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Abstract

20-40% of the total final energy consumption, which includes both residential

and commercial users, is spent on buildings, and its amount has been increasing

at a rate 0.5-5% per year in developed countries. The heating, ventilation and air

conditioning (HVAC) system is widely installed in commercial buildings to provide

thermal comfort and acceptable indoor air quality. Cleanrooms are one of the most

common applications which have a high requirement of air cleanliness. About 40%

of the total energy in a commercial sector is used for heating, cooling and ventilating

the buildings’ environment. This thesis deals with the reduction of the energy con-

sumption of the HVAC system in industrial cleanrooms via model predictive control

(MPC). A cleanroom laboratory has been built with the HVAC system to simulate a

pharmaceutical factory where the MPC is implemented.

Literature reviews of MPC approaches and its applications in HVAC systems

are carried out. The schematic of the cleanroom laboratory has been investigated,

including the detailed specification of the HVAC hardware and software. The labo-

ratory consists of four rooms: the entrance room and three cleanrooms constructed

with different levels of air cleanliness: the change room, the small lab and the large

lab. The original control of the air ventilation is implemented by proportional-

integral (PI) control installed in a building management system (BMS). The data

used for further applications are collected through the object linking and embedding

for process control (OPC) server connecting the HVAC hardware with the OPC

Toolbox in Matlab.

A black-box model of the cleanroom laboratory has been developed based on

the measured data. The indoor air quality of cleanrooms is maintained by control-

ling the air change rate and the air pressure via the HVAC system. Modelling of the
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cleanroom laboratory includes single-input single-output (SISO) modelling of each

PI control loop and two multi-input multi-output (MIMO) subsystems: the change

room related subsystem and the small/large lab related subsystem. Three parame-

ter estimation methods: prediction error identification method (PEM), least squares

(LS) method and instrumental variable (IV) method, and three model structures

including autoregressive exogenous (ARX), state space (SS) and transfer function

(TF) have been investigated, respectively. The model identification is implemented

by the System Identification Toolbox in Matlab. For each system model, the model

structure with the best performance index has been found by comparing the predic-

tion results with the experimental results using model validation approach.

The MPC controllers are designed based on the identified models to maintain

the steady air change rate and air pressure. Both SISO and MIMO MPC are inves-

tigated. The original PI controllers are replaced by the SISO MPC controllers. The

SISO MPC shows a better transient performance and lowers energy consumption.

MIMO MPC controllers are necessary to use in the HVAC system since the HVAC

system exhibits a MIMO nature with coupled controlled variables and the interac-

tions are not negligible. The MIMO MPC shows better control performance and

lowers energy consumption than SISO MPC and PI control.

The closed-loop control of the particle concentration has been built to main-

tain the air cleanliness in the laboratory. The particle counters are installed in the

cleanroom laboratory to monitor the number of particles within a specified air vol-

ume. The particle counter based controllers have been designed and tested including

the PI control, the SISO MPC and the MIMO MPC, respectively. The comparison

among these control methods shows that the MIMO MPC has the best performance

and consumes the least energy.

The PI control and MPC have been developed in programmable logic controller

(PLC) devices. A PLC based industrial personal computer (IPC) has been installed

to construct a workstation panel. The Matlab based controllers have been transferred

into the PLC language. The PLC based controllers have been tested controlling the

airflow, air pressure and the particle concentration. The test results demonstrate that

the PLC based controllers perform better and spend less energy than those in Matlab.
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Chapter 1

Introduction

1.1 Background

Cleanrooms are widely employed in high-technology fabrication, such as phar-

maceutical, semiconductor and optoelectronic manufacturing, to meet the stringent

requirements of high air cleanliness levels in the processing environment [1]. The

high-technology manufacturing environment is based on a series of cleanrooms

whose airborne particle levels are controlled. As defined by the international clean-

room standard (ISO) [2], a cleanroom is: “A room within which the number con-

centration of airborne particles is controlled and classified, and which is designed,

constructed and operated in a manner to control the introduction, generation and re-

tention of particles inside the room.” Cleanrooms are typically classified according

to their use and confirmed by the air cleanliness [3]. There are two main standards

by which pharmaceutical cleanrooms are classified: EU good manufacturing prac-

tice (GMP) [4] and ISO 14644 [2]. The standards grade cleanrooms based on the

permitted maximum number of particles allowed within a cubic metre of air which

is called the particle concentration. The particle concentration is measured and con-

trolled by the heating, ventilation and air conditioning (HVAC) system which circu-

lates air in cleanrooms with a relatively high air change rate (ACR) [5]. ACR is a

measure of the air volume added to or removed from a space divided by the volume

of the space [5]. To reach the required ACR, the controlled environmental variables
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1.1 Background 2

of the HVAC system include the air pressure (AP) and the supply airflow rate into

the space [6].

The particle concentration is measured by the particle counter with a standard

flow rate: 1 cubic foot per minute. The data of particle concentration can be col-

lected every 35.3 seconds. The distribution of particles inside a cleanroom is not

homogeneous. For a given cleanroom, multiple particle counters are installed with

different locations. The maximum particle concentration defined among these par-

ticle counters is chosen as the output variables of a particulate controller.

A cleanroom is an enclosed working space where delicate work is done that

needs protecting from contamination by impurities in the ambient air. The air qual-

ity, the temperature and the humidity are regulated to protect the contents of the

room from the dust and bacteria contaminated particles that exist naturally in the

atmosphere and the ambient air around the cleanroom, and also those that might

be generated within the cleanroom itself [7]. Natural, “fresh” air contains about

35 million particles of 0.5 µm in diameter, or larger, per cubic metre. Even if the

factory is built in as rural a surrounding area as the planning regulations will allow,

the chances are that other nearby emissions will pollute the ambient air to a poorer

quality [7].

It should be noticed that a particle 200 times smaller than a human hair, which is

approximately 75-100 µm in diameter, can cause major damage to sensitive equip-

ment. Without the availability of cleanrooms, the creation of structures and devices

with feature sizes that are equal to or less than that of a dust particle would be im-

possible. One oversized particle settling at a critical point of a circuit board could

cause the whole board to fail [7]. Thus cleanroom manufacturers pay strict attention

to air particles, with most cleanroom design and manufacturing companies targeting

the elimination of air particles 0.5 µm in size or larger, which has been the function

of cleanroom air filters. However, some industries are now imposing even smaller

air particle standards [7].

HVAC is designed to satisfy the environmental requirements of a process or

comfort, in a specific building and a particular geographic locale [8]. It is defined

as the simultaneous control of temperature, humidity, radiant energy, air motion and
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air quality within a space [8]. HVAC systems play a significant role in the control of

indoor air quality (IAQ) and thermal comfort. A bad indoor environmental quality

can be caused by poor ventilation, improper temperature and humidity which results

in irritation of the eyes and nose, fatigue, headache and shortness of breath. So that

people get sick more often with a bad IAQ since they spend the most time indoors. A

control that maintains a fixed set-point of fresh air ventilation based on the designed

occupancy of the space is typically employed by HVAC systems to guarantee a

good IAQ. This is an inefficient method, since it often provides much more fresh air

than necessary, especially in the areas with frequently varying occupancy, such as

laboratories and conference rooms [9].

The HVAC system contains three central functions: heating, ventilation and air

conditioning. They are interrelated with the need to provide thermal comfort, and

acceptable IAQ within reasonable installation, operation, and maintenance cost [10].

HVAC systems can provide ventilation, reduce air infiltration, and maintain pressure

relationships between spaces [10]. The process of air delivery and removal from

spaces is known as room air distribution [11]. The HVAC system is used to regulate

the temperature and humidity using fresh air from outdoors in residential structures

such as family homes, apartment buildings and hotels; industrial and office buildings

such as factories, skyscrapers and hospitals; and on-board vessels. Ventilation is one

of the most important factors for maintaining acceptable IAQ in buildings [12]. It is

the process of exchanging or replacing air in any space to remove unwanted smells

and excessive moisture, introduce outside air, keep interior building air circulating,

and prevent stagnation of the interior air [13].

Commercial HVAC systems provide a comfortable and safe work environment

for the people working inside buildings with conditioned air. Many factors can

reflect the respond of people to their work environment with respect to their health,

attitude and productivity. Air quality and air condition are two critical factors. To

make air conditioned and in good quality, air should be clean, and the temperature,

humidity, and movement of the air should be within certainly acceptable comfort

ranges. The standards established by the American society of heating, refrigerating

and penalised engineers (ASHRAE) summarise indoor comfort conditions which

MODEL PREDICTIVE CONTROL OF CLEANROOM HVAC SYSTEM Shuji Chen



1.1 Background 4

are thermally acceptable to 80% or more of occupants in a commercial building [5].

These comfort conditions are between 68◦F and 75◦F for winter and 73◦F to 78◦F

during the summer [14]. Both these ranges are for room air at approximately 50%

relative humidity and moving at a slow speed of 30 feet per minute or less [14].

A wide range of equipment is involved in HVAC systems: air handling units

(AHUs), fans, variable air volumes (VAVs), dampers, chillers, boilers, pumps and

so on. Figure 1.1 shows a diagram of a basic HVAC system which integrates the

equipment presented above. The outside air flows into the AHU, mixed with the

return air from the cleanroom. The mixed air is filtered, accelerated, heated or

chilled and filtered again in the AHU. So that the AHU provides clean air with

required temperature and velocity into the cleanroom. A VAV is installed between

the AHU and the cleanroom which is used to control the airflow rate. The clean

air flows through the cleanroom and flows out via another VAV. The extracted air is

accelerated by another fan before it flows outside or returns to the AHU. A detailed

explanation of the equipment will be given in Chapter 3.
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Figure 1.1: Diagram of a basic HVAC system.

HVAC control systems aim to operate the equipment efficiently as well as pro-

vide a high-quality environment. In operation, each HVAC system should be suit-

able for the requirements of the facility. In combination, HVAC system controls

provide the link between varying thermal loads and maintaining suitable indoor en-

vironmental conditions. The designed HVAC system will not operate as expected
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without an adequately designed and properly functioning control system. A control

loop includes a controller, a sensor and a control device. The controller compares

the data from sensors with the set-point, relaying a command to the controlled de-

vice, which passes to the process plant. The command will have an effect on the

controlled variable, and then the process will start all over again [15].

1.2 Motivations

The importance of IAQ has increased for both health and comfort, especially for

commercial cleanrooms. The growing requirements for higher IAQ of the work-

ing environments in laboratories, hospitals, and industrial facilities have rapidly

increased the energy demands. The controller designers of the cleanroom HVAC

system meet the challenge for both the reduction of energy consumption and the

control of the air cleanliness. To address the challenge, a more advanced controller

with the optimisation of the energy consumption can be designed compared with the

traditional control method, PI control. Also, the feedback control of the particle con-

centration based on real-time measurements by particle counters can be introduced

to improve the dynamic response of air cleanliness control.

HVAC systems aim to maintain IAQ and thermal comfort in cleanrooms. Ther-

mal comfort relates to the air temperature in cleanrooms which has been well studied

by researchers. The mathematical models of temperature can be obtained through

either physical process models or model identification. For commercial cleanrooms,

IAQ also plays a significant role since it carries huge implications for the product

quality and people’s health. To address this, the mathematical models of IAQ should

be achieved including the modelling of the airflow rate, the AP, the concentration

of particles and CO2, etc. This thesis focuses on the modelling of the airflow rate,

the AP and the particle concentration while the black-box model approach will be

applied to identify their mathematical models.

The MPC uses a system model to predict the future states of the system and

generates a control vector that minimises a certain cost function over the prediction

horizon in the presence of disturbances and constraints [72]. The identified models

MODEL PREDICTIVE CONTROL OF CLEANROOM HVAC SYSTEM Shuji Chen
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of IAQ can be used by MPC controllers as prediction models. Compared with PI

control, MPC shows benefits for optimal energy consumption and improved control

performance by optimising the objective function in MPC controllers. The objective

function is defined by QP which minimises the difference between measured outputs

and set-points and the increment of the control input.

The mathematical models of the particle levels in the cleanroom can be identi-

fied based on the measured data from particle counters. The black-box modelling

approach is applied to identify them considering the relationship between supply

fan speed, supply VAVs and the particle concentrations. The particle counter based

MPC is designed to build the feedback control of the particle levels using the real-

time measurements of the particle concentration. Thus the control of the air clean-

liness can be more intuitive which improves the dynamic response and reduces the

energy consumption.

The novelties of this thesis include a new cleanroom laboratory constructed

to simulate a pharmaceutical factory, control of ventilation in the HVAC system,

closed-loop control of the particle concentration, energy savings compared to tradi-

tional PI controllers.

1.3 Objective

The objective of this project is to develop a programmable logic control (PLC)

system to control a cleanroom ventilation system, using proprietary tools or devel-

oping bespoke electronics.

Cleanrooms are designed to meet strict air cleanliness requirements, the asso-

ciated equipment necessary for operations which include HVAC systems, create a

substantial energy demand as a result. However, the stringent standards under which

they operate means that existing technologies developed for industrial or commer-

cial controls are not sufficient to meet customer needs, particularly in existing facil-

ities.

This project aims to develop a predictive sensor-based dynamic control of the

cleanroom HVAC system to maintain the required air cleanliness while maximising
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energy efficiency. It will be a modular, retrofit control solution, easily expanded

as the cleanroom environment changes. It will communicate with third-party prod-

ucts for complete integration with the overall building energy management system.

Bespoke control algorithms will be developed based on real-world cleanroom ap-

plications in the test facility, potentially to be a Title 21 CFR Part 11 compliant

software solution.

The control system is applicable to any cleanroom configuration whether new or

existing facility and employs sensors that include real-time particle counters to en-

sure optimum equipment control according to the number of criteria that include but

are not limited to, particulate concentration, the moisture content of air, temperature

and pressure (absolute and differential).

1.4 Main Contributions

The publications produced from this research work are listed in this section as

follows:

1. S. Chen, L. Jiang, W. Yao and Q.H. Wu, “Application of Switched Sys-

tem Theory in Power System Stability,” in Power Engineering Conference

(UPEC), 2014 49th International Universities, Cluj-Napoca, pp. 1-6, 2014.

2. S. Chen, C.K. Zhang, L. Jiang and M. Harris, “Black-box modelling of a

cleanroom pharmaceutical laboratory equipped with the HVAC system,” sub-

mitted to Energy and Building, 2016.

3. S. Chen, C.K. Zhang, L. Jiang and M. Harris, “Model predictive control of air

change rate and air pressure of the cleanroom HVAC system,” Due to submit

to Applied Energy, 2016.

4. S. Chen, C.K. Zhang, L. Jiang and M. Harris, “Model predictive control of

air cleanliness based on real-time data of particle counters for energy saving,”

Due to submit to Building and Environment, 2016.

Regarding the submitted and drafted publications, the contributions of the sec-

ond author, C.K. Zhang, include the demonstration of the controller design, review

and comments on papers structure and content. The fourth author, M. Harris, is the
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manager of this project who provided technical support for the construction of the

cleanroom laboratory.

1.5 Thesis outline

• Chapter 1 provides the background of the research, the motivations of the

work, the objectives, the main contributions and the thesis outline.

• Chapter 2 gives a detailed literature review on energy demand in buildings

and HVAC systems, control methods in cleanrooms, MPC strategy and its

applications in the HVAC system.

• Chapter 3 introduces the schematic of the original cleanroom HVAC labora-

tory controlled by PI control. Then, the specification of the HVAC hardware

and software, which are combined to build the original laboratory, is sum-

marised. Finally, the energy consumption of the hardware is analysed that the

integral of the fan speed is calculated instead of the integral of fan power. That

is because there is no direct measurement of the power.

• Chapter 4 presents the modelling of the cleanroom HVAC laboratory in both

SISO and MIMO models. The laboratory is divided into two subsystems, each

of which is modelled as a MIMO model. The black-box modelling approach

is applied that the models are identified with three parameter estimation meth-

ods and three model structures. The subsystem models identified through pre-

diction error estimation method (PEM) and autoregressive exogenous (ARX)

model structure result in the best performance.

• Chapter 5 proposes the MPC controllers designed based on the identified mod-

els presented in Chapter 4. The ACR and AP of the laboratory are regulated

by the MPC. Compared with PI control and SISO MPC, MIMO MPC shows

a better performance for both dynamics and energy consumption of the clean-

room HVAC system.

• Chapter 6 investigates the particle counter based MPC in the cleanroom HVAC

system. Several particle counters are installed in the laboratory to count the

number of particles. The measured outputs of the MPC are the values of the
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maximum particle concentrations inside cleanrooms. The results show that

the particle counter based MIMO MPC has better performance and consumes

less power than SISO MPC and PI control.

• Chapter 7 develops the programmable logic controller (PLC) platform for the

implementation of PI control and MPC in the laboratory. A PLC based in-

dustrial personal computer (IPC) has been installed to develop the PLC plat-

form. It provides the software which allows the transformation from Matlab

program into PLC program. For the regulation of airflow rate and AP, the

dynamic performance and the energy consumption of the Matlab based PI

control, PLC based PI control and MPC are compared. The particle counter

based MPC is tested in PLC which can maintain the particle concentration at

a particular level.

• Chapter 8 presents the conclusion and the future work.
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Chapter 2

Literature review

2.1 Energy demand in buildings and HVAC systems

In recent years, the world energy consumption has become a major concern that

the energy saving has been demonstrated by the governments of many developed

countries. For instance, the EU presented targets concerning energy cuts defining

goals until 2020 in Reference [16]. The similar goals have been stated by the U.S.

government with minor differences on the level of each state [17].

Total world energy consumption continuously rises by 48% from 549 quadrillion

Btu in 2012 to 815 quadrillion Btu in 2040 [18]. The non-organisation for economic

cooperation and development (non-OECD) nations, which have relatively strong,

long-term economic growth, contribute most of the energy growth whose energy

consumption increases by 71% compared with an increase of 18% in OECD na-

tions [18]. The end users which the use of energy delivered to contain three sec-

tors: buildings, industrial, and transportation sectors. The industry accounts for the

largest share of delivered energy consumption, consuming about 54% of the world’s

total delivered energy [18].

From the energy outlook given in Reference [19] for 2013, buildings in the U.S.

consume 70% of the electricity, about 50% of which is generated from the combus-

tion of fossil fuels. Although the efficiency of individual equipment has increased

reasonably with better design, manufacturing and engineering, the energy consump-
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tion in buildings has continued to rise because of more use of energy intensive de-

vices and evolved demand on indoor thermal comfort [20]. Buildings are increas-

ingly expected to meet higher requirements such as being sustainable and energy

efficient at the same time as a healthy and comfortable indoor environment should

be achieved [21]. The use of advanced technology for digital and power electronic

devices can increase the energy efficiency. However, the total energy consumption

of HVAC systems is difficult to decrease since the fans and boilers spend most of the

energy and the higher requirement of the air quality needs higher output from them.

The reduction of power consumption is necessary due to the significant requirement

of the energy saving and environment sustainability.

The rising costs of drug development, manufacturing and a more voracious com-

petitive landscape cause the increased pressures placed upon the pharmaceutical

industry. Stricter controls over energy spending have become a necessity rather

than a luxury [22]. According to the Energy Star, run by the US department of

energy, pharmaceutical companies in the US spend over $1 billion on energy per

annum [23]. The pharmaceutical companies have been looking to seek out energy

efficiency opportunities that would increase output hand in hand with energy reduc-

tion. Energy efficiency in cleanroom technology is now a high priority to success-

fully cut costs while protecting operations from any interruptions [22]. There are

obvious financial benefits to reduce the burden of energy bills on drug manufactur-

ing sites where HVAC systems are required to control particle counts effectively and

in accordance with the ISO 14644 standard [2]. It does reflect well on a company’s

corporate environmental responsibility and contributes towards overarching carbon

emissions reduction targets (CERT).

Energy efficiency is driven by not only the environmental responsibility but also

the financial prudence. Given the significant scale on which successful energy re-

duction programmes ought to be based on maximising their benefits, the rate of re-

turn on investment in an energy reduction programme is equally as important [22].

A review of cleanroom costs in Europe indicated that energy consumption accounts

for 65-75% of the annual cost of running a cleanroom [25]. Furthermore, of the

total level of cleanroom energy usage, 36-67% is derived from the HVAC system
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alone [25]. According to GSK, HVAC accounted for around 65% of total energy

consumption and is, therefore, a top priority for the company to reduce overall con-

sumption. This amounted to a spend of $44 million back in 2008 [22]. A study

by the Carbon Trust in the UK indicated that UK businesses could save up to 1.6

billion pounds per annum on energy and that investing in efficiency programmes

resulted in a 48% internal rate of return and payback in three years on average [24].

There is a clear and present need within the pharmaceutical industry for the excesses

of unnecessary energy expenditure to be reduced, offering substantial benefits both

economically and environmentally. Through the adoption of more intelligent HVAC

controls, it is possible to see between 10% and 20% energy cost savings per an-

num [23].

At present, for pharmaceutical manufacturing, open-loop control [6] and closed-

loop proportional-integral-derivative (PID) type control [26] are used for regulating

the ACR to maintain the air cleanliness level without in deep consideration of energy

saving, and thus results in the extra consumption of energy and more pollutants

(such as CO2 and SO2) emitted. The PID control of ACR is not dynamic, and the

set-point is always kept at a high constant value. Also, PID control is more useful

for a simple system, but HVAC systems are complex with a large number of drivers

and sensors. Thus, PID controllers are not the best option for regulating ACR when

the controlled system is complex, and the regulation is dynamic. The reduction of

building energy consumption has become main concerns given the growing focus

on energy saving and environment protection in recent years, which desires proper

design of the HVAC system with optimum energy efficiency, more accurate model

and advanced control methods.

2.2 Control methods in cleanrooms

Four fundamental rules defined in ISO 14644-1 [2] apply to cleanrooms:

1. Contaminants must not be introduced into the controlled environment from

outside.

2. The equipment within the controlled environment must not generate or give
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rise to contaminants.

3. Contaminants must not be allowed to accumulate in the controlled environ-

ment.

4. Existing contaminants must be eliminated to the greatest extent possible, and

as rapidly as possible.

These objectives are achieved and maintained by taking an incredible amount

of technology such as high-efficient air filter, strict guarding process, protection of

the operation equipment, enough supplied clean air, effective air distribution inside

the cleanroom and so on. A critical factor in cleanroom design is the ACR which

refers to the number of times per hour that filtered air from outside replaces the

present volume in a chamber or building. The air changes 0.5 to 2 times per hour

in a normal home. However, in a cleanroom, it reaches much higher that the ACR

can be 10 to more than 600 times per hour due to classification and usage. Higher

ACRs equate to higher airflows and more energy use but do not always achieve the

desired air cleanliness. The industrial cleanrooms, such as pharmaceutical factories,

require an extremely high level of air cleanliness which recommends high ACR. Fan

power is proportional to the cube of ACR. A higher ACR means a higher energy

consumption. The optimum ACRs are required to reduce the power consumption.

A building management system (BMS) is a computer-based system that can be

used to monitor and control the mechanical, electrical and electromechanical equip-

ment in buildings. Such equipment can include power, lighting, security and HVAC

system. HVAC systems are one of the most commonly used applications, in partic-

ular for the air cleanliness control in cleanrooms. The BMS in a cleanroom HVAC

system provides the monitoring of the sensor readings inducing the particle con-

centration, pressure, temperature, humidity and occupancy, and the control of the

supply fan speed for proper airflow and the return airflow for proper pressure. The

closed-loop control, which mostly uses the proportional-integral (PI) control, of the

airflow and the AP gives a steady ACR in cleanrooms. Thus the particle levels are

controlled by maintaining a particular value of ACR.

The control of the particle concentration in cleanrooms, using the ventilation

system is over-designed as the design exists on the rule-of-thumb values published
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in standard or code such as Federal Standard FS-209 [27], IEST Recommended

Practices RP-12.1 [28], and ISO 14644-4 [29]. The energy intensities of HVAC

systems of cleanrooms in California are about 4-100 times greater than the average

commercial building, depending on the required cleanliness classification [30]. Fan

energy use for ISO Classes 3-5 cleanrooms composes around 80% of the fan energy

consumption for cleanrooms of all classes [31].

At present, only trial-and-error methods are used for regulating the ACR to im-

prove the indoor cleanliness level and accomplish energy saving, without deep con-

sideration of indoor heat and particle generations [1]. The BMS is used in clean-

rooms to achieve a proper ACR. The values of the ACR are normally over-designed

that reduce the energy efficiency. To control the air cleanliness inside a cleanroom,

the ACR needs to be controlled to ensure enough clean air flowing into the clean-

room. The present HVAC control systems in pharmaceutical manufactories do not

treat air cleanliness as a controlled variable. Instead, they maintain a high and steady

ACR to make sure the air would not become dirty. In this project, the particu-

late control via MPC put the particle concentration into closed-loop which provide

dynamic control of ACR and air cleanliness. Efficient management of energy us-

age has become essential in view of the growing focus on energy conservation and

building electricity utility rating systems in recent years. Thus, proper design of

HVAC system with optimum energy efficiency is necessary. Various mathemat-

ical models [32]- [37] have been proposed to represent the relationship between

the ACR and the particle concentration in cleanrooms, but most have been consid-

ered to be approximations and oversimplified. Several crucial measures have been

disregarded in these models, such as particle gain or removal owing to air leak-

age [32]- [34], and particle deposition on indoor space surface [32]- [35], airlocks

and mini-environment [36].

2.3 Model predictive control

Model predictive control (MPC) originated in the late seventies and had been

developed considerably since then. It makes explicit use of a model of the process to
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obtain the control signal by minimising an objective function. The ideas, appearing

in greater or lesser degree in the predictive control family, are [38]:

• Explicit use of a model to predict the process output at future time instants

(horizon);

• Calculation of a control sequence penalised an objective function;

• Receding strategy, at each instant the horizon is displaced towards the future,

which involves the application of the first control signal of the sequence cal-

culated at each step.

The various MPC algorithms differ among themselves in the model used to rep-

resent the process and the noises and cost function to be minimised. Within MPC,

many works have been developed and are widely received by the academic world

and industry. MPC presents a series of advantages over other methods [38]:

• It is particularly attractive to staff with only a limited knowledge of control

because the concepts are very intuitive, and the tuning is relatively easy.

• It can be used to control a great variety of processes, from those with relatively

simple dynamics to more complex ones.

• Its extension to the treatment of constraints is conceptually simple, and these

can be systematically included during the design process.

• It is a totally open methodology based on certain basic principles which allow

for future extensions.

As is logical, however, it also has its drawbacks:

• Although the resulting control law is easy to implement and requires little

computation, its derivation is more complex than that of the traditional PID

controllers.

• The greatest drawback is the need for an appropriate model of the process to

be available. The design algorithm is based on prior knowledge of the model

and is independent of it, but it is evident that the benefits obtained will be

affected by the discrepancies existing between the real process and the model

used. In practice, MPC has proved to be a reasonable strategy for industrial

control, despite the initial lack of theoretical results at some crucial points
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such as stability and robustness.

Compared to PID or linearquadratic regulator (LQR), MPC can predict future

events and can take control actions accordingly. PID controllers are well designed

for the simple system, while the model used in the MPC can represent the complex

dynamic system. Large time delays and high-order dynamics are the common dy-

namic characteristics that PID controllers are difficult to deal with. LQR is used for

optimal control where the system dynamics are described by a set of linear differ-

ential equations, and the cost is described by a quadratic function. It can be applied

in MPC as the optimisation algorithms. However, LQR does not have the ability to

predict future events compared to MPC.

Basic strategy

Figure 2.1 [62] shows a block diagram of a single-input single-output (SISO)

MPC application. The main objective is to hold a single output, y, at a reference

value (or set-point), r, by adjusting a single manipulated variable (MV), u. The

block labelled MPC represents an MPC feedback controller designed to achieve the

control objective. v is a measured disturbance and d is an unmeasured disturbance.

Model Predictive Control of a SISO Plant

1-3

Model Predictive Control of a SISO Plant
The usual MPC Toolbox application involves a plant having multiple inputs 
and multiple outputs (a MIMO plant).

Consider instead the simpler application shown in Figure 1-1 (see summary of 
nomenclature in Table 1-1). This plant could be a manufacturing process, such 
as a unit operation in an oil refinery, or a device, such as an electric motor. The 
main objective is to hold a single output, , at a reference value (or setpoint), r, 
by adjusting a single manipulated variable (or actuator) u. This is what is 
generally termed a SISO (single-input single-output) plant. The block labeled
MPC represents an MPC Toolbox feedback controller designed to achieve the 
control objective.

The SISO plant actually has multiple inputs, as shown in Figure 1-1. In
addition to the manipulated variable input, u, there may be a measured 
disturbance, v, and an unmeasured disturbance, d. 

Figure 1-1:  Block Diagram of a SISO MPC Toolbox Application

The unmeasured disturbance is always present. As shown in Figure 1-1, it is 
an independent input – not affected by the controller or the plant. It represents 
all the unknown, unpredictable events that upset plant operation. (In the 
context of Model Predictive Control, it can also represent unmodeled 
dynamics.) When such an event occurs, the only indication is its effect on the 
measured output, y, which is fed back to the controller as shown in Figure 1-1.

y

+
+

PlantMPC

v

r

y
d

z

yyu

v

Measured Disturbance

Measured Output (Controlled Variable)

Noise

Set-point

Unmeasured
Disturbance

Actuator
Plant
Output

Figure 2.1: Block diagram of a SISO MPC application [62].

The methodology of the MPC is characterised by the following strategy, repre-

sented in Figure 2.2 [38].
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1.1 MPC Strategy 3

N

y(t+k|t)^

u(t+k|t)

t t+1t-1 . . . t+N. . . t+k

y(t)

u(t)

Fig. 1.1. MPC Strategy

1. The future outputs for a determined horizon N , called the prediction
horizon, are predicted at each instant t using the process model. These
predicted outputs y(t + k | t) 1 for k = 1 . . . N depend on the known
values up to instant t (past inputs and outputs) and on the future control
signals u(t+k | t), k = 0 . . . N−1, which are those to be sent to the system
and calculated.

2. The set of future control signals is calculated by optimizing a determined
criterion to keep the process as close as possible to the reference trajec-
tory w(t + k) (which can be the setpoint itself or a close approximation
of it). This criterion usually takes the form of a quadratic function of the
errors between the predicted output signal and the predicted reference
trajectory. The control effort is included in the objective function in most
cases. An explicit solution can be obtained if the criterion is quadratic,
the model is linear, and there are no constraints; otherwise an iterative
optimization method has to be used. Some assumptions about the struc-
ture of the future control law are also made in some cases, such as that it
will be constant from a given instant.

3. The control signal u(t | t) is sent to the process whilst the next control sig-
nals calculated are rejected, because at the next sampling instant y(t+ 1)
is already known and step 1 is repeated with this new value and all the
sequences are brought up to date. Thus the u(t + 1 | t + 1) is calculated
(which in principle will be different from the u(t + 1 | t) because of the
new information available) using the receding horizon concept.

1 The notation indicates the value of the variable at the instant t + k calculated at
instant t.

Figure 2.2: MPC strategy [38].

1. With the prediction horizon N , the future outputs are predicted at each instant

t using the process model resulting in predicted outputs y(t + k|t) for k =

1...N . These predicted outputs depend on the known values up to instant t

(past inputs and outputs) and on the future control signals u(t + k|t), k =

0...N − 1, which are those to be sent to the system and calculated.

2. The future control signals are calculated by optimising a determined criterion,

which is called objective function, to keep the process as close as possible to

the reference trajectory w(t + k). This objective function usually takes the

form of a quadratic function representing the errors between the predicted

output signal and the predicted reference trajectory. In most cases, the control

effort is included in the objective function. An explicit solution can be ob-

tained if the objective function is quadratic, the model is linear, and there are

no constraints; otherwise, an iterative optimisation method has to be used.

3. The control signal u(t|t) is sent to the process while the next control signals

calculated are rejected, because at the next sampling instant y(t+1) is already

known and step 1 is repeated with this new value and all the sequences are

brought up to date. Thus u(t+1|t+1) is calculated using the receding horizon

concept.
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4 1 Introduction to Model Predictive Control

Model

Reference

trajectory
Past inputs

and outputs +

-

Optimizer

ConstraintsCost
function

Future errors

Predicted
outputs

inputs

Future

Fig. 1.2. Basic structure of MPC

In order to implement this strategy, the basic structure shown in Figure
1.2 is used. A model is used to predict the future plant outputs, based on past
and current values and on the proposed optimal future control actions. These
actions are calculated by the optimizer taking into account the cost function
(where the future tracking error is considered) as well as the constraints.

The process model plays, in consequence, a decisive role in the controller.
The chosen model must be able to capture the process dynamics to precisely
predict the future outputs and be simple to implement and understand. As
MPC is not a unique technique but rather a set of different methodologies,
there are many types of models used in various formulations.

One of the most popular in industry is the Truncated Impulse Response
Model, which is very simple to obtain as it only needs the measurement of
the output when the process is excited with an impulse input. It is widely
accepted in industrial practice because it is very intuitive and can also be
used for multivariable processes, although its main drawbacks are the large
number of parameters needed and that only open-loop stable processes can
be described this way. Closely related to this kind of model is the Step Re-
sponse Model, obtained when the input is a step.

The State Space Model is, perhaps, more widespread in the academic
research community as the derivation of the controller is very simple even
for the multivariable case. The state space description allows for an easier
expression of stability and robustness criteria. The Transfer Function Model
is also used in the academic research community and although the derivation

Figure 2.3: Basic structure of MPC [38].

To implement this strategy, the basic structure shown in Figure 2.3 [38] is used.

A model is used to predict the future plant outputs, based on the past and current

values and the proposed optimal future control actions. These actions are calculated

by the optimizer considering the cost function (or called objective function) as well

as the constraints.

The process model plays a crucial role in the MPC controller. The chosen model

must be able to capture the process dynamics to precisely predict the future outputs

and be simple to implement and understand. As the MPC is not a unique technique

but rather a set of different methodologies, there are many types of models used in

various formulations. The optimizer is another fundamental part of the strategy as

it provides the control actions. If the cost function is quadratic, its minimum can

be obtained as a specific function (linear) of past inputs and outputs and the future

reference trajectory. In the presence of inequality constraints, the solution has to

be obtained by more complex numerical algorithms. The size of the optimisation

problems depends on the number of variables and the prediction horizons used and

usually turns out to be a relatively modest optimisation problem which does not

require solving sophisticated computer codes.
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Historical background

MPC is a popular advanced control method in industrial processes. MPC has

an exceptional history from the early investigation in the academic literature to the

explosive growth in the process industries where it is proved to be highly success-

ful [39]. As reviewed in References [40] and [41], the ideas of MPC can be traced

back to the 1960s. However, the interest in this field only started to be popular since

the introduction of the software identification and command (IDCOM) presented in

Reference [42] in 1978 and dynamic matrix control (DMC) was outlined in Refer-

ences [43] and [44] in 1979.

The MPC concept was developed initially from the 1960s related to linear pro-

gramming (LP). Zadeh and Whalen [45] investigated the connections between min-

imum time optimal control problem and LP. Propoi [46] proposed the core of all

MPC algorithms that the moving horizon approach was presented to solve the LP

problem at each sampling period. It became known as “Open Loop Optimal Feed-

back” named by Reference [47]. To connect this work with MPC, Chang and Se-

borg [48] developed a feedback control strategy for multi-variable problems solving

the LP problems with inequality constraints on the state and at variables. MPC

became popular due to its successful industrial applications. A survey of indus-

trial MPC technology was given in Reference [49] including the reported applica-

tions until mid-1999. A detailed review of the MPC algorithm was given in Refer-

ence [38].

Model predictive heuristic control MPC was firstly recognised in control appli-

cations in 1976 by Richalet et al. [50] named as model predictive heuristic con-

trol (MPHC) with the solution software, IDCOM. An improved version, named

IDCOM-M, was presented with a very similar hierarchy by Grosdidier et al. [51].

IDCOM is very similar to the previous method with a few differences. Firstly, it

uses an impulse response model valid only for stable processes, in which the value of

u(t) appears instead of4u(t). Furthermore, it makes no use of the control horizon

concept so that in the calculations as many control signals as future outputs appear.

It introduces a reference trajectory as a first-order system which evolves from the
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actual output to the set-point according to a determined time constant. The variance

of the error between this trajectory and the output is what one aims at minimising in

the objective function.

It also takes into account constraints in the actuators and the internal variables or

secondary outputs. Various algorithms can be used for optimising in the presence of

constraints, from the ones presented initially by Richalet et al. that can also be used

for identifying the impulse response, to others that are shown in Reference [52].

Dynamic matrix control An initial application was developed in 1973 by en-

gineers from Shell Oil with their own independent MPC technology. An uncon-

strained multivariable control algorithm named as DMC was presented by Cutler

and Ramaker at the 1979 National AIChE Meeting [43] and the 1980 Joint Auto-

matic Control Conference [53].

DMC uses the step response to model the process and only takes into account the

firstN terms, therefore assuming the process to be stable and without integrators. In

regards to the disturbances, their value will be considered to be the same as at instant

t all along the horizon, that is, to be equal to the measured value of the output (ym)

minus the one estimated by the model (ŷ (t|t))
Optimisation is carried out at each sampling instant, and the value of u(t) is sent

to the process as is typically done in all MPC methods. The inconveniences of this

approach are the size of the process model required and the inability to work with

unstable processes.

The initial IDCOM and DMC algorithms represent the first generation of MPC

technologies which had an enormous impact on industrial process control and served

to define the industrial MPC paradigm [49]. The original IDCOM and DMC algo-

rithms provided excellent control of unconstrained multivariable processes.

Generalised predictive control An adaptive MPC method, generalised predictive

control (GPC), was developed by Clarke et al [54] [55]. The theoretical basis of the

GPC algorithm has been widely studied, and it has been shown in Reference [56]

that, for limiting cases of parameter choices, this algorithm is stable, and also that
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popular controller such as mean level and deadbeat control are inherent in the GPC

structure.

Predictive functional control Predictive functional control (PFC) was developed

by Richalet [57] for the case of fast processes. It uses a state space (SS) model of the

process and allows for nonlinear and unstable linear internal models. Nonlinear dy-

namics can be entered in the form of a nonlinear SS model. PFC has two distinctive

characteristics: the use of coincidence points and basis functions. The concept of

coincidence points is used to simplify the calculation by considering only a subset

of points in the prediction horizon. The desired and the predicted future outputs are

required to coincide at these points, not in the whole prediction horizon.

The controller parametrizes the control signal using a set of polynomial basis

functions which allows a relatively complex input profile to be specified over a long

horizon using a small number of parameters. Choosing the family of basis functions

establishes many of the features of the computed input profile. These functions can

be selected to follow a polynomial set-point with no lag, an important feature for

mechanical servo control applications.

Extended prediction self adaptive control Extended prediction self adaptive con-

trol (EPSAC) was proposed by Dekeyser [58] in 1988. The implementation of EP-

SAC is different to the previous methods. For predicting, the process is modelled by

the TF. The model can be extended by a term D(z−1)d(t), with d(t) being a mea-

surable disturbance in order to include feed-forward effect. Using this method the

prediction is obtained as shown in Reference [59].

One characteristic of the method is that the control law structure is very simple,

as it is reduced to consider that the control signal is going to stay constant from

instant t, that is, 4u(t + k) = 0 for k > 0. In short, the control horizon is reduced

to 1 and therefore the calculation is reduced to one single value u(t).

Extended horizon adaptive control Extended horizon adaptive control (EHAC)

was developed by Ydstie et al. [60] in 1988. This formulation considers the process

modelled by its TF without taking a model of the disturbances into account.
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It aims at minimising the discrepancy between the model and the reference at

instant t+N : ŷ (t+N |t)−w (t+N) , with N ≥ d. The solution to this problem

is not unique (unless N = d) [61].

Thus the control law only depends on the process parameters and can therefore

easily be made self-tuning if it has an online identifier. As can be seen, the only

parameter of adjustment is the horizon of prediction N , which simplifies its use but

provides little freedom for the design. One sees that the reference trajectory cannot

be used because the error is only considered at one instant (t + N), neither is it

possible to ponder the control efforts at each point so that certain frequencies in the

performance cannot be eliminated.

Main elements

All the MPC algorithms possess common elements, and different options can be

chosen for each element giving rise to different algorithms. These elements are [38]:

• Prediction model

• Objective function

• Control law

• Parameter tuning

Prediction model The model is the cornerstone of MPC. A complete design should

include the necessary mechanisms for obtaining the best possible model, which

should be complete enough to fully capture the process dynamics and allow the

predictions to be calculated. The use of the process model is determined by the

necessity to calculate the predicted output at future instants.

Practically every possible form of modelling a process appears in a given MPC

formulation, the following being the most commonly used:

• Impulse response. Also known as weighting sequence or convolution model.

The output y is related to the input u by the equation

y (t) =
∞∑
i=1

hiu (t− i) (2.3.1)
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where hi is the sampled output when the process is excited by a unitary im-

pulse. This sum is truncated and only N values are considered (thus only

stable processes without integrators can be represented), having

y (t) =
N∑
i=1

hiu (t− i) = H
(
z−1
)
u (t) (2.3.2)

where H(z−1) = h1z
−1 +h2z

−2 + · · ·+hNz
−N and z−1 is the backward shift

operator. The prediction will be given by:

ŷ(t+ k | t) =
N∑
i=1

hiu(t+ k − i | t) = H
(
z−1
)
u(t+ k | t) (2.3.3)

• Step response. Used by DMC and its variants, this is very similar to impulse

response except that the input signal is a step. For stable systems, the truncated

response is given by:

y(t) = y0 +
N∑
i=1

gi4u(t− i) = y0 +G(z−1)(1− z−1)u(t) (2.3.4)

where gi are the sampled output values for the step input and4u(t) = u(t)−
u(t − 1). The value of y0 can be taken to be 0 without loss of generality, so

that the predictor will be:

ŷ(t+ k|t) =
N∑
i=1

gi4u(t+ k − i|t) (2.3.5)

• Transfer function. This uses the concept of the TF, G = B/A, so that the

output is given by:

A
(
z−1
)

y (t) = B
(
z−1
)

u (t) (2.3.6)

with

A
(
z−1
)

= 1 + a1z
−1 + a2z

−2 + · · ·+ anaz
−na (2.3.7)

B
(
z−1
)

= 1 + b1z
−1 + b2z

−2 + · · ·+ bnbz
−nb (2.3.8)

Thus the prediction is given by

ŷ(t+ k | t) =
B (z−1)

A (z−1)
u(t+ k | t) (2.3.9)
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• State space. It has the following representation:

x(t) = Ax(t− 1) +Bu(t− 1) (2.3.10)

y(t) = Cx(t) (2.3.11)

where x is the state and A,B and C are the matrices of the system, input and

output respectively. The prediction for this model is given by

ŷ(t+ k | t) = Cx̂(t+ k | t) = C

[
Akx (t) +

k∑
i=1

Ai−1Bu (t+ k − i | t)
]

(2.3.12)

• Others. Nonlinear models can also be used to represent the process, but they

cause the optimisation problem to be more complicated. Neural networks and

fuzzy logic are other forms of representation used in some applications.

Objective function The various MPC algorithms propose different objective func-

tions (or called cost functions) for obtaining the control law. The aim is that the

future output (y) on the considered horizon should follow a determined reference

signal (w) and, at the same time, the control effort (4u) necessary for doing so

should be penalised [38]. The general expression for an objective function will be:

J(N1, N2, Nu) =

N2∑
j=N1

δ(j)[ŷ(t+ j|t)− w(t+ j)]2 +
Nu∑
j=1

λ(j)[4u(t+ j − 1)]2

(2.3.13)

In the objective function it is possible to consider:

• Parameters: N1 and N2 are the minimum and maximum prediction horizons,

and Nu is the control horizon. The meaning of N1 and N2 is rather intuitive.

They mark the limits of the instants in which it is desirable for the output to

follow the reference. Thus, if a high value of N1 is taken, it is because of no

importance if there are errors in the first instant. This will originate a smooth

response of the process. Note that in processes with dead time d there is no

reason forN1 to be less than d because the output will not begin to evolve until

instant t+ d. Also if the process is a non-minimum phase, this parameter will

allow the first instant of inverse response to be eliminated from the objective
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function. The coefficients δ(j) and λ(j) are sequences that consider the future

behaviour; usually, constant values or exponential sequences are considered.

It is possible to obtain an exponential weight of δ(j) along the horizon by

using:

δ(j) = αN2−j (2.3.14)

If α is given a value between 0 and 1, the errors farthest from instant t are

penalised more than those nearer to it, giving rise to smoother control with

less effort. If on the other hand, α > 1, the first errors are more penalised,

provoking tighter control. All these values can be used as tuning parameters to

cover an ample scope of options, from standard control to a made-to-measure

design strategy for a particular process.

• Reference trajectory: One of the advantages of predictive control is that if the

future evolution of the reference is known a priori, the system can react before

the change has effectively been made, thus avoiding the effects of delay in the

process response. The future evolution of reference r(t + k) is known be-

forehand in many applications, such as robotics, servos or batch processes. In

other applications a noticeable improvement in performance can be obtained

even though the reference is constant by simply knowing the instant when the

value changes and getting ahead of this circumstance. In minimisation (5.2.6),

the majority of methods usually uses a reference trajectory w(t + k) which

does not necessarily have to coincide with the real reference. It is normally a

smooth approximation from the current value of the output y(t) towards the

known reference by means of the first-order system:

w (t) = y (t) w (t+ k) = αw (t+ k − 1) + (1− α) r (t+ k) k = 1 . . . N

(2.3.15)

where α is a parameter between 0 and 1 (the closer to 1 the smoother the

approximation) that constitutes an adjustable value that will influence the dy-

namic response of the system. In Figure 2.4 [38] the form of the trajectory

is shown from when the reference r(t + k) is constant and for two different

values of α: small values of this parameter provide fast tracking w1; if it is

increased then the reference trajectory becomes w2, giving rise to a smoother
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response.20 2 Model Predictive Controllers

y(t)

r(t+k)

w (t+k) w (t+k)

t
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2

Fig. 2.3. Reference trajectory

simply knowing the instant when the value changes and getting ahead
of this circumstance. In minimization (2.5), the majority of methods usu-
ally use a reference trajectory w(t+ k) which does not necessarily have to
coincide with the real reference. It is normally a smooth approximation
from the current value of the output y(t) towards the known reference by
means of the first-order system:

w(t) = y(t) w(t+k) = αw(t+k−1)+(1−α)r(t+k) k = 1 . . . N (2.6)

α is a parameter between 0 and 1 (the closer to 1 the smoother the ap-
proximation) that constitutes an adjustable value that will influence the
dynamic response of the system. In Figure 2.3 the form of trajectory is
shown from when the reference r(t+ k) is constant and for two different
values of α; small values of this parameter provide fast tracking (w1), if
it is increased then the reference trajectory becomes w2, giving rise to a
smoother response.
Another strategy is the one used in PFC, which is useful for variable set-
points:

w(t+ k) = r(t+ k)− αk(y(t)− r(t))

The reference trajectory can be used to specify closed-loop behaviour; this
idea is used in GPC or EPSAC defining an auxiliary output

ψ(t) = P (z−1)y(t)

where the error in the objective function is given by ψ(t + k) − w(t + k).
The filter P (z−1) has unit static gain and the generation of a reference
trajectory with dynamics defined by 1/P (z−1) and an initial value of that
of the measured output is achieved. In [57] it is demonstrated that if a
deadbeat control in ψ(t) is achieved so that

ψ(t) = B(z−1)w(t)

Figure 2.4: Reference trajectory [38].

• Constraints: In practice, all processes are subject to constraints. The actua-

tors have a limited field of action and a determined slew rate, as is the case

of the valves, limited by the positions of totally open or closed and by the

response rate. Limits in the process variables can be caused by constructive

reasons, safety issues, environmental restriction or the scopes of sensors, such

as levels in tanks, flows in piping, or maximum temperatures and pressures.

Moreover, the operational conditions are commonly defined by the intersec-

tion of certain constraints for basically economic reasons, so that the control

system will operate close to the boundaries. All of these limitations make

the introduction of constraints in the function to be minimised. Many predic-

tive algorithms intrinsically take into account constraints (MPHC, DMC) and

have therefore been very successful in the industry, while others can incorpo-

rate them a posteriori (GPC). Bounds in the amplitude and the slew rate of the

control signal u and limits in the output y will be considered

umin ≤ u (t) ≤ umax ∀t (2.3.16)

dumin ≤ u (t)− u (t− 1) ≤ dumax ∀t (2.3.17)

ymin ≤ y (t) ≤ ymax ∀t (2.3.18)

By adding these constraints to the objective function, the minimisation be-
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comes more complex, so that the solution cannot be obtained explicitly as in

the unconstrained case.

Control Law In order to get values u(t + k|t) it is necessary to minimise the

functional J of Equation 5.2.6. The values of the predicted outputs ŷ(t + k|t) are

calculated as a function of past inputs and outputs and future control signals using

the prediction model chosen and substituted in the objective function. An expression

is obtained whose minimisation leads to the desired values. An analytical solution

can be obtained for the quadratic criterion if the model is linear and there are no

constraints. Otherwise, an iterative method of optimisation should be used. What-

ever the method, obtaining the solution is not easy because there will beN2−N1+1

independent variables, a value which can be high. To reduce this degree of freedom,

a certain structure may be imposed by the control law.

Furthermore, it has been proved that this control law produces an improvement

in robustness and the general behaviour of the system, basically due to the fact of

allowing the free evolution of the MVs which may lead to unwanted high-frequency

control signals and at the worst to instability.

This structure is sometimes imposed by the use of the control horizon concept

(Nu) applied in DMC, GPC, EPSAC and EHAC that consists of considering that

after a certain intervalNu < N2 there is no variation in the proposed control signals,

that is:

4u(t+ j − 1) = 0 j > Nu (2.3.19)

which is equivalent to giving infinite weights to the changes in the control from a

certain instant. The extreme case would be to consider Nu equal to 1 with which all

future actions would be equal to u(t). Another way of structuring the control law is

by using base functions, a procedure used in PFC which consists of representing the

control signal as a linear combination of certain predetermined base functions:

u (t+ k) =
n∑
i=1

µi (t)Bi (k) (2.3.20)
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TheBi are chosen according to the nature of the process and the reference. They

are usually polynomial type B0 = 1 B1 = k B2 = k2 . . ..

As has been indicated previously, an explicit solution does not exist in the pres-

ence of constraints, so that quadratic programming (QP) methods have to be used.

Reference [38] presents the detailed algorithm to solve the QP problem. The equal-

ity constrained QP problem can be stated as

minimise 1
2
uTHu+ bTu+ f0 (2.3.21)

subject to : Au = a (2.3.22)

where A is an m× n matrix and a is an m vector. It is assumed that m < n and that

rank(A) = m.

A direct way of solving the problem is to use the constraints to express m of

n variables as a function of the remaining n − m variables and then to substitute

them in the objective function. The problem is reduced to minimising a quadratic

function of n−m variables without constraints.

Usually, a generalised elimination method is used instead of a direct elimination

procedure. The idea is to express u as a function of a reduced set of n−m variables:

u = Y a + Zv, where Y and Z are n × m and n × (n − m) matrices such that

AY = I, AZ = 0 and the matrix [Y Z] has full rank. Notice that matrix Y can be

interpreted as a generalised left inverse of AT and that Zv is the null column space

of AT .

If this substitution is made, the equality constraints hold and the objective func-

tion

J(v) =
1

2
[Y a + Zv]TH[Y a + Zv] + bT[Y a + Zv] + f0

=
1

2
vTZTHZv +

[
bT + aTY TH ]Zv + [

1

2
aTY TH + bT

]
Y a + f0

that is, an unconstrained QP problem of n − m variables. If the matrix ZTHZ is

positive definite, there is only one global optimum point that can be found solving

the linear set of equations

ZTHZ = −ZT (b + HY a) (2.3.23)
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Notice that if uk is a point satisfying the constraint Auk = a, any other point u

satisfying the constraints can be expressed as u = uk +Zv. Thus the vector Y a can

be made equal to any point satisfying the constraints. Vector v can be expressed as

the solution of the following linear equation

ZTHZv = −ZT g
(
uk
)

(2.3.24)

where g(uk) = Huk + b is the gradient of J(u) at uk. A general way of obtaining

appropriate Y and Z matrices is to choose a (n −m) × n matrix W such that the

matrix [A W ]T is non-singular. The inverse can then be expressed as:A
W

−1 = [Y Z] (2.3.25)

It then follows that AY = I and AZ = 0.

If matrix W is chosen as [0 I], the method coincides with the direct elimination

method. Another way of choosing W is related to the active set method that will

be described later. The idea is to use inactive constraints (ai) as the rows of W . If

an inactive constraint present in W becomes active (the rows of R where riu = ci),

the corresponding row of W is transferred to A. When an active constraint becomes

inactive, the corresponding row of A is transferred to W . By doing this, the inverse

of the matrix need not be recomputed to calculate Y and Z.

Consider a feasible point u0; that is, Ru0 ≤ c and the set of active constraints

(all the equality constraints and the rows of R where riu = ci). Form matrix A and

vector a by adding these rows (ri) and corresponding limits (ci) and the equality

constraints.

The problem can now be solved with the method described previously. Suppose

that u1 is the solution to the equally constrained QP problem. If u1 is feasible on the

inactive constraints, a test for optimality has to be performed to check if the global

optimum has been found. This can be accomplished by verifying that the Lagrange

multipliers for all equality constraints λi ≥ 0. If this is not the case, the constraint

with the most negative Lagrange multiplier is dropped from the active constraint set,

and the previous steps are repeated.

MODEL PREDICTIVE CONTROL OF CLEANROOM HVAC SYSTEM Shuji Chen



2.3 Model predictive control 30

If point u1 is not feasible on the inactive constraints, the nearest intersection

from u0 of the line joining points u0 and u1, and the inactive constraints is computed.

The corresponding constraint is added to the active set, and the previous steps are

repeated.

Parameter tuning A typical MPC law has many tunable parameters. A review of

tuning guidelines for MPC from theoretical and practical perspectives was provided

in Reference [63]. Off-line tuning methods are suggested in which each parameter

are individually tuned as given below.

• Prediction horizon

The prediction horizon, p, is the number of future control intervals the MPC

controller must evaluate by prediction when optimising its MVs at current

control interval k. Recommended practice is to choose p early in the controller

design and then hold it constant while tuning other controller settings. The

value of p should be such that the controller is internally stable and anticipates

constraint violations early enough to allow corrective action. If the desired

closed-loop response time is T and the control interval is Ts, try p such that

T ≈ pTs.

• Control horizon

The control horizon affects how aggressive or conservative the control action

is. This leads to a trade-off: increasing the control horizon from 1 creates a

more robust, but more aggressive controller with an increased computational

load; however, keeping it at 1 increases the conservativeness and decreases

the robustness of the controller but at a savings of computation.

• Weights on the outputs

Weights on the output are used to scale the control variables and direct more

control efforts toward more significant controlled outputs to achieve tighter

control of these controlled outputs.

• Weights on the rate of change of inputs

Penalising the rate of change yields a more robust controller, but the cost of

the controller is more sluggish. Setting a small penalty or none whatsoever
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gives a more aggressive controller that is less robust.

• Weights on the magnitude of the inputs

This parameter penalises access controller action. It is a way to remove a con-

straint from the optimisation problem and thus make it more computationally

attractive. This appropriate penalty allows one to remove the constraints on

the minimum and maximum sizes of the inputs.

• Constraint parameters

Typically, the objective to tune the constraints involves knowing the window

when the constraints are active or inactive to make the optimisation problem

feasible.

2.4 Applications of model predictive control in HVAC

systems

In the industrial applications, most of the controllers commissioned in HVAC

systems are of the PID type [64]. This is because its relatively simple structure

makes it easy to be understood and applied in practice. It is more acceptable in

the first position of view when designing an HVAC control system unless there is

evidence showing it cannot satisfy the conditions or more advanced functions are

required. However, the tuning of the PID controller can be a time-consuming, ex-

pensive and challenging task, and the re-tuning of the controller is sometimes needed

because of the change in operating and environmental conditions [65]. A workable

PID controller may take several days for tuning which increases the cost and time

of projects [26]. The PID controllers are used in the HVAC system for the dynamic

control of cooling coil units [66], supply AP control [67] [68], supply air tempera-

ture control [69] and room temperature control [70].

The need for high-quality products, reduced energy consumption, increasing

market competition and lower cost, makes the necessity to apply the advanced con-

trol method with improved control performance [71]. In recent years, there have

been suggestions that MPC may offer benefits when applied to the HVAC system.

The MPC uses a system model to predict the future states of the system and gen-
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erates a control vector that minimises a certain cost function over the prediction

horizon in the presence of disturbances and constraints [72]. The using of MPC is

particularly attractive to staff with a limited knowledge of control because the con-

cepts are very intuitive, and the tuning is relatively easy [38]. A significant advan-

tage of MPC is that it can apply to a wide range of processes such as delayed, none

minimum phase and unstable systems [73]. By replacing PID controllers with MPC

controllers in the HVAC system, there is no need for the adjustment of coefficients

since the MPC controllers are tunable online without tuning the coefficients before

testing the controllers [74]. A significant amount of literature has been published

on applications of MPC to HVAC systems. Reference [74] proposes the idea of us-

ing MPC to control the speed of air supply fan. The zone temperature and damper

position in a simulated VAV system were controlled using MPC in Reference [75].

There are thousands of applications of MPC in many industries. The majority of

applications (see surveys by Qin and Badgwell [76] [77]) are in the area of refining,

one of the original application fields of MPC, where it has a solid background. A

substantial number of applications can be found in petrochemicals and chemicals.

Significant growth areas include pulp and paper, food processing, aerospace, and

automotive industries. Other areas such as gas, utility, furnaces, or mining and met-

allurgy also appear in the report. Some applications in the cement industry or pulp

factories can be found in Reference [78]. Although the MPC technology has not yet

penetrated deeply into areas where process nonlinearities are strong and frequent

changes in operation conditions occur, the number of nonlinear MPC applications

is clearly increasing.

A significant number of applications involving mechanical and electronic sys-

tem are now being reported in Reference [79]. This is made possible by the im-

plementation of MPC at sample rates that are orders-of-magnitude faster than in

traditional process applications. The applications include vehicle traction control,

direct injection stratified charge engines, ducted fan in a thrust-vectored flight con-

trol experiment, automotive powertrains, magnetically actuated mass spring damper

system, power converters, multi-core thermal management, and so on.

A large amount of literature has been published on applications of MPC in
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HVAC systems [72] [80]. A robust MPC strategy was presented in Reference [75],

to improve the supply air temperature control of AHUs. The associated uncertain-

ties and constraints were taken into account directly. The performance of the MPC

controller was compared with that of the PI controller, controlling the supply air-

flow rate. The MPC controller displayed better transient response, which includes

the compare of rise time, settling time and percentage overshoot, and was more ro-

bust in the presence of air duct pressure disturbances. Two types of set-points were

regulated: at a low set-point, the PI controller responded sluggishly which needed

additional time to reach the set-point; at a high set-point, the PI controller pro-

duced excessive overshoots which made the response too aggressive. By contrast,

the MPC controller produced consistent responses and achieved faster settling time

and lower overshoot in both cases. Two typical inlet conditions were used for the

performance test of the supply air temperature control: hot summer condition with

26◦C air temperature, and cool winter condition with 17◦C air temperature. In both

conditions, the conventional PI and the MPC controllers tracked the set-point well.

In the hot summer condition, the PI controller took less time to reach the set-point

but exhibited much more fluctuation than the MPC controller. In the cool winter

condition, the PI controller took much more time to reach the set-point which sug-

gests re-tuning the parameters, and the MPC controller spent less response time and

had a much better control performance.

Reference [81] presented the simulations of thermal regulation in buildings using

a distributed MPC algorithm which took the advantages of decentralised control and

centralised control. The MPC strategy was first presented for a single zone building

then extended to a multi-zone building. Both centralised and distributed MPC regu-

lated the zone temperature well at the set-point coupling the effects between adjacent

zones. For the purpose of comparison, the conventional controllers (On/Off and PI

controller) were tested acting as decentralised controllers. Each of them controls

the zone temperature individually in a multi-zone building without any knowledge

of the others’ behaviour. The decentralised MPC scheme improves the performance

slightly while the thermal coupling is not included. However, the centralised and

distributed MPC controllers accounted for the coupling effects of the adjacent zones
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by making predictions for the coupling effects and communicating the control deci-

sions to the neighbouring controllers. Compared with the conventional controllers,

decentralised MPC could reduce the energy consumption by about 5.5%, and the

centralised and distributed MPC strategies were able to achieve a 36.7% increase in

thermal comfort and the meantime reduce the energy consumption with 13.4%.

Reference [82] adopts an MPC-based multi-input multi-output (MIMO) con-

troller to implement temperature and ventilation control of a virtual building com-

posed of six zones and an all-air VAV system. The virtual building simulated an

educational building on a campus with daily occupancy and internal heat gain pro-

files. Four typical weather conditions were applied to compare the performance of

conventional PI control and MPC whose weather data was randomly chosen be-

tween June and August of 1988-1990 from SAMSON. The multi-zone MPC used a

MIMO linear model for predicting the temperature of the zones and solved a con-

strained convex quadratic optimisation problem to find the control actions guaran-

teeing enough airflow for every zone. All the simulation showed that the multi-zone

MPC met the ventilation requirements set by ASHRAE Standard 62.1 and outper-

formed the PI control.

To keep the indoor temperature within a defined comfort interval, the forthcom-

ing supply fluid temperature for a water-based floor heating system in residential

buildings was computed using both a detailed numerical Simulink model and a sim-

plified 2-node lumped model in Reference [83]. The MPC method was applied to

determine the optimal supply water temperature using weather prediction and ac-

counting for the dead time of the building. The accuracy of the results obtained

from the simplified model is better in comparison to the Simulink model. The exact

solution method based on the numerical Simulink model was unable to maintain

the room temperature at the at all times because it did not use weather forecasting.

Hence, the explicit solution based on the simplified model can be utilised to evaluate

simple control methods for low energy buildings.

In Reference [84], MPC was used for zone temperature control to reduce energy

and demand costs for building HVAC systems. A simulated multi-zone commercial

building equipped with a VAV cooling system was built in Energyplus with real-time
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data exchange between Energyplus and a Matlab controller. The min-max optimisa-

tion problem with an economic objective was transferred into a linear program and

solved at each time step which minimised the costs on a daily basis. By employ-

ing the MPC technique, the pre-cooling effect was automatically triggered, and the

peak demand was shifted away from on-peak hours. Compared with the baseline

night setup strategy (0%), MPC yielded higher savings (28%) than did the linear-up

(17%) and step-up (24%) strategies.

To meet the separate temperature requirements of two cooling zones, MPC was

used to control the water flow valve (WFV) in Reference [85]. A novel control

architecture was presented with a flexible two-level structure. The MPC method

was used at both levels to control the temperatures of two different cooling zones

while maximising the energy efficiency. The pressure and cooling values for the

evaporators were calculated to minimise a quadratic cost function by controlling the

electronic expansion valve (EEV) and compressor speed. Local level PI controllers

were also implemented for comparison. The results showed that the MPC outper-

formed the PI controllers with improved regulation of superheat temperature and

evaporator pressure. The coefficient of performance (COP) of the system was im-

proved by 9.5% if adding supervisory MPC to the system resulting in higher energy

efficiency.

Reference [86] presented an MPC based on Takagi-Sugeno fuzzy model to con-

trol the dry bulb temperature of the off-coil air from the AHU in HVAC systems. To

compensate uncertainties of the model, the feedback regulation was developed. In

the simulation test, the proposed MPC had better tracking effect and robustness than

PID control with less overshoot and shorter setting time. The MPC controller also

showed improved performance from the test results in a lab-scale HVAC system.

Both numerical simulation and experimental tests were proposed in Reference

[87] to control the supply air temperature of a test room using prescribed error dy-

namics and MPC techniques with feedback linearisation. A simplified model was

derived from thermodynamic equations. The comparison results demonstrated that

the MPC controller performed better than the other with better trajectory tracking.

The plant dead time and future values of the reference signal can be taken into ac-
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count in the MPC controllers.

For zone temperature control in a large university building, the performance of

the MPC was compared with that of a finely tuned weather compensated controller

that also used weather forecasting in Reference [88] and the heating curve method

in Reference [89]. The MPC used 29% less energy while maintaining the same

thermal comfort level in both applications.

The zone temperature and humidity of a thermal chamber in a university lab

were controlled with an MPC and a neural-fuzzy controller in Reference [90]. Com-

pared with the neural-fuzzy controller, the MPC demonstrated superior performance:

it improved the settling time by 25% and the steady-state error for temperature and

humidity by 100% and 400%, respectively.

A comparison of on/off control with learning-based MPC (LBMPC) was car-

ried out in Reference [91] using a single heat pump air-conditioning (AC) system

installed in a university lab. LBMPC reduced the energy consumption by 30-70%

compared with the on/off control. The energy savings were reduced as the occu-

pancy and temperature of outside air increased, resulting in a higher thermal load on

the AC.

Summarised from the above applications, most researchers focus on maintain-

ing the thermal comfort in the HVAC system by controlling the temperature and hu-

midity. The test beds the above applications used are mostly residential buildings,

normal university buildings or just simulated buildings. This thesis concentrates not

only on the simulated plant but also a constructed cleanroom laboratory which sim-

ulates a pharmaceutical factory. The novelty of this thesis is that the HVAC control

system focus on the ventilation system inside the cleanroom to maintain the ACR,

AP and the desired particulate levels. The particulate control with MPC is a new

direction to control the air cleanliness.

The challenges of the MPC design include the communication between con-

trollers and facilities, the definition and identification of the accurate model, the

large computational load the MPC algorithm needs and so on. The controllers are

designed in Matlab at first. The communication between Matlab and the facilities

should be implemented through the OPC server. An OPC Toolbox is installed in

MODEL PREDICTIVE CONTROL OF CLEANROOM HVAC SYSTEM Shuji Chen



2.4 Applications of model predictive control in HVAC systems 37

Matlab to achieve that. To identify accurate system models, several model structures

and several parameter estimation methods are studied. The best system models are

found by model validation approach. The MPC algorithm needs a large computation

at each time step. A more powerful computer is introduced to run the programs. The

HVAC process is slow enough to run complex MPC controllers on this computer.

For a cleanroom HVAC system, the heat transfer and the ventilation process inside

the cleanroom are time-consuming. The response time ranges from minutes to days.

Thus, the sample time of the MPC controller should be designed with a large value

to ensure the stability of the system.

MODEL PREDICTIVE CONTROL OF CLEANROOM HVAC SYSTEM Shuji Chen



Chapter 3

Configuration and setup of the

cleanroom laboratory

This chapter will present the configuration and setup of the cleanroom HVAC

laboratory built by a company called Energy Efficiency Consultancy Ltd (EECO2)

located in Macclesfield, UK. The laboratory aims to simulate the operation of the

cleanroom HVAC system used in a pharmaceutical factory. The traditional PI con-

trollers have been implemented in the BMS to monitor and control the IAQ inside

the cleanroom laboratory. Then, the working principles of the main hardware and

software installed in the HVAC system will be introduced. At last, the energy con-

sumption of the hardware will be analysed to figure out how to compare the con-

sumed energy between different control methods.

3.1 Schematic of the cleanroom laboratory

Figure 3.1 [96] shows the schematic of the cleanroom laboratory whose hard-

ware is controlled by PI controllers implemented in the BMS. The cleanroom labo-

ratory consists of four rooms (in red line) and some HVAC facilities. The zone in red

lines represents the clean zone of a pharmaceutical factory where the medicines are

produced and packed. It is sealed by glass and rubber which makes the laboratory

isolated from the outdoor air. Four rooms are classified and separated depending

38



3.1 Schematic of the cleanroom laboratory 39

on functions and air cleanliness levels: the entrance room, the change room, the

small lab and the large lab. Some sensors are installed inside the laboratory to mea-

sure and collect the operational variable data required for monitoring, modelling and

controlling the cleanroom HVAC system.

Outside Air

R
et

ur
n 

A
ir

Mixed Air

C
oo

lin
g

H
ea

tin
g

Fa
n 

Sp
ee

d

Airflow Rate

Extract Air

AHU 2

C
oo

lin
g

H
ea

tin
g

AHU 1

Mixed Air

R
et

ur
n 

A
ir

Extract Air

Outside

Outside

Fa
n 

Sp
ee

d

AP

Fa
n 

Sp
ee

d
SP

Fa
n 

Sp
ee

d
PI

VAV Position

VAV Position

VAV Position

VAV 
Position

Large Lab

Small Lab

Change 
Room Entrance

VAV Position
AP

ACR
VAV
Position

AP

Airflow Rate

PI

SP
SP

PI

PI SP

PIPI

SP

PI

PI

PI

PI

SP

SP

SP

SP

SP

AP
ACR

AP

ACR

Figure 3.1: Schematic of the cleanroom laboratory with HVAC control system [96].

Figure 1.1 shows a diagram of a basic HVAC system and its basic operation

is presented in Section 1.1. In addition to the basic schematic, Figure 3.1 shows

the schematic of the cleanroom laboratory whose hardware is controlled by PI con-

trollers implemented in the BMS. Each PI controller is designed to control a fatality

within the HVAC system including the supply fans inside the AHUs, the extract

fans and the supply and extract VAVs. The original design of the HVAC system

requires the PI controllers to maintain the steady state of the supply airflow rate and
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air pressure of each cleanrooms.

3.2 HVAC hardware

The laboratory has two separate AHUs which allow a wide variety of perfor-

mance testing options. The testing experiments are taken in the cleanroom labora-

tory via the HVAC system. The HVAC system cleans and circulates the air from

outdoors to the cleanrooms, the functionality of which is achieved by the operation

of the hardware including AHUs, VAVs, Extract fans, sensors, grilles and diffusers.

3.2.1 Air handling unit

An AHU is a central air conditioner station that handles the air supplied into the

buildings by the ventilation ductwork with thermal, hygrometric and IAQ treatment.

The accuracy of the treatment will depend on the specificity of each project. The

AHU treats the air by filtering, cooling or heating, humidifying or dehumidifying.

The AHU is typically constructed around a framing system with metal infill panels

as required to suit the configuration of the components.

The AHU consists of several components depending on the complexity and re-

quirements of each specific building and application. In this laboratory, two AHUs

have been constructed with the same type and the same number of components. The

AHU1 supplies air to the small lab and the large lab, and the AHU2 supplies air to

the change room.
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Figure 3.2: Schematic of the AHU [92].
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The structure of an AHU is decided based on the requirement of the condition of

the air supplied into cleanrooms. In this project, the supply air needs to be cleaned

with required air velocity, so that the filter and fan are needed. The heating and

cooling coils are added because they are useful to keep the thermal comfort and will

be requested for the further design.

The components described from the return duct (input to the AHU), through the

unit, to the supply duct (AHU output), are presented in Figure 3.2 [92] with the

number from 1 to 9 as introduced below:

• 1 Mixing box

The AHU allows the introduction of outside air into cleanrooms and the ex-

hausting of air from cleanrooms. To approach the desired supply air tem-

perature, the right amount of cooler outside air is mixed in the mixing box

with warmer return air. A mixing box is therefore used which has dampers

controlling the ratio of the return, outside, and exhaust air.

• 2 and 8 Bag filter

Air filtration is applied to provide clean air to the building occupants. A bag

filter is an air pollution control device that removes particles out of the air

to control the emission of air pollutants into buildings. Most bag filters use

long, cylindrical bags, made of woven or felted fabric, as a filter medium. The

life of the filter is assessed by monitoring the pressure drop through the filter

medium at a designed airflow rate. This is done using a visual display using a

pressure gauge.

• 3 Plenum fan

The AHU employs a plenum fan, which is shown in Figure 3.3(a) [95], driven

by an AC induction electric motor to move the air. The fan is driven by a

variable frequency drive to allow a wide range of airflow rates. All fans and

motors are located on a rigid steel frame to form an assembly. All assemblies

are isolated from the main AHU chassis via anti-vibration mountings. On

direct drive fan assemblies, the motor must be run at the fan speed shown on

the technical specification to achieve the correct duty point. This is obtained

by modulating the frequency (Hz) of the inverter as shown in Figure 3.3(b)
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[94]. The motor will be selected to run at a frequency other than 50 Hz.

Failure to set this correctly will result in the unit operating either over volume

and possible damage to components or under volume.

(a) Plenum fan in the AHU

(b) Controlling inverter of the fan

Figure 3.3: The plenum fan [95] in the AHU and the inverter [94].
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The ideal power consumption for a fan (without losses) can be expressed as

Pi = QH (3.2.1)

where Pi is the ideal power consumption, Q is the volumetric flow rate, and

H is the static pressure developed by the fan.

By using manufacturers’ specifications for actual fans, the fan efficiency is

given to represent the performance of the fan. The fan efficiency is the ratio

between power delivered to the air and the power supplied to the shaft of the

fan. The fan efficiency is independent of the air density and can be expressed

as:

ηf =
QH

P
(3.2.2)

where ηf is the fan efficiency, Q is the volumetric flow rate, H is the static

pressure developed by the fan, and P is the power used by the fan.

Then, the shaft power used by the fan can be expressed as:

P =
QH

ηf
(3.2.3)

Figures 3.4 [95] and 3.5 [95] present the fan curves of the AHU1 supply fan

and AHU2 supply fan produced by COMEFRI [95], respectively. The figures

show the relationship among static pressure (4pstat), volumetric flow rate

(V ), rotational speed (RPM ), fan efficiency (the percentage values), shaft

power (values in kW) and sound power level (values in dB). The intersection

points of area 1 and area 2 in these figures give the maximum fan efficiency.

The fan efficiency decays from this point along area 1 or area 2. On the

bottom, a scale on the performance, Kη, is given for a serious of RPM . The

fan efficiency read in the figure with percentage values can be corrected using

Kη that

ηt = ηf ×Kη (3.2.4)

where ηt is the corrected total efficiency, ηf is the fan efficiency read from the

curve, and Kη is the performance scale.
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36 

NPL 315 Steel / Stahl / 
Acier / Acciaio

Aluminium
Alluminio 

Max Wheel RPM / Max Laufradgeschwindigkeit / Vitesse de rotation 
maximale de la turbine / Massima velocità di rotazione della girante 

[min-1] 4315 3625 

Number of Blades / Schaufelanzahl / Nombre d'aubes / Numero di pale z 8 

C-0090 January 2014

Performance certified is for installation type A: 
free inlet, free outlet. Performance ratings include 
to effects of spring dampers and does not include 
the effects of appurtenances (accessories). 
Power rating (kW) does not include trasmission 
losses. The AMCA Certified Ratings Seal does 
not apply to in-duct inlet Sound noise.

Die bescheinigten Leistungen beziehen sich auf 
die Installation Typ A: freier Ansaug, freier Aus-
blas. Die Leistungen werden mit angebautem 
Schwingungsdämpfer gemessen. Eventuelles 
Zubehör im Volumenstrom wird nicht berücksich-
tigt. Die Antriebsverluste werden nicht von der
aufgenommenen Leistung (kW) einbezogen. Die 
AMCA Bescheinigung haftet nicht  für die  Ge-
räusche im inneren des Ansaugkanals. 

Les prestations certifiées font références à des 
installations A : aspiration libre, refoulement libre. 
Les prestations sont mesurées avec les amortis-
seurs installés et ne tiennent pas compte des 
éventuels accessoires dans le flux d’air. La 
puissance absorbée (kW) ne considére pas  les 
pertes de la transmission. La certification AMCA 
ne s’applique pas au bruit dans le canal 
d’aspiration. 

Le prestazioni certificate si riferiscono all’ installa-
zione A: aspirazione libera, mandata libera. Le 
prestazioni sono misurate con gli ammortizzatori 
installati e non tengono conto di eventuali acces-
sori nel flusso d'aria. La potenza assorbita (kW) 
non include le perdite della trasmissione. La 
certificazione AMCA non si applica al rumore 
all’interno del canale di aspirazione.

Figure 3.4: The fan curve of the AHU1 supply fan [95].
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68 

TE 200
Max Wheel RPM / Max Laufradgeschwindigkeit / Vitesse de rotation maximale 
de la turbine / Massima velocità di rotazione della girante 

[min-1] 5500 

Number of Blades / Schaufelanzahl / Nombre d'aubes / Numero di pale z 8 

C-0090 January 2014

The CRP Rating does not include TE 200 In der AMCA Zertifizierung ist das TE 200 Laufrad 
nicht einbezogen 

La certificatoin AMCA n’inclue pas la turbine TE 200  La certificazione AMCA non include la girante TE 200

Figure 3.5: The fan curve of the AHU2 supply fan [95].

• 4 and 6 Water cooling and heating coil

The AHU provides heating, cooling, or both to change the supply air temper-

ature. Such conditioning is provided by heat exchanger coils within the AHU

air stream, and such coils may be direct or indirect about the medium provid-
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ing the heating or cooling effect [93]. The coils use hot water for heating and

chilled water for cooling. Coils are manufactured by copper for the tubes to

aid heat transfer. The hot water is provided by a central boiler, and the chilled

water is provided by a central chiller. The coils are usually of open header

box construction and completely self-supporting. They are designed to slide

into the AHU and are retained without any internal fixing.

• 5 and 7 Access

Access doors are installed for maintenance.

• 9 Outlet

The outlet is connected with the ductwork to let the clean and conditioned air

flow into cleanrooms.

In the AHU, the air will enter the mixing box, be cleaned by the first filter, be

accelerated by the supply fan, be cooled or warmed by the coils, be cleaned by the

second filter and flow into cleanrooms. The constructed AHUs are shown in Figure

3.6 [96].

Figure 3.6: The constructed AHUs [96].
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3.2.2 Variable air volume

A VAV varies the volume flow rate of the supply air to maintain the room air

temperature and pressure at the set-point [97]. A VAV box is a calibrated air damper

with an automatic actuator. The air volume flows through the VAV box relate to the

position of the damper installed inside it. In this thesis, the VAV system is respon-

sible for maintaining the static airflow rate and AP. Six VAVs have been installed

in the HVAC system, three of them control the air supplied into the rooms, and the

other three control the air extracted from rooms.

Figure 3.7 [98] shows a VAV box produced by CMR where the actuator is in-

stalled on the top. The actuator has a digital motor control which can be commis-

sioned with a PC. The actuator has been built in overload control, and the motor is

capable driving against a block without end switches. The rotation angle (0 . . . 90◦)

can be adjusted via mechanical end stops for opening and closing. Feedback from

the actuator can be adapted to be 0 . . . 10V . The rotation direction is adjustable via

a dip switch under the motor cover. The VAV is driven by a 24 V 50 Hz AC voltage,

and the power consumption is 12 W [98].

VMSM-05 HI-SPEED ROTATING ACTUATOR 

The VMSM-05 damper actuator has been designed for commercial 
and industrial ventilation applications. The protection class is IP54 
and it can be installed in any in-door normal environment. It is being 
used in high rise office blocks for the ventilation control or in many 
clean room pressure or constant air volume applications where a 
hi-speed and reliable air volume control must be achieved. It is also 
used in fume cupboard extract  and make up air laboratory control.

It has a rotating clamp which can grip 8..12mm square damper  
shafts or 8..16mm round damper shafts. It will fit perfectly onto the 
CMR fume cupboard control valves. It will also fit directly onto the 
CMR square or rectangular dampers with gear drive or the round 
PPs chemical resistant valves and the galvanised or stainless steel 
valves. CMR manufactures all the associated mounting brackets 
also to suit specific custom applications. The motors are best used 
with the CMR dampers as the rotating shaft and gear mechanism 
on the damper must be able to withstand very fast small open and 
closed commands under automatic control. 

The actuator has a digital motor control which has the advantage 
that it can be commissioned with a PC. It also has dip switches to 
adjust the input and output voltage control without PC. The actuator 
has built in overload control and the motor is capable driving 
against a block without end switches. The rotation angle can be 
adjusted via mechanical end stops for opening and closing.

There is a rotating position indicator which is part of the clamp and a 
red arrow can be adjusted to show the actual position. It is highly 
visible at a distance.  A feed back is standard which can be adjusted 
to be 2..10V or 0..10V. The rotation direction is adjustable via a dip 
switch under the motor cover.

A manual push button clutch mechanism can be operated by hand. 
When pushing the manual button, it disengages the gear drive to 
the application. The clamp can then be rotated manually to any 
position. The power should be isolated before using the manual 
push button as otherwise the motor drives back to the control 
position when the button is released. This function should only be 
used in a controlled maintenance condition.

When there is a power failure, the motor shall remain in its last 
position. It has no fail safe spring return action. The electronic is 
built into the actuator and there are no further adjustments to be 
made. Once the motor has been commissioned it will be set for life 
and is maintenance free.

A 900mm long cable is factory fitted and can be terminated 
according to a wiring diagram which is on a label fixed to the 
actuator. The damper motor is factory tested and pre-set to a 
standard operation.   

•  Heavy duty fast electric actuator

•  24VAC or DC supply to the motor 

•  Modulating control with input 2..10V or 0..10V

•  Position signal feed back 2..10V or 0..10V

•  Protection class IP54 

•  Fitted 900mm long connection cable

•  Rotation adjustable from 0..95°

•  Factory set to 0..90° and feed back to 2..10V 

•  Continuous control function or on-off

•  Rotation speed 4s for 0..90° 

•  Torque 8Nm continuously rotating 

•  CMR standard 24 month warranty

•  10 Years field application experience

PPs modulating venturi valve with VMSM-05

Galvanised modulating Valve with VMSM-05 

VMSM-05 Actuator 

Copyright © 2008  CMR®  C.M.RICHTER EUROPE LTD                    All rights reserved                  The information is subject to change without notice                VMSM-05 - Rev  1 2008

CMR CONTROLS
 Division of C.M.RICHTER EUROPE LTD

22 Repton Court  Repton Close
Basildon Essex  SS13 1LN   GB
Website :  http://www.cmr.co.uk

Tel  +44 (0) 1268 287222
Fax +44 (0) 1268 287099
e-mail: sales@cmr.co.uk
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Figure 3.7: The VAV box [98].

The VAV installed in the laboratory is embedded with a pressure-based VAV
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airflow sensor which infers the airflow velocity pressure and converts it to a VAV

airflow rate. The VAV airflow rate is calculated from the measured VAV differential

pressure using the following equation [101]:

QV AV = K
√
4PV AV (3.2.5)

where, QV AV is the VAV volumetric airflow (l/s), 4PV AV is the VAV differential

pressure (Pa), and K is the conversion factor provided by the VAV manufacturer.

3.2.3 Extract fan

The extract fan accelerates the air extracted from cleanrooms. As shown in

Figure 3.1, two extract fans are installed near two AHUs. The extract fan near AHU1

is called AHU1 extract fan, and the one near AHU2 is named AHU2 extract fan. The

extract fans produced by SYSTEMAIR, which are shown in Figure 3.8 [99] [100],

are installed in the ducts beside the outlet of air into the outside. The extract fans

can affect the air circulation in the HVAC system.

(a) AHU1 extract fan (b) AHU2 extract fan

Figure 3.8: The extract fans installed in the HVAC system [99] [100].

Figures 3.9 and 3.10 present the fan curves of the AHU1 extract fan and AHU2

extract fan respectively produced by SYSTEMAIR [99] [100]. The figures show the

relationship among static pressure (Ps), volumetric flow rate (Q) and power (P ).
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Square duct fans

dB(A) Tot Frequency bands [Hz]

63 125 250 500 1k 2k 4k 8k

LwA Inlet 78 65 67 71 73 72 69 64 57

LwA Outlet 80 67 69 73 75 74 71 66 59

LwA Surrounding 55 42 44 48 50 49 46 41 34

Measurement point: 0,94 m³/s; 451 Pa

dB(A) Tot Frequency bands [Hz]

63 125 250 500 1k 2k 4k 8k

LwA Inlet 76 63 65 69 71 70 67 62 55

LwA Outlet 78 65 67 71 73 72 69 64 57

LwA Surrounding 55 42 44 48 50 49 46 41 34

Measurement point: 1,02 m³/s; 370 Pa

Square duct fans

Figure 3.9: The fan curve of the AHU1 extract fan [99].
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40

Circular duct fans

dB(A) Tot Frequency bands [Hz]

63 125 250 500 1k 2k 4k 8k

LwA Inlet 79 60 70 71 75 71 64 64 57

LwA Outlet 84 57 71 75 76 76 78 75 73

LwA Surrounding 60 27 27 46 55 56 52 48 39

With LDC 200-900

LwA Inlet 68 58 66 63 51 39 30 51 47

LwA Outlet 72 55 67 67 52 44 44 62 63

Measurement point: 0,2 m³/s; 255 Pa

dB(A) Tot Frequency bands [Hz]

63 125 250 500 1k 2k 4k 8k

LwA Inlet 79 55 66 69 76 73 66 65 61

LwA Outlet 79 55 70 71 73 73 72 65 59

LwA Surrounding 61 22 27 43 56 56 53 50 44

With LDC 250-900

LwA Inlet 73 73 49 51 36 33 34 48 51

LwA Outlet 68 52 66 63 53 47 49 55 51

Measurement point: 0,229 m³/s; 260 Pa

dB(A) Tot Frequency bands [Hz]

63 125 250 500 1k 2k 4k 8k

LwA Inlet 82 56 73 75 78 75 71 71 64

LwA Outlet 81 56 71 71 75 74 76 71 64

LwA Surrounding 62 28 37 46 61 50 48 49 37

With LDC 250-900

LwA Inlet 72 53 69 67 58 49 48 61 56

LwA Outlet 70 53 67 63 55 48 53 61 56

Measurement point: 0,341 m³/s; 296 Pa

dB(A) Tot Frequency bands [Hz]

63 125 250 500 1k 2k 4k 8k

LwA Inlet 79 54 64 68 76 73 68 66 62

LwA Outlet 81 58 69 70 76 75 74 67 60

LwA Surrounding 66 32 33 41 65 50 46 45 40

With LDC 315-900

LwA Inlet 67 53 61 61 60 51 56 60 55

LwA Outlet 70 57 66 63 60 53 62 61 53

Measurement point: 0,23 m³/s; 262 Pa
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Figure 3.10: The fan curve of the AHU2 extract fan [100].

3.2.4 Others

Since the project focuses on the sensor-based controller designed in the clean-

room HVAC system, several types of sensors have been installed:

• Static pressure, measured at the outlet of AHUs and in cleanrooms.

• Differential pressure, measured at some testing points in the ducts, at VAVs

and the outlet of AHUs.
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• Temperature and humidity, measured at the cooling and heating coils, the inlet

of fresh air, the outlet from extract fans and in cleanrooms.

• Particle counter measured in cleanrooms and ducts.

A grille is a device to supply or extract air vertically without any deflection. A

diffuser normally has profiled blades to direct the air at an angle as it leaves the unit

into the space. Diffusers are part of room air distribution systems in HVAC systems

serving several purposes:

• To deliver both conditioning and ventilating air

• Evenly distribute the flow of air, in the desired directions

• To enhance mixing of room air into the primary air being discharged

• To create low-velocity air movement in the occupied portion of room

• Accomplish the above while producing the minimum amount of noise

3.3 HVAC software

Figure 3.11 presents the data communication between the HVAC hardware and

the software in the cleanroom laboratory. The hardware contains sensors and drivers:

the sensors are used to measure the system output (y: airflow rate and AP), and the

drivers receive the controller output data (u) from PI controllers implemented in the

BMS to operate the HVAC facilities (supply fans, extract fans and VAVs). The soft-

ware is the BMS installed in a computer as the workstation. The BMS is provided

by Trend which monitors and controls the HVAC hardware to maintain steady air-

flow rate and AP of the cleanroom laboratory. The data communication between the

sensors and drivers and the BMS is achieved by Modbus, which is a serial commu-

nication protocol enabling communication among devices within the same network.
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Sensors

Drivers

Laboratory BMS

MODBUS
PI controller

Set-point
y y

uu
e

Figure 3.11: Data communication between the hardware and the software in the
laboratory.

3.4 Energy consumption analysis

Due to the progress of this project, the data of voltage and current cannot be

collected when the MPC controllers were tested. So that the energy consumption of

the fans with different controllers has to be compared using the fan law.

The affinity laws for fans are used in HVAC systems to express the relationship

among variables involved in fan performance (such as head, volumetric flow rate,

shaft speed) and power. The fan affinity laws offer a quick way to evaluate fan

performance when wheel speed or diameter is changed. In this thesis, the diameter

(D) of the fan’s impeller is kept constant after the construction of the whole system.

Thus the simplified version of the fan affinity laws with the impeller diameter (D)

held constant are as follows [102]:

• Fan law 1: The change in flow rate (Q2 to Q1) is directly proportional to

changes in speed (N2 to N1).

Q1 =
N1

N2

×Q2 (3.4.1)

• Fan law 2: Static pressure (H2 to H1) is proportional to the square of the

change in speed (N2 to N1).

H1 = (
N1

N2

)2 ×H2 (3.4.2)

• Fan law 3: Fan brake horsepower (P2 to P1) changes are proportional to the

cube of changes in speed (N2 to N1).
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P1 = (
N1

N2

)3 × P2 (3.4.3)

where

• Qi (i = 1, 2) is the volumetric flow rate (e.g. cubic foot per minute (CFM) or

litre per second (l/s)),

• Ni (i = 1, 2) is the shaft rotational speed (e.g. revolutions per minute (rpm)

or Hertz),

• Hi (i = 1, 2) is the static pressure developed by the fan (e.g. psi or Pascal),

• Pi (i = 1, 2) is the shaft power (e.g. W).

These laws assume that the fan efficiency (η) and gas density (ρ) at inlet con-

ditions remain constant. The P given above is the instantaneous power of the fan.

Thus the energy (E) during a time interval 0-t can be calculated as:

E(t) =

∫ t

0

P (t)dt (3.4.4)

Since the ventilation system is the main concentration of this thesis, the heating

part is not taken into account, such as boilers and chillers. Then the total energy

consumption of this HVAC system contains the hardware:

• Fans

To compare the energy consumption of each fan operated by different con-

trollers, the energy E should be compared. From (3.4.3), the compare of the

cube of the rotational speed can reflect the compare of the power. Thus, the

compare of the integral of the rotational speed’s cube can reflect the energy

consumption of fans.

• VAVs, dampers, sensors, etc.

They are driven by a 24V voltage. They are running in a nominal power which

is constant whatever the signal voltage is and whatever the controller is. The

energy consumption of these hardware remains the same between different

control methods. So, when comparing the energy consumption with different

controllers, the energy consumption of this hardware is not taken into account.
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3.5 Conclusion

In this chapter, the cleanroom laboratory has been introduced in detail with the

configuration of the laboratory, the HVAC hardware and software, and the analysis

of the energy consumption. The HVAC hardware provides the foundation to imple-

ment the operation of the HVAC system to achieve the thermal comfort and IAQ.

The data related to the hardware can be collected through the BMS which is the

HVAC software that runs PI controllers to achieve a steady state in the airflow rate

and the AP inside the cleanroom laboratory.

Since the combination of the hardware provides a platform which is capable

of implementing a variety of control algorithm, the laboratory can be operated by

other control methods, such as MPC. The software based BMS communicates with

the hardware, collecting the data from sensors and drivers. These data will be useful

for further chapters as the black-box models of the laboratory can be identified based

on (in Chapter 4). Then the MPC controllers will be designed based the identified

models as presented in Chapter 5.

MODEL PREDICTIVE CONTROL OF CLEANROOM HVAC SYSTEM Shuji Chen



Chapter 4

Black-box model identification of the

cleanroom laboratory

The performance of MPC is highly sensitive to model mismatch. To reduce the

influence of model mismatch, it is necessary to figure out the system models as accu-

rate as possible. This chapter investigates a black-box approach based modelling of

the cleanroom laboratory installed with an HVAC system, based on measurements

from sensors installed in the laboratory. The cleanroom HVAC laboratory is mod-

elled with several SISO models based on individual devices such as supply fans in

AHUs, extract fans and VAVs. The system models are identified using the black-box

modelling approach while the model structure is ARX and the model parameters are

estimated using PEM. The system model is also identified as two MIMO models that

the ACR and the AP of each cleanroom are modelled as the system outputs. The

ARX model has been identified via three different parameter estimation methods:

PEM, least squares (LS) method and instrumental variable (IV) method. The one

with the best performance, the PEM has been obtained and then applied to the other

two model structures, SS model and TF model, for comparison. The performance

of the identified system models is verified based on the cleanroom laboratory, and it

is found that the ARX model performs the best.
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4.1 Introduction

Closed-loop controllers can be implemented for cleanrooms to reduce their power

consumption [104]. As the performance of the controllers depends on the accuracy

of the cleanroom models, the development of an accurate model is necessary and

useful for either tuning controllers’ parameter (such as PID control) or developing

model-based controllers, such as MPC. Three types of models have been used for

the modelling of the cleanroom HVAC system [12]: white-box model (also known

as physical based, analytical and forward model) [105] [106], black-box model (also

known as data-driven and inverse model) [107] [108] [109] [110] and grey-box

model [111] [112]. White-box models are developed depending on the knowledge

of underlying process and physical principles [109]. Black-box models are identi-

fied based on the measured input and output data. When building a grey-box model,

a white-box model is designed first, but the parameters of the model are estimated

by the black-box approach.

The HVAC systems are designed for two purposes: thermal comfort for repre-

senting the satisfaction with the thermal environment, and acceptable IAQ for pre-

senting a required low levels of contaminants. Modelling of buildings installed with

HVAC systems with thermal comfort has been well studied. In Reference [108], a

building model, which focus on the temperature inside the building, is identified by

autoregressive moving average with exogenous terms (ARMAX) model identifica-

tion and subspace identification methods respectively, and the performance of the

two methods are compared. Reference [109] describes a comparison result among

several identification methods which are used to identify the model of several HVAC

subsystems installed in a residential building. The temperatures of air and water are

defined as the model outputs. In Reference [110], an energy resource station is de-

signed to achieve the thermal comfort by applying the identified models using the

neural network approach. However, the research related to the IAQ mainly focuses

on the hardware implementation and experimental test, such as a experimental study

describing the influences of ACR and free area ratio of raised-floor on cleanroom

particle concentrations in Reference [113], test results for air quality control from

an in-vitro fertilisation facility constructed according to cleanroom standards for air
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particulate matter and volatile organic compounds [114], and a set of measurements

in class 1000 cleanroom to demonstrates that humans are the predominant source of

particles in a cleanroom [115].

4.2 System models and data acquisition

This section presents the SISO and MIMO system models of the cleanroom

laboratory and the data acquisition from the laboratory.

4.2.1 SISO system models

As shown in Figure 3.1, ten PI controllers have been designed to maintain the

steady airflow rate and AP inside the original cleanroom laboratory. The SISO mod-

els can be defined and identified based on each PI control loop. The controlled fa-

cilities consist of two supply fans in AHUs, two extract fans and six VAVs. The

structure of a closed-loop system with PI control is shown in Figure 4.1. To find the

mathematical model, the black-box modelling method is applied to the process in

the block diagram while MV is the input and PV is the output. The description of

the system models is shown in Table 4.1.

Set Point (SP)
PI controller Process

Process Variable (PV)

Error
Manipulated 
Variable (MV)

Figure 4.1: Closed-loop with PI control.
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Table 4.1: Description of the SISO system models.

Models Inputs Outputs

AHU1 supply fun AHU1 supply fan speed AHU1 supply air pressure

AHU1 extract fun AHU1 extract fan speed AHU1 extract air pressure

AHU2 supply fun AHU2 supply fan speed AHU2 supply airflow rate

AHU2 extract fun AHU2 extract fan speed AHU2 extract airflow rate

Change room supply VAV Change room supply VAV position Change room supply airflow rate

Small lab supply VAV Small lab supply VAV position Small lab supply airflow rate

Large lab supply VAV Large lab supply VAV position Large lab supply airflow rate

Change room extract VAV Change room extract VAV position Change room extract airflow rate

Small lab extract VAV Small lab extract VAV position Air pressure in the small lab

Large lab extract VAV Large lab extract VAV position Air pressure in the large lab

4.2.2 MIMO system models

The cleanroom laboratory models are classified based on the ventilation system

implemented by the HVAC system. The whole system is divided into two sub-

systems depending upon two ventilation cycles: the AHU1 related and the AHU2

related subsystems. Each subsystem represents the operation of a group of facilities

as shown below.

• AHU1 related subsystem

The HVAC subsystem among the AHU1 and two labs (the small lab and the

large lab) is shown in Figure 4.2. The air flows through the AHU1 to the

labs is controlled by the AHU1 supply fan, the supply VAVs of the labs, the

extract VAVs of the labs and the AHU1 extract fan. The control objective is

to regulate the ACR and the AP inside both labs to the proper levels.

• AHU2 related subsystem

The HVAC subsystem between the AHU2 and the change room is shown in

Figure 4.3. The air flows into the change room from the AHU2 is controlled

by the AHU2 supply fan, the supply VAV and the extract VAV of the change

room, and the AHU2 extract fan to maintain the required ACR and AP of the

change room.

The inputs and outputs of these two subsystem models are represented in Figure
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Supply VAV Small lab

Supply VAV Large lab

Extract fan

Extract VAV

Extract VAV

Outside

AHU1

Supply fan

Extract fan

Fan speed
PI controller

SP
Air pressure

Fan speed

PI controller

SP

Air pressure

Damper position
PI controller

SP
Air change rate

Damper position
PI controller

SP
Air pressure

PI controller
Damper position

SP

PI controller
Damper position

SP
Air pressureAir change rate

Figure 4.2: AHU1 related subsystem.

Supply VAV  Change room

Extract VAV

Outside
Damper position

PI controller

SP
Air pressure

PI controller
Damper position

SP
Air change rate

Supply fan

AHU2

Extract fan

Fan speed
PI controller

SP

Extract airflow rate

PI controller

Fan speed

SP Supply airflow rate

Figure 4.3: AHU2 related subsystem.
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4.4. Both of them are MIMO models: the AHU1 related subsystem has six inputs

and four outputs, and the AHU2 related subsystem has four inputs and two outputs.

4.2.3 Data acquisition

As shown in Figure 4.5, the controller inputs and system outputs of the sub-

systems are collected from the object linking and embedding for process control

(OPC) server installed in a computer. Sensors and drivers are installed in the labo-

ratory, in which the sensors are used to measure the system output (ACR and AP),

and the drivers receive the controller output data from PI controllers implemented

in the BMS to operate the HVAC facilities (fans and VAVs). The BMS installed is

provided by Trend which controls the HVAC facilities to maintain a steady ACR

and AP of the cleanroom. The communication between the sensors and drivers and

the BMS is achieved by a Modbus based OPC server. OPC is the interoperability

standard for the secure and reliable exchange of data in the industrial automation

space and other industries [116]. The data transferred through the OPC server can

be collected by the OPC Toolbox in Matlab installed in the same computer. These

data can be used by the system identification toolbox to identify the mathematical

system models.

Sensors

Drivers

Laboratory

OPC 
server

BMS

OPC 
toolbox

System 
identification 

toolbox

MODBUS

Computer

Figure 4.5: Data acquisition from the laboratory
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AHU1 related
subsystem (the small
lab and the large lab)

Fan Speed of 
the supply fan 
in the AHU1
Fan Speed of 
the extract fan
beside the AHU1

Damper position
of the supply VAV
for the small lab
Damper position
of the extract VAV
for the small lab

Air Pressure
in the small lab

Air Change Rate
in the small lab

Damper position
of the supply VAV
for the large lab
Damper position
of the extract VAV
for the large lab

Air Pressure
in the large lab

Air Change Rate
in the large lab

AHU2 related
subsystem (the change

room)Damper position
of the supply VAV
for the change room
Damper position
of the extract VAV
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Figure 4.4: Inputs and outputs of two subsystems
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4.3 Black-box modelling based on system identifica-

tion methodology

Three model identification methods: PEM, LS and IV method are compared at

first. The best method PEM is applied to three types of system models including

ARX model, SS model and TF model, respectively. The model validation approach

is used to obtain the model structure with the best performance.

4.3.1 System identification procedure

The mathematical model plays an important role on system controller design,

especially for MPC. To figure out the appropriate mathematical model of the clean-

room laboratory, the system identification procedure has been applied which is rep-

resented as follows [117].

Step 1. Data preparation and model structures

(1) Operational measurements from the cleanroom laboratory

Setup all the facilities of the HVAC system in the cleanroom laboratory

and operate them via the BMS installed, design several experimental

tests and run them, then collect data from the OPC server for the inputs

and outputs.

In most of the case in identification is done in the open-loop system

means without having any feedback system. However, for the clean-

room laboratory presented in this thesis, the open-loop system is not

practical because of safety issues and the limitation of the sensor’s mea-

surement. In this case, closed-loop system identification becomes im-

portant. In closed-loop identification, data are collected from a closed-

loop test where an underlying process is fully under feedback control.

Since the HVAC system has been operated by BMS with PI control, the

closed-loop data are easy to collect.

Disturbances affecting the process will highly influence the modelling,
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and therefore priori assumptions on the noise are required to describe

the process. The main disturbance of this system is the disturbance af-

fecting the process internally such as the air leakage, the distribution of

the hardware, time delay of the sensors, etc. A white noise signal is

generated and integrated into the input to overcome such uncertainties.

(2) Model type and structure

A system model consists of a model structure and model parametrisa-

tion. By applying the black-box modelling approach, three model struc-

tures are investigated: ARX model, SS model and TF model, respec-

tively. Model parametrisation deals with the choice of the adjustable

parameters [118].

(3) Criterion function

A criterion function is specified to measure the fitness between the out-

puts of the identified model and the operational measurements. Also, a

proper identification method is chosen to estimate the system parame-

ters.

Step 2. Model identification

The system model is identified based on the data collected in step 1, by using

System Identification Toolbox in Matlab.

Step 3. Model validation

The Simulink in Matlab is used to verify the identified models. Outputs from

the identified model are compared with the measured outputs through several

metrics. It is necessary to repeat the above steps if the model is not accurate

enough.

4.3.2 Model structure selection

The problem of model structure selection can be divided into three sub-problems

[119]. The first one is to specify the type of model set to use, involving selection

between linear and nonlinear models, between white-box, black-box and grey-box

models, and so forth. Next, the size of the model set must be decided, including
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the choice of possible variables and combination of variables to use in the model

description. It also involves fixing orders and degrees of the model types. The last

item to consider is how to parametrise the model set so that the estimation algorithms

stand as good chances as possible to find reasonable parameter values.

In practice, all systems are nonlinear, and the output is a nonlinear function of

the input variables. Some phenomena are inherently nonlinear in nature which nor-

mally are identified as nonlinear models, such as dry friction in mechanical systems,

actuator power saturation, and sensor nonlinearities in electromechanical systems.

However, a linear model is often sufficient to describe the system dynamics accu-

rately. In most cases, the linear models are fit firstly.

The selection of a model structure and its order are required in advance for the

estimation of a model using measurement data. This choice is influenced by prior

knowledge about the system being modelled, but can also be motivated by an anal-

ysis of data itself. There are various possibilities for structure - state-space, transfer

functions and polynomial forms. The choice of the reasonable structure may not

be obvious if the detailed prior knowledge, such as its noise characteristics and the

indication of feedback, is unknown. The order of the model needs to be specified

before the corresponding parameters are estimated.

In lack of prior knowledge, it is advisable to try out various available choices

and use the one that seems to work the best. Three most common model structures

have been investigated in this chapter including ARX, SS and TF models. Once

a model structure has been chosen to use, the next task is to determine the order.

In general, the order is decided not higher than necessary. This can be determined

by analysing the improvement in % fit as a function of model order. When doing

this, it is advisable to use a separate, independent dataset for validation. Choosing

an independent validation data set would improve the detection of over-fitting. In

addition to a progressive analysis of multiple model orders, explicit determination

of optimum orders can be performed for some model structures.
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4.3.3 Three types of model structures

The models of each subsystem are identified with three types of model struc-

tures: ARX model, SS model and TF model, respectively.

Autoregressive exogenous model

In Reference [120], various statistical black-box models have been introduced

to achieve different aspects about regression. From the results of comparison, it is

found that ARX model can satisfy the requirement of closed-loop system design.

With the measured inputs and outputs, the discrete-time ARX models are applied

with the basic structure [109]:

A(z)y(k) = B(z)u(k − nk) + e(k) (4.3.1)

where z is the delay operator, nk is the delay, u is the input, y is the output and e is

the white-noise disturbance value, A(z) and B(z) are:

A(z) = 1 + a1z
−1 + . . .+ anaz

−na

B(z) = b1 + b2z
−1 + . . .+ bnb

z−nb+1

where na and nb are the orders of the ARX model.

Given a MIMO system that the number of inputs is nu and the number of outputs

is ny, the jth output yj of the MIMO ARX model can be expressed as:

Aj(z)yj = −
ny∑
i=1

Aji (z)yi(k) +
nu∑
i=1

Bj
i (z)ui(k) i 6= j (4.3.2)

State space model

The discrete-time SS model is represented as follows:

x(k + 1) = Ax(k) +Bu(k) +Ke(k) (4.3.3)

y(k) = Cx(k) +Du(k) + e(k) (4.3.4)

where A, B, C, D and K are system matrices, u(k) is the input, e(k) is the distur-

bance, x(k) is the state and y(k) is the output.
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Transfer function model

A TF is the ratio of the output of a system to the input of a system. In the

discrete-time case, the output of a TF model is defined as:

Y (z−1) = G(z−1)U(z−1) + E(z−1) (4.3.5)

where Y (z−1), U(z−1) and E(z−1) represent the output, input and noise, respec-

tively. G(z−1) = num(z−1)/den(z−1) is the desired TF relating the input to the

output.

4.3.4 Parameter estimation methods

Three common parameter estimation methods: PEM, LS and IV method, are

used to estimate the parameters of the models of the two subsystems. The methods

presented in this section are concluded based on Reference [118].

Prediction error identification method

Recall the identification procedure, a model set M(θ) has been selected and is

parametrised as three model structures: ARX, SS and TF, using a parameter vector

θ. Thus, the determination of the best model within the set becomes a problem of

estimating θ. The equation (4.3.5) can be then rewritten as:

y(t) = G(q, θ)u(t) +H(q, θ)e(t) (4.3.6)

One-step-ahead prediction of y(t) is derived as :

y(t|t− 1) = H−1(q)G(q)u(t) + [1−H−1(q)]y(t) (4.3.7)

Given a certain model M(θ∗), the prediction error is defined as:

ε(t, θ∗) = y(t)− ŷ(t|θ∗) (4.3.8)

where ŷ is the predictor. Since a data set ZN has been collected from the system:

ZN = [y(1), u(1), y(2), u(2), . . . , y(N), u(N)] (4.3.9)
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the errors defined in (4.3.8) can be computed for t = 1, 2, . . . , N .

The best identification model aims to minimise the error. In other words, at time

t = N , the parameter θ becomes θ̂N so that the prediction error ε(t, θ̂N) becomes as

small as possible. That is the basic idea of a parameter estimation method.

Given a prediction-error sequence from (4.3.8), let it be filtered through a stable

linear filter L(q):

εF (t, θ) = L(q)ε(t, θ), 1 ≤ t ≤ N (4.3.10)

Then derive the following norm:

VN(θ, ZN) =
1

N

N∑
t=1

l(εF (t, θ)) (4.3.11)

where l is a scalar-valued function.

The estimation of θ̂N is then defined by minimisation of the above norm

θ̂N = arg min
θ∈DM

VN(θ, ZN) (4.3.12)

This way of estimating θ denotes the general term: PEM.

Least squares method

The LS method is a standard approach to estimate the unknown models from

measured data by minimising the sum of squared prediction errors or residuals be-

tween the measured output and the observed output. The residual is defined as:

ε(t, θ) = y(t)− φ(t)T θ (4.3.13)

where y is the measured output, φ is the regressor with known elements relating the

states to the observations, and θ is the unknown static states.

The sum of squared residuals, also known as the LS objective function is defined

as:

J(θ) =
N∑
t=1

ε2(t) =
N∑
t=1

(y(t)− φ(t)T θ)2 (4.3.14)

Since the model contains m parameters and t = 1, . . . , N , Φ is defined as an

N × m matrix with elements Φtj = φj(t), j = 1, . . . ,m. Thus (4.3.14) can be

written as

J(θ) = εT ε = (yT − θTΦT )(y − Φθ) (4.3.15)
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The minimum of J(θ) is found by setting the gradient to zero, so that

∂J(θ)

∂θ
= −2ΦTy + 2ΦTΦθ = 0 (4.3.16)

The gradient of J(θ) is zero if and only if

ΦTΦθ̂ = ΦTy ⇒ θ̂ = (ΦTΦ)−1ΦTy (4.3.17)

which means J(θ) has a minimum at θ̂.

A concept called forgetting exists when estimating the parameters that the earlier

data is gradually discarded for more recent information. In the least square method,

to present forgetting, a forgetting factor is introduced into the objective function

which gives less weight to older data and more weight to recent data. The modified

objective function is then defined as follows:

J(θ) =
N∑
t=1

λN−t(y(t)− φ(t)T θ)2 (4.3.18)

where λ is the forgetting factor and 0 < λ 6 1.

Instrumental variable method

The IV method is used in estimation when correlation between the explanatory

variables and the error term is suspected. The LS estimate of θ can be expressed as

θ̂LSN = sol{
N∑
t=1

(y(t)− φ(t)T θ)2 = 0} (4.3.19)

For the instrumental variables method, a sequence of correlation vectors called

instrumental variables are introduced. This gives

θ̂IVN = sol{
N∑
t=1

ζ(t)(y(t)− φ(t)T θ)2 = 0} (4.3.20)

where the elements of ζ are called instruments or instrumental variables.

Good instruments ζ should be uncorrelated with the noise, sufficiently correlated

with the state and orthogonal to the inputs. The instruments are usually chosen from

the past inputs and outputs.
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4.3.5 Model validation

For the visual inspection of the model responses, it is hard to see the difference in

performance for the models having similar responses [109]. In order to compare the

performance of the models identified with various model structures, the comparison

metric, which is called goodness of fit (G), is used [107]. A larger value of G

indicates the better fit.

G = (1−
√∑n

i=1(y
∗
i − yi)2√∑n

i=1(yi − 1
n

∑n
i=1 yi)

2
)× 100 (4.3.21)

4.4 Identification of the SISO models

As shown in Table 4.1, ten SISO models have been defined in the cleanroom

HVAC laboratory based on ten facilities. The mathematical models of these subsys-

tems have been identified using the black-box modelling approach. The identified

models can be used for process models in the simulation tests for PI control and

MPC, and prediction models of MPC. Because of the simpleness of the SISO mod-

els, there is a minor difference in performance between different model structures

and parameter estimation methods. Thus, it is not necessary to show the compar-

ison results. The ARX models of the SISO model are chosen as examples. The

polynomials of the SISO ARX models are:

• AHU1 supply fun

A(z) = 1− 0.8524z−1 − 0.2248z−2 − 0.3095z−3 + 0.239z−4 + 0.1584z−5

B(z) = 0.01551z−1 + 0.2458z−2 + 1.392z−3 − 1.583z−4

• AHU1 extract fun

A(z) = 1− 0.6242z−1 − 0.3686z−2 − 0.5286z−3 + 0.1461z−4 + 0.3854z−5

B(z) = 0.008118z−1 + 0.06171z−2 + 0.1452z−3 − 0.1312z−4

• AHU2 supply fun

A(z) = 1− 0.6077z−1 − 0.3928z−2 − 0.5829z−3 + 0.2415z−4

B(z) = 0.1566z−7 − 0.1232z−8 + 0.1483z−9 − 0.1362z−10
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• AHU2 extract fun

A(z) = 1−0.9679z−1−0.1713z−2 + 0.04889z−3−0.03278z−4 + 0.1479z−5

B(z) = −0.1841z−1 + 0.1293z−2 + 0.2736z−3 − 0.1945z−4 − 0.05819z−5

• Change room supply VAV

A(z) = 1− 0.9133z−1 − 0.08681z−2

B(z) = 1.854z−3 − 1.114z−4 − 0.3413z−5 − 0.3992z−6

• Small lab supply VAV

A(z) = 1− 0.6287z−1 − 0.3236z−2 − 0.754z−3 + 0.2123z−4 + 0.2972z−5

B(z) = 0.1055z−8 +0.1443z−9 +0.03696z−10−0.09832z−11−0.02543z−12

• Large lab supply VAV

A(z) = 1− 0.9152z−1 − 0.0854z−2 − 0.4572z−3 + 0.3568z−4

B(z) = −0.3253z−1 + 4.284z−2 − 3.416z−3 − 0.5402z−4

• Change room extract VAV

A(z) = 1− 0.9178z−1− 0.1009z−2− 0.3969z−3 + 0.3365z−4− 0.00919z−5

B(z) = −3.754z−7 + 3.786z−8 − 1.649z−9 + 6.339z−10 − 1.231z−11

• Small lab extract VAV

A(z) = 1− 0.7686z−1 − 0.1929z−2 − 0.5283z−3 + 0.3187z−4 + 0.1582z−5

B(z) = 0.02352z−1 − 0.0452z−2 − 0.3691z−3 + 0.2158z−4 + 0.0963z−5

• Large lab extract VAV

A(z) = 1− 1.606z−1 + 0.1258z−2 − 0.6232z−3 + 1.451z−4 + 0.3341z−5

B(z) = 0.1214z−1 − 0.1515z−2 − 0.213z−3 + 0.1972z−4

The SISO models defined above are identified using black-box modelling ap-

proach. Ten SISO models have been identified, each of which represents an indi-

vidual equipment. Two supply fans in AHUs, two extract fans, three supply VAVs
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and three extract VAVs have been modelled. The predicted output results of the

identified models and the measured output results are compared by plotting both of

them in the same figure and by plotting the absolute error and relative error between

them.

4.4.1 Supply fans in AHUs

The model of the supply fan represents the process that the air flows through the

supply fan inside the AHU and accelerates by a specified fan speed and then flows

into cleanrooms. Two supply fans are installed in the AHU1 and AHU2 respectively:

the supply fan in the AHU1 serves the small lab and large lab, and the supply fan in

the AHU2 serves the change room.

In the AHU1 supply fan model, the AP is measured by the pressure sensor beside

the export of AHU1 from the PI control loop. The control objective is to keep the

AP after the AHU1 stable by controlling the AHU1 supply fan speed. Thus the input

is fan speed of the supply fan, and the output is the measured AP. The measured and

the predicted outputs of the identified model, the absolute error and the relative error

are shown in Figure 4.6.

In the AHU2 supply fan model, the airflow rate supplied after the AHU2 is

measured based on the PI control loop. The control objective is to maintain the

supply airflow rate by controlling the AHU2 supply fan speed. The input is the fan

speed of the supply fan, and the output is the supply airflow rate. The measured and

the predicted outputs of the identified model, the absolute error and the relative error

are presented in Figure 4.7.
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Figure 4.6: Comparison results of the output of the AHU1 supply fan model.
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Figure 4.7: Comparison results of the output of the AHU2 supply fan model.
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4.4.2 Extract fans

The extract fan model represents the process: the air, which is extracted from

cleanrooms, flows through the extract fan beside the export and accelerates by a

specified fan speed. The air extracted from the small lab and the large lab is con-

trolled by the AHU1 extract fan, and that from the change room is controlled by the

AHU2 extract fan.

For the AHU1 extract fan model, the AP beside this fan is measured from the PI

control loop. The control objective is to keep a stable AP of the air extracted into

outdoors by controlling the extract fan speed. The input is thus the fan speed of the

fan, and the output is the measured AP. Figure 4.8 presents the measured and the

predicted outputs of the identified model, the absolute error and the relative error,

respectively.

The extract airflow rate is measured based on the PI control loop for the AHU2

extract fan model. The control objective is to keep the extract airflow rate a stable

value by controlling the extract fan speed. The input is the fan speed of the extract

fan, and the output is the extract airflow rate. Figure 4.9 shows the measured and the

predicted outputs of the identified model, the absolute error and the relative error.
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Figure 4.8: Comparison results of the output of the AHU1 extract fan model.
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Figure 4.9: Comparison results of the output of the AHU2 extract fan model.
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4.4.3 Supply VAVs

The model of the supply VAV represents the process that the air, which is sup-

plied from the AHU, flows through the supply VAV and flows into cleanrooms.

Three supply VAVs are installed for three cleanrooms: the change room, the small

lab and the large lab, respectively. The airflow rate supplied into each cleanroom is

measured. The input is the position of the VAV, and the output is the airflow rate

supplied into the cleanroom. The control objective of the PI controller is to maintain

the supply airflow rate into the cleanroom by controlling the position of the supply

VAV. The measured and the predicted outputs of the identified models, the absolute

error and the relative error are shown in Figures 4.10-4.11 for the supply VAV model

of the change room, the small lab and the large lab, respectively.

MODEL PREDICTIVE CONTROL OF CLEANROOM HVAC SYSTEM Shuji Chen



4.4 Identification of the SISO models 78

0 200 400 600 800 1000 1200

50

100

150

Time(s)

A
ir

fl
ow

 r
at

e 
(l

/s
)

 

 

predicted
measured

0 200 400 600 800 1000 1200
0

5

10

15

Time(s)

A
bs

ol
ut

e 
er

ro
r 

(l
/s

)

0 200 400 600 800 1000 1200
0

5

10

15

20

Time(s)

R
el

at
iv

e 
er

ro
r 

(%
)

Figure 4.10: Comparison results of the output of the change room supply VAV
model.
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Figure 4.11: Comparison results of the output of the change room supply VAV
model.
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Figure 4.12: Comparison results of the output of the change room supply VAV
model.
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4.4.4 Extract VAVs

The model of the extract VAV represents the process: the air extracted from

the cleanroom flows through the extract VAV. Three extract VAVs for three clean-

rooms are installed. For the model of the change room extract VAV, the airflow rate

extracted from the change room is measured. The control objective of the corre-

sponding PI controller is to keep the extract airflow rate from the change room a

stable value by controlling the position of the extract VAV. The input is the position

of the VAV, and the output is the airflow rate extracted from the change room. The

measured and the predicted outputs of the identified model, the absolute error and

the relative error are shown in Figure 4.13.

The extract VAV models of the small lab and large lab are identified from the

PI control process whose control objective is to maintain the AP in the lab by con-

trolling the position of the extract VAV. The input is the position of the extract VAV,

and the output is the AP in the lab. The measured and the predicted outputs of the

identified models, the absolute error and the relative error are shown in Figures 4.14

and 4.15 for the small lab and large lab, respectively.
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Figure 4.13: Comparison results of the output of the change room extract VAV
model.
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Figure 4.14: Comparison results of the output of the change room extract VAV
model.
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Figure 4.15: Comparison results of the output of the change room extract VAV
model.
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4.5 Identification of the MIMO models

The ARX models of the two subsystems are identified with the three parame-

ter estimation methods presented in Section 4.3.4 respectively, the performance of

which are compared by calculating the fitnesses of them. PEM resulted as the best

parameter estimation method and has been applied to identify the subsystem models

with the other two model structures: SS and TF. The predicted outputs of the identi-

fied models with the three model structures and the measured outputs are compared

by plotting them in the same figures. The metrics introduced in Section 4.3.5 are

calculated for analytical comparison. The comparison results shown below demon-

strate that the ARX model of each subsystem performs the best. The measured data

are collected from the real-time experiments ran in the cleanroom laboratory where

each facility is controlled by a PI controller. The sample time of the controllers is

one second.

4.5.1 Comparison of parameter estimation methods

The ARX models of the two subsystems are identified based on three parameter

estimation methods: PEM, LS method and IV method. In order to find the best

method, the performances of the identified models are compared depending on the

goodness of fit. The comparison results are shown in Table 4.2.

Table 4.2: Goodness of fit for ARX models with three parameter estimation
methods.

Subsystem Output PEM LS IV

AHU1

related

subsystem

Small lab ACR 0.905 0.855 0.852

Small lab AP 0.875 0.853 0.852

Large lab ACR 0.972 0.964 0.954

Large lab AP 0.921 0.903 0.893

AHU2 related

subsystem

Change room ACR 0.984 0.984 0.983

Change room AP 0.875 0.868 0.867

From Table 4.2, it is found that the models estimated by the PEM have the high-
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est goodness of fit. In other words, the models identified by the PEM perform the

best compared with the other two parameter estimation methods including LS and

IV. For the four outputs in the AHU1 related subsystem, the comparison results

clearly show that the PEM has the largest goodness of fit. The LS and IV have sim-

ilar values, but they are 2-5% smaller than PEM. The AHU2 related subsystem has

two outputs: for the change room ACR output, the goodness of fit values among

three methods are almost the same; for the change room AP output, PEM has 1%

larger value than LS and IV. Summarised from both outputs in the AHU2 related

subsystem, PEM performs the best. Table 4.2 demonstrates that the PEM is the best

method to estimate the parameters of the two subsystems while it would be used in

the further estimation of the parameters for the other two model structures.

The LS and IV methods have similar performance in this situation. The PEM

method has the larger goodness of fit values than the other two. Because the AHU1

related subsystem is more complex with more inputs and outputs than the AHU2

related subsystem, it is harder for the parameter estimation methods to reach great

goodness of fit values. The less complex the model is, the easier the parameter es-

timation method can have high performance. For a simple enough model, different

methods can perform quite similar with a very high goodness of fit which can ap-

proach 100%. The change room ACR output in the AHU2 related subsystem is an

example of such situation.

4.5.2 Comparison between experiment and prediction results

AHU2 related subsystem

Figures 4.16-4.21 present the comparison between experiment and prediction

results of the AHU2 related subsystem. The three sub-figures in each figure show

the plotting of experiment and prediction results, the absolute errors and the rel-

ative errors, respectively. The first sub-figures of ARX and SS models for both

outputs show a good fit between experiment and prediction results, and it is hard

to determine which one is better visually. The difference between experiment and

prediction results is significant for TF models which can be easily found from the
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first sub-figures.

The calculation of the errors gives another direction to see which model performs

better. The first output, the ACR in the change room, is provided in Figures 4.16-

4.18 for three model structures: ARX, SS and TF, respectively. The relative errors

of its ARX model are mostly below 1%, and the maximum point is smaller than 4%.

The relative errors of its SS model are below 1% after 300 seconds, but its maximum

point is more than 8%. Its TF model has the largest relative errors with more than

12% maximum point, and most time the errors are above 2%. Thus, the ARX model

of the first output for the AHU2 related subsystem perform the best.

Figures 4.19-4.21 present the second output, the AP in the change room, for

three model structures: ARX, SS and TF, respectively. The relative errors of ARX

and SS models for the second output are similar. Both of them has about 15%

maximum point. They are below 10% before 800 seconds and then decrease to

smaller than 3%. The relative errors of its TF model are much larger than ARX and

SS models. The maximum point can be more than 40%, and they are below 20% at

most time. Thus, it is found that the ARX and SS models have high performance

with smaller relative errors and the TF models perform much worse than the others.

In conclusion to Figures 4.16-4.21, TF models show much worse performance

than ARX and SS models. The identification of the TF models estimates the param-

eters G(z−1) from the measured data without including the disturbance. More data

are needed to be identified to average out the effects of the disturbance.
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Figure 4.16: Comparison results of the output of the AHU2 related subsystem ARX
model: ACR in the change room.
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Figure 4.17: Comparison results of the output of the AHU2 related subsystem SS
model: ACR in the change room.
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Figure 4.18: Comparison results of the output of the AHU2 related subsystem TF
model: ACR in the change room.
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Figure 4.19: Comparison results of the output of the AHU2 related subsystem ARX
model: AP in the change room.
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Figure 4.20: Comparison results of the output of the AHU2 related subsystem SS
model: AP in the change room.
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Figure 4.21: Comparison results of the output of the AHU2 related subsystem TF
model: AP in the change room.
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AHU1 related subsystem

The AHU1 related subsystem has four outputs. The comparison between exper-

iment and prediction results are shown in Figures 4.22-4.33. The three sub-figures

in each figure show the plotting of experiment and prediction results, the absolute

errors and the relative errors, respectively. The first sub-figures of ARX and SS

models for both outputs show a good fit between experiment and prediction results,

and it is hard to determine which one is better visually. The difference between

experiment and prediction results is significant for TF models which can be easily

found from the first sub-figures. The relative errors of each output can then be used

to compare the performance of different model structures.

The first output, the ACR in the small lab, is presented in Figures 4.22-4.24

for three model structures: ARX, SS and TF, respectively. The relative errors of

the ARX and SS models are similar with about 25% maximum value and smaller

than 10% at most time. The TF model apparently has much larger relative errors

with more than 40% maximum point and smaller than 20% at most time. Thus, the

performance of ARX and SS models are similar and better than TF model.

The second output, the AP in the small lab, is shown in Figures 4.25-4.27 for

three model structures including ARX, SS and TF, respectively. The relative errors

of the ARX models are below 20% before 800 seconds and can reach smaller than

2% after that. Its maximum is about 65% but only has several points. The relative

errors of the SS model are below 20%, but its maximum is up to 160%. The TF

model has smaller than 30% relative errors at most time and a 90% maximum point.

Concluding from the relative errors of the three models, the ARX model performs

the best.

The comparison results of the three models: ARX, SS and TF, for the third

output, the ACR in the large lab, are given in Figures 4.28-4.30, respectively. The

curves of relative errors for ARX and SS models have similar shapes and values.

The values are larger than 10% in the beginning before 200 seconds. Then they go

smaller than 2%. Another increasing happens between 400 seconds and 600 seconds

which can be up to 40%. After that, the values go down to smaller than 2% until

the end. The relative errors of the TF model have the similar shape to the other two
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models, but the values are added with 10% to the full range. Thus, the ARX and SS

models of this output perform similar and better than the TF model.

The measured data are collected from the original PI controllers. For the fa-

cilities in the AHU1 related subsystem, six PI controllers were implemented and

worked in cooperation to maintain the steady state. The value of ACR is affected

by both the supply fan and the supply VAV. The large lab ACR shown in Figures

4.28-4.30 drops to a low value at 500 seconds. It occurred when both the supply fan

speed and the supply VAV position dropped to a low value. The wild fluctuations

shown in Figures 4.22-4.27 are also caused by the cooperation between different PI

controllers. The output variables are influenced by several drivers.

The comparison results of the three models, which contain ARX, SS and TF, for

the fourth output, the AP in the large lab, are shown in Figures 4.31-4.33, respec-

tively. Similar to the relative errors of the third output, the shapes and values of the

ARX and SS models are similar. Both of the values are below 10% at most time

with a maximum point 15%. TF models also have a similar shape with 10% addi-

tion. The TF model has the largest error, but the errors of the ARX and SS model

are similar and difficult to compare.

From the comparison results as shown in these figures, TF models perform the

worst, and ARX models and TF models have higher and similar performance. The

model validation method should be introduced to determine the best model structure.

4.5.3 Model validation results

The metrics presented in Section 4.3.5 are used to validate the identified models.

The comparison results of this metric for MIMO models are shown in Table 4.3.

For both MIMO subsystem models, the TF models have much smaller goodness of

fit values than those of ARX and SS models. The values of ARX and SS models

are similar. For all the six outputs, the ARX models have 1-2% larger values than

SS models. They all can reach larger than 80% values which provide high accuracy

mathematical models to the design of MPC. Thus, the ARX models of both MIMO

subsystems have the best performance. They would be used to design the MPC

controllers as presented in Chapter 5.
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Figure 4.22: Comparison results of the output of the AHU1 related subsystem ARX
model: ACR in the small lab.
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Figure 4.23: Comparison results of the output of the AHU1 related subsystem SS
model: ACR in the small lab.
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Figure 4.24: Comparison results of the output of the AHU1 related subsystem TF
model: ACR in the small lab.
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Figure 4.25: Comparison results of the output of the AHU1 related subsystem ARX
model: AP in the small lab.
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Figure 4.26: Comparison results of the output of the AHU1 related subsystem SS
model: AP in the small lab.
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Figure 4.27: Comparison results of the output of the AHU1 related subsystem TF
model: AP in the small lab.
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Figure 4.28: Comparison results of the output of the AHU1 related subsystem ARX
model: ACR in the large lab.
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Figure 4.29: Comparison results of the output of the AHU1 related subsystem SS
model: ACR in the large lab.
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Figure 4.30: Comparison results of the output of the AHU1 related subsystem TF
model: ACR in the large lab..
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Figure 4.31: Comparison results of the output of the AHU1 related subsystem ARX
model: AP in the large lab.
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Figure 4.32: Comparison results of the output of the AHU1 related subsystem SS
model: AP in the large lab.
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Figure 4.33: Comparison results of the output of the AHU1 related subsystem TF
model: AP in the large lab.
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Table 4.3: Comparison of goodness of fit for MIMO subsystem models.

Subsystem Output ARX model SS model TF model Largest

AHU2

related

Change room ACR 98.6336 97.5228 92.9260 ARX model

Change room AP 86.6895 84.1417 53.8819 ARX model

AHU1

related

Small lab ACR 89.4177 88.5812 74.2958 ARX model

Small lab AP 82.7811 80.6683 72.1576 ARX model

Large lab ACR 97.0737 96.9988 80.6156 ARX model

Large lab AP 86.9755 84.9315 60.6922 ARX model

4.5.4 Mathematical models

AHU2 related subsystem

Table 4.3 gives the comparison results of the three model structures. The ARX

model of the AHU2 related subsystem has the largest value of goodness of fit which

indicates that the model identified in ARX model structure performs the best. From

the comparison results presented above, the ARX model of the AHU2 related sub-

system performs the best. The parameters of the ARX model have been estimated

by the PEM resulting in a mathematical model as shown below.

The polynomials of output 1: ACR in the change room, are given:

A1(z) = 1− 0.9308z−1 − 0.01683z−2

A1
2(z) = 0.001459z−1 − 0.001247z−2

B1
1(z) = 0.002881z−1 − 0.001584z−2

B1
2(z) = 0.002455z−1 − 0.001917z−2

B1
3(z) = −0.03288z−1 + 0.03575z−2

B1
4(z) = −0.04089z−1 + 0.03974z−2
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The polynomials of output 2: AP in the change room, are given:

A2(z) = 1− 0.9941z−1 + 0.02603z−2

A2
1(z) = 6.582z−1 − 6.114z−2

B2
1(z) = 0.001747z−1 + 0.01301z−2

B2
2(z) = −0.01963z−1 + 0.02044z−2

B2
3(z) = 0.6088z−1 − 0.5738z−2

B2
4(z) = −0.08793z−1 + 0.07251z−2

AHU1 related subsystem

The analytical comparison results of the AHU1 related subsystem are shown

in Table 4.3 which demonstrate that the ARX model has the lowest ranking value.

Thus the best model structure for the AHU1 related subsystem results as ARX.

Since the comparison results demonstrate that the ARX model of the AHU1 related

subsystem performs the best, it is necessary to conclude its mathematical model.

The ARX model of the AHU1 related subsystem is calculated by estimating the

parameters using PEM as shown below.

The polynomials of output 1: ACR in the small lab, are given:

A1(z) = 1− 0.8022z−1 − 0.1639z−2 − 0.1813z−3 + 0.2168z−4

A1
2(z) = −0.1083z−1 + 0.07385z−2 + 0.03656z−3 − 0.01553z−4

A1
3(z) = −0.01973z−1 − 0.03086z−2 + 0.03025z−3 + 0.0169z−4

A1
4(z) = 0.02861z−1 − 0.02132z−2 − 0.008246z−3 + 0.0028z−4

B1
1(z) = −0.01095z−1 + 0.01648z−2

B1
2(z) = −0.004499z−1 − 0.005395z−2

B1
3(z) = −0.02596z−1 + 0.03307z−2

B1
4(z) = −0.03301z−1 + 0.02988z−2

B1
5(z) = 0.1432z−1 − 0.1385z−2

B1
6(z) = −0.03717z−1 + 0.03687z−2
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The polynomials of output 2: AP in the small lab, are given:

A2(z) = 1− 0.7495z−1 − 0.2188z−2 − 0.3587z−3 + 0.3808z−4

A2
1(z) = −0.1607z−1 + 0.4316z−2 − 0.3305z−3 + 0.4827z−4

A2
3(z) = −0.1831z−1 + 0.2734z−2 + 0.05788z−3 − 0.08086z−4

A2
4(z) = −0.00845z−1 + 0.00758z−2 + 0.00291z−3 + 0.01335z−4

B2
1(z) = 0.1966z−1 − 0.08681z−2

B2
2(z) = −0.109z−1 + 0.1028z−2

B2
3(z) = −0.1807z−1 + 0.2016z−2

B2
4(z) = −0.1393z−1 + 0.1492z−2

B2
5(z) = 0.092z−1 − 0.07514z−2

B2
6(z) = 0.02752z−1 − 0.02868z−2

The polynomials of output 3: ACR in the large lab, are given:

A3(z) = 1− 0.946z−1 − 0.03805z−2 − 0.4217z−3 + 0.406z−4

A3
1(z) = 0.001055z−1 − 0.01112z−2 − 0.08253z−3 + 0.08987z−4

A3
2(z) = 0.03764z−1 − 0.02655z−2 − 0.008902z−3 − 0.00202z−4

A3
4(z) = −0.01168z−1 + 0.00497z−2 + 0.00532z−3 + 0.00210z−4

B3
1(z) = 0.01089z−1 − 0.01381z−2

B3
2(z) = 0.006943z−1 − 0.001689z−2

B3
3(z) = 0.01161z−1 − 0.01114z−2

B3
4(z) = −0.06427z−1 + 0.06441z−2

B3
5(z) = −0.003801z−1 + 0.007135z−2

B3
6(z) = 0.06874z−1 − 0.06896z−2
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The polynomials of output 4: AP in the large lab, are given:

A4(z) = 1− 0.8709z−1 − 0.1222z−2 − 0.3426z−3 + 0.3981z−4

A4
1(z) = 0.2811z−1 − 0.1524z−2 − 0.1576z−3 − 0.08642z−4

A4
2(z) = −0.0539z−1 + 0.05125z−2 + 0.005547z−3 − 0.0545z−4

A4
3(z) = −0.2866z−1 + 0.3599z−2 + 0.0447z−3 − 0.02202z−4

B4
1(z) = 0.6384z−1 − 0.6058z−2

B4
2(z) = 0.1249z−1 − 0.1333z−2

B4
3(z) = 0.08775z−1 − 0.1226z−2

B4
4(z) = −0.183z−1 + 0.2445z−2

B4
5(z) = −0.123z−1 + 0.0977z−2

B4
6(z) = 0.1712z−1 − 0.1762z−2

4.6 Conclusion

The black-box models of the cleanroom laboratory equipped with the HVAC sys-

tem have been developed in this chapter. The SISO models are identified firstly from

the original PI control loops. Two MIMO subsystems have been defined. By com-

paring the three parameter estimation methods: PEM, LS and IV, the best method

PEM has been found and applied to identify the MIMO subsystem models with

three types of model structures including ARX, SS and TF. The prediction results

of these models have been compared with the measured outputs so that the one with

the best performance for each subsystem has been found. The ARX models of both

subsystems have the best performances.
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Chapter 5

Model predictive control of airflow

and air pressure of the cleanroom

HVAC system

The SISO MPC controllers are designed based on the SISO models aiming to

regulate the supply airflow rate and the AP. Also, the MIMO MPC of the clean-

room HVAC system is designed and tested based on the identified MIMO models to

maintain the ACR and the AP in the change room, the small lab and the large lab.

The performance of the MPC controllers is compared with that of PI controllers by

comparing their integral performance indices which include the integral of absolute

error (IAE), the integral of squared error (ISE), the integral of time multiplied ab-

solute error (ITAE), and the integral of time multiplied squared error (ITSE). Both

simulation and field test results are presented with the comparison of the integral

performance indices. The comparison results show that MIMO MPC has the best

performance and the least energy consumption.

5.1 Introduction

In buildings, a large amount of the electricity is consumed by the HVAC sys-

tem. The improvement of the energy efficiency of buildings then become a problem

112
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to improve the energy efficiency of the HVAC system. The development of effec-

tive control strategies can decrease the energy consumption of the HVAC system.

Compared with PID control, which most industrial process controls rely on, MPC

provides improved performance in the dynamics and energy efficiency, especially

for field MIMO system. At each time-step, in MPC, control signals are generated

by solving a constrained optimal control problem using a dynamic control model

and a cost function.

Like most industrial plants, the HVAC system also exhibits a MIMO nature,

which means that more than one variable has to be controlled [131]. Some re-

searchers have investigated the dynamics and energy efficiency of MIMO HVAC

systems with MPC. The multi-variable nonlinear adaptive control algorithms of

temperature and humidity in HVAC systems were studied to achieve optimal energy-

saving control [132]. Reference [133] presents the application of a Multi-variable

Generalised Predictive Controller for simultaneous temperature and humidity con-

trol in an HVAC system. The multi-variable controlled process dynamics is mod-

elled using a set of MISO models on-line identified from measured input-output

process data. To control the air conditioning part of a system the designed mul-

tivariable predictive controller is considered in a cascade dual-rate control scheme

with PID auxiliary controllers. The application of adaptive control for a class of

multi-variable processes in HVAC systems is studied in Reference [134]. The ther-

mal dynamics of a two zone fan-coil heating system and environmental zones are

simulated by a nonlinear model. The adaptive controller can adapt to a wide range of

operating conditions and can maintain the zone temperatures and the boiler temper-

ature close to their respective set-points. MIMO MPC was used for the water flow

valve in Reference [135] to control the temperature of multiple zones, and MPC was

also applied to regulate the evaporator temperature and pressure by controlling the

electronic expansion valve and compressor speed. In Reference [82] a MIMO con-

troller to control the temperature and ventilation of multiple zones in a building with

an MPC strategy is proposed. The MIMO controller for the indoor air temperature

and relative humidity in a direct expansion air-conditioning system, based on the

linearised dynamic model is presented in Reference [136], and in Reference [137]
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MPC strategies for buildings with mixed-mode cooling are presented, and their po-

tential performance bounds in terms of energy savings within the thermal comfort

constraints are demonstrated.

The HVAC system exhibits a MIMO nature, which means that more than one

variable has to be controlled. In this thesis, the controlled variables ACR and AP

are coupled, and the interactions are not negligible. The cleanroom laboratory is

considered as a MIMO system while MIMO MPC is necessary to be applied to the

closed-loop system for the best performance.

5.2 Design of model predictive control

The corresponding MPC algorithm is introduced in this section. The perfor-

mances of different control methods are compared based on the values of the integral

performance indices as shown in this section.

5.2.1 Interface of control

As shown in Figure 5.1, the PI control is implemented by the BMS installed

in the cleanroom laboratory. The measured data of the controller inputs and the

system outputs of the closed-loops with PI control are collected from the BMS.

Sensors and drivers are installed in the laboratory, in which the sensors are used to

measure the system outputs, and the drivers receive the controller output data from

the PI controllers in the BMS to operate the HVAC facilities. The communication

between the sensors and drivers and the BMS is achieved by a MODBUS based

OPC server. The data transferred to the OPC server can be collected by the OPC

Toolbox in Simulink which can be used to identify the system models. The SISO

MPC controllers can be built based on these models and tested through the OPC

Toolbox.
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Sensors

Drivers

Laboratory

OPC 
server

BMS

OPC 
toolbox

MPC
MODBUS

Computer Simulink

Figure 5.1: Interface of MPC with the laboratory.

5.2.2 Model predictive control algorithm

The MPC uses a system model to predict the future states of the system and

generates a control vector that minimises a certain cost function over the prediction

horizon in the presence of disturbances and constraints (see Figure 2.3). The sys-

tem model can be identified using the system identification technology. The basic

control law that MPC used is optimisation. At each time step in MPC, an optimal

control problem is solved over a finite future horizon. The SS models can be used to

formulate the MPC problem. In this chapter, the SS formulation in Reference [38]

is used. The identified ARX models can be transferred into SS models which can

then be formulated using the following algorithm.

Consider a discrete-time system with no disturbing and no measurement errors:

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)

where A,B and C are system matrices, x(t) is the state, u(t) is the control input and

y(t) is the output. For SISO models, y(t) and u(t) are scalars and x(t) is a vector.

A MIMO process has the same description but with input vectors u of dimension m

and y of dimension n.

The prediction for this model is given by [127]

ŷ(t+ k|t) = Cx̂(t+ k|t) = C[Akx(t) +
k∑
i=1

Ai−1Bu(t+ k − i|t)] (5.2.1)

Defining the control increment4u(t) = u(t)−u(t−1), the increment SS model
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is derived: x(t+ 1)

u(t)

 =

A B

0 I

x(t)

u(t− 1)

+

B
I

4u(t) (5.2.2)

y(t) = [C 0]

x(t)

u(t− 1)

 (5.2.3)

Defining a new state vector as x̂(t) = [x(t) u(t − 1)]T , the incremental model

takes the general form:

x̂(t+ 1) = Mx̂(t) +N4u(t) (5.2.4)

y(t) = Qx̂(t) (5.2.5)

The cost function for SISO MPC has a general form:

J =
P∑
k=1

‖wy[r(t+ k)− y(t+ k)]‖2 +
M∑
k=1

‖w4u4u(t+ k − 1)‖2 (5.2.6)

subject to the constrains
umin ≤ u(t+ k) ≤ umax, k = 0, . . . ,M − 1

4umin ≤ 4u(t+ k) ≤ 4umax, k = 0, . . . ,M − 1

ymin ≤ y(t+ k) ≤ ymax, k = 0, . . . , P

(5.2.7)

where t is the current sampling interval, t + k is a future sampling interval (within

the prediction horizon), P is the prediction horizon, wy is the weight for the output,

and [r(t+ k)− y(t+ k)] is the predicted deviation at future instant t+ k, M is the

control horizon, 4u(t + k − 1) is the predicted adjustment in the MV at future (or

current) sampling interval t+ k− 1 and w4u is the weight for the adjustment of the

MV.

In order to minimize the objective function (5.2.6), output predictions over the

horizon must be computed resulting in:

ŷ(t+ j) = QM jx̂(t) +

j−1∑
i=0

QM j−i−1N4u(t+ i) (5.2.8)

The estimation of the state vector x(t) is calculated as:

x̂(t|t) = x̂(t|t− 1) +K(ym(t)− y(t|t− 1)) (5.2.9)
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where ym(t) is the measured output. Thus, the predictions along the horizon are

given by

y =


ŷ(t+ 1|t)
ŷ(t+ 2|t)

...

ŷ(t+ P |t)

 =


QMx̂(t) +QN4u(t)

QM2x̂(t) +
∑1

i=0QM
1−iN4u(t+ i)

...

QMP x̂(t) +
∑P−1

i=0 QM
P−1−iN4u(t+ i)


(5.2.10)

which can be expressed in vector form as

y = Fx̂(t) +Hu (5.2.11)

where u = [4u(t) 4u(t + 1) . . .4u(t + M − 1)] is the vector of future control

increments, H is a block lower triangular matrix with its non-null elements defined

by Hij = QM i−jN and matrix F is defined as

F =


QM

QM2

...

QMP

 (5.2.12)

The control sequence u is calculated minimizing the objective function 5.2.6,

that can be written as:

J = wy(r −Hu+ Fx̂(t))T (r −Hu+ Fx̂(t)) + w4uuTu (5.2.13)

Then an analytical solution exists that provides the optimum as:

u = (HTH + w4uI)−1HT (r − Fx̂(t)) (5.2.14)

As a receding horizon strategy is used, only the first element of the control sequence,

4u(t), is sent to the plant and all the computation is repeated at the next sampling

time.

In most applications, the controller’s MVs should move freely (within a con-

strained region) to compensate for disturbances and set-point changes. An attempt

to hold an MV at a point within the region would degrade output set-point tracking.
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On the other hand, some plants have more MVs than output set-points. In such a

plant, if all MVs are allowed to move freely, the MV values needed to achieve a

particular set-point or to reject a particular disturbance would be non-unique. Thus,

the MVs would drift within the operating space.

A common approach is to define set-points for “extra” MVs. These set-points

usually represent operating conditions that improve safety, economic return, etc.

The MIMO MPC design includes an additional term to accommodate such cases, as

follows:

Ju =
M∑
k=1

‖wu[ru(t+ k)− u(t+ k − 1)]‖2 (5.2.15)

where ru is the set-point of the MV and wu is the corresponding weight. By setting

a small value of ru, the minimisation of the control inputs can be implemented.

5.2.3 Integral performance indices

A performance index is a quantitative measure of the performance of a feedback

control system that emphasizes those characteristics of the response [128]. The

selection of an appropriate performance index is as much a part of the design process

as calculating the final system. Commonly used performance indices are based on

integral performance measures. In this chapter, the integral performance indices

which are defined based on the system error e(t) are calculated in order to give exact

comparisons between MPC and PI control. Since the system is non-monotonic, the

absolute values or square values of errors are necessary. Thus, four well-known

integral performance indices are introduced: IAE, ISE, ITAE, and ITSE which are

defined as follows [129] [130]:

IAE =

∫ T

0

|e(t)|dt (5.2.16)

ISE =

∫ T

0

e2(t)dt (5.2.17)

ITAE =

∫ T

0

t|e(t)|dt (5.2.18)

ITSE =

∫ T

0

te2(t)dt (5.2.19)
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where e(t) is the system error: e(t) = r(t) − y(t), r(t) is the reference signal and

y(t) is the measured system output. Each of the integral performance indices is

calculated over the time interval [0, T ]. The time T is chosen to span much of the

transient response of the system so that a reasonable choice is the settling time.

IAE integrates the absolute error, and ISE integrates the square of the error e(t)

over the time interval [0, T ], both of which do not add weight to any of the errors in

the system response. IAE gives simple mathematical treatment. ISE can deal with

highly penalising large control errors which have larger setting time than IAE. ITAE

integrates the absolute error multiplied by the time, and ITSE integrates the square

of the error e(t) multiplied by the time over the time interval [0, T ], both of which

give higher weight to the error at the later time. ITAE has the similar effect to IAE

which regards the permanence of the control error.

5.2.4 Parameter tuning

To verify the PI and MPC controllers, both discrete controllers have been sim-

ulated in Matlab/Simulink. Each SISO model identified above has a corresponding

PI controller and MPC controller. The parameters of these controllers are shown in

Tables 5.1 and 5.2 respectively. A sample time Ts = 1s is used.

Table 5.1: Parameters of the PI controllers.

Model K Ti

AHU 1 supply fan 0.02 0.08

AHU 1 extract fan 0.16 0.18

AHU 2 supply fan 0.24 0.14

AHU 2 extract fan 0.11 0.11

Chang room supply VAV 0.1 0.29

Chang room extract VAV 1.06 0.37

Small lab supply VAV 0.35 0.19

Small lab extract VAV -0.15 0.06

Large lab supply VAV 0.08 1

Large lab extract VAV -0.09 0.05
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Table 5.2: Parameters of the SISO MPC controllers.

Parameter Symbol Value

Weight on the outputs wy 1

Weight on the rate of change of inputs w4u 1

Prediction horizon P 10

Control horizon M 2

Sampling time Ts 5 s

The MIMO MPC controllers have been designed in Simulink. The parameters of

the MIMO MPC controllers are set based on Table 5.3. The MIMO MPC controllers

are designed based on the identified models presented in Chapter 3. The whole

HVAC system is divided into two distinct subsystems where the interactions of the

variables in each subsystem are taken into account.

Table 5.3: Parameter setting of the MIMO MPC controllers.

Facility Parameter Setting

Overall
Sample time Sample time:5s

Horizon Prediction horizon:10, Control horizon:2

Input constraint
Fans Value:[20,100], Rate:[-2,2]

VAVs Value:[0,100], Rate:[-2,2]

Output constraint
Air change rate [0,40]

Air pressure [0,100]

Weights
Input Value:0 for VAVs and 1 for fans, Rate:1

Output Value: 1

ACR is defined by ASHRAE [5] as “airflow in volume units per hour divided by

the volume of the space on which the ACR is based in identical units.” Thus ACR is

calculated as:

N =
Q

V
(5.2.20)

where:

• N = Number of air changes per hour (h−1)
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• Q = Volumetric flow rate of air (l/s)

• V = volume of the room (m3)

Because ACR is a major factor in particulate control in a cleanroom and is pro-

portional to the airflow rate, the MIMO MPC regulates ACR instead of airflow rate

to meet the industrial design standard.

5.3 Simulation results

Ten PI controllers are implemented by the BMS (see Figure 3.1). To compare the

performance between PI and SISO MPC controllers, the PI controllers are replaced

by the SISO MPC controllers. The MIMO MPC controllers have six outputs which

exclude the fans. The parameters of PI and SISO MPC and MIMO MPC controllers

are set as shown in Table 5.1, 5.2 and 5.3, respectively. Matlab/Simulink is used to

simulate the controllers.

The original laboratory is constructed to simulate a real-time cleanroom with

steady airflow rate and AP. The set-points of the simulation tests are set as constant

values. The simulation tests verify the process that the plant is turned on at the

beginning and runs in steady state after a while. The sample time is 1 second. The

mathematical models identified in Chapter 4 are used to be the simulation plant in

the simulation test. All the controllers have passed the simulation test since they can

track the set-points within 20 minutes.

The four outputs related to the fans are not included in the MIMO MPC con-

trollers. Figure 5.2 presents the simulation results for these four outputs of the PI

and SISO MPC controllers. For the AHU1 supply AP, they have similar perfor-

mance. However, SISO MPC controllers show much better performance for the

other three outputs. They have much less settling time and less overshoot compared

to PI controllers. The AHU1 supply extract AP MPC controller reaches steady state

at about 150 seconds with a small overshoot, while the PI controller reaches at 1000

seconds with more than five large overshoots. The settling time of both two AHU2

MPC controllers is about 200 seconds. The settling time of the AHU2 PI controllers

is more than 600 seconds. There is no overshoot with these two MPC controllers.
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Moreover, PI controllers are difficult to get rid of the overshoot signals. Thus, for

these four fan related outputs, the SISO MPC controllers perform better than the PI

controllers.
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(a) AHU1 supply air pressure
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(b) AHU1 extract air pressure

0 200 400 600 800 1000
0

50

100

150

200

Time(s)

A
irf

lo
w

 r
at

e 
(l/

s)

 

 

Set−point
PI
SISO MPC

(c) AHU2 supply airflow rate
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(d) AHU2 extract airflow rate

Figure 5.2: Comparison results between SISO MPC and PI control for the tracking
response of the output variables related to fans (simulation results).

The MIMO MPC has been designed and simulated in Matlab/Simulink, the re-

sults of which are compared with PI and SISO MPC controllers. The simulation

results for the MVs of the PI and MPC controllers are shown in Figures 5.3 and

5.4. The simulation results for the tracking response of PI and MPC controllers are

presented in Figure 5.5. The results of the performance indices for the controllers

are shown in Table 5.4.

The SISO MPC controllers show better performance with less settling time and
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less overshoot than the PI controllers. Table 5.4 can demonstrate the results that

the values of the performance indices of the SISO MPC controllers are smaller than

those of PI controllers. The figures and the comparison of the performance indices

clearly show that the SISO MPC controllers have better performance than PI con-

trollers.

However, the results indicate that the MIMO MPC controllers do not perform

well. The settling time of most outputs can be about 3000 seconds. Some of them

have larger overshoot than SISO MPC and PI controllers. Also in Table 5.4, the

performance indices of MIMO MPC controllers are larger than those of SISO MPC

and PI controllers. The identified MIMO models are much more complex than the

SISO models. The MIMO models have the smaller goodness of fit and cannot sim-

ulate the plant accurately. That makes the SISO controllers easy to reach the steady

state with good performance.
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(a) AHU1 supply fan speed
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(b) AHU1 extract fan speed
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(c) AHU2 supply fan speed
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Figure 5.3: Comparison results between MPC and PI control for the MVs (simula-
tion results, fan related).
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(a) Change room supply VAV position
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(b) Change room extract VAV position
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(c) Small lab supply VAV position
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(d) Small lab extract VAV position
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(e) Large lab supply VAV position
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(f) Large lab extract VAV position

Figure 5.4: Comparison results between MPC and PI control for the MVs (simula-
tion results, VAV related).
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(a) Change room air change rate
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(b) Change room air pressure
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(c) Small lab air change rate
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(d) Small lab air pressure
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(e) Large lab air change rate
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(f) Large lab air pressure

Figure 5.5: Comparison results between MPC and PI control for the tracking re-
sponse of the output variables (simulation results).
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Table 5.4: Comparison of the performance indices between PI controllers and MPC
controllers (simulation results).

Output Controller IAE(×104) ISE(×106) ITAE(×106) ITSE(×108)

Change PI 2.7390 3.3837 4.2820 2.0430

room SISO MPC 2.0571 2.6719 1.5206 1.2796

ACR MIMO MPC 0.6285 0.0168 8.3925 0.0925

Change PI 1.8708 2.7054 1.4418 1.1823

room SISO MPC 5.2607 5.7088 1.1929 7.7034

AP MIMO MPC 0.8449 0.0885 3.4658 0.2654

Small PI 0.1486 0.0574 0.0437 0.0047

lab SISO MPC 0.0684 0.0429 0.0037 0.0015

ACR MIMO MPC 0.7689 2.3203 9.0766 0.2219

Small PI 0.4278 0.0646 0.7487 0.0678

lab SISO MPC 0.2252 0.0539 0.1029 0.0175

AP MIMO MPC 5.3636 1.2215 6.6262 1.2977

Large PI 4.4823 8.0729 5.4331 5.6265

lab SISO MPC 1.4802 3.0903 0.4699 0.7059

ACR MIMO MPC 8.0692 4.1970 7.4552 2.8468

Large PI 0.6754 0.1665 1.0839 0.1690

lab SISO MPC 0.3208 0.1454 0.1255 0.0331

AP MIMO MPC 1.4267 9.4262 1.7357 1.1387

5.4 Field test results

The signal transferred to the hardware is overridden by the MPC controllers built

in Matlab/Simulink. The communication of signals is implemented as presented in

Section 5.2.1. A hardware-in-loop process is built where the MPC is run in Mat-

lab/Simulink, and the control signal is sent to the hardware through OPC server. At

each step, the MPC controller predicts one set of the outputs and transfer them into

the hardware through OPC server. The prediction is based on the pre-identified sub-

system models. The system is turned off initially. It is turned on at the same time
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the controllers begin to work. The sample time of the PI controllers is 1 second.

However, the sample time of the MPC controllers is 5 seconds because of the large

delay between OPC server and Matlab.

5.4.1 Comparison among PI, SISO and MIMO model predictive

control

Figure 5.6 shows the field test results for the tracking response related to fans of

PI and SISO MPC controllers. These four outputs are not included in the MIMO

MPC controllers. The SISO MPC controllers have less rise time than the PI con-

trollers because the MPC controllers have to be run with large sample time to deal

with the large delay. The SISO MPC controllers show better performance with fewer

fluctuations and smaller overshoot.

Figures 5.7 and 5.8 present the field test results for the MVs of PI and MPC

controllers. Figure 5.9 shows the field test results for the tracking response of PI

and MPC controllers.

It can be found from Figure 5.9 that the AHU1 related subsystem reaches its

steady state much faster with MIMO MPC controllers than with SISO MPC and PI

controllers. Moreover, SISO MPC and PI controllers have more fluctuations than

MIMO MPC controller during response time. The comparison results show that

MIMO MPC controllers perform better than SISO MPC and PI controllers.

Figure 5.9 also presents the comparison results between MPC and PI control in

the AHU2 related subsystem. The results show that the PI responses much faster

than MPC when controlling the ACR. However, the response time of AP remains

almost the same for MPC and PI control.

Table 5.5 compares the calculated integral performance indices for PI and MPC

controllers. It is found that the performance indices of MIMO MPC controllers are

smaller than those of SISO MPC and PI controllers. It can be concluded that MIMO

MPC controllers perform better than SISO MPC and PI controllers in field tests.
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Figure 5.6: Comparison results between SISO MPC and PI control for the tracking
response of the output variables related to fans (field test results).
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(a) AHU1 supply fan speed
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(b) AHU1 extract fan speed
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(c) AHU2 supply fan speed
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Figure 5.7: Comparison results between MPC and PI control for the MVs (field test,
fan related).
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(a) Change room supply VAV position
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(b) Change room extract VAV position
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(c) Small lab supply VAV position
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(d) Small lab extract VAV position
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(e) Large lab supply VAV position
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(f) Large lab extract VAV position

Figure 5.8: Comparison results between MPC and PI control for the MVs (field test,
VAV related).

MODEL PREDICTIVE CONTROL OF CLEANROOM HVAC SYSTEM Shuji Chen



5.4 Field test results 132

0 500 1000
−2

0

2

4

6

8

10

Time (s)

A
ir 

ch
an

ge
 r

at
e 

(h−
1 )

 

 

Set−point
PI
SISO MPC
MIMO MPC

(a) Change room air change rate
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(c) Small lab air change rate
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(d) Small lab air pressure
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(e) Large lab air change rate

0 500 1000
0

20

40

60

80

100

Time (s)

A
ir 

pr
es

su
re

 (
P

a)

 

 

Set−point
PI
SISO MPC
MIMO MPC

(f) Large lab air pressure

Figure 5.9: Comparison results between MPC and PI control for the tracking re-
sponse of the output variables (field test).
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Table 5.5: Comparison of the performance indices between PI and MPC controllers
(field test).

Output Controller IAE(×104) ISE(×106) ITAE(×106) ITSE(×108)

Change PI 3.0968 3.8352 3.7400 3.1251

room SISO MPC 1.9528 1.8553 2.0579 1.1319

ACR MIMO MPC 0.2502 0.00999 0.6999 0.02039

Change PI 1.8805 2.2510 1.9909 1.0844

room SISO MPC 2.2442 2.3213 2.8657 1.3224

AP MIMO MPC 0.4086 0.02473 1.4136 0.06075

Small PI 2.2972 0.7633 9.9290 2.6974

lab SISO MPC 1.1604 0.2598 3.2089 0.4893

ACR MIMO MPC 0.3100 0.9105 1.5928 0.03469

Small PI 0.9605 0.1467 3.8181 0.3753

lab SISO MPC 1.0169 0.2258 2.5818 0.3218

AP MIMO MPC 1.5153 2.5260 7.0412 0.7277

Large PI 12.9810 26.0990 41.4060 72.7590

lab SISO MPC 10.1730 18.6740 2.8906 41.0350

ACR MIMO MPC 0.2480 2.4509 0.5550 0.0145

Large PI 1.4514 0.4412 5.0430 0.7432

lab SISO MPC 1.2667 0.57370 2.1001 0.5549

AP MIMO MPC 1.1919 3.9475 3.2266 0.3394

In this situation, the differences between simulation and filed test are quite large.

The field test results show that the MIMO MPC controllers perform the best, while

in simulation test they perform the worst. The field test results are receivable. The

test plant in the simulation test is the identified models. The simulation tests of the

SISO and PI controllers use the identified SISO models as the test plant which can-

not cover the whole HVAC system. The success of the SISO MPC in simulation test

cannot demonstrate the success in the field test since the field test uses the entire

system as the test plant. In the field test, the SISO MPC and PI controllers need to

cooperate with each other. While the MIMO MPC already considers the interac-

tion between variables in design part, so that it performs better than the simulation
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program.

5.4.2 Energy consumption analysis

Based on Section 3.4, the compare of the energy consumption among differ-

ent controllers can be represented by the compare of the integrals of the rotational

speeds’ cube for fans as presented in Figure 5.10. The blue bar represents the PI

control, the green one represents the SISO MPC, and the red one represents the

MIMO MPC. It is obvious to judge that the MIMO MPC consumes less energy than

PI control and SISO MPC.
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Figure 5.10: Comparison of integrals of fan speeds’ cube among PI control(blue),
SISO MPC (green) and MIMO MPC (red): 1 - AHU1 supply fan speed, 2 - AHU1
extract fan speed, 3 - AHU2 supply fan speed, 4 - AHU2 extract fan speed.

The field test of the controllers is almost the same as the real world small appli-

cation. However, the real HVAC system has much larger scale than the laboratory

which makes it difficult to define and identify the accurate system models. The cost

to develop the MPC in the real word would be more expensive in data collection

and identification part. However, PI control needs more time in parameter tuning

which increases the cost. According to Figure 5.10, there is a large saving of energy

consumption of MPC compared to PI control. If the saving is huge enough, it will

save more than the extra cost of developing the MPC controllers.
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5.5 Conclusion

The performances of PI and SISO MPC controllers in the cleanroom laboratory

have been compared. Ten SISO MPC controllers have been designed to replace the

original PI controllers in BMS. MIMO MPC of the cleanroom HVAC system has

been designed and tested. The MIMO MPC has been designed based on the MIMO

subsystem models identified in Chapter 4. It aims to maintain the ACR and AP in

the cleanrooms.

Both simulation and field test have been done, and the integral performance

indices have been calculated. The test results show that the MIMO MPC has better

performance than SISO MPC and PI control. Also, the energy consumption of the

HVAC system has been reduced with the largest amount by applying the MIMO

MPC.
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Chapter 6

Model predictive control of air

cleanliness based on real-time data of

particle counters for energy saving

This chapter investigates the design of MPC for controlling the particle concen-

tration to a particular level, considering the reduction of energy consumption via the

dynamic feedback control of the supply VAV position and the fan speed. Replacing

the controlled output ACR with the particle concentration, the SISO model between

the particle concentration and the supply VAV position is determined via black-box

modelling approach. Moreover, the MIMO particulate model using both the sup-

ply fan and supply VAVs as the control inputs to control the particle concentration

is identified. Based on those models, the change of particle concentrations is pre-

dicted, and the MPC is designed to minimise the particle concentration to a certain

level, with reducing the energy consumption.

6.1 Particle counter

This section presents the specification of the particle counter, the results of the

particle generation experiments and the standard of cleanroom classification based

on particles.

136
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6.1.1 Specification of particle counters

A particle counter is an instrument that detects and counts particles. A high-

intensity light source is used to illuminate the particle as it passes through the de-

tection chamber. The particle passes through the light source (typically a laser or

halogen light), and if light scattering is used, then the redirected light is detected

by a photo-detector. If direct imaging is used, a halogen light illuminates parti-

cles from the back within a cell while a high definition, high magnification camera

records moving particles. Recorded video is then analysed by computer software to

measure particle attributes. If light blocking (obscuration) is used, the loss of light

is detected. The amplitude of the light scattered or light blocked is measured and the

particle is counted and tabulated into standardised counting bins. Figure 6.1 shows

a light scattering particle counter diagram.

Figure 6.1: Diagram of a particle counter.

Aerosol particle counters are used to determine the air quality by counting and

sizing the number of particles in the air. This information is useful in determining

the number of particles inside a building or in the ambient air. It also is valuable

in understanding the cleanliness level in a controlled environment. A commonly

controlled environment aerosol particle counters are used in is a cleanroom. Clean-
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rooms have defined particle count limits. Aerosol particle counters are used to test

and classify a cleanroom to ensure its performance is up to a particular cleanroom

classification standard.

Figure 6.2: The particle counter [139].

The particle counter, shown in Figure 6.2 [139], is installed in the cleanroom

laboratory. It is an aerosol particle counter which can monitor and control the parti-

cle contamination in cleanrooms. Its serial number is CI-3100-21, and it is produced

by CLiMET. It is configured for integration into an Ethernet 10/100Base-T network

using TCP/IP protocol. Particles are sized greater than 0.5 µm and 5.0 µm.

The particle counter samples air at a fixed sampling rate. The size of the air

sample is therefore determined just by how long the measurement interval happens

to be. The particle counter measures the air flow rate continuously and regulates the

blower to keep the air flow within strict limits. If the fan is unable to control air flow

correctly, the sample status will indicate a flow error.

The standard flow rate is 1.0 cubic feet per minute, which limits the allowable
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concentration of particles to 1 million per cubic foot (CF) or 35.3 million per cubic

meter (CM). The sample volume can be collected in CF mode or CM mode. The

sample time for the CF mode is 1 minute while the sample time for the CM mode is

35.3 minutes. The Modbus protocol within the TCP/IP protocol (known as Modbus

over Ethernet) or the HTTP web pages within the unit is used to communicate the

sensor to the computer.

6.1.2 Particle generation experiments

Several particle generation experiments have been run and the results are shown

in Figures 6.3-6.5. The particle greater than 0.5 µm is named as “fine particle” and

that greater than 5.0 µm is called “coarse particle”. The system is turned on with

maximum airflow rate. Figure 6.3 shows the results when one person is entering

the lab without wearing a guard. The measurement of the particle number is smaller

than the ISO cleanroom standard which means the system can work in this situation.

Figure 6.4 presents the results when one person is entering the lab wearing a guard.

The particle number measurement is much smaller than the situation one person

without wearing a guard. The above results show the importance of using guard

when someone needs to enter the lab. Figure 6.5 presents the results when there

are two persons inside the lab without wearing a guard. It takes a longer time to

recover from dirty because more persons inside generate more particles. The air is

dirtier than the previous situations, and the HVAC system is harder to remove them.

The particle results are larger than the ISO standard even though the HVAC system

is turned on. The particle generation test was run letting one person walk inside

the lab. The value of PC3 is much higher than the other three counters because the

person stayed longer time standing around PC3.

In summary, the particle generation experiments show the necessity of wearing

guard if someone needs to get into a cleanroom and the particle generated from

bodies of people can be colossal that the HVAC system cannot control it below the

standard limitation. Most importantly, the particle counter can provide a real-time

monitoring of the particle concentration level which then can be used to design a

particle counter based real-time closed-loop controller.
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Figure 6.3: Results of the particle generation experiment, one person enter without
wearing guard, HVAC system running (PC: particle counter).
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Figure 6.4: Results of the particle generation experiment, one person enter wearing
guard, HVAC system running (PC: particle counter).
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Figure 6.5: Results of the particle generation experiment, two person enter without
wearing guard, HVAC system running (PC: particle counter).
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6.1.3 Standard of cleanroom classification

The laboratory is built to test appropriate control of the HVAC system, based

on the requirement of the cleanroom standard. The ISO produces a world-wide

standard of cleanroom classification which is shown in Table 6.1 [2].

Table 6.1: Selected airborne particulate cleanliness classes for cleanrooms [2].

ISO Maximum concentration limits (particles/m3 of air) for particles

classification equal to and larger than the considered sizes shown below

Number (N) 0.1 µm 0.2 µm 0.3 µm 0.5 µm 1.0 µm 5.0 µm

ISO 1 10 2 n/a n/a n/a n/a

ISO 2 100 24 10 4 n/a n/a

ISO 3 1000 237 102 35 8 n/a

ISO 4 10000 2370 1020 352 83 n/a

ISO 5 100000 23700 10200 3520 832 29

ISO 6 1000000 237000 102000 35200 8320 293

ISO 7 n/a n/a n/a 352000 83200 29300

ISO 8 n/a n/a n/a 3520000 832000 293000

ISO 9 n/a n/a n/a 35200000 8320000 2930000

Cleanrooms of this laboratory are classified according to the primary activity and

the cleanliness levels of the air within each room. For pharmaceutical cleanrooms,

air cleanliness is either based on EU GMP guidance [4], which adopts alphabetic

notations; or by using the International Standard ISO14644 [2], which adopts al-

phabetic notations. The standards define the air cleanliness based on some particle

sizes. However, for a pharmaceutical factory, the concentration of particle sizes are

0.5 µm and 5 µm. So the pharmaceutical standard the laboratory is based on is

shown in Table 6.2.
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Table 6.2: The airborne particulate classification for sterile medicinal products in
the pharmaceutical factory [4].

Maximum particles/m3

ISO Pharmacy At rest In operation

Particle size 0.5 µm 5 µm 0.5 µm 5 µm

5 Grade A 3520 20 3520 0

6 Grade B 3520 29 352000 2900

7 Grade C 352000 2900 3520000 29000

8 Grade D 3520000 29000 n/a n/a

With EU GMP, Grade A is the highest grade (that is the “cleanest”), and Grade

D is the lowest (that is the least “clean”). With ISO, the lower the number (such as

“5”) the “cleaner” the room class and the higher the number (such as “8”) the place

is considered to be “less clean.” The four grades can be distinguished:

• Grade A: the local zone for high-risk operation.

• Grade B: the background environment for grade A zone.

• Grade C and D: clean areas for carrying out less critical stages in the manu-

facture of sterile products.

6.2 Model identification

In the small lab, only one particle counter is installed. Moreover, in the large lab,

two particle counters are installed. The measured data from the particle counters

give the number of particles in a specified air volume. The particle concentration is

calculated by the ratio of the number of particles in the specified air volume. Since

two kinds of particles are measured, for each particle size, these exist a concentration

value maximising the particle concentration of every particle counters in the same

lab. Thus, in each lab, there are two particle concentration values for each particle

size.

The laboratory is designed to limit the concentrations of particles with both 0.5

µm and 5 µm under the cleanroom standard (see Table 6.2). The large lab of this
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laboratory is designed with Grade B, and the small lab is designed with Grade C. A

percentage value can be calculated by dividing the particle concentration values by

the standard values. The particle concentration values in each lab are then quantified

with the same scale as percentage values. The outputs of the SISO particulate model

of each lab is defined by maximising the percentage of the particle concentration for

each particle size. The inputs are the supply VAV positions of each lab. The model

structure of the particle counter based SISO models is ARX.

6.2.1 SISO particle counter based models

Figure 6.6 presents the SISO particulate model in the small lab. A PI controller

is designed to maintain the maximum particle concentration in the small lab by con-

trolling the supply VAV. The data collected from this PI control loop are used to

identify the SISO model. The identification results are shown in Figure 6.7. The

measured and predicted outputs of the SISO model, the absolute error and the rela-

tive error are presented in Figures 6.7(a)-6.7(c), respectively. From the comparison

results, it is found that the identified model has a good performance with small er-

rors.

Small lab supply 

VAV position

Small lab SISO 

particulate model

Maximum particle 

concentration in the small lab 

Figure 6.6: The small lab SISO particulate model.
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(a) Measured and predicted outputs of the small lab SISO particulate model.
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(b) Absolute error of the small lab maximum particle concentration
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(c) Relative error of the small lab maximum particle concentration

Figure 6.7: Comparison results of the output of the small lab SISO particulate
model.
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Polynomials of the particle counter based small lab SISO ARX model:

Asmall(z) = 1− 0.7682z−1 − 0.1846z−2 + 0.7773z−3 − 0.6658z−4 − 0.1226z−5

+ 0.5613z−6 − 0.5436z−7 − 0.3972z−8 + 0.5696z−9 − 0.1149z−10

− 0.6536z−11 + 0.6308z−12 + 0.1819z−13 − 0.4854z−14 + 0.4016z−15

+ 0.244z−16 − 0.3917z−17 + 0.2402z−18 + 0.1182z−19 − 0.1586z−20

Bsmall(z) = 0.0001396z−4 + 0.0008664z−10 − 0.001626z−11 − 7.653e− 06z−12

+ 0.004834z−13 − 0.005905z−14 − 0.0001065z−15 + 0.003376z−16

− 0.0001499z−17 − 0.002376z−18 − 0.0001015z−19 + 0.00196z−20

Figure 6.8 presents the SISO particulate model in the large lab. A PI controller

is designed to maintain the maximum particle concentration in the large lab by con-

trolling the supply VAV. The data collected from the PI control loop are used to

identify the SISO model. The identification results are presented in Figure 6.9. Fig-

ure 6.9(a) shows the plot of measured and predicted outputs of the SISO model,

Figure 6.9(b) presents the absolute error between them and Figure 6.9(c) gives the

relative error. From the comparison results, it is found that the identified model has

a good performance with small errors.

Large lab supply 

VAV position

Large lab SISO 

particulate model

Maximum particle 

concentration in the large lab 

Figure 6.8: The large lab SISO particulate model.
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(a) Measured and predicted outputs of the large lab SISO particulate model.
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(b) Absolute error of the large lab maximum particle concentration

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

Time(s)

R
el

at
iv

e 
er

ro
r 

(%
)

(c) Relative error of the large lab maximum particle concentration

Figure 6.9: Comparison results of the output of the large lab SISO particulate model.
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Polynomials of the particle counter based large lab SISO ARX model:

Alarge(z) = 1− 2.04z−1 + 0.5464z−2 + 1.074z−3 − 0.118z−4 − 0.8107z−5

+ 0.7349z−6 − 0.8108z−7 + 0.0995z−8 + 0.4042z−9 + 0.5522z−10

− 0.7134z−11 − 0.2327z−12 + 0.3096z−13 + 0.1574z−14 − 0.1878z−15

− 0.0605z−16 + 0.1823z−17 + 0.06057z−18 − 0.2624z−19 + 0.1321z−20

Blarge(z) = 0.0001z−1 − 0.0003z−2 − 9.619e− 05z−3 + 0.0008z−4 − 0.0001z−5

− 0.0011z−6 + 0.0004z−7 + 0.0006z−8 + 0.0004z−9

− 0.0020z−10 + 0.0017z−11 − 0.0007z−12 + 5.191e− 05z−13

− 0.0005z−14 + 0.0023z−15 − 0.0011z−16 − 0.0018z−17

+ 0.0005z−18 + 0.0017z−19 − 0.0009z−20

6.2.2 MIMO particle counter based models

The inputs and outputs of the MIMO particulate model are defined in Figure

6.10. The corresponding mathematical model has been identified using black-box

approach. Figures 6.11 and 6.12 present the identification results of the MIMO

particle counter based model where both measured and predicted outputs are plotted,

and the corresponding absolute errors and relative errors are given. The comparison

results show that the identified MIMO particle counter based model has a good

goodness of fit with small errors.

Large lab supply 

VAV position

MIMO 

particulate 

model
Maximum particle 

concentration in the large lab 

Small lab supply 

VAV position

Maximum particle 

concentration in the small lab 

AHU1 supply

fan speed

Figure 6.10: The MIMO particulate model.
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Figure 6.11: Comparison results of the output 1 of the MIMO particulate model:
small lab maximum particle concentration.
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Figure 6.12: Comparison results of the output 2 of the MIMO particulate model:
large lab maximum particle concentration.
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The MIMO particle counter based model is identified as a MIMO ARX model.

The polynomials of the outputs are shown below:

• Polynomials of output 1: small lab maximum particle concentration:

A1(z) = 1− 0.814z−1 − 0.2114z−2

A1
2(z) = −0.02488z−1 − 0.01846z−2

B1
1(z) = −0.0086z−1 + 0.0035z−2 − 0.0103z−3 + 0.0030z−4 + 0.0065z−5

− 0.0025z−6 + 0.0013z−7 + 0.0113z−8 − 0.0012z−9 − 0.0033z−10

+ 0.0037z−11 − 0.0006z−12 + 0.0006z−13 − 0.0020z−14

+ 0.0016z−15 + 0.0136z−16 − 0.0002z−17 − 0.0029z−18

+ 0.0023z−19 + 0.0042z−20

B1
2(z) = −0.01498z−1 + 0.0485z−2 − 0.0555z−3 + 0.0178z−4 − 0.0059z−5

+ 0.0022z−6 − 0.0002z−7 + 0.0078z−8 − 0.0072z−9

− 7.725e− 05z−10 − 0.0005z−11 + 0.0031z−12 − 0.0015z−13

− 0.0027z−14 + 0.0018z−15 + 0.0010z−16 + 0.0015z−17

− 0.0031z−18 − 0.0001z−19 − 0.0011z−20

B1
3(z) = 0.0019z−1 + 0.0004z−2 + 0.0036z−3 − 5.699e− 05z−4 − 0.0001z−5

− 0.0021z−6 + 0.0001z−7 − 0.0058z−8 + 0.0017z−9 − 0.0002z−10

− 0.0002z−11 + 0.0019z−12 − 0.0023z−13 + 0.0005z−14

− 0.0019z−15 − 0.0009z−16 − 0.0025z−17 + 0.0007z−18

− 0.0035z−19 + 0.0021z−20
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• Polynomials of output 2: large lab maximum particle concentration:

A2(z) = 1− 0.2117z−1 + 0.05797z−2

A2
1(z) = 3.865z−1 + 4.535z−2

B2
1(z) = −0.0552z−1 + 0.1198z−2 − 0.1824z−3 − 0.1375z−4

− 0.0557z−5 − 0.2251z−6 − 0.0033z−7 − 0.1304z−8 − 0.1472z−9

− 0.03917z−10 − 0.07768z−11 − 0.1131z−12 − 0.1151z−13

− 0.1667z−14 − 0.1744z−15 − 0.157z−16 + 0.0052z−17

− 0.169z−18 − 0.02684z−19 + 0.0045z−20

B2
2(z) = 0.5005z−1 + 0.6371z−2 − 0.8338z−3 + 0.3622z−4 + 0.0113z−5

− 0.0160z−6 + 0.0176z−7 − 0.0441z−8 + 0.0643z−9

− 0.0257z−10 + 0.0697z−11 − 0.0412z−12 + 0.0152z−13

+ 0.0016z−14 + 0.0037z−15 + 0.0197z−16 − 0.0174z−17

+ 0.0504z−18 − 0.0345z−19 + 0.0669z−20

B2
3(z) = 0.0084z−1 − 0.0397z−2 + 0.0554z−3 + 0.0284z−4

+ 0.0958z−5 + 0.0254z−6 + 0.0895z−7 + 0.0150z−8 + 0.0668z−9

− 0.0091z−10 + 0.0585z−11 + 0.0535z−12 + 0.0537z−13 + 0.0453z−14

+ 0.1174z−15 + 0.0475z−16 + 0.0353z−17 + 0.0442z−18 + 0.0352z−19

− 0.0038z−20

6.3 Controller design

The introduction of the particle counters makes it possible to measure the parti-

cle concentrations. The closed-loop systems have been built to control the particle

concentrations in the cleanroom laboratory. The SISO particle counter based MPC

controller is designed based on the above identified model. The supply VAV in the

each lab is overridden by Matlab programs while the other facilities are controlled

by the PI controllers. The MIMO particle counter based MPC controller uses the

mathematical MIMO models shown above to predict the future moves. Different
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from SISO MPC, the MIMO MPC controller overrides the supply VAV in each lab

and the supply fan in AHU1. Table 6.3 shows the parameters of the particle counter

based MPC. The sample time is set to 9 seconds because the particle counter gives

a value for each 9 seconds.

Table 6.3: Parameters of the particle counter based MPC.

Parameter Symbol Value

Weight on the outputs wy 1

Weight on the rate of change of inputs w4u 1

Prediction horizon P 10

Control horizon M 2

Sampling time Ts 9 s

6.4 Results

6.4.1 Simulation results

To verify the controllers designed above, the simulation tests have been done

by Matlab/Simulink. Figure 6.13 shows the simulation results among MIMO MPC,

SISO MPC and PI control of particle concentrations. A few particles are introduced

at the beginning of the simulation. The results show that the particle counter based

controllers can control the particle concentration at a particular level either in the

small lab or large lab.

6.4.2 Field test results

The field tests of the designed controllers have been taken. The initial particles

are introduced into cleanrooms that the researcher in ordinary dress walked inside

for 10 minutes at each lab. Figure 6.14 shows the field test results among MIMO

MPC, SISO MPC and PI control of the particle levels. The set-point of the maxi-

mum particle concentration in each lab is set as 1%. The results show that all the

controllers can control the particle concentration at a particular level either in the
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(a) Small lab supply VAV position
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(b) Large lab supply VAV position
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Figure 6.13: Comparison results among particle counter based MIMO MPC, SISO
MPC and PI control (simulation results).
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small lab or the large lab.
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(a) AHU1 supply fan speed
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(b) Small lab supply VAV position
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(c) Large lab supply VAV position
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Figure 6.14: Field test results of the particle counter based MIMO MPC, SISO MPC
and PI control.
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6.4.3 Energy consumption analysis

Figure 6.15 presents a bar chart comparing the integrals of the AHU1 fan speeds’

cube for particle counter based PI control, SISO MPC and MIMO MPC. As dis-

cussed in Section 3.4, the energy consumption of the HVAC system relates only to

the fan speed and can be compared by calculating the integral of fan speeds. The

comparison results show that the ranking of energy consumption from the lowest to

the highest is MIMO MPC, SISO MPC and PI control.
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Figure 6.15: Comparison of integrals of fan speeds’ cube among PI control and
SISO MPC, MIMO MPC for particle counter based control.

6.5 Conclusion

In this chapter, the particle counter based MPC controllers have been designed

and tested. The particle counter based PI control has been designed firstly, the mea-

sured data of which have been used to identify the particulate models. Both SISO

and MIMO particulate models have been identified, and the corresponding MPC

controllers have been designed. The simulation test and field test of these MPC

controllers have been taken to verify the performance of MPC. The results show

that both SISO MPC and MIMO MPC can maintain the particle concentration at the

particular level. The comparison of energy consumption of these controllers results

in a rank from the lowest to the highest: MIMO MPC, SISO MPC and PI control.
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Chapter 7

PLC based implementation and

experimental test

In this chapter, the Matlab programs proposed in the previous chapters have

been transferred to PLC. A PLC platform produced by Beckhoff is installed. The

run-time software, which is named as the Windows control and automation technol-

ogy (TwinCAT), is embedded in the PLC platform supporting the running of PLC

programs. Then, the PI control and MPC are implemented in cleanroom laboratory

via the PLC platform. For regulating the airflow rate and AP:

• The Matlab based PI control is compared with the PLC based PI control for

comparing the performance of the two platforms: Matlab and PLC.

• In PLC, the PI control and the MPC are tested to compare the two control

methods including PI control and MPC.

The dynamic performances of these controllers are compared by calculating the

integral performance indices including IAE, ISE, ITAE and IASE. The energy con-

sumptions of them are compared by comparing the integral of fan speeds. The

particle counters are connected with the PLC platform through the wireless net-

work. The SISO and MIMO MPC of the particle concentration of the cleanrooms

are implemented.

158
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7.1 Introduction

A PLC is a special form of a microprocessor-based controller that uses pro-

grammable memory to save instructions and to implement functions such as logic,

timing, sequencing, counting, and arithmetic to control machines and processes

[140]. It is designed to be operated by engineers with perhaps a limited knowl-

edge of computers and computing languages. A PLC is a digital computer used for

automation of typical industrial processes, such as amusement rides, machinery on

factory assembly lines and light fixtures.

PLCs are widely used in motion, positioning and torque control. The first PLC

was developed in 1969. The use of PLCs now extends from small units for with

perhaps 20 digital inputs/outputs to systems with up to thousands of inputs/outputs.

PLCs can handle digital or analogue inputs/outputs, and carry out control algorithm

such as PID control. The basic components of a typical PLC system contain proces-

sor unit, memory, power supply unit, input/output interface section, communications

interface, and the programming device.

The functionality of the PLC has evolved process control, sequential relay con-

trol, motion control, distributed control systems, and networking. Compared with

desktop computers, some modern PLCs have approximately equivalent functional-

ities in data handling, storage, processing power, and communication capabilities.

In certain applications, the combination of PLC based programming with remote

Input/Output (I/O) hardware allows the overlapping of a general-purpose desktop

computer to some PLCs. Desktop computer controllers have not generally been ac-

cepted in heavy industries. The reason is that desktop computers run with less sta-

bility than PLCs, and the hardware of desktop computers is typically not designed

to the same levels of tolerance to temperature, humidity, vibration, and longevity

as that used in PLCs. Desktop logic applications are widely used in less critical

situations, such as laboratory automation and small facilities with less demanding

because they are much less expensive than PLCs.

PLCs have a great advantage that the same basic controller can be used with

a wide range of control systems. An operator is designed necessarily to key in a

different set of instructions to modify a control system. There is no need to rewire
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since the result is a flexible, cost-effective system which varies quite widely in their

nature and complexity [140]. PLCs are well adapted to a range of automation tasks

including typically industrial processes where the cost of developing and maintain-

ing the automation system is high relative to the total cost of the automation, and

where changes to the system would be expected during its operational life. The in-

put and output devices of PLCs are compatible with industrial devices and controls.

PLC applications are typically highly customised with a low cost of a packaged PLC

compared to the cost of a specific custom-built controller.

The PLC determines the logical operational sequence of the machine and assigns

the motion controller to implement certain axis functions. Due to the increased

performance of the controllers and the possibility to use higher-level programming

languages (IEC 61131-3), complex machines can also be automated in this way.

IEC 61131-3 is the third part of the open international standard IEC 61131 for PLCs

and was first published in December 1993 by the IEC. It deals with programming

languages and defines several PLC programming language standards:

• Ladder diagram

• Function block diagram

• Structured text

• Instruction list

• Sequential function chart

• Continuous Function Chart

MPC has become popular in the recent years due to its ability to handle MIMO

systems with constraints. However, the computational effort required to solve the

underlying algorithm usually limits the application of MPC to sufficiently slow sys-

tems [141]. This drawback makes it difficult to perform control tasks on hardware

systems with limited performance and memory. A typical example is that PLCs are

commonly used in industrial automation. In general, rather simple control strategies

(such as PI control) are implemented on a PLC due to the limited resources.

The development of more powerful PLC devices makes it possible to handle the

computing of the MPC algorithm in seconds. The cleanroom HVAC system pre-

sented in this thesis controls the ACR, AP and particle concentration in cleanrooms.
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The process of this system is proved to be sufficiently slow that the PLC devices can

be applied.

7.2 PLC based implementation

This section investigates how to implement the Matlab modules into the PLC

based hardware. The PLC hardware is introduced with a detailed explanation of

basic components. Two kinds of software are applied in the implementation, named

TwinCAT and TE1400. The cooperation of them provides a way to transfer Simulink

modules into PLC based programs.

7.2.1 PLC hardware

A

B
C

D

E

Figure 7.1: The panel where the PLC devices are installed [96].

MODEL PREDICTIVE CONTROL OF CLEANROOM HVAC SYSTEM Shuji Chen



7.2 PLC based implementation 162

Figure 7.1 [96] shows the panel where the PLC based workstation is installed.

The PLC based programs have been implemented through the panel which contains

several basic components:

A. The industrial PC.

The IPC is an embedded PC based on an Intel Atom squad-core 1.91 GHz pro-

cessor. The IPC can be used for implementing PLC projects with or without

visualisation. The IPC is modelled for optimum interaction with Ethernet for

control automation technology (EtherCAT). The EtherCAT connection is es-

tablished via terminals where the extension modules B are attached. In terms

of PLC, up to four virtual IEC 61131 CPUs can be programmed with up to

four tasks each, with a minimum cycle time of 50 µs.

B. The extension modules.

The extension modules are attached to the IPC through EtherCAT providing

a terminal system. The EtherCAT terminal system is a modular emphasised

system consisting of electronic terminal blocks such as input terminals, output

terminals, serial interface terminals and feed terminals. Through the extended

terminals, the data can be transferred between the IPC and the facilities.

C. The Transformers: 230 V to 24 V.

The small transformers output the 24 V voltage to drive the terminals and

facilities.

D. 230 V power supply to the IPC and the transformers.

E. Connection terminals transferring the data between the modules and the facil-

ities.

They connect the cables from the terminals with the cables from the facilities.

The block diagram of the PLC panel is shown in Figure 7.2. The controllers in

IPC have the same algorithm as in Matlab. The control signals, u, are sent from

the controllers to regulate the HVAC facilities. Through the main program in IPC

and the output terminals, u are transferred to voltage signals 0-10 V. The VAVs re-

ceive the voltage signal and change its position from 0 to 90◦. The inverters transfer

the voltage signals to 0-50 Hz. The fans receive the frequency signals and regulate

the fan speed from 0 to 3000 RPM. Taking pressure sensors (0-100 Pa) as exam-
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ples, they measure the static pressure in cleanrooms and transfer pressure values to

voltage signals. The voltage signals are finally transferred into pressure values, y,

through input terminals and the main program in IPC. Thus, the controllers in IPC

read the feedback signal from the sensors. The IPC, inverters and fans are powered

by the 230 V electricity from the main grid. The transformers transfer 230 V to 24

V, driving the extension modules, VAVs and sensors.

PLC-based 

controllers

Main 

program

Output 

terminals

Input 

terminals

0-32767

0-32767

y(0-100Pa)

u(0-100%)
VAV (0-90o)

Pressure sensors 

(0-100Pa)

0-10V(E)

0-10V(E)

Inverters

Fans 

(0-

3000

RPM)

0-50Hz

IPC(A)
Extension 

modules(B)

230V power 

supply(D)

Transformers(C)

24V

24V

Figure 7.2: Block diagram of the PLC panel.

7.2.2 Implementation of Simulink modules in PLC

Figure 7.3 presents a block diagram of the implementation of Simulink modules,

which contain the control algorithm, into the PLC based IPC. The software named

TE1400 enables the user to generate real-time capable modules which can be ex-

ecuted in the IPC. These modules can be instantiated multiple times, parametrised

and debugged in the IPC with TwinCAT. TE1410 provides an interface for data ex-

change between the TwinCAT and Simulink.
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Simulink

modules

TcCOM

modules

Simulink Coder

Enabled by TE1400

TwinCAT

project

Computer with 

Matlab/Simulink
IPC with

TwinCAT

PLC

Hardware

Figure 7.3: Implementation of Simulink modules in PLC.

The Simulink Coder generates real-time-capable C or C++ code from block di-

agrams implemented in Simulink. TE1400 uses the Simulink Coder to create a

TwinCAT component object model (TcCOM) module with the input and output be-

haviour according to the source Simulink model. Generated modules can be instan-

tiated in TwinCAT projects, where those can be parametrised using the TwinCAT

in the IPC if parameter changes are necessary. After starting the TwinCAT, the

module is executed in real-time and can thus be integrated into a real machine con-

troller. The TwinCAT offers a software environment in which TwinCAT modules

are loaded, implemented and managed. TwinCAT offers additional basic functions

so that the system resources can be used (memory, tasks and hardware access, etc.).

7.3 Field test results

Since the PLC programs are transferred from the Matlab/Simulink programs

proposed in previous chapters, the PLC based controllers have the same algorithm,

inputs and outputs. To compare the performance of the controllers between Matlab

and PLC, the PI controllers, MPC controllers and particulate controllers have been

built and run in the IPC.

7.3.1 PI control: Matlab vs. PLC

To verify the performance of the PLC platform against Matlab, the PI control is

also implemented in PLC. The PLC based PI controllers have been designed with

the same parameters as in Matlab as shown in Table 5.1. The programs have been
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transferred from Matlab/Simulink to PLC language.

The results obtained from the Matlab based PI control are compared with the

proposed PLC based PI control. The control inputs of PI control for both Matlab

and PLC based programs are plotted in Figures 7.4 and 7.5. The tracking response

of the output variables for both controllers are shown in Figures 7.6 and 7.7. The

comparison results show that the PLC based PI controllers have smaller rise time

and shorter settling time.

The controllers in Matlab/Simulink communicate with the hardware through the

OPC server. This data transmission causes a large delay to take the control actions.

Also, the processor of the computer installed with Matlab is not powerful enough

to supply good control performance. The PLC based controller communicate to

the hardware directly through the MODBUS which apparently decrease the time

delay. The PLC based IPC has a more powerful processor which can deal with the

computation faster. Thus, the PLC based PI controllers show a better response than

the Matlab based PI controllers.

Table 7.1 gives the comparison results of performance indices between Matlab

based and PLC based PI control. Most PLC based controllers have smaller values

of indices which demonstrate that the PLC based PI controllers perform better than

Matlab based PI controllers.
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Figure 7.4: Comparison of PI control results between Matlab and PLC for the MVs
related to fans.
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Figure 7.5: Comparison of PI control results between Matlab and PLC for the MVs
related to VAVs.
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Figure 7.6: Comparison of PI control results between Matlab and PLC for the track-
ing response of outputs related to fans.
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Figure 7.7: Comparison of PI control results between Matlab and PLC for the track-
ing response of outputs related to VAVs.
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Table 7.1: Comparison of the performance indices of PI control, Matlab vs. PLC.

Model Controller IAE ISE ITAE ITSE

AHU1 Matlab 1.3115e+4 2.3458e+4 6.0992e+5 5.2024e+7

supply fan PLC 6.3574e+4 1.8098e+6 6.5221e+6 1.4251e+8

AHU1 Matlab 1.0616e+4 1.6906e+6 4.4941e+5 6.7330e+7

extract fan PLC 9.7951e+3 1.4570e+6 3.9989e+5 5.3843e+5

AHU2 Matlab 4.4585e+3 4.1065e+3 2.2501e+5 5.5734e+6

supply fan PLC 4.6124e+3 3.9020e+5 2.2771e+5 5.1931e+6

AHU2 Matlab 5.2841e+3 5.5326e+3 2.0163e+5 7.4639e+8

extract fan PLC 4.5782e+3 4.9960e+5 2.7214e+5 5.8354e+6

Change room Matlab 4.4592e+03 4.1072e+05 2.2502e+05 5.5734e+06

supply VAV PLC 4.4808e+03 3.3872e+05 3.3985e+05 4.8228e+06

Change room Matlab 5.2835e+03 5.5329e+05 2.0160e+05 7.4639e+06

extract VAV PLC 4.3948e+03 4.4403e+05 2.2236e+05 4.8342e+06

Small lab Matlab 8.03223+02 5.9635e+03 7.4216e+04 2.3424e+05

supply VAV PLC 5.5152e+02 3.2414e+03 7.2082e+04 1.0319e+05

Small lab Matlab 6.0336e+02 4.2634e+03 4.7960e+04 1.0145e+05

extract VAV PLC 7.8525e+02 4.0373e+03 1.2473e+05 2.0702e+05

Large lab Matlab 1.1022e+04 1.7487e+06 6.7903e+05 2.9674e+07

supply VAV PLC 1.3480e+04 1.7007e+06 1.2585e+06 4.6455e+07

Large lab Matlab 3.1671e+03 1.0714e+05 2.5236e+05 3.3713e+06

extract VAV PLC 2.3445e+03 5.8141e+04 2.2771e+05 1.3706e+06

7.3.2 PI control vs. model predictive control in PLC

Several closed-loop systems have been built with MPC controllers implemented

in PLC. To verify the performance of the MPC control strategy, the results of the

field test of the PLC based MPC have been compared with the results from the

PLC based PI control. The comparison results for both controllers are given in

Figures 7.8-7.11. Figures 7.8 and 7.9 present the control inputs and Figures 7.10

and 7.11 show the tracking response of the output variables. The comparison results
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demonstrate that both controllers have similar performance with similar rise time

and settling time.

To compare them accurately, their integral performance indices have been calcu-

lated with the same response time. Table 7.2 presents the comparison results of the

indices. Most MPC controllers have smaller values of indices than PI controllers.

In other words, the MPC controllers have better performance than PI controllers in

PLC.
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Figure 7.8: Comparison results between MPC and PI for the MVs related to fans in
PLC.
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Figure 7.9: Comparison results between MPC and PI for the MVs related to VAVs
in PLC.
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Figure 7.10: Comparison results between MPC and PI for the tracking response of
outputs related to fans in PLC.
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Figure 7.11: Comparison results between MPC and PI for the tracking response of
outputs related to VAVs in PLC.
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Table 7.2: Comparison of the performance indices between the PI and MPC con-
trollers in PLC.

Model Controller IAE ISE ITAE ITSE

AHU1 PI 1.3115e+4 2.3458e+4 6.0992e+5 5.2024e+7

supply fan MPC 6.3574e+4 1.8098e+6 6.5221e+6 1.4251e+8

AHU1 PI 1.0616e+4 1.6906e+6 4.4941e+5 6.7330e+7

extract fan MPC 9.7951e+3 1.4570e+6 3.9989e+5 5.3843e+5

AHU2 PI 4.4585e+3 4.1065e+3 2.2501e+5 5.5734e+6

supply fan MPC 4.6124e+3 3.9020e+5 2.2771e+5 5.1931e+6

AHU2 PI 5.2841e+3 5.5326e+3 2.0163e+5 7.4639e+8

extract fan MPC 4.5782e+3 4.9960e+5 2.7214e+5 5.8354e+6

Change room PI 4.4592e+03 4.1072e+05 2.2502e+05 5.5734e+06

supply VAV MPC 4.4808e+03 3.3872e+05 3.3985e+05 4.8228e+06

Change room PI 5.2835e+03 5.5329e+05 2.0160e+05 7.4639e+06

extract VAV MPC 4.3948e+03 4.4403e+05 2.2236e+05 4.8342e+06

Small lab PI 8.03223+02 5.9635e+03 7.4216e+04 2.3424e+05

supply VAV MPC 5.5152e+02 3.2414e+03 7.2082e+04 1.0319e+05

Small lab PI 6.0336e+02 4.2634e+03 4.7960e+04 1.0145e+05

extract VAV MPC 7.8525e+02 4.0373e+03 1.2473e+05 2.0702e+05

Large lab PI 1.1022e+04 1.7487e+06 6.7903e+05 2.9674e+07

supply VAV MPC 1.3480e+04 1.7007e+06 1.2585e+06 4.6455e+07

Large lab PI 3.1671e+03 1.0714e+05 2.5236e+05 3.3713e+06

extract VAV MPC 2.3445e+03 5.8141e+04 2.2771e+05 1.3706e+06

7.3.3 Particle counter based model predictive control in PLC

The introduction of the particle counters makes it possible to measure the parti-

cle concentrations. Two closed-loop systems have been built to control the particle

concentrations in the cleanroom laboratory. The particle counter based SISO MPC

controllers in these closed-loop systems have been transferred from Matlab to PLC.

Thus, both two controllers can be run in PLC environment. The field test results of

the two controllers are shown in Figure 7.12 which presents the supply VAV position
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and the maximum particle concentration in the small lab and large lab. Other facil-

ities are controlled in steady state by PI control. The results show that the particle

counter based SISO MPC controllers can control the particle concentration either in

the small or the large lab. The control inputs increased when the particle concentra-

tion rose high against the set-points. The control inputs decreased when the particle

concentrations have fallen around the set-points. The operation of the VAVs by the

SISO MPC controllers can maintain the particle levels in particular levels.

The particle counter based MIMO MPC is designed coupling both labs and the

AHU1 supply fan together. Thus the controlling of the fan speed is taken into

account. Figure 7.13 shows the control inputs and system outputs of the particle

counter based MIMO MPC in PLC. The MIMO MPC controller is verified to main-

tain the air cleanliness at a particular level in the laboratory by regulating the AHU1

supply fans, the supply VAV in the small lab and the supply VAV in the large lab.
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Figure 7.12: Field test results of the particle counter based SISO MPC in PLC.
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Figure 7.13: Field test results of the particle counter based MIMO MPC in PLC.

MODEL PREDICTIVE CONTROL OF CLEANROOM HVAC SYSTEM Shuji Chen



7.4 Conclusion 179

7.3.4 Energy consumption analysis

Figure 7.14 gives a bar chart to compare the integral of fan speeds’ cube of PI

control between Matlab and PLC, and MPC in PLC environment. Based on the anal-

ysis of energy consumption in Section 3.4, the compare of the integrals of fan speeds

can reflect the compare of the energy consumption. Thus the energy consumption

between different situations can be determined by Figure 7.14. The results demon-

strate a rank of consumed energy from the highest to the lowest: Matlab based PI

control, PLC based PI control and PLC based MPC.
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Figure 7.14: Comparison of integrals of fan speeds’ cube among Matlab PI con-
trol(blue), PLC PI (green) and PLC MPC (red): 1 - AHU1 supply fan speed, 2 -
AHU1 extract fan speed, 3 - AHU2 supply fan speed, 4 - AHU2 extract fan speed.

7.4 Conclusion

The PI control and MPC have been implemented in the laboratory via the PLC

platform, and the experimental test has been done. The dynamic performances of

different controllers are compared based on the comparison of the integral perfor-

mance indices presented in Section 5.2.3. The energy consumptions of controllers
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are compared by comparing the integral of fan speeds as shown in Section 3.4. To

compare the performance of the two platforms: Matlab and PLC, the Matlab based

PI control has been compared with the PLC based PI control. Moreover, to compare

the performance of the two control methods in PLC, the PLC based PI control and

MPC have been compared. The comparison results work out a rank of the dynamic

performance from the best to the worst: PLC based MPC, PLC based PI control

and Matlab based PI control, for the control of airflow rate and AP. Also, the re-

sults demonstrate a rank of consumed energy from the highest to the lowest: Matlab

based PI control, PLC based PI control and PLC based MPC. Thus, for controlling

the airflow rate and AP, the PLC based MPC has the best dynamic performance and

consumes the lowest energy.

The particle counter based MPC has been implemented and tested on the PLC

platform. Both SISO and MIMO MPC of the particle concentration have been tested

in PLC. The field test results show that the controllers can maintain the particle

concentration at a particular level.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

The reduction of energy consumption has become main concerns given the grow-

ing focus on energy saving and environment protection in recent years, which de-

sires proper design of the HVAC system with optimum energy efficiency with more

accurate system model and advanced control of cleanrooms. Also, the control of

air cleanliness in cleanrooms requires a way to control the particle concentration di-

rectly with the optimisation of the energy consumption. MPC has been implemented

to meet the above requirements. This thesis has investigated and developed the MPC

for a cleanroom HVAC system implemented by a constructed cleanroom laboratory.

After completing this project, it is expected that there will be 40% energy saving

compared to the current design.

Since the constructed cleanroom laboratory is a highly accurate simulation of

a real-world pharmaceutical factory, the proposed method is applicable to other

similar applications. All the facilities and software used in this project meet the

industrial standard so that the solution is compatible with other cleanroom HVAC

systems. The method proposed in this thesis presents a series of advantages for

industrial applications:

• It is attractive to staff with only a limited knowledge of control because the

concepts are very intuitive, and the tuning is relatively easy.
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• It is a totally open methodology based on certain basic principles which allow

for future extensions.

• It can reduce the energy consumption apparently.

• It has a dynamic control of the particle concentration.

Compared to the widely used PID controllers, it also has its drawbacks:

• Its derivation is more complex.

• It needs more computational load.

• The need for an appropriate model of the process to be available.

The main contributions of the thesis can be summarised as follows:

1. Modelling of the cleanroom laboratory

A black-box approach has been proposed to identify the mathematical models

of the cleanroom laboratory. The SISO system models of this laboratory have

been identified based on the measured data of the laboratory controlled by PI

controllers in the BMS. Based on the interactions of the controlled variables

within the laboratory, the whole system has been divided into two MIMO sub-

systems whose mathematical models have also been identified. Three param-

eter estimation methods and three model structures have been investigated.

The model structure of each system model with the best performance index

has been found by comparing the prediction results with the experimental re-

sults. The PEM has estimated the model parameters the most accurately, and

the ARX models have been chosen as the best-performed model structure.

2. Development of the SISO and MIMO MPC to replace the PI control

The airflow rate and air pressure regulation using SISO MPC, which has been

designed based on the identified SISO models, has been investigated. Both PI

control and SISO MPC have been verified through simulation and field test.

The transient performance and the energy consumption of the PI control and

SISO MPC have been compared. The results show that the SISO MPC has

better transient performance and less consumed power than the PI control.

The MIMO MPC controllers have been proposed controlling the ACR and

AP. The MIMO MPC uses the ACR instead of airflow rate because the ACR
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is a more direct variable to reflect the ventilation situation in cleanrooms. The

MIMO MPC can couple the relevant hardware which significantly improves

the dynamics and reduce the energy consumption. By simulation and field test

based on Matlab/Simulink, it is found that the MIMO MPC performs better

and consume less power than the PI control and SISO MPC.

3. Introduction of the closed-loop control of particles

The particle concentrations in the laboratory have been measured by particle

counters as the feedback signals to build the closed-loop control of particle

levels. The particle counter based PI, SISO MPC and MIMO MPC controllers

have been designed to control the maximum particle concentration inside the

small/large lab. Both simulation and field test results demonstrate that the

particle counter based controllers can maintain the air cleanliness in a partic-

ularly low level. Based on the analysis of the energy consumption among the

three controllers, MIMO MPC consumes the lowest power.

4. Test and implementation of MPC in PLC devices

A PLC panel has been developed where the PLC based IPC has been installed,

and the PI control and MPC have been implemented. The PLC devices pro-

vide a software-based PLC solution to deal with PLC based control problems.

The hardware of the HVAC system is connected to the PLC panel through

cables. The PI control and MPC programs have been transferred from Mat-

lab/Simulink to PLC language. The field tests based on this PLC panel have

been done to verify the performance of the PLC devices. The comparison re-

sults have given a rank of the transient performance from the best to the worst

as PLC based MPC, PLC based PI control and Matlab based PI control for

the regulation of the airflow rate and AP. The results also demonstrate a rank

of consumed energy from the highest to the lowest: Matlab based PI control,

PLC based PI control and PLC based MPC for controlling the airflow rate and

AP. The particle counter based MPC controllers have been implemented and

tested in the PLC panel. The field test results of the PLC based particulate

control show that the controllers can maintain the particle concentration in

particular low levels.
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8.2 Future work

The possible future work is listed based on the following ideas.

1. For a new factory, the traditional MPC engineer needs to collect the data on-

site with the facility running for enough time (sometimes takes weeks). The

data will be used to identify the system models and design the MPC con-

trollers. After the controllers have passed the simulation test, they will be

tested on-site. Then the tuning process will be done. It normally takes months

to make the MPC controllers working on-site. The currently developed system

is manually tuned for the laboratory which can only provide optimal perfor-

mance for the laboratory. For different clients, retuning process is required

on-site which could be time-consuming, and the optimal performance also

cannot be guaranteed. Thus automatic and optimal tuning is necessary for

transferring the current lab-based design to a product. The real HVAC system

can have a very large scale which makes it difficult to develop the accurate

system models. The automatic algorithm should be adaptive to fit all kinds of

HVAC system with different scales.

2. Current status: the value of the energy consumption of the whole system is

collected once per half an hour which is much larger than the sample time

of the controllers. It is impossible to put these data into closed-loop. If the

measurement of the energy consumption is in a small enough sample time, it

can be put into closed-loop. Thus the energy saving can be achieved directly

by minimising the energy consumption in the optimisation process.

3. The traditional MPC controllers consider two optimisation process:

• The tracking response of the output variables, the minimum of the dif-

ference between the measured output and the set-point.

• The minimum of the increment of the MV, controlling the change rate of

the input.

The controllers can be upgraded with optimal tuning:

• The difference between the MV and the set-point can be minimised. It

can keep the driver in a low value which decreases the energy consump-
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tion. The weight of each variable should be tuned which can balance the

control performance and the energy consumption.

• The energy efficiency itself can be regarded as a variable of the perfor-

mance index in the optimisation process. Then, the energy efficiency

can be directly controlled.

• The measured energy consumption is usually an average value during a

long time. However, the control strategy requires the instant value with

a short time interval (seconds for this laboratory). The instant values can

be put into closed-loop and optimisation process.
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