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Abstract 

Slope failure mechanisms (e.g., why and where slope failure occurs) are usually unknown 

prior to slope stability analysis. Several possible failure scenarios (e.g., slope sliding along 

different slip surfaces) can be assumed, leading to a number of scenario failure events of 

slope stability. How to account rationally for various scenario failure events in slope stability 

reliability analysis and how to identify key failure events that have significant contributions 

to slope failure are critical questions in slope engineering. In this study, these questions are 

resolved by developing an efficient computer-based simulation method for slope system 

reliability analysis. The proposed approach decomposes a slope system failure event into a 

series of scenario failure events representing possible failure scenarios and calculates their 

occurrence probabilities by a single run of an advanced Monte Carlo simulation (MCS) 

method, called generalized Subset Simulation (GSS). Using GSS results, representative 

failure events (RFEs) that are considered relatively independent are identified from scenario 

failure events using probabilistic network evaluation technique. Their relative contributions 

are assessed quantitatively, based on which key failure events are determined. The proposed 

approach is illustrated using a soil slope example and a rock slope example. It is shown that 

the proposed approach provides proper estimates of occurrence probabilities of slope system 

failure event and scenario failure events by a single GSS run, which avoids repeatedly 

performing simulations for each failure event. Compared with direct MCS, the proposed 

approach significantly improves computational efficiency, particularly for failure events with 

small failure probabilities. Key failure events of slope stability are determined among scenario 

failure events in a cost-effective manner. Such information is valuable in making slope design 

decisions and remedial measures.  

Keywords: Slope stability; Generalized Subset Simulation; System reliability; Representative 

failure event; Key failure event
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1. Introduction 

Various uncertainties exist in slope stability analysis, such as those in soil and rock properties, 

calculation models, loads, etc. (e.g., Christian et al., 1994; Baecher and Christian, 2003; 

Singh et al., 2013a; Wang et al., 2016; Cao et al., 2016; Li et al., 2016a). These uncertainties 

can be rationally taken into account in a probabilistic framework, where the plausibility of 

slope failure is quantified as the occurrence probability of soil or rock masses sliding along a 

slip surface, such as landslides and rock wedge sliding. Slope failure mechanisms are usually 

unknown prior to slope stability analysis with some exceptions, such as the cases with 

well-defined failure surfaces (e.g., Oka and Wu, 1990; Singh et al., 2012; Tang et al., 2015) 

or those concerned during post-failure investigations (e.g., El-Ramly et al., 2005). Several 

possible failure scenarios (e.g., slope sliding along different slip surfaces) can be assumed in 

slope stability analysis, leading to a number, n, of scenario failure events. These failure 

scenarios need to be properly incorporated into analysis to generate reasonable estimates of 

slope failure probability. Different failure scenarios may have different contributions to slope 

failure (e.g., Li et al., 2014; Kainthola et al., 2015). Identification of key failure events with 

significant contributions to slope failure is pivotal to making rational slope design decisions 

and remedial measures.  

To account rationally for different slope failure scenarios, probabilistic slope stability 

analysis is commonly formulated as a system reliability problem (e.g., Ang and Tang, 1984). 

In the past two decades, several probabilistic analysis methods have been developed to 

evaluate system failure probability, P(F), of soil and rock slopes, such as bound methods 

based on first order reliability method (FORM) (e.g., Oka and Wu, 1990; Chowdhury and Xu, 

1995; Low, 1997; Jimenez-Rodriguez et al., 2006; Jimenez-Rodriguez and Sitar, 2007; Low 

et al., 2011; Zhang et al., 2011); modified FORMs considering multiple scenario failure 

events (e.g., Li et al., 2009, 2011a; Ji and Low, 2012; Cho, 2013; Zeng and Jimenez, 2014); 
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and direct Monte Carlo simulation (MCS) methods and its variants (e.g., Ching et al., 2009; 

Wang et al., 2011; Zhang et al., 2012, 2013; Li et al., 2013, 2014; Jiang et al., 2015; Li et al., 

2016b,c). The accuracy of FORM-based bound methods and modified FORMs depends on 

the linearity of performance function governing slope failure and the number of scenario 

failure events (Ang and Tang, 1984; Low et al., 2011; Zeng and Jimenez, 2014). In contrast, 

direct MCS provides a conceptually simple tool for system reliability analysis of slope 

stability regardless of the linearity of performance function and the number of scenario 

failure events (e.g., Ching et al., 2009; Huang et al., 2010). More importantly, it is robust to 

various deterministic analysis methods for slope stability analysis, such as limit equilibrium 

methods, finite element methods, and finite difference methods (El-Ramly et al., 2005; 

Huang et al., 2010; Singh et al., 2013b). Nevertheless, direct MCS suffers from a lack of 

resolution and efficiency at small probability levels, which is of concern in slope design 

practice and necessitates extensive computational efforts to obtain reasonably accurate 

estimates of P(F) (e.g., Baecher and Christian, 2003; Wang et al., 2010; Ji and Low, 2012).  

The computational efficiency of MCS-based system reliability analysis of slope stability 

can be improved by two common strategies: (1) reducing the number of samples required in 

MCS by advanced sampling techniques, such as importance sampling (IS) (Ching et al., 2009) 

and Subset Simulation (Wang et al., 2011; Santoso et al., 2011; Li et al., 2016b,c); and (2) 

integrating MCS with surrogate models of deterministic slope stability analysis, such as 

response surfaces, artificial neural network etc. (Sinha et al., 2010; Li et al., 2011a,b; Zhang 

et al., 2011, 2012; Kang et al., 2015, 2016; Li et al., 2016d). These existing work only 

focused on efficient evaluation of P(F), providing no insights into the relative contributions 

of different failure scenarios to slope system failure.  

Li et al. (2013, 2014) proposed direct MCS-based approaches that decomposed P(F) of 

soil slopes into those associated with a number of representative failure events (RFEs). These 
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methods can quantify the relative contributions of different RFEs to slope failure and identify 

the key failure events with significant contributions. Selecting RFEs of slope stability from 

scenario failure events requires knowledge of their failure probabilities (e.g., Zhang et al., 

2011, 2012; Li et al., 2013, 2014). This necessitates repeatedly performing reliability analyses 

for different scenario failure events, which may not be a trivial task, particularly when the 

number of scenario failure events is large, e.g., for soil slopes. In addition, the accuracy of 

P(F) estimated from RFEs depends on the number of selected RFEs whose determination is 

non-trivial before analysis.  

 This paper develops an efficient computer-based simulation method for slope system 

reliability analysis using an advanced MCS method called generalized Subset Simulation 

(GSS). The proposed method decomposes the system failure event F of slope stability into a 

number n of scenario failure events Fi, i = 1, 2, …, n through fault tree analysis (FTA), and 

calculates the system failure probability P(F) and scenario failure probabilities P(Fi) (i = 1, 

2, …, n) by a single run of GSS. This avoids repeatedly performing simulation for different 

failure events (e.g., F and Fi, i = 1, 2, …, n), which can be time consuming when the number 

of slope failure events is large. The proposed method not only improves significantly the 

computational efficiency of calculating P(F) and P(Fi) at small probability levels, but also 

identifies the representative failure events and key failure events in a rational manner. As an 

additional advantage, the slope system failure probability is obtained from GSS prior to 

selecting RFEs, and so it is independent of RFEs, which allows determining the number of 

RFEs for representing slope system in a rational manner. This paper starts with development 

of the proposed approach. Then, the approach is illustrated using a soil slope example in 

Section 5 and a rock slope example in Section 6.  
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2. Fault Tree Analysis of System Failure of Slope Stability 

Fault tree diagram is a graphical decomposition of system failure event into union and/or 

intersection of several scenario failure events that represent possible failure scenarios (e.g., 

Ang and Tang, 1984; Li et al., 2009). Figure 1 shows a fault tree diagram for system failure 

of slope stability, where the “OR” and “AND” gates indicate union and intersection of 

events, respectively. It consists of three levels: system level with a system failure event F of 

slope stability, failure scenario level with n scenario failure events (i.e., Fi, i = 1, 2, …, n) 

representing possible failure scenarios, and component level that further decomposes each 

scenario failure event into a number ji of components. As seen in Figure 1, slope system 

failure event F is formulated as the union of Fi, i = 1, 2, …, n, i.e.,  

 

     1 2 1 20 0 0n nF F F F G G G                   (1) 

 

where Gi, i = 1, 2, …, n, is the limit state function (LSF) of the i-th failure event Fi = {Gi < 

0}. For slope stability analysis, Gi can be defined as FSi -1, where FSi is the factor of safety 

of iF . As indicated by Eq. (1), the occurrence of any scenario failure event Fi results in the 

slope failure. One can thus write F = {Gs < 0}, where Gs = min{Gi, i = 1, 2, …, n}. Without 

much loss of generality, Fi can be represented by the intersection of ji component events:  

 

     ,1 ,2 ,0 0 0
ii i i i jF g g g        ,  i = 1, 2, …, n      (2) 

 

where gi,l = the LSF of the l-th component events. Based on Eq. (2), one can take Gi = 

max{gi,l, l = 1, 2, …, ji}.  
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 The fault tree diagram in Figure 1 provides a flexible tool to describe soil and rock 

slope systems. For soil slopes, failure occurs if soil mass slides along any potential slip 

surfaces, each of which corresponds to a scenario failure event that usually has a single 

component, i.e., ji = 1. The soil slope system is then described as a series system. For rock 

slopes, the scenario failure event may be further decomposed into several components, i.e., 

ji > 1. Then, rock slope system can be represented by a combined series-parallel system.  

 Although n scenario failure events are identified through FTA, they may not be of equal 

importance to system failure. The key failure events with significant contributions to slope 

system failure shall be identified for making design decisions and remedial measures. This 

requires the knowledge of P(F) and P(Fi) (i = 1, 2,…, n), which are calculated by a single 

run of generalized Subset Simulation (GSS) (Li et al., 2015) in the next section.  

 

3. Slope System Reliability Analysis Using Generalized Subset Simulation (GSS) 

3.1. Original Subset Simulation algorithm  

GSS is developed from the original Subset Simulation (SS) algorithm that focuses on 

efficiently evaluating the probability of a single rare failure event (Au and Beck, 2001, 

2003a; Au and Wang, 2014). To facilitate understanding of GSS, this subsection describes 

the algorithm of the SS briefly. The SS algorithm expresses a rare failure event E with a 

small probability as a sequence of intermediate failure events {E(k), k = 1, 2, …, m} with 

larger conditional failure probabilities (Au and Beck, 2001, 2003a; Li, 2011; Au and Wang, 

2014). It employs specially designed Markov chains to generate conditional samples of these 
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intermediate failure events until the final target failure region is achieved. Let Y be the critical 

response of interest. Without loss of generality, define the rare event E as E = {Y < y}, where 

y is a given threshold value. Consider, for example, slope stability problem. The rare event E 

can be defined as the system failure (i.e., E = F) or the occurrence of a failure scenario (i.e., E 

= Fi). The corresponding critical responses are their respective values of LSFs, i.e., Y = Gs for 

E = F or Y = Gi for E = Fi. Let y(1) > y(2) > … > y(m) = y be a decreasing sequence of 

intermediate threshold values. The intermediate failure events {E(k), k = 1, 2, …, m } are then 

defined as E(k)= {Y < y(k), k =1, 2, … , m}. By sequentially conditioning on these intermediate 

events, the occurrence probability P(E) of E is written as (Au and Wang, 2014): 

 

( ) (1) ( ) ( 1)

2

( ) ( ) ( ) ( | )
m

m k k

k

P E P E P E P E E 



             (3) 

 

where P(E(1)) is equal to P(Y < y(1)), and P(E(k)| E(k-1)) is equal to {P(Y < y(k)| Y < y(k-1)), k = 2, 

3, …, m}. In implementations, y(1), y(2), …, y(m) are generated adaptively using information 

from simulated samples so that the sample estimates of P(E(1)) and {P(E(k)| E(k-1)), k = 2, 3, …, 

m} always correspond to a specified value of conditional probability p0. The efficient 

generation of conditional samples is pivotal to the success of SS, and it is achieved using 

Markov Chain Monte Carlo simulation (MCMCS), as shown in Figure 2. Detailed 

implementation procedures of SS and descriptions on MCMCS are referred to (Au and 

Beck, 2001, 2003a; Au et al., 2010; Au and Wang, 2014; Li et al., 2016b,c).  

Determining the intermediate failure events (i.e., E(k), k = 1, 2, …, m) during SS 

depends on the pre-defined critical response Y, which is referred to as “driving variable” 
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(e.g., Wang and Cao, 2013; Li et al., 2016b,c). For a given Y, SS progressively drives 

sampling space to the domain with E = {Y < y} and gives the corresponding P(E). For 

example, using Y = Gs and Y = Gi in SS provides estimates of P(F) for E = F and P(Fi) for E 

= Fi by Eq. (3), respectively. To obtain the estimates of P(F) and P(Fi) (i = 1, 2, …, n), a 

total of n+1 repeated SS runs are needed. This remains computationally demanding 

especially when n is large (e.g., for soil slopes) though SS significantly improves 

computational efficiency for a single rare failure event compared with direct MCS (e.g., Au 

and Beck, 2001; Wang et al., 2011; Singh et al., 2013c; Li et al., 2016c). This problem is 

resolved by GSS in the next subsection.  

 

3.2. Generalized Subset Simulation algorithm  

GSS generalizes SS to allow efficient estimation of the failure probabilities of multiple 

failure events simultaneously in a single simulation run. It was originally developed for 

structures by Li e al. (2015), where system failure was not considered and remained 

unexplored in the field of geotechnical reliability and risk.  

 The major difference between GSS and SS lies in determining intermediate failure 

events and selecting conditional “seed” samples during simulation. As discussed in Section 

3.1, intermediate failure events E(k)= {Y < y(k), k =1, 2, … , m} in SS are determined using the 

driving variable Y (e.g., Y = Gs for system failure event and Y = Gi for i-th scenario failure 

event). Using different driving variables in SS, samples progressively populate different 

failure domains, yielding their corresponding failure probabilities. On the other hand, GSS 
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simultaneously drives samples to multiple failure domains through unified intermediate 

failure events for them.  

Consider, for example, the system failure event F and n scenario failure events Fi, i = 1, 

2, …, n, of slope stability. Let U(k), k =1, 2, … , M denote the unified intermediate failure 

event at the k-th simulation level of GSS, where M is the number of simulation levels in 

GSS. In the context of GSS, U(k) is defined as the union of intermediate failure events of F 

and Fi, i = 1, 2, …, n, which is written as:  

 

       
( ) ( ) ( ) ( ) ( )

1 2

( ) ( ) ( ) ( )
1 1 2 2

k k k k k
n

k k k k
s s n n

U F F F F

G y G y G y G y

   

       

   

   
, k = 1, 2, … , M   (4) 

 

where ( )kF  =  ( )k
s sG y  and ( )k

iF  =  ( )k
i iG y , i = 1, 2, …, n, are the intermediate 

failure events of F and Fi, respectively, at the k-th simulation level of GSS, and are defined 

by their respective intermediate threshold values ( )k
sy  and ( )k

iy . Similar to SS, ( )k
sy  and 

( )k
iy , i = 1, 2, …, n, are determined adaptively using information from simulated samples 

during GSS, as described below.  

 As shown in Figure 3, GSS starts with direct MCS, in which N MCS samples are 

generated. The Gs and Gi, i = 1, 2, …, n, values of the N samples are calculated. The Gs 

values are then ranked in a descending order. The (1-p0)N-th value in the descending list of Gs 

values is chosen as (1)
sy  so that the sample estimate for P( (1)F ) = P(Gs < (1)

sy ) is always p0. 

There are p0N samples with (1)F  = {Gs < (1)
sy } among the samples generated by direct MCS. 

Similarly, (1)
iy , i = 1, 2, …, n, are determined, and p0N samples with (1)

iF  = {Gi < (1)
iy } 

are selected for each scenario failure event. After that, (1)U  is determined as the union of 
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(1)F  and (1)
iF , i = 1, 2, …, n. The samples in (1)U  are those satisfying (1)F = {Gs < (1)

sy } 

or (1)
iF  = {Gi < (1)

iy } for any i = 1, 2, …, n. Let N1 denote the number of samples of (1)U . 

The probability P( (1)U ) of (1)U  is estimated as P( (1)U ) ≈ N1/N. The N1 samples in (1)U  

are used as “seed” samples for MCMCS to simulate additional N-N1 conditional samples in 

(1)U . This results in N conditional samples in (1)U , based on which (2)
sy  and (2)

iy , i = 1, 

2, …, n, are determined so that the sample estimates of (2) (1)| )P F U(  and (2) (1)( | )iP F U  

are equal to p0. Next, (2)U ( (2) (2) (2) (2)
1 2 nF F F F      ) is constructed, and N2 samples in 

(2)U  are identified as “seed” samples for MCMCS to generate conditional samples in the 

next simulation level. This procedure is repeatedly performed until all failure domains 

concerned or a desired failure probability level are reached. The samples provide estimates 

of P(F) and P(Fi), which is presented in the next subsection.  

 

3.3. Calculating failure probabilities of slope system and scenario failure events 

The failure probabilities of different failure events (e.g., F and Fi, i = 1, 2, …, n) concerned 

might be different, and their failure domains are, therefore, reached at different simulation 

levels during GSS. As the number of simulation levels increases, the failure domains of 

failure events with relatively large failure probabilities are first arrived. For example, P(F) 

is, in theory, greater than any P(Fi) values since F is defined the union of Fi, i = 1, 2, …, n 

(see Eq. (1)). Hence, the failure domain of F is arrived with the least simulation levels. Let 

MF denote the number of simulation levels needed to reach the failure domain of F. Then, 

P(F) is calculated as:  
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1
( 1) ( 2) ( 1)(1) (2) (1)

1

( ) ( ) ( | ) ( | ) ( | )
F

F F F

M
M M M k F

k

N N
P F P U P U U P U U P F U

N N


  



      (5)  

 

where ( ) ( -1)( | )k kP U U , k = 2, 3…, MF-1, is conditional probability of ( )kU  given sampling 

in ( -1)kU , and is calculated as the ratio of the number Nk of “seed” samples selected for the 

k-th MCMCS level among N samples with ( -1)kU  over N; ( -1)( | )FMP F U  is the conditional 

probability of F given sampling in ( -1)FMU , and is estimated as the ratio of the number NF 

of system failure samples among N samples generated in ( -1)FMU  over N. After the failure 

domain of a particular failure event (e.g., F and Fi ) is reached, its intermediate failure event 

is dropped from the unified intermediate failure event in subsequent simulation levels, 

because there are already enough samples for investigating the failure event. As simulation 

level k increases, the failure events (e.g., F and Fi) reach their respective target failure 

domains progressively, and the number of failure events involved in the unified 

intermediate failure event decreases. Let Mi denote the number of simulation levels needed 

to reach the failure domain of Fi. Then, P(Fi) is calculated as:  

 

1
( 1) ( 2) ( 1)(1) (2) (1) ,

1

( ) ( ) ( | ) ( | ) ( | )
i

i i i

M
M M M F ik

i i
k

NN
P F P U P U U P U U P F U

N N


  



      (6) 

 

where ( 1)( | )iM
iP F U   is conditional probability of Fi given sampling in ( -1)iMU , and is 

estimated as the ratio of the number NF,i of failure samples belonging to Fi among N 

samples generated in ( -1)iMU  over N.  

GSS can proceed until all the failure domains of failure events (e.g., F and Fi) 

concerned are reached, providing estimates of P(F) and P(Fi), i = 1, 2, …, n, by a single run 
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of simulation. Note that P(Fi) values of some scenario failure events might be extremely 

small (e.g., less than 10-5) and so they contribute very little to slope system failure. In 

practice, these scenario failure events with extremely small P(Fi) values can be ignored. 

Hence, GSS can also be stopped when the simulation reaches a failure probability level (e.g., 

P(Fi) < P(F)/100 or 10-5) pre-defined by users, resulting in estimates of P(F) and P(Fi) 

values greater than the pre-defined failure probability level. This leads to a further saving in 

computational costs.  

 

4. Identification of key failure events based on GSS results 

Although there can be a large number of slope scenario failure events, many of them are 

correlated, and slope system failure can be attributed to only a few RFEs that are relatively 

independent (e.g., Zhang et al. 2011, 2012; Li et al. 2013, 2014). This section applies 

probabilistic network evaluation technique (PNET) (Ang et al, 1975; Ang and Tang, 1984) 

to identify RFEs and key failure events of slope stability from scenario failure events based 

on GSS results.  

Figure 4 shows the implementation procedure of PNET schematically. Let np denote the 

number of scenario failure events, the P(Fi) values of which are obtained from a single GSS 

run. Herein, pn n , depending on when GSS is stopped. These np scenario failure events 

collectively form a failure event library (FEL). In the FEL, the scenario failure event with 

the largest P(Fi) value is taken as the first RFE, denoted by Fr,1. Conventional statistical 

analysis (e.g., Ang and Tang, 2007) is then performed to estimate the Pearson correlation 
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coefficients (PCCs) between LSF (or safety factor) of Fr,1 and that of the remaining scenario 

failure events based on N direct MCS random samples generated in the first level of GSS. 

The scenario failure events with PCCs greater than a threshold value d (e.g., 0.8~0.9) are 

“represented” by Fr,1 and are excluded from the FEL. The procedure described above is 

repeated until the FEL contains no failure events, resulting in a number nr of RFEs (i.e., Fr,i, 

i = 1, 2, …, nr), which are considered as relatively independent (Ang and Tang, 1984). The 

relative contribution RCi of Fr,i to slope system failure is calculated as:  

 

,( ) / ( )i r iRC P F P F , i = 1, 2, …, nr            (7) 

 

where P(Fr,i) = the failure probability of the i-th RFE, and it has been obtained during GSS. 

As indicated by Eq. (7), the contribution of Fr,i to slope system failure increases as RCi 

increases. Scenario failure events with relatively large RCi values, e.g., greater than 1% 

(Neves et al., 2008; Kim et al., 2013), are considered as key failure events.  

PNET has several successful applications in slope system reliability analysis (e.g., 

Zhang et al. 2011, 2012; Li et al. 2013, 2014). These existing studies used PNET to select 

RFEs for evaluating P(F), where P(Fi) values are approximately calculated using simplified 

reliability methods (e.g., First order second moment method or FORM) and the accuracy of 

P(F) depends on the selected RFEs. This study uses PNET to select RFEs and key failure 

events for making risk-informed design decisions and remedial measure of slopes using the 

estimates of P(F) and P(Fi) from GSS. The accuracy of P(F) obtained from the proposed 

approach is not affected by RFEs. This allows checking whether or not the number of RFEs 
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selected by PNET is sufficient to represent the slope system. A sufficient number of RFEs 

shall ensure that the summation of RCi, i = 1, 2, …, nr, is close to or greater than unity or, 

equivalently, the summation of P(Fr,i), i = 1, 2, …, nr, is virtually identical to or greater than 

P(F). Note that the summation of P(Fr,i) can exceed P(F) because the RFEs selected by 

PNET might be correlated, depending on the adopted d value.  

 

5. A Soil Slope Example 

The proposed approach is applied to evaluating the system failure probability of a 

two-layered soil slope shown in Figure 5(a) and to identifying its key failure events. This 

example was considered to explore slope system reliability problems in literature, e.g., 

Ching et al. (2009), Low et al. (2011), Ji and Low (2012), and Kang et al. (2015). As shown 

in Figure 5(a), the slope has a height of 24.0m and a slope angle of about 37.0°, and it 

comprises two soil layers. In this example, the safety factor of slope stability under undrained 

condition is calculated using Bishop’s simplified method. The geo-mechanical parameters 

needed in the calculation include the undrained shear strength (cu1 and cu2) and unit weight of 

the two soil layers. To enable a consistent comparison with results reported in literature, the 

soil properties used in this study are taken as those adopted in previous studies. cu1 and cu2 

are lognormally distributed with respective mean values of 120 and 160kPa and respective 

standard deviations of 36 and 48kPa, indicating that cu1 and cu2 have a coefficient of 

variation (COV) of 0.3. The unit weights of the two soil layers are taken as a deterministic 

value of 19kN/m3..  
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 Figure 5(a) shows 6142 potential slip surfaces of the soil slope, each of which is 

considered as a possible failure scenario. Correspondingly, the slope system failure event F 

is the union of these 6142 scenario failure events Fi, i = 1, 2, …, 6142 (see Figure 5(b)). The 

LSF of Fi is defined as Gi = FSi -1, where FSi is safety factor of the i-th slip surface for a 

given set of soil properties. The LSF of F is Gs = min{Gi, i = 1, 2, …, 6142}, or, 

equivalently, Gs = FSmin -1, where FSmin = min{FSi, i = 1, 2, …, 6142}. The FSi and FSmin 

values are calculated using Bishop’s simplified method in MATLAB (e.g., Duncan and 

Wright, 2005). For reference, at the mean values of cu1 and cu2, FSmin is calculated as 1.990 

in this study, which agrees well with the value 1.993 estimated in SLOPE/W and those 

reported in literature (e.g., 1.992 by Cho (2013) and 1.993 by Kang et al. (2015)).  

 A GSS run with N = 500 and p0 = 0.1 is performed to calculate P(F) and P(Fi) of 

different failure events. The simulation run is performed until all the failure domains of Fi 

with P(Fi) values greater than P(F)/100 are reached, yielding estimates of P(F) and P(Fi) of 

2960 failure events, i.e., np = 2960 in this example. Although the GSS run is stopped when 

the failure probability level less than P(F)/100 is reached in this example, it can also be 

stopped until failure probabilities of all the failure events are obtained, if needed. This is 

further illustrated using a rock slope example in the next section. 

 

5.1. Reliability analysis results of the soil slope 

Table 1 summarizes the procedure of the GSS run in this example, which consists of 8 

simulation levels, including a direct MCS level (i.e, k = 0) and 7 MCMCS levels (i.e., k = 1, 
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2, …, 7). The GSS run reaches the failure domain of F at k = 3 (i.e., the 3rd MCMCS level) 

by generating a total of 500+397+384+362 = 1643 random samples (see Column 3 of Table 

1). Based on these 1643 random samples, P(F) is estimated as 4.4×10-3 by Eq. (5). As 

shown in Table 2, the estimate of P(F) obtained from GSS agrees well those obtained using 

direct MCS and bound methods based on FORM in literature. This validates the P(F) 

estimate obtained from the proposed approach. In addition, as shown in Column 5 of Table 

2, the number (i.e., 1643) of random samples generated in GSS is much less than those (i.e., 

1.0×104 and 2.0×104) used in direct MCS. More importantly, although the direct MCS run 

with 1.0×104 or 2.0×104 samples is able to generate reasonably accurate estimate of P(F) in 

this example, such number of samples may not be sufficient to calculate P(Fi) values of 

some scenario failure events that are smaller, as discussed below.  

As shown in Table 1, the GSS run also arrives at failure domains of 90, 829, 821, 716, 

and 504 scenario failure events at k = 3, 4, 5, 6, and 7, respectively. This provides P(Fi) 

values of 2960 potential slip surfaces by the single run of simulation, avoiding repeated 

simulation runs (e.g., SS) for each slip surface. Figure 6 shows the 2960 potential slip 

surfaces, the P(Fi) values of which vary from 1.8×10-5 to 2.6×10-3. As shown in Figure 6, 

the scenario failure event with the largest and smallest P(Fi) values are plotted with a red 

dotted line and a black dashed line, respectively. The scenario failure event with the largest 

P(Fi) value (i.e., 2.6×10-3) is referred to as “probabilistic critical slip surface”. Its failure 

domain and slope system failure domain are reached simultaneously at k = 3. The smallest 

P(Fi) (i.e., 1.8×10-5) value is obtained at the 7th MCMCS level, where failure domains of 
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504 scenario failure events are reached simultaneously (see Table 1). It is noted that the 

smallest P(Fi) (i.e., 1.8×10-5) value at the 7th MCMCS level is already less than P(F)/100. 

The GSS run is then stopped at k =7 according to the pre-defined stopping criterion, 

resulting in a total of 2963 random samples (i.e., sum over Column 3 of Table 1). Consider 

using a direct MCS run to estimate of P(F) value and P(Fi) values of the 2960 scenario 

failure events shown in Figure 6. The number of random samples needed in direct MCS is 

controlled by the minimum P(Fi) value (i.e., 1.8×10-5). As a rule of thumb (e.g., Ang and 

Tang, 2007), about 5.6×105 (i.e., 10/1.8×10-5) random samples are required in direct MCS, 

which is about two orders of magnitude greater than that of random samples generated by 

GSS in this example. Compared with direct MCS, the proposed approach significantly 

improves the computational efficiency of evaluating P(F) and P(Fi) of slope stability, 

particularly at relatively small probability levels.  

 

5.2. Identification of representative and key failure events of the soil slope  

This section applies PNET described in Section 4 to identify RFEs from 2960 scenario 

failure events, whose P(Fi) values were obtained from the single GSS run in the last 

subsection. In PNET, the value of d is taken as 0.8 (Ma and Ang, 1981; Ang and Tang, 

1984). It is found that the 2960 scenario failure events are represented by two RFEs, as 

shown in Figure 7 by a dotted line with circles and a solid line with diamonds. The 1st RFE 

is located at the top soil layer of the slope. It is identical to the probabilistic critical slip 

surface shown in Figure 6 and has a P(Fr,1) value of 2.6×10-3. The 2nd RFE goes through 



 

19 

two soil layers and its P(Fr,2) value is 1.7×10-3. The two RFEs selected in this study are 

similar to those adopted to evaluate system reliability of this soil slope in previous studies 

(e.g., Low et al., 2011; Ji and Low, 2012; Cho, 2013). In addition, the P(Fr,i) values of the 

two RFEs obtained from the single GSS run agree well with those reported in literature (see 

Columns 3 and 4 in Table 2), which further validates the proposed approach.  

The values of RC1 and RC2 for the two RFEs are evaluated as 59% and 39% using Eq. 

(7), respectively. The summation of RC1 and RC2 is close to unity, indicating that the two 

RFEs in Figure 7 represent well the soil slope system. Since RC1 and RC2 are relatively 

large, both RFEs are considered as key failure events. This information is valuable in 

making design decisions and remedial measures of soils slopes, where a large number of 

scenario failure events usually exist. It is also worth noting that the RFEs are not necessarily 

key failure events for some slopes. This will be further illustrated using a rock slope 

example in the next section.  

  

5.3. Comparison with results from original SS 

For comparison, SS runs are also performed to calculate P(F) and P(Fr,i). For each failure 

event (e.g., F, Fr,1 and Fr,2), the driving variable in SS is defined using its corresponding 

LSF. Thirty independent SS runs with N = 500 and p0 = 0.1 are performed to obtain 30 

estimates of failure probability of the failure event. A total of 90 SS runs are performed to 

generate 30 estimates of P(F), P(Fr,1), and P(Fr,2). Note that only 30 independent GSS runs 

with N = 500 and p0 = 0.1 are needed to generate 30 estimates of P(F), P(Fr,1), and P(Fr,2). 
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 Table 3 summarizes the sample average values and COVs of P(F), P(Fr,1), and P(Fr,2). 

The average values of P(F), P(Fr,1), and P(Fr,2) obtained from SS agree well with those of 

GSS, demonstrating their unbiased nature. Table 3 also summarizes the average numbers NT 

of samples generated in SS and GSS runs for estimating P(F), P(Fr,1), and P(Fr,2). To 

account for the effect of the number of samples on the variability of failure probability 

estimates, the unit COV, defined as COV TN  (Au and Beck, 2003b; and Au 2007), is 

applied as a measure of the computational efficiency. As shown in Column 5 of Table 3, the 

unit COV values of the GSS estimates for P(F), P(Fr,1), and P(Fr,2) are slightly smaller than 

those using SS. This indicates that GSS requires slightly less computational efforts than SS 

to achieve the same computational accuracy for evaluating P(F), P(Fr,1), and P(Fr,2) in this 

example. More importantly, using SS to estimate the occurrence probabilities of slope 

system failure event and different scenario failure events (e.g., Fr,1 and Fr,2) needs to 

repeatedly perform simulations, which might be a laborious task, particularly when the 

number of failure events concerned is relatively large (e.g., 2960 scenario failure events 

shown in Figure 7). This problem is successfully resolved by GSS in this study.  

 

6. A Rock Slope Example 

For further illustration, this section applies the proposed approach to evaluate the system 

reliability of a rock slope. The example was considered to explore system effects on 

reliability analysis of rock slope stability by Low (1997), Jimenez-Rodriguez and Sitar (2007), 

and Li et al. (2009). Figure 8 shows a tetrahedral wedge formed by two intersecting 

discontinuity planes (i.e., planes 1 (B'DO) and 2 (B'CO)) in the rock slope and explains the 
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geometry parameters involved in the example. For system reliability analysis of the rock 

slope, 10 uncertain parameters are considered, and they are modeled by uncorrelated normal 

random variables, the statistics of which are adopted from Low (1997), as shown in Table 4.  

 Four scenario failure events (including sliding on both planes F1, sliding along plane 1 

only F2, sliding along plane 2 only F3, and floating failure F4) are considered in this example 

(e.g., Low, 1997). As shown in Figure 9, the occurrence of any ones among F1-F4 leads to the 

slope failure F, and F1-F4 are represented as intersections of different components. Table 5 

gives LSFs (i.e., G1-G4 and g1-g9) of F1-F4 and their components. The LSF of F is defined as 

G = min{G1, G2, G3, G4 }. Further details are referred to Low (1997) and Li et al. (2009).  

 

6.1. Reliability analysis results of the rock slope 

A GSS run with N = 500, p0 = 0.1, and 12 simulation levels (including a direct MCS level at 

k = 0 and 11 MCMCS levels at k = 1, 2, …, 11) is performed to calculate P(F) and P(Fi), i = 

1, 2, 3, 4. The simulation is stopped until all the failure domains of F1- F4 are reached. Table 

6 summarizes the procedure of the GSS run in this example. The GSS run reaches failure 

domains of F and F2 at k = 1 by generating 500+383 = 883 random samples (see Column 3 

of Table 6), which yields P(F) and P(F2) estimates of 8.2×10-2 and 6.7×10-2, respectively. 

The simulation proceeds to approach failure domains of F1, F4, and F3 progressively. Their 

failure probabilities are estimated as P(F1)= 1.6×10-2, P(F4) = 6.26×10-6, and P(F3) = 1.42

×10-10 at k = 2, 6, and 11, based on 1258, 2902, and 5152 samples, respectively. As shown 

in Table 7, the estimates of P(F), P(F1), P(F2), and P(F4) obtained from a single GSS run 

agree well with those reported by Low (1997) using direct MCS with 1600,000 samples and 

bound method based on FORM. However, the P(F3) value from GSS is about three orders 
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of magnitude less than that (i.e., 6.25×10-7) from direct MCS with 1600,000 samples. Note 

that only one failure sample for F3 is obtained among 1600,000 samples from direct MCS in 

Low (1997), the number of which is not sufficient to accurately estimate P(F3).  

For further validation, a direct MCS run with 1012 samples is performed to evaluate 

P(F3) in this study. The resulting P(F3) value is 3.55×10-10, and its corresponding unit 

COV is calculated as 5310. In addition, 30 independent GSS runs are also performed to 

obtain 30 estimates of P(F) and P(Fi), i = 1, 2, 3, 4, each of which, on average, generates a 

total of 5262 random samples. Based on the 30 estimates of P(F3) from GSS, its average is 

estimated as 2.55×10-10, which is favorably comparable with that from direct MCS with 

1012 samples, and has a unit COV of 103 that is about 1/52 of that for direct MCS. This 

means that the computational effort needed to calculate P(F3) in the proposed approach is 

about 1/2704 of that used for direct MCS to achieve the same computational accuracy. 

Compared with direct MCS, the proposed approach significantly reduces the computational 

effort at small probability levels.  

 

6.2. Identification of representative and key failure events of the rock slope  

Although only four scenario failure events are considered in the rock slope example, its 

RFEs are determined using PNET in this section to illustrate the difference between RFEs 

and the key failure events. Based on random samples generated in the GSS run, the 

correlation coefficients among the LSFs of the four scenario failure events are calculated 

and showed in Table 8. The values are all less than 0.8. Taking d = 0.8 in the criterion for 
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PNET, all the four scenario failure events are selected as RFEs. Specifically, F2, F1, F4, and 

F3 are selected as Fr,1, Fr,2, Fr,3, and Fr,4, respectively. The respective RCi values of Fr,i, i = 1, 

2, 3, 4 are calculated to be 8.17×10-1, 1.95×10-1, 7.63×10-5, and 1.73×10-9 using Eq. (7) 

and P(Fi) values from GSS (see Table 7). It is obvious that F1 and F2 have much more 

contribution to slope system failure than F3 and F4. The scenario failure events F1 (sliding 

along both planes) and F2 (sliding along plane 1 only) are thus taken as the key failure events 

among the four RFEs. This illustrates that the RFEs selected by PNET are not necessarily 

the key failure events. As an application of this finding to slope design, scenario failure 

event F2 is expected to govern design. Design measures shall be applied to prevent the rock 

wedge from sliding along plane 1, since the relative contribution of F2 (i.e., Fr,1) to slope 

failure is more than 80%. 

 

7. Conclusions 

This paper presented an efficient computer-based simulation method to evaluate the system 

failure probability P(F) of slope stability and to identify key failure events with significant 

contributions to slope failure. The proposed approach was illustrated using a soil slope 

example with a large number of scenario failure events and a rock slope example with only 

four scenario failure events. Major conclusions drawn from this study are given below: 

(1) The proposed approach provides proper estimates of P(F) and P(Fi) by a single GSS 

run. This avoids repeatedly performing simulations (e.g., SS) for different failure events 

(e.g., F and Fi, i = 1, 2, …, n), which can be time consuming when the number of scenario 
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failure events is large (e.g., for soil slopes).  

(2) Compared with direct MCS, the proposed approach significantly improves the 

computational efficiency of calculating P(F) and P(Fi), particularly for failure events with 

small failure probabilities. The accuracy of P(F) estimated from the proposed approach does 

not rely on the selection of representative failure events (RFEs), because P(F) is obtained 

through GSS before RFEs are determined. This allows determining the number of RFEs to  

represent the slope system in a rational manner.  

(3) Using the proposed approach, the key failure events of slope stability are rationally 

determined based on their relative contributions to slope system failure, which provides 

useful insights for making slope design decisions and remedial measures.  
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Table 1. Summary of GSS procedure in the soil slope example 

Simulation 
level, k 

Number 
of “seed” 
samples, 

Nk 

Number of 
samples generated 
in the k-th level , 

N-Nk 

Conditional 
probability, 

P(U(k+1)|U(k))a 

Number of failure events 
occurring in the k-th 

simulation level 

0 - 500 0.206  0 
1 103 397 0.232  0 
2 116 384 0.276  0 
3 138 362 0.312  91 (including system 

failure)  
4 156 344 0.332  829 
5 166 334 0.348  821 
6 174 326 0.368  716 
7 184 316 0.332 504 

Note a: P(U(k+1)|U(k)) is simplified as P(U(1)) for k =0.  
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Table 2. Comparison of reliability analysis results of the soil slope example from different methods 

Method P(F) 
P(Fi) of the 
1st RFE 

P(Fi) of the 
2nd RFE 

Number of 
samples 

Sources 

GSS 4.4×10-3 2.6×10-3 1.7×10-3 1643 This study 

Direct MCS  4.4×10-3 - - 1.0×104 Ching et al. (2009) 

 4.05×10-3 - - 2.0×104 Ji and Low (2012) 

 4.15×10-3 - - 2.0×104 Cho (2013) 

Bound methods 
based on FORM 

4.32×10-3-4.41×10-3 2.6×10-3 1.9×10-3 - Low et al. (2011) 

 4.02×10-3-4.11×10-3 2.6×10-3 1.6×10-3 - Ji and Low (2012) 
 4.31×10-3-4.39×10-3 2.6×10-3 1.9×10-3 - Cho (2013) 
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Table 3. Comparison of soil slope reliability analysis results from different methods 

Failure event  Failure probability COV (%) Average number of samples based on 30 simulation runs, NT Unit COV 

 SS GSS SS GSS SS  GSS SS GSS 

1st RFE  2.5×10-3 2.6×10-3 57.8 38.6 1490 1697 22.3 15.9 
2nd RFE  1.5×10-3 1.6×10-3 59.3 46.9 1535 1775 23.2 19.7 
System failure  4.0×10-3 4.2×10-3 34.3 28.5 1400 1528 12.8 11.1 

Note: results from 30 independent runs 
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Table 4. Summary of statistics of uncertain parameters (After Low (1997)) 

Uncertain parameters Mean 
Standard 
deviation 

Distribution type

Normalized cohesions, c1/h and c2/h 0.1 0.02 Normal 

Tangent of friction angles, tanandtan 0.7 0.15 Normal 

Dip of discontinuity plane 1 (B'DO) 50 2.00 Normal 

Dip of discontinuity plane 2 (B'DO) 48 2.00 Normal 

Angle of BDC, 62 3.00 Normal 

Angle of BCD,  20 3.00 Normal 
Normalized water pressure parameters, Gw,1 and Gw,2 0.5 0.12 Normal 
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Table 5. Limit state functions for scenario failure events and their components (After Li et al. 
(2009)) 

Limit state function Interpretation Eq.

G1 = max (g
1
, -g

2
, -g

3
, g

8
, g

9
) Sliding on both planes, F1 (8)

G2 = max (g
3
, g

4
, -g

5
, g

8
, g

9
) Sliding along plane 1 only, F2 (9)

G3 = max (g
2
, g

6
, -g

7
, g

8
, g

9
) Sliding along plane 2 only, F3 (10)

G4 = max (g
5
, g

7
, g

8
, g

9
) Floating failure, F4 (11)

g
1
 = FS - 1 Wedge slides on both planes (12)

g
2
 = a1 - 

b1Gw1

s
  Wedge contact on plane 2 (13)

g
3
 = a2 - 

b2Gw2

s
  Wedge contact on plane 1 (14)

g
4
 = FS1 - 1 Wedge slides only along plane 1 (15)

g
5
 = 



a1 - 

b1Gw1

s
 - 



b2Gw2

s
 - a2 Z Wedge floating condition on plane 2 (16)

g
6
 = FS2 - 1 Wedge slides only along plane 2 (17)

g
7
 = 



a2 - 

b2Gw2

s
 - 



b1Gw1

s
 - a1 Z Wedge floating condition on plane 1 (18)

g
8
 =  -  Kinematic admissibility (19)

g
9
 =  -  Kinematic admissibility (20)

Note: Interested readers are referred to Low (1997) and Li et al. (2009) for more details on 

these limit state functions and symbols involved in them. 
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Table 6. Summary of GSS procedure in the rock slope example 

Simulation 
level, k 

Number 
of “seed” 
samples, 
Nk 

Number of 
samples generated 
in the k-th level , 
N-Nk 

Conditional 
probability, 
P(U(k+1)|U(k))a 

Failure probabilities 
obtained in the k-th level 

0 - 500 0.234  - 
1 117 383 

0.250  
P(F) = 8.2×10-2 

P(F2)= 6.7×10-2 

2 125 375 0.154  P(F1)= 1.6×10-2 

3 77 423 0.180  - 

4 90 410 0.188  - 

5 94 406 0.190  - 

6 95 405 0.100  P(F4) = 6.26×10-6 

7 50 450 0.100  - 

8 50 450 0.100  - 

9 50 450 0.100  - 

10 50 450 0.100  - 

11 50 450 0.100  P(F3) = 1.42×10-10 

Note a: P(U(k+1)|U(k)) is simplified as P(U(1)) for k =0.  
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Table 7. Comparison of results obtained from GSS with those reported by Low (1997). 

Method P(F) P(F1) P(F2) P(F3) P(F4) Sources 

GSS 8.2×10-2 1.6×10-2 6.7×10-2 1.42×10-10 6.26×10-6 
This 
study 

Direct MCS 8.6×10-2 1.8×10-2 6.8×10-2 6.25×10-7 6.25×10-6 
Low 
(1997) 

Bound method 
based on FORM 

7.0×10-2 

~9.2×10-2 
2.4×10-2 7.0×10-2 1.05×10-9 6.91×10-6 

Low 
(1997) 
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Table 8. Correlation coefficients among limit state functions of the four scenario failure 
events 

Failure events F1 F2 F3 F4 

F1 1 0.404 0.379 0.452
F2  1 0.296 0.798
F3 Sym. 1 0.784
F4    1 
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Figure 1. Fault tree for system failure of slope stability 
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Figure 2. Schematic diagram of Subset Simulation procedure (After Au et al. (2010) and Li et al. (2016c)) 
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Figure 3. Schematic diagram of Generalized Subset Simulation procedure 
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Figure 4. Implementation procedure of probabilistic network evaluation technique 
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(a) 6142 potential slip surfaces 

 

 

(b) Fault tree for system failure of the soil slope  

Figure 5. Illustration of the soil slope example 
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Figure 6. Failure probabilities of 2960 scenario failure events 
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Figure 7. Two representative failure events identified by PNET method based on GSS results 
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Figure 8. Illustration of the rock slope example (After Low (1997) and Li et al. (2009)) 
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Figure 9. Fault tree for system failure of the rock slope example (After Li et al. (2009)) 

 

 

OR

AND AND ANDAND

g1<0 -g2<0 -g3<0 g9<0g8<0 g3<0 g4<0 -g5<0 g9<0g8<0 g2<0 g6<0 -g7<0 g9<0g8<0 g5<0 g7<0 g8<0 g9<0

F = {Gs<0}

Sliding along both planes Sliding along plane 1 only Sliding along plane 2 only Floating failure

F 1= {G1<0} F2= {G2<0} F3= {G3<0} F4= {G4<0}

SYSTEM LEVEL

FAILURE SCENARIO LEVEL

COMPONENT LEVEL


