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Abstract

Alkaline phosphatase activity (APA) is traditionally a proxy for phosphate (DIP)-limitation because it is
induced by DIP-limited microbes to access the labile ester fraction of the organic phosphorus (OP) pool.
Here, we present multi-year summertime depth distributions of APA and enzyme kinetics in the DIP-replete
Celtic Sea. Our findings support the cumulating body of evidence that APA has a potentially widespread role
in OP remineralization through the water column. APA and Vmax were positively correlated with depth and
DIP, with total APA being threefold higher below (0.93 6 0.32 nM P h21) compared to above the thermocline
(0.30 6 0.24 nM P h21, p<0.001). Separation of particles by sinking speed demonstrated that APA was eight-
fold higher on fast sinking (Ffast) particles compared to slow sinking particles (Fslow; p<0.05). When normal-
ized to particulate organic carbon (POC) and bacterial production (BP), APAPOC and APABP associated with
Ffast (0.76 6 0.10 nmol P lmol C21 h21, 21.13 6 2.2 nmol P nmol C21, respectively) were fourfold and 25-fold
higher compared to the combined APA associated with dissolved plus suspended (Fsusp) and Fslow fractions
(0.19 6 0.06 nmol P lmol C21 h21 and 0.84 6 0.23 nmol P nmol C21, respectively). We postulate that this
may reflect enhanced ectoenzyme activity associated with bacteria colonizing particle surfaces and/or release
by zooplankton via faecal pellet excretion. Knowledge of the disparity between APA and BP associated with
particle and dissolved phases is required to accurately define the O2 : P ratio of regenerated P derived from
sinking particles as a result of AP-facilitated remineralization.

Phosphorus (P) is an essential macronutrient for all life

on Earth due to its role in key cellular components such as

genetic biomolecules (DNA and RNA), energy transfer mole-

cules (ATP) and cell structure (phospholipids; Karl and

Bj€orkman 2002). P availability may limit ocean productivity

on geological timescales (Tyrrell 1999). Thus, understanding

the P cycle is essential for coupling marine primary produc-

tivity and the global carbon (C) cycle.
Phytoplankton and bacterioplankton utilize dissolved

inorganic phosphate (DIP) as a P source to support growth

in preference to dissolved organic phosphorus (DOP;

Bj€orkman and Karl 1994). DOP is an array of organic mole-

cules that range in size and complexity from relatively labile

compounds like phosphomonesters to more refractory mole-

cules like phosphonates (Kolowith et al. 2001). In the surface

subtropical open ocean, DOP production is often decoupled

from consumption. In combination with a long-lived

refractory DOP pool (! 40 nM; Karl and Bj€orkman 2002),

this decoupling results in DOP concentrations that can be 5–

10 times higher than those of DIP (Mather et al. 2008; Reyn-

olds et al. 2014), which may be chronically low (< 10 nM,

Mahaffey et al. 2014).
While DIP can be assimilated directly via a high affinity

uptake pathway, DOP assimilation requires that the molecule

first be remineralized to separate DIP from the C moiety. This

is achieved using hydrolytic enzymes. Many marine microbes

have the capacity to synthesize hydrolytic enzymes, like alka-

line phosphatase (AP), to facilitate the remineralization of

organic phosphorus (OP) to DIP. AP refers to a broad group of

nonspecific phosphomonoesterases. Alkaline phosphatase

activity (APA) can be induced by DIP-limited microbial com-

munities when DIP concentrations are low and repressed

under high DIP concentrations. As such, enhanced APA has

commonly been used as an indicator of DIP-limitation in oli-

gotrophic surface ocean regions (Lomas et al. 2010; Suzumura

et al. 2012; Mahaffey et al. 2014).

In recent years, there has been an increase in the report-

ing of elevated APA under DIP-replete conditions and at

depth (Hoppe and Ullrich 1999; Sebasti"an et al. 2004; Baltar

et al. 2010; Duhamel et al. 2011; Labry et al. 2016). A
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number of explanations have been given for these observa-
tions. Bacterial APA in these environments has been hypoth-
esized to indicate C-limitation of bacterial growth (Hoppe
and Ullrich 1999; Nicholson et al. 2006). Elevated APA asso-
ciated with rapidly sinking particles, subsequent fragmenta-
tion and release of surface derived APA to the dissolved
phase has also been found to contribute to APA at depth
where DIP concentrations are elevated (Koike and Nagata
1997). In addition, non-repressible APA has been found to
be a constitutive part of phytoplankton physiology in coastal
regions resulting in detectable APA under DIP-replete condi-
tions (Dyhrman and Ruttenberg 2006; Labry et al. 2016).
These findings suggest that AP has a variety of roles in the
marine P cycle.

AP dynamics in the marine environment can be investi-
gated by hydrolysis rate assay experiments (Ammerman

1993), single cell enzyme labeling (Dyhrman and Palenik
1999), or identification of the presence and expression of
genes encoding for AP (e.g., Orchard et al. 2009). Enzyme
kinetics are derived from hydrolysis rate assay experiments
and are used to characterize the maximum potential rate of

reaction, Vmax, and the inverse of the enzyme affinity for a
substrate, Km (Table 1). Enzyme labeled fluorescence (ELF-97;
Dyhrman and Palenik 1999) allows identification of the indi-
vidual cells responsible for APA through staining the active
site of the enzyme with an insoluble precipitate upon hydro-
lysis. More recently, genomics have been used to identify
genes that code for AP synthesis (phoA, phoX, and phoD) in
various phytoplankton species and marine bacteria to inves-
tigate the distribution and regulation of AP in the marine
environment (Orchard et al. 2009; Sebastian and Ammerman
2009). In the advent of these various techniques, interrogat-
ing the biogeochemical function and role of AP in the
marine environment and challenging traditional paradigms
of DIP-limitation have become of key interest to better
understanding the significance of this enzyme in the marine
P cycle.

Studies on AP and its importance in P cycling in the shal-
low (< 200 m) shelf sea environment are relatively limited
considering the significance of such regions in global biogeo-
chemical cycles. Shelf seas cover 7% of the global ocean by
area, yet contribute up to 30% of ocean primary productivity

Table 1. A summary of previously published AP enzyme kinetics data.*

Reference Region DIP (nM)

APA
(nmol P L21 h21)

†(nmol P lg Chl a21 L21 h21)
‡(nmol P lg C21 L21 h21)

Vmax

(nmol P h21)
†(nmol P lg Chl a21 h21) Km (lM)

Duhamel et al. (2010) NPSG 13–59 0.36–1.28 – –

Duhamel et al. (2011) NPSG 12–153 – 0.01–3.12 0.01–0.56

Sohm et al. (2008) NPSG 0.036 †0.7–7.2 †0.2–2.8 0.05–2.8

Dyhrman and Ruttenberg (2006) NEPC 2–85 0.94–3.18 – –

Nicholson et al. (2006) NEPC <2400 <30,000 – –

Suzumura et al. (2012) NWP 11–26 – 0.26–1.59 0.13–1.36

Duhamel et al. (2011) SPSG – – 0.03–0.61 0.26–1.26

Sohm et al. (2008) NA 0.045 †0.05–0.1 †2.6–13.8 20.16–0.38

Mather et al. (2008) NA – ‡0.84–4.65 – 789

Davis et al. (2014) NEAC – 0.2–1.3 – –

Mather et al. (2008) SA – ‡0.2–0.84 – 565

Vidal et al. (2003) CA – 0–30 – –

Sebasti"an et al. (2004) EA 3–200 0.08–0.36 0.25–2.1 0.03–0.31

Sohm and Capone (2006) SS – †3.1–83.9 – –

Lomas et al. (2010) SS – 7.9–12.5 – –

Orchard et al. (2010) SS 0.5–10.6 †0–42 †54 0.29

Li et al. (1998) GoA – 40–150 – –

Sohm et al. (2008) NAus 0.11 †0.08 †0.2–4 0.05–0.33

This study NEAC 60–760 0.04–1.54 0.09–1.91 34.2–3143
†0.14–23.6 †0.09–46.9

‡0.0003–0.30

* Note: Details provided of studies include location, range in phosphate concentration (DIP, nM), volumetric and biomass normalized rates of APA,
and enzyme kinetic parameters Vmax and Km (lM). † and ‡ denote change of units between volumetric and biomass normalized rates. Regions are
North Pacific Subtropical Gyre (NPSG), North East Pacific Coast (NEPC), North West Pacific (NWP), South Pacific Subtropical Gyre (SPSG), North
Atlantic (NA), North East Atlantic Coast (NEAC), South Atlantic (SA), Central Atlantic (CA), Equatorial Atlantic (EA) and Sargasso Sea (SS), Gulf of
Aqaba (GoA), and North Australia (NAus).
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and 20% of organic matter production (Barr"on and Duarte

2015). Therefore, better constraining how nutrients are
cycled in the water column in shelf sea regions is important

to understanding both the adjacent basin scale and global
nutrient cycles. In this study, our aim was to characterize

APA in the DIP-replete temperate, seasonally stratified Celtic

Sea, part of the Northwest European shelf. We report multi-
year summertime vertical distributions of AP rates and kinet-

ics. Our findings add to the cumulating body of evidence on
APA in DIP-replete marine environments. Using new insights

from novel particle segregation experiments, our study
emphasizes the role of sinking particles in vertical distribu-

tion of AP-facilitated remineralization of OP and speculates
on the drivers and consequences of enhanced particle associ-

ated APA.

Materials and methods

Sample collection
Samples were collected in the seasonally stratified temper-

ate Celtic Sea (see Davis et al. 2014; approximately 508N,

88W) during July 2008 (RRS James Cook, JC025), June 2010
(RRS Discovery, D352), and July 2014 (RRS Discovery,

DY026). Samples were collected throughout the water col-
umn using a rosette frame, supporting a Seabird 911 conduc-

tivity, depth, temperature (CTD) instrument, calibrated
fluorometer and 20-liter Niskin bottles. For dissolved constit-

uents, seawater samples were filtered through a Whatman

glass fiber filter (GF/F, 0.7 lm pore size, precombusted at
4508C for 4 h prior to acid washing, deionized water rinsing

and drying at 508C) and stored in acid-washed 175 mL or
250 mL HDPE bottles at 2208C until analysis. Samples for

particulate phosphorus (PPhos) analysis were collected by fil-
tering 1 L of seawater under low vacuum pressure (< 12 kPa)

onto pre-combusted GF/Fs (treatment as above). Samples
were stored at 2208C until analysis. Total APA was deter-

mined using unfiltered seawater from the CTD.

Marine snow catcher deployments
The marine snow catcher (MSC) is a large (95 L) bottle

that acts as a settling column by collecting water from depth
and consequently segregating particles based on their sink-

ing rates during a 2 h settling period. Particle fractions are
arbitrarily classified as suspended in the upper 10 L (Fsusp)

and slow sinking in the bottom 7 L (Fslow), with fast sinking
particles collecting on the base tray (Ffast; Riley et al. 2012;

Cavan et al. 2014). The MSC was deployed below the ther-
mocline to 65 m and three particle fractions were sampled

in triplicate for APA (fixed concentration substrate addition)
to quantify particle associated APA. The MSC concentrated

Ffast and Fslow by a factor of 95-fold and 13.5-fold, respective-

ly, providing a means to reliably measure APA associated
with Ffast and Fslow at a level that was detectable above the

background signal associated with Fsusp, which included the
dissolved phase (see below).

Chlorophyll a
Chlorophyll a (Chl a) fluorescence data from the CTD

mounted fluorometer were calibrated for each cruise follow-
ing linear regression with Chl a concentrations determined
from seawater samples. Samples were filtered onto Fisher-
brand MF300 filters (25 mm diameter, 0.7 lm effective pore
size) and extracted in 8 mL of 90% acetone for 20 h and the
resulting Chl a fluorescence was measured using a Turner
Trilogy fluorometer calibrated with a solid standard and Chl
a extract (Sigma Aldrich; Davidson et al. 2013).

Dissolved nutrients
Dissolved inorganic phosphorus (DIP) concentrations

were determined in triplicate by the molybdenum blue
method (Murphy and Riley 1962) using a Bran and Leubbe
QuAAtro 5-channel autoanalyser (DIP detection limit
50 nM). At low DIP concentrations (< 100 nM), samples
were reanalyzed in triplicate 50 mL aliquots using the mag-
nesium induced co-precipitation method (Karl and Tien
1992) prior to DIP determination as above (detection limit
20 nM DIP).

UV-hydrolysable total dissolved phosphorus (TDP) was
determined by UV oxidation of 10 mL of seawater sample in
triplicate at 828C for 2 h using a Metrohm 705 UV oxidizer
(Armstrong et al. 1966). DOP was quantified by the differ-
ence in DIP concentrations before and after UV oxidation
(i.e., DOP 5 TDP 2 DIP; DOP detection limit 40 nM).

To estimate the AP-hydrolysable fraction of the DOP pool,
phosphomonoester (PME) concentrations were determined
by incubating samples in triplicate with a commercially
available AP isolated from Escherichia coli (Sigma Aldrich),
following Monbet et al. (2007). Filtered seawater samples
(Millipore polyethene membrane filter, 0.2 lm pore size,
47 mm diameter; under low vacuum pressure,<12 kPa) were
incubated in triplicate 25 mL aliquots, plus two blanks, in
Sterelins (Fisherbrand). An AP solution was prepared in
0.1 M Tris buffer (pH 9) solution to a final concentration of
1 unit mL21 with magnesium chloride (final concentration 2
lM MgCl2) as an enzyme activator. Samples were spiked
with enzyme solution (5% vol : vol) and incubated at !
188C for 20 h in the dark. DIP was analyzed in the controls
and samples as above. PME was quantified as the difference
in DIP concentration between control and sample
(PME 5 DIPsample 2 DIPcontrol). To check analytical accuracy
and monitor potential inter-analysis variability, triplicate sol-
utions of a model compound (1 lM D-glucose 6-phosphate
dipotassium salt hydrate, Sigma Aldrich) were incubated and
analyzed with each experiment. Mean recovery of the model
compound during the analysis period was 99.7% 6 2.1%
(n 5 18).

Particulate nutrient analysis
Total PPhos concentrations were determined by acid

hydrolysis (Karl et al. 1991). Briefly, samples were combusted
(4508C, 4.5 h) prior to acid hydrolysis (5 mL of 0.5 M HCl;
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VWR Analytical Grade) and sonication (60 min), followed by

centrifugation (3000 3 g, 30 min) and subsequent determi-

nation of DIP (as above) in the diluted supernatant. To

check analytical accuracy and monitor potential inter-

analysis variability, a certified reference material (NIST Apple

Leaves 1515, 0.159% P by weight) was analyzed in triplicate

with each run. Mean recovery of the reference material dur-

ing the analysis period was 98.5% 6 3.9% (n 5 24).
Particulate organic carbon (POC) concentrations were

determined by filtering 2 L of seawater onto a Whatman

glass fiber filter (GF/F, 0.7 lm pore size, 25 mm diameter,

precombusted at 4508C for 4 h). POC was analyzed after

vapor phase decarbonation using a Carlo Erba Elemental

Analyzer (Yamamuro and Kayanne 1995).

APA
Total APA was measured in unfiltered seawater samples

from the CTD using the synthetic fluorogenic substrate 4-

methylumbeliferyll-phosphate (MUFP, Sigma Aldrich), as

described in Ammerman (1993). Stock solutions of MUFP at

100 mM in 2-methoxyethanol were prepared and subsequent-

ly diluted with deionized water to make a 100 lM stock prior

to each experiment. In brief, 250 mL of seawater was incubat-

ed in polycarbonate bottles in triplicate in on-deck incubators

at adjusted light levels and sea surface temperature with

MUFP to a fixed final concentration of 1200 nM MUFP or

final concentration ranging from 200 nM to 2000 nM MUFP.

Particle fractions from the MSC were incubated in the dark at

108C to simulate in situ temperature and light conditions.

Hydrolysis of MUFP to the fluorescent product, 4-

methylumbelliferone (MUF) was measured every 2 h for 16 h

using a Turner 10Au fluorometer (365 nm excitation, 455 nm

emission) after addition of a buffer solution (3 : 1 sample:

50 mM sodium tetraborate solution, pH 10.5). A linear cali-

bration was produced daily using MUF standards (concentra-

tion range 0–2000 nM) and was used to convert the rate of

change in fluorescence to MUFP hydrolysis rate, here consid-

ered to be synonymous with volumetric APA (APAVOL, nM P

h21). Fluorescence measurements were corrected for seawater

blanks, and rates were corrected for abiotic MUFP hydrolysis

or degradation using blanks (deionized water plus 800 nM

MUFP; boiled sample plus 800 nM MUFP). Blanks and con-

trols showed no significant change in fluorescence over time.
Enzyme kinetic parameters were determined using data

from incubation of seawater with variable concentrations of

MUFP (200–2000 nM MUFP). Estimation of Michaelis-

Menten parameters of APA was performed using transforma-

tions of the Michaelis-Menten equation to produce

substrate-response curves or linear regression plots. Eadie-

Hofstee (e.g., Gambin et al. 1999), Hanes-Woolf (e.g., Duha-

mel et al. 2011), and Lineweaver-Burk (e.g., Rengefors et al.

2003) plots are three commonly used transformation plots.

Here, the maximum hydrolysis rates (Vmax) and half satura-

tion constant (Km) were determined using the Hanes-Woolf

plot graphical linearization of the Michaelis-Menten equa-
tion following Duhamel et al. (2011). The Km values estimat-
ed correspond to the affinity of the natural consortium of
enzymes sampled for the artificial substrate added (MUFP).
Note that enzyme activity is typically subject to inhibition
with natural substrates (e.g., PME) already present in the
sample.

Ideally, hydrolysis rates are normalized to enzyme con-
centration (Suzumura et al. 2012). However, in natural sam-
ples, this is often unknown and difficult to quantify.
Therefore, in practice, APA is normalized to biomass through
available parameters such as Chl a (Mahaffey et al. 2014), C
(Mather et al. 2008), and cell abundance (Duhamel et al.
2011). As this study was focused on the distribution and rate
of AP-facilitated P cycling in the water column and the
potential mechanisms governing its distribution, we present
data as volumetric rates, APAVOL. To investigate the potential
mechanisms driving trends in APAVOL, total APA was nor-
malized to Chl a for autotrophs, POC as a proxy for total C
biomass, and bacterial abundance (data provided by S.
McNeil, Scottish Marine Association).

Segregation of particle-associated APA
APA was determined in three fractions sampled from the

MSC to assess whether sinking particles behaved as a vehicle
for transferring AP through the water column. These fractions
were defined as Fsusp, which corresponds to the dissolved
phase and suspended particle fraction, Fslow, which corre-
sponds to slow sinking particle fraction and Ffast, which corre-
sponds to fast sinking particle fraction. Ffast was collected on
a removable base tray separated into quarters. Each fraction
was incubated in triplicate with a single MUFP addition
(1200 nM) plus a blank, and APA was determined as above.
Given the small volume of the base tray unit, Ffast was divided
into equal aliquots that were each resuspended in 250 mL of
sample from Fsusp to provide sufficient volume for replicate
APA incubations and blanks. Fraction-specific APA for Fslow

and Ffast were corrected to account for the measured contribu-
tion of APA from Fsusp. Thus AP rates of Fsusp were subtracted
from the APA measured in Fslow and Ffast, resulting in Fsusp cor-
rected rates termed Fslow-susp and Ffast-susp, respectively. To quan-
tify the contribution of each particle fraction (Fsusp, Fslow-susp,
Ffast-susp) to total APA in the water column, the rates of APA in
concentrated samples were normalized to the volume associat-
ed with each particle fraction in the MSC (7 L for Fslow-susp,
95 L for the Ffast-susp) relative to the volume of the MSC (95 L;
see Cavan et al. 2014).

Cell-specific APA
Cell-specific enzyme-labelled fluorescence (APAELF) was

measured during June 2010 (D352). In brief, particles were
concentrated by filtration of 1 L of seawater sample onto a
polycarbonate filter (0.8 lm pore size, 25 mm diameter,
Durapore) under low vacuum pressure (< 12 kPa) without
drying, as described by Rees et al. (2009). Thereafter, the
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method was as described by Dyhrman and Palenik (1999)

using ELF-97 reagents (Molecular Probes). Samples were

stored in the dark at 48C until analysis (within 14 d) using a

Zeiss epifluorescence microscope with a 406-diaminidino-2-

phenylindole (DAPI) long pass filter set (emission 520 nm,

excitation 350 nm). Cell abundance analysis of ELF labelling

was not conducted as labelled particles were too varied in

size and form to provide reliable quantification of their

nature and origin.

Bacterial abundance and productivity
Bacterial abundance and bacterial production (BP) data

were provided by K. Davidson and S. McNeil of the Scottish

Marine Association (Davidson et al. 2013, unpubl.). Bacterial

abundance was determined as described in Davidson et al.

(2007). In brief, 5 mL of sample was stained for 5 min with

5 lg mL21 DAPI, filtered onto a black 0.2 lm 3 25 mm

diameter polycarbonate filter (with 0.2 lm cellulose nitrate

backing filter), washed with 0.2-lm-filtered deionized water,

mounted on a slide, and stored frozen at 2208C prior to analy-

sis at 31000 magnification under fluorescence illumination

using a Zeiss Axiovert 100 microscope equipped with 09 (blue

excitation) and 02 (ultraviolet excitation) filter blocks (David-

son et al. 2007). Bacterial productivity was assayed as described

in Davidson et al. (2013), using the micro-centrifuge method

(Kirchman 2001) with [3H]-Thymidine or [14C]-Leucine addi-

tions (Davidson et al. 2013).

Statistical analysis
For replicate analysis or incubation, the mean 6 1 SD was

calculated and is reported here. Statistical analysis was per-

formed using SigmaStat in the SigmaPlot 13.0 software pack-

age (Systat Software). Statistical analyses comparing paired

groups of data were performed using the Mann Whitney

test, with significance detected if p was less than 0.05.

Results

Samples were collected in the central Celtic Sea region

(approximately 508N, 88W) in July 2008 (JC025), June 2010

(D352), and August 2014 (DY026). Unlike the open ocean,

where the water column is permanently stratified and verti-

cally stable, wind and tidal driven mixing act to alter the

vertical structure of the water column in a shelf sea on time-

scales of hours to days. This creates a highly dynamic, physi-

cally variable environment which impacts the distribution of

biogeochemical properties and processes.
During this study, the water column was strongly strati-

fied throughout each sampling campaign, with summertime

production dominated by the subsurface chlorophyll maxi-

mum (SCM; Hickman et al. 2012; Williams et al. 2013; Davis

et al. 2014). Temperature in the bottom mixed layer (BML,

9.7–10.58C) and surface mixed layer (SML, 14.4–16.68C) were

comparable between years (Fig. 1A), with the greatest vari-

ability in SML temperatures occurring during JC025 (14.4–

16.08C, Fig. 1A) due to a storm (Davis et al. 2014). The depth
of the base of the thermocline, defined as a deviation in
temperature of>0.058C from the bottom temperature, varied
between 35 m and 50 m (Fig. 1A). This was typical for this
region during seasonal stratification due to variability in tide
and wind induced mixing at the thermocline and the influ-
ence of migrating internal waves moving the thermocline
vertically (Sharples et al. 2009; Williams et al. 2013). These
processes also contribute to characteristic patchiness of SCM
on both spatial and temporal scales linked with the variabili-
ty of small scale turbulent mixing at the thermocline (Shar-
ples et al. 2007; Tweddle et al. 2013).

A persistent SCM was observed during all sampling cam-
paigns at a depth between 30 m and 50 m (< 1.8 lg L21; Fig.
1B), while PPhos concentrations were highest in the upper
20 m (0.02–0.20 lM; Fig. 1C). PPhos and Chl a maxima
often occur at different depths to one another in shelf sea
environments due to photo-quenching of Chl a near the sur-
face, photo-acclimation of phytoplankton (Moore et al.
2006), and vertical gradients in phytoplankton community
composition in the subsurface Chl a maximum (Hickman
et al. 2009). Below the thermocline in the BML, Chl a and
PPhos concentrations were significantly lower (mean 6 SD,
0.08 6 0.01 lg L21, n 5 536 and 0.02 6 0.03 lM, n 5 26,
respectively; Fig. 1B,C) than above the base of the thermo-
cline in the SML (p<0.001).

Mean (6 SD) DIP concentrations in the top 20 m
(0.08 6 0.03 lM, n 5 45; from 0.03 lM to 0.16 lM; Fig. 1D)
were eight times lower than observed in the BML where the
mean concentration was 0.66 6 0.06 lM (from 0.54 lM to
0.77 lM; n 5 36; p<0.001; Fig. 1D). The phosphocline was sit-
uated in the lower thermocline between 30 m and 50 m (Fig.
1A,D) and was coupled with depth of the SCM (Fig. 1B).
Inclusion of the phosphocline in the SML still resulted in DIP
concentrations being significantly lower (0.23 6 0.21 lM) in
the SML relative to the BML (0.66 6 0.06 lM; p<0.001).

Mean DOP and PME concentrations in the SML were sig-
nificantly higher (0.17 6 0.05 lM and 0.06 6 0.04 lM, respec-
tively) compared to the BML (0.13 6 0.06 lM and 0.02 6 0.03
lM, respectively; p 5 0.014 and p<0.001, Fig. 1E,F, respec-
tively). The DOP pool accounted for 51 6 20% (n 5 103) of
the TDP pool in the SML and 18 6 5% (n 5 38) in the BML.
PME represented 38 6 50% of DOP in the SML (n 5 60) and
21 6 43% (n 518) of DOP in the BML (Fig. 1E,F).

Total volumetric rates of APA (APAVOL) were determined
for unfiltered water column samples collected from 16 CTD
casts (eight in July 2008, seven in June 2010, and one in ear-
ly August 2014) between 0 m and 75 m depth (n 5 45; Fig. 2)
and were significantly higher in the BML than the SML
(0.93 6 0.32 nM P h21 and 0.30 6 0.24 nM P h21, respective-
ly, p<0.001). Measured discrete APAVOL ranged from
0.01 nM P h21 at 5 m to 1.54 nM P h21 at 55 m. Discrete
data were subsequently grouped into seven 10 m-depth bins
(n 5 45, Fig. 2A). To account for vertical change in biomass
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in the water column, APA was normalized to Chl a as a

proxy for autotrophs (APAChl a, Fig. 2D), POC to account for
total C biomass (APAPOC, Fig. 2G) and bacterial abundance

(APABA, Fig. 2J). Biomass normalized APA was also positively

correlated with depth (APAChl a r2 5 0.34, p<0.001; APAPOC

r2 5 0.34, p<0.001; and APABA r2 5 0.50, p<0.001, data not

shown) and normalized rates were significantly higher in the
BML than in the SML (APAVOL p 5 0.024, APAChl a p<0.001,

APAPOC and APABA p 5 0.002).
Kinetic parameters of APA were assessed between 0 m and

75 m and data were subsequently grouped into six 10 m-
depth bins (n 5 30; Fig. 2). The maximum rate of MUFP

hydrolysis, Vmax, is presented as a volumetric rate (VmaxVOL,

Fig. 2B), Chl a normalized (VmaxChl a, Fig. 2E), POC normal-

ized (VmaxPOC, Fig. 2H) and bacterial abundance normalized

(VmaxBA, Fig. 2K) rates. VmaxVOL was six times lower at 5 m
(0.24 6 0.15 nM P h21) compared to 45 m (1.45 6 0.62 nM P

h21; Fig. 2B).

Km is defined as the inverse of the affinity of the natural

consortium of enzymes for the synthetic substrate, in this
case, MUFP. As the natural enzyme concentration was

unknown, Km was normalized to the same biomass proxies

as APA and Vmax (Fig. 2C,F,I,L). KmVOL (nM P; Fig. 2C) was

more variable in the SML (from 34 nM P to 3143 nM P) than

in the BML (from 311 nM P to 1136 nM P). Volumetric and
biomass normalized Km values were also highly variable,

resulting in no significant difference between Km in the SML

and BML for KmVOL and KmBA (385 6 740 nM, 633 6 316 nM,

p 5 0.77; and 62 6 56 nmol P 108 cell21, 101 6 38 nmol P 108

cell21, p 5 0.053, respectively), but a significant difference
between KmChl a and KmPOC in the SML (4216 6 5631 nmol P

lg Chl a21 and 148 6 177 nmol P lmol C21, respectively)

and BML (11,104 6 3184 nmol P lg Chl a21 and 623 6 639

nmol P lmol C21; p 5 0.014 and 0.03 respectively).
Rates of APAVOL were positively correlated with depth

(r2 5 0.51, p<0.001; Fig. 3A) and DIP (r2 5 0.60, p<0.001;

Fig. 1. Depth binned (10 m) profiles (6 1 s.d.) of (A) temperature (Temp, 8C), (B) Chl a (lg L21), (C) PPhos (lM), (D) DIP (lM), (E) DOP (lM), (F)
PME (lM) from July 2008 (JC025; closed circles), June 2010 (D352; open circles), and August 2014 (DY026; open triangles). DIP, DOP, and PME sam-
ples were analyzed in triplicate and data were rejected if the standard deviation was greater than 5% of the mean value.
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Fig. 2. Depth binned (10 m) profiles (6 1 SD) of volumetric APA (left column; APAVOL, nM P h21; open circles represent July 2008, closed circles repre-
sent June 2010, open triangles represent August 2014), VmaxVOL (center column; nM P h21; closed circles represent all data) and KmVOL (right column;
nM P; closed circles represent all data) presented in volumetric (A–C; nM P h21 or nM P) and rates normalized to Chl a (D–F; nmol P lg Chl a21 h21 or
nmol P lg Chl a21), POC (G–I; nmol P lmol C -1 h21 or nmol P lmol C -1), and bacterial abundance (J–L; nmol P 108 cell21 h -1 or nmol P 108 cell21).



Fig. 3B). Discrete VmaxVOL was positively correlated with
depth (r2 5 0.42, p<0.001; Fig. 3C) and DIP (r2 5 0.57,
p<0.001; Fig. 3D) and VmaxVOL was significantly lower in
the SML (0.48 6 0.44 nM P h21; n 5 25) than in the BML
(1.07 6 0.22 nM P h21, p 5 0.035; n 5 4). VmaxChl a and VmaxPOC

were positively correlated with depth (r2 5 0.48, p<0.001 and
r2 5 0.36, p<0.001, respectively, data not shown). VmaxChl a

and VmaxPOC were 15- and 35-times higher in the BML
(40.8 6 8.7 nmol P lg Chl a21 h21 and 3.80 6 0.81 nmol P

lmol C21 h21, respectively) compared to the SML (2.75 6 4.5
nmol P lg Chl a21 h21, p 5 0.009 and 0.11 6 0.17 nmol P
lmol C21 h21, p 5 0.016, respectively).

Particle concentrated APA associated with Ffast-susp

(15.41 6 2.06 nM P h21) was 20 times higher than Fsusp

(0.76 6 0.29 nM P h21) and 53 times higher than Fslow-susp

(0.29 6 0.31 nM P h21, data not shown), suggesting
enhanced APA associated with fast sinking particles relative
to slow sinking particles and the dissolved and suspended

Fig. 3. Linear regression plots of (A) APAVOL (6 1 SD; nM P h21); vs. depth (m), (B) APAVOL (6 1 SD; nM P h21) vs. DIP (lM), (C) VmaxVOL (6 1 SD;
nM P h21) vs. depth (m), (D) VmaxVOL (6 1 SD; nM P h21) vs. DIP (lM). R2 and p values are displayed.
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fraction. When these APA rate measurements were corrected

for the concentration factor incurred during particle segrega-

tion and concentration in the MSC, AP rates in the Ffast-susp

(0.16 6 0.02 nM P h21) were five times lower than the APA

of Fsusp (0.76 6 0.29 nM P h21; Table 2) but were eight times

higher than APA associated with Fslow-susp (0.02 6 0.02 nM P

h21; Table 2). Thus, Ffast-susp represented 17% 6 3% of APA

measured from the MSC compared to Fsusp and Fslow-susp

combined, which represented 81% 6 43% and 2% 6 3%,

respectively. By contrast, POC in Ffast-susp represented only

3% 6 0.7% of total POC, whereas Fslow-susp and Fsusp repre-

sented 5% 6 0.7% and 91% 6 20% of total POC, respectively

(Table 2). Rates of BP were highest in Fsusp (1.04 nM C h21),

with rates in the Fslow-susp (0.19 nM C h21) and Ffast-susp

(0.01 nM C h21) accounting for only 16% and 1% of total

BP, respectively (Table 2).
When APAVOL associated with these different fractions

was normalized to POC and BP (Table 2), APAPOC and APABP

were higher in Ffast-susp (0.76 6 0.10 nmol P lmol C21 h21

and 21.13 6 2.2 nmol P nmol C21, respectively) than Fsusp

(0.13 6 0.05 nmol P lmol C21 h21 and 0.73 6 0.3 nmol P

nmol C21, respectively) and Fslow-susp (0.06 6 0.07 nmol P

lmol C21 h21 and 0.11 6 0.12 nmol P nmol C21, respective-

ly; Table 2). Enzyme labelled fluorescence (APAELF), used to

qualitatively assess particle-specific APA (for particles>0.8

lm), indicated that particle-associated APA was predomi-

nantly linked to detrital particles rather than ELF-active phy-

toplankton cells (Fig. 4). Microscopic analysis revealed that

fast sinking particles from the MSC were relatively large

phyto-detritus aggregates or zooplankton faecal pellets, while

Fslow-susp constituted smaller, less dense phytodetritus and

very small aggregates (Cavan unpubl.).

Discussion

Role of APA in the marine environment
In the surface waters of the open ocean, the presence of

elevated APA in DIP deplete (< 30 nM) regions is typically

interpreted as being indicative of DIP-limitation (Mahaffey

et al. 2014) or P stress (Suzumura et al. 2012). In the current

shelf sea study, DIP concentrations ranged from 30 nM to

770 nM and the mean rate of APA was 10 6 9 nM P d21

(mean 6 SD). Using the database of Mahaffey et al. (2014) to

assess APA rates over the same DIP concentration range in

the open ocean, the equivalent mean rate of APA is 11 6
19 nM P d21, which is comparable with this study (Table 1).

While the rates of APA are of similar magnitude over the

same range of DIP concentrations in these contrasting envi-

ronments, it is their relationship to environmental variables

and therefore the function of AP that differs in the shelf sea

environment. In contrast to subtropical open ocean studies,

where there is an inverse hyperbolic relationship between

APA and DIP (Mahaffey et al. 2014), APA had a positive line-

ar correlation with DIP and depth (Fig. 3) in this shelf sea

study. Our findings suggest that APA in this shallow shelf

sea environment was not induced simply in response to DIP-

limitation or P stress of the microbial community. Instead,

our data strongly support the cumulating body of evidence

that APA has a potentially ubiquitous and important role in

OP remineralization through the water column.

The role of sinking particles
In this study, we observed a significant increase in total

APA and Vmax with depth. Here, we focus on potential

explanations for this observation and implications for water

column P cycling. Segregation of particles based on sinking

speed indicated that APA was strongly concentrated in Ffast-

susp relative to other biogeochemical parameters (i.e., POC

and BP), and that this same concentration effect was not

observed for Fslow-susp or Fsusp. For example, Ffast-susp contrib-

uted 17% 6 3% of total APA while contributing only 3% 6
0.7% of total POC, whereas Fsusp represented 81% 6 43% of

APA and 91% 6 20% of POC. Furthermore, APAPOC and

APABP associated with Ffast-susp were fourfold and 25-fold

higher compared to Fsusp and Fslow-susp combined (Table 2).

APAVOL, APAPOC, and APABP were 8-, 13-, and 192-fold

higher in the Ffast-susp compared to the Fslow-susp (Table 2),

highlighting that fast sinking particles were hotspots for APA

relative to biomass proxies.
The origin of Ffast-susp was predominantly faecal material,

while particles in Fslow-susp were typically smaller, less dense

phytodetritus and very small aggregates that did not sink as

rapidly (Cavan et al. unpubl.). As autotrophic biomass in the

surface layer is a key source of phytodetritus and slow

Table 2. Summary of results from the MSC.*

Particle APAVOL 6 SD POC 6 SD BP APAPOC 6 SD APABP 6 SD
fraction (nM P h21) (lM) (nM C h21) (nmol P lmol C21 h21) (nmol P nmol C21)

Fsusp 0.76 6 0.29 5.79 6 0.90 1.04 0.13 6 0.05 0.73 6 0.3

Fslow-susp 0.02 6 0.02 0.34 6 0.03 0.19 0.06 6 0.07 0.11 6 0.12

Ffast-susp 0.16 6 0.02 0.21 6 0.03 0.01 0.76 6 0.10 21.1 6 2.2

* Note: Abbreviations denote APA rate (APAVOL, 6 1 SD, nM P h21), POC (6 1 SD, lM), BP (nM C h21, data provided by S. McNeil, Scottish Marine
Association), POC normalized APA (APAPOC, 6 1 SD, nmol P lmol C21 h21), BP normalized APA (APABP, 6 1 SD, nmol P mol C21) for dissolved and
suspended (Fsusp), slow sinking (Fslow-susp), and fast sinking (Ffast-susp) particle fractions.
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sinking material (Cavan et al. 2014), it is probable that the

origin of APA associated with Fslow-susp reflects the low APA

observed above the base of the thermocline. In contrast, the

primary source of Ffast-susp was faecal material, and therefore,

there was potentially a different source and depth of source

of AP associated with this particle fraction.
Disaggregation of fast sinking particles as they sink

through the water column has the potential to increase the

surface area which bacteria can colonize (Kirchman 1993),

while not necessarily affecting the density or sinking rate of

those particles. Bacteria attached to particles have a higher

cell-specific ectoprotease activity compared to free-living bac-

teria (Hoppe et al. 1988; Karner and Herndl 1992; Grossart

et al. 2007). Enhanced hydrolytic enzyme activity on par-

ticles collected from a macrotidal estuary (Labry et al. 2016)

and from the Southern California Bight (Smith et al. 1992)

Fig. 4. Example epifluorescence images with a DAPI long-pass filter set of enzyme labelled fluorescence (APAELF)-assayed samples collected during
D352 from (A) surface, (B) subsurface chlorophyll maxima peak, (C) base or downslope of the subsurface chlorophyll maxima, (D) below the thermo-
cline or BML. Field of view diameter is 50 lm.
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has been previously reported but these observations were

focused on surface waters only (< 25 m). Our study shows

that significant hydrolytic enzyme activity on particle surfa-

ces is observed in the dark, DIP-replete bottom waters of a

shelf sea. Thus, we postulate that the increase in APA with

depth may be linked to transport to depth associated with

fast sinking particles and/or release of APA from particles

during disaggregation accompanied by higher activity associ-

ated with particle-bound bacteria.

The role of bacteria and potential decoupling of nutrient
remineralization

Relative to typical whole water BP rates in this shelf sea

environment (! 15–50 nM C h21; Davidson et al. 2013), total

BP associated with particle fractions was low (1.24 nM C h21),

with rates of BP associated with Fslow-susp and Fsink-susp repre-

senting only 14% and 1% of BP measured from the MSC

(Table 2), implying that the bacterial C assimilation associated

with particulate matter, especially Ffast-susp, was low (Table 2).

Comparing BP with APA, mean AP rates are eightfold higher

on Ffast-susp compared to Fslow-susp, whereas particle associated

BP on Ffast-susp is only 5% of BP associated with Fslow-susp

(Table 2). While we have not accounted for bacterial respira-

tion on particles, this finding suggests that there is decou-

pling between hydrolytic enzyme activity and bacterial C

consumption on fast sinking particle surfaces. If BP represents

some fraction of particle C remineralization, then our results

suggest that P was preferentially remineralized relative to C

on fast sinking particles.
Similar observations have been observed for C and N on

particle aggregates in the Southern California Bight. Smith

et al. (1992) measured a low bacterial carbon demand (BCD)

on particle aggregates of>0.5 mm but protease activity (i.e.,

solubilization of N) was 1–3 orders of magnitude higher than

glucosidase activity (i.e., solubilization of C), providing a

biochemical mechanism for preferential remineralization of

N relative to C. Our findings provide evidence for preferen-

tial remineralization of P relative to C associated with fast

sinking particles below the thermocline. To provide an accu-

rate estimate of the C : P stoichiometry of remineralization,

BCD and change in particulate C : N : P during incubations

would need to be measured alongside APA.
There are a number of possible explanations for enhanced

APA relative to C acquisition on particles. Bacteria may pro-

duce AP to meet their P demands during intense growth

(Luo et al. 2009) or to access the organic C moiety (Hoppe

and Ullrich 1999; Nicholson et al. 2006). Elevated APA or

Vmax in high DIP waters, either at depth or in coastal

regions, has been observed in the Indian Ocean (Hoppe and

Ullrich 1999), the North and Central Pacific (Koike and

Nagata 1997; Duhamel et al. 2011), Central Atlantic Ocean

(Baltar et al. 2010), Mediterranean Sea (Tamburini et al.

2009), and San Franciso Bay (Nicholson et al. 2006). In these

studies, elevated APA at depth was attributed to bacterially-

derived AP either freely dissolved (Hoppe and Ullrich 1999;
Duhamel et al. 2011), or associated with colloids or larger
particles (Koike and Nagata 1997; Baltar et al. 2010) in
response to organic C limitation of bacterial communities
either in situ (Hoppe and Ullrich 1999; Nicholson et al.
2006) or transferred from the euphotic layer associated with
sinking particles (Koike and Nagata 1997; Colman et al.
2005). This study also found that APA was likely transferred
to depth associated with fast sinking particles. However, the
origin of the elevated APA associated with Ffast in this study
remains unclear as surface layer microbial populations were
not DIP-limited and rates of APA were low in the surface
(0.01 nM P h21 at 5 m).

The role of zooplankton in APA
Fast sinking particles commonly originate from zooplank-

ton faecal pellet excretion (Cavan et al. 2014). APA is associ-
ated with zooplankton, both within their body tissue and
released during excretion associated with faecal pellets (Jans-
son 1976; Boavida and Heath 1984) and the freely dissolved
phase (Jamet and Boge 1998). During daylight hours in the
stratified Celtic Sea zooplankton biomass is concentrated
below the thermocline between 60 m and 80 m (Williams
1985; Conway and Williams 1986). The Celtic Sea is DIP-
replete relative to N (Pemberton et al. 2004) and under DIP-
replete conditions, zooplankton excrete more APA associated
with faecal matter reflecting free-AP, rather than membrane-
bound AP, in their digestive tracts (McCarthy et al. 2010;
Tang et al. 2011). Therefore, we hypothesize that zooplank-
ton may contribute to a mid-water column source of AP via
introduction of AP associated with faecal pellets, potentially
explaining our observations of increased APA with depth
and enhanced APA associated with Ffast-susp.

Zooplankton may also release intercellular and internally
bound AP to the water column during grazing via fragmenta-
tion of phytoplankton cells or aggregates. However, in this
study, the latter process seems unlikely to have significantly
contributed to the depth distribution of APA given the low
APA observed in the surface layer and the low APA associat-
ed with Fslow-susp, which primarily constituted phytodetritus.
In each instance, the AP released to the dissolved phase may
be of a constitutive and non-DIP repressible nature (Dyhr-
man and Ruttenberg 2006; Tamburini et al. 2009).

Implications for P cycling
Whether the mechanism involves enhanced particle asso-

ciated APA, release of AP from fast sinking particles during
fragmentation or association with zooplankton feeding and
excretion, the association of AP with particles at depth and
potential release of AP to the dissolved phase has significant
implications for the marine P cycle. DIP in the deep ocean is
derived from two sources: preformed DIP that is advected to
depth from surface waters, and regenerated DIP released
from the hydrolysis of particulate organic matter, involving
a DOP intermediate (Colman et al. 2005). The two processes
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are commonly distinguished from one another using appar-

ent oxygen utilization (AOU) to calculate the fraction of the

DIP pool that is regenerated through respiration. Decoupling

of phosphohydrolytic enzyme activity from bacterial con-

sumption of C will distort the relationship between DIP

release from OP and consumption of oxygen via respiration,

causing deviations from the assumed P : O2 stoichiometry

required to estimate regenerated P (Anderson and Sarmiento

1995). In this instance, using AOU would lead to an underes-

timation of regenerated DIP, and thus an overestimate of

preformed DIP associated with deep-water formation. There-

fore, approaches combining methods such as the oxygen iso-

topic composition of phosphate with full depth

characterization of hydrolytic P enzymes are important in

determining remineralization rates of particulate and dis-

solved organic P in the deep ocean and improve our under-

standing of the marine P cycle.

Conclusions

In summary, we observed a significant increase in APA

and Vmax with depth and with DIP concentration in a DIP-

replete shelf sea environment. APA and Vmax were signifi-

cantly higher in the BML than the SML. This difference did

not correlate with other measured biogeochemical parame-

ters (Chl a, POC, BA), suggesting that the distribution of AP

and therefore OP remineralization were governed by a

mechanism other than measured biomass proxies. We iden-

tified that APA was strongly associated with Ffast relative to

POC and BP, thus indicating a potential mechanism for

preferential transfer of APA vertically through the water col-

umn relative to other biogeochemical parameters (i.e., POC

and BP) and for preferential remineralization of P relative

to C.
We hypothesize that in this DIP-replete shelf sea environ-

ment, the association of APA with fast sinking particles and

the resultant influence on vertical distributions of APA in

the water column may be linked to enhanced ectoenzyme

activity associated with bacteria colonizing particle surfaces

and/or release by zooplankton associated with excretion of

faecal pellets or during grazing.
This study highlights the potentially significant role of

APA in PPhos remineralization in the marine environment.

In this N-limited shelf sea environment, APA was not linked

with DIP-limitation and was not inhibited at increased DIP

concentrations. Surface APA rates in this study were compa-

rable with those of open ocean regions, suggesting that this

process may potentially occur in other marine environ-

ments. It is essential to better characterize the mechanisms

of P cycling and the role of microbes and enzymes in P remi-

neralization in the water column to accurately evaluate

nutrient regimes, the efficiency of remineralization and the

contribution of regenerated nutrients to primary production

in the euphotic layer.
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