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Abstract

Natural hazards have the capability to affect technological installations, triggering multiple

failures and putting the population and the surrounding environment at risk. Global climate

change introduces an additional and not negligible element of uncertainty to the vulnerability

quantification, threatening to intensify (both in terms of frequency and severity) the occurrence

of extreme climate events. Sea level extremes and extreme coastal high waters are expected to

change in the future as a result of both changes in atmospheric storminess and mean sea level

rise, as well as extreme precipitation events. These trends clearly suggest a parallel increase

in the risks affecting technological installations and the subsequent need for mitigation mea-

sures to enhance the reliability of existing systems and to improve the design standards of new

facilities. In spite of this situation, the scientific research in this field lacks robust and reliable

tools for this kind of assessment, often relying on the adoption of oversimplified models or

strong assumptions, which affect the credibility of the results. The main purpose of this study

is to provide a novel and general model for the evaluation of the risk of exposure of spent

nuclear fuel stored in a facility subject to flood hazard, investigating the potential and limi-

tations of Bayesian networks (BNs) in this field. The network aims to model the interaction
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between extreme weather conditions and the technological installation, as well as the prop-

agation of failures within the system itself, taking into account the dependencies among the

different components and the occurrence of human error. A real-world application concerning

the nuclear power station of Sizewell B in East Anglia, in the United Kingdom, is extensively

described, together with the models and data set used. Results are presented for three different

time scenarios in which climate change projections have been adopted to estimate future risks.

1 Introduction

The occurrence of technological disasters triggered by natural hazards (generally referred to as

Natech events) has progressively raised concerns in the scientific community and increased the

awareness of public opinion about the vulnerability of technological installations and infrastruc-

tures to extreme weather conditions. In addition, global climate change introduces an additional

and not negligible element of uncertainty to the overall risk, threatening to intensify (both in terms

of frequency and severity) the occurrence of extreme climate events. Evidence of a substantial

increase in heavy precipitation events has been described in Trenberth et al. [68]. The same

study stated that "it is likely that there have been increases in the number of heavy precipitation

events (e.g., 95th percentile) within many land regions, even in those where there has been a re-

duction in total precipitation amount, consistent with a warming climate, and observed significant

increasing amounts of water vapour in the atmosphere. Increases have also been reported for rarer

precipitation events (1 in 50-year return period). "This globally observed change in daily winter

precipitation in the period 1901–2000 has been confirmed by more detailed country-based studies,

such as Maraun et al. [44] in the United Kingdom, and appears to be consistent with the expected

response to anthropogenic forcing [61]. Coherent with the observed increasing trends over the

twentieth century, projected changes show that the frequency of heavy precipitation or proportion

of total precipitation from heavy precipitation would increase over most areas of the globe [68].

According to the U.K. Climate Projections (UKCP09), central estimates are for heavy-rain days

(rainfall greater than 25 mm) over most of the lowland United Kingdom to increase by a factor

of between 2 and 3.5 in winter, and 1 and 2 in summer by the 2080s, under the assumption of

a medium-emissions scenario [47]. Also, transient sea level extremes and extreme coastal high

waters are expected to change in the future as a result of both changes in atmospheric storminess

and mean sea level rise. Trends in extreme coastal high waters across the globe suggest that mean

sea level rise, rather than changes in storminess, largely contributes to the increase in sea level

extremes. Indeed, the rate of observed sea level rise appears to have increased from the 19th to the

20th centuries, with a mean sea level rising at an average rate of 1.7 (1.2–2.2) mm per year over the

20th century, 1.8 mm per year over 1961 to 2003, and at a rate of 3.1 (2.4–3.8) mm per year over

1993–2003 [8]. On the basis of this trend and observed trends in extreme coastal high-water levels,
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it is very likely that mean sea level rise will contribute to upward trends in the future [61]. Further-

more, despite the great uncertainty, various shortcomings associated with anemometer data, and

the inconsistency in anemometer and reanalysis trends in some regions [61], a few studies show

growing winter wind storm risk over Europe [56] [16] [17] and particularly an increasing trend in

extreme winds over northern Europe [57]. The combination of these factors (i.e., intensification in

terms of both frequency and severity of the occurrence of extreme wind and rain events, together

with sea level rise) increases the likelihood of flooding along shorelines, which are already expe-

riencing the adverse consequences of impacts such as increased coastal inundation, erosion, and

ecosystem losses.

Regardless of the regional variability of climate phenomena on a local scale, the impact of antic-

ipated climate-related changes on coasts are virtually certain to be overwhelmingly negative [52].

This growing hazard will directly affect a large amount of industrial facilities, which have long

been located along riverbeds or coastlines to facilitate the transport of materials and to provide

easy access to water for industrial processes and waste disposal. For instance, the majority of the

nuclear power stations in the United Kingdom are situated on the coast to ensure the availability

of cooling water; for the same reason, it is likely that new nuclear facilities will be built in coastal

areas. In light of this fact, without appropriate mitigation measures, the potential effects of climate

change could mean that these sites will become vulnerable to a greater risk of flooding than if they

were located inland [69]. At the same time, the dramatic increase of utilization of the coast regis-

tered in the twentieth century is virtually certain to continue through the 21st century: according

to projections, the coastal population could grow from 1.2 billion people (in 1990) to an amount

between 1.8 and 5.2 billion people by the 2080s, depending on assumptions about migration [52].

Such growth would contribute to widening the hazardous areas to include an ever-increasing num-

ber of communities and technological installations.

These trends clearly suggest a parallel increase of the risk of Natech events and the need for miti-

gation measures to enhance the reliability of existing systems and to improve the design standards

of new facilities. While the perception of the risk posed by Natech events appears to run paral-

lel to the growth of vulnerability, unfortunately the same cannot be said for the theoretical and

computational tools available to quantify these kinds of hazards. Not only is knowledge of the

interactions between natural events and technological failures still limited [39], but also the current

approaches are often based on the adoption of oversimplified models or strong assumptions, which

irrevocably affect the reliability of the results. In light of this, the relevance of Natech risk analysis

is widely recognized within the scientific community, and further research in this field strongly

recommended [14][63].

The reasons behind the unsatisfying results of research in this direction and the subsequent lack of

robust tools must be attributed to several bottlenecks, including the following:

• Geographical extent. Natural hazards have the ability to affect large geographical areas and

more technological installations simultaneously. Methods for the quantification of the risk
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have to take into account accident scenarios involving failures not only within the facility

under study, but also related to the infrastructures whose unavailability can increase the

hazard or lower the reliability of the system of interest. Moreover, the wide area of impact

of natural events can lead to the occurrence of simultaneous accidents in more facilities,

affecting the response and nullifying some mitigation measures. In other words, tools for

Natech risk analysis have to be able to model and quantify the risk of simultaneous failures

and the domino effect, considering the external environment that the system under study can

interact with in case an accident occurs.

• Low probability-high impact. Uncertainty, incompleteness, or lack of information available

are issues common to all engineering applications. This is all the more true in the case

of low-probability events that are hardly observable: empirical data are generally poor and

strongly uncertain, especially with regard to data sets specifically dedicated to Natech sce-

narios, which are relatively new (even nowadays, a centralized reporting of these events is

not provided) [14]. In addition, the randomness of natural events is itself a great source of

uncertainty. On the other hand, it is also extremely important to consider the so-called black

swan events, meaning unexpected and extremely improbable events of large magnitude and

consequence, regarding which very limited or no information is available. Hence, risk anal-

ysis has to rely on robust modelling of both epistemic and aleatory uncertainty and on tools

able to deal with low probability values.

• Complex networks of dependencies. Technological installations are complex systems that

generally involve a great amount of components interacting directly or indirectly with each

other. This implies that the failure of each individual component can affect a more-or-less

wide range of others, potentially triggering a chain of events and leading to more serious

accidents [71]. It is then essential to be able to adequately reproduce these interconnections

in order to take into account all the possible simultaneous failure scenarios.

• Interdisciplinarity. The study of Natech events involves a wide variety of experts with dif-

ferent backgrounds (e.g., ranging from engineers to meteorologists to psychologists). The

strongly interdisciplinary character of these applications comes from the complex mecha-

nisms of interactions among different environments (e.g., the technological and the natural

ones), as well as the importance of taking into account aspects such as the effectiveness of the

human response in case of accidents or the probability of human failure. To include coher-

ently the contributions from so many diverse sectors of scientific knowledge, it is necessary

to adopt an intuitive framework in terms of both methodology and computational tools that

should act as a common ground that is easy to use and understand and far from the jargon

of the individual sectors involved. This would simplify the dialogue among experts of dif-

ferent languages promoting the close collaboration of scientists and engineers with industry

leaders and policy makers in an interdisciplinary effort to tackle the problem of Natech risk
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reduction and to effectively raise awareness of the risks among the public [39]. The use of a

collective language would indeed satisfy the largely recognized need to improve articulation

between organizations of different specializations and to promote risk communication and

public awareness [14].

Bayesian networks (BNs) meet the requirements highlighted here to a considerable extent [64].

They can be considered as the general case of more common methodologies such as fault tree anal-

ysis [26], with respect to which they offer several advantages, at both the modelling and analysis

levels. Several restrictive assumptions implicit in the fault tree methodology (e.g., the restriction

to Boolean logic) can be avoided, complex dependencies among components can be easily rep-

resented, uncertainty can be included in modelling, and both forward and backward analyses are

allowed [9].

For the reasons highlighted previously, BNs are considered to be promising tools in the field of

Natech risk assessment and have been adopted in the present study.

1.1 Motivation of the study

The attention to issues related to nuclear safety is obviously been high, particularly after the

Fukushima Daiichi nuclear power plant accident. While most of these concerns are focused on

the vulnerability of the reactors themselves, less attention has been paid to the spent fuel facili-

ties [often referred to with the term pools in the United States or ponds in the United Kingdom,

and more generally with the acronym spent fuel pond/pool (SFP)], which have the potential to

be more vulnerable to failure than the reactor containment building. Furthermore, as recognized

by the Nuclear Regulatory Commission [13], even if the likelihood of a zirconium fire due to the

exposure of spent fuel is generally very low, the consequences of a similar event would be highly

significant. For these reasons, the study of the vulnerability of such installations to external events,

such as extreme weather conditions, becomes relevant in view of a more general and accurate risk

assessment of nuclear facilities. This kind of analysis implies the use of flexible models that are

able to simulate not only the complexity of the system under study, but also different scenarios. For

example, assessing the impact of natural hazards on technological installations, the climate change

effect on extreme weather hazards cannot be neglected. Furthermore, a complete evaluation of the

risk requires models that are suitable for long-term decision-making support, but also for real-time

risk assessment, in order to guide the decision makers even in the case of imminent danger. Finally,

as stated by the Nuclear Regulatory Commission [13], SFP risk assessment is complicated by lack

of data (e.g., on severe earthquake return frequencies, source term generation in the air environ-

ment, SFP design variability, and other factors), hence requiring approaches that can handle a high

degree of uncertainty.

In addition to testing the BN approach in a field not fully explored yet, such as Natech risk analysis,

this study aims to provide the first generic model for the quantification of the risk of exposure of the
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Figure 1: Example of an elementary BN

spent nuclear fuel stored in a fuel pond. Moreover, the model is designed to meet the requirement

of flexibility mentioned previously, including long-term considerations. The approach proposed

consists of a framework that integrates climate change models in order to assess present and future

risks of exposure of spent fuel in the case of flooding of the storing facility. Moreover, thanks also

to the BN approach, the model proposed is extremely flexible and can easily be improved when

more information is available. Indeed, as shown in the sections later in this paper that describe the

sea-wave overtopping event, each node can be expanded, relying on the use of dedicated models

and increasing the accuracy of the overall analysis. Finally, as shown in the case study application,

the results can be analysed from various points of view, evaluating the risks of several accident

scenarios with regard to different time periods. This makes the tool highly attractive for both long-

term and real-time risk analysis. In the following section, the theoretical background of BNs is

provided. Thereafter, a general model dedicated to the quantification of the risk of exposure of

spent nuclear fuel subject to flooding hazard is presented. Next, the application of the model to the

case study of the Sizewell B nuclear power station is described. Finally, the results of the study and

remarks regarding the advantages and limitations of the adopted approach are widely discussed.

2 Bayesian Networks

BNs, also known as belief networks, are statistical models based on the use of directed acyclic

graphs for the representation of probability distributions. They provide the factorization of the

joint probability distribution associated with an event of interest, exploiting information about the

conditional dependencies existing among the variables. This approach relies on a double nature

graphically represented by the structure of the network itself, to which quantitative values are

associated throughout the introduction of conditional probability distributions. The structure of

a BN consists of a variable number of nodes, each of which represents a random variable of the

problem being modelled. The variables should be interpreted in Bayesian terms, or they can have

different origins: for instance, they may be observable quantities, unknown parameters, or even

mere hypotheses. The nodes of a BN are connected by edges (commonly represented as arrows)

expressing informal or causal dependencies existing among the variables. Only nodes that have
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some sort of dependency are linked, while those that are not joined refer to variables that are

conditionally independent of each other. The edges are characterized by directions that are coherent

with the causal relationship of the variables connected. With regard to the BN introduced in Fig.1,

the node X1 is called the parent of X2 and X3, which are also referred to as its children. Nodes

that have no parents are defined as the roots of the network. Generally, on the basis of the Bayes’s

theorem, the joint probability modelled by any BN with nodes X1, X2, ..., Xn can be expressed as:

P (X1, ..., Xn) =
∏
i

p (Xi | pa(Xi)) (1)

where pa(Xi) refers to the outcomes assumed by the parents of the node Xi. Then, the joint

probability associated with the BN of Fig.1, where all nodes have been assumed boolean only for

simplicity purposes (i.e. Xi = {x1i , x2i }, i = 1, 2, 3), is:

P (X1, X2, X3) = p (X1) p (X2|X1) p (X3|X1) (2)

In a BN, each node is conditionally independent of its non-descendants given its parent variables,

satisfying the local Markov property [60]. The strength of the dependencies associated with each

cluster of parent-child nodes is represented by the conditional probabilities mentioned. These can

be of different natures according to the structure of the variables concerned. BNs also allow the

updating of the marginal probabilities of the variables involved on the basis of new information

that might become available. This way, introducing evidence in the model, it is possible to anal-

yse "what if" scenarios, as well as the propagation of the information in the direction of interest.

Software packages have been developed that allow the adoption of several algorithms, both exact

and approximate, for the computation of inference in BNs. Murphy [49] presents a review of the

software packages that are available.

The choice of one approach or the other entails both advantages and disadvantages. Exact infer-

ence algorithms (e.g., the junction tree algorithm) are robust and well established in the scientific

literature but they restrict the use of probability distributions to the discrete field with the sole ex-

ception of Gaussian distributions. In most cases, this implies the necessity to discretize continuous

random variables, reducing the quality of the information. On the other hand, the approximate

approach allows one to perform the inference on continuous nodes using simulation techniques

(e.g., Markov-chain Monte Carlo methods) but it can be either computationally inefficient or have

unknown rates of convergence. A complete overview of BNs is provided by Pearl and Russell [55].

Although the establishment of BNs as a field of study and their definition as a complete statistical

approach date back to the early 1980s [54], their development has been bound for several years

by limitations related to the lack of reliable algorithms and the computational power to compute

inference. Conversely, thanks to their unique peculiarities and rapid technological progress in the

last several decades, BNs have attracted ever-increasing interest from people in different scientific
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areas. For instance, Weber et al.[70] presented a bibliography review of BN applications in differ-

ent sectors of applied sciences. The study highlights the increasing use of BNs as a tool for risk

analysis: between 2001 and 2008, the number of references per year increased by a factor of 4.

Former studies demonstrate the capabilities of BNs in risk analysis in terms of both the assessment

of low-probability events [28] and the modelling of complex systems [34]. Also, the potential of

BNs to integrate models and information of different natures, such as human factors, has attracted

increasing interest in the literature [11][37].

Finally, limited research proves the great potential of the BN approach in the estimation of natural

hazards [64][7].
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Figure 2: Overview of the BN model proposed for the risk assessment of spent nuclear fuel ponds
subject to the risk of flooding

3 Description of the Proposed Model

The purpose of the model implemented in this work is to quantify the risk of exposure of the spent

nuclear fuel stored in a fuel pond subject to the threat of flooding events, also taking into account

the consequences of eventual human error. The network is a general model that can be adopted

to compute the vulnerability of any system that is coherent with the hypothesis introduced and

described later in this paper. Moreover, given the high adaptability of the model, it can be easily

modified to meet the features of facilities differing from the target considered here.

The study focuses only on the flooding hazards, while other sources of risk, such as earthquakes or

extreme winds, fall outside the model’s area of application. The target chosen is a generic nuclear

power station located in a coastal area where the risk of significant tsunamis is generally negligible

[33]. Nevertheless, the facility is assumed to be protected by sea defences (such as embankment

seawalls commonly provided in rural areas) that are subject to the risk of failure in the case of

extreme sea conditions [38].
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In this study, the contributions of wave overtopping of coastal defences, together with that of heavy

rainfall, are considered the main sources of flooding hazard within the station perimeter. The spent

fuel management strategy considered for the target facility consists of underwater storage of the

fuel rods in a dedicated pond. These are large robust monolithic structures where fuel assemblies

are stored in racks that provide spacing for coolant flow: the pools are filled with several additional

meters of water above the spent fuel to provide biological shielding [1]. The facility is assumed

to be provided with basic equipment such as a drainage system (with a discharge point of the

waste stream into the sea; see node Outfall in Fig.2), an on-site electric power substation (to ensure

the connection to the national grid), emergency diesels (EmergencyPowerSupplies), emergency

hydrants (to make up for the loss of water due to evaporation in the case of failure of the cooling

system), and a spent fuel pond cooling system, whose correct functioning is assumed to be bound

by the availability of alternating current (AC) power [1].

It is expected that the floods will affect the plant’s main and auxiliary supplies (crucial for the

correct functioning of the pond), as well as the emergency measures planned to face eventual

breakdowns [18]. These can fail due to the unavailability of resources or lack of effective actions

due to human error. In this case, the operators who would be supposed to take measures to limit

the damages caused by the failure (for instance, manually refilling the pond to ensure the coverage

of the fuel) do not act as planned, leading to the same consequences of technical failure (such as

the unavailability of reservoirs or emergency hydrants).

The BN proposed (shown in Fig.2) consists of 37 nodes. For the sake of clarity, the description

of the model proposed next is organized into three sections, according to the aim of as many

different subsets of the network. Since each node of the network is designed to represent a specific

event, if not specified otherwise, the terms defining each node and the related event are considered

interchangeable from then on.

3.1 Natural-technological interaction section

The upper part of the network (Fig.3) aims to model the direct effects of natural events on the

nuclear facility and its surroundings. This section discusses nodes either related to weather con-

SeaWavePeriod SeaWaveHeight

TimeScenario

ExtremePrecipitation

DrainageSystem

ExtremeSeaWaterLevel

WaveOvertoppingFloodingSurroundings Outfall

FloodingStationArea

Figure 3: Section of the network modelling the direct effects of natural events

ditions (ExtremePrecipitation, SeaWaterLevel, SeaWavePeriod, SeaWaveHeight) or representing
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failures directly triggered by the natural event (DrainageSystem, FloodingSurroundings, Outfall,

WaveOvertopping). Behind the causal links that connect these two series of variables lie three main

mechanisms of external flooding:

• River flooding. This contribution is assumed to have the potential to affect the surroundings

of the facility, and it is mainly represented by the interaction between ExtremePrecipitation

and FloodingSurroundings: an extreme amount of rainfall can lead local water courses to

burst their banks, spilling water into the floodplain. Existent models based on local data can

be easily adopted to define the causal relationships between the two variables.

• Surface water flooding. It presupposes the impossibility of discharging water from the fa-

cility area, causing rainwater to lie or flow over the ground instead of draining away. This

can occur as a result of failure of the DrainageSystem, due to exceptionally heavy rainfall

(ExtremePrecipitation), or from the unavailability of the Outfall due to extreme sea levels

(ExtremeSeaWaterLevel).

• Coastal flooding. It concerns both tidal flooding and sea-wave overtopping of coastal de-

fences. Tidal flooding occurs when low-lying ground is flooded by the sea as a result of the

extreme height of the tidal cycle (regardless wave conditions): since nuclear facilities are

located at elevations tailored for tide and surge levels [4] this type of contribution is assumed

to affect only the surrounding area (FloodingSurroundings). In light of this, the quantifica-

tion of the risk of coastal flooding for the facility mainly implies modelling the mechanism

of discharge of seawater within the station perimeter due to the action of sea waves. This has

been realized by integrating the contribution of sea-wave overtopping in the (FloodingSta-

tionArea) mechanism. The event (WaveOvertopping) results from extreme sea conditions,

which are ExtremeSeaWaterLevel generally, due to the combination of high tide and surges;

and SeaWaveHeight and SeaWavePeriod, which under adverse weather conditions can as-

sume severe proportions.

High water levels, represented in the model by the node ExtremeSeaWaterLevel, result from the

interaction of tides and storm surges. While the first are originated by astronomical movements,

the storm surge consists of a meteorologically driven component of water level generated by syn-

optic variations of atmospheric pressure and wind [72]. This, therefore, leads to a certain relation

between the surge component and the heights of sea waves generated by wind: larger storm surges

are expected to correspond to greater values of wind speed. Nevertheless, the correlation results

are relatively weak, considering that in a sea level record, the non-correlated tide dominates, with

the astronomic tide typically 97-98% of the total sea level, and rarely less than 80-85% of the total

sea level even during the most extreme events [27]. Hence, as it is only the surge contribution

that is likely to be physically associated with extreme wave height under the same meteorological

conditions, the assumption of independence between the nodes ExtremeSeaWaterLevel and Sea-

WaveHeight should not compromise the validity of the assessment. For similar reasons, a certain
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correlation is expected to exist between ExtremePrecipitation and ExtremeSeaWaterLevel as well.

Several studies found that the dependence between extreme rainfall and storm surge is statistically

significant and needed to be taken into account for flood risk estimation, although spatial variability

of the dependence strength was observed [66]. In this case, though, the consideration of general sea

level (in most cases dominated by astronomical tide) leads to weaker dependence values compared

to the adoption of storm surge estimates; furthermore, little is known about the factors behind such

dependence, nor of the degree of variability of dependence strength over a large geographic area

[73].

In the absence of a direct causal relation between the variables, it is not possible to represent the

correlation in the network; nevertheless, this limitation of the method is mitigated by the weak-

ness of the correlation values among the variables involved, which is expected to have a negligible

influence on the overall result of the analysis. The overall combination of the flooding dynamics

considered can lead to the accumulation of water within the perimeter of the facility, event rep-

resented by the node FloodingStationArea. No internal failures (such as the damage of pipes or

reservoirs) are taken into account as sources of flooding in the model. This part of the network

also embraces improperly causal relations: the node TimeScenario, as the name suggests, allows

analysis to run with regard to a particular time interval of choice. Introducing evidence in the node,

hence selecting the time scenario of interest, it is possible to take into account the influence of cli-

mate change on natural events. As Fig.2 shows, climate change forecasts are considered in terms of

sea level rise (represented by the edge pointing to the ExtremeWaterLevel node) and intensification

of precipitations. Also, extreme wave conditions depend on the time period considered: previous

studies [40] have shown that climate change may have a significant impact on sea-wave character-

istics, even if considerable variation in projections can arise from the different climate models and

scenarios used to force wave models, which reduces the confidence in the projections already low-

ered by the small number of studies, lack of consistency of the wind projections between models,

and limitations in their ability to simulate extreme winds [61].

3.2 Internal failure section

According to the BN model proposed, the event of exposure of the spent nuclear fuel is bound

by the availability of either cooling systems or emergency supplies. Only if both these subsys-

tems are out of order is the SpentFuelExposure event (Fig.4) assumed to occur. As mentioned

previously, the cooling system is expected to fail if no electric power, either generated on site

(OnSiteAC) or supplied to the station from the external grid (OffSiteAC), is available. Hence, sta-

tion blackouts are considered as the main safety issue for the correct functioning of the spent fuel

pool, since many safety systems required for heat removal depend on AC power [5]. The failure

of on-site generation can be attributed to power station outages, whether planned (e.g., refuelling

or decommissioning) or unplanned (e.g., emergency reactor shut-down); the failure of emergency

power supplies (EmergencyPowerSupplies) is also a precursor of station blackouts. Indeed, nuclear
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Figure 4: Section of the network modelling internal failures

power plants worldwide have a configuration of emergency power supply systems (typically emer-

gency diesel generators) that include at least two redundant trains of safety buses, each powered

by an emergency diesel generator that replaces the regular power supply or off-site power should it

become unavailable [32]. Coherently, the failure of EmergencyPowerSupplies is assumed to lead

to a station blackout in case of loss of OffSiteAC. If both the outage and the failure of emergency

diesels occur, no power generation is assumed to be available on site.

Normally, the interface between the plant’s main generator and the electrical grid is formed by the

OnSiteSubstation, which provides reliable off-site power for the nuclear station under all operating

and shut-down conditions. For example, if power generation is interrupted, the power supply au-

tomatically transfers to the off-site grid. If that is not supplying suitable power (e.g., unacceptable

voltage), the buses are reenergized by fast-starting emergency diesel generators [41]. In light of

this, the failure of the on-site electric substations and connections (OnSiteSubstation) can cause

loss of power from the external network. This can also be triggered by a generic loss of external

power grid, in which case the nuclear plants involved in the blackout are required to shut down

safely (UnplannedOutage), according to procedures [43]. Failure of the emergency power supplies

would seriously hinder the ability of the plant operators to carry out the required safety functions

[41]. This is taken into account in the model by the node EmergencySupplies, which refers to the

lack of effective actions on the pond in the case of unavailability of the cooling system. This kind

of intervention involves both technological and human aspects: spent fuel ponds are provided with

a source of high-purity water (generally the refuelling water storage tank for pressurized water re-

actors and the condensate storage tank for boiling water reactors) to make up for the loss of water

due to evaporation in the case of cooling system loss. Plants also have alternative methods to pro-

vide make-up if normal make-up is unavailable, and may include the service water system and the

fire water system, which can require the intervention of operators [1]. The possible loss of water

inventory is taken into account in the model through the node Reservoirs, while the possible failure

of the fire water system is represented by the node EmergencyHydrantSystem. The occurrence of

human error (HumanError) is considered to nullify or prevent the action leading to a lack of inter-

vention by the operator, with consequences similar to that of a EmergencyHydrantSystem failure.

The large volume of water in the pond ensures a significant thermal inertia, generally slowing any
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accident progression and giving respite for actions from the outside (e.g., use of fire tenders). Only

if this intervention fails as well (DelayInReaction) is the failure of EmergencySupplies assumed to

occur.

This section of the network is connected to the overall model through four nodes: FloodingSur-

roundings, FloodingStationArea, TimeScenario, and HumanError. The first two belong to the

upper part of the network previously discussed and affect the system in similar ways: flooding near

the station has the potential to affect the only road of access, and then to make the rescue from the

outside impossible; likewise, the accumulation of water inside the facility can affect a wide range

of other subsystems, such as emergency supplies or electric transformers. Also the node TimeSce-

nario belongs to the first section but, as mentioned before, it does not represent a proper event since

the links that it shares with other nodes have no causal meaning. The connection between this node

and PlannedOutage aims to take into account the possible decommissioning of the nuclear power

plant in future scenarios.

Finally, the HumanError event refers to the lack of action by the operators and is modelled accord-

ing to Groth and Mosleh [25] by a third part of the overall network, described next.

3.3 Human Error section

From the evaluation of past events and accident scenarios involving spent fuel pools, human error

has been reported as one of the most common root causes [1]. Even if none of the reported events

resulted in severe accidents (many of them had only negligible consequences on the spent fuel),

this highlights the importance of including operator performance in the analysis. Although several

methodologies for human reliability analysis have been proposed in the literature, none of them

has ever reached a general consensus.

Commonly, human error has been modelled on the basis of probabilistic concepts, assuming all

probabilities to be precise [59]. Nevertheless, the probabilistic approach has shown a limitation on

the quantification of qualitative aspects of human error and the complexity of attributes from the cir-

cumstances involved, leading to investigate methodologies based on a fuzzy logic approach, which

is expected to better represent the human interacting system’s reliability [35]. However, research

in this direction is still limited with regard to applications to the nuclear industry [15]. More tradi-

tional and common approaches are based on the use of precise numerical factors aiming to capture

the influence of given specific working conditions or task situations on human activities. For in-

stance, performance-influencing factors (PIFs) are largely used as causes or contributors to unsafe

human actions in event analysis to predict human behaviour and cognitive processes [36]. A BN

approach to human reliability represents a good compromise approach to integrating limited data

and expert judgement without losing the robustness of well-known and largely used approaches

[25]. In this study, the BN model proposed by Groth and Mosleh [25] to quantify the probability

of human error in case of significant incidents at a nuclear power plant has been integrated into

the overall framework. The approach suggested in the study and shown in Fig.5 integrates PIFs
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and their interdependencies in a BN framework. Nine of the nodes belonging to this section (Re-

sources, OrganizationalCulture, Knowledge, Team, Training, Complexity, Machine, Attitude, and

LoadsAndPerceptions) refer to as many groups of PIFs, while the four ErrorContext nodes aim

to capture the interrelation among different factors and correlations among nodes not linked by

direct causal relationships. Each of these four nodes acts as a precursor of the HumanError event,

to which all of them contribute with different weights. For further details regarding the approach

refer to Groth and Mosleh [25].

This part of the network is linked to the rest of the model through the causal dependency between

the nodes HumanError and EmergencySupplies, as argued in the previous section. An accurate

approach should take into account other aspects, such as the consequences of flooding on the avail-

ability of suitable tools (Resources) or the effect of downsizing (in the case of decommissioning)

on the work team (Team). However data limitations preclude this kind of development of the model

for now. Further study in this direction is strongly advisable but beyond the scope of this work.

OrganizationalCulture

MachineTeam Training

Resources

Complexity

ErrorContext4

Knowledge

Attitude

LoadsAndPerceptions

ErrorContext1 ErrorContext3 ErrorContext2

HumanError

Figure 5: Section of the network modelling human failures

4 A case study: Sizewell B nuclear power station

The nuclear power plant of Sizewell B (Fig.6) in East Anglia, United Kingdom, operated by EDF

Energy, has been selected as a real-world case study for the application of the proposed BN model.

There are several reasons behind the choice of this station: first, the location is particularly in-

teresting since, according to the flood maps provided by the U.K. Environment Agency [2], the

surrounding area is subject to risk of flooding. Next, EDF’s strategic target is to extend the oper-

ational life of the installation, postponing the decommissioning date from 2035 to 2055 [30]; it is

then of particular interest to evaluate the impact of climate change on the risks to which the facility

is subject.
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Figure 6: Simplified layout of the Sizewell nuclear site with reactor building (1), fuel building (2),
and dry fuel cask (3); at the east of the site are located the so-called Bent Hills (4), and to the west
the Sizewell A power station (5)

Moreover, unlike British Magnox and advanced gas-cooled reactor (AGR) stations, in which the

spent fuel is located on site only for short periods and then transferred to the reprocessing facility

of Sellafield, the management strategy adopted for Sizewell B involves long-term on-site storage

under water [22]. Furthermore, the current rate of accumulation and current safety restrictions

suggest that full capacity of the on-site pond will be reached by 2015. Finally, the construction of a

new dry fuel storage system (started in January 2013 to guarantee further capacity) and the aim to

build a new power plant located on land next to the current Sizewell B station make this case study

more attractive in view of further developments and applications. This section aims to provide

an overall description of the facility under study, as well as of the related numerical implementa-

tion. Finally, the results obtained by the inference computation on the network are introduced and

analysed.
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4.1 Description of the facility

The Sizewell B power plant is built on a plateau 6.4 m above ordnance datum (AOD) on the coast

of East Anglia in the county of Suffolk. It shares a site of 97 ha with the Sizewell A station (which

is no longer operating) on the southern side. The area to the east of the station consists of a series

of sand dunes that gradually slope down to the seashore, covering a width of approximately 100 m.

These ridges, commonly known as the Bent Hills, have been remodelled to provide a 10-m-high

sea defence embankment along the east boundary of the site. The land surrounding the station to

the north and west is swampy and subject to the risk of flooding. Nevertheless, due to the major

elevation of the nuclear island with respect to its surroundings, floods in this area are not expected

to represent a direct hazard to the station. The site access road is located at an elevation of 3.5 m

AOD.

Built between 1988 and 1995, the power plant includes two main turbine generators and a single

reactor based on a Westinghouse standard, four-loop, pressurized water design. The initial design

was modified, mainly in terms of capacity and redundancy of safety system, in order to fulfil U.K.

requirements. The station supplies to the national grid 1,198MW, approximately equal to 3% of the

United Kingdom’s power needs. The on-site electric substation is connected to the external grid at

three separate 400 kV points (two at Bramford, one at Norwich, and one at Pelham) and provides

a connection with the external network for the import and export of power.

Adjacent to the reactor building, the fuel building accommodates the pond, where both new and

used fuel are stored underwater [6]. The pool consists of a stainless steel–lined reinforced cavity

where the fuel assemblies are located at a depth of water adequate to guarantee the coverage of

the fuel for 24 h in case of total loss of the cooling system. The latter consists of a primary

ultimate heat-sink (seawater) and a reserve ultimate heat-sink (air-cooling system), which ensure

the thermal exchange required for the pumped flow. The availability of AC power on site binds the

working order of the cooling system in the fuel facility. All the buildings on the nuclear island are

provided with fire doors that can act as flood barriers up to a water depth of 1 m [20]. According

to a report by Magnox [42], a reservoir with a maximum water level of 13.9 m AOD and an invert

level of 6.9 m AOD is located on site.

4.2 Numerical Implementation

The inference on the network for the Sizewell B application has been computed using the Bayes

net toolbox for MATLAB [48][45] and adopting the well-known junction tree inference algorithm.

As previously mentioned, the use of exact inference methods (such as the junction tree algorithm)

can lead to the impoverishment of the information available due to the need of discretization and, in

some cases, can affect the congruence of the result. As already highlighted for a previous version

of the model [67], the limitations discussed for this application have faced a particular significance

with regard to the modelling of the sea-wave overtopping mechanism. In light of this, the approach
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suggested by Straub and Kiureghian [65] was applied to a small subset of the section (namely, the

nodes SeaWavePeriod, SeaWaveHeight, ExtremeSeaWaterLevel, WaveOvertopping) in order to be

able to take continuous distributions into account without abandoning exact inference methods.

This is possible thanks to the use of structural reliability theory to enhance BN models. Indeed, the

approach allows the computing of relations among continuous variables, reducing the inference

problem to that of a traditional BN without losing information or accuracy.

The numerical implementation of the case study introduced in this part of the discussion is or-

ganized into three subsections: the first two refer to the natural-technological interaction section

(or top section), addressing the computation of the WaveOvertopping node briefly introduced here

and the data source of the climate change scenarios embraced. The last section is dedicated to the

description of the bottom part of the network, providing details about the inputs adopted for the

internal failure section. The human error section of the model is not discussed here since, in the

absence of additional data, the numerical values provided by Groth and Mosleh [25] have been

introduced without further updating. Please refer to the original study for more details about the

numerical values adopted in the implementation.

C
L

Q

S
W
L

α

Figure 7: Scheme of the sea-wave overtopping mechanism; CL refers to the crest level of the
seawall; SWL the still-water level; and Q the overtopping rate

Top section: wave overtopping of sea defences As shown in Figs. 2 and 3, the WaveOvertop-

ping node has three parents: ExtremeSeaWaterLevel, SeaWavePeriod, and SeaWaveHeight. The

return values related to the first of the three events for the coast of Sizewell have been provided

by U.K. Environment Agency [3] and updated using the sea level rise projections specified in the

next subsection. On the contrary, no probability values or model for SeaWavePeriod and Sea-

WaveHeight are available in the existing scientific literature: inputs for these two nodes have been

computed starting from historical records provided by CEFAS [23]. The available data have been

recorded using a directional waverider buoy located off the coast of Sizewell and moored at a water
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Figure 8: Scatter diagram of significant wave height and peak wave period data

depth of 18 m. Records cover a time interval of more than six years (from February 2008 to August

2014) for a total of almost 90,000 valid measurements. The data refer to the significant wave height

(mean wave height of the highest third of the waves recorded) and wave peak period (wave period

corresponding to the peak of the incident wave spectrum) and are shown in the scatter diagram

shown in Fig.8. It has been fitted into generalized extreme value probability distributions (Fig.9

for the related wave significant height statistical model) using the maximum-likelihood estimation

method [see Appendix]. The optimized values obtained for the parameters of the significant wave

height and peak period probability distributions are presented in Table 1. The adoption of this

type of distribution is justified by the need of predicting return values for extreme wave conditions

and then to extrapolate well beyond the range of the available hindcasts [10]. As is possible to

see in Fig.9 with regard to the significant wave height data, a minimal loss of accuracy in the first

part of the domain is balanced by a good representation of the measurement trend in the region of

maximum interest for this study, which means the right side of the wave height domain to which

corresponds a higher risk of overtopping.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2

Significant Wave Height [m]

PD
F

 

 

Figure 9: Generalized extreme value model of the wave significant height probability distribution

As opposed to its parents, neither discrete probability values nor historical data are available for the

event WaveOvertopping; hence, the conditional probability values of the node must be computed

by means of mathematical models.

The WaveOvertopping event is assumed to occur when the amount of seawater overcoming the sea

defence exceeds the admissible wave overtopping rate (equal to 0.0466 m3/s per unit length of
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Table 1: Parameters of Generalized Extreme Value Distributions Computed with Maximum Like-
lihood Estimation

Parameter WaveHeight WavePeriod
Shape Parameter 0.26803 0.00513
Scale Parameter 0.28039 1.45702
Location Parameter 0.53984 4.62444

the seawall for this application), according to the mechanism shown in Fig.7. According to the

probabilistic model suggested by Hedges et al. [29], waves overcome the sea defences when the

following condition is verified:

0 ≤ (CL− SWL)

rCHs
< 1 (3)

where CL = crest level of the seawall; SWL = still-water level (average water surface elevation at

any instant including the effect of tides, storm surges, and long-period seiches); r = seawall slope

roughness;Hs = significant wave height; andC = ratio of the maximum run-up [maximum vertical

extent of wave uprush on a beach or structure above the still-water level [62]] to the significant

height of the incident waves and can be expressed as a function of the surf similarity parameter ξp,

given by the equation:

ξp =
tan(α)√
2πHs/gT 2

p

(4)

where Tp = peak wave period. Hence, for given seawall features, such as the slope roughness and

inclination (α), the probability of excedance of the admissible wave overtopping rate Q can be

computed as P (Z ≤ 0) where Z is expressed, according to Hedges and Reis, as

Z = Q−A
√
g(CHs)3

[
1− CL− SWL

r (CHs)

]eBB

(5)

where g refers to the gravitational acceleration, A and B to empirical coefficients of the model

dependent on the inclination of the seawall [58] and eB to a a parameter that represents the scatter

about the line of perfect agreement between the predicted and measured values of the mean dis-

charge.

It is clear that discretizing the WavePeriod and WaveOvertopping nodes would affect the credibility

of the analysis and the effectiveness of the model adopted to compute the conditional probabilities

of the event WaveOvertopping. Moreover, as it is possible to see from the scatter diagram in Fig.8

and the graphs in Fig.10, the two series of data related to the peak wave period and significant

wave height are correlated to each other. To ignore such a correlation would result in the loss of

physical significance of the model, including in the analysis pairs of values for Tp and Hs incom-

patible with the natural limits associated to wave conditions (e.g., very high significant heights and

very low peak period, or areas of the domain with no records available, as shown in Fig.10). The
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Figure 10: Analysis of the correlation between significant wave height(Hm0) and peak period(Tp)

adoption of a structural reliability approach to compute the input of the WaveOvertopping node

is the solution chosen in this study to overcome these issues: it allows exploitation of all the ac-

cessible information (then avoiding the discretization of the continuous distributions), as well as

using linear factors to represent the correlation among variables, which are hardly characterizable

otherwise. On the other hand, this procedure excludes the SeaWavePeriod and SeaWaveHeight

nodes from the original BN and then from the inference computation: the results of the analysis

are stored in the WaveOvertopping node, whose conditional probabilities are updated according to

the results. To calculate the conditional probability of exceedance of admissible wave overtopping

rate (WaveOvertopping), given the state of the seawater level, requires as many analyses as many

are the possible states of the node ExtremeSeaWaterLevel. Hence, the result of each analysis cor-

responds to the probability of wave overtopping in the case in which the seawater level falls in a

particular interval of values according to the outcome states of the node ExtremeSeaWaterLevel.

The probabilities estimated this way were then introduced in the new conditional probability table

of the node WaveOvertopping, which in the reduced BN obtained through this approach has Ex-

tremeSeaWaterLevel as the only parent node.

The reliability analysis based on the probabilistic model of Hedges et al. [29] described above

has been performed using Monte Carlo simulations in the general-purpose software OpenCossan

OpenCossan [53]. In the implementation of the model, all the waves have been considered nor-

mally incident to the seawall and no integration with offshore, near-shore wave transformation

models has been considered, resulting in a strongly conservative approach. Conversely from what

suggested for the general model, no link has been considered between TimeScenario and the wave

condition nodes. Indeed, previous studies on the impact of sea level rise and climate change on

wave climate along the coast of East Anglia [12] have shown that the climate change scenario se-

lected leads to a significant increase of extreme wave heights only in the northern part of the region

but has only very little impact on the southern domain of the study, which interests the Sizewell

area (e.g., projected change for the 50-year return significant wave height in the region are be-
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tween 0 and -0.1 m, referring to the period between 2069 and 2099). Moreover, the same study

found offshore extremes (considered in this study) were not modified by sea level rise, which was

insignificant compared to the offshore water depths. Simplified assumptions have been made on

the composite seawall of the station, which has been considered as an equivalent uniform, smooth,

and impermeable slope. Moreover, as suggested by Hedges et al. [29], the inclination of the sea-

wall has been considered as normally distributed with mean 0.05 (corresponding to an inclination

of 1:20) and standard deviation of 0.1. The generalized extreme value distributions described in

Table 1 have been adopted for the peak wave period and significant wave height. In order to avoid

unrealistically wave conditions, a Pearson correlation coefficient of 0.29 (represented by the con-

tinuous line in Fig.10) between the two variables has been computed from the respective series of

measurements available. This linear factor accounts for the fact that higher waves tend to have

longer periods, as shown by the data. The results of the reliability analysis are shown in Table 2.

As foreseeable, the conditional probability associated to the node WaveOvertopping grows along

with the seawater level.

Table 2: Conditional Probability of Exceedance of the Overtopping Admissible Rate Given Differ-
ent Values of Seawater Level

Sea Water Level WaveOvertopping
Over 5 m Above Ordnance Datum 3.262 · 10−04

Below 5 m Above Ordnance Datum 4.910 · 10−05

4.2.1 Top section: climate change scenarios

The TimeScenario node contemplates multiple outcome states, allowing three different time sce-

narios to be taken into consideration: the first related to the current conditions, the second to those

estimated for the year 2055, assuming that the station is still in operational order. Finally, the third

scenario involves the presence of spent fuel stored and the production of electric power on site is

limited to emergency diesels. The assumptions related to the three time scenarios are summarized

in Table 3. All the predictions related to climate change and adopted in the case study refer to

Table 3: Characterization of the Time Scenarios Adopted in This Study

Year of Reference Station State
Scenario 1 2015 Operational
Scenario 2 2055 Operational
Scenario 3 2099 Closed

a medium-emission scenario called SRES A1B, according to the Intergovernmental Panel on Cli-

mate Change classification. The greenhouse gas emission forecasts associated with this scenario

are based on the assumption of a future world with very rapid economic growth, a global pop-

ulation that peaks in midcentury and declines thereafter, and the rapid introduction of new and

30



more efficient technologies inspired by the balanced use of fossil and non-fossil energy sources

[51]. Projections [46] associated with this background have been adopted to update the extreme

seawater level return period values provided by the Environment Agency. As shown in Fig.11, the

results show the effect of sea level rise on the return values of the seawater level, which is expected

to increase of 0.301 m in 2055 and 0.659 m in 2099, in light of the emission scenario embraced.

Regarding the quantification of risk for extreme precipitation events, return period values from
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Figure 11: Return period curves for extreme sea water level

previous studies have been adopted [24]. Also, in this case, it is possible to note the growth in

frequency and intensity of the extreme precipitation events, along with the three time scenarios of

reference. Moreover, as shown in Fig.12 as well as by the results in Table 4, the difference be-

tween the precipitation amount in the three scenarios tends to grow for higher return periods, going

from 31 mm/d of difference between Scenarios 1 and 3 for the 500-year return period to 44 mm/d

for the 1,500-year return period. The state of the ExtremePrecipitation node directly determines
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Figure 12: Return period curves of daily extreme precipitation for the three scenarios considered

the outcome of DrainageSystem, which is assumed to fail when the design basis of 200 mm/d is

overcome. Similarly, the failure of the outfall, as well as the flooding of the area surrounding the
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Table 4: Extreme Precipitation Return Periods for the Three Time Scenarios Considered

Return Period Scenario1 Scenario2 Scenario3
500 y 154 mm/d 171 mm/d 185 mm/d
1000 y 198 mm/d 226 mm/d 237 mm/d
1500 y 224 mm/d 247 mm/d 268 mm/d

station, are supposed to occur when the still-water level is higher than 5 m AOD. In this case, the

seawater is expected to overcome the coastal embankment impeding the use of the access road

(located at 3.5 m AOD). Finally the FloodingInTheStationArea event is assumed to occur when the

depth of water accumulated in the nuclear island (neglecting the topological set-up of the area) is

equal to or higher than 1.15 m, design basis for the fire barriers, which are expected to act as flood

barriers up to that value.

4.2.2 Bottom section

Unlike the upper part of the network, the conditional probabilities of the internal failure section

are quite homogeneous in terms of sources of data. The majority of them, indeed, have been

collected from the scientific literature available. The probability of failure for the node Emergen-

cyPowerSupplies is assumed to equal 1 when the station is flooded and 3 · 10−09(combination of

the failure probabilities of the four emergency diesels) otherwise [19]. The four engines have been

considered independent because each of the four trains is capable of supplying its selected loads

independent of the other three systems [20]. Likewise, the probability of failure of the external

grid (ExternalPowerGrid) has been calculated as the product of the failure rates of the three off-

site substations to which the power plant is connected [50]. Also, in this case, independence has

been assumed and the hypothesis justified by the geographical distance of the three sites [20]. The

rate of planned and unplanned outages has been calculated on the basis of the refuelling schedule

and the frequency of past events, both derived from EDF documentation [21]. Also, the failure rate

of emergency hydrant systems has been collected from previous research [31]. Table 5 shows the

references related to the nodes of the bottom section for which the probability values have been

collected or derived from the available literature.

Table 5: References for the Input of Bottom Section Nodes Deduced from Previous Scientific
Research

Node Reference
ExternalPowerGrid [50]
EmergencyHydrantSystem [31]
OnSiteSubstation [50]
PlannedOutage [21]
UnplannedOutage [21]
EmergencyPowerSupplies [19]
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Figure 13: Most probable explanation for the SpentFuelExposure. The orange color refers to the
occurrence of the events highlighted

The state of the remaining events involved in the bottom part of the network is considered to be

directly inferable from the outcomes of their precursor nodes: SpentFuelExposure is assumed to

occur when both the CoolingSystem and the EmergencyPowerSupplies are out of order. Similarly,

the failure of the latter happens if the operator does not intervene appropriately (HumanError) or if

EmergencyHydrantSystem is not available. Finally, the CoolingSystem failure is caused by station

blackouts (i.e., the unavailability of both OffSiteAC and OnSiteAC). Due to lack of information, the

presence of reservoirs in the station has been neglected, as well as the topological configuration of

the site. This latter assumption is expected to result in a conservative approach.

4.3 Results

According to the results, the risk of exposure of the spent fuel grows in time along with the three

scenarios considered, as foreseeable on the basis of the natural event intensification. In spite of this,

as can be seen in Table 6, the increase is slight, and in none of the time periods does the probability

of severe accidents assume significant values. Similarly, the marginal probability of flooding in the

station area, as well as the probability of failure of the cooling system, show the same trend. The

probability of flooding in the surrounding area is more affected by climate change, as expected, but

it also always remains quite low in this case, within an order of magnitude of 10−5. In addition to

Table 6: Quantification of Risk for Several Events

Event Scenario1 Scenario2 Scenario3
(2015) (2055) (2099)

On-site Flooding 1.239 · 10−10 2.483 · 10−10 3.448 · 10−10

Cooling System 1.411 · 10−10 2.655 · 10−10 3.620 · 10−10

Spent Fuel Exposure 2.592 · 10−16 2.804 · 10−15 2.695 · 10−14

Flooding in Surroundings 3.147 · 10−07 1.699 · 10−06 1.176 · 10−05

quantifying the risks of failure of the different subsystems for different climate scenarios, the model

allows one to consider the most probable explanation for the occurrence of SpentFuelExposure,
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introducing the evidence associated with the event. Indeed, as previously highlighted, BNs permit

the updating the marginal probabilities of each node on the basis of the evidence available. On the

basis of these revised values, it is possible to reconstruct the most likely sequence of events behind

the occurrence of the outcome of interest. Fig.13 shows such a path: the events highlighted have

the highest occurrence probability conditional to the exposure of the fuel.

4.3.1 What-if analysis

Looking at the problem from the opposite perspective, it is possible to estimate the conditional

probability of an event of interest as well. Several What if scenarios have been evaluated in order

to better understand the distribution of the risk within the model. As is shown in Table 7, in the case

of failure of the cooling system or of flooding inside the perimeter of the nuclear island, the risk of

exposure grows exponentially in all the analysed cases: these two events are the most significant

precursors for the failure of the spent fuel pond system. Other events, such as the flooding in the

surrounding area or the malfunctioning of the drainage system, can raise the overall risk of several

orders of magnitude. Conversely, the occurrence of human error does not have much impact on the

risk of exposure: also, in combination with other events, such as the failure of the drainage system,

its contribution is quite low. Nevertheless, it has to be remembered that this part of the modelling

is strongly affected by lack of data: the use of expert judgements to better identify the weight of

each error contexts could significantly modify the impact of human error on the overall accident

scenario. Likewise, introducing evidence regarding the correct functioning of various subsystems,

Table 7: Risk of Spent Fuel Exposure Conditional to Evidence of Correct Functioning of Subsys-
tems

Event Scenario1 Scenario2 Scenario3
(2015) (2055) (2099)

Cooling System Failed 1.837 · 10−06 1.056 · 10−05 7.444 · 10−05

Station Flooded 2.090 · 10−06 1.129 · 10−05 7.813 · 10−05

Failure Drainage System 2.334 · 10−12 2.469 · 10−11 2.333 · 10−10

Surroundings Flooded 8.237 · 10−10 1.650 · 10−09 2.291 · 10−09

Human Error 2.645 · 10−16 2.832 · 10−15 2.714 · 10−14

Human Error &
Failure Drainage System 2.334 · 10−12 2.469 · 10−11 2.333 · 10−10

it is possible to notice the improved reliability of the overall system, as shown in Table 8. This

kind of analysis can become an extremely important support for decision making regarding the

eventual adoption of further actions to improve the robustness of the system. For example, in order

to evaluate the importance of events affecting the effectiveness of reaction in case of accidents,

the probability related to potential causes of this type of failure can be further analysed in order to

take the most effective action possible. The results in Table 9 show that, in case of flooding and

with regard to the current time scenario, the malfunctioning of the emergency hydrants is the most
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Table 8: Risk of Spent Fuel Exposure Conditional to Evidence on the Correct Functioning of
Subsystems

What if...? Scenario1 Scenario2 Scenario3
(2015) (2055) (2099)

Drainage System Operating 1.293 · 10−19 6.980 · 10−19 4.832 · 10−18

Surroundings Not Flooded 0 0 0
No Human Errors 2.592 · 10−16 2.804 · 10−15 2.695 · 10−14

probable explanation behind the lack of efficient reaction. In light of this, taking action to ensure

more auxiliary water supplies would further improve the reliability of the system, decreasing the

overall risk of exposure of the spent fuel dramatically.

Table 9: Probable Causes of Failure of Intervention (Emergency Supplies) in Case of Flooding

What if...? Scenario1
(2015)

Human Error 9.148 · 10−02

Failure Hydrant System 9.105 · 10−01

5 Discussion

The model proposed identifies three main types of interaction that can contribute to the overall

failure of the system: between natural hazards and the facility, between human operators and the

technological interface, and finally among the different components of the installation, which con-

stitute a complex internal network of dependencies. Each of these subsets of the overall problem

are modelled in view of their internal mechanisms of failure and then represented as the combina-

tion of elementary events connected to each other by causal links. This intuitive representation and

the flexibility of the approach adopted make the model particularly attractive for future upgrades

and improvements, and then potentially useful for more accurate real-world applications in the fu-

ture.

More generally, as shown by the case study discussed in this paper, BNs proved to be a valid instru-

ment for many aspects of Natech risk analysis: the integration of different models in the general

framework has been performed, data from very different sources have been adopted (from projec-

tions and experimental records to expert judgement), and the description of the complex system

has been carried out considering individual parts and their interactions, finally obtaining a coher-

ent framework that is easy to understand and accessible to non-experts. In addition, the ability to

perform inference (including very low probabilities) makes BNs suitable for the analysis of Natech

accidents and rare events. Finally, Bayesian updating and the prompt estimation of the risk associ-

ated with What if scenarios make this approach extremely attractive for real-time decision support.

On the other hand, two main drawbacks of this method have been identified with regard to this kind
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of application. First, the necessity to include natural events as variables of the inference problem

implies the need to adopt probabilistic models for their representation, in order to capture their

inner randomness and the aleatory uncertainty of data. On the contrary, the restriction to the use

of only discrete nodes, typical of traditional BN and exact inference, can strongly affect data and

undermine the credibility of the results. In addition, the assumption of independence between vari-

ables not connected by causal links can represent a strong limitation in the application of BNs to

natural hazard assessment: different meteorologically driven phenomena often show a more-or-

less significant degree of correlation that emerges from data but remains hardly explicable through

causal relationships, hence are impossible to represent with BNs. Second, a reliable tool for risk

assessment cannot avoid the epistemic uncertainty associated with the input. This is all the more

true when questionable data such as climate projections or expert judgements are involved. The

use of strongly uncertain data can lead to misleading results and, in the case of risk management, to

the adoption of ineffective, if not detrimental, actions. In other words, decision makers have to be

provided with information about the uncertainty affecting the results on which to base resolutions.

BNs lack this capability: also, in this case, it is necessary to overcome the restrictions related to

the use of discrete numerical values, adopting models that can capture the epistemic uncertainty of

the variables. The use of system reliability methods, as for the sea-wave overtopping model imple-

mented, appears to be a valid solution to include continuous variables and their correlation in the

BN framework. In light of this, future research will focus first on the implementation of automatic

algorithms to coherently integrate traditional system reliability methods with the BN methodology,

and then on extending this technique to more advanced methods that can capture the epistemic

uncertainty of data (e.g., adopting convex models and imprecise probabilities).

6 Conclusions

Features of BNs such as their inner flexibility and their capability to describe accurately dependen-

cies and causal events related to complex systems and to include data of different natures, make

them a promising tool in risk assessment applications. The current study aims to test the potential

of BNs in areas of particular significance for Natech events. It focused on the implementation of a

BN for the evaluation of the risk of exposure of spent nuclear fuel stored on site in a power plant

subject to flooding hazards. The model proposed addresses the increasing concerns, raised by the

public as well as the scientific community, regarding the safety of technological installations and

their vulnerability to extreme weather events, as well as the lack of suitable tools for the assess-

ment of the risks related to such hazards. The network includes the effect of climate change on

natural hazards to simulate their direct interaction with the facility and that of human error on the

resilience and response to internal failures. The application to a real-world case study (namely,

the nuclear power plant of Sizewell B) has been analysed, performing inference for three different

time scenarios (i.e., 2015, 2055, and 2099). The marginal probabilities of single events, as well as
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those associated with particular accident scenarios, have been computed, revealing a general trend

of the risk increasing with time. In spite of this, in none of the analysed accident scenarios did the

probability of exposure of the nuclear fuel or of other important precursor events reach significant

values. The results of the analysis indicate a good degree of robustness of the facility against cur-

rent and future external hazards.

Finally, the validity of BNs as a tool for risk assessment of complex systems is attested and their

limitations in this field identified. The combination of BNs with structural reliability methods is

found to be a suitable solution to overcome some of the BN limitations found in the study. Indeed,

it allows including continuous variables in the analysis, improving accuracy without sacrificing the

efficiency of exact-inference algorithms.
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