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ABSTRACT
Several general search techniques such as genetic programming

and simulated annealing have recently been investigated for synthe-

sising programs from specifications of desired objective behaviours.

In this context, these techniques explore the space of all candidate

programs by performing local changes to candidates selected by

means of a measure of their fitness w.r.t. the desired objectives. Pre-
vious performance results advocated the use of simulated annealing

over genetic programming for such problems. In this paper, we in-

vestigate the application of these techniques for the computation of

deterministic strategies solving symbolic Discrete Controller Syn-

thesis (DCS) problems, where a model of the system to control is

given along with desired objective behaviours. We experimentally

confirm that relative performance results are similar to program

synthesis, and give a complexity analysis of our simulated annealing

algorithm for symbolic DCS.

CCS CONCEPTS
•Mathematics of computing→ Simulated annealing; • Soft-
ware and its engineering → Model checking; State systems; •
Computer systems organization → Real-time systems; • Com-
puting methodologies→ Genetic programming;
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General Search Techniques, Symbolic Model-checking, Discrete
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1 INTRODUCTION
Discrete Controller Synthesis (DCS) and Program Synthesis not only
share a common noun, but also similar goals in that they are con-

structive methods for behaviours control. The former typically

operates on the model of a plant, and seeks the automated construc-

tion of a strategy so that the plant controlled accordingly fulfils a
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set of given objectives [2, 26]. Likewise, program synthesis operates

by using some predefined rules, such as the grammar and seman-

tics of the target programming language, and seeks the automated

construction of a program whose execution fulfils given objectives.

Apart from their numerous applications to manufacturing sys-

tems [22, 26, 29], DCS algorithms have also successfully been used

to enforce deadlock avoidance in multi-threaded programs [28],

enforce fault-tolerance [13], or for global resource management

in embedded systems [1, 3]. A closely related algorithm was also

applied by Ryzhyk et al. [27] for device driver synthesis.

Foundations of DCS and program synthesis are similar to prin-

ciples of model-checking [6, 10], that determines whether a sys-

tem satisfies a number of specifications. In that respect, traditional

DCS algorithms are highly inspired by model-checking techniques.

Given a model of the plant, they first exhaustively compute an un-

safe portion of the state-space to avoid for the desired objectives

to be satisfied, and a strategy is then derived that avoids entering

the unsafe region. A controller is built that alters the behaviour

of the plant according to this strategy so that it is guaranteed to

always behave as required. Just as for model-checking, symbolic
approaches for solving DCS problems have been successfully inves-

tigated [2, 4, 11, 23].

General Search Techniques. Clark and Jacob [8], Henderson et al.

[14], Johnson [17], Katz and Peled [18, 19, 20], as well as Husien and

Schewe [16] in previous work, explored the use of general search
techniques for program synthesis. Instead of performing an ex-

haustive search, these techniques proceed by exploring the search

space in pursuit of a program satisfying the objectives. Among

these techniques are genetic programming [21] and simulated an-
nealing [8, 14]. When applied to program synthesis, both search

techniques work by successively mutating candidate programs that

are deemed “good” by using some measure of their fitness w.r.t. the
desired objectives (e.g., using a model-checker to measure the share

of objectives satisfied by the candidate program, as done by Katz

and Peled [18, 19, 20] and Husien and Schewe [16]). The genetic

programming algorithm maintains a population of candidate pro-

grams over a high number of iterations, generating new ones by

mutating or mixing candidates randomly selected based on their

fitness. Simulated annealing on the other hand, produces one new

candidate program per iteration, and does so by mutation only; the

probability of survival of a candidate program depends on both its

fitness and a temperature parameter that monotonically decreases

from “hot” values favouring audacious mutations, to “cool” values

preventing them.

By investigating and comparing these search techniques for

program synthesis using their proof of concept implementation,

Husien and Schewe [16] found that simulated annealing performs
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significantly better than genetic programming for synthesising

programs.

Contributions. Wefirst define a symbolicmodel and an associated

class of DCS problems, for which deterministic strategies are sought.

Next, we adapt the aforementioned search techniques to obtain

algorithmic solutions that avoid computing the unsafe portion of

the state-space. Then, we confirm the hypotheses that: (i) general

search techniques are as applicable to solve our DCS problem as

they are for synthesising programs; and (ii) one obtains similar

relative performance results for our DCS problem.

To assess these hypotheses, we adapt the six different combi-

nations of candidate selection and update mechanisms of our pre-

vious work [16], and execute them on a scalable example DCS

problem. From the performance results we obtain, we draw the

conclusion that simulated annealing, when combined with efficient

model-checking techniques, is worth further investigating to solve

symbolic DCS problems.

Outline of the Paper. We formally define the symbolic model

and DCS problems, and detail the particular kind of solutions we

seek in Section 2. We then turn to a description of the general

search techniques that we investigate in Section 3, and further

detail howwe adapted them for solving our symbolic DCS problems

in Section 4. We detail our experiments and give a complexity

analysis of our simulated annealing algorithm in Sections 5 and 6.

We eventually summarise and discuss our results in Section 7.

2 SYMBOLIC MODEL-CHECKING &
CONTROLLER SYNTHESIS

2.1 Predicates
We denote by V = ⟨v1, . . . ,vn⟩ a vector of Boolean variables (i.e.,
taking their values in the domain B = {tt,ff}); DV = B

n
is the

domain of V . V ∪W is the concatenation of two vectors of vari-

ables, defined iff they contain distinct sets of variables (V ∩W = �).
A valuation v ∈ DV for each variable in V can be seen as the

mapping v : V → DV . We denote valuations accordingly: v =
{v1 7→ ff, . . . ,vn 7→ tt}. Further, given an additional vector of vari-

ablesW such thatV∩W = �, and corresponding valuationsv ∈ DV
andw ∈ DW , the union of v andw is (v,w) ∈ DV∪W . PV denotes

the set of all propositional predicates over variables in V , consisting

of all formulae φ that can be generated according to the following

grammar:

φ ::= ff | tt | vi | ¬φ | φ ∨ φ | φ ∧ φ

where vi ∈ V . Let P ∈ PV be such a predicate, and v ∈ DV a

valuation for variables in V . One has:

• v ̸ |= ff and v |= tt;
• v |= vi iff v(vi ), for vi ∈ V ;

• v |= ¬φ iff v ̸ |= φ;
• v |= φ ∨ψ iff v |= φ or v |= ψ ;
• v |= φ ∧ψ iff v |= φ and v |= ψ .

(φ ⇒ φ ′ denotes the logical implication, equivalent to ¬φ ∨ φ ′.)

2.2 Symbolic Transition Systems
A Symbolic Transition System (STS) comprises a finite set of (inter-

nal and input) variables, and evolves at discrete points in time. An

update function indicates the new values for each internal variables

according to the current values of the internal and input variables.

Definition 2.1 (Symbolic Transition System). A symbolic transition
system is a tuple S = ⟨X , I ,T ,A,x0⟩ where:

• X = ⟨x1, . . . ,xn⟩ is a vector of state variables encoding the
memory necessary for describing the system’s behaviour;

• I = ⟨i1, . . . , im⟩ is a vector of input variables;
• T = ⟨T1 : PX∪I , . . . ,Tn : PX∪I ⟩ is the update function of

S , and encodes the evolution of all state variables based on

n predicates involving variables in X ∪ I ;
• A ∈ PX∪I is a predicate encoding an assertion on the

possible values of the inputs depending on the current

state;

• x0 ∈ DX is the initial valuation for the state variables.

We give an illustrative STS in Example 2.3 below.

Remark 1 (Parallel Composition). Consider given the set of STSs

S1, . . . , SN , each involving distinct sets of variables. The system

obtained by concatenating all their state vectors altogether, as well

as all their input vectors and update functions, combined with the

conjunction of their respective assertions Ai , and initial states x0i ,
is an STS behaving as their synchronous product S1∥ . . . ∥SN : i.e.,

i ∈{1, ...,N }Si
def

=
〈⋃

Xi ,
⋃

Ii ,
⋃

Ti ,
∧

Ai , (x
0

1
, . . . ,x0N )

〉
.

Semantics. To each STS, we define the corresponding Finite State
Machine (FSM) as follows.

Definition 2.2 (Finite State Machine corresponding to an STS).
Given an STS S = ⟨X , I ,T ,A,x0⟩, we define the corresponding

FSM [S] = ⟨X,I,T ,A,x0⟩ where:
• X = DX is the state space of [S];
• I = DI is the input space of [S];
• T : X × I → X with (x , ι) 7→

(
Tj (x , ι)

)
j ∈{1, ...,n } ;

• A ⊆ X × I = {(x , ι) ∈ X × I | (x , ι) |= A} ;
• x0 is the initial state of [S].

The behaviour of an FSM [S] is as follows. Assuming that [S] is
in a state x ∈ X. Then, upon the reception of an input ι ∈ I such

that (x , ι) ∈ A (i.e., ι is an admissible valuation for all variables of I
in state x ), [S] evolves to the state x ′ = T(x , ι).

Let (x0, ι0) · (x1, ι1) · (x2, ι2) · · · be an infinite sequence of states

and inputs of [S] starting from a given state x0 ∈ X, that can
be constructed according to the preceding rule (∀j ∈ N, x j+1 =
T(x j , ι j ) and (x j , ι j ) ∈ A). Suff [S]

(
x0

)
denotes the set of all such

sequences, and XSuff [S]
(
x0

)
is the sequences of states that are

obtained from Suff [S]
(
x0

)
by removing the input component of

each tuple of the sequences.

All execution traces of [S] start in the initial state x0, and

XTrace[S] def

= XSuff [S]
(
x0

)
denotes all such sequences of states. Fur-

ther, the set of all execution paths of [S] is the set of all suffixes of any

execution trace of [S]: XPath[S] def

=
{
πs

��∃πp ,πp · πs ∈ XTrace[S]}.
Example 2.3 (Task STS). Let us now give a small illustrative ex-

ample STS modelling a two-state task. We build upon this example

throughout the paper. We model the behaviour of the system under

consideration, called “Task”, using the STS STask = ⟨X , I ,T ,A,x0⟩,
where X = ⟨ξ ⟩, I = ⟨r , s, c⟩, T = ⟨(¬ξ ∧ r ∧ c) ∨ (ξ ∧ ¬s)⟩, A = tt,
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Idle
(ξ = ff)

Active
(ξ = tt)

r ∧ c

¬(r ∧ c)

s

¬s

Figure 1: STS STask (Example 2.3) as a guarded automaton.

and x0 = {ξ 7→ ff}. An automaton representation of Task is given

in Figure 1, where the Idle (resp. Active) location represents states

where ξ = ff (resp. ξ = tt).
With successive inputs ι0 = {r 7→ tt, s 7→ ff, c 7→ ff}, and ι1 =

{r 7→ tt, s 7→ ff, c 7→ tt}, one obtains a prefix of execution traces

{ξ 7→ ff} · {ξ 7→ ff} · {ξ 7→ tt} · · · belonging to XTrace[STask].

2.3 Model-checking STSs
Model-checking [6, 10] is a technique used to determine whether a

system satisfies a number of specifications. A model-checker takes

two inputs. The first one of them, the specification, is a description
of the temporal behaviour a correct system shall display, given in

a temporal logic. The second input, the model, is a description of

the dynamics of the system that the user wants to assess, be it a

computer program, a communications protocol, a state machine, a

circuit diagram, etc.

Model-checkers usually use symbolic representations of the

model to decide efficiently if it satisfies the specification. Typi-

cal symbolic representations involve Binary Decision Diagrams

(BDDs) [5], because they yield good time and memory performance

in practice. BDDs also enjoy an often useful canonicity property,

as all functionally equivalent predicates lead to a unique diagram.

Standard temporal logics used for model-checking are Linear-time
Temporal Logic (LTL) [25] and Computation Tree Logic (CTL) [9].
As we focus on the latter, we now define CTL in terms of STSs.

CTL w.r.t. STSs. Consider given an STS S = ⟨X , I ,T ,A,x0⟩, and
its corresponding FSM [S] with X = DX . The syntax of a CTL

formula ϕ relating to S is defined as

ϕ ::= φ | ¬ϕ | ϕ ∨ ϕ | Aψ | Eψ

ψ ::= Xϕ | ϕUϕ | Gϕ

where φ ∈ PX . For each CTL formula ϕ, we denote the length of ϕ
by |ϕ |.

For each x ∈ X, we have (state formulae):

• x |= φ, for φ ∈ PX (cf. Section 2.1);

• x |= ¬ϕ iff x ̸ |= ϕ;
• x |= ϕ ∨ ϕ ′ iff x |= ϕ or x |= ϕ ′;
• x |= Aψ iff ∀π ∈ XSuff [S] (x) ,π |= ψ ;
• x |= Eψ iff ∃π ∈ XSuff [S] (x) ,π |= ψ .

Let π = x0 · x1 · x2 · · · ∈ XPath[S] be an (infinite) execution path

of S . We have (trace formulae):

• π |= Xϕ iff x1 |= ϕ;
• π |= ϕUϕ ′ iff ∃i ∈ N, x i |= ϕ ′ and ∀j < i,x j |= ϕ;
• π |= Gϕ iff ∀i ∈ N,x i |= ϕ.

Note thatϕ andϕ ′ here are state formulae. (The shortcut Fϕ denotes

the “finally” construct, equivalent to ttUϕ.)
[S] is amodel of ϕ iff x0 |= ϕ; if [S] is a model of ϕ, then we write

[S] |= ϕ.

2.4 Symbolic Discrete Controller Synthesis
The theoretical framework for Discrete Controller Synthesis (DCS)

algorithms was first introduced by Ramadge and Wonham [26] in a

language-theoretic setting. The general goal of DCS algorithms is,

given a system to be controlled S and a control objective ϕ, to obtain
a controller that alters the behaviour of S so that it fulfils ϕ.

In terms of the STSs as defined above, DCS algorithms involve

partitioning the input space (i.e., the vector of input variables I )
into non-controllable U and controllable inputs C . In practice, the

former set typically corresponds to measures performed on the

controlled system (aka plant), whereas the latter provides means

for the controller to influence the behaviours of the model (and

thereby on the controlled system itself).

A control objective can typically be expressed in the form of

a CTL formula. A desired invariant for S , for instance, can be ex-

pressed as a CTL property of the form AGφ, for some φ ∈ PX .

2.4.1 Principles of Traditional DCS Algorithms. The traditional
approach for solving DCS problems is as follows: (i) a portion

of the state-space Fϕ ⊆ X that must be avoided for the desired

control objective ϕ to hold whatever the valuations of the non-

controllable inputs is first computed; then, (ii) a strategy σϕ ⊆ X×I
is derived that avoids entering Fϕ ; (iii) the resulting controller

operates according to σϕ . The synthesis fails if, starting from the

initial state, there does not exist a strategy that avoids Fϕ ; in other

words, it fails if the initial state belongs to the forbidden area of the

state-space, i.e., x0 ∈ Fϕ .

2.4.2 Symbolic DCS. Symbolic DCS algorithms targeting vari-

ous models were investigated, by Asarin et al. [2], Cury et al. [11]

for instance. Regarding models close to STSs, symbolic DCS algo-

rithms and tools were developed by Marchand et al. [23], Marchand

and Samaan [24], and later extended by Berthier and Marchand [4]

to deal with logico-numerical (infinite-state) systems, involving

variables defined on numerical domains. These algorithms operate

on STSs (possibly extended with variables defined on numerical

domains), with predicates represented using BDDs. They are based

on a fixpoint computation of a symbolic representation of Fϕ , and

the strategy σϕ takes the form of a predicate Kϕ restricting the ad-

missible values of the controllable input variables w.r.t. the values
of the state and non-controllable input ones; i.e., Kϕ ∈ PX∪I . Then,
given valuations for all state and non-controllable input variables,

values for all controllable inputs are chosen so that Kϕ is satisfied.

Example 2.4 (Controlling STask). Building up on the STS STask
introduced in Example 2.3, we consider that the input variable c
is actually a controllable input variable: it is a lever given to the

controller to be synthesised, to prevent the modelled task from

entering the Active state if this behaviour may lead to a violation

of desired control objectives. The resulting STS we use for DCS is

then S ′Task = ⟨X ,U ⊎C,T ,A,x
0⟩, withU = ⟨r , s⟩ and C = ⟨c⟩.

Consider for instance the control objective expressed as the CTL

formula ϕ = AG((¬s)∨X¬ξ ) expressing that S ′Task should not enter
the Active state while non-controllable input s holds. This objective
can be manually attained by following the strategy represented by

the predicate Kϕ = (¬ξ ∧ s ∧ r ⇒ ¬c).

Given now first non-controllable inputs u0 = {r 7→ tt, s 7→ tt},
according to the strategy Kϕ we must choose c0 = {c 7→ ff} as
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values for the controllable inputs (as c0 is the only valuation for

C s.t (x0,u0, c0) |= Kϕ , and c0
′
= {c 7→ tt} would lead to a vi-

olation of ϕ). The controlled system S ′Task can then evolve into

state x1 = {ξ 7→ ff} (staying in Idle). With further inputs u1 =

{r 7→ tt, s 7→ ff}, we can either choose c1 = {c 7→ ff} or c1 ′ =
{c 7→ tt}, that both fulfil the strategy Kϕ and respectively lead

to state x2 = {ξ 7→ ff} and x2 ′ = {ξ 7→ tt}.

2.4.3 Controlled Execution of STSs. As exemplified above, σϕ
might be non-deterministic, and its symbolic representation Kϕ
describes a relation: σϕ is a subset of X × I. Given a state x ∈ X
and a valuation for all non-controllable inputs u ∈ DU , the set of

all valuations

{
c ∈ DC

��� (x ,u, c) |= Kϕ
}
might not be a singleton.

Therefore, traditional DCS algorithms require further processing

steps to eventually produce a deterministic, executable controlled
system.

Two approaches exist to this end: (i) using an on-line solver to

randomly pick values c ∈ DC for the variables inC , given values for
non-controllable inputs u ∈ DU and state x ∈ X, s.t (x ,u, c) |= Kϕ
holds (as we did manually in Example 2.4); or (ii) translating the

predicate Kϕ into a function assigning values for each controllable

variable based on values for state and non-controllable input vari-

ables. In the remainder of this paper, to obtain deterministic, easily

implementable controlled STSs, we seek algorithms that give re-

sults similar to those obtained after applying the translation of

option (ii).

2.4.4 Obtaining aDeterministic Controlled STS. Option (ii) above
amounts to refining the non-deterministic strategy σϕ into a deter-
ministic strategy σ ′ϕ .

A triangulation technique similar to the one described by Hietter

et al. [15] may be used to translate Kϕ into a set of assignments.

This translation operates by using successive variable substitutions

and partial evaluations of Kϕ . It requires ordering (prioritising)

the controllable input variables, and assigning “default” values for

them, or introducing additional non-controllable input “phantom”

variables.

Essentially, the symbolic representation for σ ′ϕ obtained by trian-

gulation for an STS S = ⟨X ,U ⊎C,T ,A,x0⟩, with C = ⟨c1, . . . , ck ⟩

and default values d ∈ DC , is a vector Γ
d
ϕ of k predicates giving

values for each controllable variable of the system based on state

and non-controllable inputs only, i.e.,

Γdϕ = ⟨γ1 : PX∪U , . . . ,γk : PX∪U ⟩. (1)

Every occurrence of a controllable variable in the update function

T can then be substituted with its corresponding assignments in Γdϕ ,

thereby providing a Deterministic Controlled STS (DCSTS), denoted

S/Γdϕ
, satisfying the desired objective (i.e., [S/Γdϕ

] |= ϕ).

Example 2.5 (Deterministic Controller for S ′Task). Consider again
the controller obtained in Example 2.4. A triangulation of Kϕ with

default value tt for c gives Γ
{c 7→tt}
ϕ = ⟨(ξ ∨¬r∨¬s)⟩. The alternative

choice for the default value for c leads to Γ
{c 7→ff }
ϕ = ⟨(ff)⟩, always

assigning the value ff to c (and incidentally prevents S ′Task from

ever reaching the Active state). The resulting DCSTS in the first

case is S ′Task/Γ{c 7→tt}
ϕ

= ⟨X ,U ,T [C/Γ
{c 7→tt}
ϕ ],A,x0⟩ where

T [C/Γ
{c 7→tt}
ϕ ] = ⟨(¬ξ ∧ r ∧ (ξ ∨ ¬r ∨ ¬s)) ∨ (ξ ∧ ¬s)⟩

= ⟨(¬ξ ∧ r ∧ ¬s) ∨ (ξ ∧ ¬s)⟩.

Note that the triangulation has an impact on the kind of control

objectives that can effectively be enforced using traditional DCS

algorithms (that operate by computing Fϕ ), as this determinisation

procedure implicitly entails “removing” transitions from σϕ . This
translation is also computationally expensive when performed on

BDDs, and may incur a non-negligible increase in the number of

nodes involved to represent the resulting functions.

2.5 Contribution w.r.t. Symbolic DCS
Our contribution is an original algorithm for the construction of

correct DCSTSs solving symbolic DCS problems when multiple

control objectives are desired: given an STS S and a set ω of desired

control objectives specified using CTL formulae over variables of S ,
its goal is to construct a deterministic strategy σ ′ω so that S controlled
according to σ ′ω fulfils every objective belonging to ω.

Accordingly, the resulting deterministic strategy shall take the

form of a vector of predicates over state and non-controllable input

variables of S (as in Equation (1)), and the goal of our algorithm

is to find a “good” solution Γω so that ∀ϕ ∈ ω, [S/Γω ] |= ϕ. To
this end, we rely on: (i) general search techniques to explore the

set of all potential deterministic strategies; (ii) well-established

model-checking techniques for assessing the fitness of such potential
solutions.

3 GENERAL SEARCH TECHNIQUES
We investigate two general search techniques, namely simulated
annealing and genetic programming, and derive a hybrid one. We

present these techniques, and turn to their application in combi-

nation with model-checking to find deterministic strategies in the

following Section.

3.1 Simulated Annealing
Simulated annealing [8, 14, 16] is a general local search technique

that is able to escape from local optima. The algorithm, described

in Algorithm 1, is easy to implement and has good convergence

properties.

When applied to an optimisation problem, the fitness function

(objective) generates values for the quality of the solution con-

structed in each iteration. The fitness of this newly selected solution

is then compared with the fitness of the solution from the previous

round. Improved solutions are always accepted, while some of the

other solutions are accepted in the hope of escaping local optima

in search of global optima. The probability of accepting solutions

with reduced fitness depends on a temperature parameter, which is

typically falling monotonically with each iteration of the algorithm.

Simulated annealing starts with an initial, randomly generated,
candidate solution. In each iteration, a neighbouring candidate x ′

is generated by mutating the previous candidate x . Let, for the

ith iteration, F (x) be the fitness of the “old” solution and F (x ′)
the fitness of its mutation newly constructed. If the fitness is not

decreased (F (x ′) ⩾ F (x)), then the mutated solution x ′ is kept. If
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Algorithm 1 Simulated Annealing

i := 0

randomly generate a first candidate x
repeat
i := i + 1
derive a neighbor x ′ of x
if F (x ′) ⩾ F (x) then
x := x ′

else
derive random number p ∈ [0, 1]

if p < e
F (x ′)−F (x )

θi then
x := x ′

end if
end if

until the goal is reached or i = imax

the fitness is decreased (F (x ′) < F (x)), then the probability p that

this mutated solution is kept is

p = e
F (x ′)−F (x )

θi

where θi is the temperature parameter for the ith step. The chance

of changing to a mutation with smaller fitness is therefore reduced

with an increasing gap in the fitness, but also with a falling temper-

ature parameter. The temperature parameter is positive and usually

non-increasing (0 < θi ⩽ θi−1). The development of the sequence

θi is referred to as the cooling schedule and inspired by cooling in

the physical world [14].

The effect of cooling on the simulation of annealing is that the

probability of following an unfavorable move is reduced. In practice,

the temperature is often decreased in stages. The cooling schedule is

given as a set of parameters that determines how the temperature is

reduced in each iteration (i.e., the initial temperature, the stopping

criterion, the temperature decrements between successive stages,

and the number of transitions for each temperature value).

For our investigations, we have used a simple cooling schedule,

where the temperature is dropped by a constant in each iteration.

3.2 Genetic Programming
Genetic programming is a different general search technique [21]. It

has already been used for program synthesis by Johnson [17], Katz

and Peled [18, 19, 20], and Husien and Schewe [16]. In genetic

programming, a population of λ candidate solutions (in our case,

deterministic strategies) is first randomly generated. Then at each

iteration, a small share of the population consisting of µ candidates,
with µ ≪ λ, is selected based on its fitness; usually, a random

function that makes it more likely for fitter candidate solutions

to be selected is applied. The selected candidates are then mated

using some crossover operation to make up a population of λ, and
mutations are applied to a high share of the resulting candidates

(e.g., on all duplicates).

Mutations of selected candidates are used to obtain λ candidates

at the end of each iteration. Crossovers are optional.

3.3 Hybrid Search Technique
Apart from simulated annealing and pure genetic programming

with and without crossovers as presented above, we additionally

investigate a hybrid form introducing a property known from sim-

ulated annealing into the genetic programming algorithm: by ap-

propriately tuning the measures of fitness, changes are applied

more flexibly in the beginning, while evolution becomes more rigid

over time. This hybrid approach has already been used for pro-

gram synthesis by Katz and Peled [18, 19, 20] as well as Husien and

Schewe [16].

Just as for the genetic programming technique, crossovers are

optional for this hybrid approach as well.

4 PRINCIPLES OF OUR DCS ALGORITHMS
In this Section, we assume given an STS S = ⟨X ,U ⊎C,T ,A,x0⟩ to
be controlled, with C = ⟨c1, . . . , ck ⟩, and a set of desired objective

CTL formulae ω = {ϕ1, . . . ,ϕw }.

4.1 Representing Deterministic Strategies
Recall that the candidate deterministic strategies are vectors of

predicates involving state and non-controllable variables (cf. Sec-
tion 2.5), and such candidates are subject to mutations (and possibly

crossovers) for genetic programming and simulated annealing al-

gorithms to be applicable. Therefore, one needs to find a suitable

representation for such vectors of predicates.

Usual symbolic representations for predicates involve BDDs (cf.
Section 2.3). Yet, implementing efficient random generation, muta-

tions, and crossovers on such diagrams appears to be challenging,

and more importantly, unnecessary w.r.t. our goal of performing

a preliminary feasibility assessment for the use of general search

techniques to solve symbolic DCS problems. The canonicity of

candidates is not required by the algorithms we investigate either.

Therefore, we have opted for the simpler solution of using trees

built according to the grammar of predicates introduced in Sec-

tion 2.1:

• each leaf is labelled with either a variable belonging to

X ∪U , or a constant in {tt,ff};
• each node with one children is labelled with ¬;

• each node with two children is labelled with a binary op-

erator ∨ or ∧.

In the end, we represent candidate deterministic strategies as fixed-

sized vectors Γ = ⟨γi ⟩i ∈{1, ...,k } of k trees γi as defined above, one

per controllable variable in C .

4.2 Random Generation of Candidates
To randomly initialise the population of strategies, we need to

generate vectors of as many trees as controllable variables inC . We

use the “grow” method suggested by Koza [21] in order to build

each tree; the method starts from the root, and potential children

nodes are generated until the maximum depth of the tree is reached.

growmaxdepth (depth) is shown as a recursive function in Algo-

rithm 2, generating trees of maximum depth maxdepth. It takes
the depth depth of the current node to be generated as argument.

If depth is less than the maximum tree depth, a node is chosen

randomly from the set of terminals and binary operators. Then,

depending on whether the node to generate is a terminal (leaf) or
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Algorithm 2 growmaxdepth (depth)

if depth < maxdepth then
node← random ({∨,∧,¬,tt,ff} ∪ X ∪U )
for each children child required for node do

node.child ← growmaxdepth (depth + 1)
end for

else
node← random ({tt,ff} ∪ X ∪U )

end if
return node

internal node, as many recursive calls as needed are performed to

create the required number of children for the node. If depth equals

the maximum tree depth, then a node is chosen from the set of

terminals.

k calls to growmaxdepth (1) shall then be used to generate one

candidate deterministic strategy Γ.

4.3 Performing Mutations and Crossovers
Mutations are changes applied on each candidate deterministic

strategy Γ. Such changes can be applied using a random walk on

one tree of Γ as follows:

1. Randomly select a predicate γ to be changed in Γ;
2. Perform a randomwalk onγ from its root, randomly choosing to

stop or visit one of its children nodes (picked with probabilities

weighted by the number descendants);

3. Apply the one change applicable from the following:

• When on a node n labelled with a binary operator ∨ or

∧, replace it with a different binary operator or insert a

negation node ¬ with child n;
• When on a node labelled with a unary operator ¬, remove

it;

• When on a leaf l , insert a negation node ¬ with child l , or
replace l with a randomly generated sub-tree built by using

growmaxdepth (1); the latter case is illustrated in Figure 2.

The principle for performing the crossover between two can-

didates Γ1 = ⟨γ1,i ⟩i ∈{1, ...,k } and Γ2 = ⟨γ2,i ⟩i ∈{1, ...,k } consists in
selecting and index j ∈ {1, . . . ,k} (i.e., a controllable variable),

and swapping two randomly selected sub-trees t1 from γ1, j and t2
from γ2, j . As each predicate involved is defined on the same set

of variables (X ∪U ), a proper mix of the two candidates is always

produced. We show in Figure 3 an example crossover between two

trees.

4.4 Model-checking as a Fitness Function
We use model-checking to determine the fitness of a candidate

deterministic strategy in a way similar to that of Katz and Peled [18,

19, 20] and Husien and Schewe [16] for program synthesis using ge-

netic programming. The model-checking results are used to derive a

quantitative measure for the fitness (as a level of partial correctness)

of a deterministic strategy Γ w.r.t. the objectives ω.
To design a fitness measure for candidates, we make the hy-

pothesis that the share of objectives that are satisfied so far by a

candidate is a good indication of its pertinence. We additionally ob-

serve that candidate solutions that satisfy weaker objectives—that

can be mechanically derived from those belonging to ω—may be

good candidates worth selecting for the generation of further po-

tential solutions. For example, if a property shall hold on all paths,

it is better if it holds on some paths, and yet better if it holds almost

surely.

Taking these observations into account, we first automatically

translate the objectives with up to two universal path quantifiers

occurring positively into weaker objectives:

• A first set of weaker objectives ω ′ is obtained by selecting

every objective from ω featuring universal path quanti-

fiers (i.e., Aψ ), and replacing one with an existential path

quantifier (Eψ );
• Repeating this process once again on eligible objectives of

ω ′ gives ω ′′.
(We shall give example partial objectives as built by the above

procedure in Section 5.1 below.)

Then, given a candidate deterministic strategy Γ and a set of

objectives ω, a model-checking algorithm is used to check whether

[S/Γ] |= ϕ, for each objective ϕ in ω ∪ω ′ ∪ω ′′ (cf. Section 2.3). The

fitness of Γ is computed based on the number of objectives of each

setω,ω ′ andω ′′ that it satisfies:m points are assigned per objective

of ω that is satisfied,m′ points (withm′ < m) per objective of ω ′,
andm′′ points (withm′′ < m′) per objective of ω ′′.

Following the works of Katz and Peled [18] and Husien and

Schewe [16], we also apply a penalty for “large” strategies by de-

ducing the number of inner nodes of all trees from this average

when assigning the fitness of a candidate strategy.

Let us denote Fω (Γ) the fitness value obtained as described above
for the candidate Γ and objectives ω.

4.5 Variants for Improved Search Techniques
To derive improved variants of the general search algorithms of

Section 3, we note that a subset ωs of given target objectives ω are

safety ones, while the others ωl (= ω \ ωs ) are considered liveness
objectives

1
.

At each iteration of the simulated annealing algorithm, the first

decision to select a new candidate Γ′ over an old one Γ (condition

∆F < 0 in Algorithm 1) is taken according to one of two distinct

policies, giving two versions of the simulated annealing algorithm:

rigid Γ′ is selected at this stage whenever Fω (Γ
′) > Fω (Γ);

flexible Γ′ is selected at this stage whenever Fω (Γ
′) > Fω (Γ) or

Fωs (Γ
′) > Fωs (Γ); Γ

′
is always discarded when Fωs (Γ

′) <

Fωs (Γ).

Our implementation of the hybrid algorithm presented in Sec-

tion 3.3 basically consists in tuning the evaluation of fitness to first

favour safety objectives: in this algorithm, the fitness Fω (Γ) of a
candidate Γ is actually made of the pair (Fωs (Γ) , Fωl (Γ)), and com-

parisons of such fitness measures are performed according to their

lexical ordering. This way, candidates with better values for the

safety objectives ωs are always given preference, while the fitness

computed using liveness objectives ωl only are merely tie-breakers

for equal values of Fωs (Γ).

1
One can use a simple syntactical criterion for deciding that an objective surely belongs

to ωs ; e.g., some safety CTL formulae can be rewritten as AGφ with φ ∈ PX .
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Figure 2: Candidate predicate (left) with two mutations (middle and right)
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Figure 3: Crossover: two parents (above) and two offspring
(below)

In the end, we investigate and compare six algorithms involving

various search techniques: (1) pure genetic programming without

crossovers (GP); and (2) with crossovers (GP w. CO); (3) rigid sim-

ulated annealing (SA rigid); (4) flexible simulated annealing (SA

flexible); (5) hybrid search without crossovers (Hybrid); and (6) with

crossovers (Hybrid w. CO).

5 EXPERIMENTAL FEASIBILITY
ASSESSMENT

5.1 Problem Instances
In order to get a preliminary feasibility assessment of our approach,

we have generated several problem instances based on the parallel

composition of STSs as per Remark 1. Synthesis objectives were

then derived as CTL formulae in a scalable manner.

Regarding the STSs, each problem N–Tasks was built using N
instances of the STS S ′Task described in Example 2.4 (modulo renam-

ing of variables to ensure disjointness); i.e., the STSs involved were

built as

SN–Tasks =

i ∈{1, ...,N } ⟨Xi ,Ui ⊎Ci ,Ti ,Ai ,x

0

i ⟩,

whereXi = ⟨ξi ⟩,U = ⟨ri , si ⟩,Ci = ⟨ci ⟩,Ti = ⟨(¬ξi ∧ri ∧ci )∨ (ξi ∧
si )⟩, Ai = tt, and x0i = {ξi 7→ ff}.

Objective CTL formulae for each problem N–Tasks consist of
both safety ωs,N and liveness ωl,N objectives. Regarding safety,

mutual exclusion properties suit our need for scalable, CTL formu-

lae that are relatively complex to represent: i.e., no two tasks should
be in their Active state (with ξi = tt) at the same time. For each

problem instance N–Tasks, one obtains:

ωs,N =

AG ©«
∧

i ∈{1, ...,N−1}

©«
∧

j ∈{i+1, ...,N }

¬
(
ξi ∧ ξ j

)ª®¬ª®¬
 ,

with notable special case ωs,1 = �. As a concrete illustration, one
obtains ωs,2 = {AG(¬(ξ1 ∧ ξ2))}.

Regarding liveness objectives ωl,N , we want to ensure that ev-

ery task in its Idle state should eventually reach its Active state.
Formally, one obtains:

ωl,N =
⋃

i ∈{1, ...,N }

{AG (¬ξi ⇒ AFξi )}.

In the end, solving each problem N–Tasks consists in finding a

deterministic strategy ΓωN so that ∀ϕ ∈ ωN , [SN–Tasks/ΓωN ] |= ϕ,
with ωN = ωs,N ∪ ωl,N .

Partial Objectives. The partial objectives automatically generated

from the ωs,N ’s above, according to the procedure explained in

Section 4.4, are:

ω ′s,N =

EG ©«
∧

i ∈{1, ...,N−1}

©«
∧

j ∈{i+1, ...,N }

¬
(
ξi ∧ ξ j

)ª®¬ª®¬
 ,

andω ′′s,N = �. Informally, partial objectives inω ′s,N state that there

exists execution paths where the mutual exclusion property is met.

On the other hand, the ωl,N ’s lead to:

ω ′l,N =
⋃

i ∈{1, ...,N }

{AG (¬ξi ⇒ EFξi ) ,EG (¬ξi ⇒ AFξi )},

and

ω ′′l,N =
⋃

i ∈{1, ...,N }

{EG (¬ξi ⇒ EFξi )}.

5.2 Experimental Setup
We have implemented the simulated annealing, and genetic pro-

gramming, and hybrid algorithms as described, using NuSMV [7] as

a solver to derive the fitness of candidate deterministic strategies.

For simulated annealing, we have set the initial temperature

to 20,000. The cooling schedule decreases the temperature by 0.8

in each iteration. Thus, the schedule ends after 25,000 iterations,

when the temperature hits 0. In a failed execution, this leads to

determining the fitness of 25,001 candidates.
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Table 1: Search Techniques Comparison

Search Tech. sngl exec. suc. rat% overall time

1–Task

SA rigid 18 13 138.46

SA flexible 17 16 106.25
Hybrid 91 17 535.29

Hybrid w. CO 94 20 470.00

GP 378 3 12,600.00

GP w. CO 385 5 7,700.00

2–Tasks

SA rigid 24 10 240.00

SA flexible 22 13 169.23
Hybrid 132 13 1,015.38

Hybrid w. CO 138 15 920.00

GP 463 3 15,433.33

GP w. CO 484 4 12,100.00

3–Tasks

SA rigid 31 9 344.44

SA flexible 28 10 280.00
Hybrid 197 9 2,188.88

Hybrid w. CO 201 11 1,827.27

GP 572 2 28,600.00

GP w. CO 589 4 14,725.00

4–Tasks

SA rigid 45 9 500.00

SA flexible 43 9 477.77
Hybrid 289 10 2,890.00

Hybrid w. CO 296 12 2,466.66

GP 641 2 32,050.00

GP w. CO 664 4 16,600.00

5–Tasks

SA rigid 72 8 900.00

SA flexible 68 9 755.55
Hybrid 436 8 5,450.00

Hybrid w. CO 445 11 4,045.45

GP 764 2 38,200.00

GP w. CO 787 3 26,233.33

6–Tasks

SA rigid 115 7 1,642.85

SA flexible 104 7 1,485.71
Hybrid 650 8 8,125.00

Hybrid w. CO 673 10 6,730.00

GP 935 2 46,750.00

GP w. CO 972 3 32,400.00

We have taken the values suggested by Katz and Peled [18]

and Husien and Schewe [16] for genetic programming: λ = 150

candidates are considered in each step, µ = 5 are kept, and we abort

after 2,000 iterations. In a failed execution, this leads to determining

the fitness of 290,150 candidates.

Points assigned for fitness measures are arbitrarily set tom = 100

for target objectives, andm′ = 80 andm′′ = 10 for partial objectives

(cf. Section 4.4).

The experiments have been conducted using a machine with an

Intel core i7 3.40 GHz CPU and 16GB RAM.

5.3 Experimental Results
The results are shown in Figures 4 and 5 and summarised in Ta-

ble 1. Figure 4 shows the average time needed for synthesising

a correct candidates. The two factors that determine the average

running time are the success rate and the running time for a full

execution, successful or not. These values are shown in Figure 5.

Table 1 shows the average running time for single executions in

seconds, the success rate in %, and the resulting overall running

time. The best values (shortest expected running time or highest

success rate) for each comparison printed in bold. Both simulated

annealing and the hybrid approach significantly outperform the

pure genetic programming approach. The low success rate for pure

genetic programming suggests that the number of iterations might

be too small. However, as the individual execution time is already

ways above the average time simulated annealing needs for con-

structing a correct candidate, we did not increase the number of

iterations.

The advantage in the individual execution time between the clas-

sic and the hybrid version of genetic programming is in the range

that is to be expected, as the number of calls to the model-checker

is reduced. It is interesting to note that simulated annealing, where

the shift from rigid to flexible evaluation might be expected to have

a similar effect, does not benefit to the same extent. It is also inter-

esting to note that the execution time suggests that determining the

fitness of candidates produced by simulated annealing is slightly

more expensive. This was to be expected, as the average candidate

size grows over time. The penalty for longer candidates reduces this

effect, but cannot entirely remove it. (This potential disadvantage is

the reason why an occasional re-start provides better results than

prolonging the search.)

As was the case in our previous work [16], it is interesting to note

that both the pure and the hybrid approach to genetic programming

benefit from crossovers.

Lastly, observe that in absolute terms, the expected execution

times that we obtain for all our general search-based algorithms

are several orders of magnitude higher than that obtained on sim-

ilar examples when using a traditional symbolic DCS tool such

as ReaX [4] (that is also able to enforce some restricted class of

liveness objectives, when the controller is not triangulated). We

discuss this aspect and its implications further in Section 7.

6 COMPLEXITY ANALYSIS
While the main argument supporting this technique is practical, it

is interesting to consider the complexity of this approach, too. For

the estimation of the complexity, we look at recurrent application of

simulated annealing, as, from the figures from the previous Section,

this seems to be the most promising approach. Also, applying the

procedure repeatedly is fairly normal, as not 100% of the attempts

lead to a deterministic strategy that satisfies all required objectives.

For our complexity consideration, we consider cooling schedules

that change slowly. The reason for this is that the search space for a

given cooling schedule is finite, as only a finite set of deterministic

strategies can be constructed with a fixed cooling schedule.

We naturally can only refer to probabilistic complexity here: it

is always possible to only consider two neighbouring candidate

strategies during all runs (this is the case when candidate two is

always selected as a mutation of candidate one and, vice versa,

candidate one is always chosen as a mutation of candidate two),

even when re-starting infinitely often.

Theorem 6.1. Let s be the length of the specification (some of
the lengths of the target objectives in ω) andm the minimal size of
the correct deterministic strategy. We show that there is a recurrent
cooling schedule such that, with very high probability,

• the space required is the space required for model-checking
STSs of length O(m) against specifications of length s and

• the time requirement ismO (m) times the time required for
model-checking STSs of length O(m) against specifications
of length s .
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Figure 4: Overall time required for synthesising a correct candidate
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Figure 5: Average running time of an individual execution (left) and success rate of individual executions (right)

With very high probability means that, for all p < 1, one gets a

result with probability greater than p in the mentioned time and

space class. Note that this refers to the same cooling schedule.

As a preparation for the proof of Theorem 6.1, we estimate the

chance of producing a correct strategy in exactlym steps by a par-

ticular derivation of the corresponding predicate trees. The chance

is the product of them transitions being made. An individual tran-

sition can be described as the product of the chance that it is se-

lected by the mutation algorithm and the chance that the algorithm

continues with the mutated form. The chance of selecting a partic-

ular position for the mutation is Ω
(
1

i
)
in the ith step—this lower

bound stems from taking the weight of subtrees into account in

the random walk, which can be used to select all nodes with equal

probability—and the chance of attempting a particular mutation

when this position is selected is a constant. (For the argument, it

suffices that it is at least
1

O (poly(m)) .) If the chance is bounded from

below by a constant – or even by a polynomial
1

O (poly(m)) , then the

chance is bounded from below by
1

O (m)! .

For a given number n of steps (e.g., n =m if we have an oracle

that tells us the size of the predicate trees we are looking for), it is

easy to construct a cooling schedule with this property: any cooling

schedule that keeps the temperature sufficiently high for at least n
steps. To avoid an unduly high time or space consumption of one

iteration, the cooling after this should proceed quickly, such that

the overall number of mutation attempts considered, nattempts, is

in O(n).
As we would normally not know a suitable n ≥ m, we suggest to

adjust the cooling schedule over time by increasing it slowly: in the

ith iteration, we could use, for some constant c ∈ N, the cooling
scheme for ni = c +max{k ∈ N | k! ≤ i}. Let us choose c = 0 for

the proof.

Proof of Theorem 6.1. For ni < m, we estimate the chance of

creating a correct strategy with 0. Note that nm! ≥ m. The time and

space consumption of each of these steps can be estimated by the

cost of model-checking a strategy represented by predicate trees

of sizemattempts ∈ O(m) against a specification of size s . There are
less thanm! of these attempts.

For ni ≥ m, the chance of creating a correct strategy is at least

1

O (m)! . To create a strategy with an arbitrary (but fixed) chance of

at least p ∈ [0, 1[ therefore requiresO(m)! such steps. The time and

space consumption of each of these steps can be estimated by the

cost of model-checking a strategy represented by predicate trees of

size O(m) against a specification of size s . □

Note that this technique does not qualify as a decision procedure,

as it cannot provide a negative answer. (What it can be used to
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provide is an answer that, for a givenm ∈ N and p ∈ [0, 1[ there is
no strategy of size at mostm with a chance of at least p.)

Note further that the proof does not refer to a particular spec-

ification language. For space requirements, the complexity is, for

relevant languages like LTL or CTL, as good as one can hope. With

regard to time complexity, the complexity of synthesis is exponen-

tial for CTL and doubly exponential for LTL. If the expected time

complexity of this algorithm is higher depends on the question of

whether or not PSPACE equals EXPTIME [12].

7 CONCLUSION
Inspired by our previous investigations for program synthesis using

general search techniques [16], and in an effort to inquire further

applications of such techniques, we have defined a class of DCS

problems where deterministic strategies are sought. We adapted

our algorithms to seek solutions for these problems, and conducted

an experimental evaluation using a scalable instance of a DCS prob-

lem. Results proved to be consistent with our assumption that the

relative performance of the algorithms would match our previous

results for program synthesis.

7.1 Discussion
As noted in Section 5, our experimental results do not compare

favourably with existing symbolic DCS tools. Yet, our implementa-

tions are proofs of concept, and one can think of numerous practical

improvements that constitute inescapable ways to pursue investi-

gating efficient symbolic DCS algorithms using simulated annealing.

For instance, canonically representing symbolic candidate strate-

gies using BDDs instead of syntactic trees would allow building a

cache of fitness results, and thereby avoid re-evaluating the fitness

of equivalent candidate strategies. Similarly, implementing the al-

gorithms in a symbolic model-checker could permit to avoid the

very costly—and often performance bottleneck in case of model-

checkers using BDDs—reconstruction of symbolic representations

at every iteration of the algorithms.

At last, note that our search based algorithms do not require the

computation of the unsafe region to produce deterministic strate-

gies. Hence, considering the current advances in model-checking

technologies, our algorithms might constitute ways to solve DCS

problems on some classes of infinite-state systems for which the

unsafe region cannot be computed.
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