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Summary 

Vibrating sources, such as building service equipment, are major contributors to noise in buildings. 
In order to predict and subsequently reduce the sound pressure levels generated by these devices, 
it is necessary to first predict the total vibrational power injected by them into the supporting 
building structure. Whilst simplified methods are available for calculation of the total power through 
all contacts, it would be beneficial to have more detailed knowledge of the dominant contact 
powers. For sources on low-mobility building elements, the contact powers are determined by the 
blocked force, along with the real part of the receiver mobility at each contact. This paper describes 
a novel inverse method to obtain the blocked forces at each contact. The method employs an 
instrumented reception plate, which is numerically modelled to allow optimum accelerometer 
positions to be selected, for any source and any location. The underlying theory and measurement 
procedure are described, and experimental validations are presented. 
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1. Introduction 

1.1.Structure-borne sound sources 

In order to predict and subsequently reduce the noise 

levels generated by vibrating sources in buildings, such 

as services equipment, it is necessary to first estimate 

the total vibrational power injected by the sources into 

the supporting building elements. Whilst simplified 

indirect methods are available to obtain the total 

power [1], it would be useful to have detailed 

knowledge of the powers at each contact to identify the 

dominant powers for control.  

     This paper considers the special but common 
condition of high-mobility sources connected to low-
mobility building elements. In this situation, the contact 
powers are determined by the blocked force and real 
part of the receiver mobility at each contact. Blocked 
forces are the forces at the terminals of the source 
when the velocity at the terminals is zero. Direct 
measurement of blocked forces can be problematical, 
both in ensuring that the test receiver structure is inert 
and in installing force transducers between source and 
receiver at all contacts, without adversely affecting the 
mount conditions [2]. 

     The approximate method for the total power, 
described in EN 15657-1 [1], is known as the reception 
plate method (RPM). The source of interest is placed on 
a low-mobility plate, in the Standard, a resiliently 
supported 100mm thick concrete plate, and the source 
is operated under otherwise normal conditions. The 
total power from the source, through all contacts with 
the reception plate, equals the plate power, which is 
calculated from the plate parameters as [3] 

             (1) 

The mean-square plate velocity  is recorded using 
accelerometers distributed over the plate surface. The 
loss factor η of the plate of mass m is obtained from the 
structural reverberation times of the plate. Implicit is 
the assumption that the plate power is wholly 
determined by the plate bending energy and total loss 
factor. Therefore, the source’s contribution to the plate 
bending energy determines the source total power.  

     In many cases, knowledge of the total power is 
sufficient for the prediction of the resultant structure-
borne sound pressure levels when the source is 
installed in a building [4]. However, for sources with 
significant differences in the mount point conditions, 
due to differences in vibration levels and mobility, more 
detailed analysis and design is required, in particular, 
the hierarchy of blocked forces is desirable. The 
advantage of using blocked forces instead of contact  

 

forces is that the former are independent of installation 
conditions [2].  

1.2. Inverse force determination 

The determination of forces, and also moments, plays an 
important role in many applications in noise control 
engineering. For instance, operational forces and moments 
are required as input data for Transfer Path Analysis (TPA) 
methods in the automotive and aerospace industries [5-7], 
and there is a substantial body of work on inverse force 
determination [8-11]. Inverse methods have been developed 
because direct measurements of forces and moments pose 
greater challenges than the measurements of linear or angular 
accelerations or velocities. Transducers must be inserted 
between the source and receiver, likely altering the 
transmission paths and the transmitted structure-borne 
power. With regards to moments, direct measurement is not 
possible at present. To circumvent these problems, inverse 
methods have been developed, for example the mount 
stiffness method [12], transmissibility methods [13], and the 
matrix inversion method, which is considered in this paper. 
Whilst moments cannot be neglected a priori, in building 
situations, the forces perpendicular to the receiver structure 
are generally dominant [14, 15]. In this discussion, forces 
perpendicular to the receiver structure only are considered. 

     The contact force and the contact velocity are linked by the 
receiver point mobility: vc = YrFc. If there is more than one 
contact, the forces and velocities are vectors, and the 
receiver mobility is a matrix: 

     Vc = YrFc                   (2) 

For velocities vr on the receiver structure remote from the 

contacts, Yr is a transfer mobility matrix, see Figure 1, which is 

also termed the FRF matrix. 

 

Figure 1. Fan unit connected to reception plate, showing vibration 
responses at the interface and typical remote positions  
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To obtain the contact forces, the matrix is inverted:  

 

Fc = Yr-1vr                           (3)

                 

Equation 3 points to a three-step procedure for indirectly 

obtaining the contact forces: 

 

1. The FRF matrix Yr of the uncoupled receiver 

structure is measured, by applying forces at each of 

the contact positions one at a time, and recording 

the responses at all response positions. 

2. The source is connected to the structure, and the 

velocities vr at the same response positions are 

recorded during operation of the source. 

3. The contact forces are calculated from Equation 3. 

The FRF matrix is inverted frequency by frequency, 

and multiplied with the velocity response vector. 

 

This approach is termed the matrix inversion method, 

and is used where the contributions of each source of 

excitation and along each transmission path are analysed 

individually and rank-ordered [5]. 

      There are two principal challenges in matrix inversion. 

The first concerns the determination of the FRF matrix Yr 

which increases in size according to the square of the 

number of contact points. No forces or transmission 

paths may be omitted a priori, meaning all relevant 

matrix elements have to be determined, usually by 

measurement. This can result in a large measurement 

effort, which limits the applicability of this approach, in 

particular in building acoustics. The second challenge 

stems from the necessary inversion of the FRF matrix and 

the problems posed by ill condition.  

     The contact forces obtained using Equation 3 are 

specific to the installed condition, i.e. to the source-

receiver dynamic interaction, often expressed as source-

receiver mobility ratio. If the receiver structure is 

modified or the source is moved, a new calculation of the 

contact forces is required, which entails a new set of 

measurements of the altered FRF matrix. To overcome 

this limitation, Moorhouse, Elliott and Evans [2] propose 

that instead of inverting the FRF matrix of the uncoupled 

receiver mobilities, Yr, the FRF matrix of the coupled 

mobilities, Yc is inverted: 

 

Fb = Yc-1vr                   (4)  

 

Equation 4 yields the blocked forces, which are 

independent of the receiver structure. It requires the 

determination of the coupled transfer mobility matrix 

and thus access to the source-receiver interface to attach 

accelerometers. This is similar to the determination of 

the uncoupled mobility matrix. Höller and Gibbs propose 

a further development, which does not require access to 

the source-receiver interface [16]. Equation 4 has been 

used in several studies, but common to all are problems 

associated with matrix inversion and the challenge of 

obtaining all necessary mobility terms. 

     If however, the mobility matrix YR can be calculated 

instead of measured, then economies of time and effort 

result. For simple receiver structures, finite element 

methods or analytical methods can be employed. The 

reception plate method uses a rectangular plate with free 

boundary conditions. The reception plate is designed for 

ease of set-up and measurement. It also resembles the 

plate-like receivers commonly found in buildings. 

Calculating the mobility matrix also avoids errors due to 

low-quality data or measurement errors, and it further 

allows the investigation of methods to improve the 

accuracy of the matrix inversion. For example, a 

numerical model of the receiver structure allows the 

determination of the optimum plate response positions.  

 

2. Inverse method for determining blocked forces 

 

The contact forces Fc can be expressed as a function of 

blocked forces Fb and source and receiver mobility Ys and 

Yr , respectively: 

 

Fc = (Ys + Yr)-1 YsFb                           (5)
                    

   

Again, if the source mobility is significantly higher than 

the receiver mobility, then the contact forces 

approximate the blocked forces: 

 

   Fc ≈ Fb for Ys >> Yr                          (6) 

 

A ratio of source mobility to receiver mobility of 10 is 
appropriate, which corresponds to a level difference of 
10 dB (using the 10log convention). The 100mm thick 
concrete plate, specified in the Standard EN15657-1 [1], 
fulfils the requirement for most vibrating sources in 
buildings. 

       The measurement procedure for the inverse 
determination of blocked forces is as follows: 

 

1. The geometrical distance between source contacts is 

measured, and the source placed on the plate at a 

position that ensures that the source contacts are 

not at nodal lines. 

2. Based on the numerical model of the plate, suitable 

response positions can be determined [17]. 

3. The FRF matrix is calculated, using a numerical model 

of the receiver. 

4. Velocity spectra are measured at the response 

positions during operation of the source. This is the 

only required measurement. 
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5. From the calculated FRF matrix and the measured 

velocity responses, the contact forces are 

determined.  

The key to the proposed measurement procedure is the 

analytical or numerical model of the receiver plate. 

  

3. Models of FFFF plate 

 

In modelling the free plate, the point and transfer 

mobilities are expressed in terms of modal summations, 

with mode shapes calculated either analytically or 

numerically (e.g. using FE). 

      Analytical and numerical models of plates have been 

studied extensively [18, 19]. Leissa [18] gives a 

compendium of formulations for plates with different 

boundary conditions and aspect ratios. The following 

calculations of point and transfer mobilities of thin 

rectangular plates are based on methods described in 

[20], which in turn are based on [19] and [21]. The point 

and transfer mobilities for bending vibration of thin finite 

plates can be expressed in terms of a modal summation. 

A rectangular plate is excited by a force  at position (x1, 

y1), and the linear or angular response velocity 

determined at position (x2, y2). The point and transfer 

mobilities for force excitation are given as: 

 

 
 







 


1 1
22

1122

)1(

),(),(
)(

m n mnyx

mnmn

Fv
jlhl

yxyx
jY

zz 


           (7)

             

ψmn is the (m,n)th bending mode shape, ωmn is the 

associated eigenfrequency, h, lx and ly are the dimensions 

of the plate, ρ is the material density, and η is the total 

loss factor. The upper frequency limit of the sum must be 

higher than, typically more than twice, the upper 

frequency of the range of interest.  

 

3.1. Analytical model using beam functions 

 

The plate mode shapes can be calculated as products of 

the beam mode shapes φm and φn: 

 

   ψmn(x,y) = φm(x)φn(y) (8)            

 

Equations for the eigen-frequencies and beam modes for 

the most common boundary conditions are provided in 

[20]. The first two modes represent whole-body 

movement (even and rocking mode), while higher modes 

represent bending motion. The eigen-frequencies of 

rectangular plates are given as [21]: 
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E is Young’s modulus, ν is Poisson’s ratio, and qmn 

depends on the boundary conditions.  

 

3.2.     Finite element model 

 

An alternative method of obtaining the plate mode 

shapes is through the use of a finite element model. In 

this study the mode shapes and eigen-frequencies of the 

free plate were evaluated in ABAQUS and exported to 

MATLAB for processing and plotting. 

 

4. Experimental validation 

 

4.1. Set-up 

 

A reception plate of aluminium and of size 2.12m × 1.50m 

× 20mm (Figure 1) was supported at the corners and 

edges by visco-elastic pads (Getzner SyloDamp HD30). 

This configuration approximates free boundary 

conditions and provides additional damping. The plate 

was not according to the recommendations in the 

Standard EN15657-1 [1], but complied with requirements 

regarding dimensions, receiver mobility and loss factor.  

     Two sources were considered: a medium size fan unit 

on four mounts (Figure 1) and a test source, consisting of 

a small electrodynamic shaker, attached to the base of 

the same type of fan unit on four feet (Figure 2).  

 

 
Figure 2.  Test source on reception plate 

 

The test source therefore had a similar mobility to the fan 

base. The shaker allowed the variation and control of the 

broadband excitation spectrum. The test source was 

mounted on the receiver plate via four force transducers, 

which were screwed into the source and plate. The 

transducers were considered to be part of the source, 

and directly recorded the contact forces for comparison 

with inverse estimates.  
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4.2. Measurement procedure 

 

The response velocities, during operation of the sources, 

were recorded at 32 positions evenly distributed over the 

plate, using eight accelerometers at a time. The contact 

forces were recorded simultaneously using four force 

transducers. The measurement time was 5s, the 

frequency resolution ∆f = 1Hz, the sampling rate fs = 

16384Hz.  

     Receiver point mobilities at the source contacts and 

transfer mobilities from the source contacts to the 32 

velocity response positions (giving 128 FRFs) were 

measured as narrowband spectra with an impulse 

hammer. Five averages per FRF were recorded. A plastic 

hammer tip was used, ensuring a sufficient excitation 

force up to 2 kHz. Figure 3 shows representative point 

mobilities of the plate and fan unit, as narrowband and 

third-octave band spectra.  

 

 

 
Figure 3. Test source and receiver mobility in narrow-band 

(upper figure) and 1/3-octave bands (lower figure). 

 

The point mobility at F1 is at the flexible part of the fan 

base, shown on the left of Figure 2. F3 is at the stiff part 

of the base, shown on the right of Figure 2.  In third-

octave bands, the source mobility exceeds the receiver 

mobility by a factor of 10 (corresponding to a level 

difference 10 dB) above 50Hz, indicating that the high-

mobility source assumption is fulfilled. The narrowband 

mobility spectra reveal that there are frequencies where 

the contact forces do not approximate the blocked 

forces, but these occur over small frequency ranges.  

 

4.3. Comparison of measured and calculated FRFs 

 

The analytical model was implemented in MATLAB and 

calculated and measured point mobilities were 

compared. The material parameters are: Young’s 

modulus E = 70GPa, density ρ = 2700kg/m3, Poisson’s 

ratio ν = 0.33. The loss factor of the plate was measured 

in third-octave bands and values interpolated for 

calculation of narrowband values. Figure 4 shows the 

measured and calculated point mobility of the plate at 

position (0.325m, 0.380m), from the origin at a corner. A 

reduced frequency range is shown for comparison.  

 

 
Figure 4. Measured and calculated point mobility of 20mm 

aluminium plate. 

 

Below 100Hz, there are differences between calculated 

and measured mobility, although the frequency trends 

are similar. Between 100Hz and 200 Hz, there is better 

agreement. Above 200 Hz, there is agreement in terms of 

‘signature’, but with shifts in the resonance frequencies. 

The first reason for the deviations is that the resiliently 

supported plate may not behave like a free plate. The 

resilient pads introduce some restriction on the plate 

movement. Secondly, the mode shapes, calculated from 

beam functions, are not exact for plates with free edges 

[21, 22].   

      The point mobility was also calculated using the mode 

shapes and eigenfrequencies obtained by the FE method, 

and is shown in Figure 5. 
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Figure 5. Measured point mobility of 20mm aluminium plate at 
position (0.325m, 0.380m) and calculated using FEM. 

 

The calculations were performed with the same 

parameters as in the beam function model. The plate was 

meshed using S4R shell elements, with nodes at 25mm 

intervals. For a requirement of six elements per 

wavelength [23], the upper frequency limit is around 8.4 

kHz, higher than the upper limit of 2 kHz used in the 

measurements. The deviations are large below 100 Hz, 

when compared with the deviations in the beam function 

model. The resonance frequencies are shifted, and the 

damping of the measured mobilities is higher than that of 

the calculated mobilities. Above 100Hz, the agreement is 

better than the beam function model. Occasional 

frequency shifts still occur, but generally the calculated 

eigen-frequencies approximate the measured values. 

 

5. Inverse force determination using measured FRFs 

 

The forces exerted on the receiver plate by the test 

source were calculated from measured operational 

velocities and measured transfer mobilities. The 

calculations were performed frequency by frequency, 

using narrowband FFT spectra. Figure 6 shows measured 

and calculated third-octave band force levels for the test 

source. The conversion of narrowband force spectra to 

third octave band levels was to clearly indicate 

differences between calculated and measured values. 

 

Figure 6. Measured and calculated forces. 

 

The measured forces at the stiff end of the test source F3 

and F4 are similar. They exceed the forces at the resilient 

end F1 and F2 by more than 10dB at frequencies below 1 

kHz. Above 1 kHz, all the forces are of the same order of 

magnitude. The calculated high forces F3 and F4
 generally 

agree with the measured forces, but the calculated low 

forces F1 and F2 are significantly over-predicted. For 

brevity, the following results show one dominant force F3 

and one weak force F1.  

      Figure 7 shows the level differences (using 20log) 

between calculated and measured test source forces, 

and Figure 8 for the fan unit.  

 

 
Figure 7. Level difference between estimated and measured 

test source forces 
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Figure 8. Level difference between estimated and measured 

fan forces. 

 

Shown are median values. Positive values indicate over-
estimates. For both sources and above 63 Hz, the 
estimated large force F3 is within ±5 dB of the measured 
values. Below 63 Hz, the deviations are larger, with 
median errors of up to 10 dB. This may be due to the lack 
of contributing plate eigenmodes. The calculated 
eigenfrequencies indicate that only two eigenmodes 
contribute to the velocity responses below 50 Hz, 
excluding whole-body plate movement.  
     The low force F1 is over-estimated, with low frequency 
bands showing up to 30dB deviations. This observation is 
in line with findings of others, that low forces in the 
presence of high forces are generally over-estimated 
[17].  

     Both high and low forces are generally over-predicted. 
If a single FFT line in the inversely determined 
narrowband force contains strong amplification due to 
matrix ill-conditioning, the containing third-octave band 
is over-estimated. Furthermore, the reference value for 
the level differences is the directly measured force. While 
the force transducers register translational motion, there 
may also be a rotational excitation component, which 
contributes to the response velocities. An inverse 
calculation yields a pseudo-force, representing both 
translational and rotational excitation components. For 
these reasons, the inverse method is likely to 
overestimate the contact forces. 

 

 

5.1. Over determination  

 

Matrix inversion potentially amplifies random errors in 

the measured velocity responses, resulting in large errors 

in the force estimates. To counter this, the use of over-

determination and singular value rejection were 

investigated (see [17] for detailed discussions of these 

methods). Since both sources under test have four 

contacts, at least four responses were used.  

     Figure 9 shows the force level differences (i.e. from the 

estimated force normalised by the measured force) for 

the test source, for low force F1, and Figure 10 for high 

force F3. Results are shown as box plots within which are 

median values. The upper and lower edges of the box 

represent the 25th and 75th percentiles, respectively. 

The whiskers extend to extreme data points not 

considered outliers. Outliers are plotted individually as 

dots. The number of responses, i.e. accelerometers, was 

increased in unit steps from 4 to 7; 5 and 7 are shown for 

brevity.   

 

 

 
 
Figure 9. Level differences for F1 of the test source for 5 (upper 

figure) and for 7 (lower figure) response positions. 
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Figure 10. Level differences for F3 of the test source for 5 

(upper figure) and 7 (lower figure) response positions. 

 

Increasing the number of responses reduces the median 

force level differences and also reduces the range. For 

the low force F1, consider the frequencies at which 

maxima occur (see upper Figure 7). At 25 Hz there is little 

improvement in either the median or range, although 

there is a general improvement at other frequencies.  For 

the high force F3 and at 31.5 Hz, the median decreases to 

9dB. At frequencies above 31.5 Hz, the median reduces 

to within 3 dB, accompanied by the range reducing from 

8dB to 4dB. Over-determination improves results but 

does not significantly reduce over-estimates of low forces 

in the presence of high forces.  

 

5.2. Singular value rejection 

 

Singular value rejection (SVR) mitigates problems 

associated with matrix inversion. The challenge lies in 

selecting an appropriate rejection threshold. Four 

thresholds were considered: rejection of the smallest 

singular value; of values smaller than 1% of the highest 

SV; when smaller than 2%; when smaller than 10%. Each 

case was considered without over-determination. 

Figures 11 and 12 shows results for 1% and 10% SVR for 

low force F1 and high force F3, respectively.  

 

 
 

 
   Figure 11. Level differences for F1 for SVR of 1% (upper figure) and 

10% (lower figure). 

 

The improvement due to SVR is greater than by over-

determination. The greatest improvements are achieved 

below 100Hz. For the low force F1, the median at 25Hz 

reduces from 27dB to 14dB, for SVR 1% to 10%, 

respectively. For the high force F3, the median at 31.5Hz 

decreases from 11dB to -2dB. 

        For the high force F3 the increase in SVR leads to 

underestimates of -5dB. Indeed, the SVR of 1% gives 

acceptable estimates, most within 2dB, at frequencies 

above 40 Hz. 
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Figure 12. Level differences for F3 for SVR of 1% (upper figure) 

and 10% (lower figure). 

 

5.3. Effect of response location 

 

The effect of velocity response (i.e. accelerometer) 

positions is determined by reference to the condition 

number of the FRF matrix (again, see [17]). Condition 

numbers were calculated for 560 combinations of 

response locations and then averaged over the frequency 

range 20Hz – 2 kHz, to obtain a single quantity for 

comparison. Whilst this can hide large discrepancies at 

certain frequencies, the data reduction gives an 

indication of favourable combinations. Inverse force 

determinations were performed for 4 responses and for 

the 20 combinations with the lowest and highest average 

condition numbers. The level differences are shown in 

Figure 13 and 14 for the low force F1 and high force F3, 

respectively. 

 

 

 

 

 
Figure 13. Level differences for F1 for lowest (upper figure) and 

highest (lower figure) average condition numbers. 

 

 

 
Figure 14. Level differences for F3 for lowest (upper figure) and 

lowest (lower figure) average condition numbers. 

 

In Figures 15 and 16 and concentrating on results above 

50 Hz, the improvement in force estimates between bad 

combinations and good combinations is greater for the 

low force F1 than for the high force F3.  
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Figure 15. Deviations in F1 estimate for: four (4R) and six (6R) 

responses, and 20 worst (20W) and best (20B) combinations. 

 

Figure 16. Deviations in F3 estimate for: four (4R) and six 

responses (6R), and 20 worst (20W) and best (20B) 

combinations. 

 

This points to the possibility of identifying low forces by 

forcing an ill condition, and thereby eliminating them 

from the hierarchy of forces to be included in predictions 

of total power and/or identified for control. This 

approach would be used in combination with visual 

inspection of the estimated forces, such as in Figure 8, 

where the low forces are greatly over-estimated, but still 

lie below the estimated high forces. The improvement 

from Figure 15 to Figure 16 suggests that optimization of 

response locations should be a primary objective for 

accurate force estimates.  

    The selection of favourable combinations of response 

positions poses a challenge. For the experimental study, 

there were 35960 combinations, when selecting four 

responses out of 32, and comparing the condition 

numbers of all these combinations requires a significant 

measurement and computational effort. The use of a 

numerical model of the receiver plate has the potential 

to simplify the selection process considerably. 

 

 

 

6. Inverse force determination using calculated FRFs 

 

The forces exerted on the receiver plate by the test 

source were determined inversely using calculated FRF 

matrices. Transfer mobilities between the four source 

contacts and the 32 response locations were calculated 

using the beam function model and the finite element 

model. Eigenfrequencies up to 4 kHz were considered in 

the modal summation. The forces then were calculated 

from measured operational velocities and calculated 

transfer mobilities. For conciseness, the test source and 

one high force F3 and one low force F1 again are 

considered, with the emphasis on response locations and 

resultant transfer mobility matrix condition number.  

         Figures 17 and 18 show results using beam functions 

and four responses. Below 100Hz, the median force level 

differences are significantly reduced by changing the 

response positions. The spread of results remains 

constant for F3, but decreases for F1. Between 100Hz and 

630Hz, the medians reduce from between 26dB and 53dB 

to between 14dB and 43dB for F1, and from between 9dB 

and 29dB to between −2dB and 16dB for F3. Figures 19 

and 20 show similar results using FEM. 

 

 

 
Figure 17. F1 level difference using beam functions for the 

worst (upper figure) and best (lower figure) combinations. 
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Figure 18. F3 level difference using beam functions for the 

worst (upper figure) and best (lower figure) combinations. 

 

 
 

 
Figure 19. F1 level difference using FEM for the worst (upper 

figure) and best (lower figure) combinations. 

 

 
Figure 20. F3 level difference using FEM for the worst (upper 

figure) and best (lower figure) combinations. 

 

Summarizing, the use of calculated instead of measured 

FRFs can lead to larger errors in the force estimates. 

Forces obtained using beam functions exhibited larger 

deviations than FEM. The best results were achieved in 

the mid-frequency range when employing over-

determination (seven responses instead of four).  

       When using calculated FRFs, over-determination 

does not entail a significant increase in measurement 

effort; only some additional velocity responses must be 

recorded. Therefore, over-determination should be used 

in this case. Despite the limitations of using calculated 

FRFs, particularly by beam functions, the method can be 

employed as a preliminary response optimisation, which 

then leads directly to the equivalent optimised 

measurement response locations. 

 

7. Hybrid method using calculated and measured FRFs 

 

Combinations of response positions with the 20 lowest 

and highest average condition numbers across the 

frequency range of interest were identified using FRFs 

calculated from FEM. The contact forces were then 

inversely determined using measured FRFs, and 

compared with the directly measured values. Figure 21 

shows the low force F1 level differences, for the 20 best 

and the 20 worst combinations. Figure 22 shows the high 

force F3 level differences. Although the calculated FRFs 

used to determine good and bad combinations of 

response positions deviate from the measured FRFs used 
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to inversely determine the forces, the hybrid approach 

gives significant improvements for low force F1. The 

median decreases by more than 10dB below 250Hz. For 

higher frequencies, the medians are approximately 

unchanged, but the range reduces when using 

combinations with a low average condition number. The 

improvement for the high force F3 is between 5dB and 

20dB below 250Hz, and around 2dB above 250Hz. The 

median for F3, using good combinations, are within 

±1.5dB between 50Hz and 630Hz, between 10dB and 

15dB below 50Hz, and between 0dB and 6dB above 

630Hz. This accuracy would be considered acceptable in 

many situations.  

 

 

 

 
Figure 21. F1 level differences using FEM and measured FRF for 
the worst (upper figure) and best (lower figure) combinations. 

 

 

 
Figure 22. F3 level differences using FEM and measured FRF for 

the worst (upper figure) and best (lower figure) combinations. 

 

8. Conclusions 

 

Inverse force determination was investigated 

experimentally. The forces exerted by an industrial fan 

unit and a test source, both on a 20mm aluminium plate, 

were examined. In the first stage, measured FRFs were 

used, together with measured operational velocities, to 

indirectly determine the contact forces. It was confirmed 

that low forces in the presence of high forces are 

significantly over-estimated.  

      Methods to improve the inverse force determination 

were examined. Singular value rejection is effective at 

low frequencies. However, the choice of an appropriate 

threshold is critical  

      Over-determination offers the best strategy. It is easy 

to apply, does not require monitoring of thresholds etc., 

and results are not degraded because of a loss of 

information. However, its effects are limited at low 

frequencies where few modes contribute.  

      The choice of appropriate response locations also was 

found to be of importance. FRFs calculated from beam 

functions or FE mode shapes were used together with 

measured operational velocities. The accuracy of the 

force estimates decreased significantly, due to imperfect 

agreement between measured and calculated FRFs. FRFs 

calculated from FE mode shapes gave better results than 

from beam function mode shapes. However, the errors in 

both cases were probably too large for the methods to be 

considered viable alternatives. 

      However, optimization of response positions may still 

be performed with calculated FRFs. Using response 

positions determined from calculated FRFs, inverse force 

determination was then performed with measured FRFs 

at the same positions. With this approach, the 

measurement effort can be reduced, while the accuracy 

of ordinary inverse force determination can be retained. 
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