 

of the sample standard deviation to the sample mean of MPV. The column ‘Bay.’ (short for 
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Bayesian) shows the sample root mean square value of the posterior standard deviation 

divided by the sample mean of the MPV. The column ‘C/D’ shows their ratio. As coherence 

increases, the ratio stays above 1 and deviates to a greater extent from 1, suggesting an 

increasing under-estimation of identification uncertainty due to modelling error of zero 

coherence assumption. Nevertheless, this bias is practically insignificant. For a high 

coherence of 60% (Table 7), the under-estimation is only 10%. In the extreme (unreasonable) 

case of 100% coherence (i.e., perfectly synchronised data, Table 8), it is 40%. 

Mode shape 

Table 9 to Table 12 compare the identification uncertainty of the mode shapes between the 

frequentist and Bayesian statistics. The frequentist uncertainty of the MPV of mode shape 

(column ‘Freq.’) is calculated based on the sample mean of MAC between the MPV of mode 

shape and the exact mode shape. The values in this column are all close to 1 (to five decimal 

places), suggesting little or practically no bias in the mode shape MPVs. The Bayesian 

uncertainty (column ‘Bay.’) is investigated based on the sample average of expected MAC, 

which can be calculated as: 

  2/12c.o.v. shape mode1MAC Expected


  (37) 

where the mode shape c.o.v. is calculated as the square root sum of the eigenvalues of its 

covariance matrix. The column ‘C/D’ shows the ratio of frequentist to Bayesian uncertainty. 

The ratio is close to 1 for all cases of coherence, indicating practically no bias in mode shape 

uncertainty. 

Table 9. Sample and Bayesian Statistics of Mode Shapes, Coherence=0 

Mode Freq. (C) Bay. (D) C/D 

1 0.99943 0.99944 0.99999 

2 0.99975 0.99977 0.99998 

3 0.99976 0.99983 0.99994 

4 0.99962 0.99982 0.99980 

5 0.99947 0.99983 0.99964 

6 0.99922 0.99986 0.99936 
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Table 10. Sample and Bayesian Statistics of Mode Shapes, Coherence=0.2 

Mode Freq. (C) Bay. (D) C/D 

1 0.99946 0.99944 1.00003 

2 0.99976 0.99977 0.99999 

3 0.99977 0.99983 0.99994 

4 0.99965 0.99982 0.99983 

5 0.99946 0.99983 0.99963 

6 0.99923 0.99986 0.99937 

 

Table 11. Sample and Bayesian Statistics of Mode Shapes, Coherence=0.6 

Mode Freq. (C) Bay. (D) C/D 

1 0.99953 0.99944 1.00010 

2 0.99979 0.99977 1.00002 

3 0.99980 0.99983 0.99997 

4 0.99969 0.99982 0.99987 

5 0.99949 0.99983 0.99966 

6 0.99928 0.99986 0.99942 

 

Table 12. Sample and Bayesian Statistics of Mode Shapes, Coherence=1 

Mode Freq. (C) Bay. (D) C/D 

1 0.99973 0.99944 1.00029 

2 0.99989 0.99977 1.00012 

3 0.99993 0.99983 1.00010 

4 0.99993 0.99982 1.00012 

5 0.99990 0.99983 1.00007 

6 0.99976 0.99986 0.99991 

 

The number of data sets (1000) used here is large enough so that statistical estimation error is 

negligible. Repeated runs have also been conducted, which shows qualitatively the same 

results as those presented here. Based on the evidence provided, it is fair to say that the 
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modelling error of zero coherence assumption does not cause significant bias in the posterior 

MPV. There is an under-estimation in identification uncertainty of natural frequency and 

damping ratio. Nevertheless, it is not significant unless the coherence among different 

synchronous groups is extremely close to one (e.g. >0.99), where the data channels can be 

considered as practically synchronised in real applications. In the latter case, it is more 

appropriate to identify the modes using a conventional algorithm that assumes synchronous 

data. 

4.2 Synthetic Data Example 

Recall the example in Section 9.1 of the companion paper, where the synthetic data of 1000s 

duration consists of six channels measuring the horizontal acceleration of different floors (1-

2/F by Group 1; 3-4/F by Group 2; 5-6/F by Group 3). Table 13 shows the posterior c.o.v. of  

modal parameters using the proposed method. Consistent with common observations, the 

posterior c.o.v. of natural frequencies (range between 0.03% and 0.05%) is much smaller than 

those of damping ratios (range between 1.3% and 2.7%). The results agree with those 

calculated using finite difference method (details omitted here), verifying their correctness.  

Table 13. Identified Modal Parameter c.o.v., Synthetic Data Example 

Mode 
f  c.o.v.  

(%) 

  c.o.v.  

(%) 

S  c.o.v. 

(%) 

ejS  c.o.v. 

(%) 

φ  c.o.v.  

(%) 

1 0.05 6.10 2.7 

2.9 

2.9 

2.9 

2.3 

2 0.03 3.38 1.3 

1.6 

1.6 

1.6 

1.4 

3 0.03 2.95 1.4 

1.4 

1.4 

1.4 

1.3 

4 0.04 3.71 2.4 

1.6 

1.6 

1.6 

1.4 
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4.3  Laboratory Shear Building Example 

Recall the example in Section 9.2 of the companion paper, where thirty-minute acceleration 

response of a four-storey laboratory shear frame in weak direction was recorded in both 

synchronous and asynchronous manner. The posterior c.o.v.s for the synchronous data set are 

obtained using the fast Bayesian FFT method [11] and the ones for the asynchronous data set 

are obtained using the proposed method. The results are shown in Table 14. 

Table 14. Posterior Uncertainty (c.o.v.), Laboratory Shear Building 

Mode 
f  c.o.v. (

310
)   c.o.v. (%) S  c.o.v. (%) ejS  c.o.v. (%) 

Asyn. Syn. Asyn. Syn. Asyn. Syn. Asyn. Syn. 

1 0.13 0.17 21.5 29.3 10.4 12.7 
8.10 

8.22 
4.74 

2 0.11 0.16 9.91 13.3 5.11 6.67 
3.71 

3.70 
2.15 

3 0.04 0.06 10.9 15.4 3.55 4.47 
3.71 

3.70 
2.15 

4 0.08 0.11 6.65 7.78 2.83 3.89 
2.63 

2.63 
1.52 

5 0.11 0.16 7.08 9.66 4.21 5.60 
2.61 

2.62 
1.52 

 

Theoretically, the posterior c.o.v. of modal parameters for these two data sets cannot be 

directly compared as they are calculated based on different data. However, they should be 

practically the same as the data used for inference in these two sets is measured based on the 

same experimental condition, i.e., the same duration, excitation and noise environment. 

Intuitively, the posterior c.o.v. for asynchronous data tends to be higher than that of the 

synchronous one. This is not the case with the results in the table, however. For natural 

frequency, damping ratio and modal force PSD, the posterior c.o.v. calculated based on the 

asynchronous data set are generally less than the synchronous counterpart. This is attributed 

to the bias-low nature of the algorithm due to the zero coherence assumption. The bias in 

c.o.v. is in the order of 20% lower. Additional analysis reveals that the coherence among 

different channels is about 0.9, which is relatively high. The bias based on this coherence is 
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consistent with the findings of the parametric study in Section 4.1. Despite this apparently 

high value of coherence, the singular value spectrum (in Figure 5 of the companion paper) 

already exhibits artificial modes, and one will get erroneous modal identification results using 

an algorithm that assumes synchronous data. 

The posterior uncertainty of the prediction error PSD calculated based on the asynchronous 

data set is larger than the one for the synchronous data set. This is because the prediction 

error PSD is only modelled to be the same within each synchronous group in the proposed 

method. For the synchronous counterpart, the prediction error PSD is modelled to be the 

same in all measured DOFs (hence intuitively more data for inference). However, it has 

higher modelling error risk because the prediction error PSD of different groups in reality 

need not be the same. 

4.4  Brodie Tower 

The proposed method is next applied to field data. The instrumented structure is the Brodie 

Tower (Figure 2) at the University of Liverpool, UK. It is an eight-storey reinforced concrete 

building. As shown in Figure 3, The ground floor of the building is connected to the Muspratt 

Building with a shape close to a rectangle. From the first floor to the seventh floor, the floors 

are T-shaped.  

 

Figure 2. Overview of Brodie Tower 
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Figure 3. Plan View of Brodie Tower Building, Sixth Floor 

 

Figure 4. Force-Balance Accelerometer on Site 

Ambient data was measured on the sixth floor of the building. Four tri-axial force-balance 

accelerometers were used (see Figure 4). The test focused on the lateral mode of the whole 

building. Biaxial acceleration at four locations, i.e., 842   DOFs, are used for analysis. 

Figure 3 shows the plan view of the floor and the locations to be measured. The data was 

sampled at 50Hz with a duration of 20mins. Each sensor used its own clock for sampling and 
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so the sampled data between different sensors are not synchronised. Within the frequency 

range of interest, the measurement noise intensity is in the order of Hzμg/5.0  as evidenced 

from the baseline level of the root singular value spectrum in Figure 5. 

Figure 5 shows the root singular value spectrum of the measured data. The first six modes 

marked in the figure are investigated. The hand-picked initial guesses and the selected 

frequency bands are shown with circles and the symbol ‘[-]’, respectively. The identified 

MPVs of the modal parameters and the corresponding posterior c.o.v. are shown in Table 15. 

The natural frequencies of the first two modes are around 2.5Hz. The posterior c.o.v. of 

damping ratio for these two modes are relatively high compared to those of other modes.  

 

Figure 5. Root Singular Value Spectrum, Brodie Tower Building 

Table 15. Identified Modal Parameters, Brodie Tower 

Mode 
)(Hzf  (%)  )Hzμg/(S  )Hzμg/(ejS  

MPV c.o.v.(%) MPV c.o.v.(%) MPV c.o.v.(%) MPV c.o.v.(%) 

1 2.418 0.07 1.32 8.4 1.28 5.4 

3.01 

3.34 

2.85 

2.94 

4.2 

4.2 

4.2 

4.2 

2 2.678 0.06 1.08 8.5 1.32 5.4 3.40 4.3 
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3.64 

3.95 

1.52 

4.3 

4.3 

4.3 

3 3.714 0.04 0.90 5.0 1.05 2.5 

1.24 

1.26 

1.34 

1.99 

2.9 

2.9 

2.9 

2.9 

4 7.420 0.08 2.21 7.3 0.24 5.6 

0.79 

1.28 

1.10 

1.16 

2.2 

2.2 

2.2 

2.2 

5 7.932 0.12 2.41 5.8 0.26 4.5 

1.40 

0.74 

0.92 

1.09 

1.7 

1.7 

1.7 

1.7 

6 9.391 0.05 1.97 3.8 0.77 2.6 

0.79 

0.76 

0.73 

1.39 

1.8 

1.8 

1.8 

1.8 
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Figure 6. Identified Mode Shapes (MPV), Brodie Tower Asynchronous Data 

Figure 6 shows the identified mode shapes (MPV) of these five modes in plan view. The  

dashed line and solid line denote the undeformed and deformed mode shapes, respectively. 

The squares represent the measured locations. Mode 1 and Mode 4 are primarily translational 

in the x-direction. A small rotation can be found in these two modes, which may be due to the 

shape of the floor and distribution of mass, etc. Mode 2 is translational in the y-direction. 

Mode 3 is rotational. Mode 5 and Mode 6 involve deformation of the T-shaped floor plan. 

Additional data have been analysed with the same test configurations while in this case the 

sensors were synchronised using GPS (Global Positioning System). Figure 7 summarises the 

identification results. It can be seen that the identified natural frequencies and damping ratios 

based on the asynchronous data are close to those based on the synchronous data. Small 

discrepancies can be found, which are mainly due to the variation of the environmental 

conditions. The identified mode shapes based on the asynchronous data almost coincide with 

those based on the synchronous data. The MAC values are calculated to be 0.9997, 0.9995, 

0.9994, 0.9749, 0.9794 and 0.9287 from Mode 1 to Mode 6 respectively, suggesting good 

identification quality using the proposed method for asynchronous data. 
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Figure 7. Identified Mode Shapes (MPV), Brodie Tower Synchronous Data 

Conventionally, it takes around 20 to 30mins for each accelerometer used in this test to be 

fully synchronised with each other based on a common external clock source. Without the 

time synchronisation issue, the configuration time can be significantly reduced and the field 

test can be more flexibly conducted based on the proposed method.   

5. Computational Time 

The computational time for determining the MPVs and the posterior uncertainty using the 

proposed method is discussed in this section. The calculations were performed using 
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MATLAB R2014a on an HP Compaq 800 G1 Elite Desktop (Intel Core i5, 2GHz and 8GM 

of RAM). The convergence tolerance in the iteration is set to be 
610

 on a fractional basis for 

all parameters. The computational time and the number of iterations required for determining 

the MPVs in the examples are shown in Table 16. For the synthetic and laboratory examples, 

the MPVs can be determined in a few seconds. In the field test example, it takes a few tens of 

seconds to determine the MPVs for Mode 4 to Mode 6, which may be due to the lower s/n 

ratio comparing to other modes. The time needed for calculating the posterior uncertainty 

using the proposed method and finite difference method is shown in Table 17. The finite 

difference method took much longer time than the proposed method (generally more than 10 

times). Note that the accuracy of finite difference method depends on the step length used. To 

get accurate evaluation results, convergence test is needed, implying additional analysis 

overhead. In general, the total computation time to determine the MPV and posterior c.o.v. 

using the proposed method among the examples in this paper is less that one minute. 

Table 16. Computational Time, MPV 

Example Mode No. of Iteration Time Required (s) 

Synthetic Data 1 9 1.8 

 2 8 5.2 

 3 12 9.2 

 4 31 19 

Laboratory Shear Building 1 72 1.8 

 2 45 4.1 

 3 39 3.8 

 4 27 5.0 

 5 62 0.3 

Brodie Tower 1 26 3.4 

 2 27 3.2 

 3 13 3.4 

 4 62 27 

 5 52 32 

 6 39 28 

 

 



 

26 / 30 

 

Table 17. Computational Time, Posterior c.o.v. 

Example Mode Proposed Method (s) Finite Difference (s) 

Synthetic Data 1 0.68 10.6 

 2 1.60 35.3 

 3 1.95 42.4 

 4 1.61 35.5 

Laboratory Shear Building 1 0.26 0.52 

 2 0.41 2.37 

 3 0.41 2.37 

 4 0.62 4.66 

 5 0.43 4.67 

Brodie Tower 1 0.50 10.5 

 2 0.24 9.6 

 3 0.55 21.5 

 4 0.95 36.8 

 5 1.47 52.9 

 6 1.45 55.7 

6. Discussion 

Some final comments are in order regarding the practical issues when applying the proposed 

method: 

1. Although it may be a rare situation in practice, the mode shape values will be small 

when all the measured DOFs are nodes in one synchronous data group. In this case 

the quality of the identification results associated with the i th group will clearly be 

affected (poor), as will the results of any identification method because there is not 

enough information from data. However, this issue will not cause any legitimacy 

problem in the proposed theory, i.e., the algorithm can still be applied. 

2. A set of data channels is considered as one synchronous group if they are sampled 

based on the same clock. The total number of synchronous groups is equal to the 

number of sampling clocks involved in the test. It will be equal to the number of DAQ 

(data acquisition) units if each DAQ unit uses its own internal clock for sampling. In 

applications, some DAQ units can be synchronised using a common external clock 
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like Network Time Protocol or Global Positioning System. In this context, the 

channels of data measured by these DAQ units are considered as one synchronous 

group. 

3. The practical way to assess the time synchronisation problem is to investigate the 

measured data directly. Simply looking at the technical specifications on the time 

drifts of the sampling clocks may not be relevant as the coherence value between 

synchronous groups varies with the data duration as well as the frequency band of 

interest. Looking at the technical specifications of the sampling clocks can give a 

rough idea but the most direct way is to look at the singular value spectrum of data 

directly. When additional peaks exhibiting almost the same frequency and damping 

are found in the singular value spectrum and there is no reason to believe the 

existence of such closely-spaced modes, time synchronisation issues should be 

investigated and taken into consideration when the data is confirmed to be 

asynchronous.  

4. The Bayesian OMA approach developed in this paper looks similar to the one for 

multiple-setup tests previously proposed by the second author [17]. However, these 

two methods are in fact quite different and the latter cannot be directly applied to 

asynchronous data, or vice versa. The model assumptions between these two cases are 

different. For asynchronous data, the measured data in different synchronous groups 

share the same modal properties (i.e., natural frequencies, damping ratios and modal 

force PSDs) because they are measured during the same time period. For multi-setups, 

modal properties among different setups are parameterised separately because they 

can possibly differ due to the variation of environmental conditions. In the 

asynchronous data problem, the relative scaling between the partial mode shapes in 

different synchronous groups are determined based on the same modal force PSD. In 

the multi-setup data problem, the relative scaling among the mode shapes in different 

setups are determined based on the mode shape values at the reference DOFs. 

7. Conclusions 

In this work, a Bayesian formulation for modal identification using asynchronous ambient 

vibration data has been developed. An efficient iterative algorithm for determining the MPVs 

has been proposed in the companion paper. Efficient strategies have been developed for 

calculating the posterior covariance matrix without resorting to finite difference method. 
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The proposed algorithms assume zero coherence among the synchronous data groups. 

Potential modelling error due to this approximation has been investigated through a 

parametric study. The results reveal that the bias in the MPV is not significant. Posterior 

uncertainty of frequency and damping is biased low, although it is not significant unless the 

coherence is very high. The proposed method has been tested with synthetic and laboratory 

data; and applied to field data of a multi-storey building. The MPV and posterior uncertainty 

can be evaluated in a matter of seconds using the proposed method. 

Time synchronisation issue in operational modal analysis is currently a challenging problem 

and the characteristics of the imperfect coherence due to asynchronisation have not been fully 

understood yet. It is hoped that this work provides some insights on this problem and 

inspirations for subsequent investigation. 
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Appendix: Derivatives of kD  and 1

kD  

This appendix presents the derivatives of kD  in Eq.(3). Recalling from [10], they can be 

expressed in terms of the derivatices of its reciprocal 
1

kD . In general, for any two variables 

1x  and 2x : 

    1
1 12 x

kk

x

k DDD


  (38) 

         2121
21 12113

2
xx

kk

x

k

x

kk

xx

k DDDDDD    (39) 

The derivatives of 
1

kD  with respect to f  and   are given by 
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     2311 214   

kkk

f

k fD  (40) 

   21 8 kkD 

  (41) 

    2221 2134   

kk

ff

k fD  (42) 

   21 8 kkD 


  (43) 

  

kk

f

k fD 
 11 16    (44) 
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