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ABSTRACT

We consider three major parts of Fourier analysis and their role in Fefferman-Stein inequalities.
The three areas can be considered as three separate topics in their own right, or as three steps to

proving certain L” — L9 inequalities via the Fefferman-Stein inequalities of the form

/|Tf|2ws/ M.
Rn R”

The first area discussed is that of maximal functions, specifically obtaining L? — L4 inequalities
on large classes of maximal functions. We then use a simple duality argument to transfer these
to operators where we have a Fefferman-Stein inequality via
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The second area aims to control operators defined via multipliers by the previous section’s ge-
ometrically defined maximal functions. In particular, we build up to a schema that can be used
to prove Fefferman-Stein inequalities via the so called g-functions, originating in work of E. M.
Stein [38]] but having historic roots that can be easily seen by viewing g-functions as speciality
square functions.

In the final section we consider some classes of operators with oscillatory kernels and obtain es-
timates on their multipliers, and by application of the previous two sections obtain some L? — L4

inequalities.
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CHAPTER 1

INTRODUCTION

1.1 Calderéon-Zygmund theory

The matters treated in this thesis are mostly anisotropic in nature, but it would be pertinent to
first give an overview of the three main areas covered in their isotropic setting. In sketching the
broad outlines we will separate out our discussion into three main pillars of harmonic analy-
sis: maximal functions, weighted Littlewood-Paley theory and oscillatory integrals. However it
should be stressed that these are not separate areas at all, but instead are all interconnected and
all related, in one form or another, to the study of singular integrals. There are many differing
introductions to harmonic analysis that depend on an even larger variety of perspectives, but our
chosen point of departure is the real variable techniques introduced by A. P. Calder6n and A.
Zygmund in the 1950’s. The goal of these techniques was to study the higher dimension ana-
logues of the Hilbert transform, known as singular integrals, but our discourse will not heavily
focus on these objects. Instead, we will consider questions outside of singular integrals and show
that the tools and methods developed continue to work efficiently far beyond the framework they
were intended for.

The overarching structure of this thesis has roots in a paper by Bennett, Carbery, Soria and Var-

gas [4]] where they studied a conjecture of Stein on the circle. Further advancement was made



by Bennett and Harrison [S]] on the line. Later, Bennett [3] took a multiplier perspective of these
same issues on the line, and Beltran and Bennett [2] extended this result to R¢.
In Chapter 2] we will focus on maximal functions, the simplest of which is the Hardy-Littlewood

maximal function, defined on an admissible function, f, at a point x as

M f(x) = sup - / £ = y)dy.

r>0 2r

This maximal function naturally arises when we consider the family of averages such as

A f(x) = % / Fx = y)dy

for r > 0. The most interesting properties of these averages are their behaviour as r — 0, which
are extracted via consideration of their corresponding maximal function, M. These were origi-
nally studied as a means to understand the convergence of Fourier series, but have far reaching

applications beyond this. Chapter 2| will build up to the study of our maximal function, given by

My, pf(x)=sup (Iv)zﬁwA(t) x f(y)]

WDET (%)

where
T ={DERPXR, 10<< 1, py(x—y) <),

J is a positive, radial, decreasing (radially) Schwarz function with total mass 1, p, is some
anisotropic norm with respect to the dilation matrices A and the notation 9, refers to dila-
tions of the function by these matrices. All of these terms will be more accurately defined in
Section I’y ,(x) are regions in the upper half space, and will be discussed at the end of
Section 211



This chapter will culminate in the L? — L? bounds for M, , 5, which are given by the following

theorem
Theorem 1.1.1 Letl < p<g< oanda,f € R.
° Ifa<0andﬂ<2a—q+%<%—;>;

> @@ 1L _ 1),
oor(x>0andﬂ/2q+2<p E

° or(x=0andﬁ=%<

==
Q=

then for weights, w, we have

My apwll, < Cllwll,,

for some constant C > 0.

Chapter [3] will focus on the area of Fourier multipliers, and we will obtain our results as an
application of Littlewood-Paley theory. This area of study concerns itself with the extension
of the Pythagorean theorem: if x in a Hilbert space is a sum of orthogonal basis vectors, then
the sum of the squares of these basis vectors is equal to the square of the sum. This theorem
clearly relies heavily on orthogonality; however, for more general Banach spaces, such as L?
(p # 2) spaces, we don’t obviously have a notion of orthogonality. This is where Littlewood-
Paley theory comes in and gives us ways of decomposing our functions, f, into special basis
functions that essentially determine the size of f. We will use Littlewood-Paley theory in the

spirit of Stein [38] to prove the multiplier theorem [

Theorem 1.1.2 Lety € N(Z). If m is a Fourier multiplier such that

ID"m(&)] S p(&) P Hlrlae=h (1.1)

*Again, see Section for undefined terms



for m with supportin {£ € R? : |E|* > 1} and all |y| < 3, then

/ |T,,, f ) [Pw(x)dx S / | fOIP MM, s M w(x)dx, (1.2)
RZ RZ

where M , refers to an anisotropic adaption of the Hardy-Littlewood maximal function and is

defined as

M, f(x) =sup yuq * [f1(Y)
>0
and M} is the n-fold composition of M 4.

To finish our discourse Chapter[d] will focus on estimating the multipliers associated with certain
Hirschmann kernels. This final chapter will make use of the deep results of the previous two

chapters to bound large families of highly oscillatory and sometimes very singular kernels.



1.2 Fefferman-Stein inequalities

There has been interest in recent decades in finding Fefferman-Stein inequalities of the form

/ TflPw s / P M, (1.3)
R R

where T is a suitable operator, p € [1, ), M is a maximal operator, f is an admissible input
function and w is a non-negative locally integrable function, herein referred to as weights [
By a simple duality argument, inequalities like (I.3]) are of interest as they allow us to transfer

bounds on M to bounds on T as follows. Let ¢’ denote the Holder conjugate of ¢ and let ¢, r > p,

then
1/p
ITfll,= sup (/ITfI”LU>
el iqpy =1 R
1/p
< swp ( / Ifl"Mw>
llwllq/py =1 R
1
< sup Ml AL
llewll g/py =1
thus
1/p
1Tl S M1 (1.4)

So for such operators 7', there is interest in identifying a corresponding geometrically defined
maximal operator M that is optimal in the sense that all LY — L" mapping properties of 7' can
be deduced from bounds on M and (T.4).

We will appear to digress momentarily from Fefferman-Stein inequalities in order to give a brief

outline of some of the theory that is related to these inequalities and the power of using this

*See Section [1.3|for an explanation of notation



approach, opposed to the method of Muckenhoupt or A, weight type inequalities. Classically,

Fefferman and Stein proved the following theorem.

Theorem 1.2.1 ([17]) Let M denote the Hardy-Littlewood maximal function and let f be any

admissible input function. If w is a weight, then for any 1 < p < o0

/ M flw < / P Mw.
R R

It is perhaps convenient at this moment to discuss the approach of Muckenhoupt, known as
A, theory. This approach can be defined from the perspective of this inequality quite directly;

indeed, one can define the class of A, as the class of weights such that

/IMfI”wS/IfI”w
R R

This is a single weight inequality and a prototype inequality for this theory.

While the two weight inequality in Theorem|I.2.T|doesn’t lend itself to the approach developed in
light of (1.4)), as the controlling maximal function is the same as the operator we are controlling,
many inequalities that do benefit from the approach were built upon it and all share this standard
structure.

The Calderén-Zygmund singular integral operators have been the focus of large amounts of study
in harmonic analysis for decades. We will briefly give an overview of the role these Fefferman-

Stein inequalities played in the area of singular integral operators after the definition of them.

Definition 1.2.2 We call an operator T' a Calderén-Zygmund operator if the following hold

1. T : LAR) —» LAR);



2. there exists a measurable function K : R — R such that for every f € L(‘;"([Rz) we have
Tf(x)= / K(x =y f(ydy
R

for a.e. x & supp(f),

3. the kernel K satisfies

| =

IK(X)| S

x|
for every x € R;

4. the kernels K and K* (defined by K*(x) = K(—x)) satisfy the following pointwise Hor-
mander condition: There exist a positive constants M > 1 and y > 0 such that whenever
pA(y) < ﬁpA(x) we have

|y|”
|x|1+y'

|K(x) = K(x = p)| 5

After his paper with Stein, Fefferman went on to write a paper with Cérdoba where they proved

the following theorem.

Theorem 1.2.3 ([14]) If T is a Calderon-Zygmund singular integral operatoif|on the line then

for any p, s > 1 we have

/ TflPw s / M),
R R

where the implicit constant depends on at most p and s.

*Defined by the case A = I in Definition



For a fixed s > 1, we conclude that T is L? bounded for p > s, which is extracted via (1.4))
and the known non-weighted L? boundedness of M [16]]. However, T is bounded on L7 for all

1 < p < o0; this gap was first reduced by Wilson.

Theorem 1.2.4 ([43]) If T is a Calderon-Zygmund singular integral operator on the line

/ITf|2wS/If|2M3w, (1.5)
R R

where the maximal operator, M*, is the k-fold composition of M with itself.

In the same paper, Wilson also proved inequalities for p other than 2, one of which is the follow-

ing

Theorem 1.2.5 ([43]) For 1 < p < 2, we have

/ T flPw s / M.
R R

Soon after, Pérez unified and extended these results by proving the following theorem.

Theorem 1.2.6 ([32]) For 1 < p < oo we have

/ TflPw s / M, (1.6)
R R

where [p] is the integer part of p

With this we gain the full range of indices for which T" is L? bounded.
See [4] for further discussion of the flexibility of this method of capturing the behaviour of an

operator by a maximal function.



1.3 Preliminaries

Every area of learning has its fair share of vices, and harmonic analysis is no different; indeed,
the most famous is the disregard of constants, or the “constantly changing constant”. This is due
to the perspective harmonic analysis takes - we want to know the nature of how two quantities
change with respect to each other. We will often forgo the use of a constant C, or ¢, to refer to a
constant independent of the relevant variables to that equation by using the notation A(¢) < B(?)
to mean that there exists ¢ > 0 that does not depend upon ¢ such that A(¢) < ¢ B(¢); likewise for
A Z B. Some other abuses, akin to reusing C or c as different constants, in the area are referring

to the Fourier transform of a function f € S, the class of Schwarz functions, via the definition

&= / f(x)e ™ dx,
R

and the Fourier inversion formula

£ = / Flede.
R

The scrutinous reader will take exception to the lack of appropriate scaling included in these
definitions and they would be correct in pointing out that we actually incur a constant; that is if
we apply the Fourier transform and then the inversion formula, we do not return to our original
function but a constant multiple of it. However, with our view of constants in mind, as long
as we are only taking finitely many iterations of the Fourier transform or its inverse, we have

chosen to stick to the convention outlined above.

1.3.1 Definitions

We begin our study of anisotropic norms by first introducing our norms in the manner of Calderén

and Torchinsky [7, [8]. However, in order to introduce our norms, we first must introduce our



families of affine transformations, indexed by ¢, that we will base our norms on.

Definition 1.3.1 For each ¢ > 1, and define for t > 0

t

At) =
0
We claim that the dilations defined by
0
A1) = ;
0

where a, > a, > 0, are equivalent. In one direction this is simple, take a;, = 1 and a, = o. The
reverse direction is almost as simple, take ¢ = Z—T and a dilation by A(r) is equal, when taking a
supremum in the sets 0 < ¢ < 1 or f > 1, to a dilation by A(%).

Note that this principle can be extended to any number of dimensions; indeed, if we have an
ordered index set a; < a, < ... < a,; we can merely take a scaling 1“1 instead of ¢ and reduce the

indexsettol <o, <0, <...<0,_,.

We will next outline some properties of the matrices A(%).

Lemma 1.3.2 ([7]) The affine transformations A(t), indexed by t, form a continuous abelian

group.

Proof:

10



e Closure, lett,s € R

t 0 s 0
A(NA(s) =
0 ¢ 0 s°
B ts 0
0 (ts)°
= A(ts).

e Associativity, letz,s,r € R

(A()A(s)) A(r) = A(ts)A(r)
= A(tsr)
= A(t)A(sr)

= A1) (A()A(r)) .

e Identity, this is immediate as A(1) = I.

e Inverse element, given t € R we have

ADAGC") = A(D)

=1.

11



e Commutativity, letz,s € R

A A(s) = A(ts)
= A(st)

= A(1)A(s).

O

Remark 1.3.3 In fact, this group is an embedded Lie group by Cartan’s closed subgroup the-

orem, as it is a closed subgroup of the general affine transformations, but this is outside the

purview of this thesis.

Remark 1.3.4 We have used the notation D", where y = (y,,v,, ..., V) is a multi-index to mean

ol f

71 Ya
xl ...xd

D' f(x) =

We will now introduce the family of norms we will concern ourselves with for the major part of

this thesis in the following definition.

Definition 1.3.5 For each o > 1, let p, : R* = [0, 00) be defined by

pax)=0 = x=0,

pu(x) =t = |AG@ x| =1,

forallt > 0.

Note that it is immediate that p,(x) = 1 <= |x| = 1 from the definition. Now we claim that
the object we have defined is a norm associated with the matrix A, we will clarify and prove this

in the following theorems starting with a proof that p, is well-defined.

12



Proposition 1.3.6 p , is well-defined; more precisely, for a fixed x, | A(t™")x| is strictly decreas-

ing as a function of t.

Proof: We need to show that, if 0 > s > ¢, then

|AG™)x| < |AGEDx.

Consider

JAGs™Dx|* = [s7 % > + |s7x, |

= s_2|x1|2 + s‘z"llez.

As s >t, 0> 1, we have

-2

S—20' < t—ZG

therefore

|AG™x |2 < 172]x, |2 + 1727 x, |

= |AGt x|

Proposition 1.3.7 p, is an A-norm; that is, for all x,y € R?,

1. ifpy(x) =0, then x =0,
2. forallt >0, p,(A(®)x) =tp,(x),

3. pax+ ) < pu(x) + ().

13



Proof: As the case when o = 1 reduces immediately to the Euclidean norm, we consider only
when ¢ > 1. Our definition of p, immediately gives property 1, so consider property 2.

To this end, let ¢ = p ,(A(?)x), then by definition

|[A(@HAMx| = 1,

which, by Lemma(I.3.2] is equivalent to

|A(g™'D)x| = 1.

Using the definition again, we have

pA(x) = t_lqa

so, finally,

tpA(xX) = g = p(A(D)x).

Now, to prove property 3, first we observe thyat if p,(x) = 0 or p,(y) = O the property is
immediate, so we may assume both p,(x) > 0 and p,(y) > 0. Next we need to observe some

trivial properties about the relationship between p, and A. First, by definition,

P4(0) = p4(x) = [A(p,(x) x| = 1.

14



Now, let 7 1= p,(x), s := p,(y), X = At Hx and § = A(s"D)x. So

%] = |AG)x|

= |A(p, () D)x|

= 1.

and likewise for |j|; also,

X +y = AWDF + A(s)7.

Consider

'A(—l )(x+y)‘=‘A< ! >>2+A< S )
t+s r+s t+s
_r
r+s

<'A(

Asa—1>0andbotht+is <1andl+is< 1, we have that

and therefore

palx+y)<t+s

= pa(x) + pu(y).

It is necessary next to introduce a few more objects that will be crucial to our analysis.

15



Definition 1.3.8 Let v denote our homogeneous dimension, specifically v =1+ o.

We refer to this as our homogeneous dimension as in a lot of situations it completely replaces

our usual dimension, the most obvious example of this is the following proposition.

Proposition 1.3.9 Let ky € Z and a € R, then p,(x)™ is in L'(R* \ B,(0,2%)) if and only if

a > v.

Proof: Consider

/ pa()dx =) / pa(xX)"dx.
R2\B,(0.240) fmky J 26 <p (002041

Let z = A(2%)x, then x = A(2¥)z and the Jacobian of this transformation is given by J = 2k,

Therefore we have that

/ p () %dx = Z kv / p(ARHz)dz (1.7)
R2\B,(0,2%0) k=k 2K<p 4 (A(2F)z) <2k
= Z 2K / p(2)%dz. (1.8)
k=k, I<pa(2)€2

The integral in (I.8) can be bounded above and below by a constant dependent only « and v.
The convergence of the sum is therefore dependent only on the term 2¥=%, and so converges if

and only if a > v, the proposition follows. O

Definition 1.3.10 o Let B,(x,r) denote the p-ball with centre x and parameter r, that is

B,(x,r)={yeR*: p(x—y)<r)={yeR’: JACH(x -yl <1},

e Let r,(B) denote the p-radius of a p-ball B; that is, r, (BA(x, r)) =r.

o Throughout, we will use 9 € S to denote a positive, radial, decreasing (in the obvious

way) function with total mass 1 and we will denote parabolic dilations of any function f

16



with respect to A as

Fa() =17V f(AG ).

We will refer to the functions 8 4,y as parabolic approximations of the identity.

It turns out that the family of norms p, have an associated family of norms, the importance of

which will become clear in Chapter 3| defined as follows

Definition 1.3.11 Let || - ||, : R?> = R be a norm associated to A; that is, given x = (x,, x,) €

R? define
x4 = 1x] + olx,].

Remark 1.3.12 We can relate our p , norms to the Euclidean norms as follows. Letz = (z,, z,) €

R? and define t = p ,(z).

o If p,(z) £ 1, then by the definition of p , we have that

1 =A™ Yz|
1
-2 2 -2 2\2
= (21, + 17 z,)%)?
1
> (722,17 + 17| z,°)?

=1z
and therefore

pa(z) =12 |z|.

17



In much the same way, we get

1 =A@ Yz|

<17z

thus

Pa(2)” <z < py(2).

o Ifp,(z) > 1, then we get the reverse

pa(2) < |z] < pu(2)°.

Remark 1.3.13 Let ¢ > 0 and consider

|A(ct)x| = |(ctxy, 17 x,)|

then

|A(ct)x| < max({c,c’})|(tx,,1°x,)|

= max({c, c”})|A()x|

and

|A(ct)x| = min({c, ¢’ })|(tx,,1°x,)|

= min({c, ¢’ })|A(?)x]|.

18



Note that the min or max of c, c® depends only on'if c < 1 orc > 1, as 6 > 1. This remark is a

formalisation of the observation that one can fit a circle in an ellipse and vice versa.

Definition 1.3.14 Let x, y € R? and B, C C R? be sets, then we define pA(x,y) =pu(x =),
pA(B,C) = irélf; pala—D),
ceC

and

pa(B,x) = },22 palb — x).

19



CHAPTER 2

MAXIMAL FUNCTIONS

2.1 Two maximal functions

We will introduce two parabolic maximal functions in order to first highlight the difference
between the classical maximal functions and the maximal functions that are the focus of this

chapter.

Definition 2.1.1 Let a,b € R. Denote the parabolic maximal operators associated with the

dilation A as

M, ,f(x)= sup t_b)(A(;) * | f1(y),
DEA,(xX)

where
A, ={(n) ER*XR, 1 p,(x—y) < at},

and y is the indicator function of the unit ball (or the unit cube, which gives a pointwise equiv-
alent definition).
Note that M 4 , , are parabolic fractional maximal functions, M , , , are parabolic nontangential

maximal functions of aperture a, and M , , ., which we denote just M ,, are parabolic versions

20



of the classic Hardy-Littlewood maximal function.

Remark 2.1.2 The maximal functions M , ,, defined above are parabolic versions of the non-

tangential fractional maximal operators, the isotropic case usually defined as

M, 0= sup 1 ][ £(2)ldz,
B(y,r)

DEA  4(x)

where
A x)={(n.t € R? x R, : [x—=y| <at}.

The word nontangential here refers to the region A; ,(X), this region is a cone in R? x R, with
vertex at (x, 0), the boundary of R%; we refer to a as the aperture of the cone. The word fractional
here refers to the role of b, and the wording comes from the maximal function’s close relationship
and resemblance to fractional integration, or more accurately in the multidimensional case Riesz

potentials, see [31] for more details.

For comparison, we now introduce our main object of study, M, , 5, Which is a parabolic version
of the maximal function introduced by Bennett and Beltran[2], see also [3]. We use very similar
notation to the above maximal function to emphasise the close relationship between them, but

will emphasise the differences shortly.

Definition 2.1.3 Let a, f € R and define

MA,a,ﬁf(x) = Sup (tv)zﬂli(),q(t) * ()

HET y (%)

where

L () ={(DER*XR, : 0<1*< 1, py(x—y) <17}

21



Indeed, these two maximal functions coincide precisely when a = 1, a = 0 and § = —b/2.
From this relationship it is easy to see that the roles of b and g differ only aesthetically, however
the roles a and « play are quite different - they both pertain to the behaviour of the approach
regions, but the nature of that change differs greatly.

The regions A, , and I', , depend in the same way upon A, the eccentricity of the cross-sectional
areas for each fixed 7 changes. The region A, , is a cone for all values of a and only changes
the aperture of the approach region. However, the region I', , can significantly change shape
dependent upon a, in the same way as the Euclidean case. For 0 < @ < 1, we have a slightly
bulging cone shape, cut off at t = 1. For a > 1, we get an inverted cone shape, which allows
tangential approach. For @ < 0, the region does not include ¢ < 1, which changes the nature of
the region entirely, and would be more accurately described as an "escape" region. See [3, 2]

for further discussion of these regions.

Remark 2.1.4 Although M, , 5 depends on the choice of 9, all estimates involving this maximal

function will be uniform for all parabolic approximations of the identity.

22



2.2 A schema for the method

It is the goal of this chapter to prove L” — L7 inequalities for our maximal functions M, , ;,
in light of this we will begin by outlining a schema for doing so using the parabolic Hardy-
Littlewood maximal functions first. The main workload of such ventures is generally hidden
within interpolation between endpoint spaces. The nature of L* lends itself very well to being
an endpoint space for maximal functions, and so the ideal other endpoint would be L!. However,
a quick calculation of M , y, where y is the indicator function of the unit ball, convinces us that
f being integrable is not enough to ensure M , f is intregrable. So instead we must settle for a
weak-L' bound, Theorem This is slightly different to how we will handle the endpoint
estimate for the maximal functions defined in Definition [2.1.3] as we will need to take a brief
foray into Hardy space estimates instead. To begin our estimates on M ,, we must first prove the

following lemma.
Theorem 2.2.1 (Vitali’s covering lemma, [12]) Let {B; : j € J} be a collection of p-balls in

R2 such that

supr,(B;) < 0.
jes

Then there exists J' € J, a countable subset of J, such that { B; : j € J'} are disjoint and

UBs clss,.

jedJ jeJ’!

Proof: As

supr,(B;) < oo,
jeJ

we have that there exists R > 0 such that sup,., r,(B;) < Rforall j € J.

23



Partition J into a countable collection of subsets, {J;},cy,, such that J; has all p-balls with

R R

parameter in (7, 7. Let H, := J, and E, be a maximal disjoint countable subcollection of

HO-
Let H; and E, be defined inductively by

H :={BelJ :BnB =@,VB' € E,U..UE,_,}

where E, is a maximal disjoint countable subcollection of H,. Then the desired set J' is defined

as

[

With this lemma in hand, it is a relatively simple matter to gain a weak-L' estimate on M.

Theorem 2.2.2 (Weak PHL, [7] Theorem 1.7) There exists C, > 0 such that for all 2 > 0,
2 C,
(x € R M, f(x)> 4} < 217l
Proof: Fix A > 0. If there are no x € R? such that
MAf(x) > X7
then we are done. So fix x € R? such that

M, f(x)> A
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By the definition of M, for each x there exists a finite #, > 0 such that

A< Xy * |F100)

_ / 2 (A= IS G)ldy
R2

=t;”/ | fDIdy
A H(x—p)I<]

1
- - | f»ldy
| B,(x,t )] J B,

then we have that

1B, (.1 < & / 1 O)ldy. @.1)
A’ B, (x,t,)

So, for each x such that M, f(x) > A we obtain a ¢, and corresponding B ,(x,t,) with the

property (2.1I) and assigning an index from an index set J to each x we have

(x eR?: MAf(x)>/1}QUBj.

JjEJ

By the Vitali covering lemma, we have a subset of J, J’, of disjoint balls such that

(xeR*: M,fx>4c| B cl 5B

jeJ jeJ’

and so by (2.1)

[{x €R* 1 M, f(x)> A}| <5* ) |B)]

jer’

5\/
< 7 /[RZ | fWldy.
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2.3 Parabolic Hardy spaces

Now, to give the same treatment to our maximal functions M, , 5, we must introduce parabolic
Hardy spaces, so following Calder6n and Torchinsky [7,8]. In this section we give a very brief

introduction of the required concepts.
Definition 2.3.1 Let 1 < p < co. We say a function f isin H* if the parabolic maximal function

of f is in LP(R?), that is

1flle = UM, < 1.

Now, one of the major advantages of using Hardy spaces to gain estimates on maximal functions
is that functions in Hardy spaces can be decomposed into atoms. This process is outlined in the

below definition and theorem due to Calderén.
Definition 2.3.2 We shall call a function, a, a H /I‘—atom if there is a p ,-ball B such that
1. supp(a) C B;

2. llall, < 1BI7

/a(x)dx =0.
B

Theorem 2.3.3 (Atomic decomposition of H}‘, [6]) Given f € H /1‘, there exists a sequence of

H}‘—atoms, a and constants A ; such that

N
||f—2)»jaj||HA —-0as N -

Jj=1
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and there exists ¢ > 0 such that

[S0]
-1
S M < D 1A < el fll

j=1
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2.4 Estimates on parabolic subdyadic maximal functions

Much like in the case of the parabolic Hardy-Littlewood maximal function, the main difficulty
is getting one of the endpoint estimates, the endpoint we require in this case is contained in the

following theorem.

Theorem 2.4.1 Let w be a weight, then

”MA,a,a/zw”l S ”w”H[l‘(RZ)-
Remark 2.4.2 We have intentionally changed to using

_ 0
A(n) = :
0 1
where 0 < a, < a,, as we feel that the argument is more illuminating with this convention as
there is a non-trivial dependence on a,, that is entirely hidden when a, = 1. The homogeneous
dimension is therefore defined as v = a, + a, for the remainder of this chapter. Note that

Definition [1.3.1| outlines that this is entirely equivalent when the supremum is taken in the set

> 0.

Proof: Let P be a bump function, strictly positive on B,(0, 1) = B(0, 1) and let P, be A(7)-

dilations of P
Pyo(x) =17P (AG Hx).

Note that for any choice of § we can bound M, , ; from above pointwise by our maximal function
with the choice 9 = P, modulo a constant. So we can use this dilated bump function to get upper

estimates on M, , , />
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Letwe H 1}1, then by Theorem there exists a sequence of Hi-atoms, a;, and constants 4;,

such that

o0
= Z 4,
=1

where

.
Il

We first aim to prove

(e o]

My g 2w0() < 14,1 My g 2,(),

j=1
for almost all x. To this end, we will show that for a fixed ¢,
Py x wix) = 21 APy * a;(x),
=
for almost all x. Assuming (2.4)) for now, we have
MA,a,%w(x) = Ssup tvalPA(t) * w(y)|

. t)EFA (%)

o0

< sup 1Y APy * a,(9)]

(WDET Y o (x) j=1

Z‘, 4] sup 1| Py, % a,(p)]

HET 4 o(x)

Mg Iy

141 My g, 20;(%),
1

.
1l
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where we have used (2.2)) and the triangle inequality on (2.4)). So, to show (2.3), it is sufficient
to prove (2.4). To this end, define T by

Tf =Py [

First, for f € L', by Fubini’s theorem

771, = / / Py(x = y) f(y)dydx
R2 JR2

:/ f(J’)/ P,y (x — y)dxdy
R2 R2

= ”PA(t)”l”f”l'

As P, is normalised in L' and P has total mass 1, this implies

||Tf||1 = ||f||1 (2.5)
for all f € L'. Next, let a be an arbitrary H /ll-atom, asa € L' by (2.5) we have
IT@Il, = llall,

and

lall, = / ()] dx
B4(0,r)

< |BA(0’ r)l_llBA(O’ r)l

=1.
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So we can conclude
T, <1, (2.6)

uniformly in all H }-atoms.

So, consider the set of points where (2.4)) is not true, that is

oo 1 o]
1T (w) - 21 4T (@)l > 8} < SIT(w) = Zl AT @l

by Chebyshev’s inequality. Next, we split up the sum into the first N terms and the terms after

N and use the reverse triangle inequality

o0 N 00
1 1
{IT (w) - Zl 4T(@)| > 6}] < SIT(w) - Zl LT@I + 51 Y, 4T @l

j=N+1

Now, we have two terms on the right hand side, the first of which we can use linearity of T', (2.5)

and the reverse L' bound on M , to obtain
N N
ITw) = Y, 4T @l = 1T =Y Aapll,
j=1 j=1
N
= |lw - Z /ljaj”l
j=1
N
<lw= Y 4l
j=1

For the second term we will use (2.6) and (2.2)) as follows,

1Y 4T@l < Y, 14T @)l,

j=N+1 j=N+1

< D4l

j=N+1
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Thus, we have

{IT(w) - 2H<a>|>5 —||w Za ||H1+—Z 14,1,
Jj=

=N+1

By Theorem[2.3.2] z A;a; converges to w in H , I and (2.2)), both terms on the right hand side

converge to zero as N — oo, we conclude that
[{ITw) = ) 4,T(a)] > 8} =0,
j=1

for all 6 > 0, which implies (2.4).

Now, we can take an L! norm of both sides of (Z.3) to get

My qappwlly < Z A M g aap2ay I

00
< D IGIM ol

J=1

by the monotone convergence theorem. So if

”MAaa/Za”l ~

uniformly for all Hi-atoms a, then

oo
IMopaptolly S D14

j=1

< Nl
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by Theorem [2.3.3] So, it is sufficient to show that
”MA,a,a/Za”l S 17

uniformly for all H/l4 atoms a.
Note that as M, , ./, 1s defined via convolution, it is translation invariant, so it is sufficient to
consider only H i—atoms, centred at the origin. Fixa H i—atom a, let B (0, r) be the support of

a. For a fixed 7 and y, consider P, * a(y). If t > r,

PA(t) * a(y) = / PA(,)(y - Z)a(Z)dZ
R2

= / (PA(t)(y —z) - PA(t)(.V)) a(z)dz
B,(0,r)

by the mean value property of a, that is property 3 of Definition [2.3.2] Now, by the mean value

theorem, for each z € R?, there exists some A € (0, 1) such that

PA(t)(y - Z) - PA([)(y) = <_Z, VPA(,)(y — /12)),
We can use the Cauchy-Schwarz inequality to get

(-2, VP,,(y— Az))| = I(—A(r_l)z, ANV P,y - Az))|

< AGTHZIAWV Py (v — 42)]
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and so

Py * a)] < / AG)2l AV Py (3 — A2 la(2)]d 2
BA(O,r)

< IAPV Pl llall. / |AG)z]dz
BA(O,r)

<P A (5) VPIB,O [ jae ez

B4(0,r)
r

<o (5) weie £ jae iz
t B,(0.r)

ar—a;
The estimate on || A <§> VP|isduetot > rand0 < a, < a, giving that <§> < 1. Now,

we have that ||V P||, < 1 is independent of r and ¢t and we have

][ |A(r-1)z|dz=][ |[A(rYz|dz
B4(0,r) |AG—1)z|<1

<1

Thus we have that

ra
tvta

|PA(t) *a(y)| S

fort>r.

Ift<r,

‘PA(t) * a(y)’ = ‘/2 P,,(y—2)a(z)dz
R

< |B4(O, ”)|_1||PA(1)||1

<1

er‘
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Consider the case when the supports of P,,(y — -) and a do not overlap, then

Py * a(y) = / Pyy(y — 2)a(z)dz = 0.
R2

This definitely occurs when the rectangles with the supports of P, and a inscribed do not overlap,

which corresponds to the case when

sup(t +r) 7y, | > 1 = sup K, (t+r) %y, > 1,
i=1,2 =12

for some constants K,. This corresponds to taking a ¢, norm instead of a #, norm in the

definition of p,. As these norms are equivalent we have that

tvtag lpr(y)st-l_r’tZr

Pao # aWIS i p,) St4ra<r

0 ifp,(y)2t+r.

Now, we turn to estimating the maximal function via this estimate. We need to split our analysis
up into five cases, where the set I', ,(x) has significantly different behaviours. There are two
cases singled out, @« = 0 and & = 1. The case a = 0 is degenerate, in that the maximal function
considered reduces to the parabolic Hardy-Littlewood maximal function. The case @ = 1 is
very similar to the case 0 < a < 1, but still significantly different enough to warrant a slightly
different approach.

Case a <0

As we are taking a supremum over I', ,(x), we reduce to when 7 > 1. As our supremum is of
1"*| Py * a(y)|, which as we can see above will have only negative powers of 7 (either ** or

1*2~@) a5 @ < 0), we need only find the smallest ¢ (as again, ¢ > 1). First, consider r < 1; if
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p,(x) S 1then I'y ,(x) and supp(P,,, * a(x)) have non-empty intersection for 7 = 1, so we have

MA,a,ga(x) <S4

< 1.

If p4(x) 2 1then I', ,(x) and supp(Py,, * a(x)) have empty intersection when # = 1 and so the
smallest value of ¢ for them to have non-empty intersection is whenr < 1 <t ~ p A(x)ﬁ. Then

Y| Py * a(x)| S raiev*=0*+) and we have

av—(v+ay)

MA,a’%a(x) Srip,(x)” e,
So, collecting these we have

! if pu(x) S 1
My, za(x) S

av—(v+ay)

A T i g0 2 L.

—(1-4)
Therefore, for fixed a < Oand r < 1 as va—l”
o

tion|1.3.9; thatis [[ M, ,pall; S 1.

Now, consider when r > 1; if p,(x) 5 1, then I', ,(x) and supp(P,, * a(x)) have non-empty

> v, thus M, , ,»a is integrable by Proposi-

intersection for ¢t = 1, so we have

MA,a’ga(x) S

< 1.

If py(x) 2 1 then I', ,(x) and supp(Py, * a(x)) have empty intersection when 7 = 1 and

1
so the smallest value of ¢ for them to have non-empty intersection is when t ~ p,(x)i-. If
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1
1 S p (x)== S r,then

My q2a(0) S 17, ()75,

1
which for each r > 1, integrating over p,(x)1=« < r integrates to a constant independent of r.

Casea =0

We are taking a supremum over

Ty ={n) eR*XR :1>0,p,(x—y) <1}

Therefore the maximal operator reduces to an uncentred parabolic maximal operator given by

M yoppa(x) = sup | Py * a(y)]

DET 4 o(x)

< M ,a(x).

CaseO0<a<1

We are taking a supremum over I', ,(x), so we reduce to when 0 < ¢ < 1. First, if » > 1, then

t<1<r, and so

= ifp () <t+r

tvalpA(z) xa(y)| S
0 ifp,(»)>t+r

and as @ > 0 and monomials of degree > (0 are monotonically increasing, we look for the largest

t < 1 in the intersection of I'y ,(x) and p,(y) S t+r. If p,(x) S r, thent = 1 is in the

intersection, therefore
M a(x) S —1
A,a,g ( ) v .
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However, if p,(x) 2 r, then the intersection of Iy ,(x) and p,(y) < 7 + r is empty, and so

i (0 S
My 20(x) 5
0 if p(x)2r.

So, for a fixed r > 1, this integrates to a constant independent of r.

Now, if r < 1, we have three cases. If p ,(x) < r, then the supremum is when ¢ = r, so

rva

MA’a’%a(x) < —

r\/

S 1.

If r < ps(x) < 1, then the supremum is when ¢ ~ pA(x)ﬁ and we have r < 1, so

Vll*V*al
MA,m%a(x) Srfp,(x) e

-4

< p () e

Finally, if p,(x) Z 1, then the intersection is empty, so we have

1 ifp () Sr

Mg 2a() S9p, (0" ifr S p ) S 1

0 if py(x) 2 1.

a
a—1--1

So, for a fixed r < 1, this integrates to a constant independent of r since v >V, therefore

a—

”MA,a,a/Zalll S 1.
Casea =1

We are taking a supremum over I', ;(x), we reduce to when 0 < ¢ < 1. First, if r > 1, then
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t<1<r, and so

~
<

LAR <
) p ifp,(y) St+r
t |PA(1) xa(y)| S

0 ifp,M2t+r

and so we look for the biggest # < 1 in the intersection of I', ;(x) and p,(y) < t + r. Now,
(»,1) € I'y;(x) implies p,(x — y) < 1, and thus if p,(x) 2 1, then the intersection is empty. If

p,(x) S 1then? = 1 maximises 7*| P, * a(y)| in the intersection and therefore,

I ifp,(0) S 1
M, 1a(x) S

0 ifp,(x)21.

Integrability uniformly in r is immediate as the pointwise estimate on M, | 1a is independent
i)

of r and compactly supported.

Now we consider the case r < 1. If p,(x) < 1 (or equivalently |x| < 1), then # = r maximises

t"|P,(t) * a(y)| in the intersection of p,(y) S+ rand I'y (x), and so
M, 1a(x) S 1.
)

If1 < py(x) S 1+r,thent ~ p,(x) maximises #*| P, * a(y)| in the intersection of p,(y) S t+r

and I'y ;(x), and so

MA’L%G(X) S rpA(x)_al
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Finally, if p ,(x) 2 14 r we again have no intersection of the sets p ,(y) St+rand p,(x—y) < 1

when ¢ < 1, so all together that is

1 ifp,(x)S1+r
My, 1a(0

0 ifp,(x)21+r,

Note that we again have the same situation as the case r > 1 since r < 1 gives us that 1 +r < 2,
therefore || M, |, 14|, S 1.

’T2
The final case is when a > 1, as we are taking a supremum over I, ,(x), we reduce to when

O<t< 1. First,if r > 1,thent <1 < r, and so

Ve

LIS <
5 o ifp,(y) St+r
t |PA(1) xa(y)| S

0 ifp,MRt+r

and as « > 1 and monomials of degree > 0 are monotonically increasing, we look for the largest
t < 1 in the intersection of I'y ,(x) and p,(y) S t+r. If p,(x) < r, then? = 1 is in the

A,a, 7 ~ ’-V °

1
If py(x) 2 r,thent ~ p,(x)1== is the smallest 7 in the intersection and so

< if p,(x) S 7

MA,a,%a(x) S " e
paCTE i gy 2 7

Note that the part of the estimate for p ,(x) < r is integrable to constant independent of r. So,
for fixed a > 1 and r > 1 as v—= > v, M, , «a is integrable; thatis || M, «all; S 1.
- 2 2

Now we consider when r < 1, if in addition we have p,(x) < 1 (or equivalently |x| < 1), then
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¢t = 1 maximises 1*| P, * a(y)| in the intersection of p,(y) S ¢+ rand I'; ,(x), and so

MA,a,ga(x) <S4

<1

~

If p,(x) < 1 (or equivalently [x| < 1), thent ~ p A(x)ﬁ maximises **| P,y * a(y)| in the

1
intersection of p,(y) St +rand I'y ,(x), and so for p,(x)7=« ~ 1 > r, we have

av—v—aj

My q2a(0) S 1p,(x) T

av—v—a

I-a

a
S /’A(x) 1-a PA(X)

S pa(0)7Y,
e
and for p ,(x)1=« ~ t < r we have
MA’a’%a(x) < r_VpA(x)%.
Thus, combining these we have

1 ifp,(x) <1
M, za(x) S

a

rp,(x) V= ifp,(x) > 1.

« . o )
So, for fixed a > 1,asr < 1 and = > 1, Ma’%a is integrable by Proposition that is
”Ma,%a”l S 1' D
So now that we have this endpoint estimate, it is a case of applying interpolation to obtain a

large range of other more general estimates via interpolation. The theorem that follows is the

conclusion of this chapter and enclosed are all the L” — L4 estimates obtained.

Theorem 2.4.3 Lletl < p<g<oanda,p € R.
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. Ifa<0andﬂ<2"—q+%<i_é>;
1_1>.
p a)’

1 1),
- = - 9
P q

° 0ra=0andﬂ=%<
° 0ra>0ana’ﬂ>2iq+%<

then
My apwlly S N2l
Proof: Ifa <0, then(y,?) € Iy ,(x)implies that7 > 1, thusif ' < f, 27"V < 2PV furthermore
My o pw(X) < My, sw0(X),
this allows us to reduce the case a < 0 down to just the sharp line
r=5i(i)

The same argument reduces the case @ > 0 to the same sharp line. As we did for the H/l4 - L!

estimate, we will perform our analysis on the specific bump function P.

|IMygowX)| = sup [Py, * w(y)l

HET y o(x)

< 1Pl Twlle
as P, is normalised in L'. Since this estimate is uniform in x, we immediately get

Myao®llo S 0]l 2.7)
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Additionally, we have

M, qwx)| = sup 1| Py, * w(y)|
2 (INDET 4 4(x)

< 1Pl llwllys

again uniformly in x, so we have

1M, 10l S 0l 2.8)

Now, we use analytic interpolation on (2.7)) and (2.8). Let ¢ € (0, 1) be our interpolation variable,
then we obtain

1Mo 0ll, < N0l

where f, = é(l —1),p, = i and qlr = 0. Rearranging these and eliminating ¢ gives us

1M,y 20l S Nl
A

(2.9

for s € (1, o). Note that % = 0, 1 are the trivial endpoint estimates above, where we interpret

1
-=0ass = o0.
N

Additionally, by Theorem [2.4.1| we have

1My zwlly S el (2.10)

We shall interpolate between (2.9) and (2.10) using a form of analytic interpolation designed for

spaces of homogeneous type, which H /1‘ are known to be, see [35] and [13] Theorem D. Again
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let t € (0, 1) be our interpolation variable, then we obtain
IMyopwll, S llwll,,

where f, = %(1 —H+L, l=1—-tandl=1-1+ f Rearranging these again and eliminating

R
25’ q; Py

t gives us
My 0 pwlly S N2l

where f = 2% + (i - i), as required. O

1
2
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CHAPTER 3

MULTIPLIERS

3.1 Fourier multiplier theory

For appropriate m : R — C, define T, by

T, 7€) = m©f (&)

for £ € R, then m is called a (Fourier) multiplier, and 7, is a (Fourier) multiplier operator. To

each Fourier multiplier we have a corresponding convolution kernel, K, where
T, f=Ksx*f
and by the convolution theorem we have
K=m.
For example the Hilbert transform, H, has multiplier given by
HJ(©) = —isgn@®/ ().
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The corresponding convolution kernel for the Hilbert transform is well known to be i H is the
prototype that the theory of Calderén-Zygmund singular integral operators was based, thus by

[32]] we have

/ Hfw < / 1M 3.1)
R R

for 1 < p < o0, and so we can obtain all the known L? bounds for H from bounds on M and
the now familiar transfer of bounds (1.4)).

However, there are Fourier multipliers that are not bounded on L? and so clearly cannot be
bounded in the above sense by powers of M. For these we must develop different maximal
operators that have more general L?-L? bounds. One example is the fractional integral operator

1, of order 0 < a < 1, given by

Lrw= [ LE22g,
RV

with multiplier given by

1.7 = e fe),

modulo a constant. The LP-L4 bounds for these operators have been known for a long time,
in fact Hardy, Hardy and Littlewood showed in [19] that I, is bounded from L? to LY when

l<p<landg= L.
a 1-pa

The history of these operators in a weighted context follows a similar path to that of the Calderén-

Zygmund operators; we have the following theorem, due to Adams.

Theorem 3.1.1 ([1]) For p,r > 1

/ 1 flw < / 1M )"
R R
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where M is the fractional maximal operator defined by

IQIﬁ/
M = sup —— .
p/ ) )Sclelg |0 Qlfl

The above fractional maximal operator was introduced by Muckenhoupt and Wheedon, who in

the same paper showed that

Theorem 3.1.2 ([31]) Let 1 < p< oo and0 < a < 1, then

Mo S, S IM Sl

where the implicit constant depends on a.

From this we can see that bounds on I, follow from bounds on M ,, in fact they are equivalent op-
erators in this sense, see [16] for more details. However, in parallel with the Calderon-Zygmund
theory the above inequality of Adams does not give us all the known L?-L4 bounds for I,,.

However, Pérez also considered these operators, where he produced a very similar result to that

of his treatment of Calderén-Zygmund operators.

Theorem 3.1.3 ([33]) ForO < a <1l and1 < p < oo we have

/ L flPw s / 1P M, (M),
R R

where this time the implicit constant is independent of a.

To discuss more general multiplier theorems, we must return to the non-weighted setting mo-

mentarily. A classical multiplier theorem is the following.

Theorem 3.1.4 (See [16] for details) If m is a function of bounded variation on R, then m is an

L? multiplier for 1 < p < oo.
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The proof of this relies on use of the Hilbert transform, so it is unsurprising that we get similar
bounds. Note that while this is a sufficient condition for m to be a multiplier, it is not a necessary
one. We can see this directly from the example of the fractional integral operator, I, which has
multiplier |£|~*. These multipliers are too singular (or rough) to have bounded variation on the
whole of R, yet we know they obey L”-L7 bounds.

There are many theorems reducing this gap in our classification, one classical example is the

Marcinkiewicz multiplier theorem, which asks slightly less than Theorem [3.1.4] by asking only

that m has bounded variation on each dyadic interval uniformly.

Theorem 3.1.5 (See [16] for details) If m has uniformly bounded variation on each dyadic in-

terval in R, then m is an L? multiplier for 1 < p < oo.

Another approach to multipliers makes use of the Sobolev space Li(R), defined for a > 0, which

is the set of functions g such that
(1 + &8 e L,
where the norm is defined by

1/2
H ( / |(1+|§|2>“/2§<5>|2d¢) .
R

With this we can state another classical result in multiplier theory.

Theorem 3.1.6 (See [16] for details) Ifa > 1/2 and m € Li, then m is a multiplier on L? for

I<p<o

In contrast with the previous approach, this method does not rely on the Hilbert transform and

this gives us the end-point results p = 1, oo.
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Again, the hypotheses of this result can be weakened by considering a dyadic decomposition.
To state this theorem, we need a dyadic partition of unity by smooth functions.

Let y € C*(R) be supported on - < |£| < 2 such that

1
2

D w7l =1,

jez
for |£| # 0. Then the Hormander multiplier theorem is as follows.

Theorem 3.1.7 ([21]) If a > 1/2 and m is such that

sup [|m(2/ )yl 2 < o0,
jez a

then m is an L? multiplier for 1 < p < 0.

Kurtz then went on to show a generalised single-weighted version of the Hormander multiplier
theorem [23]]. Kurtz and Wheedon extended this to a generalised single-weight version of the
Marcinkiewicz multiplier theorem [24]]. These give very general weighted L? bounds; however,
as there is a restriction made on the weights allowed it does not allow us to use these weighted
inequalities to obtain non-weighted L? bounds via (1.4).

A Fefferman-Stein-type inequality of the Marcinkiewicz multiplier theorem can be obtained

relatively easily, first consider m to be bounded and of bounded variation on R. Then
T,= lim m(@t)I + % /(I +iE_HE)|m'(t)|dt,
t——00 R

where I is the identity operator and the modulation operator E, is given by E, f(x) = e~ f(x).

As E, is bounded on L?(w) for 1 < p < oo and by (3.1) we have

/ T Pw S / L EMPw,
R R
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see [16] for details.
Using this, and classical Littlewood-Paley theory for dyadic decompositions of the line and (1.5]),

we obtain the following theorem.

Theorem 3.1.8 If m has uniformly bounded variation on dyadic intervals, then

/ T fPw < / M w.
R R

Note that in contrast to putting a constraint on the weight w, obtaining Fefferman-Stein-type
inequalities allows us to use (I.4) to immediately recover the classical Marcinkiewicz multiplier
theorem. This idea of using Littlewood-Paley theory to reduce to dyadic intervals, thus reducing
the problem to simpler behaviour that is easier to bound, is the impetus behind this chapter. We
will discuss this method more in depth later, for further discussion see [3} 2, [38]].

While these classical theorems deal with more singular multipliers, such as the fractional integral
operator, there are much more singular multipliers that do not have bounded variation on even
dyadic intervals. The following theorem can be found in the encyclopedic exposé of the topic

by Miyachi.

Theorem 3.1.9 ([30]) If m € CY(R) has support in || > 1 such that for a,b > 0, we have

a(l/p—1/2)=band

Im@)| < 1&17°,
Im' )] S 1&g+

orifm € C'(R\ {0}) has support in |&| < 1 such that for c,d > 0, we have c(1/p—1/2) = d

50



and

Im©)| < 1€1°,
Im' ()] S 161477,

then m is an L? multiplier for 1 < p < 2.

We note here that if we take a = b = ¢ = d = 0, the above theorem implies both the

Marcinkiewicz multiplier theorem and the Hérmander multiplier theorem, see [16] for details.

Remark 3.1.10 A critique should be made of some of the above theorems, and furthermore of
many classical multiplier theorems. That is, such theorems suffer from having hypotheses that
are not translation invariant for the multiplier, yet it is well known that multiplier operators
are translation invariant, furthermore the conclusions of the theorems are both translation and
modulation invariant in the kernels due to the convolution structure of the operators and the

following observation.

Let m be a multiplier and 7, be the associated multiplier operator for which we have a Fefferman-
Stein-type inequality with maximal operator M, that is for all admissible input functions f we

have

[mrrwse [irrme
R R
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and consider a translation of our multiplier by a, m(-—a). Then the convolution kernel associated

with m, say K, would be modulated by ¢'*, and so

TS (x) = / K(y)e ™ f(x = y)dy
R

=e '™ / K(»)e““ ™ f(x = y)dy
R

and so

T f (X) = €T, (e [)(x),

taking the modulus of each side

Ty f Ol = T, (e ()]

and since we have the Fefferman-Stein-type inequality for any admissible function f and weighted

L? spaces are invariant under modulation, we obtain

/ T ooy P00 S / |fI°M,,w.
R R
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3.2 Anisotropic square function estimates

Definition 3.2.1 We call an operator T a Calderén-Zygmund operator associated with the di-

lation A if the following hold
1. T : L*(R?) — L*(R?);

2. there exists a measurable function K : R?> — R such that for every f € L8°([R2) we have
Tf(x)= / K(x—y)f(ydy
R2
for a.e. x & supp(f),

3. the kernel K satisfies

1

K <
KT S P 4(x)Y

for every x € R?;

4. the kernels K and K* (defined by K*(x) = K(—x)) satisfy the following pointwise Hor-

mander condition: There exist a positive constants M > 1 and y > 0 such that whenever

pA(y) < ﬁpA(x) we have

IK() - K(x— ) 5 222

P A(X)"*7
Note that in the isotropic definition of CZO, the constant M > 1 plays the role of keeping
x — y close to x in some sense. In our anisotropic definition, our understanding of "closeness"
is necessarily dependent upon our space, thus our M will depend on A.
In M. Christ’s book [11] page 94 Theorem 9 references the below theorem by R.R. Coifman and

G. Weiss.
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Theorem 3.2.2 ([12]) Let 1 < g < oo and w be a weight. If T is a Calderon-Zygmund operator

associated with the dilation A then T is bounded on 14.

Additionally, in a paper by G. Pradolini and O. Salinas appears the following theorem.

Theorem 3.2.3 ([34]) Let 1 < g < o0 and w be aweight. If T is a Calderén-Zygmund operator
associated with the dilation A and T : LY(R?) — L4(R?) is linear and continuous for all

q € (1, ) then

/ IT f()Pw(x)dx S / | £ )M w(x)dx
IRZ RZ

where [p] is the largest integer smaller than p.

See Hu et al. [22] for further discussion.

We now introduce an anisotropic version of the continuous square functions.

Definition 3.2.4

s4(f)(x) = </ |f * ¢A(t)(x)|2%>2,
0

where (;')\ has compact support away from the origin and for & # 0,

/ d?(A(r)@)% - 1. (3.2)
0

This section concerns itself with the two-weighted problem of this anisotropic square function.
The coming propositions show how to reduce the problem to an application of Theorem[3.2.3|in
the case p = 2 and follows mostly follows the isotropic case. In these propositions we have not
concerned ourselves with minimising the amount of applications of M , to the weight; however,
it would be surprising if Proposition [3.2.5| was not sharp in this sense and equally as surprising

if Proposition[3.2.7|was sharp in this sense. See [[10] for further discussion in the isotropic case.
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Proposition 3.2.5

||f||L2(w) S ||SA(f)||L2(Mjw)-

Proof: Forj=0,1,2,3,4,5, let
2k+1

=Y B * f(x)%.

ke6z+{j} 7 2*

Define A(8) = [ $(ANEL. As supp() C (& € R? : 2 < p,(&) < 3} the function A(£) has

support when

< pA(A(DE) <3,

W

which using the A-homogeneity of p, and the fact that in the definition of /f\z(é) the integral is

over the set ¢ € (1, 2), which gives the support of //’\l(f) as

< pa6) < 3.

oo | W

Now, define ¥ as the smooth function equal to 1 on the support of /f\z(é) and supported in the set
(EeR?: % < pu(€) < 4} Additionally, let € = {¢, },o, be a Rademacher distribution. Next

define TY by

7@ = ) aiAQ™Maf©.

ke6Z+{j}

Now, consider

LT f©= ) sk;?(A@-k)é)( 2 es;?(A(z-wf)ﬁ(&)).

ke6Z+{j} SE6Z+{j}
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Note that by the choice of the support of } that each of the summands in the definition of 1/“]\5
have non-overlapping support, thus the only terms in the double sum above are when s = k.

Therefore,

TT @)= Y &A™ ACHETE)

ke6Z+{j}
= Y RAQHOZACHOT ).

ke6Z+{j}

Now, by how we defined ¥ it is clear that /I’\l(é)/?(f) = /f\z(ff), this allows us to conclude that
TS f,() = £,(0).
Next, consider (3.2)) multiplied on both sides by ]/‘\ (&), for £ £0
~ PN A~ . dt
f&= / ¢(A(t)§)f(§)7-
0

Taking the inverse Fourier transform of both sides and splitting the  integral into dyadic intervals

gives us

2k+1

F@=Y [ buor fL,

kez J 2k

which allows us to write f(x) = Zj:o f;(x), in particular

5
fe) =) TETE £().

J=0
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Therefore we can write

/ 7Gx = /
[RZ RZ

0
> 2
sy / ‘T;T;fj(x) w(x)dx.
j=0 /R

2

5
Z TETE f,(0)| w(x)dx

Now, we make a claim about the operator Tjg .

Claim 3.2.6 For each j = 0,...,5, Tf is a Calderon-Zygmund operator associated with the

dilation A uniformly in €.

Assuming this claim for now, along with Theorem [3.2.2] and Theorem [3.2.3] we have that

T fj(x)|2 M3 w(x)dx.

/R 2 ‘TfT; fj(x)‘z w(x)dx < /R 2

This gives us

5
/ G wxdx S Y, / T £, Miwdx (3.3)
R2 =0 R2
Now, writing
2k+l dt
yi(x) = Daq * f(x)T,

2k

we can therefore write, due to the support of 7,

T L= Y en.

ke6Z+{j}
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Thus, taking expectations in ¢ for both sides of (3.3)) gives us

2

Z €Y (X)

ke6Z+{j}

3
M w(x)dx.

5
/R RVACIRTICLESS JZ; /R E

Now, consider

2

E

Z €. (X)

ke6Z+{j}

= [E( Z Z 6kefyk(x)yf(x)> .

ke6Z+{j} £€6Z+{j}

Using the independence of € and the fact that E(¢) =0

2

= Z |yk(x)|2.

ke6Z+{j}

E

Z €. (X)

ke6Z+{j}

Thus, with an application of Cauchy-Schwarz and the observation that

2k+1

/ dt =1In2,
ok t

we have that

2k+1

2
o = Brw * L)L
t
ok

k+1 2 2k+1
< </ [0 # £ ?) (/ |1|2%>
2k 2k

2k+1

<[ fouo s oo 4
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Therefore, we can conclude that

2k+]

5
/ |f(x)|2w(x)dx < 2/ Z / |¢A(1) * f(x)‘z %MiLU(X)dx
R2 i—0 R2 k 2k

J €6Z+{j}

g

= / sA(/)(x)* M w(x)dx.
[RZ

Dae * f(x)’2 %Mzw(x)dx

So, to complete the proof of Proposition [3.2.3]it is sufficient to prove Claim [3.2.6] H

Proposition 3.2.7

s AU 12y S ”f”LZ(Mjw)-

Proof: To prove this we will introduce a discrete version of the square function, this will allow

us to expand out the square directly as we did above. Let k € [1, 2] and define

S () = Y | ageai (I

keZ

With this, we can write our square function as

6= [ [ 10 &
2k+|

=2 |buo * f)

kez J2¢

2 di
3
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Let t = k27, then j—f( = 2"%and so

? 2 dx
sANE =Y, /1 |baeasy = G SE

kezZ

2
< /1 Z ‘d’A(;«z—k) * f(x)‘z d?K

kezZ

2
- / S, (P 4E.
K

1

S = Y [baan * 10|

Let € be a Rademacher distribution as above, expanding out the squares, we have
kez

For the sake of simplicity of proof later, we introduce the same Tjg, for j =0, ..., 5 as before, but

Z ExPauarr) * [ (X)

kez

this time it will have an extra dependence, k. Define T, by

2@ = Y e2(AK2H ).

ke6Z+{j}

where 7 is again the function equal to 1 on {& € R? : g < p4(€) < 3} and supported in the set

{EeR?: é < p,4(€) < 4}. Note that by how we chose the support of 7,

2
S.(f)P(x)<E

5
2T )
j=0

5
SE (2 Tff(x)|2> .
=0
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Thus,

s a2y = / 540N w(x)dx
R2

2 d
< / / S ()0 = w(x)dx
rR2 J1 K
2 5
< E
L2
2 5
< E
[=(2/

Tf,,(f(x)|2> X oy
K

e oo w(x)dx> o
’ K

Claim 3.2.8 For each j = 0,...,5, T isa Calderon-Zygmund operator associated with the

dilation A uniformly in € and k.

Assuming this claim again for now, along with Theorem [3.2.2]and Theorem [3.2.3] we have that

[ |rireof weax s [ 170 Mieax
R2 ’ R2

and therefore

2 5
IIsA(f)Iliz(w)s/ [E(Z/ |f(x)|2M§w(x)dx) Kdx.
1 j=0 R2

Finally, note that the RHS is independent of € and j, and since k¥ < 2, we have
54Dl S [ 1O Mietrax
RZ
_ 2
= 110

So, to complete the proof of Proposition it is sufficient to prove Claim[3.2.8] O

Note that Claim is an immediate consequence of Claim [3.2.8] proof by taking x = 1.
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Proof: [Claim[3.2.8]] By Definition there are 4 properties to check; property 2 is trivially

satisfied by the definition of Y/T\’( where

K(x) = Z Er X A2 (X)-

ke6Z+1{j}

Property 1 boils down to Plancherel’s theorem as follows

ITe £15 = 1T F1I

:/Rz

<[ ¥ ppawrhef|fe| ¢

2 kebZ+{j)

2

> e A2 E)| de

ke6Z+{j}

As supp(7(A(k27%)-)) is disjoint from supp(7(A(x27%)-)) for all s # k € 6Z +{j}, we have that

> pax2 el <c.

ke6Z+{j}

Therefore, we conclude that

A~ 2
| ¢

2
IS |
R2

= 17112
= I£1%.

For properties 3 and 4 the arguments are longer, but no more complex. First let’s start with

property 3. Note that although the following proof is for K, it is identical for K* due to our
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bounds on y being even. So, fix i and x such that 27/ < p,(x) < 27", Then,as 1 < k¥ < 2,

K@l=] ), ex™ 2y (AG™'25x)
ke6Z+{j}
S Y 2 |raw2)|.
k€6Z+{j}

As 7 is a bump function, y € S and therefore for each N € N,,, we can find 4, > 0 such that

Ay

S—
OIS .00

for all y € R%. We note that our 4, implicitly depends on the the homogeneous dimension v,
but we will explicitly choose N dependent on v at a later stage in the proof. Now, if we split the

sum using the triangle inequality as

K@ls Y, 2290+ Y, 2 [xa29%)

ke6Z+{j} ke6Z+{j}
k<i k>i

then use the estimate on y separately in each sum

kv /10 kv AN
|K(x)| S Z 2 (1 +pA(A(K_12k)X))O + 2 2 (1 +PA(A(K_12k)x))N

ke6Z+{j} ke6Z+{j}
k<i k>i
. . Ay 20DV
| Y sy
mpY: N
kebZ+{j) veazay) (L HET250,(0))
k<i k>i

. (k—i)v
<2442V Y e
weszriy @)
k>i

—2iv]9v /10 +22—N /IN Z ) (k=i)(v=N) ,

ke6Z+{j}
k>i
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and so, choosing N > v, we have that

|K(x)| S 27

S pa(0)7".

Again for property 4, fix i and x such that 27" < p,(x) < 2-"*1 and fix y such that p W) <

j p4(x), for some M > 1 that we will choose. Now, consider

|K(x = y) = K(x)| < Z k2% (A2 (x = y)) = 2 (A(c™'2)x))
ke6Z+{j}

S Y 2 rArT 2 - ) - rAGTI29x) .

kE6Z+1{j}
Define for s € [0, 1],
g(s) = y(A(™'29)(x = sy))
and so by the mean value theorem applied to g we have, for some ¢ € (0, 1),
g'(c) = g(1) — g(0)

and so, by direct calculation of g’(c), we have

HAGKT290e = ) = 2(AGT29%)| < [(=AGT24, V(AG™129x = ey)

< AT 29911V 2 (A ™12 (x = e
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by the Cauchy-Schwarz inequality. Next, define

I, ={k€6Z+{j}:k<i},
I,={k€6Z+{j}: p,(A(x'2%y) < 1,k > i} and

I = (k€6Z+ {j} : pu(AG™'25y) > Lk > i).

Here, we note that there is overlap in some of these sets, but as the summands are all positive,

we have

|[K(x =) — K(x)| 5 Z 2 AT 29IV (A2 (x = e)

kel
+ D0 2 AT 2V (A2 (x - ¢)] (3.4)
kel,
+ ) 2 AGT 29V (AT 290 — ey)l.
kel

It’s also crucial to note that a priori the sizes of I, and I, are dependent on y currently, but we

will fix this issue shortly by making the sets larger. In fact, we will sum over the set defined by
I,={ke6Z+{j}:k=>i}.

We will also need the fact that y € S, thus we can get bounds on |V y|; that is, foreach N € N,

we can find Ay > 0 such that

Ay

\Y <—N
IVx(2)| AT, @)

for all z € R2.

We will consider each sum in turn, first for k € I, k <iand p,(y) < ﬁpA(x), andsoif M >4
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we have

-1
2K ok-i ¢ .

-1
_ _ K

pA(A(T'2%y) = k7125, () < ﬁQkﬂA(x) <

So by Remark|1.3.12|we have that | A(x~12%)y| < x~12%p ,(»), thus we can estimate, with N = 0,

D2 AT 29IV 2 (AT 2)(x = ep)] < 2070 Y 2R 12k (1) 227D

kel kel
— 2i(v+l)pA(y) Z 2(k—i)(v+l)K_—l/10
kel
P4(¥)
~ pA(x)v+1 >

where the last line follows from the fact that for k € I, we have k < i and from the fact that
pa(x) ~ 27"
Next, we consider k € I,. Immediately we have that p ,(A(x~!12%)y) < 1, thus |A(x~12%)y| <

k~12%p ,(y) again, so for each N, € N, we have

2(k—i)(v+1)K—1 AN
2

(1 + p,(A(™12)(x = cy)N

D 2 AGT 2V 2 (AT 290 = el < 2 Vp,(3) )]

kel, kel,

Now, since p,(y) < j p 4(x), we have that

pa(x —cy) = pu(x) — pylcy)
P PA(X) - pA(J’)

2 pax) - %m(y)
M -1

= M pA(X)
1

P EPA(X)
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where we used the reverse triangle inequality and the monotonicity of p, since ¢ € (0,1). We

have also added a restriction of M > 2 for convenience. So, using this and the homogeneity of

p 4, We have

2(k—i)(v+1)K.—l AN
2

N2 Mo, ()N

D 2 AT 299V 2 (A2 — ep)| <20 0p, (1) D)
kel, kel
PA(Y) Z 2k=(v+1)

~ pA(x)v+1 & 2(k—i)N2

pA(y) 2 2(k—i)(v+1)

I -
pA(x)v+1 e 2(k—l)N2

P4(¥)
~ pA(x)v+1

forany N, >v+1lask >i.

Finally, consider k € I;. By Remark [1.3.12) p,(A(x~'2%)y) > 1 implies |A(x~12%)y| <

k2% p ,(y)°, thus for each N; € N, we have

. 2kvzk6p (y)"K_”/l 2—i(v+o')
Z 2kV|A(2k)y| |V,1/(A(2k)(x —cy)| € 9i(v+o) Z A N,
(1 + p,(AQF)(x — cy)Ns
kel &

P (y)o' Z 2(k—i)(v+0')

~ pA(x)v+0' P Z(k—i)N3

pA(¥)°

~ pA(x)v+6 ’

for any N; > v+ o, as k > i. Now, since p,(y) < ﬁpA(x), this gives us

pA(y)<i<1
pax) M
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since M > 1, and since ¢ > 1,

¥, 24 AV (AR - ey 5 222
kel; pa(x)vte

P4(Y) <pA(y)>"_l< P4(Y)

T\ o) T G

So we can substitute all of this back into (3.4]) and we get

PA(¥)

K(x—y) - K(x)| § 2,
K =9 - K@l $ 2

as required, thus we conclude the proof of the claim.
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3.3 Subdyadic Littlewood-Paley theory

3.3.1 Isotropic subdyadic Littlewood-Paley theory

In Chapter 4 we will be producing oscillatory estimates on large classes of kernels and will need

both the below theorems, due to Beltran and Bennett, and Bennett, respectively. We include

them in this chapter as they are the isotropic and one dimensional versions of the main theorem

for this chapter. We will discuss the nature of the first of these two theorems and its proof in

more detail when we introduce the parabolic version. The second theorem is proved in [3]] in a

different way that contains elements that do not easily extend to higher dimensions, specifically

using estimates on the Hilbert transform.

Theorem 3.3.1 ([2]) Let o, f € R, y € N and let f be an admissible input function and w be

a weight. If
|D'm(&)| S |g|PeHniteD

for m with supportin {£ € R? : |E]* > 1} and |y| < L%J + 1 then

/ Tl < / FPMPM, , M,
R4 R4

where T, is defined by 7{,,,7 =m f and

20d
M, yw(x) = sup — w(z)dz,

el T Jy—z|gr

where

I (x)={ry :0<r*<land|y—x|< pl-ay,
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Remark 3.3.2 We have used the notation D", where y = (y,,v,, ..., V) is a multi-index to mean

o7
D f0 = ——L
1 Xa

Theorem 3.3.3 ([3]) Leta, e Rand uy, C > 0. If m: R — C is such that

supp(m) C {E € R : |&|" > u"}, (3.6)
Sl;p 1EPIm&)| < C (3.7
and
sup sup Rﬂ/ |m'(&)|dé < C, (3.8)
R*Zp IC[R,2R] +1

len(D=(R/u)~" R

then there exists a constant ¢ > 0 such that

T flPw<cC? | |fIPMM, , M*w,
| m a.p.u
R R
where T, is defined by 7{,,17 =m f,
I"zﬂ y+r

M,z w(x) = sup — w 3.9)

(y’r)era,y(x) r y—r
and
Fa,ﬂ(x) = {(y,r) :0<r'< 'u_“, |X—y| < ﬂ_ai‘l_a}_

Remark 3.3.4 Theorem is a scale invariant version of Theorem in one dimension.
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We have been precise with the dependence of the conclusion on the constant in hypotheses (3.7

and (3.8) so that we can keep track of the dependence of the constant on the scaling p.
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3.3.2 g-functions and associated anisotropic subdyadic multipliers

The main result of this thesis is a parabolic version of Beltran and Bennett’s Fefferman-Stein

inequality [2] for a specific class of multipliers adapted to the dilations A.

Theorem 3.3.5 Let a,p € R, y € N? and let f be an admissible input function and w be a

weight. If m is a Fourier multiplier such that

|D"m(&)| S p (&) Prriviate=D (3.10)

for m with support in {€ € R? : |E|* > 1} and |y| < 3, then

/ |T,,f ()P w(x)dx S / |f(IP MM, , M w(x)dx (3.11)
R2 R2
where
My, pf(xX)= sup (fv)2ﬂ|19,4(z) * f(y
HET 4 (%)
and

I,(x)={(rnNeER*XR, : 0<t"< 1, py(x—y <1}

Remark 3.3.6 We have stated Theorem with a Mikhlin-type condition on our multipliers,
but it is possible to reduce the requirement to just A < 2 and even further reduce to a broader

class of multipliers with a Hormander-type condition, see [2|] for details.

We will prove Theorem [3.3.5]by splitting our argument up into distinct steps. The main idea of

this proof has roots in work of Stein, see [38], and it consists of finding square functions, g, and
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g,, adapted to our operators 7,, such that we have the inequality

81T, /)(x) S &(f)(x).

The main aspects of this theorem are illuminated by understanding the proof of this pointwise
inequality. Especially so for the structure of the recoupling decomposition, which is adapted to
scales that are much finer than dyadic - referred to as subdyadic, see (3, 2]]. At this subdyadic
level, the multipliers considered are effectively reduced to bump functions - the archetype for
this study in the one dimensional case are the Hirschmann multipliers [20]]

IS
|x]pd”

m(g) =

The multidimensional version in the isotropic case was studied by Wainger[42], and Fefferman
and Stein [18]. Later, Miyachi studied a wider class of multipliers [30] defined by the Miyachi-

condition

|D'm(&)| S |g|7PaHrlteD

where the support of m is contained in |£|* > 1. This class of multipliers also encapsulated other
multiplier classes, such as the class of multipliers famously considered by Héormander in [21]].
However, in the anisotropic case, it turns out the obvious adaption for the anisotropic version of

the candidate multipliers given by

does not fit into the anisotropic Miyachi class (3.10). However, Theorem [3.3.5] still has many

model multipliers; indeed, we can create them by summing up bump functions that have support
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on the subdyadic balls.
Returning to the overview of the proof, after we have the pointwise inequality in hand the prob-
lem 1s reduced to proving Fefferman-Stein-type inequalities for the two square functions g, and

g,, and putting these all together as follows

1T, W2y S 18 T 2y S 1820 20y S 1 20

where w;, w, and w; are weights. Our g-functions alluded to above are given in full in the

following definitions.

Definition 3.3.7 Let ¢ be as in Definition and define

dy dr\?
Eaap(/)) = (/ / If * ¢ <y>|2——>
el 0<ro<1 J py(x—y)<td—o AW (tv)2p+0-0) ¢

and

dt \?
Erapol)X) = ([«1 Lf ¢A(t)|2 8 q)A(tl")(x)W)

where ® € S, supp({IS) Cl{éeR?: |& <1}and ®(x) > cfor|x| < 1.

Note that these two g-functions are intimately related to each other, and to our maximal functions
M, , 5 The link between M, , ,; is rather immediate, as our approach regions, I', ,(x), are the
set that the integral in the definition of g, , , is over. To see the relationship between these two
g-functions, consider that g A b dominates, modulo a constant, g Aap pointwise; indeed, as

®(x) > c for |x| < 1 we have ®(A(t~1~9)(x — y)) > ¢ for

AT x =<1 = pylx—y) <1177,
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which, for 0 < r* < 1, is our set I', ,(x), thus (A '")(x — y)) > c on I, ,(x). Itisno
accident that we have this pointwise majorant, and it will play a role in our analysis.

Primordial versions of these g-functions were introduced by Littlewood and Paley during their
efforts to better understand the dyadic decomposition of Fourier series, see [25) 26] 27]]. Later,
the mantle of this study was taken up by Marcinkiewicz and Zygmund and great advances in
understanding these g-functions was developed, including the introduction of the g* function by
Zygmund, see [46l 45]]. However, the true power of these g* functions were not realised until

Stein’s introduction of the gj function in [37], our version of which is given below.

Definition 3.3.8 Let ¢ be as in Definition and define

1
s _ 2 A dt 2
8papi (X)) = ([ISI |f % @apl” * RA(,a_l)(x)(tv)zﬂH) ,
where R*(x) = (1 + |x|)™2* for A > 1.

Note that as @ € S in the definition of g, , ;4. We can bound it by a constant multiple of
(1 + |x|)~?* for any A, thus g AapolS)X) S gj‘w’ " L()(x) for any admissible f. While this may

seem like yet another pointwise majorant, it has a much more interesting property, given as

EaapaT(INX) S &5 ().

This brings us full circle to the start of this discourse - finding square functions g,, g, that are

adapted to our multipliers, see [41] for more details.

Proof: [Theorem [3.3.5] First we apply Proposition 3.2.5]then Proposition [3.3.17]to obtain

”Tmf”LZ(w) S ”SA(Tmf)HLZ(Miw)

< ”gA,a,ﬂ(Tmf) ” L2(M 4 4 s M w0)*
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Next, we use the observation that g, , ; o dominates, modulo a constant, g, , , pointwise and

Theorem [3.3.15/to obtain

Eaas T S &, (N0,

and thus

TS iz S 18} : OOl a5

Finally, we use Proposition (3.3.18{and Proposition |3.2.7, with 4 = % to obtain

||Tmf”L2(w) < ”SA(f)”LZ(MAMA’a,ﬂMiw)

SN e2eart vy, ya3 e

[
Finally, we provide the L? — L9 bounds on our multipliers.
Corollary 3.3.9 Let m be such that
|D"m(&)] S p (&) PrHIVIate=D (3.12)

for |y| < 3 with supportin {E € R? : |£]*> 1}, and 1 <p<qg< oanda,f €R.
° Ifa<()andﬂ<a<l—l>+
e ora=0and f =
° 0ra>0andﬂ>a<%—i)+i—$;

then T, is a Fourier multiplier from L? to L1.
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Proof: This is an immediate consequence of Theorem [3.3.5] Theorem[2.4.3|and (I.4). [

3.3.3 Pointwise estimate

The aim of this section is the proof of our pointwise inequality

Eaapa TN S g, (N0,

To prove this pointwise estimate, we wish to reduce to a portions of the landscape where our
multiplier’s behaviour is much simpler, for this we must define what we mean by a-subdyadic,
or more generally subdyadic. The general idea is to decompose dyadic rings into balls of size
roughly their distance from the origin to the power 1 — a. On these balls, the local behaviour
of our multipliers is much simpler and makes gaining the pointwise estimate on each ball much

easier.
Decomposition

Let S* = {¢ € R? : |&|* > 1}. Let {A;} ., be the set of annuli given by 4; = {¢ € R :

271 < pyu§) < 27). Let B, be a family of p,-balls, B, ;, with (B, ;) ~ 2/~ such that

Pasl’
each B, . isentirely containedin A, ;UA;UA; , B, ;covers A; and there is bounded overlap

of the BpA’ - Finally, let

Forafixed B € BB 0,0 let yp, € S such that i, has support in the concentric double of B, denoted

2B,

D i@© =1,

BEB,,
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for all £ € R?\ {0} and

|D" @) S 7y (B) 1,

Then for f such that f has support in S%, we have

f= 2 frvs (3.13)

BeBM

Recoupling decomposition

For the recoupling estimate, we will use a specific example of the above decomposition based
on a lattice structure.

Let A € S have Fourier support in A, such that

Y AE=1

JjEZ

for £ € S%, where A j(é) = K(A(Z‘f )¢), for each j € Z. Note that this is a partition of unity
for the punctured real plane and that supp(& ;) € A,. Next, let n € S have Fourier support in

(£ € R? : |€] <2} such that

2 A+ =1

kez?

for & € R%. Additionally, define 7,(£) = #(AQ27/“"D)¢). For each j € Z and k € Z* define

é/’\j’k(f) = Kj(f)ﬁj’k(é), where 77, ,(€) = H(A(27/*"D)E + k) and note that

Y Y Lo=1

JEZ keZ?
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Finally, choose a family of p ,-balls B, and functions {y} ¢ B, Ssuchthatforeach B € B,
A

there is exactly one (j, k) € Z X Z* where w, = ¢;xand rp(SUpp(g/“\j,k)) ~ r,(B). Note that due to

the supportof A, p,(B,0) ~ 2/, and by the support of 7, ; has support in a p 4-ball of p ,-radius

given by r (B) ~ 27/~ Now, consider

1D (&) = | D7E, (&)

< 0=ilMla 4 p=illrllaa=D),

and as we are considering & € S¢, the support of # implies we only consider j such that 2/* > 1,

thus 27/ < 27/ - 2% We can then deduce

| D" ()| S 277llata=D

< rp(B)_”V”A,

as r,(B) ~27/@D,
Decoupling
Proposition 3.3.10 For f such that f has support in S*

Baapa O S D Erapolf * wax)

BEB‘,A

Proof: By (3.13) we have

2
dt
2v+1°

(I)A(za—l)(x —ydy

R S A D R R e
1<l JR? BeB,,
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Considering just the inner integral for a fixed * < 1, multiplying out the square and applying

Pascal’s theorem, we have

/ Z (f = wp % Pu)VS * Wp * Gupy (NP 41y (x — y)dy
R? B.BeB,,

- / 3 / FOTMT 5T MPADOFADM P dEdN® s (x = Y)dy
R? ppes, /R JR?

= Y / FOF @@ BADE DA™ P D(AF")E - n)dEdn
B.BeB, JR JR?

where the last step is simply an application of the Fourier inversion formula to ®. The support
of <;5\ and @ ensure the integrand and therefore the summand above vanishes unless B and B’
are both p ,-distance % from the origin, thus r,(B) ~ r,(B') ~1“~Das B, B' € B, .

Furthermore, the support of @ tells us that the integrand vanishes unless |A(#* ") (& — n)| < 1;
that is, that the integrand vanishes unless p,(B, B') < t*~". For each B € B, , let n(B) be the
setof B € B ”, such that p,(B, B") < 1@V, As the decomposition B ”, has bounded overlap,

we have that for each B there are finitely many B’ in the summation, i.e. |n(B)| < 1. Thus,

gA,a,ﬁ,cp(f)(x)z
dt
= / / Z (f *wp * a0 )V * Wa D g) DD gga-1y(X — y)dyﬂﬂwl .
gl J R? B,B,EBpA
pA(B.B)SHE
|Bl~| B |~
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So, rearranging then using the Cauchy-Schwarz inequality for the sum in B’, we have

D rw b)) * Wy da)O)
B,B'EB,,

pA(B,B")St* 1
|B|N| BllNl(a—l)v

= YD (F w0 wp * ha))

BEBﬂA B,EB;;A
| BI~DY o, (B.B)S1 D
|B’|~I(’1_1)"
- Z (f *wp * Ga0)Y) Z (f = wp * Py - 1
BEB,,A B'en(B)
| Bl~rem Y | B! [~ DY

B
B

< Y Frupxda)| D, If xwp bR | D 1

BeB,, B'en(B) B'en(B)
| B|~ta—Dv | B’ |~tla—Dv | B! |~t@=1v

1
2

< Y Frwp b )W IBL Y, 1f *wp by

BeB,, B'en(B)
| B|~@=Dv | B’ |~tla=Dv

Next, using the Cauchy-Schwarz inequality for the sum in B, we have

Y rwp )OS * W da))
B,B’eB,,A
pa(B.B)<t*D
|B|~|Bll~t(a—l)v

2 2
<[ D 1f s wg b ) Yoo m®B Y Nf xw s b
BeB, BeB,, B'en(B)
| B|~1= DY | B|~(= DY | B[~

Observe that in the last term on the right hand side of the above, the summation over each
B’ € n(B) for each B € B, is equivalent to just summing over all B’ € B, and multiplying

by |n(B)| each time. Additionally, as |n(B)| < 1 forevery B € B ,, We pick up a finite constant
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that is at most the maximum of |n(B)| over all B € B, , so we have

D rw s ba)OS * v da))
BB'EB,,

pA(B. B @D
IBINl B INt(a—l)v

=
=

S| D) 1rrwesdaWP| | D 1f xwe * da)

BeB,, B’EBM
|B|~l‘(a71)" |B!|Nt(a—l)v
= |f s wy * daey DI
= Yp A\
BeB,,A
|B|~[(“_1)V

Thus, we can conclude that

) 2 dt
Saapal NS [ [ ZB} |7 % v B O] @6 = 9y
Be oA

1°<1

and finally, by Lebesgue’s monotone convergence theorem, as the summands are positive, we

have
(f)x)* S Z Foay, n ()2(1) N it
gA,a,ﬁ,CD ~ Yp A(D) y A(ra-1) y ytzﬁ\,_H
BeB,, /<l JR?
- Z gA,a,ﬁ,fb(f*WB)(x)z,
BEB,,
O]
Recoupling

In order to prove the recoupling estimate, we will require the following lemma.
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Lemma 3.3.11 Let R,, R, > 0 and define

Define
D;1(8) = DY)
and define for each k € 72
Dy 51 (8) = DG 'E+ k)
and f,(x) = [ % @ ;1 (x). If
000 §

for every N € N, then

D AP S 1P #1050 ().

kez?
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Proof: We have, for each k € Z2,

Ji(x) = f 3% @y 51 (x)
_ / F(eFRCIND (x — y)dy
R2
_ ezmakoc/ fe 2 kv (x — y)dy
R2

— e27ri6k-x(f(,)q)6_l(x — .))"(5]()

— e2ni6k-x’ﬁx’5(k)’
where A (y) = f(»)®;1(x — y) and h_5(k) = h (6k). So

Z |fk(x)|2 — Z |e27ri5k.x/],\lx’6(k)|2

kez? kez?

=) [h (01

kez?
Now, by Parseval’s identity,

2

Y ke

kez?

dy,

¥ 1o = |
[0,1]2

kez?

using the change of variables y = 6z we have

2

h(5k)e=*| dz.

kez?

D 1A =RR, /
[o,Ril]x[o,

kez?

%)
Now, using the Poisson summation formula, along with the scaling and translation properties of

the Fourier transform, we can write

- o 101 _
Y h(5k)e=* = . Y h(z+67"h),

kez? 1722 peze
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so substituting this back in we get

2

h(z+6 k)| dz.

kez?

D 1S =

vez? [0, 3-1X10, -]

Using the definition of A, then the Cauchy-Schwarz inequality, we get

2

3 46 @ (x —z— 57| dz

kez?

2 P = R R

reg? [0, 3-1X10, -]
11

< —— > |f(z+5_1k)‘2‘Cba_l(x—z—5_1k)| > ‘CD&_I(x—z—(S_]z,”) dz.
ez?

R R, Jio RLl]x[o,RLz] vez?

Next, using the substitution z + 6 'k = w, we have

D 1AoP

kez?
1 1
< / | f (W) Psi (x — w)| O (x—w+6(k=-2)| |dw
k§2 [ X2 2 R, R, féz |
and observe that
1
R—— > |<I>,s (x—w+ 67k - f))) = Y |06(x — w) + k- 2)|
R, tez? ¢tez?
N
< 3 (e aria)
AN\ +[8(x—w)+ k-7

for every N € N. Choosing N large enough, we can bound this term by some fixed constant,

thus

XA 5 [ 7GR0, - w)due
R2

kez?

= 1P % | @ |(x).
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[

Proposition 3.3.12 For f such that f has support in S® and the specific decomposition B,

andyy = ¢, = A; % n,, described in Section@ we have

N g W S 8, (NP (3.14)

BEB,,

Proof: First, consider the support of $ A this implies that ¢, * A; * n,,(y) # 0 only if

2/ ~ t7! thus

dy dt
8ha (f*u/)(x)— / |f % Pa * A, %1, DIPR, . (x =)
Bezb; Awhi ? jeZ rez2 J1°<1 JR? AD Tk A=) (Iv)zﬂl‘
dy dt
* k A ’R —.
/ /Rz;lkgzlzlf Daw) ﬂjk(J’)l A(,a 1) y)(t")zﬂt
Now, we can use Lemma 3.3.11{where §=! = A(277/@~D) to get
DS s oy Ay % 0 WP S 1 * gy A1 1| ()
kez?
uniformly in ¢, j and y, thus
" dy dt
D gk v S / / 218 G P I OIR,  (x = 9 s
BeB,, el JR2 5770 (™)
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Now, consider

|/ % daq * Aj|2 * [n;|(y)

- / | 5 bay * 8,0 = D) |ny(2)ldz
R2

=/Rz

2
< / ( / |f*¢A(t><w>||A,<y—z—w>|dw> In,(2)ldz
RZ [R2

2
|n,(2)ldz

/ [ # (WA (y—z—w)dw
R2

2
- / ( / |f*¢>A(t><w>||A,-(y—<z+w>>|%|A,.(y—z—w)ﬁdw) In,(2)]dz
IRZ

R2

and using the Cauchy-Schwarz inequality we have

|/ P aq) * Aj|2 * n;|(y)

</ </ |f * ¢A<,>(w)|2|A,-(y—(W+Z))IdW> </ |A;(y—z— W)IdbU> In;(2)|dz
R2 R2 R2

= lIA1, / / 1 % ban @18, = w = DI, (2)ldwdz
[R2 RZ

using Fubini’s theorem,

% b * AP % 1,109 S / / 1 % b @PIA, (= w = DI, (2)ldzdw
R2 JR2
_ / 1 % ban@PIA | % 10,10y = w)duo
[R2

=|f * ¢A(z)|2 * |A| |1 |(p)-
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Hence,

« dt
Y g, v S / . /R X a8 I OIR o (x — Dy

BEBPA 2Jj~t-1

) i ) dt
—/ Z |f % apl™ * 18] = |n;] = RA(I“—l)(x)tZﬁvH
LA | 2J~t=1

dt
— 2 A
= [ 7 b0 T 1A 5 R (= i

2J~t1

thus, since A, # € S and by the fact that we’re summing over j such that 2/ ~ t~1, we can use

LemmmalA.1.Tlto conclude that

" dt
N g F () S / ) /R S # ba PR (6 = )y

BEB,,

= g, (N,

Pointwise estimate at subdyadic level

Now that we can efficiently decompose and recompose our landscape, all that remains to prove

Theorem [3.3.15]is to prove the same estimate uniformly on each subdyadic ball.

Proposition 3.3.13 Let B € B, and 0y be a bump function supported on 3B and equal to 1 on

2B. If
|D"m(&)| S p (&) PrHirlaa=D
and

|D"0R(E)] S 1, (B) Il
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foré € (E€R? 1 |E|* > 1} and |y| < 3, then

IT,,(0p)(0)| S pa(B,0)" Hy(x), (3.15)

where

| Bl

0= A, B

Proof: First, by the Fourier inversion formula

T, (05)(x) = / (YD) 4 de,
R2

due to the support of ) g and then our hypothesis on m, we have

T, (x| < [ Im©I05(E)]dE
3B

< / P AP D).
3B

Since [05(&)| < 1, we have

IT,,(0p)()| S p4(B,0)" - |BI. (3.16)

Now, going back to our Fourier inversion formula, and using elementary properties of the Fourier

transform, we have another estimate, that is

(ix)'T, (vp)(x) = / DY (m(£)D(&))e™ d¢.
R2
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Using the support of v, this gives us the estimate

W 1T, @)(0)] < / | D (@0 4| de.
3B

Now, setting ¥y = (3, 0) and using the chain rule

3 4
PN
EARVIRCIEIIIS /33 (Z W%(é)

Jj=0

)

3
</ (Z pA(é)—ﬂ”ﬂ“—“r,,(B)—“-f”) de,
3B j=0

a—jjm(é)‘
o¢]

where the second line is due to our hypotheses and the fact that

o .
‘—.03(5) Sr(B)”

&

for j =0, 1,2,3. Thus, we have that

3
r,(BY1x, P|T,,(0p)(x)| S p4(B,0)"| Bl <Z pA(B,O)j(“_”r,,(B)j> :

J=0

Likewise, if we set y = (0, 3) and go through exactly the same steps, we obtain

3
r(BY? 1%, P IT, 0p) ()] S p4(B.0)™[B] (Z pA(B. 0>”f<°'-“rp(B)“f> .
j=0

Adding these two estimates together and using the fact that

pA(B’ O)(l_a) ~ rp(B)’
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we deduce that
(r,(BY*1x, > + r (B)|x, )T, (0)(X)| S p4(B,0)""|B].
So by equivalence of finite norms, we have
|ACr,(B)x|*|T,, (0)(X)] S p4(B,0)"""|B].

Adding this estimate to the estimate (3.16]), we obtain

| Bl
(1 +|A(r,(B))x])*

T, (0p)(X)| S pa(B,0)

Proposition 3.3.14 For each B € B 0,0

EaapoT(f *wp)(x) S gj’a’o’g( fo* wp)(x). (3.17)

Proof: Let v, be smooth and such that supp(vz) C 3B, Dz = 1 on supp {z and
|D"(&)| S rp(B) 17l

for £ € S*. Then we have

dy di
120t

7 dy dt
= [K] - |m * Up * f * Wp * ¢A(f)(y)|2q),4(,17a)(x _ y)tz_ﬂT

gA,a,ﬁ,cp(Tm(f * IVB))(X)2 = / | s f % wp ¢A(;)(.V)|2q),4(ﬂ—a)(x =)

reg1 J R?

dydt

= |T,,(vp) * [ * wp * ¢A(1)(y)|2q),4(;1—a)(x - Y)T_-
o<1 R2 t ﬁ t
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Expanding out the first convolution, we get

EaapoT(f * wp)(x)

2
dy dt
< / / </ T, (0p)(y = DS * yp * qu(,)(z)ldz) (X — D)
r°<1 J R2 R2 . .

2 dydt
= <|Tm(03)| * | f o pp x (l"A(;)l(J’)) D 4 1-ay(x — )’)T_-
gl JR2 1?h t

2
dydt
<I)A(,1fa)(x - y)tz_ﬁT

/ T, (vp)(y — 2)f * wp * ¢A(;)(Z)dz
R2

Now, by Proposition [3.3.13] we have that

v 2 dydt
ZaapoTu(f * wp)(x) S / (PA(B,OY Y Hy 5 | f 5wy # ¢y |(0))” @ gm0 (x — y)ﬂ_ﬂT'
r°g1 J R2
Now, by the support of ¢ 4, we need only consider B such that p ,(B, 0) ~ %, thus
dydr

EaapoTalf * wp)(x)’ S / P (Hy * | f * wp * <z'>A(,)|(y))2 D 410y (X = ¥)
R2

17<1 126 ¢

Using Fubini’s theorem and the Cauchy-Schwarz inequality as we did in the proof of Proposi-

tion [3.3.12] we have

dt
gA,a,ﬁ@(Tm(f * lI/B))(x)z S / / VERTE ¢A(z)(Y)|2HB * D 1) (X — J’)dyTa
<1 JR2

3
where we have used the fact that || Hz|| < 1. Note that Hz(x) S R:(Il_a)(x) and @ 1./ (x) S

Ri(tl*a)(x) for all A > 1, in particular for A = %, so by Lemma|A.1.1|with A = % and r = 7% we
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have

Eaapo(Tu(f * wp)(x)* S /

171

2 dt
/R2 |/ wp * d)A(tlfa)(Y)lzRi(ta,l)(x - J’)dJ’T

=802 # ¥R

So, now we have the three vital ingredients, we can state and prove our theorem.

Theorem 3.3.15

Saaps TN S &5 (FIE).

Proof: We use Proposition|3.3.10} then Proposition |3.17|and finally Proposition 3.3.12]as fol-

lows

aapoTn)O S D BaupoTuf * wp)x)

BeB/,A

S 2 &0 v

BeB’,A

S8, (N,

3.3.4 Square functions and g-functions

It was noted by Wilson in [44] that large classes of square functions are essentially equivalent,
so the final two propositions of this chapter should not come as a surprise, but the proofs of
them may seem somewhat arbitrary, especially with respect to the parameter f as its seemingly
added artificially. For this reason we have postponed these until after the pointwise estimate

was completed, as in doing so the role of f will hopefully become clear. First we begin with the
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following lemma found in [2]], Lemma 10.

Lemma 3.3.16 Let R > 0. Then,

/hl(x)hz(x)dx,SRV// h,(y)dy sup h,(z)dx.
R2 R2 yeBA(xle) zeBA(x,%)

Proof: We follow the proof as found in [2] by first considering the one dimensional case. That

is, if r > O then

/hl(x)hz(x)dx<2r// h,(y)dy sup h,(z)dx.
R R J |y-x|<3 |z—x|<2

We start by decomposing the integral as

/h(x)hz(x)dx—Z/ x+u+—k)h2(x+u+27k)dx

keZ

foreveryu. Lety=x+u+ % then

So we have

/ hy()hy(x)dx = Y /‘ N My ()dy.

kezZ

where we only consider |u| < % Taking the supremum of A, over the domain of integration, we

have

1 h,(y)dy sup h,(z).

/ hy()hy(x)dx < Y /
keZ (y-"-¥ <7 <;

S yuT
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Averaging over all values of u, we have

/ (O (dx < Y 2r / ’ /| hG)y sup  hy(z)|du
R *71 y—u—2% 2%

1
kez < ‘Z‘”_T <!

r

r

1+2k

=2r Z / r (/ hy(y)dy sup hz(z)> dx
=142k 1 1
kezJ —; ly=xI<7 |z—x|<2

=2r/ / h,(y)dy sup h,(z) |dx,
R Iy—xIS% |lz—x|<2

where in the penultimate line we have used the substitution x = u + %k.
The lemma follows by applying the one dimensional case in the x, direction with r = 2R then
the x, direction with r = 2R’ and observing that {(s;,s,) € R? : x = (x;,x,),|s; — x;| <

1 } € By(x. ) O

IR’ lsy — x,| <

L
Ry

Proposition 3.3.17 Let a, f € R. For functions f such that supp(f) C{EeR?: |&* =1},

||SA(f)||L2(w) S ”ga,ﬁ,A(f)”Lz(MA‘a’ﬁw)-

Proof: Firstly, by Fubini’s theorem

1A s = / / 1 a0 St
r2 Jo

® 5 dt

=/ / |f 3 (O w(x)dx—.

0o Jre t

Now, as

2 < pu® <3)

supp(p) C (£ € R? : :
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and as

¥ ban® = FOBADE),
we have support only when

< pA(A(DE) < 3,

AW

or equivalently

~ | W

3
= < <
A1 PA(f)

Since f has support only when [£|* > 1 < p,(£)* > 1, we only consider values of ¢ such that
0 < t* < 1; since for t* > 1, f (§)$(A(t)§) has support in a subset of the support when ¢ = 1.

Thus,

s AN 2y = / |f * ¢A(,)(x)|2w(x)dx%.
1<l J R?

Next we define ¢ € S such that supp(@) C {£ € R? : 1 < |&] < 4} and § = 1 on supp(¢).

Then f % ¢ 44)(x) = f % P yq) * @44(X). SO

~

dt
s = [ [ 11 % ba  ou 0P
regl JR2 !

N / / / % a0y D@ 400 (x — y)dy
rg1 Jr2 |JR2
’ dt
s / / </ 1/ % ay D@40 (x = Y)Idy> w(x)de
gl J R2 R2

2
= / / </ |f * ¢A(t)(Y)”(PA(t)(X - Y)|5|(0A(I)(x - y)|§dy> W(X)dx%
1<l J R2 R2

2
w(x)d x%
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and by the Cauchy-Schwarz inequality then Fubini’s theorem, we have

||SA(f)|IiZ(w)

S / / </ |f o Day DI @ay (x - J’)|dy> (/ | A (x — y)ldy> w(x)dx%
o<l JR2 R2 -

= ”(PA(t)Hl/ / |f ¢A(;)(J’)|2 </ Iqu(,)(x - J’)|w(x)dx> d)’%
gl J R2 R2

dt
= ”(P”1/ / |f ¢A(t)(Y)|2|(PA(t)| * w(y)dy—.
1e<1 R2 t

(1-a)
Applying Lemma(3.3.16|with A,(x) = | f * ¢A(t)(x)|2, hy(x) = |@ 4| * w(x)and R = (}) ,

we have

”SA(f)”iZ(w)

1\ ) dt
5/ (‘) / / | f = ¢A(t)(Y)| dy sup |§0A(z)| * w(z)dx—.
o<tet N R2 S (y—x)<1-0 pa(z=x)<t(1-0 4

As @ € S we can dominate it pointwise, modulo a constant, by some positive, radial function

in $ with total mass 1, namely 9. Thus,

[ENCAIN

dy dt

2 v\2f

s 0P @ s 18, w@ldx
o<l JR2 J p,(y—x)<tl-@) pa(z—x)<t1-0)

Finally, taking the supremum in

@) sup |9, * w(z)|

pa(z—x)<t1-0

over t such that 0 < t* < 1, we have

dy dt
Is (I < / / / 1 by P —a, . weodx L,
A L2(w) <l‘(’<1 R2 pA(y—x)St(l—“) A(t) (tv)(l—a)+2ﬁ A,a,ﬂ t

0
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which, with a final application of Fubini’s theorem, allows us to conclude

2 4y
s S * .A/l wpW(x)dx
” A(f)”LZ(w) / /)<ta<1 ‘/p;(y O<i-0 f ¢A(I)(y)| (tv)(l a)+2ﬁ t Aap ( )

2
= ”gA,a,ﬂ (f) ” LZ(MA,a,ﬂw) )

Proposition 3.3.18 Let A > 1l anda € R

||gAa0/1(f)||L2(w) ~ ”SA(f)”LZ(M w)

While this proposition is written for the case § = 0, it is possible to run a very similar proof
for other values of f, but it holds no content for our overall goal of proving Theorem [3.3.5|and

would produce a different maximal average on the weight.

Proof: Using Fubini’s theorem,

||gAa0/1(f)||L2(w) / / / | f *¢A(z)(y)|2RA(t(, N —y)dy?w(x)dx
121
- / A 5 b / o (6 = Puedxdy L
LR |

2 dt
Lq/ |f ¢A(r)(y)| RA(,a ¥ w()’)dyT

2 _ pi
since R e 1)( Xx) = RA(tafl)(x).

Using the substitution z = 17,

sup R*

1*<1

W= sup R*

z (1= “)<1

) S supRA(z) ws M,w,

A(te1) Az
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where the final step is just dominating R* by 9 pointwise.

Thus, we have

dt
”gA,a,O,(I)(f)”iZ(w) S/ / |f = ¢A(1)(y)|2MAw(Y)dJ’T’
R2

171

so finally by Fubini’s theorem,

dt
”gA,a,o,(p(f)”iz(w) S /2/ |f = ¢A(;)(Y)|27MALU(J’)dy
R 121

2
= ”SA(f)”LZ(MAw)'
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CHAPTER 4

OSCILLATORY KERNELS

4.1 Background

4.1.1 Overview of the method

In this section we will be extending our previous methods that handled certain transforms defined
via multipliers to oscillatory integrals. This method was employed by Bennett (see Section 2.2
of [3]) in the one dimensional case and Beltran and Bennett (see Section 1.1 of [2]]) to kernels
considered by Sjolin [36]], defined fora > 0,a #0and b < 1 — % on R?\ {0} by

i a
el

|x|db'

We will first consider the complement to the kernels (¢ < 0 and b > 1) and then employ the
same tactic to consider a class of kernels containing those considered by Bennett and Harrison
in [5]. The heavy lifting will be done in most part by the previous section, a clever use of inte-
gration by parts and a powerful theorem known as van der Corput’s lemma, or the much more
restrictive multidimensional version. To do this we will decompose our kernels into parts that
don’t each have much oscillation, but the parts themselves will differ in size. For the part of the

kernel that does not display much oscillation, we will bound using elementary methods without
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using any cancellation at all. The rest of the kernel will have some amount of oscillation, or
“roughness”, and we will split the kernel up into dyadic blocks corresponding to the amount of
oscillation. Next, we will consider each of these blocks by estimating the size of the correspond-
ing multiplier, and it’s derivatives. Only boundedly many of these dyadic blocks will contribute
to the multiplier as a whole, allowing us to sum up the parts and obtain an overall estimate on the
multiplier. These estimates will coincide with the estimates on the multipliers in the previous
sections, allowing us to apply the theorems there to obtain Fefferman-Stein inequalities on these

transforms defined by oscillatory kernels.

4.1.2 Two important lemmas

Lemma 4.1.1 Leta,b € R, M > 2 be an integer and A, A, > 1. Let h and y be real functions,

such that y is smooth and has compact support in (a, b), and for each 2 < y < M and for all

€ [a,b], [N (x)| > cyAy, W (X)] < ¢, Ay. Then

b
/ ey (x)dx

a

N
—(r+N) 1r
SDIEA

r=0

for all natural numbers N < M — 1, where the implicit constants depend only on y, ¢, and c,.

Remark 4.1.2 Note that in the case A, = A, this reduces to the well known integration by parts

argument that can be found in Stein[39].
Proof: We start by defining a differential operator D by

1df(x)

Df(x) = (ih'(x))” T

and then let D* denote it’s adjoint,

e =d [ )
by = dx <ih’(x)> '

101



Then,

ih(x)y — ih(x)
D™ = i dx (")

i)
i (x)

— eih(x) .

And so by repeated application of this and integration by parts, we have, for each N € N[

b b
/eih(")w(x)dx=/ DN (e (x)dx

a

b
=/ "I (DHN (y(x))dx.
Thus, by the definition of D*, we have that

b b
/eih(x)w(x)dx /eih(x)(D*)Nw(x)dx

b
< [ 10 vl ax

The lemma is thus immediate from a simple calculation of |(D*)N w(x)

, we provide the first
few such calculations in Appendix for the scrutinous reader. O

This lemma has a very simple extension to multiple dimensions:

Lemma 4.1.3 Ler Q be an open set in R", { € C*(Q) and M € N. If ¢ is such that, for some
ie{l,..n},
¢

g(x) = C()}b] >

“We have used DV and (D*)N to denote the N -fold composition of the differential operators with themselves,
a la maximal function self composition
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and for all positive integers y < M,

0"
o ( )(x) X /12,
then
N
ei/ld)(x)é:(x)dx AT (F+N)ﬂr
J %

for all natural numbers N < M — 1.

Proof: Let Q, be the interval in the x, direction containing €2, Q, be the region containing €2

excluding the x; direction, {; € C*(,) and ¢, € C*(Q,). By chopping up the integral over Q

into an integral over £, and an integral over €2,, we have

Then by Lemma we have, forall N < M — 1,

N
/ei‘f’(")é’(x)dx,g/ Z/II_(HN)/l;CZ(xl,...,xi_l,xm,xn)dxl,...,dxi_l,dxi+1,...,dxn
Q

2 r=0

Z 5

—(r+N) or
S A
r=0

[

The second lemma we will be using is a simple corollary of a theorem due to J.G. van der Corput,

see [39] for details.

Lemma 4.1.4 (van der Corput) Lety € N and h be a function with continuous yth derivative.

Let w be a smooth function with compact support in the interval (a, b), and let A > 0. If y > 2
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ory = 1 and i’ monotonic, s.t. |h"(x)| 2 A for x € (a, b), then

s,

b
/ ey (x)d x

where the implicit constant is independent of A.

Proof: We will obtain the desired result by first showing that

b
/ "™ d x
a

< A

holds independent of (a, b).
First, we will address the case y = 1 and A’(x) monotonic. Let D and D* be the differential

operators defined in the proof of Lemma[.1.1] then

b b
/eih(")dx=/ D(e")dx

b
= / MO D*(Ddx + [(iH (x)) "]’

Then, by the triangle inequality, it is sufficient to consider each term on the right hand side

separately. So, as |/ (x)]| = A, we have

[(ih/(x))—leih(x)]z S ﬂ_l.
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By definition of D* we have

b
/ "™ D*(1)dx

e d 1
ih(x) %
/a ¢ dx <h’(x)>dx'
b
S/ i( I >dx
ax \w(x)
b
[ i (s ) o
. dx \ h(x)

1 b
B ' [hf(x)L

S a4

where the equality on line 3 holds by monotonicity of A’(x) and the final line uses the bound
[P ()| 2 A
Now we will prove the lemma for y > 2 by induction. First, suppose that the result holds for an

integer k < y and assume that
A (x) 2 4,

replacing h with —h if necessary. Let ¢ = miny, ,, |A(x)|, then as h**D(x) > 0, if ¢ is not a or
b, then h®(c) = 0. Let § be such that outside of [c¢ — &, ¢ + 6] we have that |A®(x)| > AS. Write

(a,b)as (a,c —6)U[c —6,c+ 6] U (c+ 0,b). By the inductive hypothesis we have

c—6
/ eih(x)dx
a
b
/ " dx
c+6

S (A8)7K,

S (A8)71.
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The last part of the interval is estimated trivially by

c+o
/ eih(x)dx
c—6

c+o
/ dx
c—6

<
<6

If ¢ = a (or b, the cases are almost identical), then either |A*¥(a)| = A6 and thus |A%(x)| > A8

for all x € [a, b], so by using our inductive hypothesis we obtain

b
/ eih(x)dx
a

or again we let § be such that outside of (a, a + §] we have |h®(x)| > A6 and write (a, b) =

S (A8)71%

(a,a+ 61U (a + 0, b). By the inductive hypothesis we have that

b
/ e dx
a+é

Again, the other part of the interval is estimated trivially as

a+é a+é6
/ eMdx| < / dx
a a

< 0.

~

< ()™,

In all cases, by choosing § = A~1/*+D we conclude the proof by noting that with this (A6)~!/¥ =

- 1/GeD).

Now, we have the result

S AT 4.1

b
/ eih(x)dx
a
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so let

F(x) =/ e"Vdy,
then F’(x) = "™ and by [4.1| we have
|F(x)] S A7

So, we have that

b b
/eih(x)q/(x)dx=/ F'(x)yw(x)dx
a a b b
= lF(X)lI/(X)l —/ F(x)y'(x)dx

b
= —/ Fo)y'(x)dx,

where we have used integration by parts and then the fact that y has compact support in (a, b).

Thus, we have

b b
/eih(x)l//(x)dx /F(x)t;/’(x)dx

b
/ ly'(x)|dx

SAV b - a)lv' |l

< Ay

S,

since y is smooth, concluding the proof of Lemma[.1.4] O
We will also need the multidimensional version of van der Corput’s lemma that Sjolin [36] and

Cao et al. [9]] use in their papers. This lemma is essentially due to Littman[28]], refined by Domar

107



[15].

Lemma 4.1.5 Let Q be an open set in R" and { € C*(Q). If ¢ € C*(Q) is such that for each

i,je{l,..,n}

0*¢p
det >Cy>0
© <6xiaxj (x)) Z 0>

forall x € Q, then

<C(+ (A2

/ el’(M)(X)—x-é)C(x)dx
Q

where C depends on n, ), the uniform bounds on the absolute value of { and ¢, the partial

derivatives of ¢ and the inverse of the Hessian of ¢ over 2.

4.2 Hirschmann kernels

In this section we will deal with hypersingular kernels K

a

» that are tempered distributions and

agree with the functions

ilv|—a
ol

|x|db

for x € RY \ {0},

where a > Qand b > 1.

Theorem 4.2.1 Let T be an operator givenby T f = K, * f, then

/ITfIZWS/ |fIPM* M, ;M w,
R4 R4

. . . . _ _a_ _a/2—b+1 |y
where M, 5 is the maximal operator given by (3.5)) with parameters a = — and f = — .

*In this section our notation A < B will have an implicit constant with dependence on at most a and b, unless
otherwise specified.
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Note that T is bounded on non-weighted L?(R?) if and only if § > 0, see [29]. However, with

Theorem[4.2.T|we may obtain more non-weighted L” — L9 bounds as discussed before, see (1.4).

Corollary 4.2.2 Let T be an operator givenby T f = K, * f, then

1T, < A

whenever b—1 > =2 — (l - l).
q P q

a

If we consider the case p, g = 2, then we obtain the requirement b — 1 + 3 > 0, which implies
g = 0, implying in turn that M, , is the optimal maximal operator for these kernels in the case
D, q = 2, in the purview of the Fefferman-Stein inequality.

To prove Theorem @ we will decompose the kernel K, , into parts and use the linearity and
continuity of the Fourier transform to reconstruct the multiplier for part of the kernel on the
multiplier side, then we shall use Theorem [3.3.1] on the part of the multiplier that satisfies the
relevant hypotheses. We will begin by separating the trivial part of our kernel and setting up our
dyadic decomposition of the difficult part of the kernel.

Let{ € C®(R?) with compact supportin {x € R? : 1/2 < |x| <2} suchthat ) _, {(2*x) =1
for x # 0. Define { (x) = {(2*x) and K,,, = ¢ K,, for each k € N and define K, ., =

(1=, &)K,, Then we have that

Ka,b = Ka,b,oo + Z Ka,b,k' (4‘2)

We note that the support for the first term on the RHS of (4.2) is away from the origin and the
support of the sum of the rest of the terms is a small neighbourhood around, but not including,

the origin.
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Now, for the trivial part of the kernel, K we can obtain an upper estimate:

a,b,00°

1Ky oo0)] = ‘—( ch<x>>‘

< - Zk:l Ck(x)
= | x|
for x # 0. Let
1= 6()
D(x) = W

when x # 0 and ®(0) = 0. Let B, = {x € R : |x| < 2"}; and observe that, for each x € R,

D(x) < ) 27Dy (),

n=1

and so

1K,y ] % w(x) = /|Ka,,w<y>|w<x— Yy

< / O(y)w(x - y)dy
R4

< / D 270Dy w(x = y)dy
R4 n=1

= )2 / X, (Mw(x = y)dy
n=1 R4

= Z - dbn=2) / w(x — y)dy

[y]<2n

_szzz db-1)(n-2) L 1 / w(z)dz

[x—y|<2"

1
< z 2db=D=D) gyp — / w(z)dz,
1 1 [x—z|<r

n=1
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where we have used the substitution z = x — y. Now, since b > 1 we have that

o0
Zz—d(b—l)(n—Z) < 400

n=1
so we can conclude
1K ool * w(x) < MV w(x), (4.3)
where
MOw(x) = sup — w(z)dz. (4.4)
2l I J | x—z|<r

So, we can estimate this part of our kernel

2

K, # FOPw(odx = / / K, o(x = 00y wiodx
rd | Jra

2
< / < / |Ka,b,oo<x—y>||f(y>|dy) w(x)dx
Rd Rd

2
= / ( / |Ka,b,oo(x—y>|1/2|1<a,b,co<x—y)|1/2|f<y>|dy> w(x)dx
Rd

Rd

Rd

by the Cauchy-Schwarz inequality we have

/ 1K, * fOPw(x)dx
[Rd

< / </ | K g b0 (X — y)dy> </ |fOPIK oo (x = y)la’y> w(x)dx
R4 R4 R4

= ”Ka,b,oolll/ /If(y)|2|Ka,b,oo(x—y)IW(X)dydx
R4 JR

= IIKa,b,OOIh/ |f DI </ | K g.p,00(X —y)ILU(X)dX> dy
R4 R

= ”Ka,b,oo”]/ |f(y)|2|Ka,b,oo| * w(y)dya
Rd
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where the last step follows from the fact that our kernel is even, and we comment here that it

makes sense to talk about the L' norm of K, ., as ®(x) is clearly an L' function that dominates

K, ;.- Then, by (4.3)

/|Kaboo*f|2ws/ MO,
R w R4

Now, we claim that if |x — y| < 1, then
MV w(x) S MV w(y),

indeed;

MDYw(x) = sup ld w(z)dz
>0 F |x—z|<r
< 29sup w(z)dz
= r>1 (zr)d |x—z|<2r
<3¢ sup w(z)dz
= r>1 (3r)d |y—z|<3r
1
=39 sup — w(z)dz
r'>3 (rl)d |ly—z|<r
< 3%su 1 w(z)dz

r'>1 (rl)d |ly—z|<r!

=3'MDw(y),
where we used the substitution ¥’ = 3r. Now, using this claim, we have that

AM D w(x) = 1 / MDw(y)dy
[x—yl<1

2 / MPw(x)dy
[x—y|<1

= CMVYw(x),
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where the operator A is given by

1
Aw(x) = —/ w(y)dy.
lx=yl<1
Additionally, just by inspection of the maximal operator
2p

M, sw(x) = sup I w(z)dz,

el T Jly—zisr
where
I(x)={(ry :0<r*<land|y—x| < ploey,
by taking y = x and r = 1 in the supremum, we can see that

Aw(x) € M, ;w(x).

Also, with the addition of the simple observation that

MO uw(x) = sup — w(y)dy
r>1 T |x—yl<r
1
< sup — w(y)dy

r>0 I Jx—yi<r

= Mw(x),

where M is the classical Hardy-Littlewood maximal operator, and so finally, we have the point-

wise bound

MYw S AMDw < M ;MPw < M, ,Mw < MPM, ;M w, (4.5)

a’ﬂ
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to give

/ 1K poo * 1w 5/ |fIPM* M, ;M w.
R4 R4

It remains to prove Theorem m for the rest of the kernel. First define m,(§) = I%\a’b’k(f)
(defined by (#.2)) for each k € N and

~

m@=<ZKMJ@>
k=1

We note here that the above definition of m excludes the part of the kernel away from the origin
as we are only summing over k € N.

As the Fourier transform is an isomorphism of the Schwarz class, S(R) to itself, and so induces
an isomorphism of the space of tempered distributions, S’(R), to itself, see [40]; and since the

Fourier transform is continuous and linear on S’(R), we have

m&) = Y my(&).
k=1

For each k € N we have

m (&) =/ eiuxlia_xf)—C(ka)dx.
Rd

ledb

If we use the substitution z = 2*x, then x = 2 ¥zand so J(x) = 2% is the Jacobian determinant.

We therefore have

m (&) = 2D / @iz -2 §(2) 4

R |z| b
. z

= 2kd(b_l) / elhk(z) ib)dz,
1/2€]zI<2 | z|
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where h,(z) = 2k|z|7@ — (27%z) - &, therefore VA, (z) = —2kaz|z|~(@+2) — 27k¢,

We shall now use either Lemma.1.3]or Lemma4.1.5] depending on k, to give bounds on each
m,. We let ¢;,c, € R* be such that ¢; < ¢,, later we will choose values of these that depend
only on a.

Case I: kissuchthatk € I, = {k € N : 2% < ¢,|€|#1).

Then 2% < ¢{“*P2¥|¢]. So

Vi (2)] > 2791¢] = 2]z 7D
> 274¢] = ac)" V27K gz 7D

_ 1
> 2741811 = ae)"T 2,
. 1 =L .
as |z| > 1/2, and so if we take ¢, = 5(2a)a+1 we obtain
|Vh(2)] 2 27%&].
Now, this means there exists an i such that

> c|27%¢|,

' ox; :

for some ¢ > 0. We also have, fori’ = {1,...,d}, j > 2,

0(7)hk a 09 »
220 (z) =12 w (1z]7%) (2),

and so for i’ =i,

0w h,

< 2ka
) ~
0x;

(2)

S 274 ¢l
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Thus there is a constant dependent only upon a, d and y such that

o h,
@)
0x;

()| € C,2% (4.6)

< C27gl. 4.7)
Then, by Lemma4.1.3] we have that, for each N € N,

Im(&)] S 240D |ep™

— 2kd(b—1)2kN|§|—N
—N —aN —aN
= QHBDQN || T ¢ o | e

< 2401750 | g,

where the last line follows from the inequality 2% < ¢, |£| .
Case 2: kissuchthatk € I, = (k € N : 2% > ¢,|&|#1 ).

Then 29¢;“*" > 27¥|¢], and so

|Vh(2)| = a|z|7“"D2% —27K|¢|
> alzl—(a+1)2ka _ 2kac2—(ﬂ+1)

> 2ka(a2—(a+l) _ Cz_(a+1))’
. =L .
as |z| = 2, and so if we take ¢, = 2(2a)«+1 we obtain

|Vh,(z)| 2 2%
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So, this means there exists an i such that

> 2k,

dhk( )
ox; z

for some ¢ > 0. Again, (4.6) holds and so by applying Lemma we have that, for each

N eN,

Im(&)] S 24Dk

< 2kd(b—l—%).

1 1
Case 3: kissuchthatk € I, = {k € N : ¢||&]=1 < 2% < ¢)|&|a}.
It is perhaps trivial to see that the function |z| ™%, for a > 0, has zero Hessian determinant only

at z = 0, as this is the only point that could be critical. So, by Lemma4.1.5| we have

|mk(§)| S 2kd(b—1)(2ka)—d/2
— Dkd(b-1-a/2)

d(b—1-a/2)
< | f | a+l

~

=[],

Now we will use these estimates on |m, ()| to obtain an estimate on |m(&)|. First we sum over

all k in Case 1, when N is large, we obtain

Y Im @1 s 1€17.

kel
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Next we sum over all k£ in Case 2,

Y Im@) 5 Y 2ke--ow

kel, kel,

— 2 kd(b-1-aN /2)n—kdaN /2

kel,

—daN
< Z 2kd(b—1—aN/2)| E| 2D

~
kel,

and again when N is large, we obtain

Y Im @] 5 15

kel,

Thus, choosing N large enough, we can obtain estimates for Case I and Case 2 such that

Y Im(@l s e

kel,ul,

Finally, as there are only a bounded number of k in Case 3, summing over such k we have that

> m @ < 117,

kel
thus we can conclude that
Im@)| 5 1&17, (4.8)
for & # 0.
Now we will attempt to get similar estimates on the derivatives, lety = {y,,....,7,} € Ng then
D'm(¢) = / (ix)yei'xl_a‘ix"f—C(zkx)dx
¢ R x| "
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and again using the substitution z = 2¥x, we get

i(2ka)z|=a—(2~ z)z’
D'my (&) = ilylzk(d(b_l)_lm/ o241z -2 "z)~§)‘c|( |)db dz
Rd z

; z)z"
— jIrIpk@®-D=7) / emk(z)C( )b dz.
%<MK2 |Z|

We observe here that the above integral is almost identical to the integral for m, (&), bar the z”
term, which is easily controlled on the support of {. So by following the argument as before

with very minor alterations we obtain the estimates

aN

| DYmy ()] S 20D g
forall N € N and k in Case 1,
| DYy (&)] S 2415
for all N € N and k in Case 2 and finally

|D7mk(§)| < 2k(d(b—1)—lyl)(2ka)—d/2
— k(db-1-$)-rD

d(b=1-a/2)—|y|
a+1

SI¢

~d -1
= || B+ly(a )’

for all k in Case 3. Again, by following an identical argument as before we obtain for large N

—aN_
D ID'm ()] S €],

kel,

—daN
D ID'm ()] S |€]7e.

kel,
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Thus, choosing N large enough, we can obtain estimates for Case I and Case 2 such that

D D' m@)] 5 gD,

kel,ul,

Again, as there are only a bounded number of k in Case 3, summing over these k we obtain

3 ID'my (@) 5 |l et

kely

thus we conclude that
|D"m(&)| < |&|7P e, 4.9)

for & # 0.

Now we return to the proof of Theorem m Letn € C?(Rd) be such that (&) = 1 on
{eR? & < 1}andn() =0o0n {& e R’ : £ >2}, and define my(&) = m(&)n(8).

First, consider the multiplier m(&)(1 — n(£)). By (4.8), (4.9) with y = 1, and the support of

n, we have that m(&)(1 — n(§)) satisfies the hypotheses of Theorem [3.3.1| so we can conclude

Theorem {.2.1] for this part of the multiplier.

For the rest of the multiplier, m,, we will use more elementary methods to obtain our desired

estimates.

Claim 4.2.3 We claim that for |£] < 2
|D"m(&)| < 1.

Proof: Let c, > 0 be small enough that when |£| < ¢, the above Case I and Case 3 do not

occur.
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Case A: & is such that |£| < ¢, then for some i € {1,...,d}

3_:,-(‘7“)‘ 2 2.
Thus, following the arguments given before, we have that for each y € N¢, forall N € N
|D/m, ()] 24015
and so by taking N large enough we have
|ID"m(&)] < 1.
Case B: & is such that ¢, < |£| < 2, then we consider
|D"m(&)| S |g|~PHreh.
Ify < % then

|D'm(&)| < || e

< C(;ﬁ"‘)’(a—l)

< 1.

Ify > ﬁ then

|D"m(&)| < || PHreh

< 2—dﬁ+r(a—1)

< L.

~
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[

Next it is a simple observation that bounds on | D?m(&)| follows from bounds on | D"m(&)| for

|€] < 2 as follows

| D"my(&)] =

A<y

> Dim(c_f)DMn(cf)'

< ) I m@[1 DY Pn(&)]

A
1

<y
14
i=0

<1

where we have used Claim @ and the fact that # € C on the third line and the notation of
multi-indices throughout.

Now that we have this estimate, we define KmO by

K, (&) = my(®).

As n has compact support in |&| < 2, m, has compact support in |§| < 2; thus we can use the

Fourier inversion formula to obtain

K, (x) = / ™ Emy(&)de,
R4

and furthermore, by standard properties of the Fourier transform, we obtain

(ix)ZdeO(x) — / eix‘éD(Zd)mo(df)df.

Rd
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Thus, consider

1K, ()

and likewise

|(x)K,,, (x)]

So we can write

/ ef"'fm()(f)ds'
IRd

< / (mo(&)]dE
|&]<2

S / dg
le1<2

<1

~ ’

/ e Dy (&)d
Rd

< / | Dy (&)]de
[&]<2

S / d¢
le1<2

< 1.

IxX|*|K,, ()] $ 1,

and combining with the previous estimate we have

(1+ xPYIK,, (0] S 1,

finally, rearranging we get

IK,, (0l S

1+ |x|2
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Now, define K, (x) = K,, (—x) and consider

IR, ()] = K, (=)

o1
1+ |x|%@

< Z 2—2d(n—1)){Bn (x).
n=1

Thus, we have

IR, | w(x) = / IR, iz = pdy

/ Z 2724070y (uox — y)dy
R4

n=1

= Z 272D / X, (Mw(x = y)dy
n=1 R4

= Z 2_2"("_1)/ w(x —y)ydy

[y]<2n

= 22“1(" 2 1 / w(z)dz

|x—z|<2"

< Z 2792 qup — / w(z)dz,
r>1 rd |x—z|<r

where again we have used the substitution z = x — y. Therefore, since

T 2740 < 4

n=1

we have that

1K, | # w(x) S MV w(x) (4.10)

124



where M is defined by @.4).

So we can estimate the final part of our kernel via the same method as before, that is

2
/ 1K,y * fOIPw(x)dx = / K,,(x =y)f(ndy| w(x)dx
R4 d R4

2
< / ( IKmo(x—y)IIf(y)Idy> w(x)dx
Rd R4

2
-/ ( / IKmo(x—y)ll/ZIKmO(x—y)ll/zlf(y)ldy> w(x)dx
R4 R4

again, by the Cauchy-Schwarz inequality we have

/ 1K, * foPw(xdx
Rd

</ < [ 1K —y)|dy) ( [ 0PI, —y>|dy) w(x)dx
Rd d Rd

R
= IK, I, / FOPIK,, (x = Plw(x)dydx

= || Ky, Il /If(y)|2</ |Km0(X—y)|w(x)a’x>d

= 1K [ FOIFIR, | wdy
[Rd

Now, as K,, is dominated by it is clearly an L' function. Additionally, via @.10), we

my 1+ ||2d’

have

[ ORI, 5wy s [ 1oPMOudy
R4 R4

and so

/ K, /1w < / M
Rd IR‘/
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Therefore, via (4.5]), we have that

[ s rPws [ 1rpaeat i,
Re R '
as required, concluding our proof of Theorem#.2.1]

4.3 Beyond the Hirschmann kernels

In this section we will deal with kernels that do not have a singularity, but allow a more general

phase function. These are given pointwise as
i
K o(x) = ey (x),

where 4 > 0, y € C°(R) is a positive, smooth cutoff function and ¢ : R \ {0} — R is a phase

function similar to x* for some £ > 1, specifically ¢ € C® and satisfies the conditions
Alx|"7 < ¢V (4.11)
with A; > 0 for j = 1,2 and
19V (x)| < By|x|"7, (4.12)

with B; > 0,and j = 1,2, 3,4, on the support of .

Theorem 4.3.1 Let T be an operator givenby T f = K; 4 * f, where A > 0and ¢ € C® such
that @.11) and 4.12)) hold, then

/|Tf|2w b ll2ﬂ_2/ |fIPM°M, 5, M*w,
R R

£-2
2£-1)

where M, 4, is the maximal operator given by (3.9) with parameters a = %, p =
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u=cA’? where c = A12‘f.

Remark 4.3.2 We note here the similarity of the phase function to monomials, and therefore the
similarity of Theorem to Theorem 2.1 of [5)]. However, Theoremd.3.1|deals with a greater

range of phase functions, specifically monomials with real powers.

Proof: [Theorem | Let{ € C>(R) such that ¢ has compact support in the set {x € R :

> < |x| <2} and

Z E2*x) =1

kez

for x # 0.

Define
G(x) = w7250 (x),
for each k € Z and

K, 5 (x) = eM9¢, (27275 x)

= 0y (0 (A7 27kx)
for each k € N. Next, define

0
K/l,q_'),()(x) — eiiqﬁ(X) Z é’k(ﬂl/fz—kx).

k=—c0

*In this section our notation A < B will have an implicit constant with dependence on quite a few introduced
constants, including but not limited to £, A j forj=1,2,B j for j = 1,2,3,4 and the L*™ norm of y. However, the
implicit constant will never depend on 4, nor on the dyadic decomposition.
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1/¢

Note that the support of K , , is a subset of [x| <247/, and we have that

o0
K, p=K, 0+ Z K, g
k=1

Now, we will begin the proof of Theorem[4.3.1]by estimating the part of the kernel that has little

oscillation, K 10" To this end, define

and consider

0
1K, 00| = eiw(_x)ll/(—x)< 2 g(—/ll/"ﬂka)>‘
k=—o0
0
< w(—x)< > LA 2—kx)>
k=—0c0
Y —

1+ (cA/?x)?

< vl Z 2_2(n_1))([—2",2n](C/ll/fx)

n=1

(o]
—2(n—1
= Wl X 272 s soviemn e e ().

n=1
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Thus, we have

1K, g0l * w() < Nyl / D27 e e Dw(x = y)dy
R

n=1
00 e~ =1/t on
= llwll, Y272 / w(x = y)dy
=1 —c-1p-1/¢n
00 + 71171/f2n
=2 Dyl Y2 e / T e
— 2ne=IAYE [ e
00 x+r
<2l T2 s [ e,
=1 r>c=1p-1/¢ 2r X—r

where we have used the substitution z = x — y on the third line and as

o]

Z 2702 < 40,

n=1

we have

x+r
1K, 4ol % w(x) Sc'A7M" sup zi/ w(z)dz.
o FJ x—r

r>c1)-1/¢

Finally, if we define

1 X+r
M@ f(x)=sup P / Fyady,
r>c1a-1/¢ &8 Jxy

then we can conclude that

1K) pol * w(x) S ™27 MPw(x). (4.13)
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Now, consider

2
w(x)dx

[ K x s0Pwcodx = [ | [ K,y = sy
R RI1JR

2
< / ( / |KA,¢,o<x—y>||f(y>|dy> w(x)dx
R R

2
= / </ |K,1,¢,o(x - y)|1/2|K/1,¢,0(x - y)|1/2|f(y)|dy'> w(x)dx
R \JR
by the Cauchy-Schwarz inequality we have

/ 1K, 40 % fOIPw(x)dx
R

< / ( / 1K g.00x — y)Idy> ( / |fDIPIK, polx — y)|dy> w(x)dx
R R R

= |K, g0l / / | FOIPIK4.0(x = Y)w(x)dydx (4.14)
R JR

1Ko, / ok ( / 1Kol —y)|w<x>dx) dy
R R

1Koyl / ORIl * €Y.
R

Note that it makes sense to talk about the L! norm of K Lk S 1t is smooth and has finite
support.

Now, to calculate || K, ,ll;, we have

”K/l,q_'),()”l =/|K,1,¢,o(x)|dx
R

0
— iAp(x) /11//2—k
/R e w(x>( Y« x))

k=—0c0
< ||!I/||oo/)([_2,11/f,2,11/f](x)dx
R

dx

(4.15)

S l_l/f.

130



Then, we use (4.13)) to obtain
/R 1K g0 * SOPPwx)dx 5 477 /[R | SO MPw(x)dx.
Now, we claim that if |x — y| < ¢='A~/7 then
MPw(x) < MPw(y), (4.16)

where the implicit constant is just an absolute constant.

Indeed, we have that

X+r

1
MPw(x)= sup —
rsc1a11e 28 Sy

x+2r
<2 sup e w
r>c=1a-1/2 AF oy
y+3r
<3 sup —
r>c-14-1/¢ or y=3r
1 v
=3 sup w
H>3c-1-1/¢ 2" y—r!
y=r'
<3 sup — w
el )-1/¢ 2r y—r'

= 3MPw(y),

where we have used the substitution # = 3r. Next, if we define

1

S =S |x_qu_u_l/ff(y) y
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then

1 /
_ MPw(y)dy
2¢1A-V7 |x=y|<c=1A-1/¢

1
> MPDw(x)d
- 6¢c1A-1/7 L_qu_u—]/f ( ) Y

= SMPu(),

AD A w(x) =

where we used (4.16) on the second line. On the other hand, if we consider our maximal operator

M, ; , given by

a.p.u

rzﬂ y+r
w(x)= sup — w,
el ,x) T Jy—r

M

a.p.u
where

Fa,y(x) ={(r) :0<r < |x—yl < #—arl—a}

=2
2¢-1)°

and use the substitutions y = cA/?, a = -~ and g = then we can define another maximal
/-1

function as

1 y+r
M, ,w(x) = sup —rl/(f_l)/ w,

el ,(x) y=r
where
I ={r) 1 0<r<c A7V Ix =yl < (“ray Dy,
So now, if we fix (y,r) = (x,c~'A71/%), then we can see that
=2

Af(x) < 267 27T, , f(x),
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=2

, we conclude
2(¢-1)

and substituting back using y = cA/?, a = % and f =

Af() <20 My, f ().

Now, with the additional observations that

x+r

1
MPw(x) = sup — w
r>A-1/¢ 2r x—r
x+r
< sup — w
r>0 2r X—r

= Mw(x),
where M denotes the standard Hardy-Littlewood maximal operator, and

M, 5 Muw(x) < MM, , M*w(x),

a.p.u a.p.u

we can conclude our treatment of this part of the kernel; that is, we have shown that

MPw(x) < 3AYMPw(x)

<647 M, , M P w(x)
4.17)

<6u?PM_, Muw(x)

a.p.u

<6 MOM, 5, M*w(x).

Thus, by combining this with (@.14) and {.15]), we can conclude that

/R 1K, g0 % [IPw S ﬂzﬂ_z/R |fPMOM, 5 M w.
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Now, for the rest of our kernel, we define m, (&) = %(é) and

~

m(&) = (Z KM),k) ©).
k=0
thus again we have
m&) = Y m().
k=0

Note here that m is not the Fourier transform of our entire kernel, K A but instead the part
supported away from the origin. To control this part of the kernel, we will need the following 3

lemmas.

Lemma 4.3.3 For |£] > %Clll/f,
__r=2
Im(&)| S A7V7(A7V7)g]) D

where the implicit constant does not depend upon A.

Proof: Consider

m (&) = / /WP (A 27 x)d x
R
and let z = A'/%27%x, so x = A"1/2kz, thus
mk(f) — )Wtk / ei(/up(,r'/fzkz)—rl/fzkzg)g(z)dz.
R

Let

hy(z) = Ap(A72kz) — A71/72k z¢,
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SO

m (&) = A~1/72k / "I (2)dz.

1
§<|z|<2

Case I: k € Uy = {k > 1 : 2K < (¢, A7/7|EDY1Y,

It follows that 2% < ¢,2¥A71/7|£| and we have that
h(z) = AAV72 (A7 2k ) — AV 2k,
So we have

|h(2)] = 472K |g| = AaT172K ¢ (471 2k z))
> A_l/fzklél _ ﬂ/l_l/fszl(/l_l/fzk|Z|)f_1
> A—l/fzkl.):l _ Blzf—lzkf

> A7V72ME(1 - ¢ B2,
thus, by choosing ¢, = (B,2%)~!, we obtain
()] > 54724 el (4.18)
Next, consider

h;{l(z) — /1/1—2/f22k¢l/(l—1/f2kz)’
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and so,

|h;€,(Z)| — /1/1—2/f22k|¢/1(/1—1/f2kz)|
< /1/1—2//22sz(/1—1//21€Izl)f—Z

< zkazzlf—ﬂ

S 2¢, (4.19)
where we have used the fact that % < |z| £ 2 in the 3rd line.
Likewise,
h'(z) = AA12%K " (A7 24 2),
and

|l’l;(”(Z)| — /1)’—3/f23k|¢Hl(/1—l/f2kz)|
< AA—3/L”23kB2(A—1/52k|Z|)K’—3
< zka32|1f’—3|

< 2K (4.20)

where we have used the fact that - < |z| < 2 in the 3rd line.

1
2
So by Lemmai4.1.1] with M = 2, we have

/ "¢ (2)dz
%<|z|<2

1
S / Z2kf’(/1_1/"ﬂ2k|§|)_l_’dz
%<|z|<2

r=0

1
S Z 2kfr(/1—1/f2k|§|)—l—r.

r=0
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Therefore we can now estimate our multiplier as

r=0

1
S 2k/1—1/1f’ (Z(A—l/fzklél)—l> ,
r=0

1
Im ()] 5284717 (2 2kf’<x—‘/f2k|§|)—‘-'>

as 2K < (¢, A7V7|E)/7~1 if and only if 2K < ¢,2%A71/7|&] and so

Im(&)] S A~

4

= A7V ey G gy e

< ATV (g
again using the fact that 2% < ¢,2¥A~1/“|£|. Thus, summing over all k € U,, we have

> Im@) S A7 G e

keU,

where the implicit constant depends only on ¢, y and B, for i = 0, 1 and the fact that

Z 2_% < 4o00.

keN

Case2: keU,={k>1: 2k > (cz,l—l/f’|§|)1/(f—1)}_

Again, it follows that ¢; 12 > A71/72%|¢£| and we have that

hi(z) = A2k (a7 2k z) — a7 2k
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Thus

(D) > AAT M| (A7 2 )| — AT 2N g
> AA—I/fzkAllll—l/fzkzlf—l _ A_l/fzklél
Z zkalz—(K’—l) _ cz—lzkf

=2(A 27D —eh,
and choosing ¢, = 27 Al‘l, we have
|Rl(2)| > c;'2%. 4.21)

Again, we have the estimate on |h}/(z)| given by (#.19), so again we can apply Lemma

with M = 2, so we can conclude

1
|mk(§)| S A1k (Z zkfr(zkf)_l_r)

r=0

1
— l—l/fzk ( 2—kf>

< A—l/fzkz—kf

_ l—l/fzk(l—g)z—kf/Z
4
S ﬂ_l/ka(l_E)(Zk/l_l/f|§|)_1/2

= 2B G (| gy gy

As €] > %C/ll/f we have

1

ey < (5)
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and since £ > 1 we have

So summing over k € U, we have

D Im @1 S 477G gy,

keU,
Case 3: k € Uy = {k > 1 : (¢, A7/ |EDY! < 2% < (ed™ /71D V/7")
Now we consider
h;{/(z) — /1/1—2/f22k¢/l(/1—1/f2kz)’

and observe that

|hZ(Z)| > /1/1_2/f22k¢)”(ﬂ_1/£2k2)
> /1/1_2/f22kA2|A_1/f2kZ|f_2
> |Z|f—22kf

224,

where in the last step we used the fact that % < |z] < 2. So, by Lemma

we can deduce that

Im (&) S 4717252712

— /l—l/fz—g(f—Z)

< AT ey,
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Note here that as # — 2 may be negative that we have used either the upper or lower bounds in
the definition of Uj to obtain the last line, depending on the value of .

Finally, as there only a bounded number of k € U,, independent of A, we can conclude that

> Im (@)1 S 471 gy,

keUy

By combining all three cases, we can therefore conclude that

D Im @1 < 477G gy,

keN

and so we have
(@] £ 47 G e,

where the implicit constant depends on at most y, A j and B j for j = 1,2, and 7; concluding the

proof of Lemma[4.3.3] O

Lemma 4.3.4 For |&] > cA'/’,
(@) A4 G ey,

where the implicit constant does not depend upon A.

Proof: This proof will follow the proof of Lemma 4.3.3| very closely. Consider

m (&) < / (ix)e" PO (A, x)d x
R

*The exponent that appears here may seem strange, but using our substitutions for « and f it is equal to —f+a—1,
which is exactly what we would expect.

140



and let z = A/72kx, so x = A71/42%z thus

m;(f) — A2k / ei(w(rl/"zkz)—rl/fzkzg)zg(z)dz’
R

and again setting
h,(2) = Ap(A™/72kz) — A1/ 02k z¢,
we have

m! (&) = iA~H2% / "Dz (2)dz.

1
5<|z|<2

As h,(z) is identical to that in Lemma [4.3.3] we can use the exact same estimates on h,(z),
provided we have k from the same sets.

Case 1: k € U,.
So by (4.18), (@.19) and (4.20]) we have that

|h (2)| 2 2K477 ¢,
14
|n)(2)] S 2%,

|n(2)] S 2.

So we can immediately use Lemma[.1.Tjwith M = 3 and get

/ e"@ze(2)dz
%<|z|<2

2

S / Z 2kfr(2k/1—l/f|§|)—r—2dz
%<|z|<2 =0

2
r=l

S 2kfr(2k/1—l/f|§|)—r—2’

0
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thus we can estimate |m; (£)| as

2
|m;€(§)| ,S 22k/1—2/f Z 2kfr(2k/l—1/f|§|)—r—2
r=0

S 22k/1—2/f(2k/1—1/f|§|)—2

= Qe

3¢

= J G gy (Y ey

< 2—3kf/2/1—2/f(/1—1/f|§|)—%’
and therefore conclude that

Z |m;(§)| < /1_2/5(/1—1”'5')_%.

keU,

Case 2: k € U,. Again, we have (.21)), (4.19) and (4.20); that is,

k¢
|h, ()] > 2%,
k¢
| (2)] 2%,

k¢
|h'(2)] S 2%,
and using the same argument as in Case I, we have that

2
|m;<(§)| < 22k/1—2/f Z 2kfr(2kf)—r—2

r=0

— ok(2=0) j=2/t 5kt

S 2k(2—f)/1—2/f(2k/1—1/f|§|)—1

= QKO 21 (G gy E D (4 gy e,
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again observing that |&| > %c/ll/ ¢ we have

42

e < (5) 77

and can therefore conclude that

Z |m;¢(§)| S ﬂ_z/f(ﬁ—l/flél)_%'

keU,

Case 3: k € U;. Again we have the estimate on |h}/(z)| from Case 3 of Lemma[4.3.3] that is
ke
| (2)] 2 2%
Thus, by Lemma with parameter 2 we have that

|m;€(€)| S /1—2/f22k(2kf)—1/2

— /1—2/f2—§(f—4)

< A ),
Finally, again there are only a bounded number of k € U;, so we conclude that

Z ZACIIBS /1_2/5(/1—1/f|€|)_%’

keUy

and so, combining all three cases we have
I )] 47247 gy 3,

where the implicit constant depends on at most an absolute constant, E,, C,, fori = 0,1, A, A,,

B, for j = 1,2,3, and #; concluding the proof of Lemma ]
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Lemma 4.3.5 Lety € {0,1,2}. Then for || < cAY/?
|m(y)(§)| < /1—(7+1)/f’

where the implicit constant does not depend upon A.

Proof: Casel: y =0.

Consider
m (&) = / W=D (A 2 x)d x
R
and let z = A2 %x, so x = A71/72kz, thus

mk(f) — /l—l/fzk/ei(/ld)(l"/f2"z)—l‘1/’72kz§)éa(z)dz-
R

Let
h(z) = Ap(A~V2kz) — 17172k z¢,
SO
m (&) = A7/02k / "I (2)dz,
%<|z|<2
and

hi(z) = A2k (a7 2k z) — AT 72k
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As |&| < cAY?, we have
c'ATVE < 1
and so

Ve < 1

<2f
for all k € N; that is, c2¥ > A71/72¥|&| for all k € N. Thus, by the hypotheses on ¢, we have

|h ()] 2 A4~V 2419/ (728 2)| = A7V 2K g
> /1/1_1/f2kA1|/1_1/f2kZ|f_1 _ A_l/fzklél
> zkalz—(f—l) _ czkf

> 24,27V —¢)
and since ¢ = A;277 we obtain

|h! (2)| > 2

> 2kf7

So this case is identical to Case 2 in Lemma4.3.3| with the exception of ¢ instead of ¢, thus

by following the exact same argument as we do there we obtain

|m (&) S A7V/12kp7ke

— l—l/fz—k(f—l).
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Thus, by summing over all k € N, we have

D Im@l < a7,

keN

where the implicit constant depends only on an absolute constant, A,, B, E,C, fori=0,1,7

and the fact that since £ > 1,

32K < oo,

keN

Case2: y =1

In this case

m(§) = / (ix)e PO (A2 x)d x.
R
Again, let z = A1/?2kx, so x = A71/¢2kz, thus

; ~-1/¢ -1/¢
m;(é’) — A% / ol /1 2 )= zkz‘f)ch(z)dz,
R

and again setting
hy(z) = Ap(A72kz) — A71/72k z¢,
we have

m! (&) = iA7 2% / e"z¢(z)dz.

1
§<|Z|<2
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Since h,(z) is identical to Case I we can use the same estimate; that is,
|h(2)] 2 2.

Now, this case is identical to Case 2 of Lemma , with the exception of ¢ instead of ¢ ! thus

by again following the exact same argument as we do there we obtain

2
|m;{(§)| S 22k/1—2/f Z 2kfr(2kf)—r—2
r=0

— )2/p=2ke=1)

Again, by summing over all kK € N, we have

Y Im(@)) s A7

keN

where the implicit constant depends only on an absolute constant, A;, B;, for j = 2,3, E,, C, for

i =0,1,2, 7 and the fact that since Z > 1,

T 2D < oo,

keN

Case 3: y = 2. In this case
m (&) = / (ix)*e MO O (A2 x)d x.
R
Again, let z = A1/?2*x, so x = A71/¢2kz, thus

. —1/¢ -
mZ(f) — _)3/t73k / ol Ap(a™/ 2 )2 1/f2kzzé)zc(Z)dZ,
R
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and again setting
h,(2) = Ap(AV72kz) — A7V 02k ¢,

we have

1
§<|z|<2

m (&) = —/1_3/f23k/ e @22 ¢ (z)dz.
Since A, (z) 1s identical to Case I we can use the same estimate; that is,
! kt
|h (2)] 2 2%.

Additionally, since h,(z) is identical to Case I of Lemma4.3.3| we have (4.19) and (4.20); that

1s,

|h(2)] 5 2%
and

1R (2)] S 2%
Finally, consider

hf)(z) — /1/1—4/f24k¢(4)(ﬂ—1/1f’2kz)’
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then

|I’l§(4)(Z)| < /1/1—4/f24kB4|/1—1/f2kZ|f—4
= B2"
< B42kf2|f—4|

< 2K (4.22)

where on the penultimate line we have used the fact that - < |z]| < 2.

1
2

So we can again use Lemma with M = 4, we have

3
/ oth(2) ;2 C(z)dz| < Z zkfr(zkf)—r—B
%<|z|<2

r=0

3
< Z =3kt

r=0

Therefore, we can conclude that

|mZ(Z)| S A—3/f23k2—3kf

— /1—3/1,”2—31((5—1).

Again, by summing over all k € N, we have

D ml @) s a7,

keN

where the implicit constant depends only on A, B I for j = 2,3,4, v, £ and the fact that since

> 1,

I WD < oo
keN
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concluding the proof of Lemma.3.5] O
We now return to the proof of Theorem Letn € C°(R) such that n has support in (—¢, ¢)
and 1 — » has support in R \ [~3, 5]. Then 1 — n(A~/¢.) has support in R \ [—%c/ll/f, %c/ll/f]
and the multiplier (1 — n(A~'/%-))m satisfies hypothesis (3.6) with y = %c/l‘l/ Z by virtue of the
support of 1 — n(4~/7+). Additionally, by Lemma[4.3.3] for each & € supp(1 — n(A~'/%"))

£ 1m(@)] S 1174770 ¢ 73
JH R

= /,[ﬂ_l_

So the multiplier (1 — n(A~'/7-))m satisfies hypothesis (3.7) with C = su?~!, where s > O is a
constant independent of u. Finally, by Lemma for each & € supp(1 — n(A~1/7+))

/-4
sup Rﬂ/ |m,(§)|d§ S sup Rﬂ/ /1—1/2(/—1)/11/(/—1)|§|—md§
+1 +1

IC[R,2R] IC[R,2R]
len(I)=(R/u)~"R len(I)=(R/u)™"R
—(f—1 -
< sup Rﬂ/ D e el e
IC[R,2R] +1

len(1)=(R/u)~"R

< sup R len(Hu’ 'y 2R PR*RdéE
IC[R,2R]

len(I)=(R/u)~*R

= sup RY(R/u) Ry’ y*2RPR*Rd&
IC[R,2R]

len()=(R/u)~"R

=’uﬂ_1.

So the multiplier (1 — 7(A~"/?-))m satisfies hypothesis (3:8) with C = s’ !, where s’ > O is a

constant independent of . Thus, by Theorem [3.3.3| we have,

/R T f P10 S 5 / [FPMOM, 5, M w,
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where T, _,, is defined by Tmf = (1-5(A""?))m f, and the implicit constant is independent
of u.

So, to conclude Theorem [4.3.1]it is sufficient to show that

/ (T, f Pw 127 / FPMOM, ,, M,
R R

where T, is defined by 7{,,,”7 = n(A"V" ymf.

Now, by Lemma[4.3.5| we have that
Im?(&)| < Yaanls

fory € {0,1,2} and |&| < cAl/?.
Define K, by I/(n\m(é) = (A~ &m. As n(A~'/?-)m has compact support, since 7(A~'/*-) has

compact support, we can use the Fourier inversion formula to obtain

Kyn(x) = / n(A~ Eme 4 de,

R

and furthermore, by standard properties of the Fourier transform, we obtain

2 .
(ix)°K, ,(x) = / L (A (e,
WE
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So, consider

| Ky ()] =

/ n(A~" Emede
R

< / NG Im(@)]de
|&|<cal/?

s / ll_l/fdg
&l<cal/t

S

where we have used Lemma [4.3.5| on the third line, the fact that # is bounded and the implicit
constants on both the third and last lines are independent of A.

Next, consider

2 .
|(ix)*K,,,,(x)| = ‘ / 4 (A Em(E))ede.
R d¢

< / / In(AEEIm" (&) + A7V A7V |m (@)] + A7 " (A7 E) | Im(&)|dé
|&[<cal/?

S / l—3/fd§
¢|<cal/e

S A

where we have again used Lemma on the third line, the fact that , #” and 5" are all bounded
and the implicit constants on both the third and last lines are independent of A.

So, we can write
A x K, (0] S 1
and so, combining with the above estimate on |K,,,(x)|, we have
(1+]cA x|)|K,, ()] S 1,
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which implies that

1
(1 4+ [cA/x|?)

| K, (O] S (4.23)

Now, define Knm(x) = K,,,(—x) and consider

1K, ()] < K, (=x)|

< 1
(1 + |cAV/?x|?)

< Z 2_2(n_1)}([_2n’2n](Cﬂl/fX)

n=1

e
—2(n—1
= Z 2 )X[_C—l/‘[—I/K’Zn’c—ll—l/KZn](x)-

n=1

From this, we can estimate | K, | * w(x) as

1K, | % w(x) = / |K,,,(W|wx — y)dy
R

< Z 2—2(n—1))([_c_|ﬂ_l/t,zn’c_l/l_l/fz,,](y)w(x —ydy

R p=1
00 2nc—l/1—1/f
= Z 272n=1) / w(x —y)dy
=1 _ne=1,-1/¢
0 1 x+42ne=1p-1/¢
= Z 2_2(”_1)2"c_1/1_1/f—/ w(z)dz
=l 2"C_lﬂ_1/f x—2ne-1)-1/¢
0 1 X+r
< Z 2D IpVE qup — / w(z)dz
=1 re1am1/e 28 J o,

<27 ATV MPw(x).
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where we have used the substitution z = x — y on the fourth line.

Next consider ||K,, ||, by the previous estimate (4.23)) we have

1
K < dx.
|| ,,mnlN/R(chlez) x

So, via the substitution u = A'/?x, we have

1
K sﬁ—l/f/—du
” nm”l R 1+u2
R

= 2772 lim

du
R-oo [0 14 u?

=71 Ilim arctan(R)

=1V,

Thus, in the exact same way we handled the part of the kernel K, , , via the Cauchy-Schwarz

inequality, we have

/ K, * FOOPw()dx < 1Kl / FEOPIR, | * wx)dx
R R

< AU / LMD w(x)dx,
R

and using (@.17)), we have
[ 1K 7P 12 [ 17EMOM, M
R R

concluding the proof of Theorem[4.3.1] O

Remark 4.3.6 As Theorem[d.3.1)is stated, it’s not quite obvious that our argument works for
¢ = 2,3. However, the obvious adaptation of the given argument for Lemma and for
Case 2 and Case 3 of Lemma would yield Theorem for such . It is also of some
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interest to note that if we change our requirement to ¢ > 2, we may drop the requirement
Jj = 4 in the hypotheses, again allowing ¢ = 3 to be considered, by slightly adapting Case
3 of Lemma Furthermore, if our requirement was actually ¢ > 3, we may drop both
the requirements y = 3,4, again adapting our argument slightly, implying some relationship

between ¢ and the smoothness required by our phase.
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APPENDIX A
MULTIPLIERS

A.1 R-function lemma

The following lemma is elementary in nature and doesn’t really fit within our discourse, but still
a necessary step used in one of our proofs.

Lemma A.1.1 Let R (x) := (1 + |x|)™* and r > O then,
A A A
Rl * Rian(¥) S Ry (%)

forall A > 1.

Proof: Letz = A(r~')y, then
Ry R = [ 720414670 = 9 (14140701 Py
=r /2(1 + A Dx = z|) (1 + |z])Hdz
R
Let I = R* %« R%, thatis
I(x) = /2(1 + |x =z + |z])Hdz.
R
Then we have

Rﬁ(r) * fo(r)(x) = Iy(%)

so by scaling it is sufficient to prove
I(x) < R (x).

To prove this, we’ll consider I(x) separately for when |x| < 2 and when |x| > 2. First we shall



deal with |x| < 2. As |x — z| > 0 trivially, we have
I(x) = / (1 +|x =z + |z])**dz
R2

< 1—”/ (1 + |z])"*dz
R2

< L.

Next, we shall deal with |x| > 2 by separating it into dyadic rings. Fix k € N, and fix x such
that 2% < |x| < 2! then define I,(x) and I,(x) as

I(x)=/ 1+ |x-zD#0 + |z|)-”dz+/ (1 +|x—zD71 + |z])**dz
[x—z|>2k-1 |

x—z|g2k-1

= 1,(x) + I,(x).
For I,(x), we have
Il(x):/ (1+ |x —z)"2A + |z))Hdz
|x—z|>2k-1
< / (1 +25H722 1 + |z)Hdz
RZ

52‘“2/(1+|z|)_2’1dz
RZ

< x|

For I,(x), we use the observation that if z € R? such that |x — z| < 2¥7!, since we have that
2k < |x|, then we have |z| > 2%, and so

Iz(x)z/ (1+ |x —z)™2A + |z))Hdz
|x—z|<2k-1

< 2'“2/ (1 +|x—z|)Hdz
| x—z| <2k

< x|

So, by combining all of the above, we have

1) < 1 |x| <2
B e EY

and this can clearly be bounded above by R*(x) modulo a constant. ]
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APPENDIX B
OSCILLATORY KERNELS

B.1 Integration by parts lemma
Here we provide the first few applications of D* to our function y from Lemma[d.1.1]

e N=1
Firstly, fix x € R and consider

Dy = -4 ( w(x) >

dx \ il (x)
_ W) 0w
ih'(x) ih'(x)?

then by use of the triangle inequality, the estimate |y (x)| < ¢ for some constant ¢ > 0 and
the use of the hypotheses on the derivatives of s, we have

* -1 -2
|D*yw(x)| S A] + A4,

e N=2
Again, fix x € R and consider

(D*)*w(x) = D*(D*y(x))
_d (_ v h”(x)t//(x)>
dx \ (WX)* (W (X))
_ v’ + h' (x)y'(x) + h" (x)y (x) + K'xy'(x)  h'(x)y(x)
- W (x)2 n(x)3 W (x)3 R (x)3 R (x)*

2

and we get

(D] S 47+ 47 + 4743,

il



Fix x € R and consider

(D*)’w(x) = D*(D*(D*w(x)))
_ 4 (_ V) W) W) | W) h"(x>2w<x)>
dx ih'(x)3 i (x)* ih'(x)* ih'(x)* ih'(x)3
_ v ROV R ) Rw ) | )N ()
ih'(x)3 ih'(x)* ih(x)* i (x)* ih'(x)3
Yy R0y (x) + 'O Xy (x) Wy (x) "' y" (x)
ih'(x)* ih'(x)* ih'(x)’ ih'(x)* ih'(x)*
RGP (x) | 2R 0RO (x) | AP () () w(x)
ih'(x)’ ih'(x)’ ih'(x)> in(x)6

and we get

|(DYwe| S 47 + 47 + 4743 + 47045,

iv
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