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Abstract. In this paper, we study contention resolution protocols from
a game-theoretic perspective. In a recent work [7], we considered ac-
knowledgment-based protocols, where a user gets feedback from the chan-
nel only when she attempts transmission. In this case she will learn
whether her transmission was successful or not. One of the main results
of [7] was that no acknowledgment-based protocol can be in equilibrium.
In fact, it seems that many natural acknowledgment-based protocols fail
to prevent users from unilaterally switching to persistent protocols that
always transmit with probability 1. It is therefore natural to ask how
powerful a protocol must be so that it can beat persistent deviators.
In this paper we consider age-based protocols, which can be described
by a sequence of probabilities of transmitting in each time step. Those
probabilities are given beforehand and do not change based on the trans-
mission history. We present a 3-player age-based protocol that can pre-
vent users from unilaterally deviating to a persistent protocol in order
to decrease their expected transmission time. It is worth noting that the
answer to this question does not follow from the results and proof ideas
of [7]. Our protocol is non-trivial, in the sense that, when all players use
it, finite expected transmission time is guaranteed. In fact, we show that
this protocol is preferable to any deadline protocol in which, after some
fixed time, attempt transmission with probability 1 in every subsequent
step. An advantage of our protocol is that it is very simple to describe,
and users only need a counter to keep track of time. Whether there exist
n-player age-based protocols that do not use counters and can prevent
persistence is left as an open problem for future research.

Keywords: contention resolution, age-based protocol, persistent devia-
tor, game theory

1 Introduction

A fundamental problem in networks is contention resolution in multiple access
channels. In such a setting there are multiple users that want to communicate
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with each other by sending messages into a multiple access channel (or broadcast
channel). The channel is not centrally controlled, so two or more users can trans-
mit their messages at the same time, in which case there is a collision and no
transmission is successful. The objective in contention resolution is the design of
distributed protocols for resolving such conflicts, while simultaneously optimizing
some performance measure, like channel utilization or average throughput.

Following the standard assumption in this area, we assume that time is dis-
crete and messages are broken up into fixed sized packets, which fit exactly into
one time slot. In fact, we consider one of the simplest possible scenarios where
each user only needs to send a single packet through the channel. Most studies
on distributed contention resolution protocols (see Section 1.2) are based on the
assumption that users will always follow the algorithm. In this paper, follow-
ing [9] we drop this assumption, and we assume that a player will only obey a
protocol if it is in her best interest, given the other players stick to the protocol.
Therefore, we model the situation from a game-theoretic perspective, i.e. as a
stochastic game with the users as selfish players.

One of the main results of Fiat, Mansour, and Nadav [9] was the design of
an incentive-compatible transmission protocol which guarantees that (with high
probability) all players will transmit successfully in time linear in the number
of players n. The authors assume a ternary feedback channel, i.e. each player
receives feedback of the form 0/1/2+ after each time step, indicating whether
zero, one, or more than one transmission was attempted. In a related paper,
Christodoulou, Ligett and Pyrga [8] designed efficient ε-equilibrium protocols
under a stronger assumption that each player receives as feedback the number
of players that attempted transmission; this is called multiplicity feedback. They
also assume non-zero transmission costs, in which case the protocols of [9] do
not apply.

All of the protocols defined in the above two works belong to the class of
full-sensing protocols [13], in which the channel feedback is broadcasted to all
sources. However, in wireless channels, there are situations where full-sensing
is not possible because of the hidden-terminal problem [23]. In a previous work
[7], we considered acknowledgment-based protocols, which use a more limited
feedback model – the only feedback that a user gets is whether her transmis-
sion was successful or not. A user that does not transmit cannot “listen” to
the channel and therefore does not get any feedback. In other words, the only
information that a user has is the history of her own transmission attempts.
Acknowledgment-based protocols have been extensively studied in the literature
(see e.g. [13] and references therein).

Our main concern in [7] was the existence of acknowledgment-based proto-
cols that are in equilibrium. For n = 2 players, we showed that there exists such
a protocol, which guarantees finite expected transmission time. Even though
the general question for more than 2 players was left open in [7], we ruled out
that such a protocol can be age-based. Age-based protocols are a special case of
acknowledgment-based protocols and can be described by a sequence of probabil-
ities (one for each time-step) of transmitting in each time step. Those probabil-
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ities are given beforehand and do not change based on the transmission history.
The well known ALOHA protocol [1] is a special age-based protocol, where – ex-
cept for the first round – users always transmit with the same probability. Since
an age-based protocol P cannot be in equilibrium, it is beneficial for players to
deviate from P to some other protocol. In fact, most natural acknowledgment-
based protocols fail to prevent users from unilaterally switching to the persistent
protocol that always transmits with probability 1. It is therefore natural to ask
how powerful a protocol must be with respect to memory (and feedback) in order
to be able to prevent persistent deviators.

1.1 Our Results

The question that we consider in this paper is whether there exist age-based
protocols that can prevent users from unilaterally deviating to a persistent pro-
tocol (in which they attempt a transmission in every step until they successfully
transmit) in order to decrease their expected transmission time. In particular,
such protocols should be non-trivial, in the sense that using the protocol should
guarantee a finite expected transmission time for the users. It is worth noting
that the answer to this question does not follow from the results and proof ideas
of [7]. We give a positive answer for the case of 3 players (users), by presenting
and analyzing such a protocol (see definition below). In particular, we show that
this protocol is preferable to any deadline protocol in which, after some fixed
time, attempt transmission with probability 1 in every subsequent step.

Let c ≥ 0 and p ∈ [0, 1] be constants. We define the protocol P = P(c, p)
as follows: the transmission probability Pt at any time t is equal to p if t =∑k
j=0b2cjc, for some k = 0, 1, . . . and it is equal to 1 otherwise. The intuition

behind this protocol is that with every collision it is increasingly harder for
remaining users to successfully transmit, and thus “aggressive” protocols are
suboptimal.

Our main result is the following:

Theorem 1. Assume there are 3 players in the system, two of which use protocol
P(1.1, 0.75). Then, the third player will prefer using protocol P(1.1, 0.75) over
any deadline protocol D.

In addition, we show that the expected transmission time of a fixed player
when all players use P(1.1, 0.75) is upper bounded by 4371 and is thus finite.
We believe that our ideas can be used to give a positive answer also for the case
of n > 3 players, but probably not for too large values of n.

An advantage of our protocol is that it is very simple to describe, and users
only need a counter to keep track of time. Whether there exist n-player age-
based protocols using finite memory that can prevent persistence is left as an
open problem for future research.

1.2 Other Related Work

Perhaps the most famous multiple-access communication protocol is the (slotted)
ALOHA protocol [1, 21]. Follow-up papers study the efficiency of multiple-access



4

protocols for packets that are generated by some stochastic process (see e.g. [12,
11, 20]), or worst-case scenarios of bursty inputs [5].

The main focus of many contention resolution protocols is on actual conflict
resolution. In such a scenario, it is assumed that there are n users in total, and k
of them collide. In such an event, a resolution algorithm is called, which ensures
that all the colliding packets are successfully transmitted [6, 15, 24]. There is
extensive study on the efficiency of protocols under various information models
(see [13] for an overview). When k is known, [10] provides an O(k + log k log n)
acknowledgment-based algorithm, while [18] provides a matching lower bound.
For the ternary model, [14] provides a bound of Ω(k(log n/ log k)) for all deter-
ministic algorithms.

There are various game theoretic models of slotted ALOHA that have been
studied in the literature, apart from the ones mentioned in the introduction;
see for example [2, 17, 3]. However, in most of these models only transmission
protocols that always transmit with the same probability are considered. There
has been also research on pricing schemes [25] as well as on cases in which the
channel quality changes dynamically with time and players must choose their
transmission levels accordingly [19, 26, 4]. An interesting game-theoretic model
that lies between the contention and congestion model was studied in [16]; where
decisions of when to submit is part of the action space of the players.

2 Model

Game Structure. Let N = {1, 2, . . . , n} be the set of agents, each one of which
has a single packet that he wants to send through a common channel. All players
know n. We assume time is discretized into slots t = 1, 2, . . .. The players that
have not yet successfully transmitted their packet are called pending and initially
all n players are pending. At any given time slot t, a pending player i has two
available actions, either to transmit his packet or to remain quiet. In a (mixed)
strategy, a player i transmits his packet at time t with some probability that
potentially depends on information that i has gained from the channel based on
previous transmission attempts. If exactly one player transmits in a given slot t,
then his transmission is successful, the successful player exits the game (i.e. he is
no longer pending), and the game continues with the rest of the players. On the
other hand, whenever two or more agents try to access the channel (i.e. transmit)
at the same slot, a collision occurs and their transmissions fail, in which case
the agents remain in the game. Therefore, in case of collision or if the channel
is idle (i.e. no player attempts to transmit) the set of pending agents remains
unchanged. The game continues until all players have successfully transmitted
their packets.
Transmission protocols. Let Xi,t be the indicator variable that indicates
whether player i attempted transmission at time t. For any t ≥ 1, we denote
by Xt the transmission vector at time t, i.e. Xt = (X1,t, X2,t, . . . , Xn,t). An
acknowlegment-based protocol, uses very limited channel feedback. After each
time step t, only players that attempted a transmission receive feedback, and
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the rest get no information. In fact, the information received by a player i who
transmitted during t is whether his transmission was successful (in which case he
gets an acknowledgement and exits the game) or whether there was a collision.

Let hi,t be the vector of the personal transmission history of player i up
to time t, i.e. hi,t = (Xi,1, Xi,2, . . . , Xi,t). We also denote by ht the transmis-
sion history of all players up to time t, i.e. ht = (h1,t,h2,t, . . . ,hn,t). In an
acknowledgement-based protocol, the actions of player i at time t depend only
(a) on his personal history hi,t−1 and (b) on whether he is pending or not at
t. A decision rule fi,t for a pending player i at time t, is a function that maps
hi,t−1 to a probability Pr(Xi,t = 1|hi,t−1). For a player i ∈ N , a (transmission)
protocol fi is a sequence of decision rules fi = {fi,t}t≥1 = fi,1, fi,2, · · · .

A transmission protocol is anonymous if and only if the decision rule assigns
the same transmission probability to all players with the same personal history.
In particular, for any two players i 6= j and any t ≥ 0, if hi,t−1 = hj,t−1, it
holds that fi,t(hi,t−1) = fj,t(hj,t−1). In this case, we drop the subscript i in the
notation, i.e. we write f = f1 = · · · = fn.

We call a protocol fi for player i age-based if and only if, for any t ≥ 1,
the transmission probability Pr(Xi,t = 1|hi,t−1) depends only (a) on time t and
(b) on whether player i is pending or not at t. In this case, we will denote the

transmission probability by pi,t
def
= Pr(Xi,t = 1|hi,t−1) = fi,t(hi,t−1).

We call a transmission protocol fi non-blocking if and only if, for any t ≥
1 and any transition history hi,t−1, the transmission probability Pr(Xi,t =
1|hi,t−1) is always smaller than 1. A protocol fi for player i is a deadline protocol
with deadline t0 ∈ {1, 2, . . .} if and only if fi,t(hi,t−1) = 1, for any player i, any
time slot t ≥ t0 and any transmission history hi,t−1. A persistent player is one
that uses the deadline protocol with deadline 1.
Individual utility. Let f = (f1, f2, . . . , fn) be such that player i uses protocol
fi, i ∈ N . For a given transmission sequence X1,X2, . . ., which is consistent

with f , define the latency or success time of agent i as Ti
def
= inf{t : Xi,t =

1, Xj,t = 0, ∀j 6= i}. That is, Ti is the time at which i successfully transmits.
Given a transmission history ht, the n-tuple of protocols f induces a probabil-
ity distribution over sequences of further transmissions. In that case, we write

Cf
i (ht)

def
= E[Ti|ht,f ] = E[Ti|hi,t,f ] for the expected latency of agent i incurred

by a sequence of transmissions that starts with ht and then continues based on
f . For anonymous protocols, i.e. when f1 = f2 = · · · = fn = f , we will simply
write Cfi (ht) instead4.
Equilibria. The objective of every agent is to minimize her expected latency.
We say that f = {f1, f2, . . . , fn} is in equilibrium if for any transmission history
ht the agents cannot decrease their expected latency by unilaterally deviating
after t; that is, for all agents i, for all time slots t, and for all decision rules f ′i
for agent i, we have

Cf
i (ht) ≤ C

(f−i,f
′
i)

i (ht),

4 Abusing notation slightly, we will also write Cf
i (h0) for the unconditional expected

latency of player i induced by f .
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where (f−i, f
′
i) denotes the protocol profile5 where every agent j 6= i uses pro-

tocol fj and agent i uses protocol f ′i .

3 A 3-player protocol that prevents persistence

In this section we prove that there is an anonymous age-based protocol P(c, p) for
3 players that has finite expected latency and prevents players from unilaterally
switching to any deadline protocol. In what follows, Alice is one of the three
players in the system.

For some parameters c ≥ 0 and p ∈ [0, 1], which will be specified later, we
define the protocol P = P(c, p) as follows:

Pt =

{
p, if t =

∑k
j=0b2cjc, for some k = 0, 1, . . .

1, otherwise.
(1)

For k = 0, 1, 2, . . ., define the k-th non-trivial transmission time sk to be the time
step on which the decision rule for a pending player using P is to transmit with

probability p. In particular, sk
def
=
∑k
j=0b2cjc, by definition of the protocol.

Furthermore, for k = 1, 2, . . ., define the k-th (non-trivial) inter-transmission
time xk as the time between the k-th and (k − 1)-th non-trivial transmission

time, i.e. xk
def
= sk−sk−1 = b2ckc. The following elementary result will be useful

for the analysis of the protocol. The proof can be found in Appendix A.

Lemma 1. For any k, k′, j ∈ {0, 1, . . .}, such that k′ > k, and any c ∈ (0, 2], we
have that

ck
′−k−1(c− 1)xk+j ≤ xk′+j ≤ ck

′−k−1(c+ 1)xk+j .

3.1 Expected latency for a persistent player

Assume that Alice is a persistent player, i.e. she uses the deadline protocol g with
deadline 1, i.e. gt = 1, for all t ≥ 1, while both other players use protocol P. For
n ∈ {1, 2, 3}, k ∈ {0, 1, . . .}, let Y ′n,k be the additional time after sk that Alice
needs to successfully transmit when there are n pending players. It is evident
that Alice will be the first player to successfully transmit, so there will be no
need to calculate E[Y ′2,k] or E[Y ′1,k].

The proof of the following Theorem can be found in Appendix B.

Theorem 2. If 1
1−(1−p)2 < c ≤ 2, then E[Y ′3,0] = ∞. That is, the expected

latency for Alice when she is persistent and both other players use protocol P(c, p)
is infinity.

5 For an anonymous protocol f , we denote by (f−i, f
′
i) the profile where agent j 6= i

uses protocol f and agent i uses protocol f ′i .
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Remark 1. At first glance, the above result may seem surprising. Indeed, let Z
denote the number of times that the persistent player has a collision whenever the
other players transmit with probability p (i.e. we do not count collissions when
the other two players transmit with probability 1, which causes certain collision).
It is easy to see that Z + 1 is a geometric random variable with probability of
success (1 − p)2. Therefore, E[Z + 1] = 1

(1−p)2 is finite! On the other hand, it

is not hard to see that the (actual) time Y ′3,0 needed for the persistent player

to successfully transmit is given by Y ′3,0 =
∑Z
j=0b2cjc. In particular, Y ′3,0 is a

strictly convex function of Z, for any c > 1, and so, by Jensen’s inequality (see

e.g. [22]) E[Y ′3,0] >
∑E[Z]
j=0 b2cjc.

3.2 Expected latency when all players use P(c, p)

Assume that all three players use protocol P. For n ∈ {1, 2, 3}, k ∈ {0, 1, . . .},
let Yn,k be the additional time after sk that Alice needs to successfully transmit,
when there are n pending players. The following corollary, which is a direct
consequence of Lemma 1, will be useful for our analysis.

Corollary 1. For any n ∈ {1, 2, 3}, any k, k′ ∈ {0, 1, . . .} with k′ > k, and
c ∈ (0, 2] we have that

ck
′−k−1(c− 1)E[Yn,k] ≤ E[Yn,k′ ] ≤ ck

′−k−1(c+ 1)E[Yn,k].

The main purpose of this section is to prove Theorem 3. To do this, we need
to consider E[Yn,k], for all values of n ∈ {1, 2, 3}, k ∈ {0, 1, . . .}.

The case n = 1. When only Alice is pending, we have

E[Y1,k] =

 k∑
j=0

b2cjc

 p+

k+1∑
j=0

b2cjc

 p(1− p) + . . .

=

∞∑
`=k

∑̀
j=0

b2cjc

 p(1− p)`−k


≤
∞∑
`=k

∑̀
j=0

2cj

 p(1− p)`−k


=

∞∑
`=k

((
2
c`+1 − 1

c− 1

)
p(1− p)`−k

)

≤ 2cp

(c− 1)(1− p)k
∞∑
`=k

(
c`(1− p)`

)
. (2)

In particular, by the above inequality, we have the following:

Lemma 2. If 0 < c < 1
1−p , then E[Y1,k] is finite, for any (finite) k.
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The case n = 2. Fix k′1 > 0 and assume c ∈ (0, 2] (so that we can apply
Corollary 1). When two players are pending (i.e. Alice and one other player), we
have, for all i = 0, 1, 2, . . . , k′1 − 1,

E[Y2,i] =

i∑
j=0

b2cjc+ p(1− p)E[Y1,i+1] + (1− 2p(1− p))E[Y2,i+1]

Set δ = 1− 2p(1− p). Multiplying the corresponding equation for E[Y2,i] by
δi, for each i = 0, 1, 2, . . . , k′1 − 1 and adding up, we get

E[Y2,0] =

k′1−1∑
i=0

δi
i∑

j=0

b2cjc+ p(1− p)
k′1−1∑
i=0

δiE[Y1,i+1] + δk
′
1E[Y2,k′1 ]. (3)

By the second inequality of Corollary 1 for n = 2 and k = 0, we get

E[Y2,0] ≤
k′1−1∑
i=0

δi
i∑

j=0

b2cjc+p(1−p)
k′1−1∑
i=0

δiE[Y1,i+1]+δk
′
1ck
′
1−1(c+1)E[Y2,0]. (4)

Observe now that, if we have c < 1
1−p , then, by Lemma 2, the terms

∑k′1−1
i=0 δi

∑i
j=0b2cjc+

p(1−p)
∑k′1−1
i=0 δiE[Y1,i+1] in the above inequality are finite and strictly positive.

Therefore, E[Y2,0] (which is also strictly positive), will be finite if, in addition to
c < 1

1−p and c ∈ (0, 2], the following inequality holds:

δk
′
1ck
′
1−1(c+ 1) < 1. (5)

Taking k′1 → ∞ (in fact, given p, c, we can choose a minimum, finite value for
k′1 so that the above inequality holds, see also Appendix C), we have that, if c
satisfies c < 1

1−2p(1−p) , and also c < 1
1−p (so that E[Y1,i] is finite for all finite i),

and c ∈ (0, 2] (so that we can apply Corollary 1), then E[Y2,0] is finite. In fact,
we can prove the following more general result:

Lemma 3. If 0 < c < min
{

1
1−p ,

1
1−2p(1−p) , 2

}
, then E[Y2,k] is finite, for any

(finite) k.

Proof. By the the above arguments, we have proved that, when c < min
{

1
1−p ,

1
1−2p(1−p) , 2

}
,

E[Y2,0] is finite. But, by the second inequality of Corollary 1, we also have that
E[Y2,k] ≤ ck−1(c+ 1)E[Y2,0], which completes the proof. ut

The case n = 3. Fix k′2 > 0 and assume c ∈ (0, 2] (so that we can apply
Corollary 1 when needed). When all three players are pending, we have, for all
i = 0, 1, 2, . . . , k′2 − 1,

E[Y3,i] =

i∑
j=0

b2cjc+ 2p(1− p)2E[Y2,i+1] + (1− 3p(1− p)2)E[Y3,i+1].
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Set β = 1−3p(1−p)2. Multiplying the corresponding equation for E[Y3,i] by βi,
for all i = 0, 1, 2, . . . , k′2 − 1 and adding up, we get

E[Y3,0] =

k′2−1∑
i=0

βi
i∑

j=0

b2cjc+ 2p(1− p)2
k′2−1∑
i=0

βiE[Y2,i+1] + βk
′
2E[Y3,k′2 ].

By the second inequality of Corollary 1 for n = 3 and k = 0, we get

E[Y3,0] ≤
k′2−1∑
i=0

βi
i∑

j=0

b2cjc+ 2p(1− p)2
k′2−1∑
i=0

βiE[Y2,i+1] + βk
′
2ck
′
2−1(c+ 1)E[Y3,0].

(6)

Observe now that, if we have c < min
{

1
1−p ,

1
1−2p(1−p) , 2

}
, then, by Lemma 3,

the terms
∑k′2−1
i=0 βi

∑i
j=0b2cjc + 2p(1 − p)2

∑k′2−1
i=0 βiE[Y2,i+1] in the above in-

equality are finite and strictly positive. Therefore, E[Y3,0] (which is also strictly

positive), will be finite if, in addition to c < min
{

1
1−p ,

1
1−2p(1−p) , 2

}
, the follow-

ing inequality holds:
βk
′
2ck
′
2−1(c+ 1) < 1. (7)

Taking k′2 → ∞ (in fact, given p, c, we can choose a minimum, finite value for
k′2 so that the above inequality holds, see also Appendix C), we have that, if c

satisfies c < 1
1−3p(1−p)2 , and also c < min

{
1

1−p ,
1

1−2p(1−p) , 2
}

(so that E[Y2,i] is

finite for all finite i), then E[Y3,0] is finite. Similarly to the proof of Lemma 3,
we can prove the following more general result:

Theorem 3. If 0 < c < min
{

1
1−p ,

1
1−2p(1−p) ,

1
1−3p(1−p)2 , 2

}
, then E[Y3,k] is

finite, for any (finite) k. In particular, the expected latency of Alice when all
players (including Alice herself) use protocol P(c, p) is finite.

3.3 Feasibility

We first show that there are values for p and c, such that the following inequalities
hold at the same time:

0 < c < min

{
1

1− p
,

1

1− 2p(1− p)
,

1

1− 3p(1− p)2

}
and

1

1− (1− p)2
< c ≤ 2.

By Theorem 3 and Theorem 2, if all the above inequalities hold, then E[Y3,0] is
finite, while E[Y ′3,0] is infinite.

For p = 3/4, the above inequalities become: 0 < c < min{4, 8/5, 64/55} ≈
1.163 and 1.066 ≈ 16/15 < c ≤ 2. Therefore, selecting p = 3/4 and c = 1.1, we
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have an anonymous age-based protocol that has finite expected latency and that
prevents players from unilaterally switching to a persistent protocol. In fact we
prove a slightly more general result:

Theorem 4 (restatement of Theorem 1). Assume there are 3 players in the
system, two of which use protocol P(1.1, 0.75). Then, the third player will prefer
using protocol P(1.1, 0.75) over any deadline protocol D.

Proof. Extending the notation used in the previous sections, let Y D3,0 (respec-
tively Y3,0) be the time needed for the third player to successfully transmit
when she uses protocol D (respectively protocol P(1.1, 0.75)). Furthermore, let
Y ′3,k, k ∈ {0, 1, . . .}, be the additional time after sk (i.e. the k-th non-trivial
transmission time) that the third player needs to successfully transmit when she
uses a deadline protocol with deadline 1.

Since c = 1.1 and p = 0.75, we have that 0 < c < min
{

1
1−p ,

1
1−2p(1−p) ,

1
1−3p(1−p)2

}
and 1

1−(1−p)2 < c ≤ 2. Therefore, by Theorems 2 and 3, we have that E[Y3,0]

is finite and E[Y ′3,0] = ∞, which means that the third player prefers using
P(1.1, 0.75) over a deadline protocol with deadline 1.

We now prove that the third player prefers using P(1.1, 0.75) over any dead-
line protocol D with deadline t0 = t0(D) as well. Let E be the event that none
of the first two players has successfully transmitted before t0. Let also ξ = ξ(t0)
be the number of times t such that P(1.1, 0.75)t = p = 0.75 (i.e. the protocol
P(1.1, 0.75) suggests transmitting with probability less than 1) before time t0
(i.e. ξ(t0) is the number of non-trivial transmissions before t0). We can see that

Pr(E) ≥ (1− 2p(1− p))ξ.

In fact, this lower bound is quite crude, since it does not take into account
the third player, so the probability that one of the first two players succesffully
transmits during a non-trivial transmission time step when both are pending is
2p(1− p). We now have the following:

E
[
Y D3,0

]
=

∞∑
t=0

tPr
(
Y D3,0 = t

)
≥ Pr(E)

∞∑
t=τ

tPr
(
Y D3,0 = t|E

)
= Pr(E)

∞∑
t=τ

tPr(Y ′3,ξ = t)

≥ Pr(E)

∞∑
t=0

tPr(Y ′3,ξ = t)− t20 = Pr(E)E[Y ′3,ξ]− t20

≥ Pr(E)cξ−1(c− 1)E[Y ′3,0]− t20 =∞

where in the last inequality we used the first inequality of Corollary 1. Therefore,
the third player prefers using P(1.1, 0.75) over D as well. Since D is arbitrary,
the proof is complete. ut
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In Appendix C, we show that when all three players use the protocol P(1.1, 0.75),
the expected latency of a fixed player is upper bounded by 4371. It is worth not-
ing that a naive protocol where each player transmits with constant probability,
say 1

3 , at any time t, has a better expected latency than that of P(c, p), but on
the other hand it does not prevent players from unilaterally switching to some
deadline protocol.
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A Proof of Lemma 1

By definition of the protocol P(c, p), we have that xk = b2ckc, for any k ∈
{0, 1, . . .}. Let A1, A2, A3 ∈ N and a1, a2, a3 ∈ [0, 1), such that

2ck
′+j = A1 + a1,

2ck+j = A2 + a2,

ck
′−k = A3 + a3.

We then have that A1 + a1 = (A3 + a3)A2 + (A3 + a3)a2. Therefore,

ck
′−k−1(c+ 1)xk+j = (A3 + a3)

(
1 +

1

c

)
A2

= (A3 + a3)A2 +
1

c
(A3 + a3)A2

= A1 + a1 − (A3 + a3)a2 +
1

c
(A3 + a3)A2

= A1 + a1 + (A3 + a3)

(
1

c
A2 − a2

)
≥ A1 + a1 + (A3 + a3)

(
2

c
− a2

)
≥ A1 + a1,

where in the first inequality we used the fact that A2 ≥ 2 and a2 < 1. This
completes the proof of the first inequality of the Lemma.

The proof for the second inequality of the Lemma is similar. In particular,

ck
′−k−1(c− 1)xk+j = (A3 + a3)

(
1− 1

c

)
A2

= (A3 + a3)A2 −
1

c
(A3 + a3)A2

= A1 + a1 − (A3 + a3)a2 −
1

c
(A3 + a3)A2

= A1 + a1 − (A3 + a3)

(
1

c
A2 + a2

)
≤ A1 + a1 −

(
2

c
+ a2

)
≤ A1

where in the above inequality we used the fact that, since k′ > k and c ∈ (0, 2],
we have that A3 + a3 ≥ 1 and A2 ≥ 2. This completes the proof.

B Proof of Theorem 2

The following corollary, which is a direct consequence of Lemma 1, will be useful
for our analysis.
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Corollary 2. For any k, k′ ∈ {0, 1, . . .} with k′ > k, and c ∈ (0, 2] we have that

ck
′−k−1(c− 1)E[Y ′3,k] ≤ E[Y ′3,k′ ] ≤ ck

′−k−1(c+ 1)E[Y ′3,k].

For the proof of Theorem 2, fix k′ > 0. By well known properties of expec-
tation, we have, for all i = 0, 1, . . . , k′ − 1,

E[Y ′3,i] =

i∑
j=0

b2cjc+ (1− (1− p)2)E[Y ′3,i+1].

Set γ = 1 − (1 − p)2. Multiplying the corresponding equation for E[Y ′3,i] by γi,
for each i = 0, 1, 2, . . . , k′ − 1 and adding up, we get

E[Y ′3,0] =

k′−1∑
i=0

γi
i∑

j=0

b2cjc+ γk
′
E[Y ′3,k′ ].

By the first inequality of Corollary 2 for k = 0, we get

E[Y ′3,0] ≥
k′−1∑
i=0

γi
i∑

j=0

b2cjc+ γk
′
ck
′−1(c− 1)E[Y ′3,0].

Observe now that, since
∑k′−1
i=0 γi

∑i
j=0b2cjc in the above equation is strictly

positive, E[X ′3,0] (which is also strictly positive), will be ∞ if the following in-
equality holds:

γk
′
ck
′−1(c− 1) ≥ 1.

Taking k′ → ∞, we have that, for any constant c such that c > 1
1−(1−p)2 , we

have that E[Y ′3,0] =∞, which completes the proof of Theorem 2.

C An upper bound on the expected latency when all
players use P(c, p)

In this section, we provide an upper bound on the expected latency of a fixed
player when all three players use the protocol P(c, p), for some c, p such that the

conditions of Theorem 3 and Theorem 2 are satisfied, i.e. 0 < c < min
{

1
1−p ,

1
1−2p(1−p) ,

1
1−3p(1−p)2

}
and 1

1−(1−p)2 < c ≤ 2.

By equation (2) and using the fact that, by assumption, c(1 − p) < 1, we
have that, for any k ≥ 0,

E[Y1,k] ≤ 2cp

(c− 1)(1− p)k
∞∑
`=k

(
c`(1− p)`

)
=

2cp

(c− 1)(1− p)k
ck(1− p)k

1− c(1− p)

=
2cp

(c− 1)(1− c(1− p))

(
c

1− p

)k
. (8)
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By equation (4), we also have(
1− δk

′
1ck
′
1−1(c+ 1)

)
E[Y2,0]

≤
k′1−1∑
i=0

δi
i∑

j=0

2cj + p(1− p)
k′1−1∑
i=0

δiE[Y1,i+1]

≤
k′1−1∑
i=0

2δi
ci+1 − 1

c− 1
+

2c2p2

(c− 1)(1− c(1− p))

k′1−1∑
i=0

(
δc

1− p

)i

≤ 2c

c− 1

k′1−1∑
i=0

(δc)i +
2c2p2

(c− 1)(1− c(1− p))

k′1−1∑
i=0

(
δc

1− p

)i

≤ 2c

c− 1

1− (δc)k
′
1

1− δc
+

2c2p2

(c− 1)(1− c(1− p))

1−
(

δc
1−p

)k′1
1− δc

1−p
,

where in the second equality we used the upper bound from equation (8). Rear-
ranging, we have

E[Y2,0] ≤
2c
c−1

1−(δc)k
′
1

1−δc + 2c2p2

(c−1)(1−c(1−p))
1−( δc

1−p )
k′1

1− δc
1−p

1− δk′1ck′1−1(c+ 1)
def
= ∆(c, p, k′1).

By the second inequality of Corollary 1, we then have, for any k ≥ 1,

E[Y2,k] ≤ ck−1(c+ 1)E[Y2,0] ≤ ∆(c, p, k′1)ck−1(c+ 1). (9)

As mentioned earlier, k′1 must be large enough, so that equation (5) is satis-
fied. For c = 1.1 and p = 0.75 (i.e. when all players play protocol P(1.1, 0.75)),
we need k′1 ≥ 2. In particular, in the case of P(1.1, 0.75), taking k′1 = 2, we
have ∆(1.1, 0.75, 2) ≈ 1101.16, and so the above inequality becomes E[Y2,k] ≤
1102ck−1(c+ 1).

Similarly, by equation (6), we have

(1− βk
′
2ck
′
2−1(c+ 1))E[Y3,0]

≤
k′2−1∑
i=0

βi
i∑

j=0

2cj + 2p(1− p)2
k′2−1∑
i=0

βiE[Y2,i+1]

≤
k′2−1∑
i=0

2βi
ci+1 − 1

c− 1
+ 2p(1− p)2(c+ 1)∆(c, p, k′1)

k′2−1∑
i=0

(βc)i

≤
(

2c

c− 1
+ 2p(1− p)2(c+ 1)∆(c, p, k′1)

) k′2−1∑
i=0

(βc)i
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where in the second equality we used the upper bound from equation (9). Taking
k′2 →∞ and using the fact that, by assumption, βc < 1, we have

E[Y3,0] ≤
(

2c

c− 1
+ 2p(1− p)2(c+ 1)∆(c, p, k′1)

)
1

1− βc
.

Setting now c = 1.1, p = 0.75 (i.e. all players play protocol P(1.1, 0.75)) and
k′1 = 1 (in which case ∆(1.1, 0.75, 2) ≤ 1102), we have that E[Y3,0] ≤ 4371.


