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Abstract 

Microcantilevers are increasingly being used to create sensitive sensors for rheology and mass sensing 

at the micro- and nano-scale. When operating in viscous liquids, the low quality factor of such 

resonant structures, translating to poor signal-to-noise ratio, is often manipulated by exploiting 

feedback strategies. However, the presence of feedback introduces poorly-understood dynamical 

behaviours that may severely degrade the sensor performance and reliability. In this paper, the 

dynamical behaviour of self-excited microcantilevers vibrating in viscous fluids is characterized 

experimentally and two complementary modelling approaches are proposed to explain and predict the 

behaviour of the closed-loop system. In particular, the delay introduced in the feedback loop is shown 

to cause surprising non-linear phenomena consisting of shifts and sudden-jumps of the oscillation 

frequency. The proposed dynamical models also suggest strategies for controlling such undesired 

phenomena. 

 

1. Introduction 

Microcantilever-based sensors have been recently proposed as a promising platform capable of 

achieving very high sensitivity in rheology and mass-sensing applications on extremely low volumes 

of fluids.  Rheological properties and mass/concentration of molecules of interest are often measured 

by shifts in resonance frequency of externally excited cantilevers [1]. In fact, attachment of target 

molecules to the cantilever or changes in fluid density or viscosity translate to an increase in the probe 

effective mass and damping that, in turn, induces changes in the cantilever resonance frequency. 

However, the main drawback of using an external excitation when operating in viscous fluids is the 

low quality factor (Q) of the resonator and, especially for standard acoustic excitation, the presence of 

unwanted modes of oscillations due to the fluid-probe interaction. Such unwanted modes make the 

identification of the resonance peak very challenging and require complicated tuning and setup 

procedures [2].  

Such poor performance is due to the dramatic decrease of the microresonator quality factor when 

operating in liquid. Several strategies have been proposed to overcome such limitation via the 

exploitation of feedback loops aimed at making the frequency response more selective. Q-control is 

one of those strategies used to increase the selectivity of the probe frequency response (thus making 

the resonance peak more evident), but the circuit responsible for the enhancement of the Q-factor 

often requires ad-hoc tuning procedures [3].  

Similarly, feedback strategies to effectively increase the Q-factor in atomic force microscopy imaging 

applications have also been proposed. In this case, highly resonant microcantilevers allow for a 

decrease of the interaction force with the sample [4-6]. Strategies as Q-control [7,8], parametric 
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resonance [9,10] and self-excitation circuits [11,12] have allowed these setups to be successfully used 

for imaging and as rheological [13], mass [14]  or chemical [8] sensors. 

However, embedding the microcantilever in a feedback loop can induce undesired behaviours, and the 

nonlinearities that are either introduced in the loop or intrinsic of the cantilever mechanical response 

can generate poorly-understood phenomena and instabilities. Potential sources of nonlinearities 

include: nonlinear electronic components required for signal conditioning [11,12], nonlinear stress-

strain relation of the cantilever material subject to large deformations [15,16] and nonlinear forces 

between the probe and the sample or surrounding viscous fluids [17]. As a result, the dynamics of 

these systems are often very complex and several cases of chaos [18] and bifurcations [19,20] on the 

response of the resonators have been reported.  

Achieving fine control of the dynamics of the resonators can be extremely important to avoid 

undesired phenomena during device operation and to use the most advantageous features for a 

specific application. Therefore, it is crucial to develop accurate models to describe the resonator 

vibrating in closed-loops.  

In this paper, self-sustained oscillations of microcantilevers operating in viscous fluids are induced 

using a feedback loop proposed in [11], in which a controllable phase-shifter has been inserted in 

order to assess the influence of feedback delay on the cantilever response. This aspect has often been 

overlooked in the literature, but here it is shown to significantly affect the sensor mechanical 

response, sensitivity and reliability. The frequency of self-excited oscillation is studied as function of 

the delay introduced in the circuit by the phase-shifter and as a function of the rheological properties 

of the viscous fluid. Smooth changes and sudden jumps on the frequency of oscillation are observed. 

Such nonlinear behaviour is generic and has been tested on three different cantilevers operating in two 

different viscous fluids (air and water). The observed jumps are expected to occur in any type of 

device based on this setup and, if used in a controlled way, may pave the way for developing more 

reliable and sensitive viscosity and mass sensors, or even provide new potentialities to different 

scanning probe techniques, such as acoustic force microscopy [21]. Two different models are 

proposed to explain the experimental observations and to predict the response of the self-excited 

microcantilever. 

The paper is organized as follows: in Section 2 the experimental setup is discussed. Special emphasis 

is given to the description and characterization of the phase-shifter, which is the critical component 

exploited here to highlight the nonlinear behaviours. Experimental results illustrating the nonlinear 

behaviour of the self-excited oscillation frequency are presented in Section 3. In Section 4 two 

mathematical models to describe the system are developed and discussed. Predictions provided by 

such models are compared to experimental results in Section 5. Finally, some conclusions and 

outlooks for future opportunities are discussed in Section 6. 

 

2. Experimental Setup 

 

A schematic of the experimental setup used to characterise the behaviour of microcantilevers 

oscillating in different viscous media is presented in Figure 1-A. The cantilever is acoustically excited 

using a dither piezo and the resulting deflection is measured using a four-quadrant detector connected 

to a R9 controller (RHK Technology).  

The switch S in the diagram allows users to select between a classical externally excited configuration 

(amplitude modulation, AM) and a self-excitation setup (auto-tapping mode, AT). In the former 

modality the dither piezo is externally excited by a function generator implemented in the controller 



and the amplitude and phase of the deflection signal are read via a lock-in available in the controller 

itself. In AT mode, the measured deflection is fed to an electronic circuit (Elbatech srl) composed of 

an adjustable gain K, a saturator and a phase-shifter (PS), whose output is connected to the dither 

piezo voltage input. The frequency of vibration of the cantilever is measured by feeding the deflection 

signal to a spectrum analyser embedded in the R9 controller (thermal spectrum function).  

The experimental setup of Figure 1-A explicitly indicates the total delay, tot, of the signal along the 

feedback loop. As it will be discussed below, this total delay encloses three individual contributions 

from elements of the loop and creates a natural phase shift between the excitation of the piezo and the 

motion of the tip of the cantilever.  

In addition to the natural phase shift induced by the delay tot, a phase shifter (PS) was inserted in the 

feedback loop to finely control the phase between dither piezo excitation and cantilever deflection. 

The complete phase-shifter consists of two stages connected in series, each one working as an all-pass 

filter able to shift the phase of the signal by at most 180 degrees. Figure 1-B shows the detail of the 

electrical scheme of a single stage. The two stages are individually operated by adjusting two 

potentiometers which control the value of two resistors, R1 and R2, between 0 and 10.4 kΩ. The phase 

shift 𝜑 = −2 atan(𝜔𝑅𝑖𝐶𝑖) introduced by each stage of the phase-shifter depends on the frequency of 

oscillation of the loop, 𝜔, and the values of the resistor and capacitor, 𝑅𝑖, 𝐶𝑖. In addition, the polarity 

of the voltage applied to the terminals of the dither piezo that excites the cantilever can also be 

inverted, allowing an extra phase shift of 180 degrees on the signal. The two stages of the phase-

shifter and the inversion of polarity in the piezo can be used to shift the signal along the feedback loop 

by a complete cycle (360 degrees). This strategy will be used to assess the influence of feedback delay 

on the cantilever response. 

A full characterization of each element in the experimental setup is described below. 

 

 
Figure 1. A) Schematic of the experimental setup. The cantilever is immersed in a viscous medium and excited 

by a dither piezo. In the amplitude mode (AM), the external excitation signal drives the dither piezo at different 

frequencies. In the autotapping mode (AT), the deflection signal passes through the feedback loop, where it is 

delayed by the phase-shifter, amplified by the gain and limited by the saturator, being finally fed back to the 

piezo as a voltage. B) Detail of a single stage of the phase-shifter. Two stages, connected in series, were used, 

each one capable of shifting the signal by at most 180 degrees. Values of C1 and C2 are 4.7 nF and 220 pF in 

each stage, respectively, and R1 and R2 are adjustable from 0 to 10.4 kΩ. The polarity of the voltage applied to 

the dither piezo can also be inverted. 

 

 



2.1. Dynamics of acoustically excited microcantilevers immersed in viscous fluids in AM 

mode 

Three different commercial cantilevers were used in this work, covering a wide range of resonance 

frequencies and stiffness. Their specifications and geometries are presented in Table 1. In addition, 

two distinct viscous fluids were used to study the vibration of each cantilever: air and water. 

Each cantilever was characterized at first by performing frequency sweeps in AM mode and 

measuring its frequency response in the viscous fluids. The recorded frequency response in AM 

mode, described by both amplitude and phase spectra, is discussed below, and will be used in section 

4.1 to model the AT mode.  

 

Table 1. Manufacturer, material and geometry of the three cantilevers used in this work. 

 ACST-TL CLFC-A CLFC-B 

Manufacturer AppNano Bruker Bruker 

Material Silicon Silicon Silicon 

Length (μm) 150 ± 10  98 ± 1 197 ± 2 

Width (μm) 28 ± 5 29 ± 3 29 ± 3 

Thickness (μm) 3.0 ± 0.5 2.0 ± 0.2 2.0 ± 0.2 

Freq. (kHz) – Min/Nom/Max 100/150/204 200/293/380 60/71/92 

 

 

2.1.1. Amplitude spectra 

One example of amplitude spectra of the cantilever CLFC-B immersed in air is presented in the top 

panel of Figure 2. The inset shows the presence of two distinct resonance modes. The amplitude, A, of 

the measured amplitude spectrum can be fitted via a Simple Harmonic Oscillator (SHO) model for 

each resonance peak [22]: 
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where ω is the excitation angular frequency and ω01, ω02, Q1 and Q2 are the natural angular 

frequencies and quality factors of the first and second modes, respectively. A1 and A2 are the 

amplitude of each individual resonance mode and depend on the applied external force and the 

effective mass of each mode. The total amplitude, A, is the sum of the amplitudes of each mode. For 

excitation frequencies ω far from ω02, the second term of eq. (1) is negligible and the behaviour of the 

first mode is captured (and vice-versa). 

The parameters ω01, ω02, Q1, Q2, A1 and A2 were used to fit the model of eq. (1) to the experimental 

amplitude spectra of the three different cantilevers immersed in different viscous fluids. The results of 

the fits for each cantilever and medium are shown in Table 2. In some experimental conditions the 

second mode is not observed (A2 = 0) as it is either too damped or falls outside the frequency range of 

the lock-in used for this experiment. Moreover, the presence of multiple peaks in the cantilever 

frequency response, resulting from the coupling between the acoustic excitation of the piezo and 

spurious mechanical modes [23, 24],  may sometime make it difficult to isolate the real resonance 

peak. In these cases, eq. (1) was fitted by starting from the estimates given by the thermal noise 



spectrum and then ‘enveloping’ all the forest of peaks measured in AM mode under one single SHO 

peak. The problem of the forest of peaks is thought to have its origin in resonances of the liquid cell or 

even of the dither piezo shaker. Strategies such as upgrading the setup with acoustic barriers [25] or 

optical isolation [26] to suppress the noise were proposed. In alternative, magnetic or photothermal 

excitation techniques [27,28] can also be used to avoid this problem. 

Figure 2. Frequency response of the cantilever CLFC-B operating in air (AM mode). A) Measured and fitted 

amplitude, and B) associated phase of the second resonance mode. The inset in the upper figure shows the 

spectrum of the two first resonance modes. The fitted parameters of the simple harmonic oscillator (SHO) model 

are shown for each peak (A, Q and f0). In the bottom panel, the delay associated with the cantilever (𝜏𝐶𝑇) is 

estimated by the slope of the phase curve away from the resonance.  

 

2.1.2. Phase Spectra 

The total delay block, tot, shown in Figure 1-A, encloses three contributions of elements of the 

feedback loop. The first contribution is given by the dither piezo and cantilever, τCT, and it is related to 

the time the acoustic waves take to propagate from the dither piezo to the cantilever through the 

material composing the cantilever holder. Such propagation translates to a delay between the 

excitation provided by the dither piezo and the deflection of the cantilever.  

This acoustic delay can be estimated from the slope of the phase spectrum of the cantilever, away 

from the regions where the resonance jump occurs. In fact, far from the resonance peak, the phase 

shift due to the cantilever intrinsic resonance can be safely neglected and the phase shift (in radians) 

between dither piezo excitation and cantilever deflection simply reads 

 

𝜑(𝐶𝑇(𝜔)) = −𝜔𝜏𝐶𝑇,                       (2) 

 

where  is the angular frequency of the dither piezo excitation. Note that in AM mode the loop is 

open, and that the measured delay does not contain information about the other components of the 

circuit. 



Figure 2-B shows the AM mode phase spectrum for the cantilever CLFC-B in air, from where a delay 

𝜏𝐶𝑇 = 6.6 𝜇𝑠 is extracted. The expected jump of 180 degrees around the resonance is also observed.  

Table 2 shows the delays associated with each individual cantilever, extracted using this method in 

the phase spectra measured in air. The values of the measured delays of the cantilevers are near one 

order of magnitude higher than those expected considering simply the speed of the acoustic waves in 

the silicon beam. This fact indicates that the delay introduced by the cantilever in the loop is mainly 

due to the connection between the dither piezo and the cantilever.  

 

2.2 Autotapping (AT) electronics 

A dedicated electronic circuit has been developed by Elbatech srl based on the basic logic explained 

in [11] and augmented with the adjustable phase-shifter described in Figure 1-B, which enables the 

phase of the AT feedback loop to be changed in a controlled way.  

The phase-shifter is composed of two all-pass filters implemented using the operational amplifier 

circuit reported in Figure 1-B. To characterize its frequency response, the output of the signal 

generator of the R9 controller was connected to the phase-shifter input, and the shifted output was 

connected to a lock-in input; this allows the user to measure amplitude and phase response of the 

circuit over a wide range of frequency. Figure 3 reports the measured phase shifts for different values 

of the resistors R1 and R2. The experimental results presented in Figure 3 (solid lines) are modelled by 

the transfer function 

 

𝑃𝑆(𝑗𝜔) = (𝑝 𝐻1(𝑗𝜔) 𝐻2(𝑗𝜔))𝑒−𝑗𝜔𝜏𝑃𝑆,            (3) 

 

where 𝐻𝑖(𝑗𝜔) =
1−𝑗𝜔𝑅𝑖𝐶𝑖

1+𝑗𝜔𝑅𝑖𝐶𝑖
 represents the transfer function of each individual stage of the circuit, and 

the parameter p is used to distinguish between non-inverted or inverted polarity on the terminals of 

the dither piezo (the convention p = 1 for non-inverted polarity and p = -1 for inverted polarity will be 

followed). It was observed that the delay 𝜏𝑃𝑆 is required to accurately model the experimental results. 

The presence of such delay is due to the propagation of the signals through the electronic components 

and it represents the second contribution for the total delay, 𝜏𝑡𝑜𝑡, shown in Figure 1-A. 

The dotted lines of Figure 3 show best fits of eq. (3) to the experimental results with non-inverted 

polarity (p = 1), resulting in a delay  𝜏𝑃𝑆 = 1.0 𝜇𝑠.  

 



Figure 3. Characterization of the two stages of the phase-shifter (PS) for different values of R1 and R2. The 

accurate fit of the transfer function of the phase-shifter should incorporate an acoustic delay of 𝜏𝑃𝑆 = 1.0 𝜇𝑠. 

The electronic components of the AT circuit (excluding the phase-shifter) were also characterized and modelled 

as a pure delay of 𝜏𝐸𝑇 = 1.1 𝜇𝑠. 

The saturation circuit is implemented using operational amplifiers, as described in [29, 12]. Its 

response can be described by the function: 

 

𝑠𝑎𝑡(𝑎) = {
−𝜎,        𝑎 ≤ −𝜎
𝑎,          |𝑎| < 𝜎
𝜎,           𝑎 ≥ 𝜎 

,                        (4) 

 

where a represents the signal through the loop and σ is the saturation threshold, defined by the user. 

The solid wine line in Figure 3 shows the measured phase delay introduced by the gain and saturator 

elements as function of the frequency of the input signal. Ideally such elements should not introduce 

any delay in the feedback loop, but experimental data suggest that a pure delay 𝜏𝐸𝑇 = 1.1 𝜇𝑠 is 

required to correctly model the system. This delay is the third contribution for the total delay, 𝜏𝑡𝑜𝑡, 

shown in Figure 1-A. 

 

3. Experimental results in AT mode 

Experiments were performed by immersing the cantilevers in the two different viscous fluids and 

measuring the frequency of the self-excited cantilever oscillation. Such frequency was then studied as 

function of the delay introduced by the phase-shifter for different values of the potentiometers R1 or 

R2. The frequency of oscillation was measured by feeding the deflection signal of the cantilever to a 

spectrum analyser and acquiring the FFT spectra (thermal mode available in the R9 controller). 

When the values of R2 were gradually increased (keeping a fixed polarization on the dither piezo and 

R1 value) the oscillation frequency of the loop was observed to change progressively. A sudden jump 

on the oscillation frequency was then observed for very small variations of R2, and then the smooth 



changes on the frequency of oscillation resumed. The sudden jumps on the frequency of oscillation 

were observed either within the first resonance mode or between two adjacent resonance modes. 

This behaviour is illustrated in Figure 4, which shows a jump within the first mode of the ACST 

cantilever operating in air, when the values of R2 are swept up, using non-inverted polarization on the 

piezo (p = 1) and R1 = 0.01 kΩ. The frequency of oscillation decreases progressively with the increase 

of R2 (from violet to green solid curves), before jumping to a much higher value (from green to black 

curves) with a very small change in R2 value (from 1.08 kΩ to 1.10 kΩ). Finally, the frequency of 

oscillation keeps decreasing with the increase of R2 (from black to red curves). It can also be observed 

that there is a component of motion of vibration at high frequencies that becomes more visible as the 

jump approaches. The inset of Fig. 4 shows the self-sustained oscillations of the loop as function of 

the values the potentiometer R2. 

The measured frequencies of oscillation enclose the natural fundamental frequency of the cantilever 

ACST in air, as shown in Table 2 (155.8 kHz). This general behaviour was observed for all the 

studied cantilevers and viscous fluids. The sudden jumps were observed to occur more often within 

the first resonance mode than between adjacent resonance modes, as the amplitude of the second 

mode is usually much smaller than the amplitude of first mode. 

Such results clearly highlight the need of considering the phase shift when modelling any feedback 

loop used to excite the cantilever and the possibility to exploiting it to modify the cantilever 

mechanical response. 

 

  Figure 4. Frequency response of the ACST cantilever operating in air in AT mode. The value of the resistor 

(R2) of the phase-shifter is swept up while keeping R1 and polarity constant (R1 = 0.01 kΩ and p = 1). The 

frequency of oscillation decreases as R2 increases, except when a sudden jump occurs from low to high values of 

frequency. It can be noted that the component of the motion at high-frequency increases progressively as the 

jump approaches. The inset shows clearly the jump in frequency values when the potentiometer R2 is swept up. 

 

4. Mathematical modelling 

In order to explain the nonlinear behaviour observed in the experiments described in section 3, here 

two distinct mathematical models are proposed. 

The first approach is based on a graphical method that exploits the Nyquist Stability Criterion – a 

classical result in feedback control theory – to determine the frequencies of oscillation of the circuit 



and to predict the sudden jumps. This strategy requires the use of the fitted parameters of the Simple 

Harmonic Oscillator model applied to the AM mode spectrum of each cantilever immersed in the 

viscous fluids (frequencies, quality factors and amplitudes shown in Table 2). Although such model is 

capable of providing good predictions, it requires users to fit several parameters on experimental data 

and such data may not be always readily available. 

The second approach approximates the cantilever behaviour with a single-degree-of-freedom equation 

of motion of a nonlinear resonator that can be easily simulated numerically. In this approach, the 

hydrodynamic force that acts on the vibrating cantilever is modelled using Sader’s hydrodynamic 

function [30] and of the viscosity and density of each viscous medium are incorporated into the mass 

and damping parameters of the resonator. Therefore, it is possible to solve the equation of motion 

without any need of fitting experimental values.   

 

4.1.Nyquist Stability Criterion 

The schematic of the experimental setup shown in Figure 1-A is an example of Lure’s system, where 

linear systems (cantilever dynamics, gain, delay and phase-shifter) are feedback connected via a 

nonlinear function (saturator). In such a system, the onset of stable self-sustained oscillations results 

from a competition between the feedback gain, which constantly amplifies the motion of the 

cantilever (inducing instability), and the presence of the nonlinear saturation, which limits the system 

trajectories and stabilizes the system dynamics on stable self-sustained oscillations. Given that the 

resonant response of the microcantilever effectively acts as a band-pass filter, the harmonic balance 

technique can be successfully exploited to better understand and predict the system behaviour (see 

[11] for an example of successful application of such technique for imaging applications). This 

technique assumes that every periodic output signal of a nonlinear block (subjected to a sinusoidal 

input signal) can be approximated by the first terms of associated Fourier series, i.e. the nonlinearity 

output is approximated by a sinusoidal wave having the same frequency as the input. This 

approximation is reasonable since the resonator possess intrinsic band-pass filter characteristics that 

attenuate the low frequencies and higher harmonics [31]. Within this framework, the saturator 

described in section 2.2 (eq. 4) can be replaced by an amplitude-dependent ‘gain’, called describing 

function, 

 

𝜓(𝑎) = {
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𝑎
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𝑎
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                          (5) 

 

Eq. (5) shows that if the amplitude a of the input signal is smaller than the threshold σ defined by the 

user, the gain is unitary and the output signal is the same as the input signal. If the amplitude of the 

signal is higher than the threshold value, the output signal is decreased with respect to the input signal, 

which contributes to stabilizing the oscillation of the cantilever. 

According to such approximation, a condition for existence of self-sustained oscillations on the 

feedback loop shown in Figure 1-A reads [31] 

 

𝑦(𝑡) = 𝑝𝐶𝑇(𝑗𝜔)𝜓(𝑎)𝐾𝑃𝑆(𝑗𝜔)𝑒−𝑗𝜔𝜏𝑡𝑜𝑡𝑦(𝑡) ⇒ 𝑝𝐶𝑇(𝑗𝜔)𝜓(𝑎)𝐾𝑃𝑆(𝑗𝜔)𝑒−𝑗𝜔𝜏𝑡𝑜𝑡 = 1,    (6) 

 



where 𝑒−𝑗𝜔𝜏𝑡𝑜𝑡 is the transfer function of the total delay (𝜏𝑡𝑜𝑡 = 𝜏𝐶𝑇 + 𝜏𝑃𝑆 + 𝜏𝐸𝑇), 𝐾 represents the 

self-excitation loop gain, 𝑃𝑆(𝑗𝜔) is the transfer function of the phase-shifter (the same of eq. (3) but 

omitting the delay 𝜏𝑃𝑆, which is already contained in 𝜏𝑡𝑜𝑡), 𝐶𝑇(𝑗𝜔) is the transfer function of the 

cantilever (eq. (1)) and  𝑝 = ±1, depending on the polarity applied on the terminals of the dither 

piezo. 

Condition (6) is equivalent to stating that the gain of the loop must be unitary and can be simplified to 

 

𝑝𝐺(𝑗𝜔)𝐾𝜓(𝑎) = 1,              (7) 

 

with 𝐺(𝑗𝜔) = 𝐶𝑇(𝑗𝜔)𝑒−𝑗𝜔𝜏𝑡𝑜𝑡𝑃𝑆(𝑗𝜔). Since the gain 𝐾 and the describing function 𝜓(𝑎) are real 

functions for each value of amplitude 𝑎 and oscillation frequency, eq. (7) can be re-written as [31]: 

 

{𝑅𝑒[𝐺(𝑗𝜔)] + 𝑗𝐼𝑚[𝐺(𝑗𝜔)]}𝐾𝜓(𝑎) ± 1 = 0,                                     (8) 

 

which, by its turn, can be decomposed into two real equations [31, 32]: 

 

{
1 ± 𝐾𝜓(𝑎)𝑅𝑒[𝐺(𝑗𝜔)] = 0

𝐼𝑚[𝐺(𝑗𝜔)] = 0
.                           (9a, 9b) 

 

The condition imposed by eq. (9b) states that the total phase shift around the loop must be an integer 

multiple of 2π radians. The oscillation frequency is determined by this condition. Using the oscillation 

frequency, eq. (9a) can then be solved to calculate the amplitude of vibration (this step is not needed 

for the results discussed in this paper).  

When the circuit is initially turned on, the frequency of the white noise that satisfies the condition of 

eq. (9b) is initially amplified by the gain. Later, the gain and saturator will compete to stabilize an 

oscillation with an amplitude that also satisfies eq. (9a). In the absence of the saturator, the trajectories 

of the resonator would be naturally limited by the force that the dither piezo can exert on the 

cantilever base or by the intrinsic mechanical nonlinearities of the cantilever [11, 12]. 

Given the highly nonlinear nature of eqs. (9), they need to be solved numerically to predict the 

oscillation frequency and amplitude of vibration. In this case, eq. (9b) is re-written by substituting the 

individual transfer functions of the cantilever, total delay and phase-shifter in 𝐺(𝑗𝜔): 

 

𝐼𝑚 [(
𝐴1

(𝑗𝜔)2+
𝜔01
𝑄1

𝑗𝜔+𝜔01
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𝐴2

(𝑗𝜔)2+
𝜔02
𝑄2

𝑗𝜔+𝜔02
2 ) (

𝑝(1−𝑗𝜔𝑅1𝐶1)

1+𝑗𝜔𝑅1𝐶1
×

1−𝑗𝜔𝑅2𝐶2

1+𝑗𝜔𝑅2𝐶2
) 𝑒−𝑗𝜔(𝜏𝐶𝑇+𝜏𝑃𝑆+𝜏𝐸𝑇)] = 0.     10) 

 

Eq. (10) is then solved using Matlab® to find the frequency of self-sustained oscillation. The 

parameters appearing in this equation can be estimated as described in section 2 by the spectra 

obtained in AM mode. The delay associated with the piezo and cantilever, 𝜏𝐶𝑇, is used as the fitting 

parameter of the model to the experimental data and the final results are shown in Table 2. 

Nevertheless, some remarks on solving eq. (10) graphically must still be done:  eq. (10) states that the 

frequency of self-oscillation will be such that the imaginary part of  𝐺(𝑗𝜔) equals zero, i.e. the 

Nyquist diagram intersects the horizontal axis, but does not point out explicitly which crossing the 

frequency of oscillation corresponds to. However, the Nyquist Stability Criterion states that only the 



frequency 𝜔𝑎𝑢𝑡𝑜 corresponding to 𝐼𝑚[𝐺(𝑗𝜔𝑎𝑢𝑡𝑜)] = 0 and 𝑅𝑒[𝐺(𝑗𝜔𝑎𝑢𝑡𝑜)] > 𝑅𝑒[𝐺(𝑗𝜔)] (𝜔 >

0corresponds to stable oscillations [31]. By comparing the predictions given by this model with the 

experimental data, it was also established that the solutions for non-inverted polarity on the piezo (p = 

1) correspond to the positive outer crossing of eq. (10), whereas solutions for inverted polarity (p = -1) 

correspond to the outer crossing with the negative horizontal axis. 

Figures 5 and 6 will be used to illustrate how this model is able to explain the observed phenomena. 

Figure 5 presents the Nyquist diagram of 𝐺(𝑗𝜔) (eq. (10)) for the case of the ACST cantilever 

vibrating in water (used parameters are shown in Table 2). In this experiment, R2 was swept up, as in 

the case discussed in Figure 4, using non-inverted polarity (p = 1) and a fixed R1 = 2.25 kΩ. Figure 5-

A shows that an increase in R2 causes a clockwise rotation of the Nyquist diagram of 𝐺(𝑗𝜔), as it 

reduces the overall phase shift in 𝐺(𝑗𝜔). These curves are parameterised by frequency and, in this 

specific case, only consider the first mode (A2 = 0 in eq. (10)).  Figure 5-B shows that the frequency 

associated with the positive outer crossing of the Nyquist diagram of 𝐺(𝑗𝜔) with the zero of the Im 

axis changes as the value of the potentiometer R2 increases. Furthermore, at a certain value of R2, the 

crossing moves from a low-frequency region of the 𝐺(𝑗𝜔) curve (purple line) to a high-frequency 

region of the curve (green line). These two mechanisms explain the shifts and jumps on the oscillation 

frequency of the loop inside the first mode, as was experimentally observed and plotted in Figure 4. 

Finally, according to this model, there exists a specific value of R2 that will cause both the low and 

high-frequency parts of the curve 𝐺(𝑗𝜔) to cross simultaneously the zero of the Im axis. In this case, 

the oscillator will work in a bistable state [33]. This was also observed in Figure 4, where, as the jump 

approached, the presence of the high-frequency motion started to be visible (green line). 

 

Figure 5. Nyquist diagrams of the transfer function 𝐺(𝑗𝜔) of the cantilever ACST in water, for different values 

of R2, to illustrate jumps of the oscillation frequency inside the first resonance mode (R1 = 2.25 kΩ, p = 1 and 

𝜏𝐶𝑇 = 10.1 𝜇𝑠, 𝜏𝑃𝑆 = 1.0 𝜇𝑠 and 𝜏𝐸𝑇 = 1.1 𝜇𝑠). Only the first mode is considered in the transfer function of the 

cantilever (𝐶𝑇(𝑗𝜔)). A) Increasing R2 causes a clockwise rotation of the diagram, changing the location of the 

crossing of the curves (parameterized by frequency) with the zero of the Im axis. B) Close-up of the region of 

crossings: the outer crossing of the purple curve (high R2) with the axis occurs for the part of the curve with low 

values of frequency. The outer crossing of the green curve (low R2) with the axis occurs for the part of the curve 

with high values of frequency. 

 



Figure 6 illustrates one of the less common cases in which the sudden jumps on the oscillation 

frequency of the loop occur between consecutive resonance modes, as it was observed for the 

cantilever CLFC-B operating in air, using non-inverted polarity (p = 1) and a fixed R1 = 0.82 kΩ. In 

these cases, the transfer function 𝐺(𝑗𝜔) has to contain information about the two resonance modes (A2 

≠ 0 in eq. (10)) and the resulting Nyquist diagram is slightly more complex: each resonance mode 

corresponds to a big circle in Figure 6-A. Furthermore, the entire region of low-amplitude (the plateau 

between peaks shown in the inset of Fig. 2-A) is barely visible in Figure 6-A, since the values are very 

small and close to the origin. Figure 6-A shows that, as before, an increase in the values of R2 cause a 

clockwise rotation on the Nyquist diagram of 𝐺(𝑗𝜔). Since these curves are parameterised by 

frequency, the frequency associated with the positive outer crossing of the Nyquist diagram with the 

zero of the Im axis changes as the values of the potentiometer R2 increase, which explains shifts in the 

frequency of oscillation of the loop. In addition, as seen in Figure 6-B, at a certain value of R2 the 

outer crossing moves from the big circle on the curve of 𝐺(𝑗𝜔), relative to the first mode (purple 

line), to the smaller circle, relative to the second mode (green line). This explains the observed jumps 

between consecutive resonance modes. 

 

Figure 6. Nyquist diagrams of the transfer function 𝐺(𝑗𝜔) of the cantilever CLFC-B in air, for different values 

of R2, to illustrate jumps of the oscillation frequency between the first two resonance modes (R1 = 0.82 kΩ, p = 1 

and 𝜏𝐶𝑇 = 6.5 𝜇𝑠, 𝜏𝑃𝑆 = 1.0 𝜇𝑠 and 𝜏𝐸𝑇 = 1.1 𝜇𝑠). The two first resonance modes are considered in the transfer 

function of the cantilever (𝐶𝑇(𝑗𝜔)), as shown in the inset of Fig. 2-A. The Nyquist diagrams, parameterised by 

frequency, show the presence of two distinct circles, corresponding to each of the resonance modes. A) 

Increasing R2 causes a clockwise rotation of the diagram, changing the location of the crossing of the curves 

(parameterized by frequency) with the zero of the Im axis. B) Close-up of the region of crossings: the outer 

crossing of the purple curve (high R2) with the axis occurs for the part of the curve (big circle) that represents 

the first mode. The outer crossing of the green curve (low R2) with the axis occurs for the part of the curve 

(small circle) that represents the second mode. 

 

Finally, it is worth pointing out that for the jumps between different modes to occur, the second mode 

of the cantilever immersed in a specific viscous fluid must have a non-negligible amplitude when 

compared with the amplitude of the first mode.  

 



4.2. Dynamical numerical model: hydrodynamic force 

The approach described in section 4.1 is able to correctly predict the cantilever behaviour but it 

requires several parameters to be estimated from experimental data. To avoid such fitting procedure, 

here the cantilever is approximated via a nonlinear single-degree-of-freedom resonator working in a 

feedback loop. The total force exerted by the fluid on the vibrating continuous beam depends on the 

viscosity and density of each viscous medium and is calculated using Sader’s hydrodynamic function 

[30]. This total hydrodynamic force is thought as a combination of normal and tangential terms, 

correspondent to the pressure and viscous forces that act on every surface of the immersed beam. The 

first is an inertial term, described by the weight of the layer of fluid that the beam displaces as it 

moves. The second term is proportional to the velocity of the beam and accounts for the viscous drag 

force exerted by the fluid on the moving cantilever.  These two components can therefore be 

described as an added mass, 𝑚𝐴, and an added damping coefficient, 𝑐𝐴 [34,35]:  

 

𝑚𝐴 =
𝜋

4
𝜌𝑊2𝐿Γ′                                                          (11) 

𝑐𝐴 =
𝜋

4
𝜌𝑊2𝐿𝜔Γ′′                                                       (12) 

 

where Γ′ = 𝑎1 + 𝑎2
𝛿(𝜔)

𝑊
 and Γ′′ = 𝑏1

𝛿(𝜔)

𝑊
+ 𝑏2 (

𝛿(𝜔)

𝑊
)

2
are expressions to approximate the 

hydrodynamic function of a rectangular cantilever [34], which depend on the constants, a1 = 1.0553, 

a2 = 3.7997 and b1 = 3.8018 and b2 = 2.7364 [34]. The parameter 𝛿(𝜔) = √
2𝜂

𝜌𝜔
 is the thickness of the 

layer of fluid that surrounds the beam, which depends on the fluid viscosity, 𝜂, the fluid density, 𝜌, 

and on the angular frequency of oscillation, 𝜔. L and W represent the length and width of the 

cantilever, respectively [35]:  

 

The single-degree-of-freedom equation of motion that describes the vibration of the cantilever 

immersed in a viscous fluid, in the feedback loop is therefore given by [33] 

 

(𝑚𝑐𝑡 + 𝑚𝐴)�̈�𝑖(𝑡) + (𝑐𝑖 + 𝑐𝐴)�̇�𝑖(𝑡) + 𝑘𝑖𝑦𝑖(𝑡) = 𝐹(𝑡),                                 (13) 

 

where the dot stands for time derivative and F(t) is the forcing term from the dither piezo. 𝑚𝑐𝑡 =

𝐿𝑊𝑇𝜌𝑐 is the total mass of the beam, where 𝑇 and 𝜌𝑐 are, respectively, the thickness of the beam and 

the density of the constituent material, while 𝑐𝑖 = 2𝜋𝑓0𝑖 𝑚𝑐𝑡 𝑄𝑖⁄ , 𝑘𝑖 = (2𝜋𝑓0𝑖)2𝑚𝑐𝑡 and 𝑦𝑖 are the 

intrinsic damping coefficient, stiffness and displacement associated to the i-th resonance mode, 

respectively. In the previous terms, 𝑓0𝑖 is the natural frequency of each mode, which can be 

experimentally measured or estimated by analytical equations [36], while 𝑄𝑖 is the quality factor of 

each mode. The total displacement of the resonator is the sum of the displacements of each mode, i.e. 

𝑦(𝑡) = 𝑦1(𝑡) + 𝑦2(𝑡), considering only the first two modes.  

The force from the dither piezo that acts on the microcantilever in eq. (13) is described by 

 

𝐹(𝑡) = 𝑠𝑎𝑡 (𝐾𝑦𝑝𝑠(𝑡 − 𝜏𝑡𝑜𝑡)),             (14) 

 



where 𝜏𝑡𝑜𝑡 is the self-excitation loop total delay, K is the feedback gain and 𝑦𝑝𝑠 is the output of the 

phase-shifter. The function 𝑠𝑎𝑡() describes the saturator detailed in section 2.2 by eq. (4), with user-

defined threshold value 𝜎.  

A block diagram of the dynamical model is shown in Figure 7. The red dashed arrows show the 

parameters that have to be used as inputs of the model. The value of the delay 𝜏𝐶𝑇 introduced by the 

piezo and cantilever is used as the fitting parameter of the model.  

Figure 7 shows that the mass of the cantilever, 𝑚𝑐𝑡, is first used to calculate the spring constant, 𝑘𝑖, 

and intrinsic damping coefficient, 𝑐𝑖, of each mode, using experimental or estimated values for the 

resonance frequencies, 𝑓0𝑖, and quality factors, 𝑄𝑖, respectively. Then the constants a1, a2, b1, b2 , the 

geometry of the cantilever and the properties of the viscous fluid (𝜂 and 𝜌) are used to calculate the 

added mass and damping coefficient of the system, through  eqs. (11) and (12). 

The function of the saturator, described by eq. (4) in section 2.2, is implemented with user-defined 

threshold value, σ. Similarly, the transfer function of the phase-shifter, described by eq. (3) in section 

2.2 (but omitting the delay 𝜏𝑃𝑆, which is already contained in 𝜏𝑡𝑜𝑡𝑎𝑙), is implemented with user-

defined values of the potentiometers R1 and R2, and polarity on the terminals of the piezo (p = 1 or p = 

-1). The values of C1 and C2 are 4.7 nF and 220 pF, respectively. The values of the delays associated 

to the phase-shifter, 𝜏𝑃𝑆 = 1.0 𝜇𝑠, and electronic components gain plus saturator, 𝜏𝐸𝑇 = 1.1 𝜇𝑠, were 

estimated as explained in section 2 and are fixed in the model, in the parameter 𝜏𝑡𝑜𝑡𝑎𝑙. Finally, the 

value of delay introduced by the piezo and cantilever, 𝜏𝐶𝑇, is used as the fitting parameter of the 

model to the experimental results. The results are shown in Table 2. 

Eq. (13) is then solved in time-domain using Simulink until the steady-state is reached, and the 

frequency of self-oscillation, fosc, is extracted. 

 

 

 
Figure 7. Block diagram of the dynamical model. All the parameters that are used as inputs are highlighted with 

a dashed red arrow. The hydrodynamic force that acts on the vibrating beam is calculated from the properties of 

the fluid and the cantilever geometry and each resonance mode is defined by its own spring constant. The delays 

associated with the phase-shifter and electronics were estimated from experimental data, and the delay 

introduced by the piezo and cantilever was used as the fitting parameter of the model. 



 

5. Comparison between model predictions and experimental results 

 

To highlight the crucial role played by the feedback phase shift, experiments were conducted by 

immersing the cantilevers in the two viscous fluids (air and water), and measuring the frequency of 

self-oscillation as a function of the values of R1, R2 and the polarity of the dither piezo. The typical 

protocol was sweeping up the value of one of the potentiometers, while keeping the other parameters 

constant. The polarity of the piezo was then changed and the potentiometers sweep repeated. In this 

section, all the experimental results are compared with the results modelled by the two strategies 

discussed in section 4. The experimental and simulated frequencies of oscillation were plotted against 

the phase shift introduced by the phase-shifter:  

 

𝑃ℎ𝑎𝑠𝑒(𝑃𝑆(𝜔)) = −2 atan(𝜔𝑅1𝐶1) − 2 atan(𝜔𝑅2𝐶2) − 𝜔𝜏𝑃𝑆 + 𝜋𝑃.                (15) 

 

Eq. (15) is a direct calculation of the phase of the phase-shifter transfer function given by eq. (3), 

where 𝜔 is the measured or simulated angular frequency of oscillation in the loop, C1 = 4.7 nF and C2 

= 220 pF are capacitances of the capacitors used in the architecture of each stage of the phase-shifter, 

R1 and R2 are the used values of the potentiometers in the experimental  sweeps and in the models, 𝜏𝑃𝑆 

is the delay associated with the phase-shifter (𝜏𝑝𝑠 = 1.1 𝜇𝑠 estimated in Section 2.2) and the 

parameter P is used to describe the phase changes due to the inversion of polarity on the dither piezo 

(P = 1 if p = 1 or P = 0 if p = -1). 

Figure 8 shows the complete set of results for the cantilever CLFC-B immersed in air and water. The 

black circles represent the experimental measurements and the red triangles and blue diamonds 

represent the results obtained with the Nyquist approach (section 4.1) and the dynamical model 

(section 4.2), respectively. Fig. 8-A presents a case where the jump occurs between the first and 

second resonance modes, while Fig. 8-B shows a jump occurring within the second resonance mode. 

The values of delay of the cantilever, 𝜏𝐶𝑇, were used as the fitting parameter of the models to match 

the precise location of the jumps.  

 



 

Figure 8. Experimental and modelled (Nyquist approach and dynamical model) frequencies of oscillation 

plotted as a function of the phase shift introduced by the phase-shifter when the values of R1 and R2 are swept 

up. Results for the cantilever CLFC-B immersed in two different media: A) Air; B) Water. The delays of the 

cantilever used for each medium were fit to match the precise location of experimental jump of oscillation 

frequencies and are shown in Table 2. 

 

Figure 9 presents additional results obtained with different cantilevers working in the viscous media. 

Fig. 9-A and B show jumps on the oscillation frequency within the first resonance mode. 

As discussed, the condition for the existence of self-sustained oscillations is that the total phase shift 

around the feedback loop must be an integer multiple of 2π radians. The observed shift of the 

oscillation frequency corresponds to the cantilever adjusting its phase (and hence its oscillation 

frequency) so to compensate the delay imposed by the other components of the feedback loop. 

Therefore, it is expected that the observed nonlinear phenomena repeat themselves every 2π radians, 

being fairly independent of the delay introduced by the electronic components of the loop, 𝜏𝐸𝑇 , and by 

delay introduced by the piezo and cantilever, 𝜏𝐶𝑇. 

Table 2 shows that the values used to fit the models in each viscous fluid are closely related to the 

values measured using the phase of AM mode spectra of each cantilever in air. In all conditions, the 

proposed models are able to correctly describe the nonlinear behaviour of the microcantilever within 

15% error and can be used to predict the behaviour of the cantilevers in viscous fluids working in AT 

configuration. 

 



 

Figure 9. More examples of experimental and modelled (Nyquist approach and dynamical model) frequencies 

of oscillation plotted against the phase shift introduced by the phase-shifter when the values of R1 and R2 are 

swept up, for different cantilevers immersed in different media. A) CLFC-A in Air; B) ACST in Water. The 

delays used for each medium were fit to match the precise location experimental jump on frequencies and are 

shown in Table 2. 

 

Table 2. Parameters of the Simple Harmonic Oscillator (SHO) model fitted to the amplitude spectra of the 

cantilevers vibrating in air and water in AM mode. The delay of each cantilever, τCT, was experimentally 

estimated from the phase spectra of the cantilevers operating in air in AM mode, and used as the fitting 

parameter of the Nyquist and Simulink models to the experimental results. 

 

AM mode amplitude 

Simple Harmonic Oscillator (SHO) fit 

AM mode 

phase 

Nyquist 

model 

Simulink 

Model 
f1 

(kHz) 
Q1 

A1 

(a.u.) 
f2 (kHz) Q2 

A2 

(a.u.) 

Estimated τct 

(μs)a 

Fit  

τCT (μs) 

Fit  

τCT (μs) 

ACST-

TL 

Air 155.8 243 4.0 x 109 -  
9.6 

 

10.7 10.7 

Water 64.0 7 4.0 x 109 - 10.1 10.1 

CLFC-A 
Air 297.1 357 2.0 x 109 -  

5.4 

 

4.8 4.8 

Water 120.9 11 1.0 x 1010 - 4.6 4.6 

CLFC-B 
Air 73.2 179 1.0 x 109 459.6 490 2.1 x 109  

6.6 

 

6.5 6.5 

Water - 185.0 8 1.1 x 1010 6.3 6.3 

- Not observed experimentally 
a Using the AM mode spectrum in air. 

6. Conclusions 

In this work the non-linear behaviour of microcantilevers oscillating in viscous fluids and excited by a 

non-linear feedback loop is studied. The feedback loop comprises a linear gain, a non-linear saturator 

and a phase-shifter. The delay introduced by the phase-shifter in the loop can be controlled by two 

potentiometers and it is shown to play a crucial role in controlling the response of the self-excitation 

loop. Non-linear phenomena, such as sudden jumps in the oscillation frequency, are observed and 

modelled by two different strategies. The first strategy requires parameters obtained from the open-

loop frequency response of the cantilevers vibrating in the viscous fluid and is based on feedback 

theory and the Nyquist Stability Criterion. The second strategy consists on numerically solving the 



equation of motion of the resonator in closed loop, exploiting the knowledge of the hydrodynamic 

function and without requiring prior experimental data fitting. Both models capture accurately the 

non-linear behaviour of the closed-loop and can be used to predict the response of this system when 

used as a mass or rheological sensor.  

The experimental results and the models described in this paper highlight the importance of the delay 

and phase shifts that are intrinsically present whenever a feedback scheme is used to manipulate the 

probe dynamical response, but that are very often neglected in the literature. It is expected that similar 

behaviours will be present for other feedback approaches such as Q-control and parametric resonance. 

Moreover, the understanding of the observed non-linear behaviour opens exciting opportunities for 

the development of a novel class of rheology, chemical and mass sensors using self-excited 

microcantilevers. In fact, the self-excitation mechanism analysed here allows for very high signal-to-

noise ratio in frequency measurements and automatically tracks the oscillation frequency without 

requiring any external frequency sweeps and the associated forest of peaks. Furthermore, the location 

of the frequency jump can be easily controlled via the phase-shifter, thus opening the possibility of 

placing it at a particular fluid viscosity/added mass to realize an extremely sensitive threshold detector 

for such quantities. On the other hand, by placing such jump far away from the region of 

viscosity/mass of interests, the proposed microsensor output is smooth, as requested by most of the 

applications. 
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