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3

ABSTRACT4

In this paper, the challenge of quantifying the uncertainty in stochastic process spectral5

estimates based on realizations with missing data is addressed. Specifically, relying on rela-6

tively relaxed assumptions for the missing data and on a Kriging modeling scheme, utilizing7

fundamental concepts from probability theory, and resorting to a Fourier based representa-8

tion of stationary stochastic processes, a closed-form expression for the probability density9

function (PDF) of the power spectrum value corresponding to a specific frequency is derived.10

Next, the approach is extended for determining the PDF of spectral moments estimates as11

well. Clearly, this is of significant importance to various reliability assessment methodologies12

that rely on knowledge of the system response spectral moments for evaluating its survival13

probability. Further, it is shown that utilizing a Cholesky kind decomposition for the PDF14

related integrals the computational cost is kept at a minimal level. Several numerical exam-15

ples are included and compared against pertinent Monte Carlo simulations for demonstrating16
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the validity of the approach.17

Keywords: Uncertainty quantification; Survival probability; Spectral moments; Missing18

data; Kriging; Spectral estimation19

20

INTRODUCTION21

In research fields such as stochastic structural dynamics, stochastic processes are most22

often described by statistical quantities such as the power spectrum. In this regard, several23

approaches exist in the literature for stochastic process power spectrum estimation. For24

instance, a Fourier basis is typically utilized in the spectral estimation of stationary processes25

(Newland 1993). Further, similar to the stationary case, the evolutionary power spectrum26

related to non-stationary processes can be estimated by employing wavelet (e.g. (Spanos and27

Failla 2004); (Kougioumtzoglou et al. 2012) ) or chirplet bases (Politis et al. 2007) among28

other alternatives; see also (Qian 2002) for a detailed presentation of joint time-frequency29

analysis techniques.30

It is noted that the above spectral estimation approaches often require a large number31

of complete data samples for attaining a predefined adequate degree of accuracy. However,32

missing data in measurements is frequently an unavoidable situation. In fact, missing data33

are possible in almost any situation where data are collected and stored. Indicative reasons34

in engineering dynamics measurement applications include failure and/or restricted use of35

equipment, as well as data corruption and cost/bandwidth limitations.Thus, standard spec-36

tral analysis techniques that inherently assume the existence of full sets of data, such as37

those based on Fourier, wavelet and chirplet transforms, cannot be used in a straightforward38

manner.39

To address this challenge, a number of signal reconstruction techniques subject to miss-40

ing/incomplete data (e.g. Lomb-Scargle periodogram, iterative deconvolution method CLEAN,41

ARMA-model based techniques, etc) have been developed with various degrees of accuracy;42

see (Wang et al. 2005) for a review. Indicatively, (Comerford et al. 2016) developed recently a43
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compressive sensing approach (e.g. (Eldar and Kutyniok 2012)) based on L1-norm minimiza-44

tion for stationary and non-stationary stochastic process/field (evolutionary) power spectrum45

estimation subject to highly incomplete data, which has already been applied to practical46

engineering problems (Comerford et al. 2017; Kougioumtzoglou et al. 2017). The approach47

has been shown to be particularly advantageous for cases where multiple records/realizations48

compatible with a stochastic process are available. In such cases, a re-weighting procedure49

can be introduced to improve the result to a large degree (Comerford et al. 2014). Further,50

an artificial neural network based approach was also developed recently having the advantage51

that no prior knowledge of the underlying process is required (Comerford et al. 2015a).52

Although all of the above methodologies can, depending on the setting, potentially pro-53

vide a relatively accurate stochastic process power spectrum estimate, they will also prop-54

agate inaccuracies from missing data predictions in the time domain through to the final55

spectral estimates. Most of the aforementioned techniques estimate the power spectrum56

by reconstructing missing parts of the data, and based on these reconstructed full data,57

standard spectral analysis methods are applied. Nevertheless, reconstructing the available58

records, and thus, deterministically estimating/predicting missing values, rarely accounts for59

the inherent uncertainty associated with the missing data. Hence, there is merit in develop-60

ing a methodology for quantifying the uncertainty in a given spectral estimate as a result of61

the uncertainty related to the missing data in the time/space domain.62

In this manner, to quantify the uncertainty of spectral estimates subject to missing data,63

a stochastic model accounting for the uncertainty in the missing data in the time/space64

domain can be considered based on any available prior knowledge (e.g. an appropriately65

estimated probability density function (PDF)). Further, the uncertainty in the missing data66

can be propagated and the PDF for each individual power spectrum point can be determined67

in the frequency domain. In this regard, (Comerford et al. 2015b) proposed a methodology68

and determined a closed form expression for the power spectrum estimate PDF under the69

assumption that the (missing data) variables in the time domain are independent Gaussian70
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random variables. Note, however, that this approach does not consider the correlation71

between the missing points, and thus, can be largely unrepresentative, for instance, of a72

signal with harmonic features. Further, by virtue of the central limit theorem (Billingsley73

2008), it is reasonable for many cases (e.g. environmental processes such as earthquakes,74

winds, sea waves and, for linear systems, the structural responses subject to these effects)75

to consider the missing points following a multi-variate Gaussian PDF.76

In this paper, the approach developed in (Comerford et al. 2015b) is extended to account77

for the correlation between the missing data. Although determining the exact correlation78

between points is practically a quite challenging task, an estimate can be obtained by relying79

on existing available data and employing various modeling schemes such as Kriging (Stein80

1999). Further, an additional significant contribution of the herein proposed methodology81

is that it is generalized to evaluate not only the power spectrum points PDFs, but also82

the PDFs of the corresponding spectral moments. Clearly, this is of considerable impor-83

tance to various engineering dynamics applications such as to structural system reliability84

assessment, where the survival probability (or equivalently, the first-passage time) can be85

estimated approximately based on knowledge of spectral moments (Vanmarke 1975). Several86

numerical examples are included and compared against pertinent Monte Carlo simulations87

for demonstrating the validity of the approach.88

89

MATHEMATICAL FORMULATION90

Uncertainty quantification of the power spectrum estimate under missing data91

Consider a zero mean stationary process represented as92

f(t) =

∫ +∞

−∞
A(ω)eiωtdZ(ω), (1)93

(Priestley 1982; Cramer and Leadbetter 1967), where A(ω) is a deterministic function and94

dZ(ω) is a zero mean orthonormal increment stochastic process. The two-sided power spec-95
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trum Sf (ω) of process f(t) is then defined as Sf (ω) = |A(ω)|2. In general, realizations of a96

stochastic process that are compatible with a given spectrum can be generated by a spectral97

representation methodology (Shinozuka and Deodatis 1991) in the form98

f(t) = 2
N−1∑
n=0

√
Sf (ω)∆ω cos(ωnt+ φn), (2)99

where φn is the independent random phase angle distributed uniformly over the interval100

[0, 2π]. The realizations generated by Eq.(2) exhibit the property of ergodicity (Shinozuka101

and Deodatis 1991); hence, the power spectrum Sf (ω) of the underlying process can be102

estimated by utilizing a single realization only. In this regard, and employing the discrete103

Fourier transform (DFT) yields104

Sf (ωk) = lim
N−→∞

T

2πN2

∣∣∣∣∣
N−1∑
n=0

xne
−2πikn/N

∣∣∣∣∣
2

, (3)105

where N is the number of data points, t and k are the time and frequency indices respectively,106

and T is the time duration. In the following, the condition N −→ ∞ is omitted, for107

convenience, under the assumption that the length is long enough to provide with an accurate108

spectrum estimate. Following the notation of (Comerford et al. 2015b), the data points are109

divided into 2 parts: the known points xα and missing points xβ, where α and β are indices110

of the known and unknown points, respectively; thus, Eq.(3) can be further cast in the form111

Sf (ωk) =
T

2πN2
|M1 +M2 − i(M3 +M4)|2 =

T

2πN2

[
(M1 +M2)

2 + (M3 +M4)
2
]

(4)112

where M1 =
∑

α xα cos
(
2πkα
N

)
, M2 =

∑
β xβ cos

(
2πkβ
N

)
, M3 =

∑
α xα sin

(
2πkα
N

)
, and M4 =113 ∑

α xα sin
(
2πkα
N

)
. Next, Sf (ωk) is rewritten into the simpler form114

Sf (ωk) = (c1 + a′Xβ)2 + (c2 + b′Xβ)2 (5)115
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where (′) denotes the transpose,116

c1 =

√
T

2πN2

∑
α

xα cos

(
2πkα

N

)
(6)117

118

c2 =

√
T

2πN2

∑
α

xα sin

(
2πkα

N

)
(7)119

120

a =

√
T

2πN2

(
cos

(
2πkβ1
N

)
, cos

(
2πkβ2
N

)
, ..., cos

(
2πkβu
N

))′
(8)121

122

b =

√
T

2πN2

(
sin

(
2πkβ1
N

)
, sin

(
2πkβ2
N

)
, ..., sin

(
2πkβu
N

))′
(9)123

and124

Xβ = (xβ1, xβ2, ..., xβu)
′ (10)125

where u is the number of missing points.126

By virtue of the central limit theorem (Billingsley 2008), it is reasonable in many cases127

to make the approximation that missing points follow a multi-variate Gaussian PDF. In this128

regard, the various statistical quantities such as the mean and variance for each missing129

point as well as the correlation between missing points are taken into consideration. In130

the ensuing analysis, it is assumed that the mean and correlation matrix of the missing131

data following a Gaussian distribution, i.e. Xβ ∼ N(µ,Σ), are obtained by some available132

estimation scheme, such as the Kriging model; see following section for more details.133

Next, Eq.(5) is rearranged (see also (Papoulis and Pillai, 2002)) as a function of two134

variables in the form135

Sf (ωk) = (c1 + a′Xβ)2 + (c2 + b′Xβ)2 = X2
1 +X2

2 (11)136

It is readily seen that X1 = c1 + a′Xβ ∼ N(c1 + a′µ, a′Σa) and X2 = c2 + b′Xβ ∼137

N(c2 + b′µ, b′Σb). Because both X1 and X2 are related to the same set of random variables138

Xβ, it is obvious that they exhibit some degree of correlation. In this regard, the correlation139
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matrix CX1X2 of joint Gaussian variables X1 and X2 is given by140

CX1X2 =

 a′Σa
∑

i

∑
j aibj(Σij + µ1µ2)− b′µa′µ∑

i

∑
j aibj(Σij + µ1µ2)− b′µa′µ b′Σb

 (12)141

and the mean vector of joint Gaussian variables X1 and X2 takes the form142

µX1X2 = (c1 + µ, c2 + µ)′ (13)143

Further, to determine the PDF of the variable Sf (ωk) in Eq.(11), the celebrated input-144

output PDF relationship (Papoulis and Pillai 2002) is applied, and the cumulative distribu-145

tion function (CDF) of Sf (ωk) is defined as146

F (Sf ) = P (Sf ≤ s) = P [(X1, X2) ∈ Ds] =

∫∫
(X1,X2)∈Ds

fX1,X2(X1, X2)dX1dX2 (14)147

where Ds is the region such that X2
1 + X2

2 ≤ s is satisfied, fX1,X2(X1, X2) is the joint PDF148

of the variables X1 and X2; the PDF of Sf (ωk) is given by149

fs(s) =
dF (Sf )

ds
(15)150

Thus, taking into account Eqs. (11-15), an analytical expression for the power spectrum151

PDF at a given frequency ωk is derived in the form152

pSf (ωk)(s) =
d

ds

∫∫
X2

1+X
2
2≤s

1

2π
√
|CX1X2|

exp

[
−1

2
(X − µX1X2)

′C−1X1X2
(X − µX1X2)

]
dX1dX2

(16)153

In this section an approach has been developed for quantifying the uncertainty in a154

stochastic process power spectrum estimate subject to missing data. Specifically, a closed155

form analytical expression has been derived in Eq.(16) for the power spectrum estimate PDF156

7



corresponding to a given frequency. In comparison with the methodology in (Comerford et al.157

2015b), which adopts the assumption that missing data in a given realization are indepen-158

dent and identically distributed Gaussian random variables, the rather strict assumption of159

independence is abandoned herein. In this manner, the correlation between the missing data160

is taken into account in estimating the power spectrum PDF.161

162

Kriging model for estimating correlations between missing data163

Clearly, the approach developed in the previous section relies on prior knowledge of164

the correlation between the missing data. Among the various available techniques in the165

literature for estimating data correlation relationships a Kriging based scheme (e.g. (Stein166

1999); (Gaspar et al. 2014) and (Jia and Taflanidis 2013)) is considered in the ensuing167

analysis.168

Specifically, let f(t) be a sample of a stationary stochastic process with a power spectrum169

Sf (ω). Given the n known points ti, i = 1, 2, ..., n, an estimate of f(tj) at the missing point170

tj, can be obtained as a weighted linear combination of the available known points (Stein171

1999), i.e.,172

f(tj) =
n∑
i=1

λif(ti) + z(t) (17)173

where λi is the weight of each known point, and z(t) is a stationary Gaussian process with174

zero mean and covariance175

C = cov (z(ti), z(ti − tj)) = γ (|ti − tj|) = σ2
zR (|ti − tj|) (18)176

where σ2
z is the constant variance of the process and R is the correlation function. Several177

types of correlation functions, such as exponential, linear and Gaussian, have been proposed178

in the literature (Kaymaz 2005). Herein, a correlation function of exponential form is adopted179
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due to its applicability in a wide range of engineering processes (Spanos et al. 2007), i.e.180

γ(h) = σ2
ze
−θ1|h| cos(θ2h)(1 + θ1|h|) (19)181

where h = ti − tj is the interval between two time instants, and θ1, θ2 are constant values182

to be determined. Next, σ2
z , θ1 and θ2 are obtained by least-squares fitting of eq.19 to the183

available data, i.e.,184

min
σ2
z ,θ1,θ2

|γ(h)− γe(h)|2 (20)185

where | · |2 denotes the L-2 norm, γe(h) = 1
n

∑n
i=1[f(ti + h)f(ti)], and f(ti + h), f(ti) are the186

known points.187

Further, utilizing the Kriging model of Eq.(17) the estimate error variance is given by188

V = V ar[f ∗(tj)− f(tj)] = 2
n∑
i=1

λiγ(|ti − tj|)−
n∑
i=1

n∑
k=1

λiλkγ(|ti − tk|)− σ2
z (21)189

Next, to minimize the error variance V , a Lagrange multipliers approach is applied yield-190

ing the equations191


∑n

i=1 λiγ(|ti − tk|) + κ = γ(|ti − tj|), (j = 1, ..., n)∑n
i=1 λi = 1

(22)192

to be solved for the weights λi and Lagrange multiplier κ . Further, an estimate of the193

missing point is given by Eq.(17). Then, the covariance matrix C of the sample could be194

easily obtained through Eq.(18).195

Note that, denoting the time history vector x as x = (xβ, xα), the covariance matrix C196

can be expressed as C =

Cββ Cβα

Cαβ Cαα

, where Cββ is the matrix whose rows and columns197

correspond to the missing points xβ, while Cαα corresponds to the known points xα. In this198

regard, the conditional covariance matrix Σ of the missing points is calculated as (Papoulis199
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and Pillai 2002)200

Σ = C{xβ|xα} = Cββ − CβαC−1ααCαβ (23)201

Overall, adopting a Kriging modeling approach in this section, the mean and covariance of202

missing data are estimated, and can be used as an input to the approach developed in the203

previous section.204

205

Stochastic process spectral moment estimate uncertainty quantification under206

missing data207

For stationary random processes, the spectral moments are defined as208

λi =

∫ +∞

−∞
ωiS(ω)dω (24)209

where S(ω) is the two-sided power spectrum (e.g. (Lutes and Sarkani 2004)). Considering210

next the case of a zero mean process, the zero spectral moment λ0 is equal to the mean square211

E[X2] of the process X (also equal to the squared standard deviation σ2
X in this case), and212

the second spectral moment λ2 is the mean square E[Ẋ2] of the derivative process X.In a213

similar manner as the moments of a random variable are used to describe certain features214

of the related PDF, spectral moments are indispensable in a variety of applications such as215

determining approximately the survival probability (or equivalently, the first-passage time)216

and assessing the reliability of structural systems (e.g. (Vanmarke 1972); (Vanmarke 1975);217

(Lutes and Sarkani 2004)).218

Further, Eq.(24) can be recast into a discrete form in the frequency domain, i.e.219

λi =
∑
n

ωinS(ωn)∆ω (25)220

Clearly, based on Eq.(25) the spectral moment can be viewed as a linear combination221

of individual power spectrum points. Note that although the PDFs of the power spectrum222
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points S(ωn) can be obtained by the methodology developed in the previous sections, a223

straightforward determination of the PDF of the spectral moment λi can be quite daunting224

due to the following reasons. First, the various power spectrum points S(ωn) do not, in225

general, follow the same PDF for different frequency values ωn. Second, the variables S(ωn)226

exhibit correlation as they are defined by utilizing the same set of random variables.227

Next, to address these challenges, a methodology based on characteristic functions is228

proposed. The characteristic function of a random variable is defined as (Papoulis and Pillai229

2002)230

ΦX(ω) = E[eiωx] =

∫ +∞

−∞
fX(x)eiωxdx (26)231

where fX(x) is the probability density function of X. Clearly, the characteristic function232

and the PDF of a random variable form a Fourier transform pair. Further, the spectral233

moment Eq.(25) can be construed as a quadratic transformation of the missing points Xβ.234

The correlated variables Xβ ∼ N(µ,Σ), where Σ can be cast into the Cholesky factorization235

form Σ = AA′ ( A being a lower triangular matrix), are replaced by a new set of independent236

standard Gaussian variables Xg ∼ N(0, I) as237

Xβ = µ+ AXg (27)238

Next, employing Eqs.(25-27), Eq.(5) can be cast in the matrix form239

Sf (ωk) = (c1,k + a′kµ+ a′kXg)
2 + (c2,k + b′kµ+ b′kXg)

2 = X ′gnBkXgn (28)240

where c1,k, c2,k, ak, and bk are defined by Eq.(6-9),241

Xgn = [X ′g, 1]′ = [xg1, xg2, ..., xgu, 1]′, (29)242
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and243

Bk,ij =



ak,iak,i + bk,ibk,i, i, j ≤ u

(c1,k + a′kµ)ak,i + (c2,k + b′kµ)bk,i, j = u+ 1, i 6= u+ 1

(c1,k + a′kµ)ak,j + (c2,k + b′kµ)bk,j, i = u+ 1, j 6= u+ 1

(c1,k + a′kµ)2 + (c2,k + b′kµ)2, i = j = u+ 1

(30)244

Combining Eqs.(25) and (29), the spectral moments are given, alternatively, in the form245

λi = X ′gn

(∑
k

ωik∆ωBk

)
Xgn (31)246

whereas utilizing Eq.(31) the characteristic function of the spectral moments becomes (Pa-247

poulis and Pillai 2002)248

Φλi(ω) = E[eiωλi ] =

∫ +∞

−∞
(2π)−

u
2 exp

(
−1

2

[
X ′gXg − iωX ′gn

(∑
k

ωik∆ωBk

)
Xgn

])
dxg

(32)249

Note that, the evaluation of Eq.(32) can be simplified based on the following steps.250

Specifically,251

1) Let252

Y =
1

2

[
X ′gXg − iωX ′gn

(∑
k

ωik∆ωBk

)
Xgn

]
(33)253

Eq.(33) can be divided into two parts, i.e., Y = Y1 + Y2. The first includes the second254

order terms, i.e. Y1 =
∑

i,j cijxgixgj ,while the second includes the first order terms plus the255

constant term, i.e. Y2 =
∑

i cixgi + ccons . Thus, Eq.(32) can be rewritten as256

Φλi(ω) = E[eiωλi ] =

∫ +∞

−∞
(2π)−

u
2 e−Y1−Y2dxg (34)257

258

259
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2) Similar to Eq.(31), Y1 can be expressed as Y1 = X ′gBY1Xg where BY1 is given by260

BY1 = A′Y1AY1 (35)261

In Eq.(35) AY1 is a complex upper triangular matrix. Here, A′Y1 indicates the non-conjugate262

transpose of AY1 , similarly in Eq.36. The factorization in Eq.(35) is numerically implemented263

via a Cholesky factorization kind algorithm (Golub and Van Loan 1996) with the note that264

the diagonal elements in BY1 are complex values.265

266

3) After obtaining the upper triangular matrix AY1 , Y may be expressed in a similar form267

to Y1 (after accounting for first order terms and the constant); thus simplifying the solution268

of the integral in Eq.(34). Hence269

Y = (AYXgn)′(AYXgn) + cY (36)270

where AY = (AY1 , au×1), and au×1 are the coefficients to account for the first order terms271 ∑
iXgi in Y2 (with u being the number of missing data); and cY is a constant. A worked272

2-variable example is shown in detail in Appendix.273

274

4) Finally, substituting Eq.(36) into Eq.(32), the integral in Eq.(32) may be simplified sig-275

nificantly to a function of BY1 , and the constant term cY in the form276

Φλi(ω) = E[eiωλi ] = 2−
u
2 (det(BY1))

− 1
2 e−cY (37)277

whereas the spectral moments PDFs are estimated via the inverse Fourier transform of278

Eq.(32), i.e.279

pλi(s) =
1

2π

∫ +∞

−∞
Φλi(ω)eiωsdω (38)280

In this section an efficient approach has been developed for quantifying the uncertainty281
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in the spectral moments estimates of an underlying stochastic process based on available282

realizations with missing data. Specifically, a closed form expression has been derived in283

Eq.(32) for the spectral moment characteristic function. The rather daunting brute force284

numerical evaluation of the integral appearing in the derived expression has been conve-285

niently circumvented via a Cholesky kind decomposition of the integrand function. Clearly,286

the development in this section is of considerable importance (as illustrated in the following287

section) to various engineering dynamics applications such as to structural system reliability288

assessment (Vanmarke 1975).289

290

Survival probability estimate uncertainty quantification under missing data291

A persistent challenge in the field of stochastic dynamics has been the determination292

of the system survival probability, i.e. the probability that the structural system response293

will stay below a certain threshold over a given period of time. Many research efforts for294

addressing the aforementioned challenge exist in the literature ranging from semi-analytical295

to purely numerical approaches (e.g. (Spanos and Kougioumtzoglou 2014); (Bucher 2001);296

(Au and Beck 2001)). One of the first semi-analytical approximate approaches proposed by297

Vanmarke (Vanmarke 1975) that relies on the knowledge of the system response spectral298

moments (Vanmarke 1972) is considered next.299

Specifically, consider a linear single-degree-of-freedom (SDOF) oscillator, whose motion300

is governed by the stochastic differential equation301

ẍ+ 2ζ0ω0ẋ+ ω2
0x = w(t) (39)302

where x is the response displacement, a dot over a variable denotes differentiation with303

respect to time t; ζ0 is the ratio of critical damping; ω0 is the oscillator natural frequency304

and w(t) represents a Gaussian, zero-mean stationary stochastic process possessing a broad-305

band power spectrum S(ω). Focusing next on the stationary response of the oscillator, the306
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response displacement and velocity power spectra are given by (Newland 1993)307

SX(ω) = |H(ω)|2S(ω) (40)308

and309

SẊ(ω) = ω2SX(ω) = ω2|H(ω)|2S(ω) (41)310

respectively; and the frequency response function H(ω) is given by311

H(ω) =
1

ω2
0 − ω2 + 2iζ0ω0ω

(42)312

According to (Vanmarke 1975) and (Crandall 1970), the time-dependent survival proba-313

bility LD(t) of a linear oscillator given a barrier level D can be approximated by314

LD(t) = exp

[
− 1

π

√
λX,2
λX,0

t exp

(
− D2

2λX,0

)]
(43)315

where λX,i is the i-th order spectral moment of the displacement x. Note that for the specific316

case of the linear oscillator of Eq.(39), and considering a low value for the damping ratio,317

i.e. ζ0 ≤ 0.05, its response exhibits a narrow-band feature in the frequency domain due to318

the form of the frequency response function (see Eq.(40)). In particular, it can be seen that319

|H(ω)|2 is a function with a sharp peak around the oscillator natural frequency ω = ω0, and320

decays quickly for ω 6= ω0. Thus, it is reasonable to assume that the response of the linear321

oscillator exhibits a pseudo-harmonic behavior (Spanos 1978), and the response displacement322

and velocity can be represented, respectively, as323

x = a cos(ω0t+ ϕ) (44)324

and325

ẋ = −aω0 sin(ω0t+ ϕ) (45)326
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In Eq.(44), a and ϕ represent the response amplitude and phase processes, respectively; see327

also (Spanos 1978) and (Kougioumtzoglou and Spanos 2012) for more details. Considering328

next Eqs.(44-45), the independence of a with ϕ and taking into account that E(cos2(ω0t +329

ϕ)) = E(sin2(ω0t+ ϕ)) yields330

E(ẋ2) = ω2
0E(x2) (46)331

or in other words332

λX,2 = ω2
0λX,0 (47)333

Substituting Eq.(47) into Eq.(43) yields an approximate expression for the oscillator survival334

probability that depends only on λX,0, i.e.335

LD(t) = exp

[
−ω0

π
t exp

(
− D2

2λX,0

)]
(48)336

In Eq.(48), the analytical expression for the PDF of λX,0 in the case of missing data can337

be derived by the methodology described in the previous sections. After determining the338

PDF pλX,0
, the system survival probability characteristic function can be obtained as339

ΦLD
(ωk) = E[eiωkLD ] =

∫ +∞

−∞
eiωkLDpλX,0

dλX,0 (49)340

whereas, an inverse Fourier transform can applied to Eq.(49) for numerically evaluating the341

survival probability PDF.342

343

NUMERICAL EXAMPLES344

Excitation records with missing data345

To demonstrate the validity of the developed uncertainty quantification approach, sta-346

tionary stochastic process time histories compatible with the Kanai-Tajimi-like earthquake347
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engineering power spectrum of the form348

S(ω) = S0

ω4
g + 4ζ2gω

2
gω

2

(ω2
g − ω2)2 + 4ζ2gω

2
gω

2
(50)349

where ωg = 5πrad/s and ζg = 0.63 , are generated via Eq.(2) with a time duration of350

8.64 seconds and time step of 0.039 seconds. To compare with the method described in351

(Comerford et al. 2015b), a factor S0 = 0.011 is introduced to make the standard deviation352

equal to 1. Next, uniformly randomly distributed missing data are artificially induced to353

provide a Monte-Carlo simulation comparison; 10, 000 samples are used in the following354

results.355

Figure 1 shows the estimated power spectrum PDFs and confidence ranges determined356

via the herein developed approach for 10% missing data. For comparison purposes Figure357

2 is the result of applying the methodology in (Comerford et al. 2015b), where correla-358

tions between missing data are not taken into consideration and the missing points follow359

independent identical Gaussian distributions Xβ ∼ N(0, I). Compared with Figure 2, the360

method developed herein provides with a smaller range, and the mean spectrum fits the orig-361

inal spectrum better. Figure 3 shows the PDFs corresponding to frequencies 10.9 and 30.5362

rad/s with 10% missing data replaced both by correlated and by independent identically363

distributed Gaussian random variables. The vertical lines correspond to the spectral values364

without missing data. Figure 4 shows the spectral moment λ0 of the excitation spectrum,365

compared with pertinent Monte Carlo simulations. It can be readily seen that in all cases366

accounting for the correlation of the missing data, as estimated via the Kriging model, yields367

spectral estimates PDFs that are much closer to the true value.368

369

370
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Structural response records with missing data371

In the second example, consider a linear oscillator with ω0 = 10.9rad/s, and ζ0 = 0.05.372

Further, the missing data are introduced into the stationary records of the oscillator response,373

which are generated by utilizing the same excitation spectrum as in the first example, and374

by numerically solving the equation of motion. Similarly, the artificially induced missing375

data in the response records are uniformly randomly distributed, this time with 100, 000376

Monte-Carlo samples utilized for increased accuracy in the spectral moment comparison.377

Figure 5 shows the power spectrum PDF and confidence ranges of the oscillator response378

with 70% missing data determined by the herein developed methodology. For comparison379

purposes Figure 6 is the result of applying the methodology in (Comerford et al. 2015b),380

where correlations between missing data are not taken into consideration and the missing381

points follow independent identical Gaussian distributions. As anticipated, it can be readily382

seen that neglecting the correlation structure in the missing data has a bigger negative effect383

when considering narrow-band signals (see Figures 5 and 6) rather than broad-band ones (see384

Figures 1 and 2). In fact, for the highly correlated oscillator response process disregarding385

the correlation structure yields an almost constant power spectrum estimate value. Figure 7386

shows the PDF of the response spectral moment λ0, compared with pertinent Monte Carlo387

simulations. In Figure 8 the PDF of the oscillator survival probability Eq.(48) with 70%388

missing data and a barrier level a = 0.05 is plotted and compared with pertinent Monte389

Carlo simulations of Eq.(43).390

391

CONCLUSION392

In this paper, an analytical approach for quantifying the uncertainty in stochastic pro-393

cess power spectrum estimates based on samples with missing data has been developed.394

Specifically, the correlations between the missing data are considered by employing a Krig-395

ing model, while utilizing fundamental concepts from probability theory, and resorting to a396

Fourier based representation of stationary stochastic processes, a closed form expression has397
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been derived for the power spectrum estimate PDF at each frequency. Next, the approach398

has been extended for determining the PDF of spectral moments estimates as well. This is399

of considerable significance to reliability assessment methodologies as well, where spectral400

moments are used for evaluating the survival probability of the system. Further, it has been401

shown that utilizing a Cholesky kind decomposition for the PDF related integrals the com-402

putational cost is kept at a minimal level. Several numerical examples have been presented403

and compared against pertinent Monte Carlo simulations for demonstrating the validity of404

the approach.405
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409

APPENDIX410

By factorizing part of the integrand of Eq.(32) (given as Y in Eq.(33), the solution of411

Eq.(32) may be greatly simplified. In the following, a 2-variable case is given as an example.412

For a 2-variable case, Eq. (31) becomes413

λi = ax21 + bx1x2 + cx22 + dx1 + ex2 + f (51)414

where a, b, c, d, e, f are real constant with a > 0, c > 0, f > 0. Eq.(51) can be also recast into415

a matrix form as416

λi =

(
x1 x2 1

)
a 0.5b 0.5d

0.5b c 0.5e

0.5d 0.5e f



x1

x2

1

 (52)417

Further, according to Eq.(33), Y has the form418

Y =
1

2
x21 +

1

2
x22 − iω(ax21 + bx1x2 + cx22 + dx1 + ex2 + f) (53)419
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The object of step 3 is to recast Eq.(53) into the form given by Eq.(36). To achieve this420

goal, second order terms of Y are separated and then factorized as follows,421

Y1 =
1

2
x21 +

1

2
x22 − iω(ax21 + bx1x2 + cx22)

=

(
x1 x2

)0.5− iωa −0.5iωb

−0.5iωb 0.5− iωc


x1
x2


=

(
x1 x2

)
A′Y1AY1

x1
x2


(54)422

where AY1 =


√

0.5− iωa − iωb
2
√
0.5−iωa

0

√
ω2b2

2− 4iωa
+ 0.5− iωc

, and A′Y1 is the non-conjugate trans-423

pose of AY1 , i.e., A′Y1AY1 =

0.5− iωa −0.5iωb

−0.5iωb 0.5− iωc

. This calculation can use follow the424

same numerical implementation steps as a Cholesky factorization algorithm with the note425

that

0.5− iωa −0.5iωb

−0.5iωb 0.5− iωc

 is not a Hermitian positive-definite matrix. Then, extending426

Y1 to account for the first order terms in Eq.(53), Y may be written as,427

Y =
1

2
x21 +

1

2
x22 − iω(ax21 + bx1x2 + cx22 + dx1 + ex2 + f)

=

(
x1 x2

)
A′Y1AY1

x1
x2

− iω(dx1 + ex2 + f)

= (AY


x1

x2

1

)′(AY


x1

x2

1

) + cY

(55)428
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whereAY =



√
0.5− iωa − iωb

2
√
0.5−iωa − iωd

2
√
0.5−iωa

0

√
ω2b2

2− 4iωa
+ 0.5− iωc

bdω2

1−2iωa
−iωe

2

√√√√ ω2b2

2− 4iωa
+0.5−iωc

0 0 0


, cY = −(− iωd

2
√
0.5−iωa)2−429

(
bdω2

1−2iωa
−iωe

2

√√√√ ω2b2

2− 4iωa
+0.5−iωc

)2 − iωf .430

Calculating the first term in Eq.(55), it can be seen that (AY


x1

x2

1

)′(AY


x1

x2

1

) takes431

the form432

(AY


x1

x2

1

)′(AY


x1

x2

1

) = (m1x1 +m2x2 +m3)
2 + (m4x2 +m5)

2 (56)433

where the constants m1,m2,m3,m4,m5 are calculated by AY . Hence, Y may be written as434

Y = (m1x1 +m2x2 +m3)
2 + (m4x2 +m5)

2 + cY (57)435

The form Eq.(57) is particularly useful in calculating the integral in Eq.(32), allowing it436

to be simplified as shown437

Φλi(ω) = E[eiωλi ] =

∫ +∞

−∞
(2π)−

u
2 exp(−Y )dxg

= (2π)−1
∫∫ +∞

−∞
exp[−(m1x1 +m2x2 +m3)

2 − (m4x2 +m5)
2 − cY ]dx1dx2

= (2π)−1
√
π

m1

∫ +∞

−∞
exp[−(m4x2 +m5)

2 − cY ]dx2

=
1

2m1m4

exp(−cY )

(58)438

For the general multi-variable case, the above steps are the same.439
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FIG. 1. Power spectrum probability densities with 10% missing data replaced by cor-
related Gaussian random variables
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FIG. 2. Power spectrum probability densities with 10% missing data replaced by inde-
pendent identically distributed Gaussian random variables
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FIG. 3. PDFs at 10.9 and 30.5 rad/s with 10% missing data replaced by both corre-
lated and independent identically distributed Gaussian random variables. Monte-Carlo
estimated PDFs (MC) are shown for validation of the procedure. The vertical line
shows the spectral value without missing data
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FIG. 4. PDF of spectral moment λ0 with 10% missing data replaced by both corre-
lated and independent identically distributed Gaussian random variables. Monte-Carlo
estimated PDFs (MC) are shown for validation of the procedure. The vertical line
shows the spectral moment λ0 value without missing data
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FIG. 5. Oscillator response power spectrum PDF with 70% missing data replaced by
correlated Gaussian random variables
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FIG. 6. Oscillator response power spectrum PDF with 70% missing data replaced by
independent identically distributed Gaussian random variables
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FIG. 7. PDF of response spectral moment λ0 with 70% missing data. The Monte-
Carlo estimated PDF (MC) is shown for validation of the procedure. The vertical line
shows the spectral moment without missing data
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FIG. 8. Survival probability of oscillator response with 70% missing data and barrier
a = 0.05 via Eq.(48); comparisons with pertinent Monte Carlo simulations of Eq.(43)
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