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ABSTRACT

We consider three major parts of Fourier analysis and their role in Fefferman-Stein inequalities.
The three areas can be considered as three separate topics in their own right, or as three steps to
proving certain Lp − Lq inequalities via the Fefferman-Stein inequalities of the form

∫ℝn
|Tf |2w ≲ ∫ℝn

|f |2w.

The first area discussed is that of maximal functions, specifically obtaining Lp −Lq inequalities
on large classes of maximal functions. We then use a simple duality argument to transfer these
to operators where we have a Fefferman-Stein inequality via

‖T ‖p→q ≲ ‖‖

1∕2
(q∕2)′→(p∕2)′ .

The second area aims to control operators defined via multipliers by the previous section’s ge-
ometrically defined maximal functions. In particular, we build up to a schema that can be used
to prove Fefferman-Stein inequalities via the so called g-functions, originating in work of E. M.
Stein [38] but having historic roots that can be easily seen by viewing g-functions as speciality
square functions.
In the final section we consider some classes of operators with oscillatory kernels and obtain es-
timates on their multipliers, and by application of the previous two sections obtain someLp−Lq
inequalities.
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CHAPTER 1
INTRODUCTION

1.1 Calderón-Zygmund theory
The matters treated in this thesis are mostly anisotropic in nature, but it would be pertinent to
first give an overview of the three main areas covered in their isotropic setting. In sketching the
broad outlines we will separate out our discussion into three main pillars of harmonic analy-
sis: maximal functions, weighted Littlewood-Paley theory and oscillatory integrals. However it
should be stressed that these are not separate areas at all, but instead are all interconnected and
all related, in one form or another, to the study of singular integrals. There are many differing
introductions to harmonic analysis that depend on an even larger variety of perspectives, but our
chosen point of departure is the real variable techniques introduced by A. P. Calderón and A.
Zygmund in the 1950’s. The goal of these techniques was to study the higher dimension ana-
logues of the Hilbert transform, known as singular integrals, but our discourse will not heavily
focus on these objects. Instead, we will consider questions outside of singular integrals and show
that the tools and methods developed continue to work efficiently far beyond the framework they
were intended for.
The overarching structure of this thesis has roots in a paper by Bennett, Carbery, Soria and Var-
gas [4] where they studied a conjecture of Stein on the circle. Further advancement was made

1



by Bennett and Harrison [5] on the line. Later, Bennett [3] took a multiplier perspective of these
same issues on the line, and Beltran and Bennett [2] extended this result to Rd .
In Chapter 2 we will focus on maximal functions, the simplest of which is the Hardy-Littlewood
maximal function, defined on an admissible function, f , at a point x as

Mf (x) = sup
r>0

1
2r ∫

r

−r
f (x − y)dy.

This maximal function naturally arises when we consider the family of averages such as

Arf (x) =
1
2r ∫

r

−r
f (x − y)dy

for r > 0. The most interesting properties of these averages are their behaviour as r → 0, which
are extracted via consideration of their corresponding maximal function,M . These were origi-
nally studied as a means to understand the convergence of Fourier series, but have far reaching
applications beyond this. Chapter 2 will build up to the study of our maximal function, given by

A,�,�f (x) = sup
(y,t)∈�A,�(x)

(t�)2�|#A(t) ∗ f (y)|

where

�A,�(x) = {(y, t) ∈ ℝ2 ×ℝ+ ∶ 0 < t� ⩽ 1, �A(x − y) ⩽ t1−�},

# is a positive, radial, decreasing (radially) Schwarz function with total mass 1, �A is some
anisotropic norm with respect to the dilation matrices A and the notation #A(t) refers to dila-
tions of the function by these matrices. All of these terms will be more accurately defined in
Section 1.3. �A,�(x) are regions in the upper half space, and will be discussed at the end of
Section 2.1.
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This chapter will culminate in the Lp −Lq bounds forA,�,� , which are given by the following
theorem

Theorem 1.1.1 Let 1 < p ⩽ q ⩽∞ and �, � ∈ ℝ.

• If � < 0 and � ⩽ �
2q
+ 1

2

(

1
p
− 1

q

)

;

• or � = 0 and � = 1
2

(

1
p
− 1

q

)

;

• or � > 0 and � ⩾ �
2q
+ 1

2

(

1
p
− 1

q

)

;

then for weights, w, we have

‖A,�,�w‖q ⩽ C‖w‖p,

for some constant C > 0.

Chapter 3 will focus on the area of Fourier multipliers, and we will obtain our results as an
application of Littlewood-Paley theory. This area of study concerns itself with the extension
of the Pythagorean theorem: if x in a Hilbert space is a sum of orthogonal basis vectors, then
the sum of the squares of these basis vectors is equal to the square of the sum. This theorem
clearly relies heavily on orthogonality; however, for more general Banach spaces, such as Lp
(p ≠ 2) spaces, we don’t obviously have a notion of orthogonality. This is where Littlewood-
Paley theory comes in and gives us ways of decomposing our functions, f , into special basis
functions that essentially determine the size of f . We will use Littlewood-Paley theory in the
spirit of Stein [38] to prove the multiplier theorem ∗

Theorem 1.1.2 Let  ∈ ℕ20. If m is a Fourier multiplier such that

|Dm(�)| ≲ �A(�)−��+‖‖A(�−1) (1.1)
∗Again, see Section 1.3 for undefined terms
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for m with support in {� ∈ ℝ2 ∶ |�|� ⩾ 1} and all || ⩽ 3, then

∫ℝ2
|Tmf (x)|2w(x)dx ≲ ∫ℝ2

|f (x)|2M4
AA,�,�M

3
Aw(x)dx, (1.2)

where MA refers to an anisotropic adaption of the Hardy-Littlewood maximal function and is

defined as

MAf (x) = sup
t>0

�A(t) ∗ |f |(y)

andMn
A is the n-fold composition ofMA.

To finish our discourse Chapter 4 will focus on estimating the multipliers associated with certain
Hirschmann kernels. This final chapter will make use of the deep results of the previous two
chapters to bound large families of highly oscillatory and sometimes very singular kernels.
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1.2 Fefferman-Stein inequalities
There has been interest in recent decades in finding Fefferman-Stein inequalities of the form

∫ℝ
|Tf |pw ≲ ∫ℝ

|f |pw, (1.3)

where T is a suitable operator, p ∈ [1,∞),  is a maximal operator, f is an admissible input
function and w is a non-negative locally integrable function, herein referred to as weights.∗
By a simple duality argument, inequalities like (1.3) are of interest as they allow us to transfer
bounds on to bounds on T as follows. Let t′ denote the Hölder conjugate of t and let q, r ⩾ p,
then

‖Tf‖q = sup
‖w‖(q∕p)′=1

(

∫ℝ
|Tf |pw

)1∕p

≲ sup
‖w‖(q∕p)′=1

(

∫ℝ
|f |pw

)1∕p

⩽ sup
‖w‖(q∕p)′=1

‖w‖1∕p(r∕p)′‖f‖r,

thus

‖T ‖r→q ≲ ‖‖

1∕p
(q∕p)′→(r∕p)′ . (1.4)

So for such operators T , there is interest in identifying a corresponding geometrically defined
maximal operator that is optimal in the sense that all Lq → Lr mapping properties of T can
be deduced from bounds on and (1.4).
We will appear to digress momentarily from Fefferman-Stein inequalities in order to give a brief
outline of some of the theory that is related to these inequalities and the power of using this

∗See Section 1.3 for an explanation of notation

5



approach, opposed to the method of Muckenhoupt or Ap weight type inequalities. Classically,
Fefferman and Stein proved the following theorem.

Theorem 1.2.1 ([17]) LetM denote the Hardy-Littlewood maximal function and let f be any

admissible input function. If w is a weight, then for any 1 < p <∞

∫ℝ
|Mf |pw ≲ ∫ℝ

|f |pMw.

It is perhaps convenient at this moment to discuss the approach of Muckenhoupt, known as
Ap theory. This approach can be defined from the perspective of this inequality quite directly;
indeed, one can define the class of Ap as the class of weights such that

∫ℝ
|Mf |pw ≲ ∫ℝ

|f |pw.

This is a single weight inequality and a prototype inequality for this theory.
While the twoweight inequality in Theorem 1.2.1 doesn’t lend itself to the approach developed in
light of (1.4), as the controlling maximal function is the same as the operator we are controlling,
many inequalities that do benefit from the approach were built upon it and all share this standard
structure.
The Calderón-Zygmund singular integral operators have been the focus of large amounts of study
in harmonic analysis for decades. We will briefly give an overview of the role these Fefferman-
Stein inequalities played in the area of singular integral operators after the definition of them.

Definition 1.2.2 We call an operator T a Calderón-Zygmund operator if the following hold

1. T ∶ L2(ℝ)→ L2(ℝ);
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2. there exists a measurable function K ∶ ℝ → ℝ such that for every f ∈ L∞0 (ℝ
2) we have

Tf (x) = ∫ℝ
K(x − y)f (y)dy

for a.e. x ∉ supp(f );

3. the kernel K satisfies

|K(x)| ≲ 1
|x|

for every x ∈ ℝ;

4. the kernels K and K∗ (defined by K∗(x) = K(−x)) satisfy the following pointwise Hör-

mander condition: There exist a positive constantsM > 1 and  > 0 such that whenever

�A(y) <
1
M
�A(x) we have

|K(x) −K(x − y)| ≲
|y|

|x|1+
.

After his paper with Stein, Fefferman went on to write a paper with Córdoba where they proved
the following theorem.

Theorem 1.2.3 ([14]) If T is a Calderón-Zygmund singular integral operator∗ on the line then

for any p, s > 1 we have

∫ℝ
|Tf |pw ≲ ∫ℝ

|f |p(Mws)1∕s,

where the implicit constant depends on at most p and s.
∗Defined by the case A = I in Definition 3.2.1
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For a fixed s > 1, we conclude that T is Lp bounded for p > s, which is extracted via (1.4)
and the known non-weighted Lp boundedness ofM [16]. However, T is bounded on Lp for all
1 < p <∞; this gap was first reduced by Wilson.

Theorem 1.2.4 ([43]) If T is a Calderón-Zygmund singular integral operator on the line

∫ℝ
|Tf |2w ≲ ∫ℝ

|f |2M3w, (1.5)

where the maximal operator,Mk, is the k-fold composition ofM with itself.

In the same paper, Wilson also proved inequalities for p other than 2, one of which is the follow-
ing

Theorem 1.2.5 ([43]) For 1 < p < 2, we have

∫ℝ
|Tf |pw ≲ ∫ℝ

|f |pM2w.

Soon after, Pérez unified and extended these results by proving the following theorem.

Theorem 1.2.6 ([32]) For 1 < p <∞ we have

∫ℝ
|Tf |pw ≲ ∫ℝ

|f |pM [p]+1w, (1.6)

where [p] is the integer part of p

With this we gain the full range of indices for which T is Lp bounded.
See [4] for further discussion of the flexibility of this method of capturing the behaviour of an
operator by a maximal function.
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1.3 Preliminaries
Every area of learning has its fair share of vices, and harmonic analysis is no different; indeed,
the most famous is the disregard of constants, or the “constantly changing constant”. This is due
to the perspective harmonic analysis takes - we want to know the nature of how two quantities
change with respect to each other. We will often forgo the use of a constant C , or c, to refer to a
constant independent of the relevant variables to that equation by using the notation A(t) ≲ B(t)
to mean that there exists c > 0 that does not depend upon t such that A(t) ⩽ cB(t); likewise for
A ≳ B. Some other abuses, akin to reusing C or c as different constants, in the area are referring
to the Fourier transform of a function f ∈  , the class of Schwarz functions, via the definition

f̂ (�) = ∫ℝ
f (x)e−ix�dx,

and the Fourier inversion formula

f (x) = ∫ℝ
f̂ (�)eix�d�.

The scrutinous reader will take exception to the lack of appropriate scaling included in these
definitions and they would be correct in pointing out that we actually incur a constant; that is if
we apply the Fourier transform and then the inversion formula, we do not return to our original
function but a constant multiple of it. However, with our view of constants in mind, as long
as we are only taking finitely many iterations of the Fourier transform or its inverse, we have
chosen to stick to the convention outlined above.

1.3.1 Definitions

Webegin our study of anisotropic norms by first introducing our norms in themanner of Calderón
and Torchinsky [7, 8]. However, in order to introduce our norms, we first must introduce our
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families of affine transformations, indexed by t, that we will base our norms on.

Definition 1.3.1 For each � ⩾ 1, and define for t > 0

A(t) =
⎛

⎜

⎜

⎝

t 0

0 t�

⎞

⎟

⎟

⎠

.

We claim that the dilations defined by

A′(t) =
⎛

⎜

⎜

⎝

ta1 0

0 ta2

⎞

⎟

⎟

⎠

,

where a2 ⩾ a1 > 0, are equivalent. In one direction this is simple, take a1 = 1 and a2 = �. The
reverse direction is almost as simple, take � = a2

a1
and a dilation by Ã(t) is equal, when taking a

supremum in the sets 0 < t ⩽ 1 or t ⩾ 1, to a dilation by A(ta1).
Note that this principle can be extended to any number of dimensions; indeed, if we have an
ordered index set a1 ⩽ a2 ⩽ ... ⩽ ad we can merely take a scaling ta1 instead of t and reduce the
index set to 1 ⩽ �1 ⩽ �2 ⩽ ... ⩽ �d−1.
We will next outline some properties of the matrices A(t).

Lemma 1.3.2 ([7]) The affine transformations A(t), indexed by t, form a continuous abelian

group.

Proof:
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• Closure, let t, s ∈ ℝ

A(t)A(s) =
⎛

⎜

⎜

⎝

t 0

0 t�

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

s 0

0 s�

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

ts 0

0 (ts)�

⎞

⎟

⎟

⎠

= A(ts).

• Associativity, let t, s, r ∈ ℝ

(A(t)A(s))A(r) = A(ts)A(r)

= A(tsr)

= A(t)A(sr)

= A(t) (A(s)A(r)) .

• Identity, this is immediate as A(1) = I .

• Inverse element, given t ∈ ℝ we have

A(t)A(t−1) = A(1)

= I.
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• Commutativity, let t, s ∈ ℝ

A(t)A(s) = A(ts)

= A(st)

= A(t)A(s).

□

Remark 1.3.3 In fact, this group is an embedded Lie group by Cartan’s closed subgroup the-

orem, as it is a closed subgroup of the general affine transformations, but this is outside the

purview of this thesis.

Remark 1.3.4 We have used the notation D , where  = (1, 2, ..., d) is a multi-index to mean

Df (x) =
)||f
x11 ...x

d
d

.

We will now introduce the family of norms we will concern ourselves with for the major part of
this thesis in the following definition.

Definition 1.3.5 For each � ⩾ 1, let �A ∶ ℝ2 → [0,∞) be defined by

�A(x) = 0 ⟹ x = 0,

�A(x) = t ⟺ |A(t−1)x| = 1,

for all t > 0.

Note that it is immediate that �A(x) = 1 ⟺ |x| = 1 from the definition. Now we claim that
the object we have defined is a norm associated with the matrix A, we will clarify and prove this
in the following theorems starting with a proof that �A is well-defined.
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Proposition 1.3.6 �A is well-defined; more precisely, for a fixed x, |A(t−1)x| is strictly decreas-

ing as a function of t.

Proof: We need to show that, if 0 > s > t, then

|A(s−1)x| < |A(t−1)x|.

Consider

|A(s−1)x|2 = |s−1x1|
2 + |s−�x2|

2

= s−2|x1|2 + s−2�|x2|2.

As s > t, � > 1, we have

s−2 < t−2,

s−2� < t−2�

therefore

|A(s−1)x|2 < t−2|x1|2 + t−2�|x2|2

= |A(t−1)x|2.

□

Proposition 1.3.7 �A is an A-norm; that is, for all x, y ∈ ℝ2,

1. if �A(x) = 0, then x = 0,

2. for all t > 0, �A(A(t)x) = t�A(x),

3. �A(x + y) ⩽ �A(x) + �A(y).

13



Proof: As the case when � = 1 reduces immediately to the Euclidean norm, we consider only
when � > 1. Our definition of �A immediately gives property 1, so consider property 2.
To this end, let q = �A(A(t)x), then by definition

|A(q−1)A(t)x| = 1,

which, by Lemma 1.3.2, is equivalent to

|A(q−1t)x| = 1.

Using the definition again, we have

�A(x) = t−1q,

so, finally,

t�A(x) = q = �A(A(t)x).

Now, to prove property 3, first we observe thyat if �A(x) = 0 or �A(y) = 0 the property is
immediate, so we may assume both �A(x) > 0 and �A(y) > 0. Next we need to observe some
trivial properties about the relationship between �A and A. First, by definition,

�A(x) = �A(x) ⟺ |A(�A(x)−1)x| = 1.

14



Now, let t ∶= �A(x), s ∶= �A(y), x̃ = A(t−1)x and ỹ = A(s−1)x. So

|x̃| = |A(t−1)x|

= |A(�A(x)−1)x|

= 1.

and likewise for |ỹ|; also,

x + y = A(t)x̃ + A(s)ỹ.

Consider

|

|

|

|

A
( 1
t + s

)

(x + y)
|

|

|

|

=
|

|

|

|

A
( t
t + s

)

x̃ + A
( s
t + s

)

ỹ
|

|

|

|

⩽
|

|

|

|

A
( t
t + s

)

x̃
|

|

|

|

+
|

|

|

|

A
( s
t + s

)

ỹ
|

|

|

|

.

As � − 1 > 0 and both t
t+s

< 1 and s
t+s

< 1, we have that

|

|

|

|

A
( 1
t + s

)

(x + y)
|

|

|

|

⩽
( t
t + s

)

|x̃| +
( s
t + s

)

|ỹ|

= 1,

and therefore

�A(x + y) ⩽ t + s

= �A(x) + �A(y).

□

It is necessary next to introduce a few more objects that will be crucial to our analysis.
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Definition 1.3.8 Let � denote our homogeneous dimension, specifically � = 1 + �.

We refer to this as our homogeneous dimension as in a lot of situations it completely replaces
our usual dimension, the most obvious example of this is the following proposition.

Proposition 1.3.9 Let k0 ∈ ℤ and � ∈ ℝ, then �A(x)−� is in L1(ℝ2 ⧵ BA(0, 2k0)) if and only if

� > �.

Proof: Consider

∫ℝ2⧵BA(0,2k0 )
�A(x)−�dx =

∞
∑

k=k0
∫2k⩽�A(x)⩽2k+1

�A(x)−�dx.

Let z = A(2k)x, then x = A(2k)z and the Jacobian of this transformation is given by J = 2k� .
Therefore we have that

∫ℝ2⧵BA(0,2k0 )
�A(x)−�dx =

∞
∑

k=k0

2k� ∫2k⩽�A(A(2k)z)⩽2k+1
�A(A(2k)z)−�dz (1.7)

=
∞
∑

k=k0

2k(�−�) ∫1⩽�A(z)⩽2
�A(z)−�dz. (1.8)

The integral in (1.8) can be bounded above and below by a constant dependent only � and �.
The convergence of the sum is therefore dependent only on the term 2k(�−�), and so converges if
and only if � > �, the proposition follows. □

Definition 1.3.10 • Let BA(x, r) denote the �-ball with centre x and parameter r, that is

BA(x, r) = {y ∈ ℝ2 ∶ �A(x − y) ⩽ r} = {y ∈ ℝ2 ∶ |A(r−1)(x − y)| ⩽ 1}.

• Let r�(B) denote the �-radius of a �-ball B; that is, r�
(

BA(x, r)
)

= r.

• Throughout, we will use # ∈  to denote a positive, radial, decreasing (in the obvious

way) function with total mass 1 and we will denote parabolic dilations of any function f
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with respect to A as

fA(t)(x) = t−�f (A(t−1)x).

We will refer to the functions #A(t) as parabolic approximations of the identity.

It turns out that the family of norms �A have an associated family of norms, the importance of
which will become clear in Chapter 3, defined as follows

Definition 1.3.11 Let ‖ ⋅ ‖A ∶ ℝ2 → ℝ be a norm associated to A; that is, given x = (x1, x2) ∈

ℝ2 define

‖x‖A = |x1| + �|x2|.

Remark 1.3.12 We can relate our �A norms to the Euclidean norms as follows. Let z = (z1, z2) ∈

ℝ2 and define t ∶= �A(z).

• If �A(z) ⩽ 1, then by the definition of �A we have that

1 = |A(t−1)z|

=
(

t−2|z1|
2 + t−2�|z2|2

)
1
2

⩾
(

t−2|z1|
2 + t−2|z2|2

)
1
2

= t−1|z|

and therefore

�A(z) = t ⩾ |z|.
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In much the same way, we get

1 = |A(t−1)z|

⩽ t−�|z|

thus

�A(z)� ⩽ |z| ⩽ �A(z).

• If �A(z) ⩾ 1, then we get the reverse

�A(z) ⩽ |z| ⩽ �A(z)�.

Remark 1.3.13 Let c > 0 and consider

|A(ct)x| = |(ctx1, c�t�x2)|

then

|A(ct)x| ⩽ max({c, c�})|(tx1, t�x2)|

= max({c, c�})|A(t)x|

and

|A(ct)x| ⩾ min({c, c�})|(tx1, t�x2)|

= min({c, c�})|A(t)x|.
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Note that the min or max of c, c� depends only on if c ⩽ 1 or c > 1, as � ⩾ 1. This remark is a

formalisation of the observation that one can fit a circle in an ellipse and vice versa.

Definition 1.3.14 Let x, y ∈ ℝ2 and B,C ⊆ ℝ2 be sets, then we define �A(x, y) = �A(x − y),

�A(B,C) = infb∈B
c∈C

�A(a − b),

and

�A(B, x) = infb∈B
�A(b − x).
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CHAPTER 2
MAXIMAL FUNCTIONS

2.1 Two maximal functions
We will introduce two parabolic maximal functions in order to first highlight the difference
between the classical maximal functions and the maximal functions that are the focus of this
chapter.

Definition 2.1.1 Let a, b ∈ ℝ. Denote the parabolic maximal operators associated with the

dilation A as

MA,a,bf (x) = sup
(y,t)∈Λa(x)

t−b�A(t) ∗ |f |(y),

where

ΛA,a(x) = {(y, t) ∈ ℝ2 ×ℝ+ ∶ �A(x − y) ⩽ at},

and � is the indicator function of the unit ball (or the unit cube, which gives a pointwise equiv-

alent definition).

Note thatMA,a,b are parabolic fractional maximal functions,MA,a,0 are parabolic nontangential

maximal functions of aperture a, andMA,0,0, which we denote justMA, are parabolic versions
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of the classic Hardy-Littlewood maximal function.

Remark 2.1.2 The maximal functionsMA,a,b defined above are parabolic versions of the non-

tangential fractional maximal operators, the isotropic case usually defined as

MI,a,bf (x) = sup
(y,t)∈ΛI,a(x)

t−b ⨍B(y,r)
|f (z)|dz,

where

ΛI,a(x) = {(y, t ∈ ℝ2 ×ℝ+ ∶ |x − y| ⩽ at}.

The word nontangential here refers to the region ΛI,a(x), this region is a cone in ℝ2 × ℝ+ with

vertex at (x, 0), the boundary ofℝ2; we refer to a as the aperture of the cone. The word fractional

here refers to the role of b, and the wording comes from the maximal function’s close relationship

and resemblance to fractional integration, or more accurately in the multidimensional case Riesz

potentials, see [31] for more details.

For comparison, we now introduce our main object of study,A,�,� , which is a parabolic version
of the maximal function introduced by Bennett and Beltran[2], see also [3]. We use very similar
notation to the above maximal function to emphasise the close relationship between them, but
will emphasise the differences shortly.

Definition 2.1.3 Let �, � ∈ ℝ and define

A,�,�f (x) = sup
(y,t)∈�A,�(x)

(t�)2�|#A(t) ∗ f (y)|

where

�A,�(x) = {(y, t) ∈ ℝ2 ×ℝ+ ∶ 0 < t� ⩽ 1, �A(x − y) ⩽ t1−�}.
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Indeed, these two maximal functions coincide precisely when a = 1, � = 0 and � = −b∕2.
From this relationship it is easy to see that the roles of b and � differ only aesthetically, however
the roles a and � play are quite different - they both pertain to the behaviour of the approach
regions, but the nature of that change differs greatly.
The regionsΛA,a and �A,� depend in the same way uponA, the eccentricity of the cross-sectional
areas for each fixed t changes. The region ΛA,a is a cone for all values of a and only changes
the aperture of the approach region. However, the region �A,� can significantly change shape
dependent upon �, in the same way as the Euclidean case. For 0 < � < 1, we have a slightly
bulging cone shape, cut off at t = 1. For � > 1, we get an inverted cone shape, which allows
tangential approach. For � < 0, the region does not include t < 1, which changes the nature of
the region entirely, and would be more accurately described as an "escape" region. See [5, 2]
for further discussion of these regions.

Remark 2.1.4 AlthoughA,�,� depends on the choice of #, all estimates involving this maximal

function will be uniform for all parabolic approximations of the identity.
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2.2 A schema for the method
It is the goal of this chapter to prove Lp − Lq inequalities for our maximal functions A,�,� ,
in light of this we will begin by outlining a schema for doing so using the parabolic Hardy-
Littlewood maximal functions first. The main workload of such ventures is generally hidden
within interpolation between endpoint spaces. The nature of L∞ lends itself very well to being
an endpoint space for maximal functions, and so the ideal other endpoint would beL1. However,
a quick calculation ofMA� , where � is the indicator function of the unit ball, convinces us that
f being integrable is not enough to ensureMAf is intregrable. So instead we must settle for a
weak-L1 bound, Theorem 2.2.2. This is slightly different to how we will handle the endpoint
estimate for the maximal functions defined in Definition 2.1.3, as we will need to take a brief
foray into Hardy space estimates instead. To begin our estimates onMA, we must first prove the
following lemma.

Theorem 2.2.1 (Vitali’s covering lemma, [12]) Let {Bj ∶ j ∈ J} be a collection of �-balls in

ℝ2 such that

sup
j∈J

r�(Bj) <∞.

Then there exists J ′ ∈ J , a countable subset of J , such that {Bj ∶ j ∈ J ′} are disjoint and

⋃

j∈J
Bj ⊆

⋃

j∈J ′
5Bj .

Proof: As

sup
j∈J

r�(Bj) <∞,

we have that there exists R > 0 such that supj∈J r�(Bj) < R for all j ∈ J .
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Partition J into a countable collection of subsets, {Ji}i∈N0
, such that Ji has all �-balls with

parameter in ( R
2i+1
, R
2i
]. Let H0 ∶= J0 and E0 be a maximal disjoint countable subcollection of

H0.
LetHi and Ei be defined inductively by

Hi ∶= {B ∈ Ji ∶ B ∩ B′ = ∅, ∀B′ ∈ E0 ∪ ... ∪ Ei−1}

where Ei is a maximal disjoint countable subcollection ofHi. Then the desired set J ′ is defined
as

J ′ =
∞
⋃

i=0
Ei.

□

With this lemma in hand, it is a relatively simple matter to gain a weak-L1 estimate onM .

Theorem 2.2.2 (Weak PHL, [7] Theorem 1.7) There exists CA > 0 such that for all � > 0,

|

|

|

{x ∈ ℝ2 ∶MAf (x) > �}
|

|

|

⩽
CA
�
‖f‖1.

Proof: Fix � > 0. If there are no x ∈ ℝ2 such that

MAf (x) > �,

then we are done. So fix x ∈ ℝ2 such that

MAf (x) > �.
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By the definition ofMA for each x there exists a finite tx > 0 such that

� < �A(tx) ∗ |f |(x)

= ∫ℝ2
t−�x �(A(t

−1
x )(x − y))|f (y)|dy

= t−�x ∫
|A(t−1x )(x−y)|⩽1

|f (y)|dy

= 1
|BA(x, tx)| ∫BA(x,tx)

|f (y)|dy

then we have that

|BA(x, tx)| <
1
� ∫BA(x,tx)

|f (y)|dy. (2.1)

So, for each x such that MAf (x) > � we obtain a tx and corresponding BA(x, tx) with the
property (2.1) and assigning an index from an index set J to each x we have

{x ∈ ℝ2 ∶MAf (x) > �} ⊆
⋃

j∈J
Bj .

By the Vitali covering lemma, we have a subset of J , J ′, of disjoint balls such that

{x ∈ ℝ2 ∶MAf (x) > �} ⊆
⋃

j∈J
Bj ⊆

⋃

j∈J ′
5Bj

and so by (2.1)

|{x ∈ ℝ2 ∶MAf (x) > �}| ⩽ 5�
∑

j∈J ′
|Bj|

⩽ 5�
� ∫ℝ2

|f (y)|dy.

□
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2.3 Parabolic Hardy spaces
Now, to give the same treatment to our maximal functionsA,�,� , we must introduce parabolic
Hardy spaces, so following Calderón and Torchinsky [7, 8]. In this section we give a very brief
introduction of the required concepts.

Definition 2.3.1 Let 1 ⩽ p ⩽∞. We say a function f is inHp
A if the parabolic maximal function

of f is in Lp(ℝ2), that is

‖f‖Hp
A
= ‖MAf‖p < 1.

Now, one of the major advantages of using Hardy spaces to gain estimates on maximal functions
is that functions in Hardy spaces can be decomposed into atoms. This process is outlined in the
below definition and theorem due to Calderón.

Definition 2.3.2 We shall call a function, a, aH1
A-atom if there is a �A-ball B such that

1. supp(a) ⊆ B;

2. ‖a‖∞ ⩽ |B|−1;

3.

∫B
a(x)dx = 0.

Theorem 2.3.3 (Atomic decomposition ofH1
A, [6]) Given f ∈ H1

A, there exists a sequence of

H1
A-atoms, aj , and constants �j such that

‖f −
N
∑

j=1
�jaj‖H1

A
→ 0 asN → ∞
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and there exists c > 0 such that

c−1‖f‖H1
A
⩽

∞
∑

j=1
|�j| ⩽ c‖f‖H1

A
.
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2.4 Estimates on parabolic subdyadic maximal functions
Much like in the case of the parabolic Hardy-Littlewood maximal function, the main difficulty
is getting one of the endpoint estimates, the endpoint we require in this case is contained in the
following theorem.

Theorem 2.4.1 Let w be a weight, then

‖A,�,�∕2w‖1 ≲ ‖w‖H1
A(ℝ

2).

Remark 2.4.2 We have intentionally changed to using

Ã(t) =
⎛

⎜

⎜

⎝

ta1 0

0 ta2

⎞

⎟

⎟

⎠

,

where 0 < a1 ⩽ a2, as we feel that the argument is more illuminating with this convention as

there is a non-trivial dependence on a1, that is entirely hidden when a1 = 1. The homogeneous

dimension is therefore defined as � = a1 + a2 for the remainder of this chapter. Note that

Definition 1.3.1 outlines that this is entirely equivalent when the supremum is taken in the set

t > 0.

Proof: Let P be a bump function, strictly positive on BA(0, 1) = B(0, 1) and let PA(t) be A(t)-
dilations of P

PA(t)(x) = t−�P
(

A(t−1)x
)

.

Note that for any choice of #we can boundA,�,� from above pointwise by ourmaximal function
with the choice # = P , modulo a constant. So we can use this dilated bump function to get upper
estimates onA,�,�∕2.
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Letw ∈ H1
A, then by Theorem 2.3.3, there exists a sequence ofH1

A-atoms, aj , and constants �j ,
such that

w =
∞
∑

j=1
�jaj ,

where
∞
∑

j=1
|�j| <∞. (2.2)

We first aim to prove

A,�, �2
w(x) ⩽

∞
∑

j=1
|�j|A,�, �2

aj(x), (2.3)

for almost all x. To this end, we will show that for a fixed t,

PA(t) ∗ w(x) =
∑

j=1
�jPA(t) ∗ aj(x), (2.4)

for almost all x. Assuming (2.4) for now, we have

A,�, �2
w(x) = sup

(y,t)∈�A,�(x)
t��|PA(t) ∗ w(y)|

⩽ sup
(y,t)∈�A,�(x)

t��
∞
∑

j=1
|�j||PA(t) ∗ aj(y)|

⩽
∞
∑

j=1
|�j| sup

(y,t)∈�A,�(x)
t��|PA(t) ∗ aj(y)|

=
∞
∑

j=1
|�j|A,�, �2

aj(x),
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where we have used (2.2) and the triangle inequality on (2.4). So, to show (2.3), it is sufficient
to prove (2.4). To this end, define T by

Tf = PA(t) ∗ f.

First, for f ∈ L1, by Fubini’s theorem

‖Tf‖1 = ∫ℝ2 ∫ℝ2
PA(t)(x − y)f (y)dydx

= ∫ℝ2
f (y)∫ℝ2

PA(t)(x − y)dxdy

= ‖PA(t)‖1‖f‖1.

As PA(t) is normalised in L1 and P has total mass 1, this implies

‖Tf‖1 = ‖f‖1 (2.5)

for all f ∈ L1. Next, let a be an arbitraryH1
A-atom, as a ∈ L1 by (2.5) we have

‖T (a)‖1 = ‖a‖1

and

‖a‖1 = ∫BA(0,r)
|a(x)|dx

⩽ |BA(0, r)|−1|BA(0, r)|

= 1.
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So we can conclude

‖T (a)‖1 ⩽ 1, (2.6)

uniformly in allH1
A-atoms.

So, consider the set of points where (2.4) is not true, that is

|{|T (w) −
∞
∑

j=1
�jT (aj)| > �}| ⩽

1
�
‖T (w) −

∞
∑

j=1
�jT (aj)‖1,

by Chebyshev’s inequality. Next, we split up the sum into the first N terms and the terms after
N and use the reverse triangle inequality

|{|T (w) −
∞
∑

j=1
�jT (aj)| > �}| ⩽

1
�
‖T (w) −

N
∑

j=1
�jT (aj)‖1 +

1
�
‖

∞
∑

j=N+1
�jT (aj)‖1.

Now, we have two terms on the right hand side, the first of which we can use linearity of T , (2.5)
and the reverse L1 bound onMA to obtain

‖T (w) −
N
∑

j=1
�jT (aj)‖1 = ‖T (w −

N
∑

j=1
�jaj)‖1

= ‖w −
N
∑

j=1
�jaj‖1

⩽ ‖w −
N
∑

j=1
�jaj‖H1

A
.

For the second term we will use (2.6) and (2.2) as follows,

‖

∞
∑

j=N+1
�jT (aj)‖1 ⩽

∞
∑

j=N+1
|�j|‖T (aj)‖1

⩽
∞
∑

j=N+1
|�j|.
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Thus, we have

|{|T (w) −
∞
∑

j=1
�jT (aj)| > �}| ⩽

1
�
‖w −

N
∑

j=1
�jaj‖H1

A
+ 1
�

∞
∑

j=N+1
|�j|.

By Theorem 2.3.2,∑N
j=1 �jaj converges tow inH1

A and (2.2), both terms on the right hand side
converge to zero asN →∞, we conclude that

|{|T (w) −
∞
∑

j=1
�jT (aj)| > �}| = 0,

for all � > 0, which implies (2.4).
Now, we can take an L1 norm of both sides of (2.3) to get

‖A,�,�∕2w‖1 ⩽ ‖

∞
∑

j=1
|�j|A,�,�∕2aj‖1

⩽
∞
∑

j=1
|�j|‖A,�,�∕2aj‖1,

by the monotone convergence theorem. So if

‖A,�,�∕2a‖1 ≲ 1,

uniformly for allH1
A-atoms a, then

‖A,�,�∕2w‖1 ≲
∞
∑

j=1
|�j|

≲ ‖w‖H1
A
,
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by Theorem 2.3.3. So, it is sufficient to show that

‖A,�,�∕2a‖1 ≲ 1,

uniformly for allH1
A atoms a.

Note that as A,�,�∕2 is defined via convolution, it is translation invariant, so it is sufficient to
consider only H1

A-atoms, centred at the origin. Fix a H1
A-atom a, let BA(0, r) be the support of

a. For a fixed t and y, consider PA(t) ∗ a(y). If t ⩾ r,

PA(t) ∗ a(y) = ∫ℝ2
PA(t)(y − z)a(z)dz

= ∫BA(0,r)

(

PA(t)(y − z) − PA(t)(y)
)

a(z)dz

by the mean value property of a, that is property 3 of Definition 2.3.2. Now, by the mean value
theorem, for each z ∈ ℝ2, there exists some � ∈ (0, 1) such that

PA(t)(y − z) − PA(t)(y) = ⟨−z,∇PA(t)(y − �z)⟩,

We can use the Cauchy-Schwarz inequality to get

|⟨−z,∇PA(t)(y − �z)⟩| = |⟨−A(r−1)z, A(r)∇PA(t)(y − �z)⟩|

⩽ |A(r−1)z||A(r)∇PA(t)(y − �z)|
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and so

|PA(t) ∗ a(y)| ⩽ ∫BA(0,r)
|A(r−1)z||A(r)∇PA(t)(y − �z)||a(z)|dz

⩽ ‖A(r)∇PA(t)‖∞‖a‖∞ ∫BA(0,r)
|A(r−1)z|dz

⩽ t−�‖A
(r
t

)

∇P‖∞|BA(0, r)|−1 ∫BA(0,r)
|A(r−1)z|dz

⩽ t−�
(r
t

)a1
‖∇P‖∞ ⨍BA(0,r)

|A(r−1)z|dz.

The estimate on ‖A
(

r
t

)

∇P‖∞ is due to t ⩾ r and 0 < a1 ⩽ a2 giving that
(

r
t

)a2−a1
⩽ 1. Now,

we have that ‖∇P‖∞ ≲ 1 is independent of r and t and we have

⨍BA(0,r)
|A(r−1)z|dz = ⨍

|A(r−1)z|<1
|A(r−1)z|dz

⩽ 1.

Thus we have that

|PA(t) ∗ a(y)| ≲
ra1
t�+a1

for t ⩾ r.
If t ⩽ r,

|

|

|

PA(t) ∗ a(y)
|

|

|

=
|

|

|

|

∫ℝ2
PA(t)(y − z)a(z)dz

|

|

|

|

⩽ |BA(0, r)|−1‖PA(t)‖1

≲ 1
r�
.
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Consider the case when the supports of PA(t)(y − ⋅) and a do not overlap, then

PA(t) ∗ a(y) = ∫ℝ2
PA(t)(y − z)a(z)dz = 0.

This definitely occurs when the rectangles with the supports of Pt and a inscribed do not overlap,
which corresponds to the case when

sup
i=1,2

(tai + rai)−1|yi| > 1 ⟹ sup
i=1,2

Kai(t + r)
−ai
|yi| > 1,

for some constants Kai . This corresponds to taking a l∞ norm instead of a l2 norm in the
definition of �A. As these norms are equivalent we have that

|PA(t) ∗ a(y)| ≲

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ra1
t�+a1

if �A(y) ≲ t + r, t ⩾ r

1
r�

if �A(y) ≲ t + r, t ⩽ r

0 if �A(y) ≳ t + r.

Now, we turn to estimating the maximal function via this estimate. We need to split our analysis
up into five cases, where the set �A,�(x) has significantly different behaviours. There are two
cases singled out, � = 0 and � = 1. The case � = 0 is degenerate, in that the maximal function
considered reduces to the parabolic Hardy-Littlewood maximal function. The case � = 1 is
very similar to the case 0 < � < 1, but still significantly different enough to warrant a slightly
different approach.
Case � < 0

As we are taking a supremum over �A,�(x), we reduce to when t ⩾ 1. As our supremum is of
t��|PA(t) ∗ a(y)|, which as we can see above will have only negative powers of t (either t�� or
t��−(a1+�) as � < 0), we need only find the smallest t (as again, t ⩾ 1). First, consider r < 1; if
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�A(x) ≲ 1 then �A,�(x) and supp(PA(t) ∗ a(x)) have non-empty intersection for t = 1, so we have

A,�, �2
a(x) ≲ ra1

< 1.

If �A(x) ≳ 1 then �A,�(x) and supp(PA(t) ∗ a(x)) have empty intersection when t = 1 and so the
smallest value of t for them to have non-empty intersection is when r < 1 < t ∼ �A(x)

1
1−� . Then

t��|PA(t) ∗ a(x)| ≲ ra1t��−(�+a1) and we have

A,�, �2
a(x) ≲ ra1�A(x)

− ��−(�+a1)
�−1 .

So, collecting these we have

A,�, �2
a(x) ≲

⎧

⎪

⎨

⎪

⎩

1 if �A(x) ≲ 1
�A(x)

− ��−(�+a1)
�−1 if �A(x) ≳ 1.

Therefore, for fixed � < 0 and r < 1 as � �−(1−
a1
� )

�−1
> �, thus A,�,�∕2a is integrable by Proposi-

tion 1.3.9; that is ‖A,�,�∕2a‖1 ≲ 1.
Now, consider when r ⩾ 1; if �A(x) ≲ 1, then �A,�(x) and supp(PA(t) ∗ a(x)) have non-empty
intersection for t = 1, so we have

A,�, �2
a(x) ≲ r−�

< 1.

If �A(x) ≳ 1 then �A,�(x) and supp(PA(t) ∗ a(x)) have empty intersection when t = 1 and
so the smallest value of t for them to have non-empty intersection is when t ∼ �A(x)

1
1−� . If
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1 ≲ �A(x)
1
1−� ≲ r, then

A,�, �2
a(x) ≲ r−��A(x)

−� �
�−1 ,

which for each r > 1, integrating over �A(x)
1
1−� ≲ r integrates to a constant independent of r.

Case � = 0

We are taking a supremum over

�A,0(x) = {(y, t) ∈ ℝ2 ×ℝ+ ∶ t > 0, �A(x − y) ⩽ t}.

Therefore the maximal operator reduces to an uncentred parabolic maximal operator given by

A,�,�∕2a(x) = sup
(y,t)∈�A,0(x)

|PA(t) ∗ a(y)|

≲ MAa(x).

Case 0 < � < 1

We are taking a supremum over �A,�(x), so we reduce to when 0 < t ⩽ 1. First, if r > 1, then
t ⩽ 1 < r, and so

t��|PA(t) ∗ a(y)| ≲

⎧

⎪

⎨

⎪

⎩

t��

r�
if �A(y) ⩽ t + r

0 if �A(y) > t + r

and as � > 0 and monomials of degree > 0 are monotonically increasing, we look for the largest
t ⩽ 1 in the intersection of �A,�(x) and �A(y) ≲ t + r. If �A(x) ≲ r, then t = 1 is in the
intersection, therefore

A,�, �2
a(x) ≲ 1

r�
.
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However, if �A(x) ≳ r, then the intersection of �A,�(x) and �A(y) ≲ t + r is empty, and so

A,�, �2
a(x) ≲

⎧

⎪

⎨

⎪

⎩

r−� if �A(x) ≲ r
0 if �A(x) ≳ r.

So, for a fixed r > 1, this integrates to a constant independent of r.
Now, if r ⩽ 1, we have three cases. If �A(x) ≲ r, then the supremum is when t = r, so

A,�, �2
a(x) ≲ r��

r�

≲ 1.

If r ≲ �A(x) ≲ 1, then the supremum is when t ∼ �A(x)
1
1−� and we have r < 1, so

A,�, �2
a(x) ≲ ra1�A(x)

��−�−a1
�−1

≲ �A(x)
−�

�−1−
a1
�

�−1 .

Finally, if �A(x) ≳ 1, then the intersection is empty, so we have

A,�, �2
a(x) ≲

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if �A(x) ≲ r
�A(x)

−�
�−1−

a1
�

�−1 if r ≲ �A(x) ≲ 1
0 if �A(x) ≳ 1.

So, for a fixed r ⩽ 1, this integrates to a constant independent of r since � �−1−
a1
�

�−1
> �, therefore

‖A,�,�∕2a‖1 ≲ 1.
Case � = 1

We are taking a supremum over �A,1(x), we reduce to when 0 < t ⩽ 1. First, if r > 1, then
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t ⩽ 1 < r, and so

t�|PA(t) ∗ a(y)| ≲

⎧

⎪

⎨

⎪

⎩

t�

r�
if �A(y) ≲ t + r

0 if �A(y) ≳ t + r

and so we look for the biggest t ⩽ 1 in the intersection of �A,1(x) and �A(y) ≲ t + r. Now,
(y, t) ∈ �A,1(x) implies �A(x − y) ⩽ 1, and thus if �A(x) ≳ 1, then the intersection is empty. If
�A(x) ≲ 1 then t = 1 maximises t�|PA(t) ∗ a(y)| in the intersection and therefore,

A,1, 12
a(x) ≲

⎧

⎪

⎨

⎪

⎩

1 if �A(x) ≲ 1
0 if �A(x) ≳ 1.

Integrability uniformly in r is immediate as the pointwise estimate on A,1, 12
a is independent

of r and compactly supported.
Now we consider the case r ⩽ 1. If �A(x) ⩽ 1 (or equivalently |x| ⩽ 1), then t = r maximises
t�|PA(t) ∗ a(y)| in the intersection of �A(y) ≲ t + r and �A,1(x), and so

A,1, 12
a(x) ≲ 1.

If 1 < �A(x) ≲ 1+r, then t ∼ �A(x)maximises t�|PA(t) ∗ a(y)| in the intersection of �A(y) ≲ t+r
and �A,1(x), and so

A,1, 12
a(x) ≲ r�A(x)−a1

≲ 1.
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Finally, if �A(x) ≳ 1+rwe again have no intersection of the sets �A(y) ≲ t+r and �A(x−y) ⩽ 1
when t ⩽ 1, so all together that is

A,1, 12
a(x) ≲

⎧

⎪

⎨

⎪

⎩

1 if �A(x) ≲ 1 + r
0 if �A(x) ≳ 1 + r,

Note that we again have the same situation as the case r > 1 since r ⩽ 1 gives us that 1 + r ⩽ 2,
therefore ‖A,1, 12

a‖1 ≲ 1.
The final case is when � > 1, as we are taking a supremum over �A,�(x), we reduce to when
0 < t ⩽ 1. First, if r > 1, then t ⩽ 1 < r, and so

t��|PA(t) ∗ a(y)| ≲

⎧

⎪

⎨

⎪

⎩

t��

r�
if �A(y) ≲ t + r

0 if �A(y) ≳ t + r

and as � > 1 and monomials of degree > 0 are monotonically increasing, we look for the largest
t ⩽ 1 in the intersection of �A,�(x) and �A(y) ≲ t + r. If �A(x) ≲ r, then t = 1 is in the
intersection, therefore

A,�, �2
a(x) ≲ 1

r�
.

If �A(x) ≳ r, then t ∼ �A(x)
1
1−� is the smallest t in the intersection and so

A,�, �2
a(x) ≲

⎧

⎪

⎨

⎪

⎩

1
r�

if �A(x) ≲ r
�A(x)

−� �
�−1 if �A(x) ≳ r.

Note that the part of the estimate for �A(x) ≲ r is integrable to constant independent of r. So,
for fixed � > 1 and r > 1 as � �

�−1
> �, A,�, �2

a is integrable; that is ‖A,�, �2
a‖1 ≲ 1.

Now we consider when r ⩽ 1, if in addition we have �A(x) ⩽ 1 (or equivalently |x| ⩽ 1), then
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t = 1 maximises t��|PA(t) ∗ a(y)| in the intersection of �A(y) ≲ t + r and �A,�(x), and so

A,�, �2
a(x) ≲ ra1

≲ 1.

If �A(x) ⩽ 1 (or equivalently |x| ⩽ 1), then t ∼ �A(x)
1
1−� maximises t��|PA(t) ∗ a(y)| in the

intersection of �A(y) ≲ t + r and �A,�(x), and so for �A(x)
1
1−� ∼ t ⩾ r, we have

A,�, �2
a(x) ≲ ra1�A(x)

��−�−a1
1−�

≲ �A(x)
a1
1−� �A(x)

��−�−a1
1−�

≲ �A(x)−�,

and for �A(x)
1
1−� ∼ t ⩽ r we have

A,�, �2
a(x) ≲ r−��A(x)

��
1−� .

Thus, combining these we have

A,�, �2
a(x) ≲

⎧

⎪

⎨

⎪

⎩

1 if �A(x) ⩽ 1
r−��A(x)

−� �
1−� if �A(x) > 1.

So, for fixed � > 1, as r ⩽ 1 and �
�−1

> 1, �, �2
a is integrable by Proposition 1.3.9; that is

‖�, �2
a‖1 ≲ 1. □

So now that we have this endpoint estimate, it is a case of applying interpolation to obtain a
large range of other more general estimates via interpolation. The theorem that follows is the
conclusion of this chapter and enclosed are all the Lp − Lq estimates obtained.

Theorem 2.4.3 Let 1 ⩽ p ⩽ q ⩽∞ and �, � ∈ ℝ.
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• If � < 0 and � ⩽ �
2q
+ 1

2

(

1
p
− 1

q

)

;

• or � = 0 and � = 1
2

(

1
p
− 1

q

)

;

• or � > 0 and � ⩾ �
2q
+ 1

2

(

1
p
− 1

q

)

;

then

‖A,�,�w‖q ≲ ‖w‖p.

Proof: If � < 0, then (y, t) ∈ �A,�(x) implies that t ⩾ 1, thus if �′ ⩽ �, t2�′� ⩽ t2�� furthermore

A,�,�′w(x) ⩽ A,�,�w(x),

this allows us to reduce the case � < 0 down to just the sharp line

� = �
2q
+ 1
2

(

1
p
− 1
q

)

.

The same argument reduces the case � > 0 to the same sharp line. As we did for the H1
A − L

1

estimate, we will perform our analysis on the specific bump function P .

|A,�,0w(x)| = sup
(y,t)∈�A,�(x)

|PA(t) ∗ w(y)|

⩽ ‖P‖1‖w‖∞

as PA(t) is normalised in L1. Since this estimate is uniform in x, we immediately get

‖A,�,0w‖∞ ≲ ‖w‖∞. (2.7)
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Additionally, we have

|A,�, 12
w(x)| = sup

(y,t)∈�A,�(x)
t�|PA(t) ∗ w(y)|

⩽ ‖P‖∞‖w‖1,

again uniformly in x, so we have

‖A,�, 12
w‖∞ ≲ ‖w‖1. (2.8)

Now, we use analytic interpolation on (2.7) and (2.8). Let t ∈ (0, 1) be our interpolation variable,
then we obtain

‖A,�,�tw‖qt ≲ ‖w‖pt ,

where �t = 1
2
(1 − t), pt = 1

1−t
and 1

qt
= 0. Rearranging these and eliminating t gives us

‖A,�, 12s
w‖∞ ≲ ‖w‖s, (2.9)

for s ∈ (1,∞). Note that 1
s
= 0, 1 are the trivial endpoint estimates above, where we interpret

1
s
= 0 as s = ∞.

Additionally, by Theorem 2.4.1 we have

‖A,�, �2
w‖1 ≲ ‖w‖H1

A
. (2.10)

We shall interpolate between (2.9) and (2.10) using a form of analytic interpolation designed for
spaces of homogeneous type, which H1

A are known to be, see [35] and [13] Theorem D. Again
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let t ∈ (0, 1) be our interpolation variable, then we obtain

‖A,�,�tw‖qt ≲ ‖w‖pt ,

where �t = �
2
(1 − t) + t

2s
, 1
qt
= 1− t and 1

pt
= 1− t+ t

s
. Rearranging these again and eliminating

t gives us

‖A,�,�w‖q ≲ ‖w‖p,

where � = �
2q
+ 1

2

(

1
p
− 1

q

)

, as required. □
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CHAPTER 3
MULTIPLIERS

3.1 Fourier multiplier theory
For appropriate m ∶ ℝ → ℂ, define Tm by

T̂mf (�) = m(�)f̂ (�)

for � ∈ ℝ, then m is called a (Fourier) multiplier, and Tm is a (Fourier) multiplier operator. To
each Fourier multiplier we have a corresponding convolution kernel, K , where

Tmf = K ∗ f

and by the convolution theorem we have

K̂ = m.

For example the Hilbert transform,H , has multiplier given by

Ĥf (�) = −i sgn(�)f̂ (�).
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The corresponding convolution kernel for the Hilbert transform is well known to be 1
x
. H is the

prototype that the theory of Calderón-Zygmund singular integral operators was based, thus by
[32] we have

∫ℝ
|Hf |pw ≲ ∫ℝ

|f |pM [p]+1w (3.1)

for 1 < p < ∞, and so we can obtain all the known Lp bounds for H from bounds onM and
the now familiar transfer of bounds (1.4).
However, there are Fourier multipliers that are not bounded on Lp and so clearly cannot be
bounded in the above sense by powers of M . For these we must develop different maximal
operators that have more general Lp-Lq bounds. One example is the fractional integral operator
I� of order 0 < � < 1, given by

I�f (x) = ∫ℝ

f (x − y)
|y|1−�

dy

with multiplier given by

Î�f (�) = |�|−�f̂ (�),

modulo a constant. The Lp-Lq bounds for these operators have been known for a long time,
in fact Hardy, Hardy and Littlewood showed in [19] that I� is bounded from Lp to Lq when
1 < p < 1

�
and q = p

1−p�
.

The history of these operators in a weighted context follows a similar path to that of the Calderón-
Zygmund operators; we have the following theorem, due to Adams.

Theorem 3.1.1 ([1]) For p, r > 1

∫ℝ
|I�f |

pw ≲ ∫ℝ
|f |p(M�prw

r)1∕r
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whereM� is the fractional maximal operator defined by

M�f (x) = sup
x∈Q

|Q|�

|Q| ∫Q
|f |.

The above fractional maximal operator was introduced by Muckenhoupt and Wheedon, who in
the same paper showed that

Theorem 3.1.2 ([31]) Let 1 ⩽ p <∞ and 0 < � < 1, then

‖I�f‖p ≲ ‖M�f‖p,

where the implicit constant depends on �.

From this we can see that bounds on I� follow from bounds onM�, in fact they are equivalent op-
erators in this sense, see [16] for more details. However, in parallel with the Calderön-Zygmund
theory the above inequality of Adams does not give us all the known Lp-Lq bounds for I�.
However, Pérez also considered these operators, where he produced a very similar result to that
of his treatment of Calderón-Zygmund operators.

Theorem 3.1.3 ([33]) For 0 < � < 1 and 1 < p <∞ we have

∫ℝ
|I�f |

pw ≲ ∫ℝ
|f |pM�p(M [p]w),

where this time the implicit constant is independent of �.

To discuss more general multiplier theorems, we must return to the non-weighted setting mo-
mentarily. A classical multiplier theorem is the following.

Theorem 3.1.4 (See [16] for details) Ifm is a function of bounded variation onℝ, thenm is an

Lp multiplier for 1 < p <∞.
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The proof of this relies on use of the Hilbert transform, so it is unsurprising that we get similar
bounds. Note that while this is a sufficient condition form to be a multiplier, it is not a necessary
one. We can see this directly from the example of the fractional integral operator, I�, which has
multiplier |�|−�. These multipliers are too singular (or rough) to have bounded variation on the
whole of ℝ, yet we know they obey Lp-Lq bounds.
There are many theorems reducing this gap in our classification, one classical example is the
Marcinkiewicz multiplier theorem, which asks slightly less than Theorem 3.1.4 by asking only
that m has bounded variation on each dyadic interval uniformly.

Theorem 3.1.5 (See [16] for details) If m has uniformly bounded variation on each dyadic in-

terval in ℝ, then m is an Lp multiplier for 1 < p <∞.

Another approach to multipliers makes use of the Sobolev spaceL2a(ℝ), defined for a > 0, which
is the set of functions g such that

(1 + |�|2)a∕2ĝ(�) ∈ L2,

where the norm is defined by

‖g‖L2a =
(

∫ℝ
|(1 + |�|2)a∕2ĝ(�)|2d�

)1∕2

.

With this we can state another classical result in multiplier theory.

Theorem 3.1.6 (See [16] for details) If a > 1∕2 and m ∈ L2a, then m is a multiplier on Lp for

1 ⩽ p ⩽ ∞

In contrast with the previous approach, this method does not rely on the Hilbert transform and
this gives us the end-point results p = 1,∞.
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Again, the hypotheses of this result can be weakened by considering a dyadic decomposition.
To state this theorem, we need a dyadic partition of unity by smooth functions.
Let  ∈ C∞(ℝ) be supported on 1

2
⩽ |�| ⩽ 2 such that

∑

j∈ℤ
| (2−j�)|2 = 1,

for |�| ≠ 0. Then the Hörmander multiplier theorem is as follows.

Theorem 3.1.7 ([21]) If a > 1∕2 and m is such that

sup
j∈ℤ

‖m(2j⋅) ‖L2a <∞,

then m is an Lp multiplier for 1 < p <∞.

Kurtz then went on to show a generalised single-weighted version of the Hörmander multiplier
theorem [23]. Kurtz and Wheedon extended this to a generalised single-weight version of the
Marcinkiewicz multiplier theorem [24]. These give very general weighted Lp bounds; however,
as there is a restriction made on the weights allowed it does not allow us to use these weighted
inequalities to obtain non-weighted Lp bounds via (1.4).
A Fefferman-Stein-type inequality of the Marcinkiewicz multiplier theorem can be obtained
relatively easily, first consider m to be bounded and of bounded variation on ℝ. Then

Tm = lim
t→−∞

m(t)I + 1
2 ∫ℝ

(I + iE−tHEt)|m′(t)|dt,

where I is the identity operator and the modulation operator Et is given by Etf (x) = e−ixtf (x).
As Et is bounded on Lp(w) for 1 ⩽ p ⩽∞ and by (3.1) we have

∫ℝ
|Tmf |

2w ≲ ∫ℝ
|f |2M3w,
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see [16] for details.
Using this, and classical Littlewood-Paley theory for dyadic decompositions of the line and (1.5),
we obtain the following theorem.

Theorem 3.1.8 If m has uniformly bounded variation on dyadic intervals, then

∫ℝ
|Tmf |

2w ≲ ∫ℝ
|f |2M7w.

Note that in contrast to putting a constraint on the weight w, obtaining Fefferman-Stein-type
inequalities allows us to use (1.4) to immediately recover the classical Marcinkiewicz multiplier
theorem. This idea of using Littlewood-Paley theory to reduce to dyadic intervals, thus reducing
the problem to simpler behaviour that is easier to bound, is the impetus behind this chapter. We
will discuss this method more in depth later, for further discussion see [3, 2, 38].
While these classical theorems deal withmore singular multipliers, such as the fractional integral
operator, there are much more singular multipliers that do not have bounded variation on even
dyadic intervals. The following theorem can be found in the encyclopedic exposé of the topic
by Miyachi.

Theorem 3.1.9 ([30]) If m ∈ C1(ℝ) has support in |�| ⩾ 1 such that for a, b ⩾ 0, we have

a(1∕p − 1∕2) = b and

|m(�)| ≲ |�|−b,

|m′(�)| ≲ |�|−b+a−1

or if m ∈ C1(ℝ ⧵ {0}) has support in |�| ⩽ 1 such that for c, d ⩾ 0, we have c(1∕p − 1∕2) = d
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and

|m(�)| ≲ |�|d ,

|m′(�)| ≲ |�|d−c−1,

then m is an Lp multiplier for 1 < p < 2.

We note here that if we take a = b = c = d = 0, the above theorem implies both the
Marcinkiewicz multiplier theorem and the Hörmander multiplier theorem, see [16] for details.

Remark 3.1.10 A critique should be made of some of the above theorems, and furthermore of

many classical multiplier theorems. That is, such theorems suffer from having hypotheses that

are not translation invariant for the multiplier, yet it is well known that multiplier operators

are translation invariant, furthermore the conclusions of the theorems are both translation and

modulation invariant in the kernels due to the convolution structure of the operators and the

following observation.

Letm be amultiplier and Tm be the associatedmultiplier operator for which we have a Fefferman-
Stein-type inequality with maximal operatorMm, that is for all admissible input functions f we
have

∫ℝ
|Tmf |

pw ⩽ C ∫ℝ
|f |pMmw,
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and consider a translation of our multiplier by a,m(⋅−a). Then the convolution kernel associated
with m, say K , would be modulated by eia⋅, and so

Tm(⋅−a)f (x) = ∫ℝ
K(y)e−iayf (x − y)dy

= e−iax ∫ℝ
K(y)eia(x−y)f (x − y)dy

and so

Tm(⋅−a)f (x) = e−iaxTm(eia⋅f )(x),

taking the modulus of each side

|Tm(⋅−a)f (x)| = |Tm(eia⋅f )(x)|

and sincewe have the Fefferman-Stein-type inequality for any admissible function f andweighted
Lp spaces are invariant under modulation, we obtain

∫ℝ
|Tm(⋅−a)f |

pw ≲ ∫ℝ
|f |2Mmw.
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3.2 Anisotropic square function estimates
Definition 3.2.1 We call an operator T a Calderón-Zygmund operator associated with the di-

lation A if the following hold

1. T ∶ L2(ℝ2)→ L2(ℝ2);

2. there exists a measurable function K ∶ ℝ2 → ℝ such that for every f ∈ L∞0 (ℝ
2) we have

Tf (x) = ∫ℝ2
K(x − y)f (y)dy

for a.e. x ∉ supp(f );

3. the kernel K satisfies

|K(x)| ≲ 1
�A(x)�

for every x ∈ ℝ2;

4. the kernels K and K∗ (defined by K∗(x) = K(−x)) satisfy the following pointwise Hör-

mander condition: There exist a positive constantsM > 1 and  > 0 such that whenever

�A(y) <
1
M
�A(x) we have

|K(x) −K(x − y)| ≲
�A(y)

�A(x)�+
.

Note that in the isotropic definition of CZO, the constant M > 1 plays the role of keeping
x − y close to x in some sense. In our anisotropic definition, our understanding of "closeness"
is necessarily dependent upon our space, thus ourM will depend on A.
In M. Christ’s book [11] page 94 Theorem 9 references the below theorem by R.R. Coifman and
G. Weiss.
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Theorem 3.2.2 ([12]) Let 1 < q <∞ andw be a weight. If T is a Calderón-Zygmund operator

associated with the dilation A then T is bounded on Lq.

Additionally, in a paper by G. Pradolini and O. Salinas appears the following theorem.

Theorem 3.2.3 ([34]) Let 1 < q <∞ andw be a weight. If T is a Calderón-Zygmund operator

associated with the dilation A and T ∶ Lq(ℝ2) → Lq(ℝ2) is linear and continuous for all

q ∈ (1,∞) then

∫ℝ2
|Tf (x)|pw(x)dx ≲ ∫ℝ2

|f (x)|M [p]+1
A w(x)dx

where [p] is the largest integer smaller than p.

See Hu et al. [22] for further discussion.
We now introduce an anisotropic version of the continuous square functions.

Definition 3.2.4

sA(f )(x) =
(

∫

∞

0
|f ∗ �A(t)(x)|2

dt
t

)
1
2

,

where �̂ has compact support away from the origin and for � ≠ 0,

∫

∞

0
�̂(A(t)�)dt

t
= 1. (3.2)

This section concerns itself with the two-weighted problem of this anisotropic square function.
The coming propositions show how to reduce the problem to an application of Theorem 3.2.3 in
the case p = 2 and follows mostly follows the isotropic case. In these propositions we have not
concerned ourselves with minimising the amount of applications ofMA to the weight; however,
it would be surprising if Proposition 3.2.5 was not sharp in this sense and equally as surprising
if Proposition 3.2.7 was sharp in this sense. See [10] for further discussion in the isotropic case.
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Proposition 3.2.5

‖f‖L2(w) ≲ ‖sA(f )‖L2(M3
Aw)
.

Proof: For j = 0, 1, 2, 3, 4, 5, let

fj(x) =
∑

k∈6ℤ+{j}
∫

2k+1

2k
�A(t) ∗ f (x)

dt
t
.

Define ℎ̂(�) = ∫ 2
1 �̂(A(t)�)

dt
t
. As supp(�̂) ⊆ {� ∈ ℝ2 ∶ 3

4
⩽ �A(�) ⩽ 3} the function ℎ̂(�) has

support when

3
4
⩽ �A(A(t)�) ⩽ 3,

which using the A-homogeneity of �A and the fact that in the definition of ℎ̂(�) the integral is
over the set t ∈ (1, 2), which gives the support of ℎ̂(�) as

3
8
⩽ �A(�) ⩽ 3.

Now, define �̂ as the smooth function equal to 1 on the support of ℎ̂(�) and supported in the set
{� ∈ ℝ2 ∶ 1

8
⩽ �A(�) ⩽ 4}. Additionally, let " = {"k}k∈ℤ be a Rademacher distribution. Next

define T "j by

T̂ "j f (�) =
∑

k∈6ℤ+{j}
"k�̂(A(2−k)�)f̂ (�).

Now, consider

T̂ "j T
"
j fj(�) =

∑

k∈6ℤ+{j}
"k�̂(A(2−k)�)

(

∑

s∈6ℤ+{j}
"s�̂(A(2−s)�)f̂j(�)

)

.
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Note that by the choice of the support of �̂ that each of the summands in the definition of T̂ "j
have non-overlapping support, thus the only terms in the double sum above are when s = k.
Therefore,

T̂ "j T
"
j fj(�) =

∑

k∈6ℤ+{j}
"k�̂(A(2−k)�)"k�̂(A(2−k)�)f̂j(�)

=
∑

k∈6ℤ+{j}
�̂(A(2−k)�)�̂(A(2−k)�)f̂j(�).

Now, by how we defined �̂ it is clear that ℎ̂(�)�̂(�) = ℎ̂(�), this allows us to conclude that

T "j T
"
j fj(x) = fj(x).

Next, consider (3.2) multiplied on both sides by f̂ (�), for � ≠ 0

f̂ (�) = ∫

∞

0
�̂(A(t)�)f̂ (�)dt

t
.

Taking the inverse Fourier transform of both sides and splitting the t integral into dyadic intervals
gives us

f (x) =
∑

k∈ℤ
∫

2k+1

2k
�A(t) ∗ f (x)

dt
t
,

which allows us to write f (x) = ∑5
j=0 fj(x), in particular

f (x) =
5
∑

j=0
T "j T

"
j fj(x).
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Therefore we can write

∫ℝ2
|f (x)|2w(x)dx = ∫ℝ2

|

|

|

|

|

|

5
∑

j=0
T "j T

"
j fj(x)

|

|

|

|

|

|

2

w(x)dx

≲
5
∑

j=0
∫ℝ2

|

|

|

T "j T
"
j fj(x)

|

|

|

2
w(x)dx.

Now, we make a claim about the operator T "j .

Claim 3.2.6 For each j = 0, ..., 5, T "j is a Calderón-Zygmund operator associated with the

dilation A uniformly in ".

Assuming this claim for now, along with Theorem 3.2.2 and Theorem 3.2.3, we have that

∫ℝ2

|

|

|

T "j T
"
j fj(x)

|

|

|

2
w(x)dx ≲ ∫ℝ2

|

|

|

T "j fj(x)
|

|

|

2
M3

Aw(x)dx.

This gives us

∫ℝ2
|f (x)|2w(x)dx ≲

5
∑

j=0
∫ℝ2

|

|

|

T "j fj(x)
|

|

|

2
M3

Aw(x)dx. (3.3)

Now, writing

yk(x) = ∫

2k+1

2k
�A(t) ∗ f (x)

dt
t
,

we can therefore write, due to the support of �̂ ,

T "j fj(x) =
∑

k∈6ℤ+{j}
"kyk(x).
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Thus, taking expectations in " for both sides of (3.3) gives us

∫ℝ2
|f (x)|2w(x)dx ≲

5
∑

j=0
∫ℝ2

E
⎛

⎜

⎜

⎝

|

|

|

|

|

|

∑

k∈6ℤ+{j}
"kyk(x)

|

|

|

|

|

|

2
⎞

⎟

⎟

⎠

M3
Aw(x)dx.

Now, consider

E
⎛

⎜

⎜

⎝

|

|

|

|

|

|

∑

k∈6ℤ+{j}
"kyk(x)

|

|

|

|

|

|

2
⎞

⎟

⎟

⎠

= E

(

∑

k∈6ℤ+{j}

∑

l∈6ℤ+{j}
"k"lyk(x)yl(x)

)

.

Using the independence of " and the fact that E(") = 0

E
⎛

⎜

⎜

⎝

|

|

|

|

|

|

∑

k∈6ℤ+{j}
"kyk(x)

|

|

|

|

|

|

2
⎞

⎟

⎟

⎠

=
∑

k∈6ℤ+{j}

|

|

yk(x)||
2 .

Thus, with an application of Cauchy-Schwarz and the observation that

∫

2k+1

2k

dt
t
= ln 2,

we have that

|

|

yk(x)||
2 =

|

|

|

|

|

∫

2k+1

2k
�A(t) ∗ f (x)

dt
t

|

|

|

|

|

2

⩽

(

∫

2k+1

2k

|

|

|

�A(t) ∗ f (x)
|

|

|

2 dt
t

)(

∫

2k+1

2k
|1|2dt

t

)

≲ ∫

2k+1

2k

|

|

|

�A(t) ∗ f (x)
|

|

|

2 dt
t
.
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Therefore, we can conclude that

∫ℝ2
|f (x)|2w(x)dx ≲

5
∑

j=0
∫ℝ2

∑

k∈6ℤ+{j}
∫

2k+1

2k

|

|

|

�A(t) ∗ f (x)
|

|

|

2 dt
t
M3

Aw(x)dx

= ∫ℝ2 ∫

∞

0

|

|

|

�A(t) ∗ f (x)
|

|

|

2 dt
t
M3

Aw(x)dx

= ∫ℝ2
sA(f )(x)2M3

Aw(x)dx.

So, to complete the proof of Proposition 3.2.5 it is sufficient to prove Claim 3.2.6. □

Proposition 3.2.7

‖sA(f )‖L2(w) ≲ ‖f‖L2(M3
Aw)
.

Proof: To prove this we will introduce a discrete version of the square function, this will allow
us to expand out the square directly as we did above. Let � ∈ [1, 2] and define

S�(f )2(x) =
∑

k∈ℤ
|�A(�2−k)(x)|2.

With this, we can write our square function as

sA(f )(x) = ∫

∞

0

|

|

|

�A(t) ∗ f (x)
|

|

|

2 dt
t

=
∑

k∈ℤ
∫

2k+1

2k

|

|

|

�A(t) ∗ f (x)
|

|

|

2 dt
t
.
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Let t = �2−k, then dt
d�
= 2−k and so

sA(f )(x) =
∑

k∈ℤ
∫

2

1

|

|

|

�A(�2−k) ∗ f (x)
|

|

|

2 d�
�

⩽ ∫

2

1

∑

k∈ℤ

|

|

|

�A(�2−k) ∗ f (x)
|

|

|

2 d�
�

= ∫

2

1
S�(f )2(x)

d�
�
.

Let " be a Rademacher distribution as above, expanding out the squares, we have

S�(f )2(x) =
∑

k∈ℤ

|

|

|

�A(�2−k) ∗ f (x)
|

|

|

2

= E

(

|

|

|

|

|

∑

k∈ℤ
"k�A(�2−k) ∗ f (x)

|

|

|

|

|

2)

.

For the sake of simplicity of proof later, we introduce the same T "j , for j = 0, ..., 5 as before, but
this time it will have an extra dependence, �. Define T "j,� by

T̂ "j,�f (�) =
∑

k∈6ℤ+{j}
"k�̂(A(�2−k)�)f̂ (�),

where �̂ is again the function equal to 1 on {� ∈ ℝ2 ∶ 3
8
⩽ �A(�) ⩽ 3} and supported in the set

{� ∈ ℝ2 ∶ 1
8
⩽ �A(�) ⩽ 4}. Note that by how we chose the support of �̂ ,

S�(f )2(x) ⩽ E
⎛

⎜

⎜

⎝

|

|

|

|

|

|

5
∑

j=0
T "j f (x)

|

|

|

|

|

|

2
⎞

⎟

⎟

⎠

≲ E

(

5
∑

j=0

|

|

|

T "j f (x)
|

|

|

2
)

.
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Thus,

‖sA(f )‖2L2(w) = ∫ℝ2
sA(f )(x)2w(x)dx

⩽ ∫ℝ2 ∫

2

1
S�(f )2(x)

d�
�
w(x)dx

≲ ∫ℝ2 ∫

2

1
E

(

5
∑

j=0

|

|

|

T "j,�f (x)
|

|

|

2
)

d�
�
w(x)dx

⩽ ∫

2

1
E

(

5
∑

j=0
∫ℝ2

|

|

|

T "j,�f (x)
|

|

|

2
w(x)dx

)

d�
�
.

Claim 3.2.8 For each j = 0, ..., 5, T "j,� is a Calderón-Zygmund operator associated with the

dilation A uniformly in " and �.

Assuming this claim again for now, along with Theorem 3.2.2 and Theorem 3.2.3, we have that

∫ℝ2

|

|

|

T "j,�f (x)
|

|

|

2
w(x)dx ≲ ∫ℝ2

|f (x)|2M3
Aw(x)dx,

and therefore

‖sA(f )‖2L2(w) ≲ ∫

2

1
E

(

5
∑

j=0
∫ℝ2

|f (x)|2M3
Aw(x)dx

)

�d�.

Finally, note that the RHS is independent of " and j, and since � ⩽ 2, we have

‖sA(f )‖2L2(w) ≲ ∫ℝ2
|f (x)|2M3

Aw(x)dx

= ‖f‖2
L2(M3

Aw)
.

So, to complete the proof of Proposition 3.2.7 it is sufficient to prove Claim 3.2.8. □

Note that Claim 3.2.6 is an immediate consequence of Claim 3.2.8 proof by taking � = 1.
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Proof: [Claim 3.2.8] By Definition 3.2.1 there are 4 properties to check; property 2 is trivially
satisfied by the definition of T̂ ",�j where

K(x) =
∑

k∈6ℤ+{j}
"k�A(�2−k)(x).

Property 1 boils down to Plancherel’s theorem as follows

‖T "j f‖
2
2 = ‖T̂ "j f‖

2
2

= ∫ℝ2

|

|

|

|

|

|

∑

k∈6ℤ+{j}
"k�̂(A(�2−k)�)f̂ (�)

|

|

|

|

|

|

2

d�

⩽ ∫ℝ2

∑

k∈6ℤ+{j}

|

|

�̂(A(�2−k)�)|
|

2
|

|

|

f̂ (�)||
|

2
d�.

As supp(�̂(A(�2−k)⋅)) is disjoint from supp(�̂(A(�2−s)⋅)) for all s ≠ k ∈ 6ℤ+{j}, we have that

∑

k∈6ℤ+{j}

|

|

�̂(A(�2−k)�)|
|

2 ⩽ C.

Therefore, we conclude that

‖T "j f‖
2
2 ≲ ∫ℝ2

|

|

|

f̂ (�)||
|

2
d�

= ‖f̂‖22

= ‖f‖22.

For properties 3 and 4 the arguments are longer, but no more complex. First let’s start with
property 3. Note that although the following proof is for K , it is identical for K∗ due to our
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bounds on � being even. So, fix i and x such that 2−i ⩽ �A(x) ⩽ 2−i+1. Then, as 1 ⩽ � ⩽ 2,

|K(x)| =
|

|

|

|

|

|

∑

k∈6ℤ+{j}
"k�

−�2k��(A(�−12k)x)
|

|

|

|

|

|

≲
∑

k∈6ℤ+{j}
2k� ||

|

�(A(�−12k)x)||
|

.

As �̂ is a bump function, � ∈  and therefore for eachN ∈ ℕ0, we can find �N > 0 such that

|�(y)| ⩽
�N

(1 + �A(y))N

for all y ∈ ℝ2. We note that our �N implicitly depends on the the homogeneous dimension �,
but we will explicitly chooseN dependent on � at a later stage in the proof. Now, if we split the
sum using the triangle inequality as

|K(x)| ≲
∑

k∈6ℤ+{j}
k⩽i

2k� ||
|

�(A(�−12k)x)||
|

+
∑

k∈6ℤ+{j}
k>i

2k� ||
|

�(A(�−12k)x)||
|

then use the estimate on � separately in each sum

|K(x)| ≲
∑

k∈6ℤ+{j}
k⩽i

2k�
�0

(1 + �A(A(�−12k)x))0
+

∑

k∈6ℤ+{j}
k>i

2k�
�N

(1 + �A(A(�−12k)x))N

= 2i�
⎛

⎜

⎜

⎜

⎝

∑

k∈6ℤ+{j}
k⩽i

�02(k−i)� +
∑

k∈6ℤ+{j}
k>i

�N2(k−i)�

(1 + �−12k�A(x))N

⎞

⎟

⎟

⎟

⎠

⩽ 2i�
⎛

⎜

⎜

⎜

⎝

2��0 + 22−N�N
∑

k∈6ℤ+{j}
k>i

2(k−i)�
(2k−i)N

⎞

⎟

⎟

⎟

⎠

= 2i�
⎛

⎜

⎜

⎜

⎝

2��0 + 22−N�N
∑

k∈6ℤ+{j}
k>i

2(k−i)(�−N)
⎞

⎟

⎟

⎟

⎠

,
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and so, choosingN > �, we have that

|K(x)| ≲ 2i�

≲ �A(x)−� .

Again for property 4, fix i and x such that 2−i ⩽ �A(x) ⩽ 2−i+1, and fix y such that �A(y) ⩽
1
M
�A(x), for someM > 1 that we will choose. Now, consider

|K(x − y) −K(x)| ⩽
|

|

|

|

|

|

∑

k∈6ℤ+{j}
"k�

−�2k��(A(�−12k)(x − y)) − �(A(�−12k)x))
|

|

|

|

|

|

≲
∑

k∈6ℤ+{j}
2k� ||

|

�(A(�−12k)(x − y)) − �(A(�−12k)x)||
|

.

Define for s ∈ [0, 1],

g(s) = �(A(�−12k)(x − sy))

and so by the mean value theorem applied to g we have, for some c ∈ (0, 1),

g′(c) = g(1) − g(0)

and so, by direct calculation of g′(c), we have

|

|

|

�(A(�−12k)(x − y)) − �(A(�−12k)x)||
|

⩽ |

|

|

⟨−A(�−12k)y,∇�(A(�−12k)(x − cy))⟩||
|

⩽ |A(�−12k)y||∇�(A(�−12k)(x − cy)|
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by the Cauchy-Schwarz inequality. Next, define

I1 = {k ∈ 6ℤ + {j} ∶ k ⩽ i},

I2 = {k ∈ 6ℤ + {j} ∶ �A(A(�−12k)y) ⩽ 1, k ⩾ i} and
I3 = {k ∈ 6ℤ + {j} ∶ �A(A(�−12k)y) ⩾ 1, k ⩾ i}.

Here, we note that there is overlap in some of these sets, but as the summands are all positive,
we have

|K(x − y) −K(x)| ≲
∑

k∈I1

2k�|A(�−12k)y||∇�(A(�−12k)(x − cy)|

+
∑

k∈I2

2k�|A(�−12k)y||∇�(A(�−12k)(x − cy)| (3.4)

+
∑

k∈I3

2k�|A(�−12k)y||∇�(A(�−12k)(x − cy)|.

It’s also crucial to note that a priori the sizes of I2 and I3 are dependent on y currently, but we
will fix this issue shortly by making the sets larger. In fact, we will sum over the set defined by

I4 = {k ∈ 6ℤ + {j} ∶ k ⩾ i}.

Wewill also need the fact that � ∈  , thus we can get bounds on |∇�|; that is, for eachN ∈ ℕ0,
we can find �N > 0 such that

|∇�(z)| ⩽
�N

(1 + �A(z))N

for all z ∈ ℝ2.
We will consider each sum in turn, first for k ∈ I1, k ⩽ i and �A(y) ⩽ 1

M
�A(x), and so ifM ⩾ 4
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we have

�A(A(�−12k)y) = �−12k�A(y) ⩽
�−1

M
2k�A(x) ⩽

2�−1
M

2k−i ⩽ 1.

So by Remark 1.3.12 we have that |A(�−12k)y| ⩽ �−12k�A(y), thus we can estimate, withN = 0,

∑

k∈I1

2k�|A(�−12k)y||∇�(A(�−12k)(x − cy)| ⩽ 2i(�+1)
∑

k∈I1

2k��−12k�A(y)�02−i(�+1)

= 2i(�+1)�A(y)
∑

k∈I1

2(k−i)(�+1)�−1�0

≲
�A(y)
�A(x)�+1

,

where the last line follows from the fact that for k ∈ I1 we have k ⩽ i and from the fact that
�A(x) ∼ 2−i.
Next, we consider k ∈ I2. Immediately we have that �A(A(�−12k)y) ⩽ 1, thus |A(�−12k)y| ⩽
�−12k�A(y) again, so for eachN2 ∈ ℕ0, we have

∑

k∈I2

2k�|A(�−12k)y||∇�(A(�−12k)(x − cy)| ⩽ 2i(�+1)�A(y)
∑

k∈I2

2(k−i)(�+1)�−1�N2

(1 + �A(A(�−12k)(x − cy))N2
.

Now, since �A(y) ⩽ 1
M
�A(x), we have that

�A(x − cy) ⩾ �A(x) − �A(cy)

⩾ �A(x) − �A(y)

⩾ �A(x) −
1
M
�A(y)

= M − 1
M

�A(x)

⩾ 1
2
�A(x)
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where we used the reverse triangle inequality and the monotonicity of �A since c ∈ (0, 1). We
have also added a restriction ofM ⩾ 2 for convenience. So, using this and the homogeneity of
�A, we have

∑

k∈I2

2k�|A(�−12k)y||∇�(A(�−12k)(x − cy)| ⩽ 2i(�+1)�A(y)
∑

k∈I2

2(k−i)(�+1)�−1�N2

2kN22−N2�A(x)N2

≲
�A(y)
�A(x)�+1

∑

k∈I2

2(k−i)(�+1)

2(k−i)N2

⩽
�A(y)
�A(x)�+1

∑

k∈I4

2(k−i)(�+1)

2(k−i)N2

≲
�A(y)
�A(x)�+1

for anyN2 > � + 1 as k ⩾ i.
Finally, consider k ∈ I3. By Remark 1.3.12, �A(A(�−12k)y) ⩾ 1 implies |A(�−12k)y| ⩽

�−�2k��A(y)� , thus for eachN3 ∈ ℕ0, we have

∑

k∈I3

2k�|A(2k)y||∇�(A(2k)(x − cy)| ⩽ 2i(�+�)
∑

k∈I3

2k�2k��A(y)��−��N3
2−i(�+�)

(1 + �A(A(2k)(x − cy))N3

≲
�A(y)�

�A(x)�+�
∑

k∈I3

2(k−i)(�+�)

2(k−i)N3

≲
�A(y)�

�A(x)�+�
,

for anyN3 > � + �, as k ⩾ i. Now, since �A(y) ⩽ 1
M
�A(x), this gives us

�A(y)
�A(x)

⩽ 1
M

⩽ 1
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sinceM > 1, and since � > 1,

∑

k∈I3

2k�|A(2k)y||∇�(A(2k)(x − cy)| ≲
�A(y)�

�A(x)�+�

=
�A(y)
�A(x)�+1

(

�A(y)
�A(x)

)�−1

⩽
�A(y)
�A(x)�+1

.

So we can substitute all of this back into (3.4) and we get

|K(x − y) −K(x)| ≲
�A(y)
�A(x)�+1

,

as required, thus we conclude the proof of the claim. □
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3.3 Subdyadic Littlewood-Paley theory

3.3.1 Isotropic subdyadic Littlewood-Paley theory

In Chapter 4 we will be producing oscillatory estimates on large classes of kernels and will need
both the below theorems, due to Beltran and Bennett, and Bennett, respectively. We include
them in this chapter as they are the isotropic and one dimensional versions of the main theorem
for this chapter. We will discuss the nature of the first of these two theorems and its proof in
more detail when we introduce the parabolic version. The second theorem is proved in [3] in a
different way that contains elements that do not easily extend to higher dimensions, specifically
using estimates on the Hilbert transform.

Theorem 3.3.1 ([2]) Let �, � ∈ ℝ,  ∈ ℕd and let f be an admissible input function and w be

a weight. If

|Dm(�)| ≲ |�|−�d+||(�−1)

for m with support in {� ∈ ℝ2 ∶ |�|� ⩾ 1} and || ⩽ ⌊

d
2
⌋ + 1 then

∫ℝd
|Tmf |

2w ≲ ∫ℝd
|f |2M2�,�M

4w,

where Tm is defined by T̂mf = mf̂ and

�,�w(x) = sup
(r,y)∈��(x)

r2�d

r ∫
|y−z|⩽r

w(z)dz, (3.5)

where

��(x) = {(r, y) ∶ 0 < r� ⩽ 1 and |y − x| ⩽ r1−�}.
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Remark 3.3.2 We have used the notation D , where  = (1, 2, ..., d) is a multi-index to mean

Df (x) =
)||f
x11 ...x

d
d

.

Theorem 3.3.3 ([3]) Let �, � ∈ ℝ and �, C > 0. If m∶ ℝ → ℂ is such that

supp(m) ⊆ {� ∈ ℝ ∶ |�|� ⩾ ��}, (3.6)

sup
�
|�|�|m(�)| ⩽ C (3.7)

and

sup
R�⩾��

sup
I⊆[R,2R]

len(I)=(R∕�)−�R

R�
∫±I

|m′(�)|d� ⩽ C, (3.8)

then there exists a constant c > 0 such that

∫ℝ
|Tmf |

2w ⩽ cC2
∫ℝ

|f |2M6�,�,�M
4w,

where Tm is defined by T̂mf = mf̂ ,

�,�,�w(x) = sup
(y,r)∈��,�(x)

r2�

r ∫

y+r

y−r
w (3.9)

and

��,�(x) = {(y, r) ∶ 0 < r� ⩽ �−�, |x − y| ⩽ �−�r1−�}.

Remark 3.3.4 Theorem 3.3.3 is a scale invariant version of Theorem 3.3.1 in one dimension.
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We have been precise with the dependence of the conclusion on the constant in hypotheses (3.7)
and (3.8) so that we can keep track of the dependence of the constant on the scaling �.
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3.3.2 g-functions and associated anisotropic subdyadic multipliers

The main result of this thesis is a parabolic version of Beltran and Bennett’s Fefferman-Stein
inequality [2] for a specific class of multipliers adapted to the dilations A.

Theorem 3.3.5 Let �, � ∈ ℝ,  ∈ ℕd and let f be an admissible input function and w be a

weight. If m is a Fourier multiplier such that

|Dm(�)| ≲ �A(�)−��+‖‖A(�−1) (3.10)

for m with support in {� ∈ ℝ2 ∶ |�|� ⩾ 1} and || ⩽ 3, then

∫ℝ2
|Tmf (x)|2w(x)dx ≲ ∫ℝ2

|f (x)|2M4
AA,�,�M

3
Aw(x)dx (3.11)

where

A,�,�f (x) = sup
(y,t)∈�A,�(x)

(t�)2�|#A(t) ∗ f (y)|

and

�A,�(x) = {(y, t) ∈ ℝ2 ×ℝ+ ∶ 0 < t� ⩽ 1, �A(x − y) ⩽ t1−�}.

Remark 3.3.6 We have stated Theorem 3.3.5 with a Mikhlin-type condition on our multipliers,

but it is possible to reduce the requirement to just � ⩽ 2 and even further reduce to a broader

class of multipliers with a Hörmander-type condition, see [2] for details.

We will prove Theorem 3.3.5 by splitting our argument up into distinct steps. The main idea of
this proof has roots in work of Stein, see [38], and it consists of finding square functions, g1 and

72



g2, adapted to our operators Tm such that we have the inequality

g1(Tmf )(x) ≲ g2(f )(x).

The main aspects of this theorem are illuminated by understanding the proof of this pointwise
inequality. Especially so for the structure of the recoupling decomposition, which is adapted to
scales that are much finer than dyadic - referred to as subdyadic, see [3, 2]. At this subdyadic
level, the multipliers considered are effectively reduced to bump functions - the archetype for
this study in the one dimensional case are the Hirschmann multipliers [20]

m(�) = ei|x|�

|x|�d
.

The multidimensional version in the isotropic case was studied by Wainger[42], and Fefferman
and Stein [18]. Later, Miyachi studied a wider class of multipliers [30] defined by the Miyachi-
condition

|Dm(�)| ≲ |�|−�d+||(�−1)

where the support ofm is contained in |�|� ⩾ 1. This class of multipliers also encapsulated other
multiplier classes, such as the class of multipliers famously considered by Hörmander in [21].
However, in the anisotropic case, it turns out the obvious adaption for the anisotropic version of
the candidate multipliers given by

m(�) = ei�A(x)�

�A(x)��

does not fit into the anisotropic Miyachi class (3.10). However, Theorem 3.3.5 still has many
model multipliers; indeed, we can create them by summing up bump functions that have support
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on the subdyadic balls.
Returning to the overview of the proof, after we have the pointwise inequality in hand the prob-
lem is reduced to proving Fefferman-Stein-type inequalities for the two square functions g1 and
g2, and putting these all together as follows

‖Tmf‖L2(w1) ≲ ‖g1(Tmf )‖L2(w2) ≲ ‖g2(f )‖L2(w2) ≲ ‖f‖L2(w3)

where w1, w2 and w3 are weights. Our g-functions alluded to above are given in full in the
following definitions.

Definition 3.3.7 Let � be as in Definition 3.2.4 and define

gA,�,�(f )(x) =
(

∫0<t�⩽1 ∫�A(x−y)⩽t(1−�)
|f ∗ �A(t)(y)|2

dy
(t�)2�+(1−�)

dt
t

)
1
2

and

gA,�,�,Φ(f )(x) =
(

∫t�⩽1
|f ∗ �A(t)|2 ∗ ΦA(t1−�)(x)

dt
t2��+1

)
1
2

where Φ ∈  , supp(Φ̂) ⊆ {� ∈ ℝ2 ∶ |�| ⩽ 1} and Φ(x) ⩾ c for |x| ⩽ 1.

Note that these two g-functions are intimately related to each other, and to our maximal functions
A,�,� . The link between A,�,� is rather immediate, as our approach regions, �A,�(x), are the
set that the integral in the definition of gA,�,� is over. To see the relationship between these two
g-functions, consider that gA,�,�,Φ dominates, modulo a constant, gA,�,� pointwise; indeed, as
Φ(x) ⩾ c for |x| ⩽ 1 we have Φ(A(t−(1−�))(x − y)) ⩾ c for

|A(t−(1−�))(x − y)| ⩽ 1 ⟺ �A(x − y) ⩽ t(1−�),
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which, for 0 < t� ⩽ 1, is our set �A,�(x), thus Φ(A(t−(1−�))(x − y)) ⩾ c on ��,A(x). It is no
accident that we have this pointwise majorant, and it will play a role in our analysis.
Primordial versions of these g-functions were introduced by Littlewood and Paley during their
efforts to better understand the dyadic decomposition of Fourier series, see [25, 26, 27]. Later,
the mantle of this study was taken up by Marcinkiewicz and Zygmund and great advances in
understanding these g-functions was developed, including the introduction of the g∗ function by
Zygmund, see [46, 45]. However, the true power of these g∗ functions were not realised until
Stein’s introduction of the g∗� function in [37], our version of which is given below.

Definition 3.3.8 Let � be as in Definition 3.2.4 and define

g∗A,�,�,�(f )(x) =
(

∫t�⩽1
|f ∗ �A(t)|2 ∗ R�

A(t�−1)(x)
dt

(t�)2�+1

)
1
2

,

where R�(x) = (1 + |x|)−2� for � > 1.

Note that as Φ ∈  in the definition of gA,�,�,Φ, we can bound it by a constant multiple of
(1 + |x|)−2� for any �, thus gA,�,�,Φ(f )(x) ≲ g∗A,�,�,�(f )(x) for any admissible f . While this may
seem like yet another pointwise majorant, it has a much more interesting property, given as

gA,�,�,Φ(Tm(f ))(x) ≲ g∗A,�,0, 32
(f )(x).

This brings us full circle to the start of this discourse - finding square functions g1, g2 that are
adapted to our multipliers, see [41] for more details.
Proof: [Theorem 3.3.5] First we apply Proposition 3.2.5 then Proposition 3.3.17 to obtain

‖Tmf‖L2(w) ≲ ‖sA(Tmf )‖L2(M3
Aw)

≲ ‖gA,�,�(Tmf )‖L2(MA,�,�M3
Aw)
.
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Next, we use the observation that gA,�,�,Φ dominates, modulo a constant, gA,�,� pointwise and
Theorem 3.3.15 to obtain

gA,�,�(Tmf )(x) ≲ g∗A,�,0, 32
(f )(x),

and thus

‖Tmf‖L2(w) ≲ ‖g∗
A,�,0, 32

(f )‖L2(MA,�,�M3
Aw)
.

Finally, we use Proposition 3.3.18 and Proposition 3.2.7, with � = 3
2
to obtain

‖Tmf‖L2(w) ≲ ‖sA(f )‖L2(MAMA,�,�M3
Aw)

≲ ‖f‖L2(M4
AMA,�,�M3

Aw)
.

□

Finally, we provide the Lp − Lq bounds on our multipliers.

Corollary 3.3.9 Let m be such that

|Dm(�)| ≲ �A(�)−��+‖‖A(�−1) (3.12)

for || ⩽ 3 with support in {� ∈ ℝ2 ∶ |�|� ⩾ 1}, and 1 < p ⩽ q ⩽∞ and �, � ∈ ℝ.

• If � < 0 and � ⩽ �
(

1
2
− 1

p

)

+ 1
p
− 1

q
;

• or � = 0 and � = 1
p
− 1

q
;

• or � > 0 and � ⩾ �
(

1
2
− 1

p

)

+ 1
p
− 1

q
;

then Tm is a Fourier multiplier from Lp to Lq.
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Proof: This is an immediate consequence of Theorem 3.3.5, Theorem 2.4.3 and (1.4). □

3.3.3 Pointwise estimate

The aim of this section is the proof of our pointwise inequality

gA,�,�,Φ(Tm(f ))(x) ≲ g∗A,�,0, 32
(f )(x).

To prove this pointwise estimate, we wish to reduce to a portions of the landscape where our
multiplier’s behaviour is much simpler, for this we must define what we mean by �-subdyadic,
or more generally subdyadic. The general idea is to decompose dyadic rings into balls of size
roughly their distance from the origin to the power 1 − �. On these balls, the local behaviour
of our multipliers is much simpler and makes gaining the pointwise estimate on each ball much
easier.
Decomposition

Let � = {� ∈ ℝ2 ∶ |�|� ⩾ 1}. Let {Aj}j∈ℤ be the set of annuli given by Aj = {� ∈ ℝ2 ∶

2j−1 ⩽ �A(�) ⩽ 2j}. Let �A,j be a family of �A-balls, B�A,j , with r�(B�A,j) ∼ 2j(1−�) such that
each B�A,j is entirely contained inAj−1∪Aj ∪Aj+1, �A,j coversAj and there is bounded overlap
of the B�A,j . Finally, let

�A =
⋃

j∈ℤ
�A,j .

For a fixedB ∈ �A , let  B ∈  such that  ̂B has support in the concentric double ofB, denoted
2B,

∑

B∈�A

 ̂B(�) = 1,
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for all � ∈ ℝ2 ⧵ {0} and

|D ̂B(�)| ≲ r�(B)−‖‖A .

Then for f such that f̂ has support in �, we have

f =
∑

B∈�A

f ∗  B (3.13)

Recoupling decomposition

For the recoupling estimate, we will use a specific example of the above decomposition based
on a lattice structure.
Let Δ ∈  have Fourier support in A0 such that

∑

j∈ℤ
Δ̂j(�) = 1

for � ∈ �, where Δ̂j(�) = Δ̂(A(2−j)�), for each j ∈ ℤ. Note that this is a partition of unity
for the punctured real plane and that supp(Δ̂j) ⊆ Aj . Next, let � ∈  have Fourier support in
{� ∈ ℝ2 ∶ |�| ⩽ 2} such that

∑

k∈ℤ2
�̂(� + k) = 1

for � ∈ ℝ2. Additionally, define �̂j(�) = �̂(A(2−j(�−1))�). For each j ∈ ℤ and k ∈ ℤ2 define
�̂j,k(�) ∶= Δ̂j(�)�̂j,k(�), where �̂j,k(�) = �̂(A(2−j(�−1))� + k) and note that

∑

j∈ℤ

∑

k∈ℤ2
�̂j,k(�) = 1.
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Finally, choose a family of �A-balls�A and functions { B}B∈�A ⊆  such that for eachB ∈ �A

there is exactly one (j, k) ∈ ℤ×ℤ2 where  B = �j,k and r�(supp(�̂j,k)) ∼ r�(B). Note that due to
the support ofΔj , �A(B, 0) ∼ 2j , and by the support of �, �j has support in a �A-ball of �A-radius
given by r�(B) ∼ 2−j(�−1). Now, consider

|D ̂B(�)| = |D �̂j,k(�)|

≲ 2−j‖‖A + 2−j‖‖A(�−1),

and as we are considering � ∈ �, the support of � implies we only consider j such that 2j� ⩾ 1,
thus 2−j ⩽ 2−j ⋅ 2j�. We can then deduce

|D ̂B(�)| ≲ 2−j‖‖A(�−1)

≲ r�(B)−‖‖A ,

as r�(B) ∼ 2−j(�−1).
Decoupling

Proposition 3.3.10 For f such that f̂ has support in �

gA,�,�,Φ(f )(x)2 ≲
∑

B∈�A

gA,�,�,Φ(f ∗  B)(x)2

Proof: By (3.13) we have

gA,�,�,Φ(f )(x)2 = ∫t�⩽1 ∫ℝ2

|

|

|

|

|

|

∑

B∈�A

f ∗  B ∗ �A(t)(y)
|

|

|

|

|

|

2

ΦA(t�−1)(x − y)dy
dt
t2��+1

.
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Considering just the inner integral for a fixed t� ⩽ 1, multiplying out the square and applying
Pascal’s theorem, we have

∫ℝ2

∑

B,B′∈�A

(f ∗  B′ ∗ �A(t))(y)f ∗  B ∗ �A(t)(y)ΦA(t�−1)(x − y)dy

= ∫ℝ2

∑

B,B′∈�A
∫ℝ2 ∫ℝ2

f̂ (�)f̂ (�) ̂B(�) ̂B′(�)�̂(A(t)�)�̂(A(t)�)eiy⋅(�−�)d�d�ΦA(t�−1)(x − y)dy

=
∑

B,B′∈�A
∫ℝ2 ∫ℝ2

f̂ (�)f̂ (�) ̂B(�) ̂B′(�)�̂(A(t)�)�̂(A(t)�)eix⋅(�−�)Φ̂(A(t�−1)(� − �))d�d�

where the last step is simply an application of the Fourier inversion formula to Φ. The support
of �̂ and  ̂B ensure the integrand and therefore the summand above vanishes unless B and B′
are both �A-distance 1

t
from the origin, thus r�(B) ∼ r�(B′) ∼ t(�−1) as B,B′ ∈ �A .

Furthermore, the support of Φ̂ tells us that the integrand vanishes unless |A(t�−1)(� − �)| ⩽ 1;
that is, that the integrand vanishes unless �A(B,B′) ≲ t(�−1). For each B ∈ �A , let n(B) be the
set of B′ ∈ �A such that �A(B,B′) ≲ t(�−1). As the decomposition �A has bounded overlap,
we have that for each B there are finitely many B′ in the summation, i.e. |n(B)| ≲ 1. Thus,

gA,�,�,Φ(f )(x)2

= ∫t�⩽1 ∫ℝ2

∑

B,B′∈�A
�A(B,B′)≲t(�−1)

|B|∼|B′|∼t(�−1)�

(f ∗  B ∗ �A(t))(y)(f ∗  B′ ∗ �A(t))(y)ΦA(t�−1)(x − y)dy
dt
t2��+1

.
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So, rearranging then using the Cauchy-Schwarz inequality for the sum in B′, we have

∑

B,B′∈�A
�A(B,B′)≲t(�−1)

|B|∼|B′|∼t(�−1)�

(f ∗  B ∗ �A(t))(y)(f ∗  B′ ∗ �A(t))(y)

=
∑

B∈�A
|B|∼t(�−1)�

∑

B′∈�A
�A(B,B′)≲t(�−1)

|B′|∼t(�−1)�

(f ∗  B ∗ �A(t))(y)(f ∗  B′ ∗ �A(t))(y)

=
∑

B∈�A
|B|∼t(�−1)�

(f ∗  B ∗ �A(t))(y)
∑

B′∈n(B)
|B′|∼t(�−1)�

(f ∗  B′ ∗ �A(t))(y) ⋅ 1

⩽
∑

B∈�A
|B|∼t(�−1)�

(f ∗  B ∗ �A(t))(y)

⎛

⎜

⎜

⎜

⎝

∑

B′∈n(B)
|B′|∼t(�−1)�

|f ∗  B′ ∗ �A(t))(y)|2
⎞

⎟

⎟

⎟

⎠

1
2
⎛

⎜

⎜

⎜

⎝

∑

B′∈n(B)
|B′|∼t(�−1)�

1

⎞

⎟

⎟

⎟

⎠

1
2

⩽
∑

B∈�A
|B|∼t(�−1)�

(f ∗  B ∗ �A(t))(y)

⎛

⎜

⎜

⎜

⎝

|n(B)|
∑

B′∈n(B)
|B′|∼t(�−1)�

|f ∗  B′ ∗ �A(t)(y)|2
⎞

⎟

⎟

⎟

⎠

1
2

.

Next, using the Cauchy-Schwarz inequality for the sum in B, we have

∑

B,B′∈�A
�A(B,B′)≲t(�−1)

|B|∼|B′|∼t(�−1)�

(f ∗  B ∗ �A(t))(y)(f ∗  B′ ∗ �A(t))(y)

⩽

⎛

⎜

⎜

⎜

⎜

⎝

∑

B∈�A
|B|∼t(�−1)�

|f ∗  B ∗ �A(t)(y)|2

⎞

⎟

⎟

⎟

⎟

⎠

1
2
⎛

⎜

⎜

⎜

⎜

⎝

∑

B∈�A
|B|∼t(�−1)�

|n(B)|
∑

B′∈n(B)
|B′|∼t(�−1)�

|f ∗  B′ ∗ �A(t)(y)|2

⎞

⎟

⎟

⎟

⎟

⎠

1
2

.

Observe that in the last term on the right hand side of the above, the summation over each
B′ ∈ n(B) for each B ∈ �A is equivalent to just summing over all B′ ∈ �A and multiplying
by |n(B)| each time. Additionally, as |n(B)| ≲ 1 for every B ∈ �A we pick up a finite constant
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that is at most the maximum of |n(B)| over all B ∈ �A , so we have

∑

B,B′∈�A
�A(B,B′)≲t(�−1)

|B|∼|B′|∼t(�−1)�

(f ∗  B ∗ �A(t))(y)(f ∗  B′ ∗ �A(t))(y)

≲

⎛

⎜

⎜

⎜

⎜

⎝

∑

B∈�A
|B|∼t(�−1)�

|f ∗  B ∗ �A(t)(y)|2

⎞

⎟

⎟

⎟

⎟

⎠

1
2
⎛

⎜

⎜

⎜

⎜

⎝

∑

B′∈�A
|B′|∼t(�−1)�

|f ∗  B′ ∗ �A(t)(y)|2

⎞

⎟

⎟

⎟

⎟

⎠

1
2

=
∑

B∈�A
|B|∼t(�−1)�

|f ∗  B ∗ �A(t)(y)|2.

Thus, we can conclude that

gA,�,�,Φ(f )(x)2 ≲ ∫t�⩽1 ∫ℝ2

∑

B∈�A

|

|

|

f ∗  B ∗ �A(t)(y)
|

|

|

2
ΦA(t�−1)(x − y)dy

dt
t2��+1

,

and finally, by Lebesgue’s monotone convergence theorem, as the summands are positive, we
have

gA,�,�,Φ(f )(x)2 ≲
∑

B∈�A
∫t�⩽1 ∫ℝ2

|

|

|

f ∗  B ∗ �A(t)(y)
|

|

|

2
ΦA(t�−1)(x − y)dy

dt
t2��+1

=
∑

B∈�A

gA,�,�,Φ(f ∗  B)(x)2.

□

Recoupling

In order to prove the recoupling estimate, we will require the following lemma.
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Lemma 3.3.11 Let R1, R2 > 0 and define

� =
⎛

⎜

⎜

⎝

R1 0

0 R2

⎞

⎟

⎟

⎠

.

Define

Φ̂�−1(�) = Φ̂(�−1�)

and define for each k ∈ ℤ2

Φ̂k,�−1(�) = Φ̂(�−1� + k)

and fk(x) = f ∗ Φk,�−1(x). If

|Φ(x)| ≲
CN

(1 + |x|)N

for everyN ∈ ℕ, then

∑

k∈ℤ2
|fk(x)|2 ≲ |f |2 ∗ |Φ�−1|(x).
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Proof: We have, for each k ∈ ℤ2,

fk(x) = f ∗ Φk,�−1(x)

= ∫ℝ2
f (y)e2�i�k⋅(x−y)Φ�−1(x − y)dy

= e2�i�k⋅x ∫ℝ2
f (y)e−2�i�k⋅yΦ�−1(x − y)dy

= e2�i�k⋅x(f (⋅)Φ�−1(x − ⋅))̂ (�k)

= e2�i�k⋅xℎ̂x,�(k),

where ℎx(y) = f (y)Φ�−1(x − y) and ℎ̂x,�(k) = ℎ̂x(�k). So

∑

k∈ℤ2
|fk(x)|2 =

∑

k∈ℤ2
|e2�i�k⋅xℎ̂x,�(k)|2

=
∑

k∈ℤ2
|ℎ̂x,�(k)|2.

Now, by Parseval’s identity,

∑

k∈ℤ2
|fk(x)|2 = ∫[0,1]2

|

|

|

|

|

|

∑

k∈ℤ2
ℎ̂x,�(k)eiy⋅k

|

|

|

|

|

|

2

dy,

using the change of variables y = �z we have

∑

k∈ℤ2
|fk(x)|2 = R1R2 ∫[0, 1R1 ]×[0,

1
R2
]

|

|

|

|

|

|

∑

k∈ℤ2
ℎ̂x(�k)eiz⋅�k

|

|

|

|

|

|

2

dz.

Now, using the Poisson summation formula, along with the scaling and translation properties of
the Fourier transform, we can write

∑

k∈ℤ2
ℎ̂x(�k)eiz⋅�k =

1
R1

1
R2

∑

k∈ℤ2
ℎx(z + �−1k),
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so substituting this back in we get

∑

k∈ℤ2
|fk(x)|2 =

1
R1

1
R2 ∫[0, 1R1 ]×[0,

1
R2
]

|

|

|

|

|

|

∑

k∈ℤ2
ℎx(z + �−1k)

|

|

|

|

|

|

2

dz.

Using the definition of ℎx then the Cauchy-Schwarz inequality, we get

∑

k∈ℤ2
|fk(x)|2 =

1
R1

1
R2 ∫[0, 1R1 ]×[0,

1
R2
]

|

|

|

|

|

|

∑

k∈ℤ2
f (z + �−1k)Φ�−1(x − z − �−1k)

|

|

|

|

|

|

2

dz

⩽ 1
R1

1
R2 ∫[0, 1R1 ]×[0,

1
R2
]

∑

k∈ℤ2

|

|

|

f (z + �−1k)||
|

2
|

|

|

Φ�−1(x − z − �−1k)
|

|

|

∑

l∈ℤ2

|

|

|

Φ�−1(x − z − �−1l)
|

|

|

dz.

Next, using the substitution z + �−1k = w, we have

∑

k∈ℤ2
|fk(x)|2

⩽
∑

k∈ℤ2
∫[ k1R1 ,

k1+1
R1

]×[ k2R2
, k2+1R2

]
|f (w)|2|Φ�−1(x −w)|

(

1
R1

1
R2

∑

l∈ℤ2

|

|

|

Φ�−1(x −w + �−1(k − l))
|

|

|

)

dw,

and observe that

1
R1

1
R2

∑

l∈ℤ2

|

|

|

Φ�−1(x −w + �−1(k − l))
|

|

|

=
∑

l∈ℤ2
|Φ(�(x −w) + k − l)|

≲
∑

l∈ℤ2

(

CN
1 + |�(x −w) + k − l|

)N

for every N ∈ ℕ. Choosing N large enough, we can bound this term by some fixed constant,
thus

∑

k∈ℤ2
|fk(x)|2 ≲ ∫ℝ2

|f (w)|2|Φ�−1(x −w)|dw

= |f |2 ∗ |Φ�−1|(x).

85



□

Proposition 3.3.12 For f such that f̂ has support in � and the specific decomposition �A

and  B = �j,k = Δj ∗ �j,k described in Section 3.3.3, we have

∑

B∈�A

g∗A,�,�,�(f ∗  B)(x)
2 ≲ g∗A,�,�,�(f )(x)

2. (3.14)

Proof: First, consider the support of �̂A(t), this implies that �A(t) ∗ Δj ∗ �j,k(y) ≠ 0 only if
2j ∼ t−1, thus

∑

B∈�A

g∗A,�,�,�(f ∗  B)(x)
2 =

∑

j∈ℤ

∑

k∈ℤ2
∫t�⩽1 ∫ℝ2

|f ∗ �A(t) ∗ Δj ∗ �j,k(y)|2R�
A(t�−1)(x − y)

dy
(t�)2�

dt
t

= ∫t�⩽1 ∫ℝ2

∑

2j∼t−1

∑

k∈ℤ2
|f ∗ �A(t) ∗ Δj ∗ �j,k(y)|2R�

A(t�−1)(x − y)
dy
(t�)2�

dt
t
.

Now, we can use Lemma 3.3.11 where �−1 = A(2−j(�−1)) to get

∑

k∈ℤ2
|f ∗ �A(t) ∗ Δj ∗ �j,k(y)|2 ≲ |f ∗ �A(t) ∗ Δj|2 ∗ |�j|(y)

uniformly in t, j and y, thus

∑

B∈�A

g∗A,�,�,�(f ∗  B)(x)
2 ≲ ∫t�⩽1 ∫ℝ2

∑

2j∼t−1
|f ∗ Δj ∗ �A(t)|2 ∗ |�j|(y)R�

A(t�−1)(x − y)
dy
(t�)2�

dt
t
.
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Now, consider

|f ∗ �A(t) ∗ Δj|2 ∗ |�j|(y)

= ∫ℝ2
|f ∗ �A(t) ∗ Δj(y − z)|2|�j(z)|dz

= ∫ℝ2

|

|

|

|

∫ℝ2
f ∗ �A(t)(w)Δj(y − z −w)dw

|

|

|

|

2

|�j(z)|dz

⩽ ∫ℝ2

(

∫ℝ2
|f ∗ �A(t)(w)||Δj(y − z −w)|dw

)2

|�j(z)|dz

= ∫ℝ2

(

∫ℝ2
|f ∗ �A(t)(w)||Δj(y − (z +w))|

1
2
|Δj(y − z −w)|

1
2dw

)2

|�j(z)|dz

and using the Cauchy-Schwarz inequality we have

|f ∗ �A(t) ∗ Δj|2 ∗ |�j|(y)

⩽ ∫ℝ2

(

∫ℝ2
|f ∗ �A(t)(w)|2|Δj(y − (w + z))|dw

)(

∫ℝ2
|Δj(y − z −w)|dw

)

|�j(z)|dz

= ‖Δj‖1 ∫ℝ2 ∫ℝ2
|f ∗ �A(t)(w)|2|Δj(y −w − z)||�j(z)|dwdz

using Fubini’s theorem,

|f ∗ �A(t) ∗ Δj|2 ∗ |�j|(y) ≲ ∫ℝ2 ∫ℝ2
|f ∗ �A(t)(w)|2|Δj(y −w − z)||�j(z)|dzdw

= ∫ℝ2
|f ∗ �A(t)(w)|2|Δj| ∗ |�j|(y −w)dw

= |f ∗ �A(t)|2 ∗ |Δj| ∗ |�j|(y).
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Hence,

∑

B∈�A

g∗A,�,�,�(f ∗  B)(x)
2 ≲ ∫t�⩽1 ∫ℝ2

∑

2j∼t−1
|f ∗ �A(t)|2 ∗ |Δj| ∗ |�j|(y)R�

A(t�−1)(x − y)dy
dt
t2��+1

= ∫t�⩽1

∑

2j∼t−1
|f ∗ �A(t)|2 ∗ |Δj| ∗ |�j| ∗ R�

A(t�−1)(x)
dt
t2��+1

= ∫t�⩽1 ∫ℝ2
|f ∗ �A(t)(y)|2

∑

2j∼t−1
|Δj| ∗ |�j| ∗ R�

A(t�−1)(x − y)dy
dt
t2��+1

thus, since Δ, � ∈  and by the fact that we’re summing over j such that 2j ∼ t−1, we can use
Lemmma A.1.1 to conclude that

∑

B∈�A

g∗A,�,�,�(f ∗  B)(x)
2 ≲ ∫t�⩽1 ∫ℝ2

|f ∗ �A(t)(y)|2R�
A(t�−1)(x − y)dy

dt
t2��+1

= g∗A,�,�,�(f )(x).

□

Pointwise estimate at subdyadic level

Now that we can efficiently decompose and recompose our landscape, all that remains to prove
Theorem 3.3.15 is to prove the same estimate uniformly on each subdyadic ball.

Proposition 3.3.13 Let B ∈ �A and �̂B be a bump function supported on 3B and equal to 1 on

2B. If

|Dm(�)| ≲ �A(�)−��+‖‖A(�−1)

and

|D �̂B(�)| ≲ r�(B)−‖‖A
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for � ∈ {� ∈ ℝ2 ∶ |�|� ⩾ 1} and || ⩽ 3, then

|Tm(�B)(x)| ≲ �A(B, 0)−��HB(x), (3.15)

where

HB(x) =
|B|

(1 + |A(r�(B))x|)3
.

Proof: First, by the Fourier inversion formula

Tm(�B)(x) = ∫ℝ2
m(�)�̂B(�)eix⋅�d�,

due to the support of Φ̂B and then our hypothesis on m, we have

|Tm(�B)(x)| ⩽ ∫3B
|m(�)||�̂B(�)|d�

≲ ∫3B
�A(�)−��|�̂B(�)|d�.

Since |�̂B(�)| ≲ 1, we have

|Tm(�B)(x)| ≲ �A(B, 0)−� ⋅ |B|. (3.16)

Now, going back to our Fourier inversion formula, and using elementary properties of the Fourier
transform, we have another estimate, that is

(ix)Tm(�B)(x) = ∫ℝ2
D(m(�)�̂B(�))eix⋅�d�.
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Using the support of �̂B, this gives us the estimate

|x||Tm(ΦB)(x)| ⩽ ∫3B
|D(m(�)�̂B(�))|d�.

Now, setting  = (3, 0) and using the chain rule

|x1|
3
|Tm(�B)(x)| ≲ ∫3B

(

3
∑

j=0

|

|

|

|

|

)j

)�j1
m(�)

|

|

|

|

|

|

|

|

|

|

|

)(3−j)

)�(3−j)1

�̂B(�)
|

|

|

|

|

|

)

d�

≲ ∫3B

(

3
∑

j=0
�A(�)−��+j(�−1)r�(B)−(3−j))

)

d�,

where the second line is due to our hypotheses and the fact that

|

|

|

|

|

)j

)�j1
�̂B(�)

|

|

|

|

|

≲ r�(B)−j

for j = 0, 1, 2, 3. Thus, we have that

r�(B)3|x1|3|Tm(�B)(x)| ≲ �A(B, 0)−��|B|

(

3
∑

j=0
�A(B, 0)j(�−1)r�(B)j

)

.

Likewise, if we set  = (0, 3) and go through exactly the same steps, we obtain

r�(B)3�|x2|3|Tm(�B)(x)| ≲ �A(B, 0)−��|B|

(

3
∑

j=0
�A(B, 0)�j(�−1)r�(B)�j

)

.

Adding these two estimates together and using the fact that

�A(B, 0)(1−�) ∼ r�(B),
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we deduce that

(r�(B)3|x1|3 + r�(B)3�|x2|3)|Tm(�B)(x)| ≲ �A(B, 0)−��|B|.

So by equivalence of finite norms, we have

|A(r�(B))x|3|Tm(�B)(x)| ≲ �A(B, 0)−��|B|.

Adding this estimate to the estimate (3.16), we obtain

|Tm(�B)(x)| ≲ �A(B, 0)−��
|B|

(1 + |A(r�(B))x|)3
.

□

Proposition 3.3.14 For each B ∈ �A ,

gA,�,�,Φ(Tm(f ∗  B))(x) ≲ g∗A,�,0, 32
(f ∗  B)(x). (3.17)

Proof: Let �B be smooth and such that supp(�̂B) ⊂ 3B, �̂B = 1 on supp  ̂B and

|D �̂B(�)| ≲ r�(B)−‖‖A

for � ∈ S�. Then we have

gA,�,�,Φ(Tm(f ∗  B))(x)2 = ∫t�⩽1 ∫ℝ2
|m̌ ∗ f ∗  B ∗ �A(t)(y)|2ΦA(t1−�)(x − y)

dy
t2�
dt
t

= ∫t�⩽1 ∫ℝ2
|m̌ ∗ �B ∗ f ∗  B ∗ �A(t)(y)|2ΦA(t1−�)(x − y)

dy
t2�
dt
t

= ∫t�⩽1 ∫ℝ2
|Tm(�B) ∗ f ∗  B ∗ �A(t)(y)|2ΦA(t1−�)(x − y)

dy
t2�
dt
t
.
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Expanding out the first convolution, we get

gA,�,�,Φ(Tm(f ∗  B))(x)2

= ∫t�⩽1 ∫ℝ2

|

|

|

|

∫ℝ2
Tm(�B)(y − z)f ∗  B ∗ �A(t)(z)dz

|

|

|

|

2

ΦA(t1−�)(x − y)
dy
t2�
dt
t

⩽ ∫t�⩽1 ∫ℝ2

(

∫ℝ2
|Tm(�B)(y − z)||f ∗  B ∗ �A(t)(z)|dz

)2

ΦA(t1−�)(x − y)
dy
t2�
dt
t

= ∫t�⩽1 ∫ℝ2

(

|Tm(�B)| ∗ |f ∗  B ∗ �A(t)|(y)
)2ΦA(t1−�)(x − y)

dy
t2�
dt
t
.

Now, by Proposition 3.3.13, we have that

gA,�,�,Φ(Tm(f ∗  B))(x)2 ≲ ∫t�⩽1 ∫ℝ2

(

�A(B, 0)−��HB ∗ |f ∗  B ∗ �A(t)|(y)
)2ΦA(t1−�)(x − y)

dy
t2�
dt
t
.

Now, by the support of �A(t), we need only consider B such that �A(B, 0) ∼ 1
t
, thus

gA,�,�,Φ(Tm(f ∗  B))(x)2 ≲ ∫t�⩽1 ∫ℝ2
t2��

(

HB ∗ |f ∗  B ∗ �A(t)|(y)
)2ΦA(t1−�)(x − y)

dy
t2�
dt
t
.

Using Fubini’s theorem and the Cauchy-Schwarz inequality as we did in the proof of Proposi-
tion 3.3.12, we have

gA,�,�,Φ(Tm(f ∗  B))(x)2 ≲ ∫t�⩽1 ∫ℝ2
|f ∗  B ∗ �A(t)(y)|2HB ∗ ΦA(t1−�)(x − y)dy

dt
t
,

where we have used the fact that ‖HB‖ ≲ 1. Note that HB(x) ≲ R
3
2
A(t1−�)(x) and ΦA(t1−�)(x) ≲

R�
A(t1−�)(x) for all � > 1, in particular for � = 3

2
, so by Lemma A.1.1 with � = 3

2
and r = t1−� we
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have

gA,�,�,Φ(Tm(f ∗  B))(x)2 ≲ ∫t�⩽1 ∫ℝ2
|f ∗  B ∗ �A(t1−�)(y)|2R

3
2
A(t�−1)(x − y)dy

dt
t

= g∗
A,�,0, 32

(f ∗  B)(x)2.

□

So, now we have the three vital ingredients, we can state and prove our theorem.

Theorem 3.3.15

gA,�,�,Φ(Tm(f ))(x) ≲ g∗A,�,0, 32
(f )(x).

Proof: We use Proposition 3.3.10, then Proposition 3.17 and finally Proposition 3.3.12 as fol-
lows

gA,�,�,Φ(Tmf )(x) ≲
∑

B∈�A

gA,�,�,Φ(Tmf ∗  B)(x)

≲
∑

B∈�A

g∗
A,�,0, 32

(f ∗  B)(x)

≲ g∗
A,�,0, 32

(f )(x).

□

3.3.4 Square functions and g-functions

It was noted by Wilson in [44] that large classes of square functions are essentially equivalent,
so the final two propositions of this chapter should not come as a surprise, but the proofs of
them may seem somewhat arbitrary, especially with respect to the parameter � as its seemingly
added artificially. For this reason we have postponed these until after the pointwise estimate
was completed, as in doing so the role of � will hopefully become clear. First we begin with the
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following lemma found in [2], Lemma 10.

Lemma 3.3.16 Let R > 0. Then,

∫ℝ2
ℎ1(x)ℎ2(x)dx ≲ R�

∫ℝ2 ∫y∈BA(x, 1R )
ℎ1(y)dy sup

z∈BA(x,
1
R )
ℎ2(z)dx.

Proof: We follow the proof as found in [2] by first considering the one dimensional case. That
is, if r > 0 then

∫ℝ
ℎ1(x)ℎ2(x)dx ⩽ 2r∫ℝ ∫|y−x|⩽ 1

r

ℎ1(y)dy sup
|z−x|⩽ 1

r

ℎ2(z)dx.

We start by decomposing the integral as

∫ℝ
ℎ1(x)ℎ2(x)dx =

∑

k∈ℤ
∫

1
r

−1
r

ℎ1
(

x + u + 2k
r

)

ℎ2
(

x + u + 2k
r

)

dx

for every u. Let y = x + u + 2k
r
, then

−1
r

⩽ x ⩽ 1
r

⟺ |x| ⩽ 1
r

⟺
|

|

|

|

y − u − 2k
r
|

|

|

|

⩽ 1
r
.

So we have

∫ℝ
ℎ1(x)ℎ2(x)dx =

∑

k∈ℤ
∫|

|

|

y−u− 2k
r
|

|

|

⩽ 1
r

ℎ1(y)ℎ2(y)dy,

where we only consider |u| ⩽ 1
r
. Taking the supremum of ℎ2 over the domain of integration, we

have

∫ℝ
ℎ1(x)ℎ2(x)dx ⩽

∑

k∈ℤ
∫|

|

|

y−u− 2k
r
|

|

|

⩽ 1
r

ℎ1(y)dy sup
|

|

|

y−u− 2k
r
|

|

|

⩽ 1
r

ℎ2(z).
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Averaging over all values of u, we have

∫ℝ
ℎ1(x)ℎ2(x)dx ⩽

∑

k∈ℤ
2r∫

1
r

−1
r

⎛

⎜

⎜

⎝

∫|

|

|

y−u− 2k
r
|

|

|

⩽ 1
r

ℎ1(y)dy sup
|

|

|

z−u− 2k
r
|

|

|

⩽ 1
r

ℎ2(z)
⎞

⎟

⎟

⎠

du

= 2r
∑

k∈ℤ
∫

1+2k
r

−1+2k
r

(

∫
|y−x|⩽ 1

r

ℎ1(y)dy sup
|z−x|⩽ 1

r

ℎ2(z)

)

dx

= 2r∫ℝ

(

∫
|y−x|⩽ 1

r

ℎ1(y)dy sup
|z−x|⩽ 1

r

ℎ2(z)

)

dx,

where in the penultimate line we have used the substitution x = u + 2k
R
.

The lemma follows by applying the one dimensional case in the x1 direction with r = 2R then
the x2 direction with r = 2R� and observing that {(s1, s2) ∈ ℝ2 ∶ x = (x1, x2), |s1 − x1| ⩽
1
2R
, |s2 − x2| ⩽

1
(2R)�

} ⊆ BA(x,
1
R
). □

Proposition 3.3.17 Let �, � ∈ ℝ. For functions f such that supp(f̂ ) ⊆ {� ∈ ℝ2 ∶ |�|� ⩾ 1},

‖sA(f )‖L2(w) ≲ ‖g�,�,A(f )‖L2(A,�,�w).

Proof: Firstly, by Fubini’s theorem

‖sA(f )‖2L2(w) = ∫ℝ2 ∫

∞

0
|f ∗ �A(t)(x)|2

dt
t
w(x)dx

= ∫

∞

0 ∫ℝ2
|f ∗ �A(t)(x)|2w(x)dx

dt
t
.

Now, as

supp(�̂) ⊆ {� ∈ ℝ2 ∶ 3
4
⩽ �A(�) ⩽ 3}
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and as

̂f ∗ �A(t)(�) = f̂ (�)�̂(A(t)�),

we have support only when

3
4
⩽ �A(A(t)�) ⩽ 3,

or equivalently

3
4t

⩽ �A(�) ⩽
3
t
.

Since f̂ has support only when |�|� ⩾ 1 ⟺ �A(�)� ⩾ 1, we only consider values of t such that
0 < t� ⩽ 1; since for t� > 1, f̂ (�)�̂(A(t)�) has support in a subset of the support when t = 1.
Thus,

‖sA(f )‖2L2(w) = ∫t�⩽1 ∫ℝ2
|f ∗ �A(t)(x)|2w(x)dx

dt
t
.

Next we define ' ∈  such that supp('̂) ⊆ {� ∈ ℝ2 ∶ 1
4
⩽ |�| ⩽ 4} and '̂ = 1 on supp(�̂).

Then f ∗ �A(t)(x) = f ∗ �A(t) ∗ 'A(t)(x). So

‖sA(f )‖2L2(w) = ∫t�⩽1 ∫ℝ2
|f ∗ �A(t) ∗ 'A(t)(x)|2w(x)dx

dt
t

= ∫t�⩽1 ∫ℝ2

|

|

|

|

∫ℝ2
f ∗ �A(t)(y)'A(t)(x − y)dy

|

|

|

|

2

w(x)dxdt
t

⩽ ∫t�⩽1 ∫ℝ2

(

∫ℝ2
|f ∗ �A(t)(y)||'A(t)(x − y)|dy

)2

w(x)dxdt
t

= ∫t�⩽1 ∫ℝ2

(

∫ℝ2
|f ∗ �A(t)(y)||'A(t)(x − y)|

1
2
|'A(t)(x − y)|

1
2dy

)2

w(x)dxdt
t
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and by the Cauchy-Schwarz inequality then Fubini’s theorem, we have

‖sA(f )‖2L2(w)

⩽ ∫t�⩽1 ∫ℝ2

(

∫ℝ2
|f ∗ �A(t)(y)|2|'A(t)(x − y)|dy

)(

∫ℝ2
|'A(t)(x − y)|dy

)

w(x)dxdt
t

= ‖'A(t)‖1 ∫t�⩽1 ∫ℝ2
|f ∗ �A(t)(y)|2

(

∫ℝ2
|'A(t)(x − y)|w(x)dx

)

dydt
t

= ‖'‖1 ∫t�⩽1 ∫ℝ2
|f ∗ �A(t)(y)|2|'A(t)| ∗ w(y)dy

dt
t
.

Applying Lemma 3.3.16 with ℎ1(x) = |f ∗ �A(t)(x)|2, ℎ2(x) = |'A(t)| ∗ w(x) andR =
(

1
t

)(1−�),
we have

‖sA(f )‖2L2(w)

≲ ∫0<t�⩽1

(1
t

)(1−�)�

∫ℝ2 ∫�A(y−x)⩽t(1−�)
|f ∗ �A(t)(y)|2dy sup

�A(z−x)⩽t(1−�)
|'A(t)| ∗ w(z)dx

dt
t
.

As ' ∈  we can dominate it pointwise, modulo a constant, by some positive, radial function
in  with total mass 1, namely #. Thus,

‖sA(f )‖2L2(w)

≲ ∫0<t�⩽1 ∫ℝ2 ∫�A(y−x)⩽t(1−�)
|f ∗ �A(t)(y)|2

dy
(t�)(1−�)+2�

(t�)2� sup
�A(z−x)⩽t(1−�)

|#A(t) ∗ w(z)|dx
dt
t
.

Finally, taking the supremum in

(t�)2� sup
�A(z−x)⩽t(1−�)

|#A(t) ∗ w(z)|

over t such that 0 < t� ⩽ 1, we have

‖sA(f )‖2L2(w) ≲ ∫0<t�⩽1 ∫ℝ2 ∫�A(y−x)⩽t(1−�)
|f ∗ �A(t)(y)|2

dy
(t�)(1−�)+2�

A,�,�w(x)dx
dt
t
,
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which, with a final application of Fubini’s theorem, allows us to conclude

‖sA(f )‖2L2(w) ≲ ∫ℝ2 ∫0<t�⩽1 ∫�A(y−x)⩽t(1−�)
|f ∗ �A(t)(y)|2

dy
(t�)(1−�)+2�

dt
t
A,�,�w(x)dx

= ‖gA,�,�(f )‖2L2(A,�,�w)
.

□

Proposition 3.3.18 Let � > 1 and � ∈ ℝ

‖g∗A,�,0,�(f )‖
2
L2(w) ≲ ‖sA(f )‖2L2(MAw)

.

While this proposition is written for the case � = 0, it is possible to run a very similar proof
for other values of �, but it holds no content for our overall goal of proving Theorem 3.3.5 and
would produce a different maximal average on the weight.
Proof: Using Fubini’s theorem,

‖g∗A,�,0,�(f )‖
2
L2(w) = ∫ℝ2 ∫t�⩽1 ∫ℝ2

|f ∗ �A(t)(y)|2R�
A(t�−1)(x − y)dy

dt
t
w(x)dx

= ∫t�⩽1 ∫ℝ2
|f ∗ �A(t)(y)|2 ∫ℝ2

R�
A(t�−1)(x − y)w(x)dxdy

dt
t

⩽ ∫t�⩽1 ∫ℝ2
|f ∗ �A(t)(y)|2R�

A(t�−1) ∗ w(y)dy
dt
t

since R�
A(t�−1)(−x) = R

�
A(t�−1)(x).

Using the substitution z = t1−�,

sup
t�⩽1

R�
A(t�−1) ∗ w = sup

z
�

(1−�) ⩽1

R�
A(z) ⩽ sup

z>0
R�
A(z) ∗ w ≲ MAw,
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where the final step is just dominating R� by # pointwise.
Thus, we have

‖gA,�,0,Φ(f )‖2L2(w) ≲ ∫t�⩽1 ∫ℝ2
|f ∗ �A(t)(y)|2MAw(y)dy

dt
t
,

so finally by Fubini’s theorem,

‖gA,�,0,Φ(f )‖2L2(w) ≲ ∫ℝ2 ∫t�⩽1
|f ∗ �A(t)(y)|2

dt
t
MAw(y)dy

= ‖sA(f )‖2L2(MAw)
.

□

99



CHAPTER 4
OSCILLATORY KERNELS

4.1 Background

4.1.1 Overview of the method

In this sectionwewill be extending our previousmethods that handled certain transforms defined
via multipliers to oscillatory integrals. This method was employed by Bennett (see Section 2.2
of [3]) in the one dimensional case and Beltran and Bennett (see Section 1.1 of [2]) to kernels
considered by Sjölin [36], defined for a > 0, a ≠ 0 and b < 1 − a

2
on Rd ⧵ {0} by

ei|x|a

|x|db
.

We will first consider the complement to the kernels (a < 0 and b > 1) and then employ the
same tactic to consider a class of kernels containing those considered by Bennett and Harrison
in [5]. The heavy lifting will be done in most part by the previous section, a clever use of inte-
gration by parts and a powerful theorem known as van der Corput’s lemma, or the much more
restrictive multidimensional version. To do this we will decompose our kernels into parts that
don’t each have much oscillation, but the parts themselves will differ in size. For the part of the
kernel that does not display much oscillation, we will bound using elementary methods without
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using any cancellation at all. The rest of the kernel will have some amount of oscillation, or
“roughness”, and we will split the kernel up into dyadic blocks corresponding to the amount of
oscillation. Next, we will consider each of these blocks by estimating the size of the correspond-
ing multiplier, and it’s derivatives. Only boundedly many of these dyadic blocks will contribute
to the multiplier as a whole, allowing us to sum up the parts and obtain an overall estimate on the
multiplier. These estimates will coincide with the estimates on the multipliers in the previous
sections, allowing us to apply the theorems there to obtain Fefferman-Stein inequalities on these
transforms defined by oscillatory kernels.

4.1.2 Two important lemmas

Lemma 4.1.1 Let a, b ∈ ℝ,M ⩾ 2 be an integer and �1, �2 > 1. Let ℎ and  be real functions,

such that  is smooth and has compact support in (a, b), and for each 2 ⩽  ⩽ M and for all

x ∈ [a, b], |ℎ′(x)| ⩾ c0�1, |ℎ()(x)| ⩽ c�2. Then

|

|

|

|

|

∫

b

a
eiℎ(x) (x)dx

|

|

|

|

|

≲
N
∑

r=0
�−(r+N)1 �r2,

for all natural numbersN ⩽M − 1, where the implicit constants depend only on  , c0 and c .

Remark 4.1.2 Note that in the case �1 = �2 this reduces to the well known integration by parts

argument that can be found in Stein[39].

Proof: We start by defining a differential operator D by

Df (x) = (iℎ′(x))−1
df (x)
dx

and then let D∗ denote it’s adjoint,

D∗f (x) = −d
dx

(

f (x)
iℎ′(x)

)

.
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Then,

D(eiℎ(x)) = 1
iℎ′(x)

d
dx

(

eiℎ(x)
)

=
iℎ′(x)
iℎ′(x)

eiℎ(x)

= eiℎ(x).

And so by repeated application of this and integration by parts, we have, for eachN ∈ ℕ,∗

∫

b

a
eiℎ(x) (x)dx = ∫

b

a
DN (eiℎ(x)) (x)dx

= ∫

b

a
eiℎ(x)(D∗)N ( (x))dx.

Thus, by the definition of D∗, we have that

|

|

|

|

|

∫

b

a
eiℎ(x) (x)dx

|

|

|

|

|

=
|

|

|

|

|

∫

b

a
eiℎ(x)(D∗)N (x)dx

|

|

|

|

|

⩽ ∫

b

a

|

|

(D∗)N (x)|
|

dx.

The lemma is thus immediate from a simple calculation of |
|

(D∗)N (x)|
|

, we provide the first
few such calculations in Appendix B.1 for the scrutinous reader. □

This lemma has a very simple extension to multiple dimensions:

Lemma 4.1.3 Let Ω be an open set in ℝn, � ∈ C∞
c (Ω) andM ∈ ℕ. If � is such that, for some

i ∈ {1, ..., n},

)�
)xi

(x) ⩾ c0�1,

∗We have used DN and (D∗)N to denote theN-fold composition of the differential operators with themselves,
a la maximal function self composition
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and for all positive integers  ⩽M ,

)()�
)x()i

(x) ⩽ c�2,

then

|

|

|

|

∫Ω
ei��(x)� (x)dx

|

|

|

|

≲
N
∑

r=0
�−(r+N)1 �r2

for all natural numbersN ⩽M − 1.

Proof: Let Ω1 be the interval in the xi direction containing Ω, Ω2 be the region containing Ω
excluding the xi direction, �1 ∈ C∞

c (Ω1) and �2 ∈ C∞
c (Ω2). By chopping up the integral over Ω

into an integral over Ω1 and an integral over Ω2, we have

∫Ω
ei�(x)� (x)dx = ∫Ω2

(

∫Ω1
ei�(x1,...,xn)�1(xi)dxi

)

�2(x1, ..., xi−1, xi+1, xn)dx1, ..., dxi−1, dxi+1, ..., dxn.

Then by Lemma 4.1.1 we have, for allN ⩽M − 1,

∫Ω
ei�(x)� (x)dx ≲ ∫Ω2

N
∑

r=0
�−(r+N)1 �r2�2(x1, ..., xi−1, xi+1, xn)dx1, ..., dxi−1, dxi+1, ..., dxn

≲
N
∑

r=0
�−(r+N)1 �r2.

□

The second lemmawewill be using is a simple corollary of a theorem due to J.G. van der Corput,
see [39] for details.

Lemma 4.1.4 (van der Corput) Let  ∈ ℕ and ℎ be a function with continuous th derivative.

Let  be a smooth function with compact support in the interval (a, b), and let � > 0. If  ⩾ 2,
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or  = 1 and ℎ′ monotonic, s.t. |ℎ()(x)| ≳ � for x ∈ (a, b), then

|

|

|

|

|

∫

b

a
eiℎ(x) (x)dx

|

|

|

|

|

≲ �−1∕ ,

where the implicit constant is independent of �.

Proof: We will obtain the desired result by first showing that

|

|

|

|

∫

b

a
eiℎ(x)dx

|

|

|

|

≲ �−1∕

holds independent of (a, b).
First, we will address the case  = 1 and ℎ′(x) monotonic. Let D and D∗ be the differential
operators defined in the proof of Lemma 4.1.1, then

∫

b

a
eiℎ(x)dx = ∫

b

a
D(eiℎ(x))dx

= ∫

b

a
eiℎ(x)D∗(1)dx +

[

(iℎ′(x))−1eiℎ(x)
]b
a .

Then, by the triangle inequality, it is sufficient to consider each term on the right hand side
separately. So, as |ℎ′(x)| ≳ �, we have

|

|

|

|

[

(iℎ′(x))−1eiℎ(x)
]b
a

|

|

|

|

≲ �−1.
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By definition of D∗ we have

|

|

|

|

∫

b

a
eiℎ(x)D∗(1)dx

|

|

|

|

=
|

|

|

|

∫

b

a
eiℎ(x) d

dx

(

1
ℎ′(x)

)

dx
|

|

|

|

⩽ ∫

b

a

|

|

|

|

d
dx

(

1
ℎ′(x)

)

|

|

|

|

dx

=
|

|

|

|

∫

b

a

d
dx

(

1
ℎ′(x)

)

dx
|

|

|

|

=
|

|

|

|

[

1
ℎ′(x)

]b

a

|

|

|

|

≲ �−1

where the equality on line 3 holds by monotonicity of ℎ′(x) and the final line uses the bound
|ℎ′(x)| ≳ �.
Now we will prove the lemma for  ⩾ 2 by induction. First, suppose that the result holds for an
integer k <  and assume that

ℎ(k+1)(x) ≳ �,

replacing ℎ with −ℎ if necessary. Let c = min[a,b] |ℎ(k)(x)|, then as ℎ(k+1)(x) > 0, if c is not a or
b, then ℎ(k)(c) = 0. Let � be such that outside of [c− �, c+ �] we have that |ℎ(k)(x)| ≳ ��. Write
(a, b) as (a, c − �) ∪ [c − �, c + �] ∪ (c + �, b). By the inductive hypothesis we have

|

|

|

|

∫

c−�

a
eiℎ(x)dx

|

|

|

|

≲ (��)−1∕k,

|

|

|

|

∫

b

c+�
eiℎ(x)dx

|

|

|

|

≲ (��)−1∕k.
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The last part of the interval is estimated trivially by

|

|

|

|

∫

c+�

c−�
eiℎ(x)dx

|

|

|

|

⩽ ∫

c+�

c−�
dx

≲ �.

If c = a (or b, the cases are almost identical), then either |ℎ(k)(a)| ≳ �� and thus |ℎ(k)(x)| ≳ ��
for all x ∈ [a, b], so by using our inductive hypothesis we obtain

|

|

|

|

∫

b

a
eiℎ(x)dx

|

|

|

|

≲ (��)−1∕k

or again we let � be such that outside of (a, a + �] we have |ℎ(k)(x)| ≳ �� and write (a, b) =
(a, a + �] ∪ (a + �, b). By the inductive hypothesis we have that

|

|

|

|

∫

b

a+�
eiℎ(x)dx

|

|

|

|

≲ (��)−1∕k.

Again, the other part of the interval is estimated trivially as

|

|

|

|

∫

a+�

a
eiℎ(x)dx

|

|

|

|

⩽ ∫

a+�

a
dx

≲ �.

In all cases, by choosing � = �−1∕(k+1) we conclude the proof by noting that with this (��)−1∕k =
�−1∕(k+1).
Now, we have the result

|

|

|

|

|

∫

b

a
eiℎ(x)dx

|

|

|

|

|

≲ �−1∕ (4.1)

106



so let

F (x) = ∫

x

a
eiℎ(y)dy,

then F ′(x) = eiℎ(x) and by 4.1 we have

|F (x)| ≲ �−1∕ .

So, we have that

∫

b

a
eiℎ(x) (x)dx = ∫

b

a
F ′(x) (x)dx

=
[

F (x) (x)
]b

a
− ∫

b

a
F (x) ′(x)dx

= −∫

b

a
F (x) ′(x)dx,

where we have used integration by parts and then the fact that  has compact support in (a, b).
Thus, we have

|

|

|

|

|

∫

b

a
eiℎ(x) (x)dx

|

|

|

|

|

=
|

|

|

|

|

∫

b

a
F (x) ′(x)dx

|

|

|

|

|

≲ �−1∕
|

|

|

|

|

∫

b

a
| ′(x)|dx

|

|

|

|

|

≲ �−1∕(b − a)‖ ′
‖∞

≲ �−1∕ ,

since  is smooth, concluding the proof of Lemma 4.1.4. □

We will also need the multidimensional version of van der Corput’s lemma that Sjölin [36] and
Cao et al. [9] use in their papers. This lemma is essentially due to Littman[28], refined by Domar
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[15].

Lemma 4.1.5 Let Ω be an open set in ℝn and � ∈ C∞
c (Ω). If � ∈ C

∞(Ω) is such that for each

i, j ∈ {1, ..., n}

|

|

|

|

|

det
(

)2�
)xi)xj

(x)
)

|

|

|

|

|

⩾ C0 > 0

for all x ∈ Ω, then

|

|

|

|

∫Ω
ei(��(x)−x⋅�)� (x)dx

|

|

|

|

⩽ C(1 + |�|)−n∕2,

where C depends on n,Ω, the uniform bounds on the absolute value of � and �, the partial

derivatives of � and the inverse of the Hessian of � over Ω.

4.2 Hirschmann kernels
In this section we will deal with hypersingular kernels Ka,b that are tempered distributions and
agree with the functions

ei|x|−a

|x|db
for x ∈ ℝd ⧵ {0},

where a > 0 and b > 1.

Theorem 4.2.1 Let T be an operator given by Tf = Ka,b ∗ f , then

∫ℝd
|Tf |2w ≲ ∫ℝd

|f |2M2�,�M
4w,

where �,� is the maximal operator given by (3.5) with parameters � = a
a+1

and � = a∕2−b+1
a+1

.∗

∗In this section our notation A ≲ B will have an implicit constant with dependence on at most a and b, unless
otherwise specified.
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Note that T is bounded on non-weighted L2(ℝd) if and only if � ⩾ 0, see [29]. However, with
Theorem 4.2.1 we may obtain more non-weightedLp−Lq bounds as discussed before, see (1.4).

Corollary 4.2.2 Let T be an operator given by Tf = Ka,b ∗ f , then

‖Tf‖q ≲ ‖f‖p.

whenever b − 1 ⩾ −a
q
−
(

1
p
− 1

q

)

.

If we consider the case p, q = 2, then we obtain the requirement b − 1 + a
2
⩾ 0, which implies

� ⩾ 0, implying in turn that �,� is the optimal maximal operator for these kernels in the case
p, q = 2, in the purview of the Fefferman-Stein inequality.
To prove Theorem 4.2.1 we will decompose the kernel Ka,b into parts and use the linearity and
continuity of the Fourier transform to reconstruct the multiplier for part of the kernel on the
multiplier side, then we shall use Theorem 3.3.1 on the part of the multiplier that satisfies the
relevant hypotheses. We will begin by separating the trivial part of our kernel and setting up our
dyadic decomposition of the difficult part of the kernel.
Let � ∈ C∞

c (ℝ
d)with compact support in {x ∈ ℝd ∶ 1∕2 < |x| < 2} such that∑k∈ℤ � (2kx) = 1

for x ≠ 0. Define �k(x) = � (2kx) and Ka,b,k = �kKa,b for each k ∈ ℕ and define Ka,b,∞ =

(1 −
∑∞

k=1 �k)Ka,b. Then we have that

Ka,b = Ka,b,∞ +
∞
∑

k=1
Ka,b,k. (4.2)

We note that the support for the first term on the RHS of (4.2) is away from the origin and the
support of the sum of the rest of the terms is a small neighbourhood around, but not including,
the origin.
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Now, for the trivial part of the kernel, Ka,b,∞, we can obtain an upper estimate:

|Ka,b,∞(x)| =
|

|

|

|

|

|

ei|x|−a

|x|db

(

1 −
∞
∑

k=1
�k(x)

)

|

|

|

|

|

|

⩽
1 −

∑∞
k=1 �k(x)

|x|db

for x ≠ 0. Let

Φ(x) =
1 −

∑∞
k=1 �k(x)

|x|db
,

when x ≠ 0 and Φ(0) = 0. Let Bn = {x ∈ ℝd ∶ |x| ⩽ 2n}; and observe that, for each x ∈ ℝd ,

Φ(x) ⩽
∞
∑

n=1
2−db(n−2)�Bn(x),

and so

|Ka,b,∞| ∗ w(x) = ∫ℝd
|Ka,b,∞(y)|w(x − y)dy

⩽ ∫ℝd
Φ(y)w(x − y)dy

⩽ ∫ℝd

∞
∑

n=1
2−b(n−2)�Bn(y)w(x − y)dy

=
∞
∑

n=1
2−db(n−2) ∫ℝd

�Bn(y)w(x − y)dy

=
∞
∑

n=1
2−db(n−2) ∫

|y|⩽2n
w(x − y)dy

= 22d
∞
∑

n=1
2−d(b−1)(n−2) 1

2dn ∫
|x−y|⩽2n

w(z)dz

≲
∞
∑

n=1
2−d(b−1)(n−2) sup

r>1

1
rd ∫

|x−z|⩽r
w(z)dz,
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where we have used the substitution z = x − y. Now, since b > 1 we have that
∞
∑

n=1
2−d(b−1)(n−2) < +∞

so we can conclude

|Ka,b,∞| ∗ w(x) ⩽M (1)w(x), (4.3)

where

M (1)w(x) = sup
r⩾1

1
rd ∫

|x−z|⩽r
w(z)dz. (4.4)

So, we can estimate this part of our kernel

∫ℝd
|Ka,b,∞ ∗ f (x)|2w(x)dx = ∫ℝd

|

|

|

|

∫ℝd
Ka,b,∞(x − y)f (y)dy

|

|

|

|

2

w(x)dx

⩽ ∫ℝd

(

∫ℝd
|Ka,b,∞(x − y)||f (y)|dy

)2

w(x)dx

= ∫ℝd

(

∫ℝd
|Ka,b,∞(x − y)|1∕2|Ka,b,∞(x − y)|1∕2|f (y)|dy

)2

w(x)dx

by the Cauchy-Schwarz inequality we have

∫ℝd
|Ka,b,∞ ∗ f (x)|2w(x)dx

⩽ ∫ℝd

(

∫ℝd
|Ka,b,∞(x − y)dy

)(

∫ℝd
|f (y)|2|Ka,b,∞(x − y)|dy

)

w(x)dx

= ‖Ka,b,∞‖1 ∫ℝd ∫ℝ
|f (y)|2|Ka,b,∞(x − y)|w(x)dydx

= ‖Ka,b,∞‖1 ∫ℝd
|f (y)|2

(

∫ℝd
|Ka,b,∞(x − y)|w(x)dx

)

dy

= ‖Ka,b,∞‖1 ∫ℝd
|f (y)|2|Ka,b,∞| ∗ w(y)dy,
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where the last step follows from the fact that our kernel is even, and we comment here that it
makes sense to talk about the L1 norm ofKa,b,∞ asΦ(x) is clearly an L1 function that dominates
Ka,b,∞. Then, by (4.3)

∫ℝd
|Ka,b,∞ ∗ f |2w ≲ ∫ℝd

|f |2M (1)w.

Now, we claim that if |x − y| < 1, then

M (1)w(x) ≲ M (1)w(y),

indeed;

M (1)w(x) = sup
r>1

1
rd ∫

|x−z|⩽r
w(z)dz

⩽ 2d sup
r>1

1
(2r)d ∫

|x−z|⩽2r
w(z)dz

⩽ 3d sup
r>1

1
(3r)d ∫

|y−z|⩽3r
w(z)dz

= 3d sup
r′>3

1
(r′)d ∫

|y−z|⩽r′
w(z)dz

⩽ 3d sup
r′>1

1
(r′)d ∫

|y−z|⩽r′
w(z)dz

= 3dM (1)w(y),

where we used the substitution r′ = 3r. Now, using this claim, we have that

AM (1)w(x) = 1
2 ∫

|x−y|<1
M (1)w(y)dy

≳ ∫
|x−y|<1

M (1)w(x)dy

= CM (1)w(x),
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where the operator A is given by

Aw(x) = 1
2 ∫

|x−y|<1
w(y)dy.

Additionally, just by inspection of the maximal operator

�,�w(x) = sup
(r,y)∈��(x)

r2�

r ∫
|y−z|⩽r

w(z)dz,

where

��(x) = {(r, y) ∶ 0 < r� ⩽ 1 and |y − x| ⩽ r1−�},

by taking y = x and r = 1 in the supremum, we can see that

Aw(x) ⩽ �,�w(x).

Also, with the addition of the simple observation that

M (1)w(x) = sup
r>1

1
rd ∫

|x−y|⩽r
w(y)dy

⩽ sup
r>0

1
rd ∫

|x−y|⩽r
w(y)dy

=Mw(x),

whereM is the classical Hardy-Littlewood maximal operator, and so finally, we have the point-
wise bound

M (1)w ≲ AM (1)w ⩽ �,�M
(1)w ⩽ �,�Mw ⩽M2�,�M

4w, (4.5)
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to give

∫ℝd
|Ka,b,∞ ∗ f |2w ≲ ∫ℝd

|f |2M2�,�M
4w.

It remains to prove Theorem 4.2.1 for the rest of the kernel. First define mk(�) = K̂a,b,k(�)

(defined by (4.2)) for each k ∈ ℕ and

m(�) =

(

∞
∑

k=1
Ka,b,k

)̂

(�).

We note here that the above definition of m excludes the part of the kernel away from the origin
as we are only summing over k ∈ ℕ.
As the Fourier transform is an isomorphism of the Schwarz class, (ℝ) to itself, and so induces
an isomorphism of the space of tempered distributions,  ′(ℝ), to itself, see [40]; and since the
Fourier transform is continuous and linear on  ′(ℝ), we have

m(�) =
∞
∑

k=1
mk(�).

For each k ∈ ℕ we have

mk(�) = ∫ℝd
ei(|x|−a−x⋅�)

� (2kx)
|x|db

dx.

If we use the substitution z = 2kx, then x = 2−kzand so J (x) = 2−dk is the Jacobian determinant.
We therefore have

mk(�) = 2kd(b−1) ∫ℝ
ei(2ka|z|−a−(2−kz)⋅�)

� (z)
|z|db

dz

= 2kd(b−1) ∫1∕2⩽|z|⩽2
eiℎk(z)

� (z)
|z|b

dz,
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where ℎk(z) = 2ka|z|−a − (2−kz) ⋅ �, therefore ∇ℎk(z) = −2kaaz|z|−(a+2) − 2−k�.
We shall now use either Lemma 4.1.3 or Lemma 4.1.5, depending on k, to give bounds on each
mk. We let c1, c2 ∈ ℝ+ be such that c1 < c2, later we will choose values of these that depend
only on a.
Case 1: k is such that k ∈ I1 = {k ∈ ℕ ∶ 2k ⩽ c1|�|

1
a+1}.

Then 2ka ⩽ c(a+1)1 2−k|�|. So

|∇ℎk(z)| ⩾ 2−k|�| − a2ka|z|−(a+1)

⩾ 2−k|�| − ac(a+1)1 2−k|�||z|−(a+1)

⩾ 2−k|�|(1 − ac(a+1)1 2(a+1)),

as |z| > 1∕2, and so if we take c1 = 1
2
(2a)

−1
a+1 we obtain

|∇ℎk(z)| ≳ 2−k|�|.

Now, this means there exists an i such that

|

|

|

|

)ℎk
)xi

(z)
|

|

|

|

⩾ c|2−k�|,

for some c > 0. We also have, for i′ = {1, ..., d}, j ⩾ 2,

)()ℎk
)z()i′

(z) = 2ka )
(j)

)x(j)i′
(|z|−a) (z),

and so for i′ = i,

|

|

|

|

|

)()ℎk
)x()i

(z)
|

|

|

|

|

≲ 2ka

≲ 2−k|�|.
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Thus there is a constant dependent only upon a, d and  such that

|

|

|

|

|

)()ℎk
)x()i

(z)
|

|

|

|

|

⩽ C2ka (4.6)

⩽ C ′
2
−k
|�|. (4.7)

Then, by Lemma 4.1.3 we have that, for eachN ∈ ℕ,

|mk(�)| ≲ 2kd(b−1)(2−k|�|)−N

= 2kd(b−1)2kN |�|−N

= 2kd(b−1)2kN |�|
−N
(a+1)

|�|
−aN
2(a+1)

|�|
−aN
2(a+1)

≲ 2kd(b−1−
aN
2d )
|�|

−aN
2(a+1) ,

where the last line follows from the inequality 2k ⩽ c1|�|
1
a+1 .

Case 2: k is such that k ∈ I2 = {k ∈ ℕ ∶ 2k ⩾ c2|�|
1
a+1 }.

Then 2kac−(a+1)2 ⩾ 2−k|�|, and so

|∇ℎk(z)| ⩾ a|z|−(a+1)2ka − 2−k|�|

⩾ a|z|−(a+1)2ka − 2kac−(a+1)2

⩾ 2ka(a2−(a+1) − c−(a+1)2 ),

as |z| ⩾ 2, and so if we take c2 = 2(2a)
−1
a+1 we obtain

|∇ℎk(z)| ≳ 2ka.
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So, this means there exists an i such that

|

|

|

|

)ℎk
)xi

(z)
|

|

|

|

⩾ c2ka,

for some c > 0. Again, (4.6) holds and so by applying Lemma 4.1.3 we have that, for each
N ∈ ℕ,

|mk(�)| ≲ 2kd(b−1)(2ka)−N

≲ 2kd(b−1−
aN
d ).

Case 3: k is such that k ∈ I3 = {k ∈ ℕ ∶ c1|�|
1
a+1 < 2k < c2|�|

1
a+1}.

It is perhaps trivial to see that the function |z|−a, for a > 0, has zero Hessian determinant only
at z = 0, as this is the only point that could be critical. So, by Lemma 4.1.5, we have

|mk(�)| ≲ 2kd(b−1)(2ka)−d∕2

= 2kd(b−1−a∕2)

≲ |�|
d(b−1−a∕2)

a+1

= |�|−d� .

Now we will use these estimates on |mk(�)| to obtain an estimate on |m(�)|. First we sum over
all k in Case 1, whenN is large, we obtain

∑

k∈I1

|mk(�)| ≲ |�|
−aN
2(a+1) .
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Next we sum over all k in Case 2,

∑

k∈I2

|mk(�)| ≲
∑

k∈I2

2kd(b−1−aN)

=
∑

k∈I2

2kd(b−1−aN∕2)2−kdaN∕2

≲
∑

k∈I2

2kd(b−1−aN∕2)|�|
−daN
2(a+1)

and again whenN is large, we obtain

∑

k∈I2

|mk(�)| ≲ |�|
−daN
2(a+1) .

Thus, choosingN large enough, we can obtain estimates for Case 1 and Case 2 such that

∑

k∈I1∪I2

|mk(�)| ≲ |�|−d� .

Finally, as there are only a bounded number of k in Case 3, summing over such k we have that

∑

k∈I3

|mk(�)| ≲ |�|−d� ,

thus we can conclude that

|m(�)| ≲ |�|−d� , (4.8)

for � ≠ 0.
Now we will attempt to get similar estimates on the derivatives, let  = {1, ..., d} ∈ ℕd

0 then

Dmk(�) = ∫ℝd
(ix)ei|x|−a−ix⋅�

� (2kx)
|x|db

dx,
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and again using the substitution z = 2kx, we get

Dmk(�) = i||2k(d(b−1)−||) ∫ℝd
ei(2ka|z|−a−(2−kz)⋅�)

� (z)z

|z|db
dz

= i||2k(d(b−1)−) ∫ 1
2⩽|z|⩽2

eiℎk(z)
� (z)z

|z|b
dz.

We observe here that the above integral is almost identical to the integral for mk(�), bar the z
term, which is easily controlled on the support of � . So by following the argument as before
with very minor alterations we obtain the estimates

|Dmk(�)| ≲ 2
k(d(b−1)− aN

2d )−||)
|�|

−aN
2(a+1)

for allN ∈ ℕ and k in Case 1,

|Dmk(�)| ≲ 2
k(d(b−1− aN

d )−||)

for allN ∈ ℕ and k in Case 2 and finally

|Dmk(�)| ≲ 2k(d(b−1)−||)(2ka)−d∕2

= 2k(d(b−1−
a
2 )−||)

≲ |�|
d(b−1−a∕2)−||

a+1

= |�|−d�+||(�−1),

for all k in Case 3. Again, by following an identical argument as before we obtain for largeN

∑

k∈I1

|Dmk(�)| ≲ |�|
−aN
2(a+1) ,

∑

k∈I2

|Dmk(�)| ≲ |�|
−daN
2(a+1) .

119



Thus, choosingN large enough, we can obtain estimates for Case 1 and Case 2 such that

∑

k∈I1∪I2

|Dmk(�)| ≲ |�|−d�+(�−1).

Again, as there are only a bounded number of k in Case 3, summing over these k we obtain

∑

k∈I3

|Dmk(�)| ≲ |�|−d�+(�−1)

thus we conclude that

|Dm(�)| ≲ |�|−d�+(�−1), (4.9)

for � ≠ 0.
Now we return to the proof of Theorem 4.2.1. Let � ∈ C∞

c (ℝ
d) be such that �(�) = 1 on

{� ∈ ℝd ∶ |�| ⩽ 1} and �(�) = 0 on {� ∈ ℝd ∶ |�| ⩾ 2}, and define m0(�) = m(�)�(�).
First, consider the multiplier m(�)(1 − �(�)). By (4.8), (4.9) with  = 1, and the support of
�, we have that m(�)(1 − �(�)) satisfies the hypotheses of Theorem 3.3.1 so we can conclude
Theorem 4.2.1 for this part of the multiplier.
For the rest of the multiplier, m0, we will use more elementary methods to obtain our desired
estimates.

Claim 4.2.3 We claim that for |�| ⩽ 2

|Dm(�)| ≲ 1.

Proof: Let c0 > 0 be small enough that when |�| ⩽ c0, the above Case 1 and Case 3 do not
occur.
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Case A: � is such that |�| < c0, then for some i ∈ {1, ..., d}

|

|

|

|

)ℎ
)zi
(z)

|

|

|

|

≳ 2ka.

Thus, following the arguments given before, we have that for each  ∈ ℕd
0 , for allN ∈ ℕ

|Dmk(�)| ≲ 2
kd(b−1− aN

d )−||

and so by takingN large enough we have

|Dm(�)| ≲ 1.

Case B: � is such that c0 ⩽ |�| ⩽ 2, then we consider

|Dm(�)| ≲ |�|−d�+(�−1).

If  < �
�−1

then

|Dm(�)| ≲ |�|−d�+(�−1)

⩽ c−�+(�−1)0

≲ 1.

If  > �
�−1

then

|Dm(�)| ≲ |�|−d�+(�−1)

⩽ 2−d�+(�−1)

≲ 1.
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□

Next it is a simple observation that bounds on |Dm0(�)| follows from bounds on |Dm(�)| for
|�| ⩽ 2 as follows

|Dm0(�)| =
|

|

|

|

|

|

∑

�⩽
D�m(�)D(−�)�(�)

|

|

|

|

|

|

⩽
∑

�⩽
|D�m(�)||D(−�)�(�)|

≲

∑

i=0
1

≲ 1,

where we have used Claim 4.2.3 and the fact that � ∈ C∞
c on the third line and the notation of

multi-indices throughout.
Now that we have this estimate, we define Km0 by

K̂m0(�) = m0(�).

As � has compact support in |�| < 2, m0 has compact support in |�| < 2; thus we can use the
Fourier inversion formula to obtain

Km0(x) = ∫ℝd
eix⋅�m0(�)d�,

and furthermore, by standard properties of the Fourier transform, we obtain

(ix)2dKm0(x) = ∫ℝd
eix⋅�D(2d)m0(�)d�.
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Thus, consider

|Km0(x)| =
|

|

|

|

∫ℝd
eix⋅�m0(�)d�

|

|

|

|

⩽ ∫
|�|<2

|m0(�)|d�

≲ ∫
|�|<2

d�

≲ 1,

and likewise

|(ix)2dKm0(x)| =
|

|

|

|

∫ℝd
eix⋅�D(2d)m0(�)d�

|

|

|

|

⩽ ∫
|�|<2

|D(2d)m0(�)|d�

≲ ∫
|�|<2

d�

≲ 1.

So we can write

|x|2d|Km0(x)| ≲ 1,

and combining with the previous estimate we have

(1 + |x|2d)|Km0(x)| ≲ 1,

finally, rearranging we get

|Km0(x)| ≲
1

1 + |x|2d
.
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Now, define K̃m0(x) = Km0(−x) and consider

|K̃m0(x)| = |Km0(−x)|

≲ 1
1 + |x|2d

≲
∞
∑

n=1
2−2d(n−1)�Bn(x).

Thus, we have

|K̃m0| ∗ w(x) = ∫ℝd
|K̃m0(y)|w(x − y)dy

≲ ∫ℝd

∞
∑

n=1
2−2d(n−1)�Bn(y)w(x − y)dy

=
∞
∑

n=1
2−2d(n−1) ∫ℝd

�Bn(y)w(x − y)dy

=
∞
∑

n=1
2−2d(n−1) ∫

|y|<2n
w(x − y)dy

=
∞
∑

n=1
2−d(n−2) 1

2dn ∫
|x−z|<2n

w(z)dz

⩽
∞
∑

n=1
2−d(n−2) sup

r>1

1
rd ∫

|x−z|<r
w(z)dz,

where again we have used the substitution z = x − y. Therefore, since
∞
∑

n=1
2−d(n−2) < +∞

we have that

|K̃m0| ∗ w(x) ≲ M
(1)w(x) (4.10)
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whereM (1) is defined by (4.4).
So we can estimate the final part of our kernel via the same method as before, that is

∫ℝd
|Km0 ∗ f (x)|

2w(x)dx = ∫ℝd

|

|

|

|

∫ℝd
Km0(x − y)f (y)dy

|

|

|

|

2

w(x)dx

⩽ ∫ℝd

(

∫ℝd
|Km0(x − y)||f (y)|dy

)2

w(x)dx

= ∫ℝd

(

∫ℝd
|Km0(x − y)|

1∕2
|Km0(x − y)|

1∕2
|f (y)|dy

)2

w(x)dx

again, by the Cauchy-Schwarz inequality we have

∫ℝd
|Km0 ∗ f (x)|

2w(x)dx

⩽ ∫ℝd

(

∫ℝd
|Km0(x − y)|dy

)(

∫ℝd
|f (y)|2|Km0(x − y)|dy

)

w(x)dx

= ‖Km0‖1 ∫ℝd ∫ℝd
|f (y)|2|Km0(x − y)|w(x)dydx

= ‖Km0‖1 ∫ℝd
|f (y)|2

(

∫ℝd
|Km0(x − y)|w(x)dx

)

dy

= ‖Km0‖1 ∫ℝd
|f (y)|2|K̃m0| ∗ w(y)dy.

Now, as Km0 is dominated by 1
1+|x|2d

, it is clearly an L1 function. Additionally, via (4.10), we
have

∫ℝd
|f (y)|2|K̃m0| ∗ w(y)dy ≲ ∫ℝd

|f (y)|2M (1)w(y)dy

and so

∫ℝd
|Km0 ∗ f |

2w ≲ ∫ℝd
|f |2M (1)w.
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Therefore, via (4.5), we have that

∫ℝd
|Km0 ∗ f |

2w ≲ ∫ℝd
|f |2M2�,�M

4w,

as required, concluding our proof of Theorem 4.2.1.

4.3 Beyond the Hirschmann kernels
In this section we will deal with kernels that do not have a singularity, but allow a more general
phase function. These are given pointwise as

K�,�(x) = ei��(x) (x),

where � > 0,  ∈ C∞
0 (ℝ) is a positive, smooth cutoff function and �∶ ℝ ⧵ {0}→ ℝ is a phase

function similar to xl for some l > 1, specifically � ∈ C (4) and satisfies the conditions

Aj|x|
l−j ⩽ |�(j)(x)| (4.11)

with Aj > 0 for j = 1, 2 and

|�(j)(x)| ⩽ Bj|x|
l−j , (4.12)

with Bj > 0, and j = 1, 2, 3, 4, on the support of  .

Theorem 4.3.1 Let T be an operator given by Tf = K�,� ∗ f , where � > 0 and � ∈ C (4) such

that (4.11) and (4.12) hold, then

∫ℝ
|Tf |2w ≲ �2�−2 ∫ℝ

|f |2M6�,�,�M
4w,

where �,�,� is the maximal operator given by (3.9) with parameters � = l
l−1

, � = l−2
2(l−1)

and
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� = c�1∕l, where c = A12−l.∗

Remark 4.3.2 We note here the similarity of the phase function to monomials, and therefore the

similarity of Theorem 4.3.1 to Theorem 2.1 of [5]. However, Theorem 4.3.1 deals with a greater

range of phase functions, specifically monomials with real powers.

Proof: [Theorem 4.3.1] Let �̃ ∈ C∞
c (ℝ) such that �̃ has compact support in the set {x ∈ ℝ ∶

1
2
< |x| < 2} and

∑

k∈ℤ
�̃ (2−kx) = 1

for x ≠ 0.
Define

�k(x) =  (�−1∕l2kx)�̃ (x),

for each k ∈ ℤ and

K�,�,k(x) = ei��(x)�k(�1∕l2−kx)

= ei��(x) (x)�̃ (�1∕l2−kx)

for each k ∈ ℕ. Next, define

K�,�,0(x) = ei��(x)
0
∑

k=−∞
�k(�1∕l2−kx).

∗In this section our notation A ≲ B will have an implicit constant with dependence on quite a few introduced
constants, including but not limited to l, Aj for j = 1, 2, Bj for j = 1, 2, 3, 4 and the L∞ norm of  . However, the
implicit constant will never depend on �, nor on the dyadic decomposition.
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Note that the support of K�,�,0 is a subset of |x| < 2�−1∕l, and we have that

K�,� = K�,�,0 +
∞
∑

k=1
K�,�,k.

Now, we will begin the proof of Theorem 4.3.1 by estimating the part of the kernel that has little
oscillation, K�,�,0. To this end, define

K̃�,�,0(x) = K�,�,0(−x)

and consider

|K̃�,�,0(x)| =
|

|

|

|

|

|

ei��(−x) (−x)

(

0
∑

k=−∞
�̃ (−�1∕l2−kx)

)

|

|

|

|

|

|

⩽  (−x)

(

0
∑

k=−∞
�̃ (−�1∕l2−kx)

)

⩽ ‖ ‖∞
1

1 + (c�1∕lx)2

⩽ ‖ ‖∞
∞
∑

n=1
2−2(n−1)�[−2n,2n](c�1∕lx)

= ‖ ‖∞
∞
∑

n=1
2−2(n−1)�[−c−1�−1∕l2n,c−1�−1∕l2n](x).
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Thus, we have

|K̃�,�,0| ∗ w(x) ⩽ ‖ ‖∞ ∫ℝ

∞
∑

n=1
2−2(n−1)�[−c−1�−1∕l2n,c−1�−1∕l2n](y)w(x − y)dy

= ‖ ‖∞
∞
∑

n=1
2−2(n−1) ∫

c−1�−1∕l2n

−c−1�−1∕l2n
w(x − y)dy

= 2c−1�−1∕l‖ ‖∞
∞
∑

n=1
2−(n−2) 1

2nc−1�−1∕l ∫

x+c−1�−1∕l2n

x−c−1�−1∕l2n
w(z)dz

⩽ 2c−1�−1∕l‖ ‖∞
∞
∑

n=1
2−(n−2) sup

r>c−1�−1∕l

1
2r ∫

x+r

x−r
w(z)dz,

where we have used the substitution z = x − y on the third line and as
∞
∑

n=1
2−(n−2) < +∞,

we have

|K̃�,�,0| ∗ w(x) ≲ c−1�−1∕l sup
r>c−1�−1∕l

1
2r ∫

x+r

x−r
w(z)dz.

Finally, if we define

M (�)f (x) = sup
r>c−1�−1∕l

1
2r ∫

x+r

x−r
f (y)dy,

then we can conclude that

|K̃�,�,0| ∗ w(x) ≲ c−1�−1∕lM (�)w(x). (4.13)
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Now, consider

∫ℝ
|K�,�,0 ∗ f (x)|2w(x)dx = ∫ℝ

|

|

|

|

∫ℝ
K�,�,0(x − y)f (y)dy

|

|

|

|

2

w(x)dx

⩽ ∫ℝ

(

∫ℝ
|K�,�,0(x − y)||f (y)|dy

)2

w(x)dx

= ∫ℝ

(

∫ℝ
|K�,�,0(x − y)|1∕2|K�,�,0(x − y)|1∕2|f (y)|dy

)2

w(x)dx

by the Cauchy-Schwarz inequality we have

∫ℝ
|K�,�,0 ∗ f (x)|2w(x)dx

⩽ ∫ℝ

(

∫ℝ
|K�,�,0(x − y)|dy

)(

∫ℝ
|f (y)|2|K�,�,0(x − y)|dy

)

w(x)dx

= ‖K�,�,0‖1 ∫ℝ ∫ℝ
|f (y)|2|K�,�,0(x − y)|w(x)dydx

= ‖K�,�,0‖1 ∫ℝ
|f (y)|2

(

∫ℝ
|K�,�,0(x − y)|w(x)dx

)

dy

= ‖K�,�,0‖1 ∫ℝ
|f (y)|2|K̃�,�,0| ∗ w(y)dy.

(4.14)

Note that it makes sense to talk about the L1 norm of K�,�,k0 , as it is smooth and has finite
support.
Now, to calculate ‖K�,�,0‖1, we have

‖K�,�,0‖1 = ∫ℝ
|K�,�,0(x)|dx

= ∫ℝ

|

|

|

|

|

|

ei��(x) (x)

(

0
∑

k=−∞
� (�1∕l2−kx)

)

|

|

|

|

|

|

dx

⩽ ‖ ‖∞ ∫ℝ
�[−2�−1∕l ,2�−1∕l](x)dx

≲ �−1∕l.

(4.15)

130



Then, we use (4.13) to obtain

∫ℝ
|K�,�,0 ∗ f (x)|2w(x)dx ≲ �−2∕l ∫ℝ

|f (x)|2M (�)w(x)dx.

Now, we claim that if |x − y| < c−1�−1∕l then

M (�)w(x) ≲ M (�)w(y), (4.16)

where the implicit constant is just an absolute constant.
Indeed, we have that

M (�)w(x) = sup
r>c−1�−1∕l

1
2r ∫

x+r

x−r
w

⩽ 2 sup
r>c−1�−1∕l

1
4r ∫

x+2r

x−2r
w

⩽ 3 sup
r>c−1�−1∕l

1
6r ∫

y+3r

y−3r
w

= 3 sup
r′>3c−1�−1∕l

1
2r′ ∫

y+r′

y−r′
w

⩽ 3 sup
r′>c−1�−1∕l

1
2r′ ∫

y−r′

y−r′
w

= 3M (�)w(y),

where we have used the substitution r′ = 3r. Next, if we define

A(�)f (x) = 1
2c−1�−1∕l ∫

|x−y|<c−1�−1∕l
f (y)dy,
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then

A(�)M (�)w(x) = 1
2c−1�−1∕l ∫

|x−y|<c−1�−1∕l
M (�)w(y)dy

⩾ 1
6c−1�−1∕l ∫

|x−y|<c−1�−1∕l
M (�)w(x)dy

= 1
3
M (�)w(x),

where we used (4.16) on the second line. On the other hand, if we consider our maximal operator
�,�,� given by

�,�,�w(x) = sup
(y,r)∈��,�(x)

r2�

r ∫

y+r

y−r
w,

where

��,�(x) = {(y, r) ∶ 0 < r� ⩽ �−�, |x − y| ⩽ �−�r1−�}

and use the substitutions � = c�1∕l, � = l
l−1

and � = l−2
2(l−1)

, then we can define another maximal
function as

Ml,�w(x) = sup
(y,r)∈�̃l,�(x)

1
r1∕(l−1) ∫

y+r

y−r
w,

where

�̃l,�(x) = {(y, r) ∶ 0 < r ⩽ c−1�−1∕l, |x − y| ⩽ (clr�)−1∕(l−1)}.

So now, if we fix (y, r) = (x, c−1�−1∕l), then we can see that

Af (x) ⩽ 2c
l−2
l−1�

l−2
l(l−1)Ml,�f (x),
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and substituting back using � = c�1∕l, � = l
l−1

and � = l−2
2(l−1)

, we conclude

Af (x) ⩽ 2�2��,�,�f (x).

Now, with the additional observations that

M (�)w(x) = sup
r>�−1∕l

1
2r ∫

x+r

x−r
w

⩽ sup
r>0

1
2r ∫

x+r

x−r
w

=Mw(x),

whereM denotes the standard Hardy-Littlewood maximal operator, and

�,�,�Mw(x) ⩽M6�,�,�M
4w(x),

we can conclude our treatment of this part of the kernel; that is, we have shown that

M (�)w(x) ⩽ 3A(�)M (�)w(x)

⩽ 6�
l−2
l(l−1)Ml,�M

(�)w(x)

⩽ 6�2��,�,�Mw(x)

⩽ 6�2�M6�,�,�M
4w(x).

(4.17)

Thus, by combining this with (4.14) and (4.15), we can conclude that

∫ℝ
|K�,�,0 ∗ f |2w ≲ �2�−2 ∫ℝ

|f |2M6�,�,�M
4w.
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Now, for the rest of our kernel, we define mk(�) = K̂�,�,k(�) and

m(�) =

(

∞
∑

k=0
K�,�,k

)̂

(�),

thus again we have

m(�) =
∞
∑

k=0
mk(�).

Note here that m is not the Fourier transform of our entire kernel, K�,�, but instead the part
supported away from the origin. To control this part of the kernel, we will need the following 3
lemmas.

Lemma 4.3.3 For |�| ⩾ 1
2
c�1∕l,

|m(�)| ≲ �−1∕l
(

�−1∕l|�|
)− l−2

2(l−1) ,

where the implicit constant does not depend upon �.

Proof: Consider

mk(�) = ∫ℝ
ei(��(x)−x�)� (�1∕l2−kx)dx

and let z = �1∕l2−kx, so x = �−1∕l2kz, thus

mk(�) = �−1∕l2k ∫ℝ
ei(��(�−1∕l2kz)−�−1∕l2kz�)� (z)dz.

Let

ℎk(z) = ��(�−1∕l2kz) − �−1∕l2kz�,
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so

mk(�) = �−1∕l2k ∫ 1
2<|z|<2

eiℎ(z)� (z)dz.

Case 1: k ∈ U1 = {k ⩾ 1 ∶ 2k ⩽ (c1�−1∕l|�|)1∕l−1}.
It follows that 2kl ⩽ c12k�−1∕l|�| and we have that

ℎ′k(z) = ��
−1∕l2k�′(�−1∕l2kz) − �−1∕l2k�.

So we have

|ℎ′k(z)| ⩾ �−1∕l2k|�| − ��−1∕l2k|�′(�−1∕l2kz)|

⩾ �−1∕l2k|�| − ��−1∕l2kB1(�−1∕l2k|z|)l−1

⩾ �−1∕l2k|�| − B12l−12kl

⩾ �−1∕l2k|�|(1 − c1B12l−1),

thus, by choosing c1 = (B12l)−1, we obtain

|ℎ′k(z)| ⩾
1
2
�−1∕l2k|�|. (4.18)

Next, consider

ℎ′′k (z) = ��
−2∕l22k�′′(�−1∕l2kz),
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and so,

|ℎ′′k (z)| = ��
−2∕l22k|�′′(�−1∕l2kz)|

⩽ ��−2∕l22kB2(�−1∕l2k|z|)l−2

⩽ 2klB22|l−2|

≲ 2kl, (4.19)

where we have used the fact that 1
2
⩽ |z| ⩽ 2 in the 3rd line.

Likewise,

ℎ′′′k (z) = ��
−3∕l23k�′′′(�−1∕l2kz),

and

|ℎ′′′k (z)| = ��
−3∕l23k|�′′′(�−1∕l2kz)|

⩽ ��−3∕l23kB2(�−1∕l2k|z|)l−3

⩽ 2klB32|l−3|

≲ 2kl, (4.20)

where we have used the fact that 1
2
⩽ |z| ⩽ 2 in the 3rd line.

So by Lemma 4.1.1, withM = 2, we have

|

|

|

|

|

∫ 1
2<|z|<2

eiℎk(z)� (z)dz
|

|

|

|

|

≲ ∫ 1
2<|z|<2

1
∑

r=0
2klr(�−1∕l2k|�|)−1−rdz

≲
1
∑

r=0
2klr(�−1∕l2k|�|)−1−r.
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Therefore we can now estimate our multiplier as

|mk(�)| ≲ 2k�−1∕l
(

1
∑

r=0
2klr(�−1∕l2k|�|)−1−r

)

≲ 2k�−1∕l
(

1
∑

r=0
(�−1∕l2k|�|)−1

)

,

as 2k ⩽ (c1�−1∕l|�|)1∕l−1 if and only if 2kl ⩽ c12k�−1∕l|�| and so

|mk(�)| ≲ �−1∕l(�−1∕l|�|)−1

= �−1∕l(�−1∕l|�|)−
l

2(l−1) (�−1∕l|�|)−
l−2
2(l−1)

≲ �−1∕l2−
kl
2 (�−1∕l|�|)−

l−2
2(l−1) ,

again using the fact that 2kl ⩽ c12k�−1∕l|�|. Thus, summing over all k ∈ U1, we have

∑

k∈U1

|mk(�)| ≲ �−1∕l(�−1∕l|�|)
− l−2
2(l−1)

where the implicit constant depends only on c1,  and B1 for i = 0, 1 and the fact that

∑

k∈ℕ
2−

kl
2 < +∞.

Case 2: k ∈ U2 = {k ⩾ 1 ∶ 2k ⩾ (c2�−1∕l|�|)1∕(l−1)}.
Again, it follows that c−12 2kl ⩾ �−1∕l2k|�| and we have that

ℎ′k(z) = ��
−1∕l2k�′(�−1∕l2kz) − �−1∕l2k�.
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Thus

|ℎ′k(z)| ⩾ ��−1∕l2k|�′(�−1∕l2kz)| − �−1∕l2k|�|

⩾ ��−1∕l2kA1|�−1∕l2kz|l−1 − �−1∕l2k|�|

⩾ 2klA12−(l−1) − c−12 2
kl

= 2kl(A12−(l−1) − c−12 ),

and choosing c2 = 2lA−11 , we have

|ℎ′k(z)| ⩾ c−12 2
kl. (4.21)

Again, we have the estimate on |ℎ′′k (z)| given by (4.19), so again we can apply Lemma 4.1.1
withM = 2, so we can conclude

|mk(�)| ≲ �−1∕l2k
(

1
∑

r=0
2klr(2kl)−1−r

)

= �−1∕l2k
(

1
∑

r=0
2−kl

)

≲ �−1∕l2k2−kl

= �−1∕l2k(1−
l
2 )2−kl∕2

≲ �−1∕l2k(1−
l
2 )(2k�−1∕l|�|)−1∕2

= 2−
k
2 (l−1)�−1∕l(�−1∕l|�|)−

l−2
2(l−1) (�−1∕l|�|)−

1
2(l−1) .

As |�| ⩾ 1
2
c�1∕l we have

(�−1∕l|�|)−
1

2(l−1) ⩽
(c
2

)− 1
2(l−1)
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and since l > 1 we have
∞
∑

k=1
2−

k
2 (l−1) < +∞.

So summing over k ∈ U2 we have

∑

k∈U2

|mk(�)| ≲ �−1∕l(�−1∕l|�|)
− l−2
2(l−1) .

Case 3: k ∈ U3 = {k ⩾ 1 ∶ (c1�−1∕l|�|)1∕l−1 < 2k < (c2�−1∕l|�|)1∕l−1}

Now we consider

ℎ′′k (z) = ��
−2∕l22k�′′(�−1∕l2kz),

and observe that

|ℎ′′k (z)| ⩾ ��−2∕l22k�′′(�−1∕l2kz)

⩾ ��−2∕l22kA2|�−1∕l2kz|l−2

⩾ |z|l−22kl

≳ 2kl,

where in the last step we used the fact that 1
2
< |z| < 2. So, by Lemma 4.1.4 with parameter 2

we can deduce that

|mk(�)| ≲ �−1∕l2k(2kl)−1∕2

= �−1∕l2−
k
2 (l−2)

≲ �−1∕l(�−1∕l|�|)−
l−2
2(l−1) .
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Note here that as l − 2 may be negative that we have used either the upper or lower bounds in
the definition of U3 to obtain the last line, depending on the value of l.
Finally, as there only a bounded number of k ∈ U3, independent of �, we can conclude that

∑

k∈U3

|mk(�)| ≲ �−1∕l(�−1∕l|�|)
− l−2
2(l−1) .

By combining all three cases, we can therefore conclude that

∑

k∈ℕ
|mk(�)| ≲ �−1∕l(�−1∕l|�|)

− l−2
2(l−1) ,

and so we have

|m(�)| ≲ �−1∕l(�−1∕l|�|)−
l−2
2(l−1) ,

where the implicit constant depends on at most  , Aj and Bj for j = 1, 2, and l; concluding the
proof of Lemma 4.3.3. □

Lemma 4.3.4 For |�| ⩾ 1
2
c�1∕l,

|m′(�)| ≲ �−2∕l(�−1∕l|�|)−
l−4
2(l−1) , ∗

where the implicit constant does not depend upon �.

Proof: This proof will follow the proof of Lemma 4.3.3 very closely. Consider

m′k(�) ⩽ ∫ℝ
(ix)ei(��(x)−x�)� (�1∕l2−kx)dx

∗The exponent that appears here may seem strange, but using our substitutions for � and � it is equal to−�+�−1,
which is exactly what we would expect.
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and let z = �1∕l2kx, so x = �−1∕l2kz, thus

m′k(�) = i�
−2∕l22k ∫ℝ

ei(��(�−1∕l2kz)−�−1∕l2kz�)z� (z)dz,

and again setting

ℎk(z) = ��(�−1∕l2kz) − �−1∕l2kz�,

we have

m′k(�) = i�
−2∕l22k ∫ 1

2<|z|<2
eiℎ(z)z� (z)dz.

As ℎk(z) is identical to that in Lemma 4.3.3, we can use the exact same estimates on ℎk(z),
provided we have k from the same sets.
Case 1: k ∈ U1.
So by (4.18), (4.19) and (4.20) we have that

|ℎ′k(z)| ≳ 2
k�−1∕l|�|,

|ℎ′′k (z)| ≲ 2
kl,

|ℎ′′′k (z)| ≲ 2
kl.

So we can immediately use Lemma 4.1.1 withM = 3 and get

|

|

|

|

|

∫ 1
2<|z|<2

eiℎ(z)z� (z)dz
|

|

|

|

|

≲ ∫ 1
2<|z|<2

2
∑

r=0
2klr(2k�−1∕l|�|)−r−2dz

≲
2
∑

r=0
2klr(2k�−1∕l|�|)−r−2,
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thus we can estimate |m′k(�)| as

|m′k(�)| ≲ 2
2k�−2∕l

2
∑

r=0
2klr(2k�−1∕l|�|)−r−2

≲ 22k�−2∕l(2k�−1∕l|�|)−2

= �−2∕l(�−1∕l|�|)−2

= �−2∕l(�−1∕l|�|)−
3l

2(l−1) (�−1∕l|�|)−
l−4
2(l−1)

≲ 2−3kl∕2�−2∕l(�−1∕l|�|)−
l−4
2(l−1) ,

and therefore conclude that

∑

k∈U1

|m′k(�)| ≲ �
−2∕l(�−1∕l|�|)−

l−4
2(l−1) .

Case 2: k ∈ U2. Again, we have (4.21), (4.19) and (4.20); that is,

|ℎ′k(z)| ⩾ 2
kl,

|ℎ′′k (z)| ≲ 2
kl,

|ℎ′′′k (z)| ≲ 2
kl,

and using the same argument as in Case 1, we have that

|m′k(�)| ≲ 2
2k�−2∕l

2
∑

r=0
2klr(2kl)−r−2

= 2k(2−l)�−2∕l2−kl

≲ 2k(2−l)�−2∕l(2k�−1∕l|�|)−1

= 2−k(l−1)�−2∕l(�−1∕l|�|)−
l−4
2(l−1) (�−1∕l|�|)−

l+2
2(l−1) ,
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again observing that |�| ⩾ 1
2
c�1∕l we have

(�−1∕l|�|)−
l+2
2(l−1) ⩽

(c
2

)− l+2
2(l−1) ,

and can therefore conclude that

∑

k∈U2

|m′k(�)| ≲ �
−2∕l(�−1∕l|�|)−

l−4
2(l−1) .

Case 3: k ∈ U3. Again we have the estimate on |ℎ′′k (z)| from Case 3 of Lemma 4.3.3, that is

|ℎ′′k (z)| ≳ 2
kl.

Thus, by Lemma 4.1.4 with parameter 2 we have that

|m′k(�)| ≲ �
−2∕l22k(2kl)−1∕2

= �−2∕l2−
k
2 (l−4)

≲ �−2∕l(�−1∕l|�|)−
l−4
2(l−1) .

Finally, again there are only a bounded number of k ∈ U3, so we conclude that

∑

k∈U3

|m′k(�)| ≲ �
−2∕l(�−1∕l|�|)−

l−4
2(l−1) ,

and so, combining all three cases we have

|m′(�)| ≲ �−2∕l(�−1∕l|�|)−
l−4
2(l−1) ,

where the implicit constant depends on at most an absolute constant, Ei, Ci, for i = 0, 1, A1, A2,
Bj for j = 1, 2, 3, and l; concluding the proof of Lemma 4.3.4. □
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Lemma 4.3.5 Let  ∈ {0, 1, 2}. Then for |�| ⩽ c�1∕l

|m()(�)| ≲ �−(+1)∕l,

where the implicit constant does not depend upon �.

Proof: Case 1:  = 0.
Consider

mk(�) = ∫ℝ
ei(��(x)−x�)� (�1∕l2−kx)dx

and let z = �1∕l2−kx, so x = �−1∕l2kz, thus

mk(�) = �−1∕l2k ∫ℝ
ei(��(�−1∕l2kz)−�−1∕l2kz�)� (z)dz.

Let

ℎk(z) = ��(�−1∕l2kz) − �−1∕l2kz�,

so

mk(�) = �−1∕l2k ∫ 1
2<|z|<2

eiℎ(z)� (z)dz,

and

ℎ′k(z) = ��
−1∕l2k�′(�−1∕l2kz) − �−1∕l2k�.
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As |�| ⩽ c�1∕l, we have

c−1�−1∕l|�| ⩽ 1

and so

(c−1�−1∕l|�|)
1
l−1 ⩽ 1

⩽ 2k

for all k ∈ ℕ; that is, c2kl ⩾ �−1∕l2k|�| for all k ∈ ℕ. Thus, by the hypotheses on �, we have

|ℎ′k(z)| ⩾ ��−1∕l2k|�′(�−1∕l2kz)| − �−1∕l2k|�|

⩾ ��−1∕l2kA1|�−1∕l2kz|l−1 − �−1∕l2k|�|

⩾ 2klA12−(l−1) − c2kl

⩾ 2kl(A12−(l−1) − c)

and since c = A12−l we obtain

|ℎ′k(z)| ⩾ c2kl

≳ 2kl.

So this case is identical to Case 2 in Lemma 4.3.3, with the exception of c instead of c−12 , thus
by following the exact same argument as we do there we obtain

|mk(�)| ≲ �−1∕l2k2−kl

= �−1∕l2−k(l−1).
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Thus, by summing over all k ∈ ℕ, we have

∑

k∈ℕ
|mk(�)| ≲ �−1∕l,

where the implicit constant depends only on an absolute constant, A1, Bj , Ei, Ci for i = 0, 1, l
and the fact that since l > 1,

∑

k∈ℕ
2−k(l−1) < +∞.

Case 2:  = 1

In this case

m′k(�) = ∫ℝ
(ix)ei(��(x)−x�)� (�1∕l2−kx)dx.

Again, let z = �1∕l2kx, so x = �−1∕l2kz, thus

m′k(�) = i�
−2∕l22k ∫ℝ

ei(��(�−1∕l2kz)−�−1∕l2kz�)z� (z)dz,

and again setting

ℎk(z) = ��(�−1∕l2kz) − �−1∕l2kz�,

we have

m′k(�) = i�
−2∕l22k ∫ 1

2<|z|<2
eiℎk(z)z� (z)dz.
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Since ℎk(z) is identical to Case 1 we can use the same estimate; that is,

|ℎ′k(z)| ≳ 2
kl.

Now, this case is identical to Case 2 of Lemma 4.3.4, with the exception of c instead of c−12 , thus
by again following the exact same argument as we do there we obtain

|m′k(�)| ≲ 2
2k�−2∕l

2
∑

r=0
2klr(2kl)−r−2

= �−2∕l2−2k(l−1).

Again, by summing over all k ∈ ℕ, we have

∑

k∈ℕ
|mk(�)| ≲ �−2∕l,

where the implicit constant depends only on an absolute constant, A1, Bj , for j = 2, 3, Ei, Ci for
i = 0, 1, 2, l and the fact that since l > 1,

∑

k∈ℕ
2−2k(l−1) < +∞.

Case 3:  = 2. In this case

m′′k (�) = ∫ℝ
(ix)2ei(��(x)−x�)� (�1∕l2−kx)dx.

Again, let z = �1∕l2kx, so x = �−1∕l2kz, thus

m′′k (�) = −�
−3∕l23k ∫ℝ

ei(��(�−1∕l2kz)−�−1∕l2kz2�)z� (z)dz,
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and again setting

ℎk(z) = ��(�−1∕l2kz) − �−1∕l2kz�,

we have

m′k(�) = −�
−3∕l23k ∫ 1

2<|z|<2
eiℎk(z)z2� (z)dz.

Since ℎk(z) is identical to Case 1 we can use the same estimate; that is,

|ℎ′k(z)| ≳ 2
kl.

Additionally, since ℎk(z) is identical to Case 1 of Lemma 4.3.3, we have (4.19) and (4.20); that
is,

|ℎ′′k (z)| ≲ 2
kl

and

|ℎ′′′k (z)| ≲ 2
kl.

Finally, consider

ℎ(4)k (z) = ��
−4∕l24k�(4)(�−1∕l2kz),
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then

|ℎ(4)k (z)| ⩽ ��−4∕l24kB4|�−1∕l2kz|l−4

= B42kl

⩽ B42kl2|l−4|

≲ 2kl, (4.22)

where on the penultimate line we have used the fact that 1
2
⩽ |z| ⩽ 2.

So we can again use Lemma 4.1.1 withM = 4, we have

|

|

|

|

|

∫ 1
2<|z|<2

eiℎ(z)z2� (z)dz
|

|

|

|

|

≲
3
∑

r=0
2klr(2kl)−r−3

≲
3
∑

r=0
2−3kl.

Therefore, we can conclude that

|m′′k (z)| ≲ �
−3∕l23k2−3kl

= �−3∕l2−3k(l−1).

Again, by summing over all k ∈ ℕ, we have

∑

k∈ℕ
|m′′k (�)| ≲ �

−3∕l,

where the implicit constant depends only on A1, Bj , for j = 2, 3, 4,  , l and the fact that since
l > 1,

∑

k∈ℕ
2−3k(l−1) < +∞;
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concluding the proof of Lemma 4.3.5. □

We now return to the proof of Theorem 4.3.1. Let � ∈ C∞
c (ℝ) such that � has support in (−c, c)

and 1 − � has support in ℝ ⧵ [− c
2
, c
2
]. Then 1 − �(�−1∕l⋅) has support in ℝ ⧵ [− 1

2
c�1∕l, 1

2
c�1∕l]

and the multiplier (1 − �(�−1∕l⋅))m satisfies hypothesis (3.6) with � = 1
2
c�−1∕l by virtue of the

support of 1 − �(�−1∕l⋅). Additionally, by Lemma 4.3.3, for each � ∈ supp(1 − �(�−1∕l⋅))

|�|�|m(�)| ≲ |�|��−
1

2(l−1)
|�|−

l−2
2(l−1)

≲ |�|���−1|�|−�

= ��−1.

So the multiplier (1 − �(�−1∕l⋅))m satisfies hypothesis (3.7) with C = s��−1, where s > 0 is a
constant independent of �. Finally, by Lemma 4.3.4, for each � ∈ supp(1 − �(�−1∕l⋅))

sup
I⊆[R,2R]

len(I)=(R∕�)−�R

R�
∫±I

|m′(�)|d� ≲ sup
I⊆[R,2R]

len(I)=(R∕�)−�R

R�
∫±I

�−1∕2(l−1)�1∕(l−1)|�|−
l−4
2(l−1)d�

≲ sup
I⊆[R,2R]

len(I)=(R∕�)−�R

R�
∫±I

�−(�−1)|�|−�|�|�|�|d�

≲ sup
I⊆[R,2R]

len(I)=(R∕�)−�R

R� len(I)��−1�2�−2R−�R�Rd�

= sup
I⊆[R,2R]

len(I)=(R∕�)−�R

R�(R∕�)−�R��−1�2�−2R−�R�Rd�

= ��−1.

So the multiplier (1 − �(�−1∕l⋅))m satisfies hypothesis (3.8) with C = s′��−1, where s′ > 0 is a
constant independent of �. Thus, by Theorem 3.3.3 we have,

∫ℝ
|T(1−�)mf |

2w ≲ �2�−2 ∫ℝ
|f |2M6�,�,�M

4w,
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where T(1−�)m is defined by ̂T(1−�)mf = (1−�(�−1∕l⋅))mf̂ , and the implicit constant is independent
of �.
So, to conclude Theorem 4.3.1 it is sufficient to show that

∫ℝ
|T�mf |

2w ≲ �2�−2 ∫ℝ
|f |2M6�,�,�M

4w,

where T�m is defined by T̂�mf = �(�−1∕l⋅)mf̂ .
Now, by Lemma 4.3.5 we have that

|m()(�)| ≲ �−(+1)∕l,

for  ∈ {0, 1, 2} and |�| ⩽ c�1∕l.
Define K�m by K̂�m(�) = �(�−1∕l�)m. As �(�−1∕l⋅)m has compact support, since �(�−1∕l⋅) has
compact support, we can use the Fourier inversion formula to obtain

K�m(x) = ∫ℝ
�(�−1∕l�)m(�)eix�d�,

and furthermore, by standard properties of the Fourier transform, we obtain

(ix)2K�m(x) = ∫ℝ

d2

d�2
(�(�−1∕l�)m(�))eix�d�.
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So, consider

|K�m(x)| =
|

|

|

|

∫ℝ
�(�−1∕l�)m(�)eix�d�

|

|

|

|

⩽ ∫
|�|<c�1∕l

|�(�−1∕l�)||m(�)|d�

≲ ∫
|�|<c�1∕l

�−1∕ld�

≲ 1,

where we have used Lemma 4.3.5 on the third line, the fact that � is bounded and the implicit
constants on both the third and last lines are independent of �.
Next, consider

|(ix)2K�m(x)| =
|

|

|

|

∫ℝ

d2

d�2
(�(�−1∕l�)m(�))eix�d�.

|

|

|

|

⩽ ∫
|�|<c�1∕l

|�(�−1∕l�)||m′′(�)| + �−1∕l|�′(�−1∕l�)||m′(�)| + �−2∕l|�′′(�−1∕l�)||m(�)|d�

≲ ∫
|�|<c�1∕l

�−3∕ld�

≲ �−2∕l,

where we have again used Lemma 4.3.5 on the third line, the fact that �, �′ and �′′ are all bounded
and the implicit constants on both the third and last lines are independent of �.
So, we can write

|c�1∕lx|2|K�m(x)| ≲ 1

and so, combining with the above estimate on |K�m(x)|, we have

(1 + |c�1∕lx|2)|K�m(x)| ≲ 1,

152



which implies that

|K�m(x)| ≲
1

(1 + |c�1∕lx|2)
. (4.23)

Now, define K̃�m(x) = K�m(−x) and consider

|K̃�m(x)| ⩽ |K�m(−x)|

≲ 1
(1 + |c�1∕lx|2)

⩽
∞
∑

n=1
2−2(n−1)�[−2n,2n](c�1∕lx)

=
∞
∑

n=1
2−2(n−1)�[−c−1�−1∕l2n,c−1�−1∕l2n](x).

From this, we can estimate |K̃�m| ∗ w(x) as

|K̃�m| ∗ w(x) = ∫ℝ
|K̃�m(y)|w(x − y)dy

≲ ∫ℝ

∞
∑

n=1
2−2(n−1)�[−c−1�−1∕l2n,c−1�−1∕l2n](y)w(x − y)dy

=
∞
∑

n=1
2−2(n−1) ∫

2nc−1�−1∕l

−2nc−1�−1∕l
w(x − y)dy

=
∞
∑

n=1
2−2(n−1)2nc−1�−1∕l 1

2nc−1�−1∕l ∫

x+2nc−1�−1∕l

x−2nc−1�−1∕l
w(z)dz

⩽
∞
∑

n=1
2−(n−2)c−1�−1∕l sup

r>c−1�−1∕l

1
2r ∫

x+r

x−r
w(z)dz

⩽ 2c−1�−1∕lM (�)w(x).
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where we have used the substitution z = x − y on the fourth line.
Next consider ‖K�m‖1, by the previous estimate (4.23) we have

‖K�m‖1 ≲ ∫ℝ

1
(1 + |c�1∕lx|2)

dx.

So, via the substitution u = �1∕lx, we have

‖K�m‖1 ≲ �
−1∕l

∫ℝ

1
1 + u2

du

= �−1∕l2 lim
R→∞∫

R

0

1
1 + u2

du

= �−1∕l2 lim
R→∞

arctan(R)

= �−1∕l�.

Thus, in the exact same way we handled the part of the kernel K�,�,0 via the Cauchy-Schwarz
inequality, we have

∫ℝ
|K�m ∗ f (x)|2w(x)dx ⩽ ‖K�m‖1 ∫ℝ

|f (x)|2|K̃�m| ∗ w(x)dx

≲ �−2∕l ∫ℝ
|f (x)|2M (�)w(x)dx,

and using (4.17), we have

∫ℝ
|K�m ∗ f |2w ≲ �2�−2 ∫ℝ

|f |2M6�,�,�M
4w,

concluding the proof of Theorem 4.3.1. □

Remark 4.3.6 As Theorem 4.3.1 is stated, it’s not quite obvious that our argument works for

l = 2, 3. However, the obvious adaptation of the given argument for Lemma 4.3.4 and for

Case 2 and Case 3 of Lemma 4.3.5 would yield Theorem 4.3.1 for such l. It is also of some
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interest to note that if we change our requirement to l > 2, we may drop the requirement

j = 4 in the hypotheses, again allowing l = 3 to be considered, by slightly adapting Case
3 of Lemma 4.3.5. Furthermore, if our requirement was actually l > 3, we may drop both

the requirements  = 3, 4, again adapting our argument slightly, implying some relationship

between l and the smoothness required by our phase.
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APPENDIX A
MULTIPLIERS

A.1 R-function lemma
The following lemma is elementary in nature and doesn’t really fit within our discourse, but still
a necessary step used in one of our proofs.
Lemma A.1.1 Let R�(x) ∶= (1 + |x|)−2� and r > 0 then,

R�
A(r) ∗ R

�
A(r)(x) ≲ R

�
A(r)(x)

for all � > 1.

Proof: Let z = A(r−1)y, then

R�
A(r) ∗ R

�
A(r)(x) = ∫ℝ2

r−2�(1 + |A(r−1)(x − y)|)−2�(1 + |A(r−1)y|)−2�dy

= r−� ∫ℝ2
(1 + |A(r−1)x − z|)−2�(1 + |z|)−2�dz

Let I = R� ∗ R�, that is

I(x) = ∫ℝ2
(1 + |x − z|)−2�(1 + |z|)−2�dz.

Then we have
R�
A(r) ∗ R

�
A(r)(x) = IA(r)(x)

so by scaling it is sufficient to prove
I(x) ≲ R�(x).

To prove this, we’ll consider I(x) separately for when |x| ⩽ 2 and when |x| > 2. First we shall
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deal with |x| ⩽ 2. As |x − z| ⩾ 0 trivially, we have

I(x) = ∫ℝ2
(1 + |x − z|)−2�(1 + |z|)−2�dz

⩽ 1−2� ∫ℝ2
(1 + |z|)−2�dz

≲ 1.

Next, we shall deal with |x| > 2 by separating it into dyadic rings. Fix k ∈ ℕ, and fix x such
that 2k ⩽ |x| ⩽ 2k+1 then define I1(x) and I2(x) as

I(x) = ∫
|x−z|⩾2k−1

(1 + |x − z|)−2�(1 + |z|)−2�dz + ∫
|x−z|⩽2k−1

(1 + |x − z|)−2�(1 + |z|)−2�dz

= I1(x) + I2(x).

For I1(x), we have

I1(x) = ∫
|x−z|⩾2k−1

(1 + |x − z|)−2�(1 + |z|)−2�dz

⩽ ∫ℝ2
(1 + 2k−1)−2�(1 + |z|)−2�dz

≲ 2−k�2 ∫ℝ2
(1 + |z|)−2�dz

⩽ |x|−2�.

For I2(x), we use the observation that if z ∈ ℝ2 such that |x − z| ⩽ 2k−1, since we have that
2k ⩽ |x|, then we have |z| ⩾ 2k−1, and so

I2(x) = ∫
|x−z|⩽2k−1

(1 + |x − z|)−2�(1 + |z|)−2�dz

≲ 2−k�2 ∫
|x−z|⩽2k−1

(1 + |x − z|)−2�dz

≲ |x|−2�.

So, by combining all of the above, we have

I(x) ≲

{

1 |x| < 2
|x|−2� |x| ⩾ 2

and this can clearly be bounded above by R�(x) modulo a constant. □
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APPENDIX B
OSCILLATORY KERNELS

B.1 Integration by parts lemma
Here we provide the first few applications of D∗ to our function  from Lemma 4.1.1.

• N = 1
Firstly, fix x ∈ ℝ and consider

D∗ (x) = − d
dx

(

 (x)
iℎ′(x)

)

= −
 ′(x)
iℎ′(x)

+
ℎ′′(x) (x)
iℎ′(x)2

,

then by use of the triangle inequality, the estimate | (x)| ⩽ c for some constant c > 0 and
the use of the hypotheses on the derivatives of ℎ, we have

|D∗ (x)| ≲ �−11 + �2�−21 .

• N = 2
Again, fix x ∈ ℝ and consider

(D∗)2 (x) = D∗(D∗ (x))

= − d
dx

(

−
 ′(x)
(iℎ′(x))2

+
ℎ′′(x) (x)
(iℎ′(x))3

)

= −
 ′′(x)
ℎ′(x)2

+
ℎ′′(x) ′(x)
ℎ′(x)3

+
ℎ′′′(x) (x)
ℎ′(x)3

+
ℎ′′(x) ′(x)
ℎ′(x)3

−
ℎ′′(x)2 (x)
ℎ′(x)4

,

and we get
|

|

|

(D∗)2 (x)||
|

≲ �−21 + �−31 �2 + �
−4
1 �

2
2.

• N = 3
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Fix x ∈ ℝ and consider
(D∗)3 (x) = D∗(D∗(D∗ (x)))

= − d
dx

(

−
 ′′(x)
iℎ′(x)3

+
ℎ′′(x) ′(x)
iℎ′(x)4

+
ℎ′′′(x) (x)
iℎ′(x)4

+
ℎ′′(x) ′(x)
iℎ′(x)4

−
ℎ′′(x)2 (x)
iℎ′(x)5

)

=
 ′′′(x)
iℎ′(x)3

−
ℎ′′(x)2 ′(x)
iℎ′(x)4

−
ℎ′′′(x) ′(x)
iℎ′(x)4

−
ℎ′′′(x) ′(x)
iℎ′(x)4

+
ℎ′′(x)2 ′(x)
iℎ′(x)5

−
ℎ(4)(x) 
iℎ′(x)4

−
ℎ′′′(x) ′(x)
iℎ′(x)4

+
ℎ′′(x)ℎ′′′(x) (x)

iℎ′(x)5
−
ℎ′′′(x) (x)
iℎ′(x)4

−
ℎ′′(x) ′′(x)
iℎ′(x)4

+
ℎ′′(x)2 ′(x)
iℎ′(x)5

+
2ℎ′′′(x)ℎ′′(x) (x)

iℎ′(x)5
+
ℎ′′(x)2 ′(x)
iℎ′(x)5

−
ℎ′′(x)3 (x)
iℎ′(x)6

.

and we get
|

|

|

(D∗)3 (x)||
|

≲ �−31 + �−41 �2 + �
−5
1 �

2
2 + �

−6
1 �

3
2.
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