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Abstract

Measuring the similarity between two sentences is often difficult due to their
small lexical overlap. Instead of focusing on the sets of features in two given
sentences between which we must measure similarity, we propose a sentence
similarity method that considers two types of constraints that must be satisfied
by all pairs of sentences in a given corpus. Namely, (a) if two sentences share
many features in common, then it is likely that the remaining features in each
sentence are also related, and (b) if two sentences contain many related features,
then those two sentences are themselves similar. The two constraints are utilized
in an iterative bootstrapping procedure that simultaneously updates both word
and sentence similarity scores. Experimental results on SemEval 2015 Task
2 dataset show that the proposed iterative approach for measuring sentence
semantic similarity is significantly better than the non-iterative counterparts.

Introduction

Measuring the similarity between short textual units such as sentences, tweets
or chat messages is a commonplace task in numerous natural language pro-
cessing (NLP) applications such as information retrieval [1], text clustering, or
classification [2–4]. Compared to measuring the similarity between longer tex-
tual units such as documents that contain many words, measuring the similarity
between short sentences is a challenging task due to the lack of common fea-
tures. Consequently, similarity measures based on word overlap such as cosine
similarity, often fails to detect the similarity between sentences [5]. To over-
come this feature sparseness problem, prior work on sentence similarity have
proposed methods that use external lexical resources such as thesauri [6], or
project sentences into a lower-dimensional dense spaces in which subsequently
similarity is computed [7–12].

We propose a complementary approach for measuring the similarity between
two sentences in a corpus that considers not only the features that occur in those
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two sentences, but also features that occur in all pairs of sentences in the corpus.
Specifically, we require sentence similarity scores to satisfy two important types
of constraints: (a) if two sentences share many common features, then it is
likely that the remaining features in each sentence are also related, and (b)
if two sentences contain many related features, then those two sentences are
themselves similar.

To motivate the role played by these constraints consider the following three
example sentences.

(i) I love dogs and cats.

(ii) I love dogs and rabbits.

(iii) My favorite pet is a cat.

Sentences (i) and (ii) share many common content words such as I, love, and
dog. Thus, we can infer that cat and rabbit must also be semantically related.
The confidence of our inference grows with (a) the proportion of the overlap,
and (b) the number of different sentence pairs in which we observe similar
overlaps. Consider now that we are further required to compare sentences (ii)
and (iii), between which we have no common words. Without the knowledge
that cat and rabbit are related from our previous comparison, we would predict
a zero similarity score between sentences (ii) and (iii). However, if we use the
knowledge obtained from (i) and (ii), and consider cat and rabbit to be similar
(i.e. pets in this case), then we could predict a non-zero similarity score for (ii)
and (iii). Therefore, we can benefit from the constraints derived from other pairs
of sentences in a corpus (such as (i) and (ii)), when measuring the similarity
between two given sentences selected from that corpus (such as (ii) and (iii)).

Our proposed method iterates over two stages.

• First, we align each sentence in a corpus with all the other similar sentences
to build a word-alignment matrix (Section ). We compute the similarity
between two words based on two factors: (a) pointwise mutual informa-
tion between the two words according to their alignment frequency in the
word-alignment matrix, and (b) prior similarity between words measured
using pre-trained word embeddings. Using the computed word similar-
ity scores, we measure the similarity between two sentences using three
sentence alignment methods.

• Second, we update the word similarity scores using the word-alignment
matrix computed in the first stage (Section ). Specifically, we propose two
update rules for this purpose: an additive update, and a multiplicative
update. The proposed method iterates multiple times over the corpus
measuring similarities between all pairs of sentences. In practice, the pro-
posed method converges in less than 3 iterations. However, computing all
sentence pair similarities can be time consuming for large text corpora.
To overcome this problem, we propose an efficient method to identify the
top-most similar sentence pairs in a corpus that contribute to the simi-
larity score update using SimHash [13] that obviates all-pair comparisons
(Section ).
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Our proposed method is unsupervised in the sense that it does not require
any labeled data for sentence similarity. Moreover, we do not use external
resources such as thesauri, which might not be available for resource poor lan-
guages or specialised domains. The proposed method does not assume a specific
sentence representation method, and can be used with different sentence repre-
sentations such as bag-of-words, or parse trees. Moreover, it is complementary
to the sentence embedding methods, and can be used in conjunction in an en-
semble setting as yet another sentence similarity measure.

We evaluate the proposed sentence similarity method using the SemEval-
2015 Task 2 sentence similarity benchmark dataset. Our experimental results
show that the proposed iterative approach for measuring sentence semantic sim-
ilarity is significantly better than the non-iterative counterparts.

Related Work

Measuring the similarity between sentences is an omnipresent step in various
NLP tasks such as paraphrase detection, recognizing textual entailment, sen-
tence simplification and text summarisation.

In paraphrase detection, we must determine whether two sentences express
the same meaning. Socher et al. [14] used recursive autoencoders to learn feature
vectors for phrases. The feature vectors are then used to compute word- and
phrase-wise similarity between sentences. A dynamic pooling layer is used to cre-
ate a fixed-size representation for sentences of varying lengths. Finally, a super-
vised classifier is trained using this lower-dimensional embedding of sentences. Ji
and Eisenstein [11] proposed a discriminative KL-divergence-based term weight-
ing method and used matrix factorization to obtain lower-dimensional repre-
sentations of sentences. Finally, a supervised classifier is trained using those
sentence representation to detect similar sentence pairs. Cheng and Kartsak-
lis [15] used recursive neural networks for embedding a sentence in a latent
dimensional space, in which similarity between sentences were measured. Rep-
resenting sentences using latent features is an effective method to overcome the
feature sparseness problem encountered when measuring the similarity between
two sentences. Although we represented sentences using explicit lexical features,
our proposed method does not depend on a particular sentence representation
method, and can be applied with any of the representations proposed in prior
work.

For recognising textual entailment, we must compare two sentences and de-
cide whether one statement entails the other [16]. Sentence similarity measures
have been used as features for recognizing entailment [17]. However, unlike sim-
ilarity, entailment is an asymmetric relation [18]. In sentence simplification [19],
for a given sentence, we must find a sentence that is simpler in terms of gram-
matical structure, word usage etc. than the original sentence. We believe that
the word-alignment methods we propose in this paper will be useful for finding
simplification candidates that preserve most information in the sentences to be
simplified.

3



A benchmark dataset for sentence similarity was created via crowdsourc-
ing in SemEval-2015 Task 2 [20]. Both supervised methods [21] that require
sentence pairs annotated with similarity ratings, as well as unsupervised meth-
ods [22] have been proposed. Instead of using all the words in the two sentences,
first selecting a subset of words from each sentence has been an effective tech-
nique [22–25]. Following this observation, we proposed maximum similarity
and bipartite graph matching for selecting two subsets of words to be aligned
between two sentences.

Pre-trained word embeddings have been successfully used in prior work to
overcome feature spareness. Sultan et al. [23] used cosine similarity between
word embeddings trained by CBOW [26] and lexical substitution features from
PPDB [27] for measuring sentence similarity. Hanig et al. [24] used cosine sim-
ilarity between word embeddings trained by SGNS [28] and features such as
synonym from WordNet [29] and ConceptNet [30] for measuring sentence simi-
larity. Han et al. [25] used cosine similarity between distributional word repre-
sentations and features from WordNet for word-alignment. These best systems
from the SemEval-2015 Task 2 are supervised methods or it depends on external
resources. However, our proposed method is unsupervised and we do not use
external resources. The main point in this paper is that the global sentence
similarity computation method we propose can be used with any method for
computing word similarity and representing a word/sentence embeddings.

An alternative method for measuring sentence similarity is to first embed
each sentence into a space, and then measure cosine similarity in the embedded
space. Skip-thought vector [31] and FastSent [32] are such sentence embedding
methods that use consecutive triplets of sentences selected from books. In con-
trast to sentence embedding methods, our proposed method operates directly on
pre-trained word embeddings to compute sentence similarity, without requiring
us to learn sentence embeddings. This is particularly useful in situations where
learning sentence embeddings is computationally expensive, or text corpora with
sequential sentences are unavailable.

Iterative Similarity Computation

Our proposed method iterates between two stages. First, we use the similar-
ity between words to align pairs of sentences in a corpus. Following Song and
Roth [22], we extend three sentence similarity measures for iterative similarity
computation (Section ). Second, we update the word similarity scores consider-
ing the sentence alignments produced in the first stage. Two update rules are
proposed for this purpose (Section ).

Sentence Alignment

Let us denote a sentence x by a vector x = (x1, x2, . . . , x|V|), where the i-th
element xi is set to 1 if the i-th word occurs in the sentence x, and otherwise

4



to 0. Here, vocabulary V is the set of words that occur in a corpus, and |V|
denotes the number of unique words in that corpus.

Given a word-alignment method, A, the similarity, SA(x, y), between two
sentences x and y can then be calculated using a word similarity measure
φ(xi, yj). We use the following three word-alignment methods to define three
sentence similarity measures.

Average Similarity

The average similarity, Save(x, y), between two sentences x and y is computed
by averaging the similarities between all pairs of words taken from the two
sentences as follows:

Save(x, y) =

|V|∑
i=1

|V|∑
j=1

xiyjφ(i, j)

||x|| ||y||
(1)

Here, ||x|| denotes the `2 norm of the vector x. In particular, if i = j we set
φ(i, j) = 1 and 0 otherwise, Save reduces to the popular cosine similarity.

Maximum Similarity

Instead of averaging the word similarity scores, maximum similarity, Smax(x, y),
considers for each word xi the most similar word yj , as follows:

Smax(x, y) =

|V|∑
i=1

xi maxj yjφ(i, j)

||x|| ||y||
(2)

Smax can be considered as a sentence similarity measure based on a one-
to-many word-alignment. We consider a word-pair (i, j) to be aligned if j =
argmaxj′ yj′φ(i, j′). We create a word-alignment matrix Amax where the (i, j)
element denotes the number of sentence pairs in which the i-th word of the first
sentence was aligned with the j-th word of the second sentence.

Bipartite Matching

We can represent the two sentences x and y by a bipartite graph where the
vertices in each part correspond respectively to the two sets {i : i ∈ V, xi = 1},
and {j : j ∈ V, yj = 1} consisting of words that occur in each sentence. Each
vertex in the first part (corresponding to the words in the first sentence) is
connected to all the vertices in the second part (corresponding to the words in
the second sentence) using an undirected weighted edge. The weight of the edge
connecting i to j is set to the word similarity φ(i, j). This bipartite graph can
be constructed in O(|V|2) time complexity.

Next, we can model the problem of measuring the similarity between the two
sentences x and y as a problem of bipartite graph matching. Specifically, we
would like to find the one-to-one mapping between the two parts that maximises
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the sum of edge-weights from x to y. This maximum-matching problem can be
solved using the Hungarian algorithm [33], a bipartite matching algorithm with
time complexity O(|V|3). For each word i, let us denote its optimum align-
ment target under the Hungarian method by j = h(i). We define a similarity,
Shun(x, y), based on this optimum alignment as follows:

Shun(x, y) =

|V|∑
i=1

xih(i)φ(i, h(i))

||x|| ||y||
(3)

Shun can be considered as a sentence similarity measure based on a one-to-
one word-alignment. We create a word-alignment matrix Ahun where the (i, j)
element denotes the number of sentence pairs in which the i-th word of the first
sentence was aligned with the j-th word of the second sentence according to the
Hungarian algorithm.

Incremental Update Rule

In many text similarity computation tasks such as finding similar documents in
information retrieval, or document clustering, we must compare not only one
pair of texts (documents) selected from a given collection, but compute the
similarities between all pairs of texts. Likewise, when calculating the similarity
between sentences, it is often the case that we are given a large collection of
sentences (a corpus) from which a pair of sentences is selected. As we already
described in Section , we can exploit the information available in all the sen-
tences in the corpus when measuring the similarity between two given sentences.
Instead of considering the similarity between two words, φ(i, j), to be a fixed
value, we update word similarities considering their alignments in sentences.
Because the sentence similarity measures given by (1), (2), and (3) depend on
the word similarity scores, this results in an update procedure that iterates be-
tween measuring sentence similarities (thereby word-alignments), and updating
word similarity scores.

Let us denote the similarity between two words i and j after the t-th itera-
tion by φ(t)(i, j), and the word-alignment matrix computed using the maximum

similarity (Section ) or the bipartite matching (Section ) by A(t). Note that
the word-alignment matrix A is an asymmetric matrix. Therefore, we define a
symmetric word co-occurrence matrix C(t), where its (i, j)-th element is given
by:

C
(t)
ij = (A

(t)
ij +A

(t)
ji )/2 (4)

Let B(t) be the word similarity matrix where its (i, j) element B
(t)
ij denotes

the similarity between the two words i and j computed using co-occurrence

counts C
(t)
ij . Different word association measures can be used to compute simi-

larity scores from co-occurrence counts. In this work, we use the positive point-
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wise mutual information (PPMI) [34] computed as follows:

B
(t)
ij = max

(
0, log

(
C

(t)
ij ×

∑
ij C

(t)
ij∑

i C
(t)
ij

∑
j C

(t)
ij

))
(5)

PPMI is frequently used for measuring word similarity in various NLP tasks [35].
We propose two update rules for updating the word similarity scores using

the word-alignment counts: the additive update rule defined by (6), and the
multiplicative update rule defined by (7).

φ(t+1)(i, j) = φ(t)(i, j) + η(t)B
(t)
ij (6)

φ(t+1)(i, j) = φ(t)(i, j)B
(t)
ij (7)

Here, η(t) is the update rate in the t-th iteration. Because we require word
similarity scores to be in the range [0, 1], we scale φ(t+1)(i, j) by dividing from
the maximum similarity score between any pair of words, maxij φ

(t+1)(i, j), after
each iteration. In both update rules, the initial word similarities, φ(0)(i, j), are
computed using pre-trained word embeddings. In our experiments, we used skip-
gram with negative sampling (SGNS) [28] for learning word embeddings. Then,
φ(0)(i, j) is computed as the cosine similarity between the word embeddings
corresponding to the words i and j.

The additive update rule given by (6) closely resembles the update rule used
in imitation learning [36], where a learner is required to imitate the training
signal provided by an oracle. In our case, the word similarity scores φ(t)(i, j)

are required to follow B
(t)
ij , the similarity scores computed using word-alignment

counts. On the other hand, the multiplicative update rule given by (7) can be
seen as a weighted similarity score where current similarity scores are weighted
by the corresponding alignment counts. Later in Section , we experimentally
compare the different combinations of word-alignment matrices produced by
different sentence similarity measures and the update rules.

In practice, even though two sentences might be similar, not all the words
in the two sentences need to be similar. However, both maximum similarity
method and the bipartite matching method require all word-pairs from the two
sentences to be aligned. This imposes an unnecessarily strict constraint on
word-alignment because two words might get aligned despite having a small
word similarity score. To avoid such word-alignments, we consider only word-
pairs (i, j) with similarity φ(t)(i, j) > θ for the word-alignment process for a fixed
threshold θ ∈ [0, 1]. We experimentally study the effect of θ on the performance
of our method in Section .

Efficient Computation of Similarity

Calculating the full word-alignment matrix introduced in Section requires com-
putational complexity of O(n2|V|), where n is the total number of sentences
in the corpus. However, most sentence pairs in a corpus will have almost zero
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similarity scores, and would not contribute to the word-alignment matrices. To
avoid such unproductive computations, we use SimHash [13] to find the most
similar k sentences for each sentence in the corpus, and measure sentence sim-
ilarity only for those sentence pairs. Hamming distance over SimHash values
of two sentences approximates the cosine similarity between the corresponding
sentences. This method reduces the computational complexity to O(nk|V|),
which is significantly smaller than O(n2|V|) for k � n.

Experiments

We evaluate the accuracy of our method by predicting the similarity between
two given sentences using SemEval-2015 Task 2 sentence similarity benchmark
dataset in Section . Sensitivity of the performance for each parameter and initial
word embeddings in our method is described in Section .

Sentence Similarity Measurement

For evaluating the proposed method for measuring sentence similarity, we use
the SemEval-2015 Task 2 dataset (http://alt.qcri.org/semeval2015/task2/) [20].
This dataset includes 3, 000 sentence pairs from five different domains: news
headlines (Head), image descriptions (Img), answer pairs from a tutorial dia-
logue system (Stud), answer pairs from Q&A websites (QA), and sentence pairs
from a committed belief dataset (Bel). Sentence similarity scores that range
between 0 (the two sentences are completely dissimilar) to 5 (the two sentences
are completely equivalent, as they mean the same thing) are obtained via crowd-
sourcing. A sentence similarity measure is evaluated against the human ratings
in this dataset using the Pearson correlation coefficient. Pearson correlation
coefficient ranges in [−1, 1], and high values indicate better agreement with the
human notion of sentence similarity.

We use publicly available pre-trained word embeddings (https://code.google.
com/archive/p/word2vec/) trained using SGNS and use cosine similarity to com-
pute initial word similarities, φ(0)(i, j), required by the additive and the mul-
tiplicative rules defined respectively by (6) and (7). The pre-trained word em-
beddings are trained on about 100 billion word Google News corpus, and 300
dimensional vectors for 3 million words are created. We use 5-fold cross valida-
tion on the train sentence pairs in the SemEval-2015 Task 2 dataset to obtain
the optimal values of θ = 0.4 and t = 3. Moreover, we experimented with differ-
ent learning rate scheduling methods and found η(t) = 1 to be the best. Later in
Section , we analyse the sensitivity of the performance of the proposed method
to those parameters. Because the SemEval-2015 Task 2 dataset contains only
a small number of sentences (ca. 6, 000), we do not require the SimHash-based
approximation method described in Section for this dataset.

To demonstrate the effectiveness of conducting iterative similarity updates in
the proposed method, we compare it against the following baseline methods that
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have been frequently used in prior work that do not perform iterative similarity
updates.

Cosine baseline calculates the similarity between two sentences x and y as the
cosine similarity between the two vectors x and y representing the two
sentences.

Cosine (add SGNSs) baseline calculates the similarity between two sentences
x and y as the cosine similarity between two sentence embeddings. These
sentence embeddings are composed by adding the word embeddings of
the words in each sentence. Representing sentences via the sum of word
embeddings has been shown to be a strong baseline for creating sentence
embeddings [32].

SGNS method calculates the similarity between two sentences x and y using
the three sentence similarity measures, Save, Smax, and Shun respectively
using (1), (2), and (3). It uses the pre-trained word embeddings learnt us-
ing SGNS, and measures the similarity φ(i, j), between two words i and j
as the cosine similarity between the corresponding word embeddings. This
method simulates the proposals made by Song and Roth [22] for measuring
sentence similarity using word alignments. This method does not perform
any iterative similarity updates as done by the proposed method, and cor-
responds to the current state-of-the-art unsupervised sentence similarity
measure.

PPMI baseline uses the PPMI-based word similarity computed using word-
alignment counts, as the word similarity function φ(i, j), and computes the
three sentence similarity measures Save, Smax, and Shun. Specifically, 6
variants of this baseline is computed by combining the two word-alignment
matrices Amax, and Ahun, with the three sentence similarity measures
Save, Smax, and Shun.

Table 1 compares the different sentence similarity measures using the Pear-
son correlation coefficients with the human ratings for the test sentence pairs
in the SemEval-2015 Task 2 dataset. The proposed method (denoted by Prop)
is computed for the combinations of 2 word-alignment matrices (Amax and
Ahun), 3 sentence similarity measures ( Save, Smax, and Shun), and 2 update
rules (additive and multiplicative, denoted respectively by + and ∗), resulting
in 12 variants shown in Table 1. The final column, Mean, in Table 1 shows
the weighted mean over the 5 domains for each method. It is computed by
weighting the Pearson correlation coefficient in each domain by the total num-
ber of sentence pairs in that domain, according to the official scoring guidelines
in SemEval-2015 Task 2.

From Table 1, we see that Prop Amax+Smax is the best performing method
among the different methods compared. In particular, it reports the best corre-
lation coefficients in 4 out of the 5 domains. Moreover, according to the Fisher
z-transformation, the correlations reported by the proposed method is statisti-
cally significantly better than that of SGNS Smax, which supports our proposal
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Table 1. Sentence similarity measurement results on the
SemEval-2015 Task 2 dataset.

Method Head Img Stud QA Bel Mean

Cosine .531 .603 .664 .445 .651 .587
Cosine (add SGNSs) .567 .531 .620 .296 .465 .525
SGNS Save .294 .316 .043 .079 .125 .189
SGNS Smax .603 .626 .656 .391 .636 .599
SGNS Shun .590 .614 .682 .386 .615 .596
PPMI Amax Save .206 .325 .187 .236 .137 .226
PPMI Amax Smax .540 .561 .701 .327 .591 .565
PPMI Amax Shun .531 .553 .697 .320 .574 .557
PPMI Ahun Save .340 .368 .327 .370 .221 .333
PPMI Ahun Smax .543 .602 .679 .437 .654 .592
PPMI Ahun Shun .533 .586 .675 .430 .634 .582

Prop Amax + Save .456 .401 .374 .477 .255 .399
Prop Amax + Smax .639 .643 .674 .501 .671 .636∗

Prop Amax + Shun .626 .629 .674 .491 .654 .626
Prop Ahun + Save .443 .398 .361 .450 .254 .388
Prop Ahun + Smax .638 .642 .673 .498 .670 .634∗

Prop Ahun + Shun .626 .629 .674 .491 .654 .625

Prop Amax ∗ Save .424 .395 .371 .444 .262 .386
Prop Amax ∗ Smax .601 .631 .674 .480 .666 .620
Prop Amax ∗ Shun .591 .619 .674 .474 .650 .612
Prop Ahun ∗ Save .423 .395 .370 .439 .262 .385
Prop Ahun ∗ Smax .601 .631 .674 .479 .665 .619
Prop Ahun ∗ Shun .591 .619 .674 .474 .651 .612

The bold scores means the highest performance. The scores with a star
statistically significantly outperform the Cosine baseline.

that sentence similarities must be computed in an iterative fashion over the
entire corpus considering word-alignment constraints. Overall, the maximum
similarity word-alignment (Amax) with Smax consistently perform well across
different domains and baselines.

Between the two update rules, additive update outperforms the multiplica-
tive counterpart. Recall that the word similarity matrix B(t) given by (5) is in
practice a sparse matrix. Therefore, the multiplicative update rule given by (7)
results in even sparser similarity scores φ(t+1) than φ(t) after each update. On
the other hand, the additive update rule given by (6) would retain the non-zero
elements in φ(t) during the update. We believe that the extra sparsification in
the multiplicative update rule decreases its performance when measuring the
sentence similarities.
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Parameter Sensitivity

We study the performance of the Prop Amax + Smax method, which reported
the best results according to Table 1, under different update rate schedul-
ing methods. Specifically, we consider update rate scheduling methods fre-
quently used in stochastic optimization such as constant update rates (η(t) =
0.5, 1.0, 1.5), reciprocal update rates (η(t) = 1/t, 1/2t), and the inverse squared
update rate (η(t) = 1/t2).

Fig 1 shows the performance of the proposed method under different up-
date rate scheduling methods. The dashed horizontal line in Fig 1 is the level
of performance a particular method must obtain in order for that method to
statistically significantly outperform the state-of-the-art SGNS Smax. From
Fig 1, we see that our proposed method outperforms SGNS Smax under all
update rate scheduling methods. Therefore, the proposed method is relatively
insensitive to the update rate scheduling method used.

Moreover, under constant update rates, when we increase the value of η,
the Pearson correlation reaches the maximum value with a smaller number of
iterations. Once the Pearson correlation coefficients have reached these maxi-
mum values, the performance converges. Because it is desirable to converge to
the best correlation value with smaller number of iterations, η(t) = 1.5 (peak
performance achieved after 3 iteration) is a suitable value.

Fig 2 shows the effect of considering word-pairs greater than similarity θ
during the sentence similarity measurement process. Considering less similar
word-pairs in the alignment step leads to poor performance because of noisy
alignments. On the other hand, high θ values will limit the number of words
that we align between two sentences, leading to feature sparseness issues. This
trade-off can be seen from the three curves shown in Fig 2.

To study the effect of selecting top-k similar sentences using SimHash (Sec-
tion ), in Fig 3 we measure the performance of Prop Amax + Smax against
different k values. We see that even selecting a small sample as the top-most
similar k = 100 sentences for each sentence in the corpus out of all sentences
(ca. 6, 000), the proposed method can obtain a high (0.6302) correlation coef-
ficient. With k = 300 similar sentences we can obtain statistically significant
improvements over SGNS Smax. This is attractive when computing sentence
similarities in large corpora. For example, even for a small corpus such as the
SemEval-2015 Task 2 dataset, which has only 6, 000 sentences, time taken for
one iteration is reduced from 24 min to 1.5 min, by using k = 100.

To demonstrate the effect of the different initial word embeddings, we initial-
ize using random vectors, and publicly available pre-trained word embeddings:
300 dimensional SGNS vectors (https://code.google.com/archive/p/word2vec/)
for 3 million words, 50, 100, 200 and 300 dimensional GloVe vectors (http:
//nlp.stanford.edu/projects/glove/) for 400 thousand words. As shown in
Fig 4, our proposed method can significantly improve any initial word similar-
ity by iterative updating. The better performance of SGNS over GloVe can be
explained by the larger vocabulary covered by SGNS.
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Fig 1. Effect of the different update rate scheduling methods on the
performance of the proposed method is shown. The dashed horizontal
line shows p < 0.05 significance level (Fisher z-transformation) for
outperforming the SGNS Smax method. Peak correlation value and the
required number of iterations (t) are shown within brackets.
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Fig 2. Effect of selecting word-pairs with similarity greater than θ
for updating the word-alignment matrix. The dashed horizontal line
shows p < 0.05 significance level (Fisher z-transformation) for outperforming
the SGNS Smax method. Peak correlation value and the required number of
iterations (t) are shown within brackets.
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Fig 3. Effect of the number of top-k similar sentences selected using
SimHash on the performance of the proposed method is shown. The
dashed horizontal line shows p < 0.05 significance level (Fisher
z-transformation) for outperforming the SGNS Smax method. Peak
correlation value and the required number of iterations (t) are shown within
brackets.

Fig 4. Effect of the different initial word embeddings on the
performance of the proposed method is shown. The dashed horizontal
line shows p < 0.05 significance level (Fisher z-transformation) for
outperforming the SGNS Smax method. Peak correlation value and the
required number of iterations (t) are shown within brackets.
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Table 2. Sentence similarity results using Word Mover’s Distance on
the SemEval-2015 Task 2 dataset.

Method Head Img Stud QA Bel Mean

Euclidean .648 .607 .689 .428 .552 .609
Prop (t=0) .635 .588 .702 .477 .520 .606
Prop (t=1) .651 .592 .702 .495 .539 .615
Prop (t=2) .651 .592 .698 .496 .544 .615
Prop (t=3) .649 .593 .695 .496 .545 .614

Sentence Similarity Complement

We improve an existing sentence similarity measure by a combination with the
proposed method. The Word Mover’s Distance [37] which is a sentence similarity
measure based on the dissimilarity between words is improved in this study.

Table 2 compares the different word dissimilarity measure for the Word
Mover’s Distance. Euclidean baseline is calculated by the Euclidean distance
||xi − xj || between word i and word j in the SGNS embeddings. Prop dis-
similarity measure is calculated using our updated word similarity 1−φ(t)(i, j).
From Table 2, we can see that Prop method calculated using our updated word
similarity improves Word Mover’s Distance [37] calculated using Euclidean
distance.

Conclusion

We proposed an unsupervised method to measure the similarity between two
sentences which updates both word and sentence similarity scores in an iterative
manner, making multiple passes over the entire corpus. Experimental results
showed the effectiveness of the proposed iterative approach for measuring sen-
tence semantic similarity. In future, we plan to apply the proposed method
in large-scale paraphrase identification where we must detect similar sentence
pairs among potentially large number of dissimilar sentence pairs.
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