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Abstract

The paper is devoted to several infinite-state Attacker-Defender games with reachability
objectives. We prove the undecidability of checking for the existence of a winning strategy
in several low-dimensional mathematical games including vector reachability games, word
games and braid games. To prove these results, we consider a model of weighted automata
operating on infinite words and prove that the universality problem is undecidable for this
new class of weighted automata. We show that the universality problem is undecidable
by using a non-standard encoding of the infinite Post correspondence problem.
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1. Introduction

In the last decade there has been a steady, growing interest in the area of infinite-state
games and computational complexity of checking whether a winning strategy exists
[1, 2, 3, 4, 5, 6, 7]. Such games provide a powerful mathematical framework for a
large number of computational problems. In particular, they appear in the verification,
refinement and compatibility checking of reactive systems [8], analysis of programs with
recursion [4], combinatorial topology and have deep connections with automata theory
and logic [6, 7, 9].

In many cases of high-dimensional games, the problem of checking for the existence of
a winning strategy can be computationally hard and even undecidable. Answering the
same question for low-dimensional systems can also be a challenging problem. This is
either due to a lack of tools for analysis of complex dynamics or due to a lack of “space”
to encode directly the universal computations to show that the problem is undecidable.
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In this paper we present three variants of low-dimensional Attacker-Defender games
(i.e., word games, matrix games and braid games) for which it is undecidable to determine
whether one of the players has a winning strategy. In addition, the proof incorporates a
new language theoretical result (Theorem 2) about weighted automata on infinite words
that can be efficiently used in the context of other reachability games.

An Attacker-Defender game is played in rounds, where in each round a move of
Defender (Player 1) is followed by a move of Attacker (Player 2) starting from some initial
position. The aim of Attacker is to reach a target position while Defender tries to keep
Attacker from reaching the target position. Then, we say that Attacker has a winning
strategy if she can eventually reach the target position regardless of Defender’s moves.
We show that in a number of restricted cases of such games, it is not possible to decide
whether a winning strategy exists for a given set of moves, an initial position and a target
position.

In particular, we introduce matrix games on vectors, where we show that if both
players are stateless and the moves correspond to very restricted linear transformations
from SL(4,Z), the existence of a winning strategy is undecidable. There exists a simple
reduction from known undecidable reachability games (robot games [10]) that leads to
undecidability for a game with linear transformations in dimension six. To prove the
undecidability in four-dimensional games, we first show undecidability of word games
where players are given words over a group alphabet and in an alternating, way concatenate
their words with a goal for Attacker to reach the empty word. The games on words, over
semigroup alphabets, are commonly used to prove results in language theory [11, 12, 13].
We, on the other hand, define word games over group alphabets.

Later we show that it is possible to stretch the application of the proposed techniques
to other models and frameworks. For example, we consider games on braids, which
were recently studied in [14, 15]. Braids are classical topological objects that attracted
a lot of attention due to their connections to topological knots and links, as well as
their applications to polymer chemistry, molecular biology, cryptography, quantum
computations and robotics [16, 17, 18, 19, 20]. In this paper we consider games on braids
with only three or five strands, where the braid is modified by a composition of braids
from a finite set with the target for Attacker to reach the trivial braid. We show that it
is undecidable to check for the existence of a winning strategy for three strands from a
given nontrivial braid and for five strands starting from the trivial braid. The reachability
with a single player (i.e., with nondeterministic composition from a single set) was shown
to be decidable for braids with three strands in [21].

The undecidability results of this paper are proved by using a new language-theoretic
result showing that the universality problem for weighted automata A on infinite words
is undecidable. The acceptance of an infinite word w intuitively means that there exists a
finite prefix p of w such that for the word p there is a path in A that has zero weight.
From an instance of the infinite Post correspondence problem we construct the automaton
A that accepts all infinite words if and only if the instance does not have a solution. As
the infinite Post correspondence is undecidable [22], so is the universality problem for
weighted automata on infinite words.

The considered model of automaton is closely related to integer weighted finite automata
as defined in [23] and [24], where finite automata are accepting finite words and have
additive integer weights on the transitions. In [23], it was shown that the universality
problem is undecidable for integer weighted finite automata on finite words by reduction
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from the Post correspondence problem. In the context of a game scenario it is important to
define acceptance of infinite words (which represent infinite plays in games) by considering
finite prefixes reaching a target value. On the other hand, non-acceptance means that
there exists an infinite computational path where none of the finite prefixes reach the
target value. Then the universality for weighted automata over infinite words is the
property ensuring that all infinite words are accepted (i.e., eventually reach a target in a
computation path). Please note that while the universality for weighted automata on
finite words implies universality for weighted automata on infinite words, the statement
does not hold the other way around. Therefore the universality problem for weighted
automata on infinite words is not equivalent to the universality problem for weighted
automata on finite words. Our undecidability proof for weighted automata on infinite
words follows the initial idea from [23] for mapping computations on words into a weighted
(one-counter) automata model, which is extended with new constructions and formal
proofs.

The paper is organized as follows. The next section contains basic notations and
preliminaries used in the rest of the paper. In the third section we prove our main result
that the universality problem is undecidable for weighted automata on infinite words.
This section is the most involved and provides a new non-standard encoding of the infinite
Post correspondence problem into the universality problem. Finally, in Section 4, we
apply the main result to several games on mathematical objects and show that it is
undecidable to check whether one of the players has a winning strategy. After each
game we provide an example to illustrate the main principles of the game. We also show
that the Attacker-Defender games are quite sensitive to the process of determinization.
We discuss and illustrate this effect in details in the case of matrix games. Moreover,
following our analysis, we formulate a problem of eventual reachability that is relevant in
the context of concurrent games.

2. Notation and definitions

Words. An infinite word w over a finite alphabet A is an infinite sequence of letters,
w = a0a1a2a3 · · · where ai ∈ A is a letter for each i = 0, 1, 2, . . .. We denote the set of all
infinite words over A by Aω. The monoid of all finite words over A is denoted by A∗. A
word u ∈ A∗ is a prefix of v ∈ A∗, denoted by u ≤ v, if v = uw for some w ∈ A∗. If u and
w are both nonempty, then the prefix u is called proper, denoted by u < v. A prefix of an
infinite word w ∈ Aω is a finite word p ∈ A∗ such that w = pw′ where w′ ∈ Aω. This is
also denoted by p ≤ w. The length of a finite word u is denoted by |u|. By w[i] we denote
the ith letter of a word w, i.e., w = w[1]w[2] · · · . The reversed word of w = w[1] · · ·w[n]
is denoted by wR = w[n] · · ·w[1], i.e., the order of the letters is reversed. Later in the
paper the finite words will be denoted by u, v, infinite words by w and single letters by
a, b, c, x, y, z.

Let Γ = {a1, a2, . . . , an, a
−1
1 , a−1

2 , . . . , a−1
n } be a generating set of a free group FΓ.

The elements of FΓ are all reduced words over Γ, i.e., words not containing aia
−1
i or

a−1
i ai as a subword. In this context, we call Γ a finite group alphabet, i.e., an alphabet

with an involution. The multiplication of two elements (reduced words) u, v ∈ FΓ

corresponds to the unique reduced word of the concatenation uv. This multiplication
is called concatenation throughout the paper. Later in the encoding of words over a
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group alphabet we denote a−1 by a and the alphabet of inverse letters is denoted as
A−1 = {a−1 | a ∈ A}.

Weighted automata. Let A = (Q,A, σ, q0, F,Z) be a finite integer weighted automaton
with the set of states Q, the finite alphabet A, the set of transitions σ ⊆ Q×A×Q× Z,
the initial state q0, the set of final states F ⊆ Q and the additive group of integers2 Z
with identity 0, that is (Z,+, 0). We write the transitions in the form t = 〈q, a, p, z〉 ∈ σ.

In a graphical presentation a transition t is denoted by q
(a,z)−→ p. Note that A is a

non-deterministic complete automaton in a sense that for each q ∈ Q and a ∈ A, there is
at least one transition 〈q, a, p, z〉 ∈ σ for some p ∈ Q and z ∈ Z.

A finite word u is accepted by a weighted automaton if there is a computation path
labeled by u such that weights of the transitions add up to 0. In [23], it was shown that
the universality problem for finite words is undecidable. In order to analyse infinite runs
in concurrent games, we extend the model of weighted automata to infinite words.

A configuration of A is any triple (q, u, z) ∈ Q×A∗ × Z. A configuration (q, u, z1) is
said to yield a configuration (p, ua, z1 + z2) if there is a transition 〈q, a, p, z2〉 ∈ σ. This
is denoted by (q, u, z1) |=A (p, ua, z1 + z2). Let |=∗A or simply |=∗, if A is clear from the
context, be the reflexive and transitive closure of the relation |=A.

Let π = ti0ti1 · · · be an infinite path of transitions of A, where tij =
〈
qij , aij , qij+1

, zj
〉

for j ≥ 0 and qi0 = q0. We call such path π a computation path. Denote by R(π) the set
of all reachable configurations following a path π. That is, for

π = 〈q0, ai0 , qi1 , z0〉 〈qi1 , ai1 , qi2 , z1〉 〈qi2 , ai2 , qi3 , z2〉 · · · ,

the set of reachable configurations is

R(π) = {(q0, ε, 0), (qi1 , ai0 , z0), (qi2 , ai0ai1 , z0 + z1),

(qi3 , ai0ai1ai2 , z0 + z1 + z2), . . .}

Define a morphism ‖ · ‖ : σω → Aω by setting ‖t‖ = a if t = 〈q, a, p, z〉. Let c = (q, u, z) ∈
R(π) for some computation path π. The weight of the configuration c is γ(c) = z and
we say that c is in the state q. When a computation path π reading the word w is fixed,
by the weight of prefix γ(p) we denote the weight of the configuration (q, p, z) ∈ R(π),
where p < w.

Let us now define the acceptance condition for weighted automata on infinite words.
An infinite word w ∈ Aω is accepted by A if there exists an infinite path π such that at
least one configuration c in R(π) is in a final state and has weight γ(c) = 0. The language
accepted by A is

L(A) = {w ∈ Aω | ∃π ∈ σω : ||π|| = w and ∃(q, u, 0) ∈ R(π) : q ∈ F} .

Universality problem. The universality problem for automata over infinite words is to
decide, given a weighted automaton A, whether the language accepted by A is the set
of all infinite words. In other words, whether or not L(A) = Aω. The problem of

2While we restrict ourselves to the case where the weights of the automaton are elements of the
additive group of integers Z, we could define the model for any other group (G, ·, ι) as well.
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non-universality is the complement of the universality problem, that is, whether or not
L(A) 6= Aω or whether there exists a w ∈ Aω such that for every computation path π of
w, all configurations (q, u, z) ∈ R(π) in a final state do not have zero weight.

Let us compare the universality problem for automata over finite and infinite words.
Let B be a complete weighted automaton on finite words and by A we refer to the same
automaton on infinite words. If B is universal on finite words, then it is easy to see that
A is also universal on infinite words. Indeed, if B accepts A∗ then in particular it accepts
a and all infinite words starting with a are accepted by A. But on the other hand, if B is
not universal on finite words, then it does not follow that A is non-universal on infinite
words as well. Consider the weighted automaton of Figure 1 over a unary alphabet. When
considering it as an automaton on infinite words, it is universal as it accepts the word
aω. On the other hand, the automaton is not universal when operating on finite words.
It is easy to see that the language accepted by the automaton is {a2n | n ≥ 0}. Thus,
for acceptance conditions defined above, the universality problem for weighted automata
on finite words is not equivalent to the universality problem for weighted automata on
infinite words. Moreover, at the end of Section 3, we discuss another acceptance condition
under which the universality of a weighted automaton on finite words does not imply the
universality of a weighted automaton on infinite words.

(a, 1)

(a,−1)

Figure 1: A weighted automaton over unary alphabet, A = {a}, which is universal over infinite words
but is not universal over finite words.

Post correspondence problem. An instance of the Post correspondence problem (PCP,
for short) consists of two morphisms g, h : A∗ → B∗ where A and B are alphabets. A
nonempty word u ∈ A∗ is a solution of an instance (g, h) if it satisfies g(u) = h(u). It
is undecidable whether or not an instance of the PCP has a solution [25]. Also, the
problem is undecidable for all domain alphabets A with |A| ≥ 5 [26]. The cardinality of
the domain alphabet A is said to be the size of the instance.

The infinite Post correspondence problem, ωPCP, is a natural extension of the PCP.
An infinite word w is a solution of an instance (g, h) of the ωPCP if for every finite prefix
p of w either

h(p) < g(p) or g(p) < h(p). (1)

In the ωPCP, it is asked whether a given instance has an infinite solution or not. Note
that in our formulation, prefixes have to be proper. It was proven in [27] that the problem
is undecidable for all domain alphabets A with |A| ≥ 9, and it was improved to |A| ≥ 8
in [28] for a variant of the problem where the prefixes in (1) do not have to be proper.
However, it is easy to see that adding a new letter α to the alphabets and desynchronizing
the morphisms g, h, gives us a solution where all prefixes have to be proper. That is, we
add α to the left of each letter in the image under h, to the right of each letter in the
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image under g and g(α) = aα, h(α) = a for some a ∈ A. Now the solution has to start
with α, α has to appear exactly once, and the images cannot be of equal lengths because
the image under g ends with α but not under h. Note that in fact, both constructions
already have this desynchronizing property. See [27, 28] for more details on the morphisms
g and h.

Consider an infinite word w ∈ Aω that is not a solution of the ωPCP. It is clear that
there exists (at least one) integer i such that g(w)[i] 6= h(w)[i]. That is, the letter in the
position i of g(w) is different from the letter in the position i of h(w). We call this kind
of mismatch an error.

Games. Attacker-Defender games are two-player zero-sum games with perfect information.
Starting from some initial position, each move of Defender is followed by a move of Attacker.
Attacker aims to reach a target position, while Defender tries to keep Attacker from
reaching the target position. Attacker has a winning strategy if she can eventually reach
the target position regardless of Defender’s moves. The main computational question is
to check whether Attacker has a winning strategy for a given set of moves, initial and
target positions.

More formally, a game is played on an arena X, which is finite or infinite set of
locations, with two special elements — an initial location x0 and a target location xf .
Attacker has a set of moves U and Defender has a set of moves V such that for each
w ∈ U ∪ V and x ∈ X, x · w ∈ X. Usually, the arena is clear from the context and
we do not state it explicitly. For example, in n-dimensional robot games [1, 5, 29] and
n-dimensional matrix games on vectors, the arena is X = Zn, while in weighted word
games, the arena is X = FΓ × Z.

The game proceeds as follows: starting from x0, first Defender chooses a move v from
his set V and applies it to x0 and then Attacker chooses a move from her set U and
applies it to x0 · v. By repeating this process, the players create an infinite sequence of
elements of X called a play, π = (x0, x0v1, x0v1u1, x0v1u1v2, x0v1u1v2u2, . . .), where each
vi ∈ V and uj ∈ U . A play π is winning for Attacker if xf appears at some position of
the play. To make the special case x0 = xf non-trivial, we require that for a play π to be
winning, xf is not the first element of π. A strategy of Attacker is a function fA : X → U
that tells Attacker which move to apply at each location. A strategy fD of Defender is
defined analogously. The strategy fA is said to be a winning strategy for Attacker if all
plays which follow fA are winning. As a consequence of [30], Attacker-Defender games
are determined, that is, Defender has a winning strategy if Attacker does not. See [31]
for more details on games.

Note that the games are often considered on directed finite graphs where the vertices
are partitioned between two players, and the moves are labels of the graph. In our
formulation, the graph has two vertices, one for Attacker and one for Defender, no
self-loops, and the edges from Attacker’s (resp., Defender’s) vertex to Defender’s (resp.,
Attacker’s) vertex are labeled with elements of U (resp., V ).

3. The universality problem for weighted automata on infinite words

In this section we prove that the universality problem is undecidable for integer
weighted automata on infinite words, by reducing the instances (of the complement) of
the infinite Post correspondence problem to the universality problem.
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Let (g, h) be a fixed instance of the ωPCP. Then g, h : A∗ → B∗ where A =
{a1, a2, . . . , am−1} and B = {b1, b2, . . . , bs−1}. In our encoding of the ωPCP, we consider
the letters of the alphabet B as natural numbers from 0 to s − 1. We construct a
non-deterministic integer weighted automaton3 A = (Q,A, σ, q0, {q4},Z), where Q =
{q0, q1, q2, q3, q4}, corresponding to the instance (g, h) such that an infinite word w ∈ Aω

is accepted by A if and only if for some finite prefix p of w, g(p) ≮ h(p) and h(p) ≮ g(p).
That is, only the solutions of the ωPCP will not be accepted by A and if all infinite
words are accepted by A (i.e., it is universal) then the given instance of the ωPCP does
not have a solution.

In many existing reductions of the PCP or the ωPCP (for given morphisms g and h)
to show undecidability of other problems, it is required to explicitly construct and store
images under g and h during the simulation of the PCP or the ωPCP. In our proof, we
are only going to store some partial information about the difference between the lengths
of the images under morphisms g and h and some finite information that will allow us to
use the non-determinism of the automaton to guess and recognize a mismatch at some
position of the images.

In order to present the idea of the proof, we will first illustrate the encoding of the
ωPCP into the universality problem for a weighted automaton with two weights. One
weight will be used for storing the distances between different positions of letters in images
under g and h, and another one to store information about a particular letter encoded as
an integer. The two weights are used only to make the intuition clearer and they will be
merged into a single weight by storing the second weights in the least significant digits of
the first one as the second weight is only used to store finitely many values.

Let us consider an instance of the ωPCP where the image under h is always longer
than the image under g and assume that the automaton reads w ∈ Aω. In the encoding
of the ωPCP into a weighted automaton, we separate the run of the weighted automaton
into five parts (A,B,C,D and E).

In part A, the automaton reads some finite prefix u of w for which it assumes that
there are no errors in the images of letters of u under morphisms g, h. As there are no
errors, i.e., g(u) ≤ h(u), it is not necessary to store the information on what the actual
images are, instead the automaton, for each letter a of u, only adds the differences of
lengths of the images h(a) and g(a) to the first weight. In part B, the automaton reads
the next letter of w, x, and guesses that an error will occur at the position k in the image
of h(x). The automaton adds to the first weight the difference of k and the length of the
image of x under g and also add jk = h(x)[k] to the second weight. Now the value of
the first weight corresponds to the number of letters in the image of g between positions
|g(ux)| and |h(u)|+k; see Figure 2 for an illustration. From now on, the rest of the image
of h(w) starting from the position |h(u)|+ k+ 1 will not affect the acceptance of the word
w. For the word w to be accepted, the letter in position |h(u) + k of h(w) needs to be
different from the letter at the same position of g(w). This happens when both weights
are zero. Zero in the first weight guarantees that we consider letters of both h(w) and
g(w) in the position |h(u)|+ k. On the other hand, zero in the second weight guarantees
that the two letters in the considered position are different. Next, in parts C and D, the
automaton will check whether both conditions can be met.

3Note that our automaton is complete, i.e., there is a transition labeled with (a, z) from each state qi
for every a ∈ A and some z ∈ Z.
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A B C D

k

jk

`

i`

h :

g :

|h(u)|

|g(u)| |g(x)| |g(v)| |g(y)|

|h(x)|

Figure 2: An illustration of a computation of the ωPCP highlighting the first four parts, A,B,C and D.
Part E is not depicted.

In part C the automaton continues reading w by reading v, assuming that the letter
corresponding to the erroneous position under h has not been read yet. For each letter a
of v read, the length the image g(a) is subtracted from the first weight. Finally, in part D,
the automaton guesses that reading the next letter, y, the error will occur in the image of
g(y) at the position `. That is, the automaton subtracts ` from the first weight and from
the second weight, some letter i` 6= g(y)[`], i.e., any letter that is not in the `th position
in the image of y under g. In the final part, E, the automaton is in the final state where
the weights are no longer modified and the rest of the word w is read.

From the above description, in part E, the first weight is zero if the lengths of the
images under h in part A, together with the position k, equal the lengths of the images
under g in parts A, B and C together with the position `. That is, |h(u)|+k = |g(uxv)|+`.
In other words, the automaton checked whether an error occurred in the same position
of h(w) and g(w). On the other hand, the second weight can be zero only if the letter
in the image under h differs from the letter in the image under g. In other words, both
weights are zero if the automaton made a correct guess that h(w)[i] 6= g(w)[i] for some
i ∈ Z. The whole process is illustrated in Figure 3.

As mentioned previously, we can merge the two weights into a single one. The second
weight is bounded and is modified only twice (once to store a letter and once to compare).
By multiplying the integers stored in the first weight by s (where s is larger than the size
of the image alphabet B), we create enough space to store the second weight within the
first one.

Part A Part B Part C Part D Part E

input word: u[1] · u[2] · . . . · u[n] · x · v[1] · . . . · v[m] · y · z
h( ): ∗∗∗ · ∗∗∗∗ · . . . · ∗∗∗ · ∗∗∗ ∗ · ∗∗∗ · . . . · ∗∗∗ · ∗∗∗∗ · ∗∗∗
g( ): ∗∗ · ∗∗ · . . . · ∗∗ · ∗∗ · ∗∗ · . . . · ∗ · ∗ ∗ · ∗∗
1st weight: + + . . .+ + − − . . .− −
2nd weight: −

Figure 3: An illustration of a computation of the weighted automaton corresponding to an instance of
the ωPCP. Here, ∗ represents any letter of the image alphabet, while is the letter h(x)[k] and is
the letter g(y)[`].
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In the above description, we considered the case where the images under h were always
longer than the images under g. To make the construction work for all possible cases,
several computation paths need to be implemented in the automaton.

Now we are ready to formally define weighted automaton with a single weight. Let us
begin with the transitions of A. The automaton is depicted in Figure 4. Recall that the
cardinality of the alphabet B is s− 1. First for each a ∈ A, let

〈q0, a, q1, s(|h(a)| − |g(a)|)〉 , 〈q0, a, q4, s(|h(a)| − |g(a)|)〉 ,
〈q1, a, q1, s(|h(a)| − |g(a)|)〉 , 〈q2, a, q2, s(−|g(a)|)〉 ,
〈q3, a, q3, s(|h(a)|)〉 , 〈q1, a, q4, 0〉 , 〈q4, a, q4, 0〉

be in σ. For error checking we need the following transitions for all letters a ∈ A: Let
h(a) = bj1bj2 · · · bjn1

, where bjk ∈ B, for each index 1 ≤ k ≤ n1, and g(a) = bi1bi2 · · · bin2
,

where bi` ∈ B. Then let, for each k = 1, . . . , n1 (i.e., jk ∈ {1, . . . , s − 1} for all k =
1, . . . , n1),

〈q1, a, q2, s(k − |g(a)|) + jk〉 , 〈q0, a, q2, s(k − |g(a)|) + jk〉 ∈ σ. (2)

For each ` = 1, . . . , n2 and for each letter bc ∈ B such that bi` 6= bc ∈ B, let

〈q2, a, q4,−s`− c〉 ∈ σ. (3)

Symmetrically we define transitions for each k = 1, . . . , n2,

〈q1, a, q3, s(−k + |h(a)|)− jk〉 , 〈q0, a, q3, s(−k + |h(a)|)− jk〉 ∈ σ, (4)

and for each ` = 1, . . . , n1 and for each letter bc ∈ B such that bi` 6= bc ∈ B, let

〈q3, a, q4, s`+ c〉 ∈ σ. (5)

Next we define transitions that combine the effects of (2) and (3). For each k = 1, . . . , n1

and ` = 1, . . . , n2 and for each letter bc ∈ B such that bi` 6= bc ∈ B,

〈q1, a, q4, (k − `)s+ jk − c〉 ∈ σ. (6)

Finally, for each k = 1, . . . ,min{n1, n2} and for each letter bc ∈ B such that bjk 6= bc ∈ B,

〈q0, a, q4, jk − c〉 ∈ σ. (7)

We call the transitions in (2) and (4), the error guessing transitions and in (3) and
(5), the error verifying transitions. Note that the transitions in (6) and (7) are both error
guessing and verifying transitions.

The idea is to keep track of differences in lengths of images under g and h multiplied
by s and then to guess and verify an error in the images by storing letters of the image
alphabet in the least significant digits of the integer weight. The difference in lengths of
the images is positive when the image under h is longer and negative when the image
under g is longer. For each case there are two possibilities for position of an error. Either
the difference is small enough that, after reading the next letter, there will be a position
in the images where the letters differ, or the difference is large enough that the image of

9



q2

q1q0

q3

(a
, s

(k
− |
g(
a)
|) +

jk
)

(a, s(|h(a)| − |g(a)|))
(a
,−
s`−

c)

(a, s(−|g(a)|))

(a, 0)
(a, s(−k + |h(a)|)−

j
k )

q4
(a
,s`

+
c)

(a, 0)

(a, s(|h(a)|))

(a, s(|h(a)| − |g(a)|))

(a, s(|h(a)| − |g(a)|))

(a, (
k − `

)s+ jk −
c)

(a,
jk
− c

)

(a,
s(k
− |g(

a)|) + jk)

(a, s(−k + |h(a)|)− jk)

Figure 4: The weighted automaton A. In the figure a ∈ A.

the second morphism has to catch up before the error can be verified. Also, from our
formulation of the ωPCP, it is possible that the images are of equal length which means
that the word is not a solution of the ωPCP.

The following lemma shows that for each case, there exists a path with zero weight
ending in the state q4.

Lemma 1. Let w ∈ Aω. Then w is a solution of an instance (g, h) of the ωPCP if and
only if w /∈ L(A).

Proof. Assume first that w is a solution of the instance (g, h) of the ωPCP and assume,
contrary to the claim, that there is an accepting path reading w in A.

We consider state transitions of the accepting path. Clearly the accepting path has to
visit the states q0 and q4. There are five cases to be considered.

(i) No other states are visited, i.e., a transition from q0 to q4 is used, or

(ii) the states q1 and q2 are visited, i.e., transitions from (2) and (3) are used, or

(iii) the states q1 and q3 are visited, i.e., transitions from (4) and (5) are used, or

(iv) only the state q2 or q3 is visited, i.e., a transition from q0 to q2 or to q3 is used, or

(v) the state q1 is visited but not q2 nor q3.

Assume first that w is accepted by a path π that goes to q4 directly from q0. To get
zero weight, either |h(w[1])| = |g(w[1])|, meaning that w is not a solution, or jk − c = 0
for some position k, but this is not possible because the letters at the position k are equal
under both morphisms.
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Consider the second case, where the path visits q2. In other words, w has a prefix
p = auxvy, where a, x, y ∈ A and u, v ∈ A∗, such that a is read using the transition
〈q0, a, q1, s(|h(a)| − |g(a)|)〉, u is read in the state q1, when reading the letter x the state
changes to q2, and v is read in the state q2, and when reading the letter y the state
changes to q4. The weight γ(p) of p is now

s(|h(au)| − |g(au)|) + s(k − |g(x)|) + jk + s(−|g(v)|) + (−s`− c)
= s
(
|h(au)|+ k − |g(auxv)| − `

)
+ jk − c

where h(x)[k] = bjk and g(y)[`] 6= bc. As jk < s and c < s, we have that γ(p) = 0 if and
only if |h(au)|+ k = |g(auxv)|+ ` and jk = c. Denote r = |h(au)|+ k. Now, γ(p) = 0 if
and only if h(w)[r] = bjk 6= bc = g(w)[r], which is a contradiction since w was assumed to
be a solution of (g, h).

The third case is proved analogously.
In the fourth case there are two symmetric subcases. Assume first that the path visits

q2, then the word w has a prefix p = xvy, where x, y ∈ A and v ∈ A∗, such that x is read
using the transition 〈q0, x, q2, s(k − |g(x)|) + jk〉, v is read in the state q2 and y is read
using the transition 〈q2, y, q4,−s`− c〉 where h(x)[k] = bjk and g(y)[`] 6= bc. Now

γ(p) = s(k − |g(x)|) + jk − s(|g(v)|)− s`− c.

Since this path is accepting, the weight has to be zero. That is, h(w)[k] 6= g(w)[|g(xv)|+`]
and k = |g(xv)|+ `. But this is not possible because w is a solution. The proof of the
subcase, where the path visits q3, is symmetric.

In the final case, where the accepting path visits q1 but does not visit q2 nor q3, there
are two possible paths. Either the final transition is 〈q1, a, q4, 0〉 which means that for
some prefix p, |h(p)| = |g(p)|, i.e., w is not a solution. The other possibility is that the
final transition is 〈q1, a, q4, (k − `)s+ jk − c〉. In this case there is a prefix p = aux, where
a, x ∈ A and u ∈ A∗, such that a is read using the transition 〈q0, a, q1, s(|h(a)| − |g(a)|)〉,
u is read in q1, and x is read using the transition 〈q1, x, q4, s(k − `) + jk − c〉. The weight
γ(p) is now

s(|h(au)|+ k − |g(au)| − `) + jk − c = 0

if and only if |h(au)|+ k = |g(au)|+ ` and jk = c. Again, this is not possible since w is a
solution.

For the second half of the claim, assume that w is not a solution. We summarize the
possible cases for a word w ∈ Aω that is not a solution of the ωPCP. For w, there exists
a prefix p such that at least one of the following cases holds:

(a) |h(p)| = |g(p)| and |p| = 1, or

(b) |h(p)| 6= |g(p)|, h(p)[k] 6= g(p)[k] and this error is in the image of the first letter of p
under both h and g, or

(c) |h(p)| > |g(p)| and an error is in the images of different letters of p under h and g, or

(d) |g(p)| > |h(p)| and an error is in the images of different letters of p under h and g, or

(e) |h(p)| 6= |g(p)|, h(p)[k] 6= g(p)[k] and this error is in the image of the same letter of p,
but not the first, under both h and g, or
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(f) |h(p)| = |g(p)| and |p| > 1.

Intuitively, the cases (a) and (b) have the same path as the case (i), the case (c) as (ii)
and (iv), the case (d) as (iii) and (iv), and the cases (e) and (f) as the case (v).

Let us consider the first case. Now the prefix p = a and w is accepted by using the
transition 〈q0, a, q4, s(|h(a)| − |g(a)|)〉 = 〈q0, a, q4, 0〉.

Now consider the second case. Let the first letter of p be a. By using the transition
〈q0, a, q4, jk − c〉, where jk = c, we get an accepting computation for w.

Let us consider the third case. There are two subcases for this case. Either state
q1 is visited, or not. Assume first that q1 is visited. Let r be the minimal position for
which h(w)[r] 6= g(w)[r]. In other words, for p = c1 · · · cn, there exists a position t < n
such that r = |h(c1c2 · · · ct−1)|+ k where k ≤ |h(ct)|, and r = |g(c1c2 · · · cn−1)|+ ` where
` ≤ |g(cn)|. Denote h(w)[r] = bjk . It is the kth letter of the image h(ct), and g(w)[r] is
the `th letter of the image g(cn). Also, these letters are nonequal.

Now, w is accepted in the state q4 with the following path: First c1 is read with the
transition 〈q0, c1, q1, s(|h(c1)| − |g(c1)|)〉, and the prefix c2 · · · ct−1 is read in the state q1

with weight s(|h(c2 · · · ct−1)| − |g(c2 · · · ct−1)|). When reading ct, the automaton uses the
error guessing transition 〈q1, ct, q2, s(k − |g(ct)|) + jk〉, and then the word ct+1 · · · cn−1

is read in the state q2 with weight s(−|g(ct+1 · · · cn−1)|). Finally, while reading cn, the
state q4 is reached by the error verifying transition 〈q2, cn, q4,−s`− jk〉. Note that such
an error verifying transition exists as the `th letter in g(cn) is not equal to the kth letter
bjk of h(ct). Naturally after reaching q4, the weight does not change, as for all letters
there are only transitions with zero weight. Now the weight of the above path is

s(|h(c1 · · · ct−1)| − |g(c1 · · · ct−1)|) + s(k − |g(ct)|)
+jk + s(−|g(ct+1 · · · cn−1)|)− s`− jk

= s
(
|h(c1 · · · ct−1)|+ k − |g(c1 · · · cn−1)| − `

)
= s(r − r) = 0.

Therefore, w is accepted as claimed. The proof of the second subcase, where the state q1

is not visited, is analogous.
The fourth case is symmetric to the third and is proven in the similar manner.
Assume then that the fifth case holds. Let p = aub where a, b ∈ A and u ∈ A∗. Using

the transition 〈q0, a, q1, s(|h(a)| − |g(a)|)〉 followed by the transition

〈q1, u[i], q1, s(|h(u[i])| − |g(u[i])|)〉

for each letter u[i] of u and finally the transition 〈q1, b, q4, (k − `)s+ jk − c〉, where jk = c,
the computation reaches q4. The weight is

s(|h(au)| − |g(au)|) + s(k − `) + jk − jk = 0

when k and ` are according to be the position of an error in both images.
Finally, assume that the sixth case holds. Now consider p = au where a ∈ A and

u ∈ A∗. Using the transition 〈q0, a, q1, s(|h(a)| − |g(a)|)〉 followed by the transition

〈q1, u[i], q1, s(|h(u[i])| − |g(u[i])|)〉
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for each letter u[i] of u the automaton reads p. Finally using the transition 〈q1, b, q4, 0〉,
where b = w[|p|+ 1], the computation reaches q4. By our assumption |h(p)| = |g(p)| and
thus the total weight is 0. �

Theorem 2. It is undecidable whether or not L(A) = Aω holds for some 5-state integer
weighted automata A over its alphabet A.

Proof. The claim follows from Lemma 1 and the undecidability of the infinite PCP [22].
The automaton A is depicted in Figure 4. �

Corollary 3. It is undecidable whether or not for a weighted automaton A, there exists
a word w ∈ Aω such that for every computation path π of w, all configurations (q, u, z) ∈
R(π) in a final state do not have zero weight.

Proof. The statement formulates the condition for non-universality. By the previous
theorem, the universality problem is undecidable, and thus so, is its complement problem.

�

Example 4. Let A = {a, b, c, d} and B = {1, 2}. Consider morphisms g, h : A∗ → B∗

defined by

g : g(a) = 1, g(b) = 2, g(c) = 21, g(d) = 1,
h : h(a) = 1, h(b) = 12, h(c) = 2, h(d) = 12.

The corresponding automaton has 72 transitions and is not presented here.
Consider an infinite word starting with b. Clearly it is not a solution of the ωPCP.

This word is accepted by the automaton by using the transition 〈q0, b, q4, 0〉, which takes
automaton to the final state with weight zero. Consider an infinite word w beginning
with dbdbaca. It is easy to see that w is not a solution either since

g(dbdbaca) = 12121211 ≮ 12121212121 = h(dbdbaca).

For the automaton to accept this word, we have to nondeterministically guess that the
error will occur in the second letter of the image of the final b and verify that it does
occur. The corresponding computation path starts with

〈q0, d, q1, 3〉 〈q1, b, q1, 3〉 〈q1, d, q1, 3〉 〈q1, b, q2, 5〉
〈q2, a, q2,−3〉 〈q2, c, q2,−6〉 〈q2, a, q4,−5〉

and the weight is 3 + 3 + 3 + 5− 3− 6− 5 = 0, that is, the word is accepted.
Now consider the word caa · · · = caω. It is easy to see that it is a solution of our

instance of the ωPCP. We will show that no path starting from q0 and ending in q4

has weight 0. Paths starting with transitions 〈q0, c, q4, 1〉 and 〈q0, c, q4,−3〉 have non-zero
weights. The other paths not visiting q3 have negative weights, so the computation has
to visit q3. But in that case the path is either

〈q0, c, q3,−3〉 〈q3, a, q3, 3〉k 〈q3, a, q4, 5〉 〈q4, a, q4, 0〉ω or

〈q0, c, q1,−3〉 〈q1, a, q1, 0〉n 〈q1, a, q3,−1〉 〈q3, a, q3, 3〉m 〈q3, a, q4, 5〉 〈q4, a, q4, 0〉ω

for some k, n,m ∈ N. The weights are respectively either −3 + 3k + 5 6= 0 or −3 + 0n−
1 + 3m+ 5 6= 0.
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The result of Theorem 2 also holds for a more restricted acceptance condition, similar
to that of Büchi automata, where an infinite word is accepted if and only if there is a
computation path with an infinite number of prefixes with weight zero. This is clear from
the construction of the automaton. If the state q4 is reached with zero weight, then it
remains unchanged when additional letters are read. For this acceptance condition the
universality of a weighted automaton on finite words does not imply the universality for
a weighted automaton on infinite words. However, for simplicity, we use the original
acceptance condition in the proofs in Section 4.

4. Applications to Attacker-Defender games

In this section we provide a number of applications for our new result on the universality
of weighted automata on infinite words. We connect the idea of a one-weight computation
with games on different mathematical objects such as words, matrices, vectors and braids.

Following the result for the weighted automata on infinite words (Theorem 2) we can
now define a simple scenario of an undecidable infinite-state game that can be also applied
to other game frameworks. Let A be a weighted automaton. In the game, Defender will
play an input word letter-by-letter and Attacker will simulate a run on A using the letters
provided by Defender. In other words, Attacker has to verify whether the provided word
is accepted by A.

In the above framework Defender will have a winning strategy if there is a solution
for the infinite PCP and Attacker will have a winning strategy otherwise.

4.1. Weighted word games

Let us define the Attacker-Defender game on words where the moves of Attacker and
Defender correspond to concatenations of words (over free group alphabet). This game will
allow us to prove nontrivial results for games with low-dimensional linear transformations
and topological objects just by using injective homomorphism (i.e., monomorphism) to
map words into other mathematical objects.

A weighted word game consists of two players, Attacker and Defender having sets
of words {u1, . . . , ur} ⊆ FΓ and {v1, . . . , vs} ⊆ FΓ respectively, where Γ is a finite group
alphabet, and integers xu1

, . . . , xur
, xv1 , . . . , xvs corresponding to each word. That is,

U = {(u1, xu1
), . . . , (ur, xur

)}

and
V = {(v1, xv1), . . . , (vs, xvs)}.

An initial position is the pair (w, 0), where w ∈ FΓ and 0 is the initial value of the weight,
and the target position of this game is the group identity, i.e., the empty word, with zero
weight. A configuration of a game at time t is denoted by a word wt and integer x as a
weight. In each round of the game both Defender and Attacker concatenate their words
and update the weight. Clearly wt = w · vi1 · ui1 · vi2 · ui2 · . . . · vit · uit after t rounds
of the game, where uij and vij are words from the sets U and V respectively, and the

weight is
∑t

j=1(xvij + xuij
). The decision problem for the word game is to check whether

there exists a winning strategy for Attacker to reach the empty word with zero weight.
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Before proving the main theorem, we consider two auxiliary results. In the first lemma,
we present an encoding from arbitrary group alphabet to binary group alphabet. In the
second lemma, we modify the automaton of Theorem 2 in order to remove loops.

Lemma 5. Let Σ′ = {z1, . . . , z`, z1, . . . , z`} be a group alphabet and Σ2 = {c, d, c, d} be a
binary group alphabet. Define the mapping α : Σ′ → Σ∗2 by: α(zi) = cidci, α(zi) = cidci,
where 1 ≤ i ≤ `. Then α is a monomorphism. Note that α can be extended to domain
Σ′∗ in the usual way [32, 33].

Lemma 6. It is undecidable whether or not L(B) = Aω holds for 9-state integer weighted
automata without self-loops over an alphabet A.

Proof. Let A = ({q0, q1, q2, q3, q4}, A, σ, q0, {q4},Z) be the automaton of Theorem 2.
We construct an automaton B = (QB, A, σ

′, q0, {q4},Z) where

QB = {q0, q1, q2, q3, q4, q5, q6, q7, q8}.

The idea is to have two copies of A and, instead of self-loops, we switch between the
copies. In B, the set of transitions σ′ is defined as follows:

σ′ = {〈q0, a, q, z〉 ∈ σ}
∪ {〈qi, a, qj , z〉 , 〈qi+4, a, qj+4, z〉 | 〈qi, a, qj , z〉 ∈ σ, i 6= 0, i 6= j}
∪ {〈qi, a, qi+4, z〉 , 〈qi+4, a, qi, z〉 | 〈qi, a, qi, z〉 ∈ σ}.

It is easy to see that both automata accept the same language. �

We are now ready to prove the first result on Attacker-Defender games.

Theorem 7. It is undecidable whether Attacker has a winning strategy to reach the target
position (ε, 0) from a given initial position (w, 0), where w ∈ FΓ, in the weighted word
game with words over a binary group alphabet.

Proof. The proof is based on the reduction of the universality problem for weighted
automata on infinite words to the problem of checking for the existence of a winning
strategy in the weighted word game. Let B = (QB, A, σ

′, q0, {q4},Z) from Lemma 6.
Let us define the following initial instance of the weighted word game. Defender’s words

are just single letters from the alphabet A with weight 0. That is, V = {(a, 0) | a ∈ A}.
Attacker has three types of moves. Either she appends the dummy letter #, begins the
simulation of B, or continues the simulation. More precisely, Attacker’s words are over
the group alphabet Γ = A ∪A−1 ∪QB ∪Q−1

B ∪ {#,#} and

U = {(#, 0)} ∪ {(a qi, z) | 〈qi, a, q4, z〉 ∈ σ′}
∪ {(bqj# a qi, z) | 〈qi, a, qj , z〉 ∈ σ′, b ∈ A}.

The initial position is (q4#, 0) and the target position (q4#q0, 0). Then in the above
game Defender can avoid reaching the configuration (q4#q0, 0) if and only if there is an
infinite word that is not accepted by the weighted automaton B. Note that Attacker is
simulating B in reverse, from the final state q4 to the initial state q0 following all edges of
B in the opposite direction.
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Let us assume that Defender has played a word p, where |p| = n, and Attacker decides
to simulate B, that is, she wants to show that pw ∈ L(B) for any w ∈ Aω. Prior to this
decision Attacker had played only # and so the current configuration is

(q4# · p[1] ·# · p[2] · . . . ·# · p[n], 0).

Let π be a computation path such that (q, p, z) ∈ R(π) for some q ∈ QB and z ∈ Z.
First, we assume that Attacker follows π and show that the target word is reachable if
(q4, p, 0) ∈ R(π), then we show that the target word is not reachable if Attacker does
not follow π. Let (qi1 , p[1], qi2 , z1), . . . , (qin , p[n], q4, zn) be the n elements of π before
the computation reaches the final state. After playing moves corresponding to these
transitions, the configuration is[
q4#

0

][
p[1]

0

]
D

[
#

0

]
A

· · ·

[
p[n]

0

]
D

[
p[n]qin

zn

]
A

[
aj1

0

]
D

[
aj1qin#p[n− 1]qin−1

zn−1

]
A

· · ·

[
ajn

0

]
D

[
ajnqi1#p[1] qi1

z1

]
A

,

where the letter D indicates a move of Defender and the letter A indicates a move of
Attacker. In the first component, we have the reduced word q4#qi1 and in the second
component we have weight

∑n
i=1 zi = z. Note that any letter ajk , which are played by

Defender after Attacker has started the simulation of the automaton, plays no role in the
computation as it is immediately canceled by Attacker. If the configuration (q4, p, 0) is
reachable, then qi1 = q0 and z = 0, so the configuration is (q4#qi1 , 0) and Attacker wins.
On the other hand, if the configuration (q4, p, 0) is not reachable, then either qi1 6= q0 or
z 6= 0. This means that the current configuration is not the target configuration, therefore
Attacker has not won (yet).

Next we show that Attacker does not have a winning strategy if she does not follow a
computation path of automaton B. We focus on the first component of the game. There
are three (not mutually exclusive) cases to consider when Attacker does not follow a
computation path. Attacker can play a move such that, in the reduced word,

• there are at least two inverse letters corresponding to the states of B, or

• there is an inverse letter a, or

• there is an inverse letter corresponding to a state of B followed by #.

In the first case Attacker does not have a winning strategy because the available moves
of Attacker do not decrease the number of inverse letters corresponding to the states.
The second case is also straightforward. Attacker’s moves do not contain letters a ∈ A,
so only Defender can cancel the inverse letter. Therefore, Defender will play b 6= a,
ensuring that the reduced word q4#q0 cannot be reached. In the final case, after Attacker
playing (#, 0) and Defender playing a ∈ A, the reduced word is of the form q4#wqia

′#a.
Attacker cannot reduce the length of this word as the only moves that cancel the final
letter a contain an inverse letter corresponding to the states, after which the reduced
word contains two inverse letters corresponding to the states of B and Attacker does not
have a winning strategy as shown in the first case.

We have analysed all the possible ways Attacker can deviate from a faithful simulation
of B and showed that Defender has a winning strategy in them. That is, Attacker has a
winning strategy if and only if B is universal.
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In order to get a game where the word of a winning configuration is the empty word,
rather than q4#q0, we need to have an extra move for Attacker, and to make sure that no
false solutions are added. The simple construction of adding words aq0#q4 for all a ∈ A
creates no new solutions as there is no way to reach ε, after q4# has been canceled out
and this is the only way to cancel q4#.

In order to complete the proof, we will require the encoding of Lemma 5 between
words over an arbitrary group alphabet and a binary group alphabet. The lemma’s
morphism gives a way to map words from an arbitrary sized group alphabet into the set
of words over a free group alphabet with only two letters. �

Example 8. Let A be a weighted automaton depicted in Figure 5 where q0 is the initial
state and q3 is the final state. We construct the corresponding weighted word game.
To keep the example clearer, we refrain from doing the final step of the proof. That is,
instead of a binary group alphabet, we use a larger group alphabet. Defender has two
moves (a, 0), (b, 0) and Attacker has the following set of 28 moves

[
#

0

]
,

[
a q2

1

]
,

[
a q2

−2

]
,

[
b q2

0

]
,

[
a q1

0

]
,

[
b q1

−1

]
,

[
a q0

2

]
,

[
b q0

0

]
,

[
aq3#a q2

−2

]
,

[
bq3#a q2

−2

]
,

[
aq3#b q2

0

]
,

[
bq3#b q2

0

]
,

[
aq2#a q3

0

]
,

[
bq2#a q3

0

]
,

[
aq2#b q3

0

]
,

[
bq2#b q3

0

]
,

[
aq3#a q1

0

]
,

[
bq3#a q1

0

]
,

[
aq3#b q1

−1

]
,

[
bq3#b q1

−1

]
,

[
aq3#a q0

2

]
,

[
bq3#a q0

2

]
,

[
aq3#b q0

0

]
,

[
bq3#b q0

0

]
,

[
aq1#a q0

1

]
,

[
bq1#a q0

1

]
,

[
aq0#q4

0

]
,

[
bq0#q4

0

] .

Let us consider a word starting with abab and how the weighted word game follows.
Starting from the initial element (q3#, 0), which represents the final state q3 of A and
weight zero, Defender plays (a, 0), (b, 0), (a, 0) and (b, 0), while Attacker plays (#, 0) thrice
until Attacker plays (b q2, 0) to start the simulation of the automaton:[

q3#

0

]
·
[
a

0

]
D

[
#

0

]
A

[
b

0

]
D

[
#

0

]
A

[
a

0

]
D

[
#

0

]
A

[
b

0

]
D

[
b q2

0

]
A

.

After this moment of the play, it does not matter which letter Defender plays as Attacker
can always cancel it. Let c1, c2 ∈ {a, b} be the letters Defender plays. Now Attacker
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follows the computation path visiting q1, q3, q2 and ending in q3 in the reverse order:[
q3#

0

]
·
[
a

0

]
D

[
#

0

]
A

[
b

0

]
D

[
#

0

]
A

[
a

0

]
D

[
#

0

]
A

[
b

0

]
D

[
b q2

0

]
A

[
a

0

]
D

[
a q2# a q3

0

]
A

=

[
q3# · a ·# · b ·# · q3

0

]

−→
[
q3# · a ·# · b ·# · q3

0

][
c1
0

]
D

[
c1 q3# b q1

−1

]
A

=

[
q3# · a ·# · q1

−1

]

−→
[
q3# · a ·# · q1

−1

][
c2
0

]
D

[
c2 q1# a q0

1

]
A

=

[
q3# · q0

−1 + 1

]
.

As the weight of this play is 0, Attacker wins the game by playing the correct (c3q0#q3, 0).

q0

q1

q3

q2

(a, 2), (b, 0)

(a, 1)
(a
, 0

), (
b,
−1)

(a,−2)
(b, 0)(a, 0)

(b, 0)

Figure 5: Weighted automaton A.

4.2. Word games on pairs of group words

We now modify the game of the previous subsection by encoding the weight as a
separate word over a group alphabet F ′Γ. This encoding, with additional tricks, allows us
to construct a word game, where both the initial and final positions are (ε, ε).

This variant of the word game consists of Attacker and Defender having sets of pair
of words

{(u1, u
′
1), . . . , (ur, u

′
r)} ⊆ FΓ × FΓ′ and {(v1, ε), . . . , (vs, ε)} ⊆ FΓ × FΓ′

respectively, where Γ and Γ′ are binary group alphabets. A configuration of a game after
t rounds is an element wt = (vi1 , ε) · (ui1 , u′i1) · (vi2 , ε) · (ui2 , u′i2) · . . . · (vit , ε) · (uit , u′it),
where (uij , u

′
ij

) and (vij , ε) are elements from above defined sets of Attacker and Defender.

The initial position is an element (w, ε) and the target position of this game is the identity
element (ε, ε). The decision problem for the word game is to check whether there exists a
winning strategy for Attacker to reach the identity element (ε, ε).

Undecidability of existence of a winning strategy in the word game where elements
are generated by Γ× {ρ, ρ} follows from Theorem 7. This follows from the fact that the
free group with one generator is the same thing as the integers (Z,+). Indeed, consider
a move (w, z) of a player in the weighted word game G. In the word game on pair of
words, the same player has the move (w, ρz). It is easy to see, that the same player has a
winning strategy in both games. In the next theorem, we construct a word game, where
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both the initial and target elements are (ε, ε). We construct a game where Attacker has
four copies of moves of G, each encoded over a disjoint group alphabet. We use the idea
of the encoding of [34] to ensure that there are four plays of G played in a particular order
and (ε, ε) is reached in the new game if and only if (ε, ε) is reached in all four plays of G.

Theorem 9. It is undecidable whether Attacker has a winning strategy to reach (ε, ε)
from (ε, ε) in the word game where elements are generated by Γ× Γ′, where both Γ and Γ′

are binary group alphabets, i.e., Γ = {c, d, c, d} and Γ′ = {e, f, e, f}.

Proof. Let G be the word game of Theorem 7 for which deciding whether Attacker
has a winning strategy is undecidable. Let U and V be moves of Attacker and Defender
of G, where the first component of the move is over a binary alphabet and the second
component is over the unary alphabet, and the initial position is (w, ε). Consider the
weighted automaton B of Lemma 6 with a single final state, QB is the set of states and A
is its input alphabet.

We want to make sure that the four consecutive plays will be played one after another.
For this we introduce eight border letters �1,�2,�3,�4,♦1,♦2,♦3,♦4 from a fresh
group alphabet. Attacker’s first component consists of words over the group alphabet
Γ1 = A ∪A−1 ∪ {#,#}

⋃4
k=1(QBk ∪QB−1

k ) and the second component is over the group
alphabet {�k, ρk,♦k,�k, ρk,♦k | k ∈ {1, 2, 3, 4}}. We construct Attacker’s set of moves
U ′ which encode the original moves in U over the four alphabets in the following manner:

• Dummy move: (#, ε) ∈ U is added to U ′ as it is;

• Initialization moves: for each move (a qi, ρ
z) ∈ U , we add moves (a qi1,�1ρ

z
1♦1),

(a qi2,�2ρ
z
2♦2), (a qi3,�3ρ

z
3♦3), (a qi4,�4ρ

z
4♦4) to U ′;

• Simulation moves: for each move (bqi#a qj , ρ
z) ∈ U , where qj is not the initial state

of B, we add moves (bqik#a qjk,♦kρ
z
k♦k), for each k ∈ {1, 2, 3, 4}, to U ′ ;

• Finishing moves: for each move (bqi#a qj , ρ
z) ∈ U , where qj is the initial state

of B, we add moves (bqik#a qjk,♦kρ
z
k�k+1), for each k ∈ {1, 2, 3}, and a move

(bqi4#a qj4,♦4ρ
z
k�1) to U ′;

• Finally, to finish the game, we add (aqj4qj3qj2qj1, ε), where qj is the initial state of
B, to U ′.

From the way how the moves are constructed, it follows that the only way to cancel all
the border letters (i.e., �i,♦i and qji for i = 1, . . . , 4), is to have four consecutive plays of
game G followed by the move (aqj4qj3qj2qj1, ε). Namely, first using the moves containing
letters from the alphabet QB1, then QB2, followed by QB3 and finally QB4, or a cyclic
permutation of the order. If the moves are played in a different order, then the border
letters will create non-cancellable pair of elements from two distinct alphabets. From the
way the moves are constructed, it is impossible to reach (ε, ε) afterwards.

Then, if Attacker has a winning strategy to reach (ε, ε) in the weighted word game G,
she also has a winning strategy to reach (ε, ε) in the word game on a pair of words. On
the other hand, if Defender has a winning strategy in the weighted word game, then no
matter how Attacker plays each of the four plays, either the first or the second component
will remain non-empty (or both). After the whole cycle is played, in the two components,
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there will be letters over at least four distinct alphabets. Since Attacker does not have a
winning strategy in G and due to the usage of the border letters, no matter how Attacker
will play a second cycle, the number of distinct alphabets will not decrease. So the identity
element (ε, ε) cannot be generated by a concatenation of four plays of G unless, Attacker
has a winning strategy in G. A similar idea of encoding generators over four alphabets
has been used in [34].

Finally, we encode the words in both components using the monomorphism of Lemma 5
to have the game over binary group alphabets Γ and Γ′. �

Example 10. Consider the weighted word game G of Example 8 from which we construct
the set U ′ as in the previous theorem. To illustrate the idea of the encoding, let us
consider a prefix of a play[

a

ε

]
D

·
[
#

ε

]
A

·
[
b

ε

]
D

·
[

b q11

�1ρ
−1
1 ♦1

]
A

·
[
a

ε

]
D

·
[
aq11#a q01

♦1ρ1�2

]
A

·
[
a

ε

]
D

,

where moves of Defender are indicated with the letter D and moves of Attacker with the
letter A. The reduced element of this prefix is (q01a,�1�2). The only moves that cancel
�2 in the second component have letters over B2 in the first component. That is, a new
play of G is simulated using the second alphabet.

4.3. Matrix games on vectors

We extend the domain of the game and a set of rules to the class of linear transfor-
mations on integer lattice Z4. A matrix game on vectors (or a matrix game for short)
consists of two players, Attacker and Defender, having sets of linear transformations
{U1, . . . , Ur} ⊆ Zn×n and {V1, . . . , Vs} ⊆ Zn×n respectively, an initial vector x0 ∈ Zn of
the game representing the starting position, and a target vector y ∈ Zn. The dimension
of the game is the dimension of the integer lattice n. Starting from x0, players move the
current point by applying available linear transformations (by matrix multiplication) from
their respective sets in turns. The decision problem of the matrix game is to check whether
there exists a winning strategy for Attacker to reach the target from the starting point
(vectors in Zn) of the game. Note that in our formulation the vectors are horizontal and
players multiply them from the right. Recall that SL(n,Z) = {M ∈ Zn×n | det(M) = 1}.

In a game where each player has only one possible move (i.e., when the game is
deterministic), the existence of a winning strategy for Attacker or Defender can be
trivially reduced to the orbit problem by combining the two matrices into one. The orbit
problem is decidable in polynomial time for any matrix size over integers, rationals and
even algebraic numbers [35].

If Defender has a single move, the problem of checking whether Attacker has a
winning strategy corresponds to the standard vector reachability problem which has
been extensively studied in the literature [36, 37, 38, 39, 40, 41, 42]. Indeed, let A =
{U1, . . . , Uk} be a matrix set for which the vector reachability problem is undecidable
(for vectors x,y) and B = {V } (V ∈ SL(n,Z)). Then let us consider the matrix game
with Attacker’s set {V −1U1, . . . , V

−1Uk}, Defender’s set B, the initial position x, and
the target y. In this game, Attacker has a winning strategy if and only if y is reachable
from x in the vector reachability problem. Thus, a game where Attacker has 6 matrices
in Z3×3, and Defender has a single matrix from SL(3,Z) is undecidable, following the
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undecidability of the vector reachability problem for 6 integer matrices in dimension three
[40].

In the symmetric case when Attacker has a single matrix and Defender has m matrices,
we can reduce the problem of checking for the existence of a winning strategy to a different
reachability problem for matrix semigroups with a stronger reachability objective. That
is, Attacker’s set is A = {U}, Defender’s set is {V1, . . . , Vm}, the initial position x, and
the target position y. Again we can combine sets A and B into one generating set
B′ = {V1U, . . . , VmU} of a semigroup S. However, the question whether Attacker has a
winning strategy would require for us to check that on any infinite trajectory of reachable
points starting from the initial point x and transformed by elements of S, the point y is
eventually reachable. Let us now formally define this problem.

Problem 11. Let S be a matrix semigroup generated by B = {V1, . . . , Vm} and x,y ∈
Zn. In the eventual reachability problem, we are asked whether for every element
M = Vi1 · · ·Vik either there exists j ≤ k such that xVi1 . . . Vij = y or there exists N ∈ S
such that xMN = y. In other words, y appears in every trajectory starting from x.

To the authors best knowledge, this problem has not been studied previously. The
problem is illustrated in Figure 6. The solution of this problem gives the answer to
whether a winning strategy exists in a matrix game where Attacker has one move and
Defender has several moves.

y
x:

y

y
y

Figure 6: An illustration of traces in the eventual reachability problem.

Let us consider a case where both Attacker and Defender have at least two moves.
Let us assume that B = {V1, V2} ⊆ SL(n,Z) and A = {U1, U2}. Consider a game where
Defender’s set is B and Attacker’s set is

A′ = {U1V
−1
1 , U1V

−1
2 , U2V

−1
1 , U2V

−1
2 }.

The previous reasoning of reducing the problem to the standard vector reachability for
matrix semigroups is not directly applicable. The reachability of y from x using matrices
from A implies that there exists a winning strategy in the matrix game. Attacker’s
strategy is to follow the solution of the reachability problem with the moves that cancel
the matrix played by Defender (i.e., if Defender played Vi, then Attacker plays UjV

−1
i ).

On the other hand, the existence of a winning strategy does not imply that y is reachable
from x. Indeed, unlike previously, Attacker might follow V1 with V −1

2 U1 and can still
reach the target position. If we try to consider the reachability using matrices from
A′, containing all the possible moves of Defender followed by all the possible moves of
Attacker, then from the fact that y is reachable from x, it would not follow that Attacker
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has a winning strategy. Indeed, this kind of trick eliminates the role of Defender and says
very little in relation to the game.

Next we prove the main theorem regarding the matrix game, where both Attacker
and Defender have at least two moves.

Theorem 12. Given two finite sets of matrices {U1, U2, . . . , Ur} ⊆ Zn×n for Attacker
and {V1, V2, . . . , Vs} ⊆ Zn×n for Defender, where r, s ≥ 2, an initial starting vector
x0 ∈ Zn and a target vector y ∈ Zn, it is undecidable whether Attacker has a winning
strategy in the matrix game. Furthermore, the claim holds even when the matrices are
from SL(4,Z).

Proof. Let Σ2 = {c, d, c, d} be a binary group alphabet and define f : Σ∗2 → SL(2,Z)
by: f(c) = ( 1 2

0 1 ), f(c) =
(

1 −2
0 1

)
, f(d) = ( 1 0

2 1 ), f(d) =
(

1 0
−2 1

)
.

Then mapping f is a monomorphism [33] and f(ε) corresponds to the identity matrix
in Z2×2. Let α be a function defined in Lemma 5, then by the following straightforward
matrix multiplication we have:

f(α(zj)) = f(cjdcj) =

(
1 + 4j −8j2

2 1− 4j

)
.

Let us show that if (1, 0)M = (1, 0), where M is an image of a word over binary
group alphabet under f , that is, M ∈ {f(α(w)) | w ∈ FΓ}, then M is the identity
matrix. The reasoning follows [33]. Let M = ( m11 m12

m21 m22
), now (1, 0)M = (m11,m12) which

implies that m11 = 1 and m12 = 0. By the previous observation, m22 = 1. The final
letter of α(w) is c, which is

(
1 −2
0 1

)
under f . Let Y = f(α(w))f(c)−1 = ( x y

z v ). Now

f(α(w)) = ( x y
z v )

(
1 −2
0 1

)
=
(
x y−2x
z v−2z

)
. Since x = 1, y − 2x = 0 and x − 2x = 1, we see

that f(α(w)) = ( 1 0
z 1 ) = f(d)z/2 but by the definition of the encoding this is possible only

when z = 0. This implies that f(α(w)) is the identity matrix.
Let us encode the word game into the matrix game. Recall that by Theorem 9, it

is undecidable whether Attacker has a winning strategy to reach (ε, ε) from (ε, ε) in a
word game. We construct 4× 4 matrices with words of the first component encoded by
f in the upper left corner and words from the second components encoded by f in the
lower right corner. The direct application of the above function to the elements of the
word game gives us a set of matrices for Attacker and a set of matrices for Defender from
SL(4,Z). By previous considerations for vector x0 = (1, 0, 1, 0), the equation x0 = x0 ·M ,
where M ∈ SL(4,Z) has only one matrix M satisfying the above statement, the identity
matrix in Z4×4. Therefore, for every matrix game, where the initial vector x0 is (1, 0, 1, 0),
the question about the winning strategy of reaching x0 is equivalent to the question of
reaching the identity matrix in the product with alternation in applications of Defender’s
and Attacker’s linear transformations, which in its turn corresponds to reaching the
identity element in the word game. �

Example 13. Consider a matrix game where Defender has matrices ( 3 5
1 2 ) and

(−1 −1
0 −1

)
and Attacker has

(
1 −2
−2 3

)
,
(

1 −2
3 −7

)
,
(

7 −17
−5 12

)
,
(

1 −2
3 −7

)
.

Consider a play from x0 = (1, 0) where Defender plays M1 = ( 3 5
1 2 ) followed by

M3 =
(−1 −1

0 −1

)
and Attacker plays M2 =

(
1 −2
−2 3

)
followed by M4 =

(
1 −2
3 −7

)
.

(1, 0)

(
3 5
1 2

)(
1 −2
−2 3

)(
−1 −1
0 −1

)(
1 −2
3 −7

)
= (1, 0).
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From this computation, we see that the play is winning for Attacker. With similar
computations we can see that in fact Attacker has a winning strategy in this game. The
play x0M1M2M3M4 is depicted in Figure 7.

x0

M1

M2

M3

M4

Figure 7: The play x0M1M2M3M4 of a matrix game.

4.4. Braid games

In this subsection we consider the Attacker-Defender games on topological objects,
braids in Bn. The moves of the game are compositions of braids in B3 (a class of braids
with only three strands) and B5 (a class of braids with only five strands) [21]. Braids are
classical topological objects that attracted a lot of attention due to their connections to
topological knots and links, as well as their applications to polymer chemistry, molecular
biology, cryptography, quantum computations and robotics [16, 17, 18, 19, 20]. There is
also recent interest about the complexity and termination of the games on braids [14, 15]
that are defined with specific rules of adding and removing crossings. In this paper we
consider very simple games on braids with only three or five strands (i.e., B3 or B5)
where the braid is modified by a composition with a finite set of braids. We show that
it is undecidable to check the existence of a winning strategy in such games, while the
reachability with a single player (i.e., with nondeterministic composition from a single
set) was shown to be decidable for B3 and undecidable for B5 in [21].

Definition 1. The n-strand braid group Bn is the group given by the presentation with
n− 1 generators σ1, . . . , σn−1 and the following relations σiσj = σjσi, for |i− j| ≥ 2 and
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2. These relations are called Artin’s relations.

Elements of the braid group Bn will be represented by words in the alphabet

{σ1, . . . , σn−1, σ
−1
1 , . . . , σ−1

n−1}
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and we refer to them as braid words4.

A composition of two braids with four strands is illustrated in Figure 8.
The fundamental braid of Bn is

∆n = (σn−1σn−2 . . . σ1)(σn−1σn−2 . . . σ2) . . . σn−1.

Geometrically, the fundamental braid is obtained by lifting the bottom ends of the identity
braid and flipping (right side over left) while keeping the ends of the strings in a line.

· = −−−−−↔ ↔

Figure 8: An example of a composition of braids in B4.

The braid game can be defined in a way, where the sets of braid words {a1, ..., ar} and
{d1, ..., ds}, for Attacker and Defender respectively, will correspond to braids in Bn. The
initial braid of the game is given and each following configuration of the game is changed
by Attacker or Defender by composing braids from their corresponding sets. Given two
geometric braids, we can compose them, i.e., put one after the other making the endpoints
of the first one coincide with the starting points of the second one. There is a neutral
element for the composition: it is the trivial braid, also called the identity braid, i.e., the
class of the geometric braids where all the strings are straight. Two geometric braids are
isotopic if there is a continuous deformation of the ambient space that deforms one into
the other, by a deformation that keeps every point in the two bordering planes fixed.

Finally, the goal of Attacker is to unbraid, i.e., to reach a configuration of the game
that is isotopic to the trivial braid (empty word) and Defender tries to keep Attacker
from reaching it. Two braids are isotopic if their braid words can be translated one into
each other via the relations from Definition 1 plus the relations σiσ

−1
i = σ−1

i σi = 1 where
1 is the identity (trivial braid).

Theorem 14. The braid game is undecidable for braids from B3 starting from a non-
trivial braid and for braids from B5 starting from the trivial braid.

Proof. We encode the undecidable weighted word game of Theorem 7 into a braid game
with three strands and the undecidable word game of Theorem 9 into a braid game with
five strands and show that the respective braid games are undecidable as well.

4Whenever a crossing of strands i and i+1 is encountered, either σi or σi
−1 is written down, depending

on whether the strand i moves under or over the strand i+ 1.
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Let Σ2 = {c, d, c, d} be a binary group alphabet and define f : Σ∗2 → B3 by: f(c) =
σ1

4, f(c) = σ1
−4, f(d) = σ2

4, f(d) = σ2
−4. Then mapping f is a monomorphism [43]. Let

α be the mapping from Lemma 5 then:

f(α(zj)) = f(cjdcj) = σ1
4jσ2

4σ1
−4j

and the length of a braid word from B3 corresponding to a letter zj ∈ Σ′ is 8j + 4. The
above morphisms give a way to map words from an arbitrary sized group alphabet into
the set of braid words in B3.

Now we again can use the weighted word game as any word over a binary group
alphabet can be uniquely mapped into a braid, where the empty word will correspond to
a braid which is isotopic to the trivial braid and the concatenation of words over group
alphabet corresponds to the composition of braids in B3. The weight x ∈ Z is mapped
into the braid word ∆2x

3 where ∆2
3 = (σ1σ2σ1)2 is a central element of B3.

Subgroups 〈σ4
1 , σ

4
2〉, 〈σ2

4 , d〉 of the group B5 are free and B5 contains the direct product
〈σ4

1 , σ
4
2〉 × 〈σ2

4 , d〉 of two free groups of rank 2 as a subgroup where d = σ4σ3σ2σ
2
1σ2σ3σ4

[43]. Now we can uniquely encode pair of words of the word game into B5. Using the word
game, where the initial word is (ε, ε), we can construct a braid game from B5 starting
from the trivial braid.

It is easy to see that Attacker has a winning strategy in a braid game on B3 and B5

if and only if she has a winning strategy in a weighted word game and a word game on
pairs of group words, respectively. �

Example 15. Consider a braid game on B3 where Defender has braid words σ1σ
−1
2 and

σ−1
1 σ−1

2 σ−1
1 and Attacker has braid words σ2σ1σ2 and σ2σ1. Starting from σ−1

1 σ−1
1 , we

have the following play:[
σ−1

1 σ−1
1

]
·
[
σ1σ

−1
2

]
D

· [σ2σ1σ2]
A

·
[
σ−1

1 σ−1
2 σ−1

1

]
D

· [σ2σ1]
A

=
[
σ2σ

−1
1 σ−1

2 σ−1
1 σ2σ1

]
=
[
σ2σ

−1
2 σ−1

1 σ−1
2 σ2σ1

]
= [1] ,

where the second equality follows from the relation σ1σ2σ1 = σ2σ1σ2 of Definition 1. This
play is depicted in Figure 9.

From the definition of braids, braids with two strands represent integers with a braid
word σz

1 corresponding to an integer z ∈ Z. From the decidability of robot games in
dimension one [1], it follows that the braid game on B2 is also decidable. The braid game
on B3 is the first non-trivial case that is undecidable. In B5, the game starting from the
trivial braid was shown to be undecidable. The status of the braid games on B3 and B4

starting from the trivial braid are open.

5. Conclusions

The results of the paper are twofold. We have proven a new language-theoretic result
for weighted automata on infinite words. We constructed an automaton that, for a given
instance of the ωPCP, accepts all the infinite words that are not the solutions of the
instance of the ωPCP. In other words, the non-universality of the automaton corresponds
to the instance of the ωPCP having a solution. Secondly, we have shown how to encode
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· · · · = ↔

−−−−

−−−−

−−−−

−−−−

Figure 9: An example of a braid game, where the initial braid is dotted, braids played by Attacker dashed
and braids played by Defender in solid.

the automaton into the framework of Attacker-Defender games, from which we obtained
undecidability results for checking for the existence of a winning strategy in word games,
matrix games on vectors and braid games.

For weighted automata on infinite words, the status of the universality problem
remains open for automata with less than five states. For the matrix game on vectors,
it is unknown whether deciding the winner is decidable for dimensions two and three.
The braid games on B3 and B4, where the initial braid is trivial, remain open. However,
the direct application of the word game is not applicable due to the fact that there is
no faithful representation of the direct product of two free groups of rank two into B4

[44]. Furthermore, it would be interesting to see whether similar encoding techniques of a
weighted automaton are applicable to other games such as robot games with states.

The complexity of Attacker-Defender games considered in this paper is quite sensitive
to the process of determinization for one or both players, as it was shown in the case of
matrix games in Subsection 4.3. The case where both players have a deterministic single
move can be reduced to the well-studied orbit problem which is decidable in polynomial
time. The case where Defender has a deterministic move, leads to a reduction to the
vector reachability problem which is undecidable starting from dimension three. The
opposite case where Attacker has no choice leads to a new question that we call “eventual
reachability”. Finally, when both Attacker and Defender have more than one move,
the game is not directly reducible to previously studied problems and it is shown to be
undecidable in general following a new language-theoretic result for weighted automata
on infinite words. The above scenarios about determinism in moves have similar effects
on other games from this paper and remain a subject for further study.
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