
LARGE SCALE ESTIMATION OF
DISTRIBUTION ALGORITHMS FOR
CONTINUOUS OPTIMISATION

by

MOMODOU LAMIN SANYANG

A thesis submitted to
The University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

School of Computer Science
College of Engineering and Physical Sciences
The University of Birmingham
October 2017

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

2

Dedication

To my Mum, Dad, wife and kids

3

Abstract

Modern real world optimisation problems are increasingly becoming large scale. However,

searching in high dimensional search spaces is notoriously difficult. Many methods break

down as dimensionality increases and Estimation of Distribution Algorithm (EDA) is

especially prone to the curse of dimensionality. In this thesis, we device new EDA variants

that are capable of searching in large dimensional continuous domains. We in particular (i)

investigated heavy tails search distributions, (ii) we clarify a controversy in the literature

about the capabilities of Gaussian versus Cauchy search distributions, (iii) we constructed

a new way of projecting a large dimensional search space to low dimensional subspaces in a

way that gives us control of the size of covariance of the search distribution and we develop

adaptation techniques to exploit this and (iv) we proposed a random embedding technique

in EDA that takes advantage of low intrinsic dimensional structure of problems. All

these developments avail us with new techniques to tackle high dimensional optimisation

problems.

Acknowledgements

I would like to start by expressing my immense gratitude to almighty God for giving me

the strength, health, and determination to successfully complete this thesis.

First and foremost, I want to thank my lovely wife, Anna Mbye Sanyang for her

untiring and constant source of support, love, patience and good humour which kept

me going throughout the during of this PhD journey. Thanks Anna mbye Sanyang. I

would also like to thank my kids for always putting smiles on my face anytime i close

from university, especially during stress and difficult times. Secondly, I like to thank

my office mates and friends i met here at the university of Birmingham for making our

work environment friendly and conducive and also taking their precious times to help me

when I need them. Many thanks to Islamic Development Bank (IDB) for giving me the

opportunity to undergo this program at the University of Birmingham and generously

sponsoring the whole program.

Furthermore, I would also like to humbly put on record my mammoth thanks and

appreciation to my learned and able supervisor, Dr. Ata Kaban, for her constant guidance,

patience, and yet unspoken assistance during the course of this thesis. Her constructive

criticism, encouragements and meticulous checks on my work have always been a source

of inspiration for me. I am also indebted to my research monitoring group members, Dr.

Steve Vickers and Professor Peter Tino for their invaluable comments, suggestions and

monitoring of my progress throughout this program.

I would also like to thank Dr. Robert (Bob) Durrant for his helpful discussions and

5

collaboration/joint paper we have from the work of chapter 4 of this thesis.

Huge thanks are also due to my examiners Professor John McCall and Dr. Shan He

for taking time out of their busy schedules to examine my thesis and providing me with

valuable comments and suggestions. The same thank is due also to Dr. Rami Bahsoon

for chairing the Viva.

Finally, I would like to express my profound gratitude to my parents for their support,

prayers and patience for all these years of my program.

Contents

1 Introduction 1
1.1 Context of the work . 1
1.2 Motivation . 3
1.3 Research Questions . 5
1.4 Contributions . 7
1.5 Publications . 8
1.6 Thesis Outline . 9

2 Basic concepts, background and review of heuristic Optimisation 11
2.1 Notations and their descriptions . 11
2.2 Heuristic Optimization in Continuous Domains 12

2.2.1 Evolutionary Algorithms (EA) . 13
2.2.2 Estimation of Distribution Algorithms (EDAs) 14

2.3 Introduction to Estimation of Distribution Algorithms (EDA) 14
2.3.1 Model estimation in EDAs . 16
2.3.2 The difficulties of model estimation on high dimensional EDA prob-

lems . 17
2.4 Random Projection . 19
2.5 Random Embedding . 22

2.5.1 How to create a non-separable functions from a separable one. . . . 22
2.6 Definition of type of benchmarking functions used in this thesis 22

2.6.1 Separable Functions . 23
2.6.2 Partially Separable Functions . 23
2.6.3 Fully non-separable Functions . 24
2.6.4 Partially additively separable Functions 24
2.6.5 EDA captures structures of functions 24

2.7 Differences between multivariate Gaussian and multivariate Cauchy distri-
butions . 25

2.8 Review of previous work on high dimensional EDA methods 27
2.8.1 Continuous Univariate Marginal Distribution Algorithm (UMDAc) . 28
2.8.2 Eigendecomposition EDA (ED-EDA) 31
2.8.3 Decomposition methods in Evolutionary Computation 35

2.8.4 Covariance Matrix Adaption - Evolutionary Strategy (CMA-ES) . . 42
2.8.5 Random Projection Ensemble EDA (RP-Ens-EDA) 45

2.9 Inadequacies of existing methods . 47

3 Multivariate Cauchy EDA Optimisation 50
3.1 Introduction . 51
3.2 Algorithm Presentation . 52

3.2.1 A note on parameter estimation . 53
3.3 Implementation and Experiments . 55

3.3.1 Benchmark test functions . 55
3.3.2 Parameter settings . 55
3.3.3 Performance criteria . 56

3.4 Results and Discussion . 56
3.5 Summary . 59

4 How effective is Cauchy-EDA in high dimensions? 63
4.1 Introduction . 63
4.2 Presentation of the algorithm used in this work 64
4.3 Experiments . 65

4.3.1 Roadmap and parameter settings 66
4.4 Results and Discussion . 68

4.4.1 Results on shifted Rosenbrock: Confirming the findings of [75], and
developing a more complete picture 68

4.4.2 Results of an extensive empirical study 73
4.4.3 Further results when the optimum is shifted much further away . . 75

4.5 Understanding the reasons for our experimental findings 75
4.5.1 Probability of bad moves . 75
4.5.2 Gaussian and Cauchy norms in high dimensions 79

4.6 EDA with uniform search distribution on a hypersphere 85
4.7 Summary . 92

5 Heavy Tails with Parameter Adaptation in Random Projection based
Continuous EDA 93
5.1 Introduction . 94
5.2 Using heavy tails in Random Projection based continuous EDA 97
5.3 Setting and adaptation of the degree of

freedom ν . 107
5.4 Analysis of the experimental results . 110

5.4.1 Benchmark functions used . 111
5.4.2 Experiments and Results . 111

5.5 Summary . 116

6 Random Embedding in Estimation of Distribution Algorithm(REMEDA)122
6.1 Introduction . 123
6.2 Intrinsic dimension of problems . 124
6.3 REMEDA: Random Embedding EDA . 126
6.4 Experiments . 131

6.4.1 Parameter settings . 131
6.4.2 Test functions and performance measures 131

6.5 Results and Discussion . 133
6.5.1 Experiments on a di = 2 problem 133
6.5.2 Results and comparisons on problems with di = 5 134
6.5.3 Scalability experiments . 137

6.6 REMEDA with sub-Gaussian Random Embeddings 138
6.7 Summary . 142

7 Conclusion and Future Work 144

A 1 148
A.1 Some Box Constrained Test Problems from the CEC 2005 collection 148

A.1.1 Unimodal Functions . 148
A.1.2 Multimodal Functions . 153

B 1 155
B.1 Parameter Estimation of location(µ) and positive definite matrix(Σ) for

Cauchy -Derivation . 155

List of References 161

List of Figures

2.1 Evolutionary procedure of a simple EDA on one dimensional problem . . . 15
2.2 Figure showing captured structure from the CEC 2005 benchmarks 25
2.3 Cauchy density (red dashed), along with standard normal density (blue)

(Left), multivariate Cauchy (Top Right) and multivariate Gaussian (Bot-
tom Right). 27

3.1 A plot showing the behaviour of EDA when the search distribution is a
Cauchy distribution. 54

3.2 The Evolutionary path of Cauchy on 2-dimensional shifted sphere function 61
3.3 The Evolutionary path of Gaussian on 2-dimensional shifted sphere function 62

4.1 Convergence behaviour of Gaussian and Cauchy as search distribution for
EDA-MCC on different dimensions of the Rosenbrock function for popula-
tion size of 300 on average, as obtained from 25 independent runs. A total
budget of 1 · 104 ·D, where D is the dimension of the problems were used. 69

4.2 Convergence behaviour of Gaussian and Cauchy as search distribution for
EDA-MCC on different dimensions of the Rosenbrock function for popu-
lation size of 1000 on average, as obtained from 25 independent runs. A
total budget of 1 · 104 ·D, where D is the dimension of the problems were
used. 71

4.3 Convergence behaviour of Gaussian and Cauchy as search distribution for
EDA-MCC on different dimensions of the Rosenbrock function for popu-
lation size of 2000 on average, as obtained from 25 independent runs. A
total budget of 1 · 104 ·D, where D is the dimension of the problems were
used. 72

4.4 Differences between the average (from 25 repeated runs) of the best fitness
values achieved by the Cauchy (fc) and by the Gaussian (fg) EDAs, as the
dimension is varied, for seven test problems. The smaller plots superim-
posed represent zoomed versions of the same results in the range of 20-50
dimensions. 74

4.5 Trajectories to compare Gaussian and Cauchy search distributions on the
Shifted Rosenbrock Function when the box size was increased from [−102 102]
to [−104 104] and the shift values varied from 102 − 104. 76

4.6 Comparisons of Gaussian vs. Cauchy search distributions on problems with
highly shifted optima and increased sizes of the search box. 77

4.7 Proof by picture – the probability that ‖x?−p′‖ < ‖x?−p?‖ is monotonically
decreasing in the step size of the search. 77

4.8 Comparison of the histograms of Gaussian vs. Cauchy norms as D in-
creases. The values of the parameter c chosen here (i.e. the dimension
of independent multivariate Cauchy components) correspond to a popula-
tion size of 300 (although we observed no qualitative difference for other
choices). We used 100,000 sample points to create these histograms. 80

4.9 Trajectories of Gaussian EDA-MCC, Cauchy EDA-MCC and Uniform-
Sphere EDA on the Shifted Rosenbrock function when the population size
is N = 300. 87

4.10 Trajectories of Gaussian EDA-MCC, Cauchy EDA-MCC and Uniform-
Sphere EDA on the Shifted Rosenbrock function when the population size
is N = 1000. 88

4.11 Trajectories of Gaussian EDA-MCC, Cauchy EDA-MCC and Uniform-
Sphere EDA on the Shifted Rosenbrock function when the population size
is N = 2000. 89

4.12 Differences between the averages (from 25 repeated runs) of the best fit-
ness values achieved by the Gaussian (fg) and Uniform on Sphere (fs)
plotted on the right and Cauchy (fc) and Uniform on Sphere (fs) EDAs
plotted on the left, as the dimension is varied. The smaller plots superim-
posed represent zoomed versions of the same results in the range of 20-50
dimensions. 90

4.13 Comparison of Gaussian EDA-MCC, Cauchy EDA-MCC and UniformSphere-
EDA on 1000-dimensional problems. The population size was 300, and each
curve is the average of the best fitness values from 25 independent runs.
The budget of function evaluations was 104 ·D, where D is the dimension
of the problem. 91

5.1 Plots to compare covariances of the new generations of RP-Ens-EDA and
tRP-Ens-EDA. 97

5.3 Aggregated Summary of the comparison experiment with equal budget set
to 5.4 · 105 on 50-dimensional Rosenbrock function. 115

5.2 Plots to compare different dfs, RP-Ens-EDA and two versions of our tRP-
Ens-EDA on Functions 1-16. For better visibility, we display from genera-
tion 50 only and show legend of only the first plot. The error bars represent
one standard error over 25 repeated runs. 117

5.4 Friedman multicomparison statistical test of our tRP-ENS-EDA with other
state of the arts methods. Overlapping intervals indicate no significant
difference . 121

6.1 Gaurantee that the optimum is in the subspace. 125

6.2 Trajectories showing different sizes of the internal dimension, d varied and
di = 2. They are averaged over 25 independent runs. 127

6.3 Trajectories showing results on the shifted sphere function when d = di.
These results are averaged over 25 independent restarts 127

6.4 Comparison of our theoretical bound (Remeda), with various values of
d > di versus the bound of [82] (Rembo), which holds when d = di. 130

6.6 Finding d (left) and evolution of best fitness (right) for REMEDA, 3 com-
peting methods, and a di-dimensional EDA on the idealised problem. The
figure on the right is plotted with Gap against no. of fitness evaluations.
Results are averaged over 25 independent runs. 135

6.5 Finding d (left) and evolution of best fitness (right) for REMEDA, 3 com-
peting methods, and a di-dimensional EDA on the idealised problem. Re-
sults are averaged over 25 independent runs. 136

6.7 Number of function evaluations taken by successful runs of REMEDA to
reach a pre-specified value to reach (VTR) as the problem low intrinsic
dimensionality is varied in di ∈ [2, 50]. The markers represent averages
computed from 25 independent repetitions. 139

6.8 Percentage of trials that satisfies rank(ΦTR) = di out of 10,000 independent
trials. 140

6.9 Selecting d in the case of sub-Gaussian vs. Gaussian embeddings. Results
are averaged over 25 independent runs. 143

List of Tables

3.1 Statistical Comparison of MCEDA and MGEDA on Problems 01-16 with
initial Population far from the optimum and has size 200. 57

3.2 Statistical Comparison of MCEDA and MGEDA on Problems 01-16 with
uniform initialisation and small Population size 20. 58

3.3 Statistical Comparison of UCEDA and MCEDA on Problems 01-16 with
uniform initialisation and small Population size 20. 59

4.1 Scalable test functions from the CEC’05 collection. 66
4.2 Table of parameters used in this chapter. 68
4.3 Ranksum Statistical test for performance comparison between Gaussian

and Cauchy search distribution on the Shifted Rosenbrock function with
Budget = 10000 ·D and Population size = 300. 70

4.4 Ranksum Statistical test for performance comparison between Gaussian
and Cauchy search distribution on the Shifted Rosenbrock function with
Budget = 10000 ·D and Population size = 1000 70

4.5 Ranksum Statistical test for performance comparison between Gaussian
and Cauchy search distribution on the Shifted Rosenbrock function with
Budget = 10000 ·D and Population size = 2000. 70

5.1 1000-dimensional test functions from the CEC’10 collection. 111
5.2 50-dimensional test functions from the CEC’05 collection. 112
5.3 Ranksum statistical test for performance comparison between Tuning, 5df

and 2df methods ran on equal budget. 112
5.4 Comparison with state of the art under equal budget of 3 · 106 function

evaluations. 118
5.5 Comparison with state of the art under equal budget of 1.2 · 106 function

evaluations. 119
5.6 Comparison with state of the art under equal budget of 0.6 · 106 function

evaluations. 120

6.1 Test functions of low intrinsic dimension of 2 or 5. o is the shift vector. . . 132
6.2 Fitness gap achieved by REMEDA on the Branin function (di = 2 embed-

ded in D = 25), with a total budget of 500 function evaluations. 133

6.3 Comparing REMEDA with other state of the art methods. 137

CHAPTER 1

Introduction

1.1 Context of the work

The field of optimisation is very important and it has applications in lots of disciplines.

In our day to day life, we try to optimise things. For example, if we want to move from

one destination to another, we find the shortest path. If we want to invest money, we

look for those instruments with minimal risks and high gains. Therefore, the process of

optimisation can be thought of as making best use of resources under given constraints.

Optimisation can be defined as the procedure or procedures used to make a system or

design as effective or as functional as possible. Optimisation helps us to improve quality

of decision making. It has applications in Engineering, Business, Economics, Science,

Military planning, just to name a few. We may not take it as an exaggeration if one says

that in everything we do, we try to optimise.

Evolutionary computation which is a subfield of artificial intelligence refers to a group

of algorithms inspired from the Darwinian theory of natural evolution. Methods such as

genetic algorithms, evolutionary strategies, particle swarm optimisation, and so on, apply

1

concepts similar to those controlling biological organisms, such as selection and repro-

duction to solve computing problems. Considering their triumph at finding the global

optimum of intricate objective functions, with a good solution quality, evolutionary tech-

niques are often seen as optimisation tools. Evolutionary algorithms (EAs) change a

population of candidate solutions over time to a given optimization problem using two

operators: selection and variation. Selection introduces a pressure directed toward very

good solutions, whereas variation makes sure there is an exploration of the search space

of all likely good solutions. Two variation operators are customary in evolutionary and

genetic computation: (1) crossover and (2) mutation. The former creates new candidate

solutions by combining bits and pieces of promising solutions, whereas the later introduces

slight perturbations to promising solutions for exploration of immediate neighbours.

There are different categories of optimisations such as Mathematical Optimisation and

heuristic optimisation. Mathematical optimisation only deals with very specific problem

types, while on the other hand search heuristics like evolutionary computation work in

a black box manner [73]. The latter do not have the guarantees that the mathematical

optimisation has, but are less specialised and often work sufficiently well on a wider range

of functions. In this research, we are concerned with a heuristic optimisation approach

known as Estimation of Distribution Algorithms (EDAs). EDAs build a probabilistic

model of fittest individuals and sample from the built model to generate new individuals

with the hope of getting improved solutions (See Chapter 2 for more detailed explanation

of EDAs). We focus on continuous valued search spaces. We will study a specially

commonly used type of unconstrained optimization problem called the box constraint

optimisation because it is important, relevant in practice and far from being solved as

evident in the annual competitions, such as the one held at Congress of Evolutionary

Computation (CEC).

2

We shall be looking at only minimization problems since maximization problems can

be changed to minimization problems by negating the signs of their objective functions.

Formally, the mathematical formulation of an optimisation problem for a box constrained

type is of the form:

min
x∈S

f(x)

where S ⊂ Rn, S = [a1, b1]× [a2, b2]× · · · × [an, bn].
(1.1)

x ∈ S, S is called search space, a1 < b1, a2 < b2 . . . are given constants and are real

values. f is the objective function we want to minimise.

Heuristic search techniques are stochastic optimisation strategies that hope to make

candidate solutions better at each iteration, using a fitness function as a guide. Most

of the current techniques don′t do well when the problems involve interacting variables

and at high dimensions. Presently there are techniques that are able to solve some of

the problems encountered in large scale continuous optimisation including problems of

dimension of up to 1000. Although successes have been registered in some of the recent

techniques, there are still room for improvements in some of them as you will see shortly.

1.2 Motivation

The manner in which evolutionary computation methods like Evolutionary Algorithms

(EAs) work depends on operators such as, cross over and mutation and various param-

eters. Here, the operators of crossing and mutating don’t guarantee the preservation of

the building blocks. One remedy to the above problems associated with GAs is to replace

the traditional genetic operators by building a model of selected good solutions, and gen-

erating a new population of candidate solutions using the model with the expectation of

3

improved solution quality. When the built model is a probability distribution, such type of

evolutionary algorithms go by the name of Estimation of Distribution Algorithms (EDAs).

EDA addresses a broad class of optimization problems via the learning of explicit

probabilistic models of promising candidate solutions and sampling from the built models

to generate new candidate solutions. By taking in two concepts of Genetic and Evolu-

tionary Algorithm, like population based search, and exploration through combining good

solutions and one from machine learning such as the Probabilistic model estimation, EDA

can explore a lot of regions in the search space and enables the use of extremely thorough

and careful statistical modeling and sampling techniques to discover and exploit regular-

ities for better exploration. By these incorporations, EDA can solve many challenging

problems and can perform significantly better than standard Genetic, Evolutionary and

other optimisation techniques.

We are interested in EDA because it has features that other Evolutionary Algorithms

(EAs) don’t have. For example, it builds a probabilistic model of the search space which

provides a better understanding of the problem domain. Higher modelling cost may

bring benefit of fewer evaluations or better solution quality. EDA achieves a better and

more rigorous theoretical analsysis of the evolutionary process than the GA [49]. EDA’s

parameters can also be analyzed to understand the structure of the problem. There are

lesser and easier parameters to be set in EDAs than in the GAs. With a rigorous analysis

of these parameters, we can improve the ability of EDA to efficiently guide the search

for the optimum. EDA is chosen in this research due to its increasing applications to

real life problems. We can apply EDA to reconstruct images in image recognition. We

can use it in Gene expression analysis and in high dimensional data analysis. EDA is

known to be remarkably successful in low dimensional problems but prone to the curse of

4

dimensionality in larger problems. There are a number of factors that are responsible for

EDAs bad performances in large scale problems, namely the exponential growth of the

search space of a problem as the number of decision variables increase, the change in the

properties of the search space as the dimensionality of the problem increases (e.g the case

of rosenbrock) [76], the high cost of evaluating large scale problems as typical of many

real world problems [51],[43], [53] and the interactions between decision variables. Since

the main difference between EDA and other Evolutionary and Genetic Algorithms lies in

the model estimation of the fittest individuals, the main and most notable challenge for

further research in EDA area lies in the model estimation in EDA for high dimensional

problems [46],[22]

In this thesis, we tasked ourselves to mitigate the curse of dimensionality associated

with EDA in order to scale it up to large scale problems. In particular, we shall be

making use of techniques that we will borrow from random matrix theory to scale some

EDA up to large scale problems. In so doing, we will make EDA better explore the high

dimensional search space with a balance of exploration and exploitation. We shall also

utilise the notion of effective dimension of certain class of problems with special structure

to remedy EDA susceptibility to the curse of dimensionality.

1.3 Research Questions

In most EDA methods, Gaussian distribution is used as the search operator to provide

a probabilistic model of the fittest individuals. However, research has established that

Gaussian EDA is prone to premature convergence when its parameters are estimated

using the maximum likelihood estimation (MLE) method [49]. One of the promising

lines of work in addressing the premature convergence associated to Gaussian was the

replacement of Gaussian distribution with a Cauchy distribution in a univariate setting

[86]. In this way, the methods will be able to escape the premature convergences due to

5

the ability of Cauchy to make long jumps, thus achieving a better performance. However,

some researchers found Cauchy not doing well in high dimensions in comparison with

Gaussian. Therefore, we would like to know the answers to the following questions during

the course of this PhD work:

1. (a) Will the finding in the previous work of replacing Gaussian search distribution

with Cauchy search distribution in univariate setting hold in the multivariate case?

(b) Can we resolve the controversy surrounding the use of Cauchy search distribution

as an alternative search distribution to Gaussian, particularly in high dimensional

problems?

A recent method scaled up EDA to high dimensions by employing a technique bor-

rowed from random matrix theory called random projection in an ensemble manner. This

method is called Guassian random projection ensemble EDA (RP-Ens-EDA). In this

method, there is a random projection matrix parameter whose entries are drawn i.i.d

from a Gaussian distribution to project the points down to low dimensions. We would

like to extend this method to generate the entries of the random projection matrices from

a heavy-tailed distribution again instead of the commonly used Gaussian or sub-Gaussian

to strike a balance between the exploration and exploitation of the search process by con-

trolling the size of the covariance matrix. Therefore, we would like to know the answer

to the following question during the course of this PhD work:

2. Can we improve the performance of Gaussian Random Projection Ensemble EDA

(RP-Ens-EDA) by employing heavy tailed random matrices to control the size of the

covariance in order to balance exploration and exploitation of the search process?

Large scale optimisation is very challenging and it limits the usefulness of problems

in practice. However, there are problems that are high dimensional but can possibly be

6

represented in low dimension [18]. Also It has been noted from research that in certain

classes of functions most decision variables don’t impact significantly on the objective

function. Such functions are said to have low intrinsic dimensionality. We want to

utilise the structure of functions with intrinsic dimension by employing random embedding

technique to scale up Estimation of Distribution Algorithms (EDA) for problems with low

intrinsic dimension. Therefore, we would like to know the answer to the following question

during the course of this PhD work:

3. Can we devise a method that exploits intrinsic dimension without knowing the

influential subspace of the input space, or its dimension, by employing the idea of

random embedding to mitigate the curse of dimensionality associated with EDA?

1.4 Contributions

The main contributions of this thesis are summarised as follows:

1. We were able to extend the promise of using Cauchy search distribution in univariate

EDA to multivariate setting in chapters 3 and 4.

2. We have also resolved the controversy around the use of Cauchy search distribution

and its merits relative to the Gaussian, in high dimensional problems in chapter 4

since employing heavy tailed search distribution, such as a Cauchy is found to make

EDA better explore a high dimensional search space while also being found that

Cauchy search distributions is less effective than Gaussian search distributions in

high dimensional problems.

3. In chapter 5, we extend a recently proposed random projections (RP) ensemble based

approach by employing heavy tailed random matrices, which achieved a flexible

means of balancing exploration and exploitation of the search process.

7

4. In chapter 6, we used random embedding technique to remedy the curse of dimen-

sionality associated with the plain EDA specifically when intrinsic dimension of the

problem is low.

1.5 Publications

During the course of this PhD work, the following peer-reviewed papers have been pub-

lished in conference proceedings and workshops. The following technical report was also

written:

Published Refereed Conference Papers

• M.L. Sanyang and A. Kaban. Multivariate Cauchy EDA Optimisation. In proceed-

ing of the Intelligent Data Engineering and Automated Learning (IDEAL-2014),

pp. 449-456. (2014).

• M.L. Sanyang and A. Kaban. Heavy Tails with Parameter Adaptation in Random

Projection based Continuous EDA. In proceeding of the IEEE Congress on Evo-

lutionary Computation, (CEC-2015), pp 2074-2081, IEEE (2015). Runner-Up

Best Student Paper Award.

• M.L. Sanyang, R.J. Durrant and A. Kaban. How effective is Cauchy-EDA in high

dimensions? In proceeding of the IEEE Congress on Evolutionary Computation

(CEC-2016), 24-29 July, Vancouver, Canada, (2016). Nominated by a reviewer

for a best paper award.

• Qi Xu, M.L. Sanyang and A.Kaban. Large Scale Continuous EDA Using Mutual

Information. In proceeding of the IEEE Congress on Evolutionary Computation

(CEC-2016), 24-29 July, Vancouver, Canada, (2016).

• M.L. Sanyang and A. Kaban. REMEDA: Random Embedding EDA for optimising

8

functions with intrinsic dimension. In proceeding of the 14-th International Con-

ference on Parallel Problem Solving from Nature (PPSN XIV), 17-21 September,

Edinburgh, Scotland, (2016). Nominated for Best Paper Award.

Published Refereed Workshop Paper

• M.L. Sanyang, Hanno Muehlbrandt and A. Kaban. Two approaches of Using Heavy

Tails in High dimensional EDA. In proceedings of the International Conference of

Data Mining Workshop, (ICDMW-2014), (2014).

Technical Report

• M.L. Sanyang and A. Kaban. How effective is Cauchy-EDA in high dimensions?

Technical Report No. CSR-15-01, School of Computer Science, The University of

Birmingham.

1.6 Thesis Outline

This thesis consists of 7 chapters which are organised as follows. Chapter 2 presents

the essential background, basic concepts of EDA and existing work in the area of high

dimensional continuous EDA methods.

Chapter 3 presents the extension of the use of Cauchy distribution as an alternative

search distribution to blend together the advantages of multivariate modelling with the

ability of escaping early convergence to efficiently explore the search space.

Chapter 4 focuses on resolving the controversy around the merits of using Cauchy

search distribution as opposed to the use of Gaussian search distribution in optimization,

particularly in EDA optimization.

9

Chapter 5 proposes an extension of a recently Random Projection Ensemble EDA

method by generating the entries of the Random Projection Matrices I.I.d from a heavy

tailed distribution (t-Distribution in this case) instead of generating the entries from the

commonly used Gaussian or sub-Gaussian. The use of t-distribution may look surprising

from the perspective of random projections; however we show that the resulting high

dimensional ensemble covariance is enlarged when the degree of freedom parameter is

lowered, which may facilitate exploration and escape early convergence, while still main-

taining the focus of the search.

Chapter 6 presents a framework that utilizes the random embedding technique in Es-

timation of Distribution Algorithm to scale it up by exploiting the intrinsic dimension of

problems whereby the search takes place in a much lower dimensional space than that of

the original problem. This framework is suited for large scale problems that take a large

number of inputs but only depend on a few linear combinations of them.

Chapter 7 summarises the main findings of this thesis and gives conclusions of the

proposed work with outlooks for future work.

10

CHAPTER 2

Basic concepts, background and review of heuristic

Optimisation

2.1 Notations and their descriptions

D The Ambient dimension of problems.

N Population Size.

θ Correlation threshold that divided weak and strongly dependent variables.

Ñ Number of selected/fittest individuals.

runs Number of runs.

MaxBudgetMaximum number of function evaluations.

f Fitness function.

11

X Represents individuals/Decision vector.

S Represents the search space.

g Denotes generation/iteration.

P Represents the populations of individuals.

P Sel Set of Selected/fittest individuals.

P new Newly sampled population.

R Random projection Matrix

A An N ×D Matrix.

y A point/newly sampled individual.

x An element of the decision vector, X.

Σ Covariance Matrix.

µ Mean.

σ Standard deviation.

M Represents a probabilistic model.

Xnew Newly sampled vector.

di Denotes the intrinsic dimension of problem.

d Denotes the internal dimension, such that D > d > di.

2.2 Heuristic Optimization in Continuous Domains

This section gives an introduction to a handful of methods currently applied to Large

Scale Global Optimisation (LSGO) problems, which are related to our work. Readers

interested in more detailed surveys are referred to [39],[54] and [61].

Heuristic methods, sometimes called ”approximate” methods, are techniques coined

for providing approximate solutions to hard search or optimisation problems for which

there is no specialised algorithm, i.e problems that would not be solvable in other ways

12

even approximately.

The goal of a heuristic is to give rise to quick enough a solution that is sufficient

for solving the problem at hand. This solution may not be the best or it may simply

approximate the exact solution to the problem at hand, but it is still valuable because

finding it does not require a prohibitively long time. Just by themselves alone, heuristics

may produce results, or they may be used in association with optimization algorithms to

improve their efficiency. For example they may be used to generate good seed values. An

example of heuristic algorithm that we intend to utilise in this research is Estimation of

Distribution Algorithm. EDA is presently prohibitively costly at high dimensions, so we

shall be using techniques such as random projection to improve its performance at high

dimension.

2.2.1 Evolutionary Algorithms (EA)

Evolutionary algorithms are population based heuristic search techniques, used for several

decades to find approximate solutions to optimization problems. The classical EA alter-

nates two phases: (i) information exchange among individuals by evolutionary operators,

and (ii) fitness evaluation and selection [33]. Most of the time, EAs employ cross over

(also known as recombination) and mutation as evolutionary operators. The main essence

of cross over is the exchange of genetic material among individuals, while mutation allows

exploration of areas close to an existing candidate solution [54]. The pseudo code of an

EA implementation is shown in Algorithm 1.

Generally, EAs are unable to detect inter-dependencies among the search variables. In

particular, the cross over operator tends to break up good building blocks, which decreases

significantly the performance of EAs on certain problems [54]. This is where Estimation

of Distribution Algoritms (EDA) offer advantages.

13

Algorithm 1 Classical Evolutionary Algorithm
Set g ← 0.
Set Pg ← initialize random population.
While Stopping Criteria is not met do

F ← evaluate fitness of Pg
P
′
g ← Perform crossover
P
′′
g ← Perform mutation on P

′
g

Pg+1 ← merge Pg and P
′′
g

g ← g + 1
end
Output: Pg+1

2.2.2 Estimation of Distribution Algorithms (EDAs)

EDAs represent a branch of EAs that replace the cross over and mutation operators by

building and sampling explicit probability models of selected candidate solutions [49].

This allows the algorithm to learn the structure of the search space and to guide the

search in further promising directions [87]. We can say they are a variation of regular

EAs.

2.3 Introduction to Estimation of Distribution Algo-

rithms (EDA)

The major difference between EAs and EDAs is the replacement of the recombination

and mutation operators by a probabilistic model. A typical EDA algorithm proceeds by

initially generating a population of individuals of size N . At each generation g, the current

population Pg is evaluated using the objective function. Based on the fitness evaluation,

the most promising individuals are selected according to their fitness values to build

a probabilistic model and sample the next generation of candidate solutions from this

model. A popular selection scheme used by many EDA variants is truncation selection.

Truncation selection simply defines a percentage of individuals τ to be selected out of

14

the entire population of size N and selects the subset P sel of candidates with the best

fitness values by choosing the top τ ×N individuals of the population. The τ controls the

selection pressure. Figure 2.1 illustrates the procedure of a simple EDA implementation

and the pseudocode of a simple EDA can be found in Algorithm 2, which is adopted from

[73].

Algorithm 2 The Pseudocode of a simple EDA with Population size N
(1) Set g ← 0.
(2) Set Pg ← Generate N points uniformly randomly to give an initial population.
Do

(3) Evaluate fitness for all N points in Pg
(4) Select the τ ×N individuals P sel from Pg
(5) Calculate the sample statistics of P sel

(6) Use the statistic to sample new population P new

(7) P ← P new

(8) g ← g + 1
Until Termination criteria are met
Output: P

Figure 2.1: Evolutionary procedure of a simple EDA on one dimensional problem

15

In figure 2.1, the top left graph depicts the situation after uniformly initializing the

population in the search space. The x-axis/horizontal axis is the search space and the

y-axis/vertical axis is the fitness of the candidate solutions. After the first generation,

the probabilistic model is estimated from the selected population P sel. In the top right

and bottom left graphs, the probability model is indicated by the bold black bell curve.

In the bottom right graph, the population has converged close to the global optimum.

2.3.1 Model estimation in EDAs

The basic skeleton of most EDA approaches is very similar to the one described in Al-

gorithm 2, But the cream of each EDA variant is the process of building its model. The

probabilistic model has a fundamental role and influence on the performance of the algo-

rithm, since it is most of the times the only tool used for guiding the search to the global

optimum [56]. Thus, the model must model the search space in great detail, meaning, if

the search space involves search variables which interact which each other, then the model

has to be a multivariate model that takes into account these interactions. However, the

required search cost (i.e. number of fitness evaluations used) and computational resources

have to be appropriate as well. This becomes a problem when the search space is high di-

mensional, and therefore simplified models such as univariate models are frequently used

instead of full multivariate models. This means that all decision variables, x which is a

coordinate of the vector X, are treated as if they were independent throughout the model

building process, and for each decision variable a separate model is estimated. An early

approach is the UMDAc, which is described in [61]. The model building in this univariate

approach is done using Equation 2.1 [61].

P (X) =
D∏
i=1

P (xi) (2.1)

Where X is a set of decision variables and xi are instances of these decision variables.

16

D is the Ambient dimension of the problem. For problems that are not separable (see

definition in section 2.5.3), the design variables have inter-dependencies. One of the first

approaches to capture those inter-dependencies has been the MIMIC algorithm, which was

proposed by De Bonet et. al in [42]. This model has the potential of capturing bivariate

interactions between decision variables by sampling from the pairwise joint distribution

between variables according to Equation 2.2. Given a permutation pm = (i1, i2, ..., iD),

the class of probability functions Ppm(X), is defined as

Ppm(X) = P (xi1|xi2) · P (xi2|xi3) · · ·P (xiD−1 |xiD) (2.2)

Despite MIMIC is able to outperform univariate models, the majority of optimization

problems will have larger groups of interacting design variables. Several proposals have

advanced to explicitly capture multivariate dependencies by building graphical depen-

dency networks, for example Bayesian Networks [11] but, from statistical, computational

and memory points of view, learning probabilistic graphical models is highly expensive

[6]. Thus, the scaling up of these model building processes to high dimensional problems

is challenging. Efforts to mitigate such problems have resulted in several algorithms being

proposed recently. For example, an approach that is correlation based such as in [22] and

a variable interaction learning process such as in [83] were such proposals. Both of these

methods will be discussed in detail later.

2.3.2 The difficulties of model estimation on high dimensional

EDA problems

EDAs are the class of Evolutionary Algorithm, which replace cross-over and mutation

operators with the building of probability models from selected individuals. In so do-

ing, they completely rely on probabilistic models built from selected individuals. They

therefore suffer from the well-known curse of dimensionality [34]. The more complicated

17

the model is, the more individuals it needs to give a reliable estimate and maintain good

performance. The curse of dimensionality implies that, the amount of data to maintain a

given spatial density increases exponentially with the dimensionality of the search space

[8]. Since we can see from Algorithm 2 that EDA tries to learn some global statistical

details from P sel individuals selected from the population P of N individuals, P sel has to

be large enough for reliable estimation, which will consequently require a large population

size N for some level of selection pressure to be maintained. Therefore, the population

size of EDA has to grow fast as the problem size grows to maintain good performance.

Thus, we can say that there is an estimation issue in EDA as the sample size required to

produce a reliable estimate of the distribution of selected individuals grows exponentially

with the dimension of the search space [78].

Apart from the estimation problem EDAs have, multivariate EDA applications to large

scale problems are rare due to their high computational requirement. As already men-

tioned, high dimensionality comes with the need for a large number of fitness evaluations

implied by the need for large population size. Even that aside, the computational com-

plexity of estimating the model and sampling new individuals using the estimated model

in a full multivariate EDA is also significantly higher than that of the search operators in

other EAs. The computational cost of sampling from a full d-dimensional Gaussian dis-

tribution is O(D3) [24], because we have to do an eigen decomposition of the Covariance

matrix and this takes O(D3) in general. This process becomes extortionate when D is

very large.

When the problem dimensionality increases, we see an exponential increase in the

size of the solution space. For instance, when the problem dimensionality increases from

5 to 20 in a binary optimization problem, the size of the solution space increases from

25 = 32 to 220 = 1048576 exponentially in the dimensionality. The speedy growth in the

size of the search space makes it extremely strenuous to find the global optimum by sam-

18

pling/searching the entire space. However, in certain type of functions, the function value

changes a lot along certain directions and along other directions, the function value does

not change much or not at all. This is a typical case of someone tuning several parameters

and when he/she changes some of them, not many changes are notices in the performance,

but when he/she changes the others, we notice big difference in performance. The direc-

tions/dimensions that make the huge change in the function value are called the intrinsic

dimensions, while the dimensions that make little or no change in the function value are

called the constant dimensions. Therefore, to address the scalability issue in optimisation,

one can consider only the dimensions that impact significantly on the function value in

the optimisation process, if the functions are of this form. Thus, instead of searching in

the ambient dimensional space, if you search along the intrinsic dimensional sub-space,

which is much lower than the ambient space, you should be able to find the optimum. In

this way, we can solve large scale black-box optimization problems easier.

2.4 Random Projection

Now we will describe a technique of universal dimension reduction, that originates from

theoretical computer science, which made some recent advances in Machine Learning,

and is very new to optimisation. When points are in high dimension, random projection

method can reduce the dimension of the data to a lower one in such a way that the

pairwise distances between two points of the dataset are preserved with high probability.

Our research will make use of random projection technique to solve some of our research

questions. Specifically we will extend and improve the ensemble of random projections

technique recently proposed in [46].

Here we will discuss this method, particularly the ensemble of Random Projections.

Among the challenges we highlighted in the previous section is the curse of dimensionality.

This is one of the challenges faced by researchers in heuristic optimisation, especially by

19

Estimation of distribution Algorithms (EDAs) for large scale global optimisation. There

are typically two problems that motivated researchers to endeavour to mitigate this curse

of dimensionality [26]:

1. Very high dimensional data and very many observations. Computational time and

space complexity are the problems here.

2. Very high dimensional data and very few observations. This represents a hard prob-

lem in inferencing and results in fake interaction estimates between features [26].

The curse of dimensionality becomes a problem when trying to solve optimisation

problems. The objective function must be computed for each combination of values. This

creates an obstacle when the dimension of the state variables is large. This problem also

prevails in other desciplines such as machine learning, combinatorics, Bayesian statistics

etc. Due to this problem, researchers try to solve this issue by reducing the dimensionality,

which can be achieved using either Principal Component Analysis (PCA), Factor Analysis

(FA), Random Projection (RP) etc. PCA was used in one of Dong’s [23] papers, but the

computational complexity is still O(D3). Random Projection was used more recently and

demonstrated a drastic improvement, so we choose to build on this.

The most widely theoretical motivation behind the use of random projections is the

Johnson-Lindenstrauss lemma, which is stated as follows [52]. The distributional Johnson-

Lindenstrauss lemma (JLL) [19],[4] is state as follows:

Lemma 1. Let ε, δ ∈ (0, 1). Let k ∈ N such that k ∈ O(ε−2 log δ−1). Then there is a

random linear mapping R : RD → Rk such that for any vector X ∈ RD, with probability

at least 1− δ it holds that:

20

(1− ε)||X||2D 6 ||RX||2k 6 (1 + ε)||X||2D �

There are different proofs of this lemma such as [52] and [4]. For readers interested in

the proof, you can check [19] for the elementary proof.

Projecting from D dimensions to k dimensions is a linear transformation represented

by a D × k matrix R, which is generated by drawing each entry of the matrix from an

i.i.d N(0, 1/k) distribution. In the worst case, k has to be O(logN/ε2). Given a D-

dimensional data set which is represented as an n×D matrix A, where n is the number

of instances in A, the mapping A×R results in a reduced dimension.

The entries of the R matrix are normally generated i.i.d from a Gaussian, which have

the advantage of making the matrix full row rank a.s [46]. However, there are several other

choices available in the literature, which are faster when doing matrix-multiplication, and

still have full rank with very high probability. Among the other choices, we will mention

two here, namely a sparse Random Projection matrix (Ri,j) proposed in [3] that has

entries drawn i.i.d. as following:

Ri,j =



+
√

3 with probability 1
6 ,

−
√

3 with probability 1
6 ,

0 with probability 2
3 .

(2.3)

and the Random Projection matrix (Ri,j) with coin-flip entries [3]. This is also use

due to its computational efficiency and has its entries drawn according to the following:

Ri,j =


+1 with probability 1

2 ,

−1 with probability 1
2 ,

(2.4)

21

2.5 Random Embedding

Given a random embedding matrix R ∈ RD×d and points yi ∈ Rd, i = 1, · · ·N , where

N are the number of points and d < D, the operation Ryi transforms the d-dimensional

points into the D-dimensional space of decision variables. This transformation is what we

call random embedding. The matrix R will have its entries drawn i.i.d. from a standard

Gaussian or subgaussian distribution.

2.5.1 How to create a non-separable functions from a separable

one.

In an attempt to build a non-separable problem from a separable one, we rotate the

coordinate system as follows:

f : x −→ f(x) separable (2.5)

f : x −→ f(Rot · x) non− separable (2.6)

Where Rot is a rotation matrix

We shall be using non-separable functions in our subsequent chapters, so it will be

good to show how it can be obtained from separable functions here.

2.6 Definition of type of benchmarking functions used

in this thesis

In this section, we will give definitions of the type of benchmark functions used in this

work. For each function, a graphical representation and detailed analysis of their charac-

22

teristics are provided in the appendix. We have used two types of benchmark functions,

namely the CEC 2005 and CEC 2010, which are described in [77] and [1] respectively.

The functions have been slightly modified and expanded to accommodate the needs of

our experiments.

2.6.1 Separable Functions

A variable xi on a function is separable or does not interact with any other variable if the

following holds:

arg min
X

f(X) =
(

arg min
xi

f(X), arg min
∀xj,j 6=i

f(X)
)

(2.7)

WhereX = (x1, ..., xD) is a decision vector ofD dimensions. The notation arg minxi f(X)

means that the optimum value of xi is found while all other variables are kept constant

[59].

In other words, for separable functions, each dimension can be considered as indepen-

dent group and the global optimum can be found by optimising in each of its arguments

separately.

2.6.2 Partially Separable Functions

If there exist at most m < D disjoint subsets u1, u2, ..., um ⊂ X, where X = (x1, ..., xD)

is a decision vector of D dimensions, then a function is partially separable iff:

arg min
X

f(X) =
(

arg min
x1

u1(x1, ...), ..., arg min
xm

um(..., xm)
)

(2.8)

A non-separable function, which is a function that has atleast one variable that inter-

acts with any other variable, is called m-non-separable if at most m of its arguments are

not independent.

23

2.6.3 Fully non-separable Functions

A function f(X) is said to be fully non-separable if every pair of its decision variables X

interact with each other. When pairs of variables are not independent or are correlated,

then there is interaction between the variables. This is what variable interaction means.

2.6.4 Partially additively separable Functions

A function is partially additively separable if it can be expressed in the following form:

f(X) = Σm
i=1fi(xi) (2.9)

where xi are disjoint decision vectors of fi and X = (x1, ..., xD) is a global decision

vector of D dimensions and m is the number of independent subcomponents [59],[55].

Experiments of this thesis talk about benchmark functions which are separable and

non-separable. Due to their usage in the thesis, we have given their definitions above.

2.6.5 EDA captures structures of functions

To demonstrate the ability of EDA to capture the structure of the problem on figure 2.2,

we show examples of covariance matrices of the set of selected fittest individuals extracted

from a typical run. The covariances of the figure are for three different problem types:

Separable, non-separable and expanded functions. As you can see from the image of the

covariance matrix of the sphere function, Figure 2.2 (a), it shows a diagonal covariance

which indicates that the problem is a separable one. From figures 2.2 (b) and (c), we can

see that the rosenbrock and expanded functions are non-separable as the off diagonals

indicate that there are interactions between the decision variables.

24

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10
-500

0

500

1000

1500

2000

2500

(a) Sphere function

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

10

20

30

40

50

60

(b) Rosenbrock function

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

2

4

6

8

10

12

14

16

(c) Expanded function

Figure 2.2: Figure showing captured structure from the CEC 2005 benchmarks

2.7 Differences between multivariate Gaussian and

multivariate Cauchy distributions

The main advantage of EDAs is the explicit learning of the dependences among variables

of the problem to be tackled and utilizing this information efficiently to generate new

individuals to drive the search to the global optimum [87]. Using univariate Cauchy will

make it hard to achieve this goal since it does not take on dependences. A univariate

distribution is a distribution that takes only one variable as its argument, while a multi-

25

variate distribution takes more than one variable. When a univariate distribution is used

on a multivariate problem, It treats each variable independently from the others, while a

multivariate distribution takes the dependencies between the variables into consideration.

Therefore, this work to the best of our knowledge is the first to include the modelling of

dependencies in a Cauchy search distribution based EDA algorithm for black-box global

Optimization.

An important difference between Gaussian and Cauchy is that Cauchy is heavier tailed.

This means that it is more prone to producing values that fall far from its mean, thus,

giving Cauchy more chance of sampling further down its tail than the Gaussian. This

gives Cauchy a higher chance of escaping premature convergence than the Gaussian [69],

[86].

For the same reason, the Gaussian search distribution is good when the individuals

are close to the optimum while Cauchy is better when the individuals are far from the

optimum. Both of these findings were previously made in the context of traditional

evolutionary computation [86] where univariate version of these distributions were used

to implement the mutation operator. Our hypothesis, which we test in this chapter, is

that these advantages are carried forward to EDA based optimization where in addition,

multivariate modelling enables a more directed search. Below is a picture that shows the

plots of both Gaussian and Cauchy Distributions in one and two dimensions:

26

Figure 2.3: Cauchy density (red dashed), along with standard normal density (blue)
(Left), multivariate Cauchy (Top Right) and multivariate Gaussian (Bottom Right).

The leftmost plot in figure 2.3 shows the probability density function of a Cauchy

versus a Gaussian in 1D. We see the heavy tail of Cauchy falling down slower than

Gaussian. On the right, the plots depict contour plots of the 2D versions of these densities,

with Cauchy on the top right and Gaussian at the bottom right. In the 2D versions,

Cauchy has a flatter tail on the base as can be seen by the wider space between the

second outermost and the outermost contour lines than those of Gaussian. Parameter

Σ = [1.6; .61] was used on both 2D version for plotting the contours.

2.8 Review of previous work on high dimensional

EDA methods

Large scale continuous optimization has put lots of interest in most of the researchers

in classical and other heuristic methods for continuous optimization problems, due to its

appearance in real-world problems. Most of the problems are high dimensional. There-

fore, scaling up for high-dimensional problems becomes a challenge, which makes model

building in high dimensions a subject of many research efforts. Many approaches were

27

proposed, here we will limit ourselves to a few most relevant ones. We will focus on

continuous box unconstrained optimisation problems and start with an early approach

called Continuous Univariate Marginal Distribution Algorithm (UMDAc), whose model

bulding is kept very simple. Amoung the other methods to be reviewed here are Eigende-

composition EDA (ED − EDA) [24], which proposes to utilise a repaired version of the

full covariance matrix estimate, thus giving it the ability to capture interaction among

decision variables. For variables to interact, equation 2.7 will not hold. This is a concept

that is related to independence. Other methods use limited dependencies. For example,

Cooperative Co-evolution with Variable Interaction Learning (CCV IL) proposed by We-

icker et al. in [83] is a deterministic method to uncover dependencies between decision

variables, which has later been extended to the CCVIL framework by Chen et al in [80].

EDA with Model Complexity Control (EDA −MCC) [22] also employs a deterministic

algorithm to group variables. It splits all decision variables into two independent subsets,

one set contains decision variables with only minor interaction with other variables and the

other contains strongly dependent variables. Other methods are Covariance Matrix Adap-

tation (CMA-ES) [36], separable CMA-ES (sep-CMA-ES) [70] Multilevel Cooperative

Co-evolution (MLCC)[88] and Random Projections Ensemble EDA (rp-Ens-EDA)[47].

In the following sections, we will discuss each of these methods.

2.8.1 Continuous Univariate Marginal Distribution Algorithm

(UMDAc)

The UMDAc is an early approach of a univariate EDA for black-box optimisation in

continuous domains. The model building process of this algorithm is kept quite simple,

with the expectation of a reduced computational resources requirement compared to more

sophisticated variants. The disadvantage of keeping the technique in this algorithm simple

is that it does not take any interaction among the decision variables into account. From a

28

loose definition, Variable interaction is the extend to which the optimization of a decision

variable is affected by the values taken by other decision variables. We have also noticed

that most current EDA implementations employ a Gaussian distribution for sampling

offsprings.

Intuitively, we expect that a univariate EDA will perform well on separable problems,

but the simple model building process will cause a significant performance deterioration on

problems with large amount of variable interactions. A common problem of EDAs that

use Gaussian distribution to sample new individuals is premature convergence. Going

by the fact learned from literature, sampling from a Cauchy distribution will prevent

premature convergence for a longer time compared to the common sampling method

(i.e, using Gaussian) and, thus, will lead to a more steady improvement throughout the

evolutionary process. However, a positive impact, if any, will only be realized for problems

with large search spaces, as a Gaussian distribution covers a small problem domain.

Description of the Algorithm

UMDAc is a univariate model, therefore it estimates its probabilistic model M for each

dimension separately. In the first generation, the population P of size N is initialized

uniformly across the search space. In each generation, the mean µj and variance σ2
j are

estimated for each dimension separately. The maximum likelihood estimates of µj and σ2
j

for dimension j for points i are defined by Equations 2.10 and 2.11 respectively.

µj = 1
N

N∑
i=1

xj,i (2.10)

σ2
j = 1

N

N∑
i=1

(xj,i − µj)2 (2.11)

Based on the above estimated parameters, a new population is sampled from a Gaus-

sian normal distribution, N (µ, σ2).

29

Algorithm 3 The Pseudocode of UMDAc with Population size N
(1) Set g ← 0.
(2) Set P ← Generate N points uniformly randomly to give an initial population.
Do

(3) Evaluate fitness for all N points in P .
(4) Select some individuals P sel from P .
(5) Estimate the µ and σ2 for each dimension of P sel by maximum likelihood.
(6) Generate new population P new from N (µ, σ2).
(7) P ← P new.
(8) g ← g + 1.

Until stopping criteria are met
Output: P

The standard UMDAc algorithm with a Cauchy distribution

EDAs can converge quickly and the Gaussian distribution is not able to escape this early

convergence, once the variance among the population is small [56]. In the context of

Evolutionary Algorithms, the Cauchy distribution, which is a heavy tail distribution,

has been successfully employed for allowing larger step sizes in the case of the mutation

operator [86]. A heavy tailed distribution is a distribution that is liable to produce large

values. They have heavier tails than the exponential distribution. The heavier the tail,

the larger the probability that you’ll get one or more very large values in a sample.

The tails of the Cauchy is larger than the Gaussian ones (see Figure 2.3 for the case of

both univariate and multivariate), thus, the Cauchy distribution tends to generate larger

random numbers than the Gaussian one.

fq(x) = 1
π

q

q2 + x2 −∞ < x <∞ (2.12)

The Cauchy distribution is defined by Equation 2.12, where q > 0 is a scaling param-

eter [32]. Large values for q increase the probability of generating larger random numbers

(see Figure 2.3). The Cauchy distribution does not have mean and variance. As already

discussed in the introduction of this section, throughout the run of an Evolutionary Al-

30

gorithm, the variance of the population decreases, which allows convergence around the

global optimum [56]. This behaviour is not seen when employing a Cauchy distribution.

Even though the step size can be controlled by q, keeping q constant will have a negative

impact on the algorithm’s performance: A large value for q will prevent convergence and

a small value for q prevents a good exploration of the search space at earlier stages[56].

2.8.2 Eigendecomposition EDA (ED-EDA)

ED-EDA is a conceptually simple multivariate EDA with some similarities with UMDAc.

One can say that UMDAc samples new individuals from a diagonal covariance matrix, thus

making it to take the variance of each decision variable into account, but no covariance

among different variables. In contrast, ED-EDA samples individuals from a full covariance

matrix, which enables it to capture interactions among decision variables.

One general drawback with this algorithm is the quality of its estimated covariance

matrix. With a fixed population size N , the quality of the estimated model, M , decreases

when the dimensionality D increases [68]. A less exact estimation of the model is likely

to cause a deterioration of the algorithm performance, because it increases the difficulty

of capturing the fitness landscape. Authors in [24] have shown that their ED-EDA algo-

rithm is very competitive on low dimensional problems (up to 50d), but they have not

shown their approach applicability on high dimensional problems. The model will be less

capable on high dimensional problems, as its quality will be decreasing with increasing

dimensionality. A performance increase on separable problems is not expected, as these

kind of functions can be fully optimised by a univariate approach as well.

Description of the Algorithm

In this section, we will provide a detailed description of the ED-EDA algorithm. Basically,

ED-EDA learns the structure of the fitness landscape via the covariance matrix Σ. Even

though this approach is very direct, it generally suffers from two problems:

31

1. The covariance matrix needs to be positive semi-definite as described in detail in

[23]. However, due to the limited precision of computers with regard to representing

decimal numbers, an estimated covariance matrix may not always fulfil this crite-

rion. This so called ”ill-posed” covariance matrices can cause a break down of the

algorithm, as they are likely not to allow sampling of new individuals. This obstacle

leads to the need for repairing covariances of this kind.

2. As it has been illustrated by Bosman in [12], the estimated covariance matrix does

not cover the whole search space. Generally, when sampling new individuals from

Σ directly, the area of the search space, which can be explored by the population

is limited and is highly dependent on the initialization of the first generation. The

continuous selection pressure will shrink the variance within the population, which

will cause a favourable convergence at the end of a run. Empirical results have

shown that, the initial population does not cover the whole search space, but only

a sub-optimal region, as a results an EDA method cannot escape this region, but

rather just converge. To increase the exploration ability of EDAs sampling from Σ,

covariance scaling has been introduced.

The following is the basic procedure of ED-EDA:

The first step is to estimate the mean µ and the covariance matrix Σ from the selected

population P sel. Then, Σ gets decomposed into eigenvectors and eigenvalues in such a

way that Equation 2.13 holds. V ec is a matrix of D eigenvectors according to Equation

2.14 and V is a diagonal matrix with dimensionality D × D of eigenvalues according to

Equation 2.15.

Σ = V ec · V · V ecT (2.13)

where:

32

Algorithm 4 The Pseudocode of ED-EDA
(1) Set g ← 0.
(2) Set P ← Generate N points randomly to give an initial population.
Do

(3) Evaluate fitness for all N points in P
(4) P sel ← Select the fittest individuals P sel from P
(5) Estimate the µ and Σ of P sel

(6) (V ec), (V)← Obtain eigenvectors and eigenvalues by eigendecomposition of
Σ

(7) V ← Repair Eval. Refer to Alg. 5
(8) V ← Tune Eval. Refer to Alg. 6
(9) P new ← Sample new individuals according to Equation 2.17
(10) P ← P new

(11) g ← g + 1
Until stopping criteria are met
Output: P

V ec = [v1, v2, ..., vD] (2.14)

V =



λ1

λ2 0
.

.

0 .

λd



(2.15)

New individuals cannot be sampled directly from the decomposed covariance matrix,

but rather from a triangular matrix H, which can be obtained by Equation 2.16:

Σ = V ec · V · V ecT = H ·HT (2.16)

The triangular matrix H could be directly obtained from Σ by applying Cholesky

decomposition, as long as the covariance matrix is positive semi-definite. But, as de-

33

scribed in detail in [24], decomposing Σ firstly into eigenvectors and eigenvalues offers

good possibility for repairing and tuning Σ before sampling from H.

After tuning the eigenvalues, one can sample new individuals from triangular matrix

H according to Equation 2.17, where µ is a D dimensional vector containing the means

of each dimension calculated from the selected population, H is the triangular matrix

obtained from Equation 2.16, and X = (x1, ..., xD) is a D dimensional vector for which

xi
iid∼ N (0, 1), ∀xi ∈ X

Xnew = µ+H ·X (2.17)

Where Xnew is a newly sampled vector.

Algorithm 5 Repair V
λmin ← Smallest eigenvalue of V
If λmin < 0 do

V ← V + | λmin | ·I
endIf

Algorithm 6 Tune V
for i = 1...D

If λi < 0
λi ← 0

endIf
endfor

Covariance repairing

Here we talk about Covariance repairing1. In case the covariance matrix is ill-posed as

described already, obtaining triangular matrix H according to Equation 2.16 is impossible.

The authors in [24] proposed two techniques, which do not repair Σ directly, but rather
1Most of the methods discussed in the following three section are not based on the covariance matrix,

but rather on its eigenvalues. As we do not loose any information about the search space when decom-
posing Σ, the terms covariance repairing and covariance tuning are used interchangeably with eigenvalue
scaling and eigenvalue tuning.

34

repair the eigenvalues. Due to the finite precision of decimal numbers represented by

computers, it is likely to happen that the eigenvalues will be slightly negative, when the

variance among the population shrinks.

Algorithm 5 describes the Efficient Covariance Matrix Repairing (ECMR) approach.

The basic concept is to search for the smallest eigenvalue λmin. The matrix I is a D×D

identity matrix. After the multiplication | λmin | ·I, the diagonal of I, will have the value

of the smallest eigenvalue. By adding I to V , we can ensure that all former negative

eigenvalues will have at least a value of 0 after the addition.

The ECMR0 approach is described in Algorithm 6. This variant searches along the

diagonal of V and replaces all negative eigenvalues with 0.

Covariance tuning

Here it is not the covariance matrix itself that is tuned, but rather the eigenvalues, which

represent the search space captured by Σ. First of all, covariance tuning can have a posi-

tive impact on the exploration nature of the population. The eigenvalues of Σ represent its

variance. Thus, by covariance tuning, the variance of the newly sampled individuals can

be increased. This trickles down to the problem of convergence to sub-optimal regions, as

described above. Secondly, covariance scaling solves a problem caused by the covariance

repairing approach described above: ECMR will set at least one eigenvalue to 0, and

ECMR0 is likely to set several eigenvalues to zero. When sampling new individuals, the

sampled values for dimensions with a zero eigenvalue would be equal to the mean of the

respective dimension, since the variance is zero.

2.8.3 Decomposition methods in Evolutionary Computation

It is well known that EDAs perform well on lower dimensional problems, but lose their

power quickly when their dimensionality increases. Thus, the performance of EDAs should

improve when you disassemble a high dimensional problem into several lower dimensional

35

ones. However, this is not in any case easily possible. Whereas the global optimum of a

fully separable function can be found when optimizing each dimension on its own, this

may not be possible for problems with epistatic links between decision variables.

In this section we will describe three methods that decompose a large scale optimiza-

tion problem into several independent sub-problems. Not all of the proposed methods have

employed EDA as optimizer. The problem decomposition approach is widely considered

as a form of cooperative coevolution as the population consists of several independent

sub-populations.

Description of the algorithms

Even though many co-evolutionary algorithms for continuous optimization have been

proposed, we focus on three algorithms here, which are more relevant to our work than

the other and refer the readers to the literature for the others. To represent several levels

of interaction learning, we have decided to analyse the following methods: (i) A random

grouping approach, which is from a computational perspective the most efficient one, but

does not have the possibility of grouping variables according to epistatic links. (ii) The

second approach analyses the correlation among decision variables. This method is slightly

more deterministic than the first one, but does not spend any function evaluations on the

learning process. Thus, the full amount of function evaluations (FES) can be devoted to

the optimization stage. (iii) The third approach deterministically learns the interactions

among variables. This method is expected to deliver close to exact results, but requires a

large amount of function evaluations for the learning process.

Multilevel Cooperate Co-evolution (MLCC)

MLCC, which has been proposed in [88] is a framework that groups the decision variables

of a problem randomly, the pseudocode of this algorithm is illustrated in Algorithm 7. It

defines a set of group sizes denoted as Gs and a performance list denoted by Pl. For each

36

group size c ∈ Gs a performance record rk ∈ Pl is connected and group size is randomly

chosen in each generation. All decision variables are assigned to m independent groups,

where m is determined by the randomly selected group size c so that D = c ·m. After all

independent groups have been optimized separately, the probability rk determining the

chance that group size c is selected in further generation again, is updated according to

Equation 2.18. v denotes the best fitness of the last generation and v′ the best fitness

of the current generation. Assuming a minimization problem is being solved here and

elitism in use, equation 2.18 can never be negative. Also v should not be equal to zero.

Thus, the algorithm will favour the group size resulting in the best improvement rate.

Step (7) of algorithm 7 is optimising the sub-populations of the m independent groups

which where grouped in such a way that D = c ∗m, where c is the size of each sub-group

m.

rk = v − v′

| v |
(2.18)

EDA with Model Complexity Control (EDA-MCC)

The EDA-MCC approach, as proposed in [22], employs a more deterministic algorithm

to group variables than MLCC described in the previous sub-section. Algorithms 8-

9a-9b summarize EDA-MCC. Firstly it splits all decision variables into two independent

subsets: Set W , containing weakly dependent variables (decision variables with only minor

interaction with other variables) and set Z containing the strongly dependent variables.

For a variable to be either weakly or strongly dependent is determined by the following

mechanism: If the absolute value of the correlation of variable Xi with every other variable

Xj where j = 1...D and i 6= j (because the correlation of variable with itself is always

1) is below a certain threshold θ, Xi is considered as being weakly dependent. But, if

the correlation of Xi with at least one other variable exceeds θ, it is considered as being

37

Algorithm 7 The Pseudocode of MLCC
(1) Set Gs ← {c1, ..., ct} Each ci ∈ Gs determines a specific group size.
(2) Set Pl ← {r1, ..., rt} Each ri ∈ Pl is a performance measure for each group size
ci ∈ Gs.
(3) Set Pr ← {pr1, ..., prt} Each pri ∈ Pr is the probability that group size ci ∈ Gs is
selected during an optimization cycle. Initially, each value of Pr is set to 1.
(4) Pr ← Determine the initial selection probability as described in [88].
Do

(5) c← select group size for this generation based on Pr
(6) Pgrouped ← {P1, ..., Pm} Randomly group the decision variables population

P into m independent group so that D = c ·m
(7) for each Pi ∈ P do

P ∗i ← Optimise sub-population Pi of the m independent sub-groups
endforeach

(8) Pl ← Update the entry rk in Pl corresponding to group size c according to
Equation 2.18

(9) g ← g + 1
Until stopping criteria are met

strongly dependent.

As all Xi ∈ W are supposed to be only weakly interacting with other decision variables,

they are optimized using a univariate approach. All Xi ∈ Z are supposed to be interacting

with other decision variables. Thus, a multivariate approach is applied to optimize the

variables belonging to this subset. As the size of Z is likely to be too large to be optimised

successfully from a probabilistic modelM, Z is further split into m disjoint sets of decision

variables {Z1, ..., Zm} based on a predefined group size c, such that | Z |= c ·m.

Cooperative Co-evolution with Variable Interaction Learning (CCVIL)

In [83], Weicker et al have proposed a deterministic method to uncover variable interac-

tions between decision variables, which has later been extended to the CCVIL framework

by Chen et al. in [80]. In contrast to the other algorithms described in this section,

CCVIL tries to explicitly find variable interactions. To do so, the authors employ a sim-

ple mathematical technique in the decomposition step to discover interactions between

variables. This technique is summarized as follows:

38

Algorithm 8 EDA-MCC
Inputs: θ, c, mc, sampling
(1) Set g ← 0.
(2) Set P ← Generate N points uniformly randomly in the search box to give an initial
population.
Do

(3) Evaluate the fitness of all N points in P
(4) P sel ← Select the fittest m < N individuals from P using truncation selection.
(5) Split the search variables in 2 groups:

(a) Estimate the D × D correlation matrix C from a random subset of size
mc 6 m of P sel

(b) Split {1, ..., d} = Tu
⋃
Ts as follows:

Tu ← {i : ∀j 6= i, C(i, j) < θ}
Tz ← {1, ..., d} − Tu

(6) Wu ← P sel
|Tu //P sel restricted to variables in Tu

Wz ← P sel
|Tz //P sel restricted to variables in Tz

P new
|Tz ← call SM(Wz, c, sampling)
P new
|Tu ← call WI(Wu)

(7) P ← P new

Until Termination criteria are met
Output: P

Algorithm 9a Subspace Modeling of strongly correlated variables
function SM
Inputs: Wz, c, smp

L← dimensionality of Wz

Randomly partition the L variables of Wz into L/c
non-intersecting subsets, Wz1 ,...,WzL/c

for i = 1 to L/c
(a) µi ← sample mean from Wzi

(b) Σi ← sample covariance (c× c) from Wzi

(c) If smp = ‘Gaussian’, z(i)
1 , ..., z

(i)
N

iid∼ N(µi,Σi)
Else smp = ‘Cauchy’ with µi as location
parameter & Σi as dispersion parameter:
z(i)

1 , ..., z
(i)
N

iid∼ Cauchy(µi,Σi)
(d) Z|(i−1)·c+1:i·c ← [z(i)

1 , ..., z
(i)
N]

endfor
Output: Z
end function

39

Algorithm 9b Univariate Modeling of weakly correlated variables
function WI
Inputs: Wu

L← dimensionality of Wu

for i = 1 to L
(a) Estimate µi ← sample mean(Wu|i)
(b) Estimate σ2

i = sample variance(Wu|i)
(c) Draw ui1, ..., u

i
N

iid∼ N(µi, σ2
i)

(d) U|i ← (ui1, ..., uiN)
endfor

Output: U
end function

Assuming xkbest is the vector containing the best values for each decision variable found

so far. After optimizing dimension i coevolutionarily, the best individual xknew in the

population pcc of the optimizer only focusing on dimension i is extracted as well as a

random candidate xkrandom from the global population P (with xknew 6= xkrandom 6= xkbest).

Two new individuals, xka and xkb are determined according to Equations 2.19 and 2.20

respectively, subject to Xk
new, xkrandom and xkbest. This is to test whether dimensions i and

j interact. See figure for the illustration of the idea and equation 16 in [60].

xka =


xknew if k = i

xkbest Otherwise

(2.19)

xkb =



xknew if k = i

xkrandom if k = j

xkbest Otherwise

(2.20)

As can be seen, individual xa receives the best known values for each decision variable,

since the value at index j of xa is better than the jth value of xkb . In contrast to that,

individual xb received the best known values as well, except for its jth decision variable,

40

which inherits the value from a randomly selected individual of lesser quality. If the

inequality f(xb) < f(xa) holds, then there is likely to be an interaction between the ith

and the jth decision variable [83].

In the CCVIL framework, this approach is implemented as follows (the pseudo code

of CCVIL can be found in Algorithm 10). Each individual Xi ∈ P is a d-dimensional

vector of decision variables {x1, ..., xD}. Vector G is d-dimensional and G’s ith element

stores the group to which the ith decision variable of each individual belongs to. At the

beginning, all decision variables are considered as being separable, thus G is initialized to

{1, 2, 3, ..., D}. In each generation of CCVIL’s learning phase, a random permutation of

x, from the range of {1, 2, 3, ..., D} is created, and each element of x refers to a decision

variable. For each two sequenced decision variables in x the test for variable interaction as

described above is made. If an interaction between both variables is likely, their respective

groups in G are merged.

Algorithm 10 The Pseudocode of CCVIL
P ← Initialize random population uniformly across search space.

G← {1, 2, 3, ..., D} .

% Learning stage
While stopping criteria not met do

Rd← random permutation {1, 2, 3, ..., D}
for each element xi ∈ Rd do

j ← i+ 1
if dimensions denoted by Rdi and Rdj are interacting do
G← set G’s Rdi′s and Rdj ′s value to the same number (merge groups of
both variables)

end
end

end

% Optimization stage
While stopping criteria not met do

for each distinct group Gi ∈ G do
G∗ ← Optimise all decision variables belonging to group Gi

end
end

41

There are other decompositions methods such as Differential grouping [60], which is a

variable grouping algorithm that detects interacting variables in black-box optimization

problems. It goes by identifying the non-separable groups, which can then be utilised by

a cooperative co-evolutionary framework to form the subcomponents. See the theorem in

page 423, equations 1 and 2 of [60].

2.8.4 Covariance Matrix Adaption - Evolutionary Strategy (CMA-

ES)

CMA-ES is widely considered as one of the leading optimization techniques [13]. Even

though it is titled as an Evolutionary Strategy, its main concepts are very similar to the

ones of a regular EDA [48]. CMA-ES and its variants have been very successfully used

on many low-dimensional problems (e.g.[30], [72]), but benchmarks on high dimensional

problems are rather rare. In this section, we will outline the important aspects of the

original CMA-ES algorithm and a variant of it called sep-CMA-ES, which has a lower

time complexity.

CMA-ES- An outline

Here we discuss the main points of this algorithm. This approach, whose Pseudocode is

shown in Algorithm 11, employs manifold features, which partially require an extensive

amount of explanation. For this reason, we will focus on some important aspects and

refer the interested reader to [35] where Hansen discusses all important aspects in great

detail.

In contrast to most EDA implementations, CMA-ES does not initialize the population

uniformly across the search space, but rather initialises the starting individuals around a

fixed point. Thus, the initial population does not cover a large part of the search space.

This requires the population to traverse a lot through the space and, thus, a larger number

of generations should be required to explore all regions carefully. CMA-ES employs a small

42

population size, N , which can be calculated by a rule of thumb according to Equation

2.21, where D refers to the dimensionality of the problem.

N = 4 + b3 · log(D)c (2.21)

Sampling new individuals is done by adding small normally distributed random num-

bers to the mean of the selected population, P sel, based on Equation 2.22. Σ refers to

the covariance matrix of the selected current population and σ is the step size (standard

deviation).

P new = mean(P sel) + σ · N (0,Σ) (2.22)

Naturally, the estimation of a covariance matrix for a high dimensional problem be-

comes unreliable when only a small number of individuals are available. To increase the

reliability of the estimation, the covariance matrices from previous generations are taken

into account as well. The adaptation strategy is outlined in Equation 2.23. Σg+1 refers

to the covariance matrix used for sampling in the next generation. ccov is a learning rate

between 0 and 1. Σg is the covariance matrix of the current generation, where in the

first generation Σ0 = I · ΣÑ
g+1 refers to the covariance matrix estimated from Ñ selected

individuals of the current generation. A reliable, but simpler estimator for Σ would be

the mean of all previous covariance matrices. But, the process described by Equation 2.23

has the advantage, that the old covariances are slowly fading out and, thus, the algorithm

has a better learning ability.

Σg+1 = (1− ccov) · Σg + ccov ·
1
σ2
g

· ΣÑ
g+1 (2.23)

The covariance matrix estimated by Equation 2.23 would lead to a very fast con-

vergence to suboptimal regions. Due to the small population size and the limited region

43

covered by the population, it can naturally only represent a small part of the search space.

As the sampling is still largely based on the best individuals found so far, a sub-optimal

initialization is likely to cause the algorithm to get stuck in this region. Thus, the concept

of an evolution path has been introduced. The evolution path is represented by the mean

shift of the population of the last generations.

P c
g+1 = (1− cc) · P c

g +
√
cc · (2− cc) · µeff ·

mean(Pg+1)−mean(Pg)
σg

(2.24)

The evolution path is calculated according to Equation 2.24. cc is a learning rate. µeff

is a scaling factor. P c
g and P c

g+1 are the evolution paths at generations g and g+ 1 respec-

tively. mean(Pg) and mean(Pg+1) are the distribution means of the current generation, g

and the next, g+ 1. So the difference, mean(Pg+1)−mean(Pg) is the displacement of the

distribution means. The term
√
cc · (2− cc) · µeff is used for normalization and (1 − cc)

is the decay factor [35]. By taking the mean shifts into account, CMA-ES can explore

the path the best solutions found during the last generations are going. This procedure is

combined with the estimation of the covariance matrix according to Equation 2.25. ccov

is another scaling factor, which is normally set to the value of µeff .

Σg+1 = (1− ccov) · Σg + ccov
µcov
· (P c

g+1) · (P c
g+1)T + ccov ·

(
1− 1

µcov

)
· ΣÑ

g+1 (2.25)

By this calculation of the covariance matrix, CMA-ES is able to adjust the shape of

the covariance matrix to the landscape of the fitness function. By doing so, it is able to

analyse gradient information and, thus, can direct the search to the most promising areas

[13], [48]. A graphical illustration of this procedure can be found in [40].

44

Algorithm 11 The Pseudocode of CMA-ES
D ← Dimension of the problem.
N ← Offspring population size (4.0 + 3.0 log(D)) .
P sel ← Parent population for next generation (floor(N/2))
σ ← Initial standard deviation.
ccov ← Covariance learning rate.
While stopping criteria not met do

Update the Covariance Matrix Σg+1 according to 2.25
Update the step size σg+1
Generate Sample Population for generation g + 1 according to 2.22
Update the mean for generation g + 1
Update best ever solution

end While

sep-CMA-ES

The sampling step described in Equation 2.22 requires eigendecomposition, and this pro-

cedure requires a considerable amount of computational time. In [71], a CMA-ES variant

was proposed, which does not sample from a full covariance matrix, but rather from a

diagonal matrix. This procedure replaces the requirement to perform eigendecomposition

for sampling. A detailed discussion of the computational complexity can be found in [71]

as well.

The diagonal covariance matrix only represents the variance among the population,

which gets scaled by the evolution path in each generation. Thus, by only considering the

variance, sep-CMA-ES looses the capability to explore dependencies.

2.8.5 Random Projection Ensemble EDA (RP-Ens-EDA)

Another divide and conquer technique is the recently proposed Random Projections En-

semble EDA (RP-Ens-EDA). This is an approach, which is state of the art and was pro-

posed in [47]. It introduces an ensemble of random projections (RP) to low dimensions.

This way the full covariance is compressed but no correlations are explicitly discarded.

The compression is done on the set of fittest search points. The estimation and sampling

45

job is done in the low dimensional space instead of high dimensional space, which makes

it efficient. The new population is created and returned to live in the full search space by

combining populations from several low dimensional subspaces [47]. The Pseudocode of

RP-ENS-EDA is shown in Algorithm 12 below.

Algorithm 12 Pseudocode of the Multivariate Gaussian Random Projection Ensemble
EDA (RP-ENS-EDA)

(1) Set g ← 0.
(2) Set P ← Generate N points randomly to give an initial population.
Do

(3) Evaluate fitness for all N points in P
(4) Select some individuals P sel from P
(5) Estimate µ := mean(P sel)
(6) Generate M̃ independent random matrices Ri with entries drawn i.i.d from

Gaussian with mean 0 and variance 1
d

(7) For i = 1, ..., M̃
(a) Project the centred points into k-dimensions:

YRi := [Ri(xn − µ);n = 1, ..., Ñ].
(b) Estimate the k x k sample covariance ΣRi .
(c) Sample N new points yRi1 , ..., yRiN ∼i.i.d N(0,ΣRi).

EndFor
(8) Let the new population P new :=

√
dM̃
k

[1
M̃

ΣM̃
i=1R

T
i y

Ri
1 , ..., 1

M̃
ΣM̃
i=1R

T
i y

Ri
N] + µ.

(9) P ← P new

(10) g ← g + 1
Until Termination criteria are met

(11) Output P

RP-Ens-EDA proceeds by initially generating a population of individuals randomly

everywhere in the search box and selects the Ñ fittest points based on their fitness values.

This is represented as P sel in algorithm 12. The number of subspaces is denoted by

M̃ , which is a parameter. These subspaces are created in order to project the fittest

individuals down to these subspaces with dimensionality k � D. The authors in [47]

choose to take M̃ = 4D/k where D is the dimension of the original space and k = 3

is the dimension of the subspaces. The latter is also a parameter of the method. They

46

also have other input parameters such as the population size N and the maximum fitness

evaluation allowed MaxFE. Once the P sel is determined, its mean is estimated in step

(5) to be used in centering the points. Since they are going to have M̃ subspaces, M̃

independent random projection matrices are generated in step (6) so as to project the

fittest individuals down to k dimensions in these M̃ subspaces. The default option of

RP matrices is to use i.i.d. Gaussian entries. Step 7(a) projects the fittest individuals

down to the subspaces of dimension k, then estimates the k × k covariance matrices for

each of the subspaces and samples N new points in each subspace using the multivariate

Gaussian search distribution. Step (8) averages the individuals obtained from the different

subspaces to produce new population P . This is the ‘combine’ stage of the algorithm,

which outputs the new population, and it can be shown that, conditioned on the projection

matrices, this new population is distributed as a multivariate Gaussian with covariance

that is a regularised version of the sample covariance. This process is repeated until a

stopping criterion is met.

2.9 Inadequacies of existing methods

We just looked at a few of the most relevant methods to our work. In this section, we

will highlight some of their advantages and disadvantages.

Current practices of EDA are geared towards improving the exploration abilities of the

algorithms by reducing the complexity of conducting the probabilistic model and consid-

ering independent variables as it is in the univariate EDA (UMDAc) in [81]. Intuitively,

univariate EDA will perform well on separable problems, but due to the simplistic way

of building its model, we expect a significant performance deterioration on problems with

high amount of interactions if univariate EDA is applied to non-separable problems. It

is known that although the exploration ability for a univariate model will be improved

slightly, it cannot adequately tackle non-separable problems, which is a short fall for this

47

method. The authors in [50] and [57] proved this fact theoretically and empirical confir-

mation of the fact is featured in [28].

Literature has shown that the Gaussian distribution as a search operator is prone to

premature convergence when the population is far from the optimum [73]. Recent work,

[86] suggests that replacing the univariate Gaussian with a univariate Cauchy distribution

in EDA holds promise in alleviating this problem because it is able to make larger jumps

in the search space due to Cauchy distribution’s heavy tails. However, methods employing

this suggestion will not take into consideration the interactions between decision variables

as mentioned above. We see this as an inadequacy in the usage of Cauchy distribution as

an alternative search distribution to Gaussian. Therefore, extending this to a multivariate

setting to combine the advantages of multivariate modelling with the ability of escaping

early convergence can lead methods to efficiently explore the search space.

Authors of [46] applied ensemble of random projections technique on the set of fittest

search points to low dimensions and did estimation and sampling in the low dimensional

space instead of doing them in the high dimensional space, which makes it efficient. We

have explored this technique further and found some rooms to improve on. The authors

generate the entries of the random projection matrices from Gaussian, but generating

these entries from a heavy tail distribution instead will control the size of the covariance

in order to balance exploration and exploitation of the search process, which won’t be

possible when the entries of the random projection matrices are from Gaussian distribu-

tion.

Model building in high dimensions is the subject of many recent research efforts, as

high dimensionality limits the usefulness of optimisers in practice. Many approaches were

proposed ranging from decomposition method [24] to methods that use limited depen-

dencies [83]. All the methods that use the above techniques used the whole dimensions

48

in their optimisation process to scale the methods up. However, it has been noted that in

certain classes of functions most decision variables have a limited impact on the objective

function [82]. These type of functions are said to have intrinsic dimensions. It is possible

to exploit these intrinsic dimensions of these functions without knowing the influential

subspaces of the input spaces, or their dimensions and optimise the functions considering

only the intrinsic dimensions to mitigate the curse of dimensionality. The existing meth-

ods did not take this into consideration. We can achieve this by employing the idea of

random embedding.

49

CHAPTER 3

Multivariate Cauchy EDA Optimisation

In this chapter1, we developed a new EDA variant which samples from a multivariate

Cauchy instead of sampling from the commonly used multivariate Gaussian which is

prone to premature convergence. A research work suggests that replacing the univariate

Gaussian with a univariate Cauchy distribution in EDA holds promise in alleviating this

problem because it is able to make larger jumps in the search space due to the Cauchy

distribution heavy tails. It is in this light that we proposed to use multivariate Cauchy

distribution in this research to blend together the advantages of multivariate modelling

with the ability of escaping early convergence to efficiently explore the search space.

We conducted extensive experiments on 2D problems to establish whether Cauchy is

better than Gaussian. We did some comparison between the two search distributions

on 16 benchmark functions and we found that multivariate Cauchy EDA is better than

univariate Cauchy EDA, and we have also found multivariate Cauchy being advantageous

over multivariate Gaussian EDA when the population lies far from the optimum.

1A shorter version of this work presented in this chapter appears in Proc. IEEE International confer-
ence on Intelligent Data Engineering and Automated Learning (IDEAL) 2014, LNCS 8669, pp. 449-456,
(c) Springer, 2014.

50

3.1 Introduction

In classical EDA, Gaussian distribution is used as the search operator to build a proba-

bilistic model to fit the fittest individuals and create new individuals by sampling from

the created model. It has been established that Gaussian EDA is prone to premature

convergence [47], [49], [69] when its parameters are estimated using the maximum like-

lihood estimation (MLE) method. It converges too fast and does not get to the global

optimum. Figures 3.2 and 3.3 on pages 61 and 62 respectively illustrate this fact. Figures

3.2 and 3.3 are movie plots showing the instances of the evolutionary process of Cauchy

and Gaussian at each generation. In the experiments of these figures, the populations

were initialised far from the optimum. This is to test the advantage of Cauchy’s heavy

tail, which enables it to make long jumps, thus escaping premature convergence. It is

also meant to test the premature convergence associated to Gaussian. From the plots,

you can see that Cauchy has already found the global optimum at its 11th generation,

while Gaussian got stuck at the 10th or 11th generation and has never reach the global

optimum.

The premature convergence of classical Gaussian EDA attracted many efforts geared

towards solving this problem to avail EDA the chance of escaping it [69],[87]. Here we

present the usage of multivariate Cauchy distribution, an extension of [86] with a full

matrix valued parameter that encodes dependencies between the search variable as an

alternative search operator in EDA. We utilize its capability of making long jumps so

as to escape premature convergence, which is typical of Gaussian in order to enable

EDA algorithms get to the global optimum. Although Cauchy has already been used

as an alternative search distribution for EDA [65], [69] and [86], it was the univariate

version of Cauchy that was utilized, discarding statistical dependences among the search

variables. We compare the performance of multivariate Gaussian EDA with multivariate

51

Cauchy EDA to establish whether, the long jumps that Cauchy is able to make will be

advantageous. We also compare the performance to Univariate Cauchy EDA to establish

advantage of multivariate modelling.

3.2 Algorithm Presentation

The algorithms used in this chapter for comparison are multivariate Gaussian EDA

(MGEDA), multivariate Cauchy EDA (MCEDA) and Univariate Cauchy EDA (UCEDA).

MGEDA takes on board correlation between variables in the selected individuals through

its full covariance matrix, and MCEDA encodes pairwise dependencies among the search

variables through its matrix valued parameter. UCEDA neglects dependences among the

search variables. The classical EDA algorithm is shown in algorithm 2 of chapter 2.

Algorithm 2 is a typical EDA, which proceeds by initially generating a population of

individuals and then evaluates their fitness to select the fittest ones based on their fitness

using the truncation selection. For the MGEDA, we compute the maximum likelihood

estimates (MLE) of the mean (µ) and the covariance (Σ) of the fittest individuals and

use these parameters to generate new ones by sampling from a multivariate Gaussian

distribution with parameters µ and Σ. For MCEDA, we use the same estimates to sample

from a multivariate Cauchy distribution in step 6. In UCEDA, we use µ and the diagonal

elements of Σ to sample each from Univariate Cauchy. The new populations from the

three algorithms are formed by replacing the old individuals by the new ones. In MCEDA,

we make use of the Gaussian scale-mixture representation of the Cauchy density [63] to

sample from Cauchy. The following equation gives the expression of multivariate Cauchy:

Cauchyx(µ,Σ) =
∫
u>0

Nx (µ,Σ/u) Gau (1/2, 1/2) du (3.1)

where u may be regarded as an hidden variable, and Ga(·) is the Gamma density. Cauchy

distribution is a heavy tailed distribution that is liable to produce large values. They

52

have heavier tails than the exponential distribution. The heavier the tail, the larger the

probability that you’ll get one or more very large values in a sample.

3.2.1 A note on parameter estimation

The philosophy in EDA is to estimate the density of the selected individuals so that when

new individuals are sampled from the model, they will follow the same distribution as

the estimated density. Fortunately for Gaussian, this works. Parameter estimation in

Cauchy distributions was studied in statistics [63] where an Expectation and Maximiza-

tion (EM) algorithm was developed to find the exact maximum likelihood estimate of

a multivariate Cauchy distribution from a set of points, which we implemented for our

study. Multivariate Cauchy density function is defined as follows:

f(y;µ,Σ, D) =
Γ(1+D

2)
Γ(1

2)πD
2 |Σ| 12 [1 + (y − µ)TΣ−1(y − µ)] 1+D

2

(3.2)

Where y is the observed variable, D the dimension of the function, µ the location

parameter and Σ a matrix value parameter that encodes pairwise dependencies. Equa-

tion 3.2 is the expression of multivariate Cauchy, while equation 3.1 is the scale mixture

representation of equation 3.2.

The Pseudocode used to estimates the exact maximum likelihood estimation(MLE) of

parameters µ and Σ for Cauchy is shown in Algorithm 13 below, where ν is the degree of

freedom. The derivation of µ and Σ for Cauchy is shown in the appendix B.

However, we found that when we estimate the Cauchy parameter (Using EM), then the

obtained model of the selected individuals (Cauchy density) will disregard any outliers.

This is of course what a robust density estimator is meant to do- However for optimization

those outliers maybe some rare and very good solutions that got close to an optimum. Fig

3.1 illustrates such an example. As you can see in fig. 3.1 which was a snap shot taken

53

Algorithm 13 The Pseudocode for estimating µ and Σ for Cauchy
Set g ← 0. Generate N samples.
Estimate µ and Σ .
Do MLE using Expectation-Maximisation(EM) Algorithm.
Repeat N times

• (E-Step), for each i, Set

E(ui) := ν+D
ν+ 1

2 (yi−µ̂)T ˆΣ−1(yi−µ̂)

• (M-Step) Update the parameters

µ̂ := ΣN
i=1yiE(ui)
ΣN

i=1E(ui)

Σ̂ := 1
N

∑N

i=1 (yi − µ̂)(yi − µ̂)TE(ui)

Set g ← g + 1
end

from an iteration of the experiments we conducted, two selected individuals are close to

the optimum and as such are good solutions but they are outliers with respect to the

rest of the selected individuals. This is the reason why in algorithm 2, the multivariate

Cauchy distribution was used only in the sampling step.

Figure 3.1: A plot showing the behaviour of EDA when the search distribution is a
Cauchy distribution.

54

3.3 Implementation and Experiments

Our hypothesis is that MCEDA has better performance than both UCEDA and MGEDA

when the initial population is far from the optimum and also when the population size is

small. In turn multivariate Gaussian should perform better when the population is close

to the optimum. To test this hypothesis, we conducted an extensive experiment on 16

benchmark functions taken from [77]. In the following subsections, we will describe the

functions, parameter settings, then we present results with analysis and conclude.

3.3.1 Benchmark test functions

The comparisons of the three EDA algorithms were carried out on the suite of benchmark

functions from the CEC 2005 competition. Details in Appendix A. 16 test functions were

used in this experiment. Among the functions tested, 5 are unimodal and 11 multimodal.

All the global optima are within the given box constrains. However, problem 7 was

without a search range and with the global optimum outside of the specified initialization

range. All problems are minimization. Please see details of the functions here [77].

3.3.2 Parameter settings

The dimensionality of all the problems is 2. This is because we want to be able to visualise

the optimisation process and its results for understanding and insight. We carried out

three sets of experiments. The first experiment was conducted with the initial population

size set to 20, which is initialised uniformly randomly everywhere. This is to test the

performance of Gaussian and Cauchy on small population size. The second was conducted

with a population size of 200 and the third with a population size of 500 respectively. The

second experiment has its initial population initialised far from the optimum, while the

third experiments has its population initialised uniformly randomly everywhere within

the search space. This is to test the performance of Cauchy and Gaussian in these two

55

settings. The percentage of individuals retained is 30% for all the experiments conducted,

which is a most widely used selection ratio. We did 25 independent runs for each problem

on a fix budget of 10,000 function evaluations in each case. The program terminates

after the budget is exhausted for each run for all the 25 runs. The initialization was

uniformly random everywhere within the search space for population size of 20 and 500.

We also created harder versions of these problems by initializing far from the optimum to

establish whether MCEDA can still perform in this situation. The population size used

in this experiment was 200. Both Gaussian and Cauchy distributions where applied on

EDA. Parameters for all the algorithms are the same. The only difference is in the search

distribution.

3.3.3 Performance criteria

The main performance criterion was the difference in fitness values (gap) between the

best individual found and the global optimum.

3.4 Results and Discussion

The results of our experiments are summarized in tables 3.1 to 3.3 and bold font indicates

statistically significant out performance. Tables 3.1 and 3.2 report results from experi-

ments that compare MCEDA with MGEDA. MCEDA performed better than MGEDA

in most of the 16 benchmark functions, see tables 3.1 and 3.2. We also found when the

population size was increased to 200, MGEDA outperformed the MCEDA, and this was

also confirmed in the results of the experiments with population size 500. The reason

for this is the MGEDA is better when the best individuals are close to the optimum, so

when we initialized lots of them everywhere, there are chances that some of them will

be close. Now considering the cases where MCEDA was outperformed by MGEDA and

repeated the experiment with initial population far from the optimum, we can see from

56

the results in table 3.1 that MCEDA has performed better than MGEDA. This is because

of the long jumps of Cauchy. In table 3.3, we report comparison between MCEDA and

UCEDA. We can clearly see from table 3.3 at 95% confidence interval that MCEDA is

better than UCEDA. MCEDA performed better than UCEDA in most of the functions.

Table 3.1: Statistical Comparison of MCEDA and MGEDA on Problems 01-16 with initial
Population far from the optimum and has size 200.

MCEDA MGEDA Rank Sum Test

Mean Std Mean Std H P

P01 0 0 1.62E+03 508.7709 1 9.72E-11

P02 0 0 1.41E+03 287.7206 1 9.72E-11

P03 0 0 3.87E+08 1.24E+08 1 9.72E-11

P04 0 0 953.7703 183.1595 1 9.72E-11

P05 0 0 7.09E+03 411.0024 1 9.72E-11

P06 0 0 8.01E+08 1.59E+08 1 9.72E-11

P07 0.0621 0.0464 0.7204 0.7672 1 0.001

P08 18.0903 3.9646 19.2004 4.0001 0 0.0625

P09 0.9025 0.6808 1.3412 0.973 0 0.1057

P10 0.6757 0.6134 3.8126 2.4724 1 4.04E-07

P11 1.1429 0.4346 0.0359 0.0993 1 2.47E-10

P12 193.2284 184.7226 0.4156 0.6739 1 3.93E-09

P13 0.0067 0.0147 23.858 8.4094 1 6.57E-10

P14 0.022 0.0036 0.7357 0.2264 1 1.41E-09

P15 0.0649 0.0402 52.371 7.9035 1 1.41E-09

P16 0 0 1.7225 4.6068 1 0.0412

57

Table 3.2: Statistical Comparison of MCEDA and MGEDA on Problems 01-16 with
uniform initialisation and small Population size 20.

MCEDA MGEDA Rank Sum Test

Mean Std Mean Std H P

P01 0 0 35.1160 163.9960 1 4.4787e-009

P02 0 0 116.3862 213.6704 1 1.3101e-009

P03 0 0 7.3128e+04 3.5850e+05 1 3.6574e-010

P04 0 0 132.4800 311.6559 1 1.3101e-009

P05 0 0 1.4107e+03 1.2712e+03 1 4.4787e-009

P06 0 0 14.0273 20.0025 1 3.6574e-010

P07 0.0858 0.1346 0.4516 1.1137 0 0.2288

P08 19.7487 4.1438 17.6353 6.5513 1 2.4248e-008

P09 3.5818 4.0211 0.6134 0.5887 0 0.2111

P10 0.7562 0.9646 1.3387 1.9365 1 0.0092

P11 0.5856 1.1481 0.2505 0.3295 1 0.0195

P12 2.0355e+03 1.1826e+03 10.2325 20.2760 1 9.2160e-010

P13 0.1538 0.2352 0.0507 0.0531 1 0.1633

P14 0.6806 0.2313 0.1408 0.0194 1 1.4634e-007

P15 0.1183 0.1278 1.1885 2.9844 0 0.8613

P16 0.6865 2.9408 2.2038 3.8294 1 1.1752e-007

58

Table 3.3: Statistical Comparison of UCEDA and MCEDA on Problems 01-16 with uni-
form initialisation and small Population size 20.

UCEDA MCEDA Rank Sum Test

Mean Std Mean Std H P

P01 0 0 0 0 0 N/A

P02 0 0 0 0 0 1.N/A

P03 5.2295e+03 6.0844e+03 0 0 1 9.7282e-011

P04 0 0 0 0 0 N/A

P05 0 0 0 0 0 1.N/A

P06 5.6064 14.1692 0 0 1 9.7282e-011

P07 0.2708 0.2092 0.0858 0.1346 0 1.4256e-004

P08 20.5476 0.5120 19.7487 4.1438 0 0.9690

P09 3.5818 4.0211 6.1954 4.4285 1 0.0289

P10 0.9154 0.9916 0.7562 0.9646 0 0.3855

P11 0.1991 0.5776 0.5856 1.1481 0 0.3731

P12 1.0293e+03 722.7733 2.0355e+03 1.1826e+03 1 0.0108

P13 0.3313 0.3508 0.1538 0.2352 1 1.7045e-004

P14 0.8139 0.0550 0.6806 0.2313 1 0.0085

P15 0.3948 0.1526 0.1183 0.1278 1 5.0089e-007

P16 0.4866 2.4328 0.6865 2.9408 0 0.5717

3.5 Summary

In this chapter, we studied the use of a multivariate Cauchy distribution in black-box

continuous optimization by EDA. Our MCEDA blends together the advantages of mul-

tivariate modelling with the Cauchy sampling ability of escaping early convergence and

efficiently explore the search space. We conducted extensive experiments on 16 bench-

59

mark functions and found that MCEDA outperformed MGEDA when the population is

far from the global optimum and is able to work even with small population sizes. We

also demonstrated the superiority of multivariate Cauchy EDA against univariate Cauchy

EDA.

60

(a) Generation 1 (b) Generation 2 (c) Generation 3

(d) Generation 4 (e) Generation 5 (f) Generation 6

(g) Generation 7 (h) Generation 8 (i) Generation 9

(j) Generation 10 (k) Generation 11 (l) Generation 12

Figure 3.2: The Evolutionary path of Cauchy on 2-dimensional shifted sphere function

61

(a) Generation 1 (b) Generation 2 (c) Generation 3

(d) Generation 4 (e) Generation 5 (f) Generation 6

(g) Generation 7 (h) Generation 8 (i) Generation 9

(j) Generation 10 (k) Generation 11 (l) Generation 12

Figure 3.3: The Evolutionary path of Gaussian on 2-dimensional shifted sphere function

62

CHAPTER 4

How effective is Cauchy-EDA in high dimensions?

This chapter examines the behaviour of the approach taken in chapter 3 on high dimen-

sional problems. Some authors have already suggested that employing a heavy tailed

search distribution, such as a Cauchy, may enable EDA to better explore a high dimen-

sional search space [75]. However, other authors have found Cauchy search distributions

are less effective than Gaussian search distributions in high dimensional problems [38],

[66] and [67]. In this chapter1, we set out to resolve this controversy. As we shall see,

the comparative behaviour of Cauchy vs. Gaussian turns out to be surprising in high

dimensions.

4.1 Introduction

EDA is known to have good properties as long as the search space is low dimensional,

but it is notoriously bad in high dimensions due to excessive computational resource re-

quirements [22], [47], [58]. In an attempt to remedy this, several authors have proposed

employing heavy-tailed distributions in the sampling step of EDA instead of the more

1A shorter version of this work presented in this chapter appears in Proc. IEEE International Congress
on Evolutionary Computation (CEC) 2016. This work was nominated for a Best Paper Award.

63

commonly used Gaussian. For instance, [81] proposes a univariate continuous EDA (UM-

DAc) with Lévy sampling. Furthermore, in later work by [75], Cauchy sampling has been

reported to be superior to Gaussian in high dimensions. Cauchy is a very heavy tailed

distribution that has no finite mean. From the conclusions of these works it appears as

though the ability to make long jumps should be beneficial for high dimensional search.

Though, we should note that, the study in [75], although termed ’high dimensional’ by

the authors, it only considered problems of up-to 32 dimensions.

Low dimensional studies (up-to 3 dimensions) are pretty consistent to find Cauchy

superior to Gaussian when the population is relatively far from the optimum - see for

instance [37], [65], [73], [86] and the previous chapter. But in high dimensions we see

a controversy in the existing literature as highlighted in chapters 1 and 2. One issue is

that the previous comparisons mentioned in chapters 1 and 2 were done with different

algorithms so it is hard to distill a global picture. Secondly, evidence about the merits of

Cauchy vs. Gaussian based search is largely missing in the literature on problems larger

that 40 dimensions. What will happen on problems with 50-1000 dimensions?

In this chapter we set out to resolve the above controversy, and we conduct a thorough

investigation into the performance of multivariate Cauchy EDA in high dimensions up to

1000 dimensional problems in comparison with its Gaussian counterpart. We shall use a

scalable variant of EDA called EDA with Model Complexity Control (EDA-MCC) [22]

for our purpose, and create a Cauchy sampling variant of it.

4.2 Presentation of the algorithm used in this work

We chose EDA-MCC [22] as the algorithmic tool for our experiments, because it is scal-

able and applicable to both low and high dimensional problems, and it was previously

demonstrated to work well up to 500 dimensions. This allows us to vary the problem size

and observe the trends in performance comparatively for Gaussian and Cauchy search

64

distributions.

In its original form, EDA-MCC employs a multivariate Gaussian search distribution,

which, for scalability purposes, is modelled/approximated as a product distribution on

non-overlapping subspaces. These are created by randomly partitioning the search vari-

ables that have correlations into disjoint groups. During the evolutionary process, the al-

gorithm keeps measuring the degree of linear interdependencies between variables by com-

puting their correlation coefficients and the variables that only have correlations smaller

than the threshold in absolute value, (meaning the observed linear dependencies between

variables are weak) are modelled as univariate product distributions.

Before proceeding further, we should mention that correlation only captures linear

dependencies and will miss any non-linear ones. Initially, we also experimented with

employing Mutual Information instead [85], but observed no significant improvement,

and due to the computationally more demanding scaling we did not pursue it further.

It is straightforward to modify this strategy to sample from independent multivariate

Cauchy blocks instead, which we do for the purpose of our experiments. The pseudo-

code of a generic EDA is given in Algorithm 2, and the Algorithms 8-9a-9b summarize

EDA-MCC which can be found in chapter 2. Our only modification is in the multivariate

modeling, namely step (c) of Algorithm 9a, to allow for multivariate Cauchy sampling in

the subspaces. We implemented the multivariate Cauchy sampling by making use of the

Gaussian scale-mixture representation of the Cauchy density [63] shown earlier in eq. 3.1,

and sampling this generatively, in the same way as in chapter 3.

4.3 Experiments

We set out to resolve the controversy about the comparative merits of multivariate Gaus-

sian vs. Cauchy search distributions in high dimensions. Towards this end, we conducted

experiments on 7 benchmark functions taken from the CEC’05 competition [77] – these

65

Table 4.1: Scalable test functions from the CEC’05 collection.

Problem Name Type
P01 Shifted Sphere Function Unimodal
P02 Shifted Schwefel’s Problem 1.2 Unimodal
P03 Shifted Rotated High Conditioned Elliptic Function Unimodal
P04 Shifted Schwefel’s Problem 1.2 with Noise in Fitness Unimodal
P05 Shifted Rosenbrock’s Function Multimodal
P06 Shifted Rastrigin’s Function Multimodal
P07 Expanded Extented Griewank Function plus Rosenbrock Multimodal

are listed in Table 4.1 – and we varied the problem dimensionality from 20 up to 1000.

Among the functions tested, 4 are unimodal, and 3 are multi-modal. All the global optima

are within some given box constraints. All problems are minimization. More details on

the functions may be found in [77].

4.3.1 Roadmap and parameter settings

Our first experiments were conducted on the Shifted Rosenbrock Function to replicate

the findings of [75] in the settings considered there (i.e varying dimensions up to 32). The

purpose of these experiments was to see if the version of EDA we are using is consistent

with their findings. Once confirmed, we further looked at the Shifted Rosenbrock Function

in higher dimensions to get a more complete picture. As we shall see, the conclusion turns

out to be very different in the higher dimensional regime.

We then conducted experiments on a good number of benchmark problems to test if

the above finding is observed more generally. The following set of dimensions (problem

sizes) were used to conduct our experiments, {20, 30, 40, 50, 100, 200, 300, 400, 500,

1000} for all problems.

All experiments were ran with three different population sizes {300, 1000, 2000} in

order to make sure that the observed behavior is not a byproduct of a particular choice of

66

population size. A budget of 10000×D function evaluations was set in all experiments,

where D is the dimension of the problem. This was the recommended budget size in [77]

for the CEC’05 competition.

The following tunable parameters were set in accordance with the recommendations

in [22]: The threshold θ to decide if a search variable has weak or strong correlations is

set to 0.3, the number of selected individuals (Ñ) is set to half of the population size, and

the sample size used to estimate correlations (mc) is set to 100. However, we did not go

by the recommendation of [22] in setting the maximum group size, c. The reason will be

explained shortly. Instead, we set c = min(dD/5e, dN/15e), where N is the population

size. The performance criterion is the difference (gap) between the fitness of the best

individual found and the true global optimum. Each experiment was run 25 times (with

random independent restarts) and we report the average and standard deviation of these

differences.

A note on setting the max group size, c in EDA-MCC

We believe the following must be a typo on page 811 in [22], for their 500-dimensional

experiments, where the block size is claimed to be set to c = 100 and the number of

selected individuals is Ñ = 100. In our experience this setting does not work, and

indeed this setting would mean to estimate 100 × 100 covariance blocks from only 100

points which leads to a singular covariance estimate. Thus one needs to either reduce the

block size c or to increase the population size N : Since the latter is undesirable we took

c = min(dD/5e, dN/15e). With our setting, now we have c× c = min(dD/5e, dN/15e)×

min(dD/5e, dN/15e) covariance blocks to estimate from Ñ = dN/2e points. The table of

parameters is shown in table 4.2 below with justification of choosing them mention in the

text above. We used the default values as in [22] with the exception of the group size, c.

We have justified why we choose the value use for c in the section above.

67

Table 4.2: Table of parameters used in this chapter.

Parameter Description Value
D Problem Dimensionality {20, 30, 40, 50, 100, 200, 300, 400, 500, 1000}
N Population Size {300, 1000, 2000}
θ Correlation threshold 0.3
Ñ Number of selected individuals dN/2e
mc Sample size use to estimate correlations 100
c Maximum group size min(dD/5e, dN/15e)×min(dD/5e, dN/15e)
m Number of non-intersecting subsets d|Z|/ce
runs Number of runs 25

MaxBudget Maximum number of function evaluation 10000×D

4.4 Results and Discussion

We present results of our experiments in three parts. The first part will consist of results

of experiment done on the Rosenbrock function to verify the claim made in [75] and devel-

oping more complete picture. The second part contains results of an extensive empirical

study on 7 benchmark functions, and the third part examines the case when the optimum

is shifted much further away.

4.4.1 Results on shifted Rosenbrock: Confirming the findings

of [75], and developing a more complete picture

Following [75], we start by running experiments on the shifted Rosenbrock function up

to 32 dimensions. As we already mentioned, [75] reported superior performance when

employing the Cauchy search distribution as opposed to the Gaussian when tested in

this dimensionality range. Although they use a different optimization algorithm and

different parameter setting than ours, we were able to confirm their finding. Figures 4.1 -

4.3 show the results obtained with population sizes 300, 1000 and 2000 respectively and

Tables 4.3 - 4.5 show the corresponding statistical analysis. We see the Cauchy search

68

distribution performs significantly better than the Gaussian up to 50 dimensions for the

case of experiment ran with population size of 300 and up to 100 dimensions in the case

of experiment ran with population sizes of 1000 and 2000.

100 200 300 400 500 600
10

4

10
5

10
6

10
7

10
8

10
9

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:300

Cauchy
Gaussian

(a) Dimension 20

100 200 300 400 500 600 700 800 900 1000

10
5

10
6

10
7

10
8

10
9

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:300

Cauchy
Gaussian

(b) Dimension 30

200 400 600 800 1000 1200
10

2

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:300

Cauchy
Gaussian

(c) Dimension 40

200 400 600 800 1000 1200 1400 1600
10

2

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:300

Cauchy
Gaussian

(d) Dimension 50

500 1000 1500 2000 2500 3000
10

7

10
8

10
9

10
10

10
11

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:300

Cauchy
Gaussian

(e) Dimension 100

1000 2000 3000 4000 5000 6000

10
8

10
9

10
10

10
11

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:300

Cauchy
Gaussian

(f) Dimension 200

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
8

10
9

10
10

10
11

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:300

Cauchy
Gaussian

(g) Dimension 300

2000 4000 6000 8000 10000 12000

10
9

10
10

10
11

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:300

Cauchy
Gaussian

(h) Dimension 400

2000 4000 6000 8000 10000 12000 14000 16000

10
9

10
10

10
11

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:300

Cauchy
Gaussian

(i) Dimension 500

Figure 4.1: Convergence behaviour of Gaussian and Cauchy as search distribution for
EDA-MCC on different dimensions of the Rosenbrock function for population size of 300
on average, as obtained from 25 independent runs. A total budget of 1 · 104 ·D, where D
is the dimension of the problems were used.

However, we also see from figures 4.1 - 4.3 and Tables 4.3 - 4.5 that the extrapolation

suggested in [75] to higher dimensional problems than those tested by the authors, actually

fails. Instead, we see a crossing point at around D = 50 and D = 100, after which

exactly the opposite conclusion becomes true. The Gaussian search distribution performs

69

Table 4.3: Ranksum Statistical test for performance comparison between Gaussian and
Cauchy search distribution on the Shifted Rosenbrock function with Budget = 10000 ·D
and Population size = 300.

Dimension Cauchy Gaussian Ranksum Test
mean std mean std H P-Value

20 9.33E+03 5.23E+04 1.98E+04 6.96E+04 1 7.13E-12
30 2.56E+04 2.43E+05 3.36E+05 5.99E+05 1 8.40E-31
40 61.8629 31.6877 1.28E+06 2.81E+06 1 2.56E-34
50 61.5353 25.0485 1.56E+06 2.32E+06 1 2.56E-34
100 9.27E+07 4.62E+07 9.41E+06 1.04E+07 1 1.62E-32
200 1.84E+11 1.19E+10 2.74E+07 1.95E+07 1 2.56E-34
300 6.46E+11 3.07E+10 6.54E+07 3.54E+07 1 2.56E-34
400 1.34E+12 6.06E+10 1.47E+08 7.21E+07 1 2.56E-34
500 2.15E+12 9.43E+10 2.71E+08 9.92E+07 1 2.56E-34
1000 7.68E+12 1.78E+11 2.12E+09 4.47E+08 1 7.07E-18

Table 4.4: Ranksum Statistical test for performance comparison between Gaussian and
Cauchy search distribution on the Shifted Rosenbrock function with Budget = 10000 ·D
and Population size = 1000

Dimension Cauchy Gaussian Ranksum Test
mean std mean std H P-Value

20 52.211 273.2988 87.3066 257.3303 1 1.59E-15
30 1.87E+04 1.75E+05 9.42E+04 1.93E+05 1 2.06E-29
40 7.74E+03 6.41E+04 1.24E+05 2.61E+05 1 1.13E-31
50 1.88E+03 1.10E+04 1.07E+05 1.38E+05 1 2.44E-32
100 1.44E+04 8.38E+04 4.18E+05 5.81E+05 1 1.47E-31
200 7.17E+10 6.20E+09 9.78E+05 8.20E+05 1 2.56E-34
300 4.72E+11 2.38E+10 2.27E+06 1.57E+06 1 2.56E-34
400 9.78E+11 4.11E+10 4.86E+06 2.53E+06 1 2.56E-34
500 1.56E+12 6.19E+10 7.34E+06 4.01E+06 1 2.56E-34
1000 5.25E+12 2.18E+11 2.82E+07 1.05E+07 1 7.07E-18

Table 4.5: Ranksum Statistical test for performance comparison between Gaussian and
Cauchy search distribution on the Shifted Rosenbrock function with Budget = 10000 ·D
and Population size = 2000.

Dimension Cauchy Gaussian Ranksum Test
mean std mean std H P-Value

20 20.3619 21.5225 23.8297 31.5721 1 3.12E-24
30 1.15E+04 4.95E+04 5.30E+04 9.35E+04 1 2.13E-21
40 8.03E+03 6.32E+04 5.18E+04 5.40E+04 1 3.45E-30
50 338.7745 976.4567 5.66E+04 7.39E+04 1 1.54E-33
100 8.04E+03 4.76E+04 1.55E+05 1.65E+05 1 3.56E-32
200 5.44E+10 5.85E+09 2.31E+05 1.93E+05 1 2.56E-34
300 4.53E+11 2.01E+10 3.88E+05 2.79E+05 1 2.56E-34
400 9.18E+11 4.34E+10 7.72E+05 4.38E+05 1 2.56E-34
500 1.35E+12 4.89E+10 1.14E+06 6.06E+05 1 2.56E-34
1000 3.77E+12 1.29E+11 5.03E+06 1.66E+06 1 7.07E-18

70

20 40 60 80 100 120 140 160 180 200

10
2

10
4

10
6

10
8

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:1000

Cauchy
Gaussian

(a) Dimension 20

50 100 150 200 250 300

10
5

10
6

10
7

10
8

10
9

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:1000

Cauchy
Gaussian

(b) Dimension 30

50 100 150 200 250 300 350 400
10

4

10
5

10
6

10
7

10
8

10
9

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:1000

Cauchy
Gaussian

(c) Dimension 40

50 100 150 200 250 300 350 400 450 500

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:1000

Cauchy
Gaussian

(d) Dimension 50

100 200 300 400 500 600 700 800 900 1000

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:1000

Cauchy
Gaussian

(e) Dimension 100

200 400 600 800 1000 1200 1400 1600 1800 2000
10

6

10
7

10
8

10
9

10
10

10
11

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:1000

Cauchy
Gaussian

(f) Dimension 200

500 1000 1500 2000 2500 3000

10
7

10
8

10
9

10
10

10
11

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:1000

Cauchy
Gaussian

(g) Dimension 300

500 1000 1500 2000 2500 3000 3500 4000

10
7

10
8

10
9

10
10

10
11

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:1000

Cauchy
Gaussian

(h) Dimension 400

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

7

10
8

10
9

10
10

10
11

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:1000

Cauchy
Gaussian

(i) Dimension 500

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

7

10
8

10
9

10
10

10
11

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:1000

Cauchy
Gaussian

(j) Dimension 1000

Figure 4.2: Convergence behaviour of Gaussian and Cauchy as search distribution for
EDA-MCC on different dimensions of the Rosenbrock function for population size of 1000
on average, as obtained from 25 independent runs. A total budget of 1 · 104 ·D, where D
is the dimension of the problems were used.

significantly better than the Cauchy at problem dimensions larger than D = 100, up to

D = 1000.

71

10 20 30 40 50 60 70 80 90 100

10
2

10
4

10
6

10
8

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s
Population size is:2000

Cauchy
Gaussian

(a) Dimension 20

20 40 60 80 100 120 140

10
5

10
6

10
7

10
8

10
9

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:2000

Cauchy
Gaussian

(b) Dimension 30

20 40 60 80 100 120 140 160 180 200
10

4

10
5

10
6

10
7

10
8

10
9

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:2000

Cauchy
Gaussian

(c) Dimension 40

50 100 150 200 250

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:2000

Cauchy
Gaussian

(d) Dimension 50

50 100 150 200 250 300 350 400 450 500
10

4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s
Population size is:2000

Cauchy
Gaussian

(e) Dimension 100

100 200 300 400 500 600 700 800 900 1000

10
6

10
7

10
8

10
9

10
10

10
11

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:2000

Cauchy
Gaussian

(f) Dimension 200

200 400 600 800 1000 1200 1400

10
6

10
7

10
8

10
9

10
10

10
11

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:2000

Cauchy
Gaussian

(g) Dimension 300

200 400 600 800 1000 1200 1400 1600 1800 2000
10

6

10
7

10
8

10
9

10
10

10
11

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:2000

Cauchy
Gaussian

(h) Dimension 400

500 1000 1500 2000 2500

10
7

10
8

10
9

10
10

10
11

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:2000

Cauchy
Gaussian

(i) Dimension 500

500 1000 1500 2000 2500

10
7

10
8

10
9

10
10

10
11

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Population size is:2000

Cauchy
Gaussian

(j) Dimension 1000

Figure 4.3: Convergence behaviour of Gaussian and Cauchy as search distribution for
EDA-MCC on different dimensions of the Rosenbrock function for population size of 2000
on average, as obtained from 25 independent runs. A total budget of 1 · 104 ·D, where D
is the dimension of the problems were used.

We found the above conclusion consistently (up to slight shifts of the crossing point)

with different population sizes. This will be apparent in the next subsection where com-

72

plete and summary plots of results obtained with three different population sizes will be

presented. Moreover, as we shall see, the finding that Gaussian performs better than

Cauchy in high (beyond 100) dimensional problems is also observed for all benchmark

problems tested.

4.4.2 Results of an extensive empirical study

Having found an interesting pattern of comparative behavior in the previous section on

the shifted Rosenbrock function, we then performed similar comparative experiments on

all functions from Table 4.1 in order to see if our finding holds more generally.

Figure 4.4 presents all these results in a compact format. Here we display the differ-

ences between the fitness value achieved with Gaussian (fg) and with Cauchy (fc) search

distributions respectively. By fitness value we mean the average of the best fitness in the

last generation, as averaged over 25 independent runs. Whenever this difference (fg−fc),

is positive it means that Cauchy outperformed Gaussian (recall, we do minimization so

smaller fitness is better), and vice-versa – whenever (fg − fc) is negative then Gaussian

outperformed Cauchy. The 7 plots correspond to the 7 benchmark problems tested, and

each curve on these plots corresponds to a particular choice of population size. Since the

fitness differences are much larger when D is large, we also show a zoomed version of the

lower dimensional regime in order to better see the details.

From Figure 4.4, we see that the comparative behaviour of the two search distributions

in the high dimensional regime, as observed in the previous section, consistently holds up

on all functions tested, and with all population sizes tested. That is, the differences in the

fitness values (fg− fc) are positive in the dimension range 20-50 in most cases, meaning

that Cauchy tends to be better in this regime. But, as the dimension exceeds 50 or 100,

the differences become negative and remain negative, indicating that Gaussian is now

better than Cauchy.

73

100 200 300 400 500 600 700 800 900 1000

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

6

Dimensions

fg
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

20 30 40 50
0

2

4

6

8
x 10

−3

Dimensions

fg
 −

 fc

(a) Shifted Sphere Function

100 200 300 400 500 600 700 800 900 1000

−5

−4

−3

−2

−1

0
x 10

9

Dimensions

fg
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

20 30 40 50

−10

−8

−6

−4

−2

0

Dimensions

fg
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

(b) Shifted Schwefel’s Problem 1.2

100 200 300 400 500 600 700 800 900 1000
−16

−14

−12

−10

−8

−6

−4

−2

0
x 10

10

Dimensions

fg
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

20 30 40 50

0

5

10

15

x 10
7

Dimensions

fg
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

(c) Shifted rotated Elliptic Func-
tion

100 200 300 400 500 600 700 800 900 1000

−12

−10

−8

−6

−4

−2

0
x 10

7

Dimensions

fg
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

20 30 40 50

−6

−4

−2

0

x 10
4

Dimensions

fg
 −

 fc

Popsize 300

Popsize 1000

Popsize 2000

(d) Shifted Schwefel’s Problem 1.2
With Noise in fitness

100 200 300 400 500 600 700 800 900 1000

−12

−10

−8

−6

−4

−2

0
x 10

11

Dimensions

fg
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

20 30 40 50
0

2

4

6

8

x 10
6

Dimensions

fg
 −

 fc

(e) Shifted Rosenbrock Function

100 200 300 400 500 600 700 800 900 1000
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

6

Dimensions

fg
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

20 30 40 50

−300

−200

−100

0

Dimensions

fg
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

(f) Shifted Rastrigin Function

100 200 300 400 500 600 700 800 900 1000

−2

−1.5

−1

−0.5

0
x 10

18

Dimensions

fg
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

20 30 40 50

0

50

100

Dimensions

fg
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

(g) Exp. Ext. Griewank Fn +
Rosenbrock

Figure 4.4: Differences between the average (from 25 repeated runs) of the best fitness
values achieved by the Cauchy (fc) and by the Gaussian (fg) EDAs, as the dimension
is varied, for seven test problems. The smaller plots superimposed represent zoomed
versions of the same results in the range of 20-50 dimensions.

We can also see from figure 4.4 that the results with smaller population size yield the

largest contrast between the performances of these two search distributions. We therefore

conclude on the basis of these results that Cauchy may be better than Gaussian in low

74

dimensional problems, but Gaussian is superior in high dimensional problems. Statistical

tests confirmed that these differences are statistically significant.

4.4.3 Further results when the optimum is shifted much further

away

Since Cauchy sampling in optimisation is expected to have an advantage over Gaussian

when long jumps are beneficial, we also tried to modify the test problems by shifting the

global optimum and increasing the search box sizes from [−102 102] up to [−104 104], to

see if Cauchy’s long jumps will pay off. We found this is not the case, and Cauchy search

makes very slow progress in all cases tested. See results in Figures 4.5 and 4.6. These

experiments conclude that Cauchy’s long jumps do not help in high dimensions, which

agrees with the findings in [38]. That is, the chances for a long jump to turn out lucky

vanish with increasing dimension, and the analysis in the next section suggests that in

fact this issue is unavoidable.

4.5 Understanding the reasons for our experimental

findings

We attack the problem from two different angles. First, we look at the probability of

bad moves. Second, we examine the behaviour of Gaussian and Cauchy norms as the

dimensionality increases.

4.5.1 Probability of bad moves

Here, we show why large search steps are, in general, more likely to perform worse than

smaller ones and explain the role that the problem dimensionality plays in this issue.

We start by considering a search distribution that selects new candidate solutions

from the uniform distribution on a sphere of fixed radius, r, about a current population

75

1000 2000 3000 4000 5000 6000

10
3

10
4

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

log(mean(BestCauchy)) − log(mean(BestGaussian)) is = 4.220724

Cauchy
Gaussian

(a) Rosenbrock; Shift = Default

1000 2000 3000 4000 5000 6000

10
3

10
4

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

log(mean(BestCauchy)) − log(mean(BestGaussian)) is = 4.324306

Cauchy
Gaussian

(b) Rosenbrock; Shift = 100

1000 2000 3000 4000 5000 6000

10
3

10
4

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

log(mean(BestCauchy)) − log(mean(BestGaussian)) is = 5.212351

Cauchy
Gaussian

(c) Rosenbrock; Shift = 1000

1000 2000 3000 4000 5000 6000

10
4

10
5

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

log(mean(BestCauchy)) − log(mean(BestGaussian)) is = 3.341894

Cauchy
Gaussian

(d) Rosenbrock; Shift = 5000

1000 2000 3000 4000 5000 6000

10
4

10
5

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

log(mean(BestCauchy)) − log(mean(BestGaussian)) is = 2.510675

Cauchy
Gaussian

(e) Rosenbrock; Shift = 8000

2000 4000 6000 8000 10000 12000 14000 16000

Generations

1011

F
itn

es
s

-
O

pt
im

al
 fi

tn
es

s Cauchy
Gaussian

(f) Rosenbrock; Shift = 10000

Figure 4.5: Trajectories to compare Gaussian and Cauchy search distributions on
the Shifted Rosenbrock Function when the box size was increased from [−102 102] to
[−104 104] and the shift values varied from 102 − 104.

member – why this captures the essential behaviour of Gaussian high-dimensional search

will be explained shortly – and we look at the effect of varying r. More precisely we

consider the probability of the event that a new candidate solution is closer to the global

(or any particular local) optimum than the current population member. See Figure 4.7 –

the point x? is the global optimum in the search space, the point p? is the centre (mean) of

the current population, and the shaded circle represents the ball of radius ρ := ‖x? − p?‖

centred on x?. Clearly a new candidate solution p′ is closer to the global optimum than

p? if and only if it lies within this ball, that is when ‖x? − p′‖ < ρ. In Figure 4.7 we

see this intersection in bold for several choices of r – in 2 dimensions this intersection

is an arc, in 3 it is a spherical cap, and in 4 or more dimensions it is a hyperspherical

cap. Now, what is the probability of the event ‖x? − p′‖ < ρ? Denote by SD−1
r the

76

1000 2000 3000 4000 5000 6000

10
3

10
4

10
5

10
6

10
7

10
8

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

log(mean(BestCauchy)) − log(mean(BestGaussian)) is = 13.732047

Cauchy
Gaussian

(a) Sphere; Shift = 3000

1000 2000 3000 4000 5000 6000
10

3

10
4

10
5

10
6

10
7

10
8

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

log(mean(BestCauchy)) − log(mean(BestGaussian)) is = 12.060016

Cauchy
Gaussian

(b) Sphere; Shift = 300000

1000 2000 3000 4000 5000 6000

10
4

10
5

10
6

10
7

10
8

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

log(mean(BestCauchy)) − log(mean(BestGaussian)) is = 12.029043

Cauchy
Gaussian

(c) Sphere; Shift = 3000000

1000 2000 3000 4000 5000 6000

10
0

10
2

10
4

10
6

10
8

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

log(mean(BestCauchy)) − log(mean(BestGaussian)) is = 23.349572

Cauchy
Gaussian

(d) Sphere; Shift = 10000000

1000 2000 3000 4000 5000 6000

10
6

10
7

10
8

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s
log(mean(BestCauchy)) − log(mean(BestGaussian)) is = 6.695059

Cauchy
Gaussian

(e) Sphere; Shift = 20000000

1000 2000 3000 4000 5000 6000

10
6

10
7

10
8

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

log(mean(BestCauchy)) − log(mean(BestGaussian)) is = 6.164105

Cauchy
Gaussian

(f) Sphere; Shift = 20500000

Figure 4.6: Comparisons of Gaussian vs. Cauchy search distributions on problems with
highly shifted optima and increased sizes of the search box.

Figure 4.7: Proof by picture – the probability that ‖x?−p′‖ < ‖x?−p?‖ is monotonically
decreasing in the step size of the search.

sphere about p? of radius r in RD: When p′ is drawn from the uniform distribution on

SD−1
r , this probability is the proportion of the surface of the whole sphere comprising

the intersection, namely the quotient of the surface area of the hyperspherical cap to the

77

sphere SD−1
r . For a fixed value of ‖x? − p?‖, and for any problem dimensionality D > 2,

this probability is monotonically decreasing in r for r ∈ (0, 2ρ)1 and, of course, it is zero

for values of r > 2ρ in any dimension. Thus if the search direction from a current solution

is chosen uniformly at random then, irrespective of any other consideration, larger step

sizes are always more likely to take us further from the global optimum than smaller

step sizes. How fast does this probability decay as a function of the step size or of the

dimensionality? Define the angle of the hyperspherical cap at p? to be 2θr, and note

that the proportion of the sphere of radius r covered by this cap is the same as the

proportion of the unit sphere covered by a cap on the unit sphere also with angle 2θr.

Therefore Pr{‖x? − p′‖ < ρ} 6 exp(−D2

2 cos2 θr) where the RHS follows from Lemma 2.2

of [7] which upper bounds this latter quantity. By simple trigonometry one finds that

cos θr = r/2ρ, and thus we obtain the following theorem:

Theorem 4.5.1 (Most Search Steps are Bad). Let x?, p? be two fixed points in RD with

the Euclidean distance between them ρ := ‖x? − p?‖. Let p′ = p? + z where z is sampled

from the uniform distribution on the hypersphere of radius r. Then:

Pr {‖x? − p′‖ > ‖x? − p?‖} > 1− exp
(
−D

2r2

8ρ2

)
(4.1)
�

This means that, for any fixed value of ρ, the probability of sampling a point closer to

the global optimum than the current reference point decays exponentially quickly in both

the search radius (step size) r, and the dimensionality D. It also means that, for any

choice of relative step size r/ρ, the proportion of good directions (i.e. directions that

get us closer to the optimum than the reference point) decays exponentially quickly in

the problem dimension. Therefore, if the step direction is random, large steps in high-

dimensional search spaces are far less likely to take us closer to the global optimum

1In dimension 1 this probability is exactly 0.5 for a step of size r ∈ (0, 2ρ).

78

than small steps, and thus for high-dimensional search we would expect that with very

high probability heavy-tailed distributions such as the Cauchy will perform poorly. This

suggests that exploration by large steps is mostly counterproductive in high dimensions

and instead one should focus mainly on finding the right direction in which to move the

search distribution.

4.5.2 Gaussian and Cauchy norms in high dimensions

Now we discuss some possible reasons why a Gaussian search distribution does better.

From high dimensional probability theory it is known that high dimensional probability

distributions may look very different from their low dimensional versions, and may there-

fore behave in a counter-intuitive manner. We conjecture the good performance of the

Gaussian search may be due to its good concentration property, which the Cauchy dis-

tribution lacks. This property means that in high dimensions most of the points sampled

from the distribution lie within a thin shell at some distance from the center of the dis-

tribution - in other words, in high dimensions we will not generate new points very close

to the mean, neither will we generate points very far from the mean either. Figure 4.8

demonstrates this empirically. We sampled 100,000 points from a 10, 100, 200 and 1000-

dimensional standard Gaussian and plotted the histogram of Euclidean distances from

the origin (centre of the distribution). We see from the figure that all of these distances

are close to approximately
√
D (
√

10 = 3.16,
√

100 = 10,
√

200 = 14.14,
√

1000 = 31.66).

This was just an example for figure 4.8, but in general in the algorithm we use
√

Tr(Σ).

So, as the dimensionality increases we have most of the points within a shell that gets

thinner and thinner relative to the average distance from the centre.

We then repeated the same experiment with 10, 100, 200 and 1000-dimensional Cauchy

norms where 70% of the components of the points were sampled from independent c-

79

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

Norm

F
re

qu
en

cy

||x|| : x ~ Gaussian
||x|| : x ~ Cauchy

(a) D = 10, c = 2

0 10 20 30 40 50

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Norm

F
re

qu
en

cy

||x|| : x ~ Gaussian
||x|| : x ~ Cauchy

(b) D = 100, c = 20

0 10 20 30 40 50

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Norm

F
re

qu
en

cy

||x|| : x ~ Gaussian
||x|| : x ~ Cauchy

(c) D = 200 , c = 20

0 10 20 30 40 50

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Norm

F
re

qu
en

cy

||x|| : x ~ Gaussian
||x|| : x ~ Cauchy

(d) D = 1000 , c = 20

Figure 4.8: Comparison of the histograms of Gaussian vs. Cauchy norms as D increases.
The values of the parameter c chosen here (i.e. the dimension of independent multivariate
Cauchy components) correspond to a population size of 300 (although we observed no
qualitative difference for other choices). We used 100,000 sample points to create these
histograms.

80

dimensional multivariate standard Cauchy distributions and the remaining 30% from

independent standard Gaussian – this mimics a typical SM & WI split from our Cauchy-

EDA-MCC simulations. We superimposed these histograms on the same plots with the

Gaussian norms in Figure 4.8. From Figure 4.8 it is very apparent that the Gaussian

norms are all clamped in a narrow range, whereas the Cauchy norms are increasingly

spread out. This will have implications on the implicit searching strategy associated with

these two distributions, as we shall discuss in the remainder of this section.

Take the Gaussian case first. More formally, for a generic non-degenerate1 D × D

covariance matrix Σ, let X ∼ N(0,Σ). Then the expected norm can be approximated as

follows:

E[||X||] 6
√
E[||X||2] =

√
Tr(Σ) (4.2)

using Jensen’s inequality. Indeed, applying the linearity of expectation, we have

E[||X||2] = E[
D∑
i=1

X2
i] =

D∑
i=1

E[X2
i] =

D∑
i=1

(Σii) = Tr(Σ).

Note that in the case Σ = I we have
√

Tr(Σ) =
√
D. This is why we saw the averages

of Gaussian norms at approximately
√
D in Figure 4.8. Furthermore, the following lemma

shows that with high probability ‖X‖ is close to
√

Tr(Σ) (in absolute difference relative

to the spectral norm of Σ).

Lemma 2. Let X ∈ RD where X has entries drawn from a multivariate Gaussian with

1Note that the model complexity control on the covariance estimates in EDA-MCC ensures that the
covariance estimates are indeed non-degenerate – of course, provided that we set the parameters c and
m wisely (as discussed in an earlier section).

81

mean zero and Σ covariance. Then, ∀ε ∈ (0, 1),

Pr



∣∣∣∣∣∣∣∣∣∣
‖X‖ −

√
Tr(Σ)

∣∣∣∣∣∣∣∣∣∣
> ε

√
λmax(Σ)

 6 2 exp

− ε2

2

 (4.3)
�

Lemma 2 implies that in Gaussian EDA search, a large fraction of the new generation

lies in a thin shell at the same distance from the center of the population – therefore selec-

tion of the fittest points essentially selects the promising directions. These two elements –

using all of the available resources to select directions, and then ensuring a steady move of

size just below
√

Tr(Σ) from the center of the population from one generation to the next

– provide Gaussian EDA a well focused strategy that is beneficial and resource-efficient.

And of course, as we approach a local optimum Tr(Σ) will decay, so in fact Gaussian EDA

automatically tunes the search granularity over successive generations.

By contrast, the Cauchy density does not have good concentration properties. This is

very apparent from the numerical experiment in Figure 4.8. While we see a reasonably

high density region in the case of D = 10, as D increases, the heavy tails of the distribution

in all directions dissolve any high density region. Therefore, Cauchy based search has no

ability to prioritize selecting good directions.

This probability inequality was mentioned in [45] without proof. Here we derive it

from Lemma 1 of [25].

Proof: The following bounds [25] hold for the Gaussian square norm, with the two sides

holding with different probabilities.

82

Pr

 ‖X‖ >√(1 + ε)Tr(Σ)

 6 exp
(
−
Tr(Σ)(

√
1 + ε− 1)2

2λmax(Σ)

)
(4.4)

Pr

 ‖X‖ 6√(1− ε)Tr(Σ)

 6 exp
(
−
Tr(Σ)(

√
1− ε− 1)2

2λmax(Σ)

)
(4.5)

Here we massage this pair of bounds into single bound.

Now from the Left Hand Side (LHS) of equation 4.4 and our target, we set:

√
Tr(Σ) + εTr(Σ) =

√
Tr(Σ) + τ

√
λmax(Σ)

Squaring both sides and expanding the Right Hand Side (RHS) expression we have

εTr(Σ) = τ

2
√
Tr(Σ)λmax(Σ) + τλmax(Σ)



ε = τ


2
√
Tr(Σ)λmax(Σ) + τλmax(Σ)

Tr(Σ)


Solving for ε, and replacing it

ε = τ

2

√√√√λmax(Σ)
Tr(Σ) + τλmax(Σ)

Tr(Σ)


83

Substituting ε into the RHS of eq.4.4 gives, after some algebra:

exp

− Tr(Σ)
2

√ 1
λmax(Σ)

+ 2τ√
Tr(Σ)λmax(Σ)

+ τ2

Tr(Σ)
−

1√
λmax(Σ)

2

Taking the Lowest Common Multiple (LCM) of the term under the square root, we have

= exp

− Tr(Σ)
2

√Tr(Σ) + 2τ
√
Tr(Σ)λmax(Σ) + τ2λmax(Σ)
Tr(Σ)λmax(Σ)

−
1√

λmax(Σ)

2

= exp

− Tr(Σ)
2


√

(
√
Tr(Σ) + τ

√
λmax(Σ))2

Tr(Σ)λmax(Σ) − 1√
λmax(Σ)


2

= exp

− Tr(Σ)
2


√
Tr(Σ) + τ

√
λmax(Σ)√

Tr(Σ)λmax(Σ)
− 1√

λmax(Σ)


2

Now taking LCM of the term inside the square, and

= exp

− Tr(Σ)
2


√
Tr(Σ) + τ

√
λmax(Σ)−

√
Tr(Σ)√

Tr(Σ)λmax(Σ)


2

simplifying, we get:

= exp

− Tr(Σ)
2

 τ
√
λmax(Σ)√

Tr(Σ)λmax(Σ)


2

after cancellations. Rename τ by ε, and this completes the proof for one side of Lemma

84

1. The other side is analogous, and yields:

Pr

 ‖X‖ −
√
Tr(Σ) 6 −ε

√
λmax(Σ)

 6 exp

− ε2

2


�

In the sequel we shall put the above explanation to a test: We shall create a new search

distribution for EDA that takes to the extreme the clever implicit searching strategy of

Gaussian EDA that we just uncovered. If our reasoning above is correct, then the new

search distribution might perform even better in high dimensions.

4.6 EDA with uniform search distribution on a hy-

persphere

Rather than searching in a thin shell at some constant distance from the center of the

population, let us search precisely on the hypersphere with the same radius. Based on our

analysis in the previous section, from eqs. (4.2)-(4.3), we define the search distribution as a

uniform distribution on the sphere of radius
√

Tr(Σ), where, as before, Σ is the covariance

estimated from the selected individuals. This way, when the high fitness individuals are

selected they represent exactly the high fitness directions at granularity equal to the

radius. The subsequent generation then makes a steady move towards the average of the

selected directions, just like it was the case for Gaussian based search.

We tested and validated the performance of this new EDA variant in an extensive series

of experiments, comparatively with both the Gaussian and the Cauchy EDA variants

discussed earlier. We first present detailed results on the search process for the Shifted

Rosenbrock function in Figures 4.9 - 4.11, for three different population sizes, each tested

on all different dimensions of the problem considered, from low to high. We also present

85

a summary of the comparative results in figure 4.12. As conjectured, we can see that the

uniform sphere based search strategy becomes increasingly efficient in high dimensions

and outperforms both Cauchy and Gaussian based EDA search as the dimensionality

of the problem increases. We confirmed using ranksum tests that these differences are

statistically significant. This is because in an exponentially increasing search space, when

only having a linearly increasing budget it becomes more and more important to prioritize

the task of selecting good directions. We also see that this effect is very robust and not

influenced by the particular choice of population size. All plots represent average of best

fitness as computed from 25 independent runs. The total budget was set to 104 ·D, where

D is the dimension of the problems.

86

100 200 300 400 500 600

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(a) Dimension 20

100 200 300 400 500 600 700 800 900 1000

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(b) Dimension 30

200 400 600 800 1000 1200
10

2

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(c) Dimension 40

200 400 600 800 1000 1200 1400 1600

10
2

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(d) Dimension 50

500 1000 1500 2000 2500 3000

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(e) Dimension 100

1000 2000 3000 4000 5000 6000

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(f) Dimension 200

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(g) Dimension 300

2000 4000 6000 8000 10000 12000

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(h) Dimension 400

2000 4000 6000 8000 10000 12000 14000 16000

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(i) Dimension 500

0.5 1 1.5 2 2.5 3

x 10
4

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(j) Dimension 1000

Figure 4.9: Trajectories of Gaussian EDA-MCC, Cauchy EDA-MCC and UniformSphere
EDA on the Shifted Rosenbrock function when the population size is N = 300.

87

20 40 60 80 100 120 140 160 180 200

10
2

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(a) Dimension 20

50 100 150 200 250 300

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(b) Dimension 30

50 100 150 200 250 300 350 400

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(c) Dimension 40

50 100 150 200 250 300 350 400 450 500

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(d) Dimension 50

100 200 300 400 500 600 700 800 900 1000

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(e) Dimension 100

200 400 600 800 1000 1200 1400 1600 1800 2000

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(f) Dimension 200

500 1000 1500 2000 2500 3000

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(g) Dimension 300

500 1000 1500 2000 2500 3000 3500 4000

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(h) Dimension 400

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(i) Dimension 500

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(j) Dimension 1000

Figure 4.10: Trajectories of Gaussian EDA-MCC, Cauchy EDA-MCC and UniformSphere
EDA on the Shifted Rosenbrock function when the population size is N = 1000.

88

10 20 30 40 50 60 70 80 90 100

10
2

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(a) Dimension 20

20 40 60 80 100 120 140
10

4

10
5

10
6

10
7

10
8

10
9

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(b) Dimension 30

20 40 60 80 100 120 140 160 180 200
10

4

10
5

10
6

10
7

10
8

10
9

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(c) Dimension 40

50 100 150 200 250

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(d) Dimension 50

50 100 150 200 250 300 350 400 450 500

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(e) Dimension 100

100 200 300 400 500 600 700 800 900 1000

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(f) Dimension 200

200 400 600 800 1000 1200 1400

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(g) Dimension 300

200 400 600 800 1000 1200 1400 1600 1800 2000

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(h) Dimension 400

500 1000 1500 2000 2500

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(i) Dimension 500

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

10
4

10
6

10
8

10
10

10
12

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
U. Sphere

(j) Dimension 1000

Figure 4.11: Trajectories of Gaussian EDA-MCC, Cauchy EDA-MCC and UniformSphere
EDA on the Shifted Rosenbrock function when the population size is N = 2000.

89

100 200 300 400 500 600 700 800 900 1000

−7

−6

−5

−4

−3

−2

−1

0
x 10

12

Dimensions

fs
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

20 30 40 50
0

2

4

6

x 10
5

Dimensions

fs
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

(a) Uniform Sphere vs. Cauchy for Shifted

Rosenbrock function

100 200 300 400 500 600 700 800 900 1000

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
x 10

9

Dimensions

fs
 −

 fg

Popsize 300
Popsize 1000
Popsize 2000

20 30 40 50
−15

−10

−5

0

5

x 10
5

Dimensions

fs
 −

 fg

(b) Uniform Sphere vs. Gaussian for Shifted

Rosenbrock function

100 200 300 400 500 600 700 800 900 1000

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

6

Dimensions

fs
 −

 fc

Popsize 300
Popsize 1000
Popsize 2000

20 25 30 35 40 45 50

−4

−3

−2

−1

x 10
−7

Dimensions

fs
 −

 fc

Popsize 300

Popsize 1000

Popsize 2000

(c) Uniform Sphere vs. Cauchy for Shifted Sphere

function

100 200 300 400 500 600 700 800 900 1000

−3000

−2500

−2000

−1500

−1000

−500

Dimensions

fs
 −

 fg

Popsize 300
Popsize 1000
Popsize 2000

20 30 40 50
−8

−6

−4

−2

x 10
−3

Dimensions

fs
 −

 fg

(d) Uniform Sphere vs. Gaussian for Shifted

Sphere function

Figure 4.12: Differences between the averages (from 25 repeated runs) of the best fitness
values achieved by the Gaussian (fg) and Uniform on Sphere (fs) plotted on the right
and Cauchy (fc) and Uniform on Sphere (fs) EDAs plotted on the left, as the dimension
is varied. The smaller plots superimposed represent zoomed versions of the same results
in the range of 20-50 dimensions.

Finally, in Figure 4.13 we demonstrate the results of large scale experiments in 1000-

dimensions on the remaining 6 benchmark function listed in Table 4.1. Here we used a

population size of N = 300. Again we see that UniformSphere-EDA consistently and

significantly outperforms the other two EDA variants.

90

0.5 1 1.5 2 2.5 3

x 10
4

10
−10

10
−5

10
0

10
5

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
Sphere

(a) Shifted Sphere Function

0.5 1 1.5 2 2.5 3

x 10
4

10
7

10
8

10
9

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
Sphere

(b) Shifted Schwefel’s Prob-

lem 1.2

0.5 1 1.5 2 2.5 3

x 10
4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
Sphere

(c) Shifted Rotated High

Conditioned Elliptic Func-

tion

0.5 1 1.5 2 2.5 3

x 10
4

10
7

10
8

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
Sphere

(d) Shifted Schwefel’s Prob-

lem 1.2 with Noise in Fitness

0.5 1 1.5 2 2.5 3

x 10
4

10
3

10
4

10
5

10
6

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
Sphere

(e) Shifted Rastrigin’s Func-

tion

0.5 1 1.5 2 2.5 3

x 10
4

10
5

10
10

10
15

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Cauchy
Gaussian
Sphere

(f) Expanded Extended

Griewank’s plus Rosen-

brock’s Function (F8F2)

Figure 4.13: Comparison of Gaussian EDA-MCC, Cauchy EDA-MCC and
UniformSphere-EDA on 1000-dimensional problems. The population size was 300, and
each curve is the average of the best fitness values from 25 independent runs. The budget
of function evaluations was 104 ·D, where D is the dimension of the problem.

When we artificially completely remove the deviation between the norm and the square

root of the trace, this resulted in the sphere with radius square root of trace. The fact that

the sphere base search works for optimisation confirms our conjecture that concentration

of norms helps.

From these results, and recalling our rationale for creating this new EDA version, we

conclude that our study resolved the controversy about the merits of Gaussian against

Cauchy EDA search in high dimensional problems and provides a better understanding

of why Gaussian performs better than Cauchy in truly high dimensional problems.

91

4.7 Summary

In this chapter, we conducted a large empirical study to benchmark the performance of

Cauchy and Gaussian search distributions in EDA using a scalable black-box EDA opti-

mizer. Our empirical results suggest that Cauchy search distributions perform particularly

badly in high-dimensional spaces. To explain this phenomenon we developed some the-

ory that explains why large search steps are inefficient in high dimensional search spaces.

We argued that a Gaussian search distribution has an in-built prioritizing strategy that

implicitly focuses resources within a generation on selecting good search directions: This

strategy is a by-product of the concentration property of Gaussian norms in high dimen-

sions. On the other hand, Cauchy norms lack good concentration properties and make a

relatively high proportion of (very) large steps, and this results in an increasingly inef-

ficient search strategy when the problem dimension increases. Based on our theoretical

insights and understanding of high dimensional domains, we proposed a minor modifi-

cation to the standard Gaussian EDA which enforces search within a generation to take

place at a fixed radius of the current population centre. Initial experiments on a bat-

tery of test problems indicate that this simple change improves high dimensional search

considerably.

92

CHAPTER 5

Heavy Tails with Parameter Adaptation in Random

Projection based Continuous EDA

In this chapter1, we present a new variant of EDA for high dimensional continuous op-

timisation, which extends a recently proposed random projections (RP) ensemble based

approach by employing heavy tailed random matrices. In particular, we use random ma-

trices with i.i.d. t-distributed entries. EDA model building has the role of capturing

the structure of the problem, which in some applications may be of independent interest.

The UniformSphere distribution which we proposed in Chapter 4 loses out on this aspect.

Therefore in this chapter, we return to Gaussian having seen its superior performance

over Cauchy in high dimensional problems in chapter 4, but with a strong regularisation

implicitly implemented by an ensemble of Random Projections (RPs). This pushes the

covariance matrix closer to spherical while allowing the search distribution to capture a

full covariance that can be used for interpretation, i.e to learn about the structure of

the problem. We generate the entries of the random matrices from a t-distributions in

1A shorter version of this work presented in this chapter appears in Proc. IEEE International congress
on Evolutionary Computation (CEC) 2015, IEEE Xplore pp. 2074 - 2081, (c) IEEE, 2015. Recipient
of the Runner Up Student Paper Award.

93

this method which may look surprising in the context of random projections, however

we show that the resulting ensemble covariance is enlarged when the degree of freedom

parameter is lowered. Based on this observation, we develop an adaptive scheme to ad-

just this parameter during evolution, and this results in a flexible means of balancing

exploration and exploitation of the search process. A comprehensive set of experiments

on high dimensional benchmark functions demonstrate the usefulness of our approach.

5.1 Introduction

We start by computing the ensemble-covariance of the new population in step (8) of

algorithm 12 described in chapter 2 conditional on fixing the random projection matrices

Ri, i = 1 : M̃ . We will then condition on the fit individuals and look at the effect of

Ri, i = 1 : M̃ by computing the expectation of this ensemble covariance with respect to

Ri, i = 1 : M̃ .

Proposition 1: Conditionally on all Ri, i = 1...M̃ , the new generation produced at

Step 8 of Algorithm 12 is i.i.d. Gaussian with mean µ and the following d× d covariance

matrix:

Σrp = d

kM̃

M̃∑
i=1

RT
i RiΣRT

i Ri

where Σ is the sample covariance of the original selected individuals in P Sel

Proof: Recall from step 7(a) of Algorithm 12 that the set of projected points in the i-th

subspace is:

YRi = {Ri(x1 − µ), Ri(x2 − µ), ..., Ri(xÑ − µ)}

Conditional on Ri, the sample covariance matrix of this set of points is:

ΣRi = 1
Ñ

Ñ∑
n=1

Ri(xn − µ)(Ri(xn − µ))T = RiΣRT
i

94

So the samples in step 7(c) of algorithm 12 are yRi1 , ..., yRiN ∼ N(0,ΣRi) .

To find the distribution of the individuals in P at step (8) of Algorithm 12, we look

at the first individual:

P1 :=
√
DM̃

k
[1
M̃

M̃∑
i=1

RT
i y

Ri
1] + µ. (5.1)

Conditionally on Ri, i = 1 : M̃ , this is a linear combination of independent Gaussian

random variables , which is again a Gaussian1 [62]. Hence, P1 is Gaussian distributed, it

has mean µ (since yRi1 has zero mean), and we compute its covariance below.

In equation (5.1), denote A :=
√

DM̃
k

1
M̃
RT
i , then from step 7(c), we have that

yRi1 ∼ N(0, RiΣRT
i).

So,

AyRi1 ∼ N(0, ARiΣRT
i A

T) (5.2)

Replacing A in (5.2), we have

AyRi1 ∼ N(0,
√
DM̃

k

1
M̃
RT
i RiΣRT

i

√
DM̃

k

1
M̃
Ri),

which simplifies to

N(0, D
kM̃

RT
i RiΣRT

i Ri)

1Assume x ∼ N(mx,Σx) and y ∼ N(my,Σy), then

Ax+By + c ∼ N(Amx +Bmy + c, AΣxA
T +BΣyB

T)

.

95

Repeating this reasoning for each Pj, we find that:

Pj ∼ N(µ, D
kM̃

M̃∑
i=1

RT
i RiΣRT

i Ri), j = 1, ..., N (5.3)

Hence, the form of the ensemble covariance in the d-dimensional search space is:

Σrp = D

kM̃

M̃∑
i=1

RT
i RiΣRT

i Ri (5.4)

�

In this chapter, Instead of generating M̃ independent random matrices Ri, i = 1, ..., M̃

with entries i.i.d from Gaussian in step (6) of algorithm 12, we generate M̃ independent

random matrices Ri, i = 1, ..., M̃ with entries i.i.d from a t distribution with mean 0 and

variance 1
D

. In this way, our expression of equation 5.4 of the RP-ENS-EDA will con-

tain excess kurtosis of the entries of R and since the entries of our R matrices are from

t distribution whose excess kurtosis contain degree of freedom, we adapt this degree of

freedom in our method. This increases exploration while maintaining exploitation in our

tRP-ENS-EDA whose Pseudocode is shown is algorithm 14 below. Figure 5.1 illustrates

this fact. In Figure 5.1, we compare the samples from the ensemble of random projection

M̃ , whose entries are generated from Gaussian, figure 5.1(a) and the samples from the

ensemble of random projection M̃ , whose entries are generated from a heavy tail distri-

bution (t distribution with a degree of freedom 7), figure 5.1(b). You can see the samples

from the heavy tailed distribution, figure 5.1(b), more spread out with a big covariance

than the sample from Gaussian distribution, figure 5.1(a), which has a smaller covariance.

The bigger covariance enables the algorithm (tRP-Ens-EDA) to explore the search space

better, thus escaping from a premature convergence than the smaller covariance that the

algorithm (RP-Ens-EDA) has which is prone to premature convergence.

96

(a) Entries of R from Gaussian

(b) Entries of R from t distribution with df=7

Figure 5.1: Plots to compare covariances of the new generations of RP-Ens-EDA and
tRP-Ens-EDA.

5.2 Using heavy tails in Random Projection based

continuous EDA

In this section we devise a new variant of the RP-based large scale multivariate Gaussian

EDA of [47] by proposing to use random matrices with heavy tailed entries. To readers

familiar with the area of random projections, this might come as a surprise since random

projection theory requires sub-Gaussian matrices, but our reasons will become clear in

the analysis subsection shortly. In essence, as we shall see, the use of i.i.d. t-distributions,

specifically its degree of freedom parameter, will allow us to enlarge the high dimensional

ensemble-covariance matrix of the search distribution, which may facilitate exploration

and escape early convergence, while still maintaining the focus of the search. Our analysis

97

implies also that sub-Gaussian random matrices in this context would cause the ensemble

covariance to shrink, thus making the algorithm more prone to pre-mature convergence.

See figure 5.1 for the effect of the entries of R matrices on the ensemble-covariance matrix

of the search distribution.

Algorithm presentation

We build on random projection ensemble based EDA (RP-Ens-EDA) [46], and refer to our

new variant as tRP-Ens-EDA. The pseudocode of tRP-Ens-EDA is shown in algorithm

14.

Algorithm 14 Algorithm with entries of R from t-distribution (tRP-Ens-EDA)
Inputs: k, M̃,N,MaxFE
(1) Set g ← 0.
(2) Set P ← Generate N points randomly to give an initial population.
Do

(3) Evaluate fitness for all N points in P
(4) Select the fittest Ñ individuals P sel from P
(5) Estimate µ := mean(P sel)
(6) Generate M̃ independent random matrices Ri, i = 1, ..., M̃ with entries iid from

a t distribution with mean 0 and variance 1
D

.
(7) For i = 1, ..., M̃ .

(a) Project the centred points into k-dimensions:
YRi := [Ri(xn − µ);n = 1, ..., Ñ].

(b) Estimate the k x k sample covariance ΣRi .
(c) Sample N new points yRi1 , ..., yRiN ∼i.i.d N(0,ΣRi).

EndFor
(8) Let the new population P new :=

√
DM̃
k

[1
M̃

ΣM̃
i=1R

T
i y

Ri
1 , ..., 1

M̃
ΣM̃
i=1R

T
i y

Ri
N] + µ.

(9) P ← P new

(10) g ← g + 1
Until Termination criteria are met or MaxFE exceeded
Output P

tRP-Ens-EDA proceeds by initially generating a population of individuals randomly

everywhere and selects the Ñ fittest points based on their fitness values. This is the set

98

P sel in algorithm 14. The number of subspaces is denoted by M̃ , which is a parameter.

These subspaces are created in order to project the fittest individuals down to these

subspaces with dimensionality k � D, where D is the dimension of the search space, and

k is also a parameter of the method. For both of these parameters we will use the default

values as in [46]. The other input parameters are the population size N and the maximum

fitness evaluations allowed, MaxFE. Once the P sel is determined, its mean is estimated

in step (5) to be used in centering the points. Since we are going to have M̃ subspaces,

M̃ independent random projection matrices are generated in step (6) so as to project the

fittest individuals down to k dimensions in these M̃ subspaces. The entries of the RP

matrices are drawn iid from a t distribution with mean 0 and variance 1
D

. This is done by

sampling from t(0, 1, ν) standard t, and then multiply the samples by
√

ν−2
νD

. The reason

we take the variance to be 1
D

is to make sure we recover the original scale in Step (8)

without having to modify the scaling factor: When D is high, Ri have nearly orthonormal

rows if the entries have variance 1/D. So, pre-multiplying with Ri is like orthogonally

projecting the points from the D dimensional space to a k dimensional subspace, which

shortens the lengths of vectors by a factor of
√

k
D

and the standard deviation gets reduced

by a factor of
√
M̃ after averaging [46]. Therefore, the scaling factor needed to ensure

this recovery is
√

DM̃
k

.

Step 7(a) projects the good samples down to the subspaces of dimension k, then

estimates the k × k covariance matrices for each of the subspaces and samples N new

points in each subspace using the multivariate Gaussian distribution. Step (8) averages

the individuals obtained from the different subspaces to produce the new population P .

We should note that when D is high, any two rows of the random project matrices become

quasi-orthogonal to each other [27]. There is no lower bound on k, but there are on the

number of random projections, but the number of random projections has to be larger

than D/k.

99

Analysis

Now we want to see the effect of the random Ri’s on Σrp. To this end, we condition on

Σ, and look at the expectation ER[Σrp]. For this we use the following result:

Lemma 3. (Kaban, 2014 [44]): Let R be a k × D random matrix, k < D, with entries

drawn i.i.d. from a symmetric distribution with 0-mean and finite first four moments.

Let Σ be a D ×D fixed positive semi-definite matrix with eigenvalues λ1, ..., λD. Then,

E[RTRΣRTR] = k · E[R2
i,j]2

[
(k + 1)Σ + Tr(Σ)ID +

(E[R4
i,j]

E[R2
i,j]2
− 3

) D∑
i=1

λiAi

]
�

where Ai are D×D diagonal matrices with their jth diagonal elements being ΣD
a=1U

2
aiU

2
aj

and Uaiis the a-th entry of the ith eigenvector of Σ.

From (5.4), the expectation of Σrp, is

E[D
k
RTRΣRTR] = D

k
E[RTRΣRTR].

which we will compute. Since we have the entries of our t-distribution with mean 0 and

variance 1
D

, then we will have E[R2
ij] = 1

D
. Furthermore, we see the excess kurtosis of the

entries of R featuring in this result. So we need to compute this for the t-distribution. This

excess kurtosis will contain the degree of freedom parameter of the t distribution which

we shall vary adaptively to control the exploration and exploitation of our algorithm.

Definition: The excess kurtosis of a random variable x is defined as:

K = E[x4]
E[x2]2 − 3 (5.5)

Proposition 2: The excess kurtosis of a standardised t(0, 1, ν) distribution with

degree of freedom ν, is:

K = 6
ν − 4 , ν > 4 (5.6)

100

To prove equation 5.6, we proceed by deriving the Generic form of the even moment,

E[x2k], where k = 1, ..., n and then instantiate it to the fourth moment, E[x4] and second

moment, E[x2] and then square the second moment and plug the results in 5.5 and simplify

it.

Proof: Let x ∈ Rn be a r.v, x ∼ t(0, 1, ν) and k ∈ {1, ..., n} , then by definition for even

moments, we have

E[x2k] =
∫ ∞
−∞

x2kf(x)dx

where f(x) is the pdf of the t distribution. The pdf of a t distribution is written as:

f(x) = c ·
(

1 + x2

ν

)−1
2 (ν+1)

dx

where

c = 1√
νB(ν2 ,

1
2)

and B is the beta function [2]. It can be observed that f(x) = f(−x), since t is a

symmetric distribution. We can re-write E[x2k] as:

=
∫ 0

−∞
x2kf(x)dx+

∫ ∞
0

x2kf(x)dx

Now applying a change of variable in the first integral by letting s = −x, then dx = −ds,

we will have

E[x2k] = −
∫ 0

∞
(s)2kf(−s)ds+

∫ ∞
0

x2kf(x)dx

Interchanging bounds of the integral gives us the following

=
∫ ∞

0
(s)2kf(−s)ds+

∫ ∞
0

x2kf(x)dx

101

Since f(−s) = f(s), by the property of symmetric distribution, we have

=
∫ ∞

0
(s)2kf(s)ds+

∫ ∞
0

x2kf(x)dx

Since f(t) = f(x) and s2k = x2k, then by throwing common factor, we have

E[x2k] = 2
∫ ∞

0
x2kf(x)dx (5.7)

let L(x) =
∫∞

0 x2kf(x)dx

Now considering, L(x) and letting

f(x) = c(1 + x2

ν
)−1

2 (ν+1)dx where c = 1√
νB(ν2 , 12) and

B
(
ν
2 ,

1
2

)
= Γ(ν2)Γ(1

2)
Γ(ν+1

2) [2], we have

L(x) = c
∫ ∞

0
(x)2k(1 + x2

ν
)−1

2 (ν+1)dx

By change of variable, we have: t = x2

ν
, x = (νt) 1

2 , and

L(x) = c
∫ ∞

0
(νt)k(1 + t)−1

2 (ν+1)
√
ν

2
√
t
dt

= c

2ν
2k+1

2

∫ ∞
0

(t)k− 1
2 (1 + t)−1

2 (ν+1)dt

= c

2ν
2k+1

2

∫ ∞
0

(t) 2k+1
2 −1(1 + t)−(2k+1

2)−(ν−2k
2)dt

This integral represents a beta function. Therefore

102

= c

2ν
2k+1

2 B

(
2k + 1

2 ,
ν − 2k

2

)

Now plugging in the value of c back, we have

L(x) = 1
2
√
νB

(
ν
2 ,

1
2

)ν 2k+1
2 B

(
2k + 1

2 ,
ν − 2k

2

)

= 1
2ν

k[Γ(ν2)Γ(1
2)/Γ(ν + 1

2)]−1Γ(2k + 1
2)Γ(ν − 2k

2)/Γ(ν + 1
2)

= 1
2ν

kΓ(2k+1
2)Γ(ν−2k

2)
Γ(ν2)Γ(1

2) ,
ν − 2k

2 > 0 since Γ(0) =∞.

Now from equation 5.7, replacing
∫∞

0 x2kf(x)dx, we have

E[x2k] = νk
Γ(2k+1

2)Γ(ν−2k
2)

Γ(ν2)Γ(1
2) , where k = 1, ...n (5.8)

Equation (5.8) is the General form of the even moments, since we are interested in the

even moments. Now instantiating (5.8) to the second and fourth moments we have

E[x2k] = νk
Γ(2k+1

2)Γ(ν−2k
2)

Γ(ν2)Γ(1
2) , where k = [1, 2] (5.9)

Equation 5.9 is the general expression of the second and fourth moments.

Now computing the fourth moment, we let k = 2 in equation (5.8) and get

E[x4] = ν2 Γ(5
2)Γ(ν−4

2)
Γ(ν2)Γ(1

2) (5.10)

103

But Γ(5
2) = 3

4
√
π [2] and Γ(1

2) =
√
π [2],

Equation 5.10 =
3ν2

4 Γ(ν−4
2)

Γ(ν2)

By the definition of Gamma Γ(x) = (x− 1)Γ(x− 1) [2], we have

E[x4] =
3ν2

4 Γ(ν−4
2)

ν−2
2

ν−4
2 Γ(ν−4

2) = 3ν2

4
2

ν − 2
2

ν − 4

E[x4] = 3ν2

(ν − 2)(ν − 4) (5.11)

Analogously, computing the second moment, E[x2], we let k = 1 in equation (5.8) and

arrive at

E[x2] = ν
Γ(3

2)Γ(ν−2
2)

Γ(ν2)Γ(1
2)

but again, Γ(3
2) = 1

2
√
π [2] and Γ(1

2) =
√
π [2]

E[x2] = ν
1
2
√
π Γ(ν−2

2)
Γ(ν2)
√
π

=
ν
2 Γ(ν−2

2)
Γ(ν2)

=
ν
2 Γ(ν−2

2)
ν−2

2 Γ(ν−2
2) =

ν
2

ν−2
2

Hence

E[x2] = ν

ν − 2

and squaring the second moment will give us

(E[x2])2 = ν2

(ν − 2)2

104

Therefore, the excess kurtosis is

K = E[x4]
(E[x2])2 − 3 =

3ν2

(ν−2)(ν−4)
ν2

(ν−2)2

− 3

K = 3(ν − 2)
ν − 4 − 3 = 6

ν − 4

The excess kurtosis of a t distribution of zero mean, unit variance and degree of

freedom, ν is

K = 6
ν − 4 , ν > 4 (5.12)

Thus the proof is done. �

Corollary: The excess kurtosis of a distribution with variance σ2 remains unchanged.

Proof: . Let c > 0 be a constant. Then c · x has variance c2var(x). Now show that the

excess kurtosis of c · x is still

K = 6
ν − 4 , ν > 4

If c > 0, then the excess kurtosis of c · x is

E
[
(c · x)4

]
E
[
(c · x)2

]2 − 3

taking the constant out, we have

c4E
[
x4
]

c4E
[
x2
]2 − 3 =

E
[
x4
]

E
[
x2
]2 − 3

105

Now the c4 cancel out and we will be left with

E
[
x4
]

E
[
x2
]2 − 3

Therefore, the results is the same as the results in equation 5.5, thus the excess kurtosis

did not change. �

So, replacing this into Lemma 1, and noting that we can simplify the last term using∑D
i=1 λiAi � Tr(Σ) · ID, we obtain the result:

D

k
E[RTRΣRTR] � 1

D

[
(k + 1)Σ + Tr(Σ)

(
1 + 6

ν − 4

)
ID

]
(5.13)

Now let us point out what we have gained. In previous works such as [46], Gaussian

was used and Gaussian corresponds to the limit when ν → ∞; therefore the expression
6

ν−4 in eq. (5.13) will tends to zero when we expand the bracket and it will tend to Tr(Σ)

if we consider the bracket as one term. so by our choice of degree of freedom that the t-

distribution has, we will be adding more regularity to the covariance which also makes

it larger and gives it more chance to explore the search space better. Existence of the

matrix expectation we just computed requires that ν is at least 5.

Here we bring light about the statement we made at the beginning of this chapter about

how an ensemble of Random Projections helps us to get a covariance close to spherical,

yet this is a full covariance which can be used to interpret the correlation structure of the

problem.

106

5.3 Setting and adaptation of the degree of

freedom ν

Parameter setting methods are dichotomised into tuning and controlling [29]. Tuning

means finding a good value via trial and error before running the algorithm and then fixing

this value throughout the evolutionary process. On the other hand, parameter control

starts with an initial value which is changed during the run, based on the feedback from

the algorithm [29]. So the latter tries to adapt the control parameters automatically to

adjust the algorithm to the problem while solving it during the search [84].

In our algorithm, the parameter we try to control is the degree of freedom of the t

distributed entries of our random projection matrices (Ri, i = 1 : M̃). We have observed

from our experiments on parameter tuning that different degree of freedom performed well

on different problems and no single value was able to perform best on all of the problems.

See figure 5.2. The comparison is done on all the functions in [64] test suite. It is hard to

choose a degree of freedom that can give good results on all the problems. Because of this

and the issues related to parameter tuning, we decided to control the degree of freedom

adaptively. The results of our adaptive method are shown superimposed on figure 5.2

with black dashed line, and we can see that it has out performed the fixed degrees of

freedom in most of the functions. Among the plots in figure 5.2 is also the results of a

method which used Gaussian as entries of the random projection matrices called Gaussian

RP EDA. This corresponds to the degree of freedom tending to infinity. We drew our

inspiration from [84] and carved out our own adaptive method with our own rules to vary

the value of the degree of freedom automatically to fit our problem. The Pseudocode of

our proposed adaptive method is shown in algorithms 15, 16a, and 16b.

Algorithm 15 takes degree of freedom df which is an array of different values of the

degree of freedom to be tried as inputs. It runs these values concurrently during a gen-

107

Algorithm 15 Adaptive degree of freedom ν Algorithm
Inputs: df : array of df values tried, L = lenght(df) .
(1) for i = 1 : L
(2) dftry := df [i];
(3) run steps (6),(7),(8) and (3) of Algorithm 14;
(4) f[i] := min fitness from step (3) of algorithm 14;
(5) endfor
(6) [fminfminInd] := min(f);
(7) dfbest := df [fminInd];
(8) if min(f) == max(f)
(9) df [1] := round(df [1]/2);
(10) for i = 2 : L
(11) df [i] == df [i] ∗ 2;
(12) endfor
(13) elseif
(14) UPDATEDF(2df) or UPDATEDF(5df);
(15) endif
Output df

Algorithm 16a UPDATEDF(2df)
(1) procedure UPDATEDF(2df)
(2) if f [1] == min(f)
(3) df1 := round(df1/2);
(4) df2 := round((df1 + df2)/2);
(5) elseif f [2] == min(f)
(6) df1 := round((df1 + df2)/2);
(7) df2 := df2 + round(df2/2);
(8) endif
(9) endprocedure

108

Algorithm 16b UPDATEDF(5df)
(1) procedure UPDATEDF(5df)
(2) if f [1] == min(f)
(3) df1 := round(df1/2);
(4) df2 := round((df1 + df2)/2);
(5) df3 := round((df2 + df3)/2);
(6) df4 := round((df3 + df4)/2);
(7) df5 := round((df4 + df5)/2);
(8) elseif f [2] == min(f)
(9) df1 := round((df1 + df2)/2);
(10) df2 := df2 + round(df2/2);
(11) df3 := round((df2 + df3)/2);
(12) df4 := round((df3 + df4)/2);
(13) df5 := round((df4 + df5)/2);
(14) elseif f [3] == min(f)
(15) df1 := round((df1 + df2)/2);
(16) df2 := round((df2 + df3)/2);
(17) df3 := df3 + round(df3/2);
(18) df4 := round((df3 + df4)/2);
(19) df5 := round((df4 + df5)/2);
(20) elseif f [4] == min(f)
(21) df1 := round((df1 + df2)/2);
(22) df2 := round((df2 + df3)/2);
(23) df3 := round((df3 + df4)/2);
(24) df4 := df4 + round(df4/2);
(25) df5 := round((df4 + df5)/2);
(26) elseif f [5] == min(f)
(27) df1 := round((df1 + df2)/2);
(28) df2 := round((df2 + df3)/2);
(29) df3 := round((df3 + df4)/2);
(30) df4 := round((df4 + df5)/2);
(31) df5 := df5 + round(df5/2);
(32) endif
(33) endprocedure

109

eration and keeps track of the best fitnesses found with each of these parameter values.

These fitnesses of each of the df tried are compared to see which one is the best and then

choose the degree of freedom that gives the best fitness to be taken forward. The contents

of df are then updated accordingly, in a way that places the values that are to be tried

next time around the best performing one. If all values tried performed the best then

we spread out the content of df . The rules of how this is done are given in algorithms

16a and 16b, where we use 2 or 5 different values concurrently respectively. This process

is then repeated in each generation. For instance, in the case of the method that uses 2

dfs concurrently, say 2 and 4. We run steps (6), (7), (8) and (3) of algorithm 15 with

df1 = 2 and df2 = 4 concurrently and compare the fitness values obtained with these two

dfs from step (3). If the fitness value obtained by say, df1 = 2 is better than the fitness

value obtained by say df2 = 4, we complete the generation with the df1 = 2 and update

the df1 and df2 to be used in the next generation as following: df1 := round(df1/2) and

df2 := round((df1 + df2)/2), according to algorithm 16a.

The number of values for the degree of freedom parameter that are tried concurrently

at each generation need not be exactly two or five, and the rules can easily be designed for

different numbers if desired. The more degree of freedoms used concurrently, the better

the results, but this comes at the expense of more function evaluations.

5.4 Analysis of the experimental results

This section is devoted to testing our idea of heavy tailed entries in the random matrices,

and compare the performance of our new approach with the known method of using

Gaussian entries to see if our proposal is superior. Finally we put the results in context

by comparing our method with existing state of the art.

110

Table 5.1: 1000-dimensional test functions from the CEC’10 collection.

Problem Name Type
F2 Shifted Rastrigin’s function Multimodal
F3 Shifted Ackley’s function Multimodal
F5 Single-group Shifted and m-rotated Rastrigin’s function Multimodal
F6 Single-group Shifted and m-rotated Ackley’s function Multimodal
F10 D

2m -group Shifted and m-rotated Rastrigin’s function Multimodal
F11 D

2m -group Shifted and m-rotated Ackley’s function Multimodal
F13 D

2m -group Shifted and m-dimensional Rosenbrock’s function Multimodal
F15 D

2m -group Shifted and m-rotated Rastrigin’s function Multimodal
F16 D

m
-group Shifted and m-rotated Ackley’s function Multimodal

F18 D
m

-group Shifted and m-dimensional Rosenbrock’s function Multimodal
F20 Fully nonseparable Rosenbrock Multimodal

5.4.1 Benchmark functions used

We use two sets of benchmark functions: the 1000-dimensional CEC’2010 test suite as

described in [1], and the 50-dimensional CEC’2005 test suite [64]. All problems are

minimizations. The majority of the test functions from the CEC’2010 benchmarks contain

are non-separable, and hence harder to optimise.

In the CEC’2005 problems, 5 are unimodal and 11 multimodal. All the global optima

are within the given box constrains. However, problem 7 is without a search range and

with the global optimum outside of the specified initialization range. From the problems

in the [1] suite we are most interested in the multimodal ones.

Table 5.1 lists the 1000-dimensional CEC’10 problems that we used, and Table 5.2

gives the 50-dimensional ones.

5.4.2 Experiments and Results

We conducted three types of experiments. The first is with a fixed time frame of 300

generations in order to assess the potential of various values for the degree of freedom

(df) as well as our adaptive procedures. The second type of experiment compares tuning

with adaptation on a fixed budget of function evaluations, set to 5.4 · 105 and the third

111

Table 5.2: 50-dimensional test functions from the CEC’05 collection.

Problem Name Type
P01 Shifted Sphere Function Unimodal
P02 Shifted Schwefels Problem 1.2 Unimodal
P03 Shifted Rotated High Conditioned Elliptic Function Unimodal
P05 Schwefel’s Problem 2.6 with Global Optimum on Bounds Unimodal
P06 Shifted Rosenbrock’s Function Multimodal
P07 Shifted Rotated Griewank’s Function without Bounds Multimodal
P08 Shifted Rotated Ackley’s Function with Global Optimum on Bounds Multimodal
P09 Shifted Rastrigin’s Function Multimodal
P10 Shifted Rotated Rastrigin’s Function Multimodal
P11 Shifted Rotated Weierstrass Function Multimodal
P12 Schwefel’s Problem 2.13 Multimodal
P13 Expanded Extended Griewank’s plus Rosenbrock’s Function Multimodal
P14 Expanded Rotated Extended Scaffe’s F6 Multimodal
P15 Shifted Griewank’s Function Multimodal
P16 Shifted Ackley’s Function Multimodal

Table 5.3: Ranksum statistical test for performance comparison between Tuning, 5df and
2df methods ran on equal budget.

Problems Tuning 2 concurrent dfs 5 concurrent dfs

(mean Optimal Gap) (mean Optimal Gap) (mean Optimal Gap)
P01 0±0 0±0 0±0
P02 4.07e+04±7.32e+03 1.53e+04±3.85e+03 1.62e+04±3.23e+03
P03 7.84e+06±1.74e+06 2.06e+06±3.82e+05 2.29e+06±4.87e+05
P04 0±0 2.17e+04±4.56e+03 2.05e+04±4.99e+03
P05 3.99e+03±401.26 4.27e+03±406.49 4.18e+03±268.13
P06 3.01e+03±3.14e+03 894.65±1.31e+03 1.02e+03±1.62e+03
P07 0.94±0.11 1.48e-05±1.44e-05 1.14e-05±8.43e-06
P08 21.19±0.04 21.14±0.06 21.18±0.04
P09 332.32±13.52 313.40±11.45 326.12±10.58
P10 341.78±15.66 316.36±14.23 326.60±11.13
P11 74.45±1.79 73.74±1.17 73.67±1.67
P12 5.61e+06±3.38e+05 5.27e+06±3.03e+05 5.55e+06±5.10e+05
P13 30.35±1.08 28.36±1.14 29.46±0.83
P14 23.08±0.16 22.9686±0.15 23.08±0.15
P15 7.79e-11±7.04e-011 0±0 0±0
P16 3.37e-13±1.05e-013 2.84E-14±0 2.84E-14±0

112

compares our method with other state of the arts. In all the experiments, 25 independent

runs were performed on all the methods.

RP-Ens-EDA vs. the proposed tRP-Ens-EDA in experiments with equal time

frame

We use the 50 dimensional CEC 2005 benchmark functions. We ran the RP-Ens-EDA

[46] and our proposed tRP-ENS-EDA with different degrees of freedom values for 300

generations each. The purpose was to see the potential of changing the df online. We

decided to stop at 300 generations because that is where the performances of the different

methods can be noticed. Beyond that, everything remain the same. Most of them are

at their maximum potential and will not improve in the remaining generations. See the

results in figure 5.2. We used 5df to compare the less performing method (5df) with RP-

END-EDA and once it is outperformed, we did not have to compare it with the better

performing one (2df).

As we can see from the results in figure 5.2, different degrees of freedom perform well on

different problems. Therefore, we also ran our proposed adaptive method to automatically

select the value of the degree of freedom as the optimisation progresses to optimise each

problem.

From the comparisons shown in figure 5.2, we can see that our method, tRP-Ens-

EDA(5df) has demonstrated superiority over RP-Ens-EDA by outperforming it in 8 out

of the 16 problems and it has almost the same performance with RP-Ens-EDA on 2

of the problems with RP-Ens-EDA outperforming our method in only two problems.

Therefore, we can conclude that our method, tRP-Ens-EDA(5df) is superior to RP-Ens-

EDA. However, this is not surprising since it used more budget of function evaluations

per generations due to the number of concurrent trials it had to make. We also performed

experiments with the version of our adaptive method that uses 2 values concurrently, and

found, as expected, that it performs slightly inferior to the version that uses 5 concurrent

113

values – although we need to bear in mind the trade-off that using more concurrent values

means more fitness evaluations per generation.

Tuning vs. adaptation in equal budget experiment

In this set of experiments, we compare tuning with adaptation under equal budget of

total number of function evaluations. Tuning encompasses separate runs with the degree

of freedom parameter being fixed to a value in the set {5, 6, 7, 10, 12, 30}. The number

of generations was 300 with a population size of 300. This means the total number of

function evaluations available for the tuning method was 5.4 · 105. Hence we gave the

same amount of function evaluations to our two adaptive methods. This means that

tRP-Ens-EDA(2df) ran for 900 generations with a population size of 300 and tRP-Ens-

EDA(5df) ran for 360 generations with same population size. The aggregated results are

summarised in figure 5.3. We see that our method with 2 concurrent values of degree of

freedom has out performed the other two. This is confirmed in a statistical test results in

table 5.3 where bold font indicates statistical out-performance.

Therefore, with equal budget, it is better to use the method that uses less df, say 2df

concurrently as it is more cost effective than the other methods. This is true because

the tuning method only uses pre-defined dfs to choose from and does not try all other

possible values, hence the inferiority. Our method that uses 5 df concurrently uses lots

of function evaluations just to try out possible dfs and does not have much left to create

new generations, while our version that uses 2 df concurrently uses less function evalua-

tions than the other two methods to try out possible dfs and greater amount of function

evaluations remain to be used to create new generations. This behaviour turns out to be

advantageous and performs better than the rest of the methods tested.

114

Tune 2df 5df
0

2

4

6

8

10
x 10

5 50D comparison

Methods

M
ea

n
O

pt
im

al
 G

ap

Figure 5.3: Aggregated Summary of the comparison experiment with equal budget set to
5.4 · 105 on 50-dimensional Rosenbrock function.

Comparison with state of the art methods on 1000 dimensional problems

In this section, we show results of comparing our method tRP −Ens−EDA(2df), with

other state of the art performing methods on the 1000 dimensional CEC 2010 problems.

The results of these comparisons are summarised in tables 5.4, 5.5 and 5.6. We present the

average and std of best fitness results after 3 million, 1.2 million and 0.6 million function

evaluations respectively. Bold font indicates statistical out-performance using Friedman

Test. We present the results of our Friedman multicomparison test graphically in figure

5.4 for visualisation. Friedman test is a non-parametric statistical test, which is used for

detecting the difference between many (normally more than 3/2) related samples/Data

[21],[17]. After the Friedman test, follows a multicomparison test [17], which graphically

shows the difference between pair of the methods. The P-value determines significance

difference. If the Value is less or equal to 0.05 when 5 percent significance level is consid-

ered, then there exist at least one of the samples, which is different from the rest. If on

the other hand, the P-value is greater than 0.05 at 5 percent significance level, then no

115

differences are detected between the performances of the methods compared. The blue

line in figure 5.4 represents our method which is compared with other methods. If any of

the other competing methods register a red line against them, it means the difference in

performance between that method and ours by Friedman test is statistically significant.

Overlapping intervals indicate no significant difference. After conducting Friedman test

to establish statistical significant differences, we do a multicomparison test. From tables

5.4, 5.5 and 5.6, we see our method is a par with the state of the art methods and it is

not worst than them. Therefore, our method has once again proved to be very promising.

5.5 Summary

We devised a new approach for high dimensional continuous black-box optimization by

building on RP ensemble based EDA. Our focus has been on the utility of the heavy

tailed distributions as entries of our RP matrices. Our results suggest that taking RP

matrices with entries drawn with i.i.d. t-distribution increases exploration and at the

same time maintains exploitation and focus. We have demonstrated superiority of our

method against the method we built on, RP-ENS-EDA. We have also demonstrated com-

petitiveness of our method in comparison with a number of state of the art methods on

1000 dimensional problems on three different budget sizes.

116

50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s
Adaptive dfs vs Gaussian for Fun:1

df=5
df=6
df=7
df=10
df=12
df=30
tRP−Ens−EDA(2df)
tRP−Ens−EDA(5df)
RP−Ens−EDA

(a) Function 1

50 100 150 200 250 300

2

3

4

5

6

7

8

9

10

11
x 10

4

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:2

(b) Function 2

50 100 150 200 250 300

0.5

1

1.5

2

2.5

3

3.5

x 10
8

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:3

(c) Function 3

50 100 150 200 250 300

3000

4000

5000

6000

7000

8000

9000

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:5

(d) Function 5

50 100 150 200 250 300

1

2

3

4

5

6

7

x 10
4

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s
Adaptive dfs vs Gaussian for Fun:6

(e) Function 6

50 100 150 200 250 300

2

4

6

8

10

12

14

16

18

20

22

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:7

(f) Function 7

50 100 150 200 250 300

21.17

21.18

21.19

21.2

21.21

21.22

21.23

21.24

21.25

21.26

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:8

(g) Function 8

50 100 150 200 250 300

330

340

350

360

370

380

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:9

(h) Function 9

50 100 150 200 250 300

330

340

350

360

370

380

390

400

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:10

(i) Function 10

50 100 150 200 250 300

74.5

75

75.5

76

76.5

77

77.5

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:11

(j) Function 11

50 100 150 200 250 300

5.6

5.8

6

6.2

6.4

6.6

x 10
6

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:12

(k) Function 12

50 100 150 200 250 300

29

30

31

32

33

34

35

36

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:13

(l) Function 13

50 100 150 200 250 300

23.1

23.15

23.2

23.25

23.3

23.35

23.4

23.45

23.5

23.55

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:14

(m) Function 14

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:15

(n) Function 15

50 100 150 200 250 300

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

Adaptive dfs vs Gaussian for Fun:16

(o) Function 16

Figure 5.2: Plots to compare different dfs, RP-Ens-EDA and two versions of our tRP-
Ens-EDA on Functions 1-16. For better visibility, we display from generation 50 only and
show legend of only the first plot. The error bars represent one standard error over 25
repeated runs.

117

Table
5.4:

C
om

parison
w

ith
state

ofthe
art

under
equalbudget

of3
·10

6
function

evaluations.

ED
-ED

A
C

C
V

IL
M

LC
C

sep-C
M

A
-ES

ED
A

-M
C

C
tR

P-Ens-ED
A

M
ean

Std
M

ean
Std

M
ean

Std
M

ean
Std

M
ean

Std
M

ean
Std

F2
1.11E+

04
1.12E+

02
4.00E

-07
0.00E

+
00

37.89
86.41

5.68E+
03

4.89E+
02

1.17E+
04

6.38E+
01

5.94E+
02

1.76E+
01

F3
7.22E-01

4.71E-02
4.00E-07

6.32E-07
8.45E-01

1.04E+
00

2.15E+
01

1.08E-01
2.92E+

00
7.76E-02

2.48E
-13

4.57E
-15

F5
3.15E+

08
1.33E+

07
5.51E+

08
1.55E+

08
1.22E+

08
8.63E+

07
1.19E+

08
2.92E+

07
4.24E+

08
1.67E+

07
4.99E

+
06

1.32E
+

06
F6

3.56E+
06

2.81E+
05

4.14E+
05

6.54E+
05

1.06E+
06

9.42E+
05

6.39E+
06

3.85E+
06

1.53E+
07

1.92E+
05

3.20E+
01

5.32E-01
F10

1.12E+
04

1.00E+
02

1.43E+
03

6.34E+
01

2.93E+
03

6.72E+
02

6.28E+
03

2.51E+
02

1.18E+
04

6.35E+
01

5.96E
+

02
1.71E

+
01

F11
1.49E+

02
2.33E+

01
7.44E

+
00

2.41E
+

00
1.64E+

02
7.72E+

00
2.12E+

02
6.16E+

00
1.91E+

02
7.39E-01

3.10E+
01

1.09E+
01

F13
2.13E+

06
2.25E+

05
2.98E+

11
8.57E+

11
1.56E+

03
5.52E+

02
2.94E

+
02

9.20E
+

01
4.77E+

10
2.99E+

09
1.00E+

06
5.74E+

04
F15

1.13E+
04

9.74E+
01

2.78E+
03

8.78E+
01

7.11E+
03

1.34E+
03

6.76E+
03

2.76E+
02

1.18E+
04

6.61E+
01

6.05E
+

02
2.74E

+
01

F16
1.76E+

02
2.35E+

01
1.31E+

01
2.92E+

00
3.62E+

02
7.80E+

00
4.21E+

02
1.59E+

01
2.37E+

02
2.43E+

01
8.04E+

01
1.04E+

01
F18

1.02E+
06

3.72E+
05

6.42E+
11

2.19E+
12

3.36E+
03

9.08E+
02

9.16E
+

02
1.94E

+
02

1.49E+
10

1.67E+
09

4.41E+
04

5.40E+
03

F20
1.89E+

05
9.81E+

04
1.75E+

11
8.77E+

11
2.23E+

03
3.20E+

02
9.04E+

02
3.91E+

01
8.08E+

08
7.81E+

07
1.02E+

03
2.83E+

01

118

Ta
bl

e
5.

5:
C

om
pa

ris
on

w
ith

st
at

e
of

th
e

ar
t

un
de

r
eq

ua
lb

ud
ge

t
of

1.
2
·1

06
fu

nc
tio

n
ev

al
ua

tio
ns

.

ED
-E

D
A

C
C

V
IL

M
LC

C
se

p-
C

M
A

-E
S

ED
A

-M
C

C
tR

P-
En

s-
ED

A
.

M
ea

n
St

d
M

ea
n

St
d

M
ea

n
St

d
M

ea
n

St
d

M
ea

n
St

d
M

ea
n

St
d

F2
1.

23
E+

04
1.

18
E+

02
1.

30
E

+
01

1.
00

E
+

01
98

9.
99

75
1.

00
7.

24
E+

03
4.

21
E+

02
1.

26
E+

04
6.

55
E+

01
5.

79
E+

02
2.

40
E+

01
F3

1.
68

E+
01

1.
15

E-
01

1.
30

E+
01

9.
08

E+
00

5.
97

E+
00

3.
79

E+
00

2.
15

E+
01

1.
09

E-
01

1.
56

E+
01

8.
17

E-
02

2.
47

E
-1

3
4.

50
E

-1
3

F5
3.

57
E+

08
1.

62
E+

07
9.

53
E+

08
1.

01
E+

08
3.

04
E+

08
1.

73
E+

08
1.

18
E+

08
2.

92
E+

07
4.

56
E+

08
1.

17
E+

07
1.

46
E+

08
1.

34
E+

08
F6

5.
78

E+
06

2.
07

E+
05

2.
12

E+
07

3.
41

E+
05

6.
10

E+
06

6.
45

E+
06

6.
39

E+
06

3.
84

E+
06

1.
62

E+
07

3.
27

E+
05

2.
13

E
+

01
2.

69
E

-0
2

F1
0

1.
24

E+
04

1.
13

E+
02

1.
32

E+
04

3.
32

E+
02

4.
68

E+
03

1.
43

E+
03

7.
43

E+
03

3.
86

E+
02

1.
27

E+
04

8.
04

E+
01

6.
01

E+
02

2.
66

E+
01

F1
1

1.
96

E+
02

6.
19

E+
00

2.
32

E+
02

6.
66

E-
01

1.
81

E+
02

7.
06

E+
00

2.
13

E+
02

6.
80

E+
00

2.
05

E+
02

5.
77

E-
01

3.
50

E+
01

9.
49

E+
00

F1
3

4.
53

E+
09

4.
10

E+
08

8.
45

E+
10

1.
55

E+
11

3.
70

E
+

04
5.

03
E

+
04

5.
96

E+
02

1.
73

E+
02

9.
51

E+
10

4.
96

E+
09

1.
27

E+
06

5.
38

E+
04

F1
5

1.
25

E+
04

1.
17

E+
02

1.
83

E+
04

5.
65

E+
02

1.
17

E+
04

7.
32

E+
03

7.
36

E+
03

3.
44

E+
02

1.
27

E+
04

6.
95

E+
01

5.
99

E
+

02
2.

46
E

+
01

F1
6

3.
47

E+
02

4.
88

E+
00

4.
26

E+
02

7.
59

E-
01

3.
69

E+
02

6.
86

E+
00

4.
31

E+
02

1.
00

E+
01

3.
43

E+
02

3.
12

E+
00

9.
18

E
+

01
1.

57
E

+
01

F1
8

5.
62

E+
10

3.
50

E+
09

3.
60

E+
11

3.
91

E+
11

8.
89

E+
05

2.
90

E+
06

1.
45

E
+

03
3.

10
E

+
02

1.
03

E+
11

4.
48

E+
09

4.
16

E+
04

9.
34

E+
03

F2
0

7.
07

E+
10

4.
10

E+
09

2.
69

E+
11

3.
78

E+
11

3.
00

E+
06

1.
09

E+
07

1.
05

E+
03

5.
16

E+
01

8.
99

E+
10

4.
43

E+
09

1.
08

E+
03

5.
45

E+
01

119

Table
5.6:

C
om

parison
w

ith
state

ofthe
art

under
equalbudget

of0.6
·10

6
function

evaluations.

ED
-ED

A
C

C
V

IL
M

LC
C

sep-C
M

A
-ES

ED
A

-M
C

C
tR

P-Ens-ED
A

.
M

ean
Std

M
ean

Std
M

ean
Std

M
ean

Std
M

ean
Std

M
ean

Std
F2

1.59E+
04

1.22E+
02

1.77E
+

01
1.40E

+
01

6.22E+
03

1.75E+
03

8.15E+
03

3.63E+
02

1.51E+
04

5.61E+
01

5.79E+
02

2.40E+
01

F3
2.08E+

01
3.12E-02

1.77E+
01

1.97E+
00

1.45E+
01

1.90E+
00

2.15E+
01

2.07E-02
2.05E+

01
2.33E-02

2.48E
-13

4.76E
-15

F5
4.53E+

08
1.58E+

07
9.79E+

08
7.60E+

07
4.19E+

08
1.76E+

08
1.41E+

08
3.00E+

07
5.08E+

08
1.41E+

07
3.04E+

08
9.49E+

06
F6

1.13E+
07

4.79E+
05

2.12E+
07

3.76E+
05

1.41E+
07

8.29E+
06

1.04E+
07

2.33E+
06

1.74E+
07

3.01E+
05

5.48E
+

02
7.50E

+
01

F10
1.61E+

04
1.61E+

04
1.31E+

04
3.29E+

02
1.10E+

04
1.97E+

03
8.36E+

03
3.85E+

02
1.52E+

04
9.69E+

01
6.01E+

02
2.66E+

01
F11

2.24E+
02

7.90E-01
2.32E+

02
8.08E-01

2.16E+
02

1.79E+
01

2.25E+
02

5.05E+
00

2.22E+
02

5.33E-01
3.50E+

01
9.49E+

00
F13

2.77E+
11

1.36E+
10

1.84E+
11

1.23E+
11

1.21E+
09

2.15E+
09

5.02E+
05

8.66E+
04

2.90E+
11

4.49E+
09

1.40E+
06

5.67E+
04

F15
1.56E+

04
3.08E+

02
1.86E+

04
3.76E+

02
1.84E+

04
1.02E+

04
8.13E+

03
3.49E+

02
1.52E+

04
1.93E+

02
5.99E

+
02

2.46E
+

01
F16

4.14E+
02

5.84E-01
4.26E+

02
9.41E-01

4.14E+
02

1.22E+
01

4.30E+
02

2.88E+
00

4.08E+
02

8.34E-01
9.18E

+
01

1.57E
+

01
F18

9.77E+
11

3.14E+
10

4.76E+
11

2.86E+
11

2.67E+
10

5.31E+
10

2.19E+
04

1.12E+
04

7.81E+
11

8.81E+
09

4.61E+
04

9.72E+
03

F20
1.13E+

12
2.82E+

10
4.48E+

11
2.64E+

11
5.26E+

10
7.80E+

10
1.16E+

03
1.34E+

02
8.83E+

11
2.86E+

10
1.10e+

03
6.76E+

01

120

0 1 2 3 4 5 7
ED-EDA and EDA-MCC have mean column ranks significantly different from tRP-ENS-EDA

ED-EDA

CCVIL

MLCC

sep-CMA-ES

EDA-MCC

tRP-ENS-EDA

(a) Under equal budget of 3 · 106 function evaluations

0 1 2 3 4 5 7

EDA-MCC and CCVIL have mean column ranks significantly different from tRP-ENS-EDA

ED-EDA

CCVIL

MLCC

sep-CMA-ES

EDA-MCC

tRP-ENS-EDA

·

(b) Under equal budget of 1.2 · 106 function eval-
uations

0 1 2 3 4 5 6

EDA-MCC, CCVIL and ED-EDA have mean column ranks significantly different from tRP-ENS-EDA

ED-EDA

CCVIL

MLCC

sep-CMA-ES

EDA-MCC

tRP-ENS-EDA

·

(c) Under equal budget of 0.6 · 106 function evaluations

Figure 5.4: Friedman multicomparison statistical test of our tRP-ENS-EDA with other
state of the arts methods. Overlapping intervals indicate no significant difference

121

CHAPTER 6

Random Embedding in Estimation of Distribution

Algorithm(REMEDA)

It has been observed that in many real-world large scale problems only few variables have

a major impact on the function value: While there are many inputs to the function, there

are just few degrees of freedom. We refer to such functions as having a low intrinsic

dimension. In this chapter we devise an Estimation of Distribution Algorithm (EDA)

for continuous optimisation that exploits low intrinsic dimension without knowing the

influential subspace of the input space, or its dimension, by employing the idea of random

embedding. While the idea is applicable to any optimiser, EDA is known to be remarkably

successful in low dimensional problems but prone to the curse of dimensionality in larger

problems because its model building step requires large population sizes. Our method,

Random Embedding in Estimation of Distribution Algorithm (REMEDA) remedies this

weakness and is able to optimise very large dimensional problems as long as their intrinsic

dimension is low.

122

6.1 Introduction

Optimisation over a high dimensional search space is challenging. High dimensionality

limits the usefulness of problems in practice. However, there are problems that are high

dimensional but can possibly be represented in low dimension [18]. This might render

very high dimensional problems solvable, as they are in fact not truly high-dimensional

[82]. It has also been noted that in certain classes of functions most decision variables

have an insignificant impact on the objective function. Examples include hyperparameter

optimization for neural and deep belief networks [9], automatic configuration of state-of-

the algorithms for solving NP-hard problems [41], optimisation problems in robotics [82],

and others [18]. In other words, these problems have low intrinsic dimensionality. In the

numerical analysis literature [18], the influential parameter subspace has been termed as

the ”active subspace”, and methods have been developed to estimate this subspace.

Fortunately, for optimisation, estimating the influential subspace is not required: In

[82], it was shown that a sufficiently large random subspace contains an optimum with

probability 1, and this was used to dramatically improve the efficiency of Bayesian opti-

misation by exploiting the low intrinsic dimensionality of problems.

In this chapter,1 we employ the random embedding technique and develop it further

to scale up Estimation of Distribution Algorithms (EDA) for problems with low intrinsic

dimension. Although the underlying theoretical considerations are applicable to any opti-

misation method, our focus on EDA is due to it being one of the most successful methods

in low dimensional problems [73] and most unsuccessful or expensive in high dimensions

[22, 47, 74].

1A shorter version of work presented in this chapter appears in Proc. of the 14-th International Con-
ference on Parallel Problem Solving from Nature (PPSN XIV), 17-21 September, Edinburgh, Scotland,
2016. This work was nominated for best paper award.

123

6.2 Intrinsic dimension of problems

High dimensionality limits the usefulness of problems in practice. However, it is most of

the time possible to represent high dimensional problems in low dimension. This means

the functions only varies along a few independent directions. This is because they are

being embedded in high dimension, but they are not really high dimensional. So we can

represent them in their low intrinsic dimensions. Therefore, if the methods are able to

exploit low intrinsic structure then very high dimensional problems might become man-

ageable due to the fact that they are not truly high-dimensional. Instead, the structure is

being embedded in high dimensional space [82] and can be appropriately represented in

a much lower dimension. The maximum number of dimensions that impacts significantly

on the objective function are called the intrinsic dimensions, otherwise known as the ef-

fective dimensions of a function, which is normally lower than the ambient dimension.

Definition. A function f : RD → R has intrinsic dimension di, with di < D, if

there exists a di dimensional subspace Υ such that ∀x ∈ RD, f(x) = f(ProjΥ(x)).

In the above, ProjΥ(x) denotes the orthogonal projection, i.e. ProjΥ(x) = ΦΦTx, where

Φ ∈ RD×di has columns holding a linear basis of Υ.

The following result in [82] shows that, for such functions, a global optimum exists in

a randomly chosen linear subspace – hence a low dimensional search is sufficient.

Theorem 6.2.1 ([82]). Assume we are given a function f : RD → R with intrinsic dimen-

sion di < d and a random matrix R ∈ RD×d with independent entries sampled from a

standard Gaussian. Then, with probability 1, for any x ∈ RD, there exists a y ∈ Rd such

that f(x) = f(Ry). �

Figure 6.1 illustrates theorem 6.2.1 above. The figure shows an 1D subspace denoted

as Υ or T in the figure embedded in a 2D ambient space. The red line which is labelled

124

as R, represents a randomly oriented subspace of dimension of 1. Recall that columns of

R are from a d dimensional subspace and d = 1 here. Here di = d = 1 and D = 2. Let

x∗ be a global optimiser of the function. The dashed line is orthogonal to Υ labelled as

T in the figure, going through x∗. Due to the special property of the functions, all points

on the dashed line has the same function value as x∗. The claim is, that there exist an

intersection point between the dashed line and the R. Therefore, it is enough to search

on R for a point that has the same function value as x∗.

Figure 6.1: Gaurantee that the optimum is in the subspace.

Given some box constraints on the original problem, the authors [82] develop an upper

bound on the search box required for the low dimensional search. However, their proof

only applies to the case when d = di, and in practice they recommend a smaller search

box and use a slightly larger d. Recall, in practice we have no knowledge of the value

of di. However, on synthetic problems, we conducted some experiments to try different

values of the internal dimension, d to see which values of d will contain the optimum

in the d-dimensional search box. The experimental results do appear to be better, with

125

the optimum existing in the d-dimensional box, when d is slightly larger than di. See

figure 6.2. The authors in [82] derived a bound on their box size, d but did not use it

in practice, instead they suggested using [−
√
d
√
d]. This was the box size they used

in all their experiments. We used the same box size to run our experiments, but their

recommended box size does not work when d = di. Therefore, we use the box size they

derived from theory and found out that it only works when d = di. See figure 6.3 for the

results of the experiment we carried out using different values of d = di. We conducted

experiemnts by trying different values of d = di on the box size authors in [82] derived

to check if that will work, since their recommended box size did not work when d = di.

From the results of these experiments, we can see that the box authors in [82] derived

is quite necessary since the algorithm works on d = di. We have also notice that in the

experimental part of [82], they have d > di and their theory does not apply in this case.

Therefore, we fill this gap in the next section.

In the next section we derive a bound on the search box that holds true for d > di, and

show that the required box size that guarantees to contain a global optimum is indeed

smaller when d is larger. Secondly, we devise an EDA optimisation algorithm that imple-

ments these ideas employing a random Gaussian embedding. In a subsequent section we

also extend this to sub-Gaussian embeddings to increase the efficiency of implementation.

6.3 REMEDA: Random Embedding EDA

In this section we present our REMEDA algorithm and explain how it exploits the low

intrinsic dimensionality of problems. Instead of optimising in the high dimensional space,

REMEDA will do a random embedding, using the random matrix R ∈ RD×d, d << D

with i.i.d. entries drawn from a standard Gaussian, and then optimises the function

g(y) = f(Ry), y ∈ Rd in the lower dimensional space.

The psuedo-code of REMEDA is given in algorithm 17. It takes the population size

126

10 20 30 40 50 60 70 80 90 100
0

5

10

15

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

d

2

d
5

d
6

d
8

d
50

d
100

d
200

d
400

d
500

(a) Shifted Sphere Function

10 20 30 40 50 60 70 80 90 100

2

4

6

8

10

12

14

16

18

20

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

(b) Shifted Rosenbrock Function

Figure 6.2: Trajectories showing different sizes of the internal dimension, d varied and
di = 2. They are averaged over 25 independent runs.

20 40 60 80 100 120

10
−10

10
−5

10
0

10
5

10
10

Generations

F
itn

es
s

−
 O

pt
im

al
 fi

tn
es

s

d=d
id

=2

d=d
id

=6

d=d
id

=10

d=d
id

=20

Figure 6.3: Trajectories showing results on the shifted sphere function when d = di.
These results are averaged over 25 independent restarts

N , box constraints for a D-dimensional problem, and the internal working dimension

d << D. As in basic EDA, the REMEDA algorithm then proceeds by initially generating

a population of individuals uniformly randomly. However, these individuals are generated

in the d-dimensional space, within some suitable box constraints in this space that are

determined from the given D-dimensional box. The details of how this is done will follow

shortly. The algorithm then evaluates the fitness of these individuals with the use of a

127

random embedding matrix R ∈ RD×d that transforms the d-dimensional points into the

original D-dimensional space of decision variables. The matrix R has entries drawn i.i.d.

from a standard Gaussian distribution, as in Theorem 1, i.e the first theorem. Based on

the fitness values obtained, the fittest individuals are selected using a selection method,

such as truncation selection. The maximum likelihood estimates (MLE) of the mean

µ ∈ Rd and the covariance Σ ∈ Rd×d of the promising solutions are computed from the

set of selected fittest individuals, and these are used to generate the new generation by

sampling from a multivariate Gaussian distribution. The new population is formed by

replacing the old individuals by the new ones. We also use elitism, whereby the best

individual of the previous generation is kept.

Algorithm 17 The Pseudocode of REMEDA with Population size N and low intrinsic
dimensionality of the problems, di

Inputs: N , D, d, Box
(1) Set the search box boundaries in the low-dimensional space Rd (cf. Theorem 2(

6.3.1) & text)
(2) Set P ← Generate N points uniformly randomly within the box in Rd to give an

initial population
(3) Set R← Generate a random embedding matrix, R ∈ RD×d.
Do

(4) Evaluate the fitness of yi as f(Ryi), i = 1...N
(5) Select best individuals P sel from P based on their fitness values
(6) Calculate the mean µ and covariance Σ of P sel

(7) Use the µ and Σ to sample new population, P new

(8) P ← P new

Until Termination criteria are met
Output: P

We have not yet specified how to determine the d-dimensional box constraints that

correspond to the given D-dimensional ones. Given some box constraints in RD, the

following theorem gives the required box constraints for the search in Rd.

Theorem 6.3.1. Let f : RD → R be a function with intrinsic dimension di < d < D that

we want to optimise subject to the box constraint χ ⊂ RD, where χ is centered around

128

0. Denote the intrinsic subspace Υ, and let Φ be a D× di matrix whose columns form an

orthonormal basis for Υ. Denote by x∗t ∈ Υ ∩ χ an optimiser of f inside Υ. Let R be a

D× d random matrix with independent standard Gaussian entries. Then there exists an

optimiser y∗ ∈ Rd such that f(Ry∗) = f(x∗t) w.p. 1, and for any choice of ε ∈ (0, 1), if

d > (
√
di +

√
2 ln(1/ε))2, then ||y∗||2 6 ||x∗t ||2√

d−
√
di−
√

2 ln(1
ε

)
with probability at least 1− ε. �

Proof: The existence of y∗ is guaranteed by Theorem 6.2.1 and the illustration of the

fact is shown in figure 6.1. The global optimisers outside the subspace Υ are irrelevant

since the function takes all its range of values in Υ. So our focus is to upper bound the

length of y∗.

From the proof of Theorem 6.2.1 in [82] and the illustration in figure 6.1, we know

that ∃y∗ ∈ Rd s.t.

ΦΦTRy∗ = x∗t (6.1)

Hence,

||x∗t || = ||ΦΦTRy∗|| ≥ smin(ΦΦTR)||y∗|| (6.2)

where we use the Rayleigh quotient inequality, and smin(·) denotes the smallest singular

value.

Note that ΦΦTR is a di×d random matrix with i.i.d. Gaussian entries. When d = di it

is a square matrix, and a bound on its smallest singular value was applied in [82]. Instead,

for the case d > di we employ the bound of Davidson & Szarek that applies to rectangular

Gaussian matrices [20]. We have for any ε ∈ (0, 1) for which
√
d−
√
di − ε > 0, that:

||y∗|| 6 ||x∗t ||√
d−
√
di − ε

(6.3)

with probability 1− exp(− ε2

2). Now setting exp(−ε2/2) = τ and solving for ε we get

ε =
√

2 ln(1
τ
). Plugging this back and renaming τ to ε completes the proof. � �

In Figure 6.4 we plotted the bound on the search box from our Theorem 6.3.1 for

129

0 10 20 30 40 50
0

5

10

15

20

25

d

u
p

p
e

r
b

o
u

n
d

 o
n

 |
|y

* ||

Rembo
Remeda

Figure 6.4: Comparison of our theoretical bound (Remeda), with various values of d > di
versus the bound of [82] (Rembo), which holds when d = di.

.

various values of d > di in comparison with the bound in [82] for d = di. We see that

our result is tighter for nearly all values of d and it explains why a smaller search box is

sufficient when d > di. The single point for Rembo in figure 6.4 is for d = di where as the

curve for Remeda is for values of d > di.

In practice, of course, we typically have no knowledge of the value of di, in which case

we cannot use theoretical bounds directly to set our search box. However, we can fix the

search box – for instance to
√
d-times the coordinates of the original box, as suggested

in [82], and our Theorem 6.3.1 then suggests that increasing d can eventually make this

fixed-size box sufficiently large to contain the optimiser y∗. This is what we used in the

experiments reported.

130

6.4 Experiments

Usually, when too small a population is used, evolutionary algorithms (EA) are not able

to find the optimum. When you use too large a population, EA finds the optimum, but

wastes some resources. Thus, in EA, we usually search for the smallest population size,

for which the EA works.

Here we would like to find the optimal population size as function of the lower internal

dimension, d of the problem. The hypothesis is that the optimal population size increases

as the d increases and vis versa. Therefore, to test our hypothesis, we go by the following

settings:

6.4.1 Parameter settings

To obtain the minimally required population size, a bisection search was used to find

the population size that results in the lowest number of evaluations required to reach a

predetermined value to reach (VTR). We start from a very large population size that

can solve the problem within a large predetermined budget and then search for a small

population size for which you cannot solve the problem anymore. In between these limits,

we use binary search to find the optimal population size. This optimal population size is

expressed as a function of d.

We use similar settings in our scalability experiment to see how scalable our method

is as di increases. We also conducted some experiments to determine the dimension d.

6.4.2 Test functions and performance measures

We created test functions with low intrinsic dimension 5 from existing benchmark func-

tions, by embedding the di-dimensional versions of these problems into higherD-dimensions.

That is, we add D− 5 additional dimensions which do not impact on the function value,

131

Table 6.1: Test functions of low intrinsic dimension of 2 or 5. o is the shift vector.

PN Name Expression
1 Sphere

∑di
j=1(xj − oj)2

2 Ackley’s 20− 20 exp(−0.2
√

1
di

∑di
j=1((xj − oj) ∗M)2)-

exp(1
di

∑di
j=1(cos(2π(xj − oj) ∗M))+e

3 Elliptic
∑di
j=1(106)

j−1
di−1 ∗ (xj − oj) ∗M)

4 Rosenbrock
∑di−1
j=1 (100(z2

j − zj+1)2 + (zj − 1)2)
z = x− o+ 1

5 Branin (−1.275x
2
1
π2 + 5x1

π + x2 − 6)2

+(10− 5
4π) cos(x1) + 10

and (optionally) rotate the search space around the origin in a random direction. Hence,

the functions will take D-dimensional inputs, but only 5 linear combinations of these input

variables determine the function value. The algorithm will have no knowledge of which

these directions are, not even that there are 5, but it has knowledge that the number of

important directions is much less that D. The functions we employed in this way here

are the following: Shifted sphere, Shifted Schwefel’s problem 1.2, Shifted Rotated High

Conditional Elliptic function, Shifted Ackley’s function and Shifted Rosenbrock function.

We also took the Branin function from [82] which has low intrinsic dimension 2. The

functions are listed in table 6.1. In table 6.1, Functions 1-4 have low intrinsic dimensions

of 5, while function 5 has low intrinsic dimension of 2.

We employ two common performance indicators:

(i) The fitness gap achieved under a fixed budget is the difference between the best

fitness achieved and the true optimum; (ii) The scalability is the budget of function

evaluations needed to reach a pre-defined value to reach.

132

6.5 Results and Discussion

6.5.1 Experiments on a di = 2 problem

In the first set of experiments we consider the D = 25 dimensional Branin function that

has low intrinsic dimension di = 2. Though, we should note that D can be as large in

principle, as we like since the working strategy and the budget usage of REMEDA are

independent of D. In this experiment, we vary the internal working dimension d, and the

population size N , under a fixed budget of 500 function evaluations.

Table 6.2: Fitness gap achieved by REMEDA on the Branin function (di = 2 embedded
in D = 25), with a total budget of 500 function evaluations.

Pop. size d=2 d=4 d=6

Mean std Mean std Mean std

300 1.4297 2.601 2.4908 3.1013 3.9007 3.0322

150 0.4128 0.6607 1.1701 1.313 2.1368 2.1046

80 0.826 2.9973 0.4193 0.4459 0.8303 0.9331

40 0.6375 2.9073 0.04 0.0969 0.1927 0.3865

30 0.6737 2.4939 0.0336 0.0853 0.1038 0.2615

The results are shown in table 6.2, as obtained from 50 independent repetitions of

each experiment. We can see from table 6.2 that d = di = 2 is not the best choice,

as the size of the search box is not sufficient at d = di. Also observe that increasing d

beyond 4 drops the performance – this is because searching in a larger dimensional space

is not necessary and is less resource-effective. Furthermore, we see for all d tested, the

higher the population sizes, the worse the performance. This is because a large population

unnecessarily uses up the budget when the search only happens in a small dimensional

subspace. With these insights in place, next we carry out a more comprehensive study.

133

6.5.2 Results and comparisons on problems with di = 5

In this section, we compare our method with state of the art approaches in heuristic

optimisation, on problems with low intrinsic dimension di = 5. The ambient dimension

was D = 1000 in these experiments, but as already mentioned this can be much higher

without causing problems as long as di stays low.

We expect that REMEDA should gain advantage from its ability to exploit low intrinsic

dimensional property while other methods have not been designed to make use of such

structure. On the other hand, REMEDA needs to find a good value for its internal

dimension d without knowing di (as this information is normally not available in practice).

This will use up part of the budget, but the hope is that it will pay off by a speedy progress

in the search.

We start with d = 1, using convergence as a stopping criterion, and move up pro-

gressively to higher values of d until the fitness reached upon convergence is no longer

improved by the increase of d. Within each value of d tried, we run REMEDA to conver-

gence, until the relative change in fitness is below a threshold: fv(g)−fv(g+1)
fv(g) < 10−8, where

g is the generation count and fv is the fitness value. When this condition is satisfied, we

move on to the next value of d, and re-initialise the population randomly (although other

schemes could also be investigated). This is the reason we see the spikes in REMEDA

in figure 6.6. The total number of fitness evaluations used throughout this process is the

total budget that we then provide to the competing algorithms.

The bar chart in the leftmost plot of Figure 6.5 shows an example of the fitness

gaps achieved with consecutive values of d. The error bars show one standard error

from 25 independent repetitions. In the rightmost plot we show the evolution of the

best fitness, averaged over 25 independent repetitions, on the run with the selected d

(as described above). Superimposed, we also show the trajectories of competing state of

the art methods: EDA-MCC [22], RP-EDA [47], and tRP-EDA [74]. All use the same

134

budget– The unequal lengths of these trajectories are due to the various methods using

part of their budget for setting their internal parameters. Now, to avoid the unequal

lengths of the trajectories as shown in figure 6.5, we also plot the fitness gap against the

total fitness evaluations used. See figure 6.6

From Figures 6.5 and 6.6, we can see that REMEDA attains a fitness value close

to the optimum efficiently, while the other methods are not able to achieve the same

within the same budget. We also superimposed an idealised version of EDA (EDA on

low dimensional version of the problem, where low dimension = the unknown intrinsic

dimension) – that is EDA that receives the di-dimensional version of the problem – and

we see that REMEDA has almost the same performance as the idealised version of EDA.

1 2 3 4 5 6 7 8 9 10

d

0

0.5

1

1.5

2

2.5

3

F
itn

es
s

-
O

pt
im

al
 fi

tn
es

s

×109

(a) Shifted Rosenbrock Function, Chosen

d = 9

2 4 6 8 10

Nos of function evals ×104

100

105

1010

F
itn

e
ss

 -
 O

p
tim

a
l f

itn
e

ss

Idealised
RP-EDA
tRP-EDA
REMEDA
EDA-MCC

(b) Shifted Rosenbrock Function

Figure 6.6: Finding d (left) and evolution of best fitness (right) for REMEDA, 3 com-
peting methods, and a di-dimensional EDA on the idealised problem. The figure on the
right is plotted with Gap against no. of fitness evaluations. Results are averaged over 25
independent runs.

A comprehensive comparison is presented in Table 6.3, which also includes comparison

with sep-CMA-ES [71] as one of the best state of the art. Bold font indicates statistically

significant out-performance. Friedman Test was used in computing the statistical test.

135

(a) Shifted Sphere Function, Chosen d = 7

50 100 150 200 250 300

Generations

10-10

100

F
itn

e
ss

 -
 O

p
tim

a
l f

itn
e

ss

Idealised
RP-EDA
tRP-EDA
REMEDA
EDA-MCC

(b) Shifted Sphere Function

1 2 3 4 5 6 7 8 9 10 11 12 13 14

d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
itn

es
s

-
O

pt
im

al
 fi

tn
es

s

×104

(c) Shifted Schwefel’s Problem 1.2, Chosen
d = 9

100 200 300 400

Generations

10-10

100

F
itn

e
ss

 -
 O

p
tim

a
l f

itn
e

ss

Idealised
RP-EDA
tRP-EDA
REMEDA
EDA-MCC

(d) Shifted Schwefel’s Problem 1.2

Figure 6.5: Finding d (left) and evolution of best fitness (right) for REMEDA, 3 compet-
ing methods, and a di-dimensional EDA on the idealised problem. Results are averaged
over 25 independent runs.

From table 6.3, REMEDA has out-performed all of the state of the art methods on

all the problems significantly. All the competing algorithms where given the same test

suite. They were all given problems with di dimensions embedded in a 1000 dimensional,

but REMEDA has the capability of exploiting the di dimensional structures of these

test suites, while the competing methods are not able to. This shows that exploring

and exploiting the structure of functions with low intrinsic dimension and searching in a

lower dimensional subspace instead of the ambient dimensional space is very crucial in

136

optimisation, thus confirming our hypothesis. In future, we would like to estimate the

exact intrinsic dimensions of such type of problems and existing methods such is [5] and

the references there could serve as a starting point.

Table 6.3: Comparing REMEDA with other state of the art methods.

Fn REMEDA sep-CMA-ES EDA-MCC tRP-ENS-EDA RP-ENS-EDA

Mean std Mean std Mean std Mean std Mean std
F1 0 0 3.81E+04 2.16E+04 6.41E+04 8.21E+03 37.80 3.17 25.79 2.05
F2 0 0 1.00E+07 7.92E+05 1.99E+06 1.42E+06 1.40E+08 7.99E+06 1.38E+08 6.59E+06
F3 0.18 0.91 4.75E+07 3.47E+06 2.90E+09 2.29E+08 6.81E+08 5.60E+07 2.84E+08 2.62E+07
F6 45.92 216.11 5.44E+06 2.09E+06 3.56E+10 4.93E+09 1.60E+07 1.88E+06 9.64E+06 1.44E+06
F8 14.19 7.89 21.67 0.01 21.34 0.06 21.66 0.01 21.43 0.06

6.5.3 Scalability experiments

Function evaluation is costly in most practical problems. Here we study what is the

required budget of function evaluations to reach a specified value of the fitness gap.

Before running these scalability experiments, we carried out some experiments to

determine the required population size as a function of the low intrinsic dimension of the

problem, so that we can vary the latter and set the population size automatically. For

this we use a bisection method as in [10]. To find the population size that results in the

lowest number of evaluations required to reach a predetermined (VTR), we start from a

very large population size that can solve the problem within a large predetermined budget

and then search for a small population size that cannot solve the problem anymore. In

between these limits we use binary search to find the optimal population size. We repeated

this 25 times and took the average.

We fix the value to reach (VTR) to 10−5, and vary the low intrinsic dimensionality

of the problem di ∈ [2, 50]. We count the number of fitness evaluations needed for our

proposed REMEDA to reach the VTR. The same experiment was repeated for three other

choices of VTR: 10−3, 102 and103 in order to make sure that the conclusions will not be

137

specific to a particular choice of the VTR. In all these experiments the maximum fitness

evaluations was fixed to 6× 106, so the algorithm stops when the budget is exhausted or

upon convergence.

Figure 6.7 shows the average number of function evaluations as computed from the

successful runs out of 25 independent repetitions for each problem and each low intrinsic

dimension tested. The success rates are as follows: For V TR = 1e − 3, success rate

= 86.359%, while that for V TR = 1e − 5 , 1e2 and 1e3 are 86.2564%, 93.9487% and

97.4359% respectively for the shifted sphere function. For the shifted Rastrigin function,

V TR = 1e− 3, success rate = 95.2%, V TR = 1e− 5, success rate = 95.2% V TR = 1e2,

success rate = 100% V TR = 1e3, success rate = 100%. For Shifted Ackley function,

V TR = 1e − 3, success rate = 72.9091% V TR = 1e − 5, success rate = 69.0909%

V TR = 1e2, success rate = 92.3636% V TR = 1e3, success rate= 92.5455%. For the

Shifted Elliptic function, V TR = 1e− 3, success rate = 11.4146% V TR = 1e− 5, success

rate = 11.0244% V TR = 1e2, success rate = 97.7561% V TR = 1e3, success rate =

97.7561%. From the figure, we observe a linear fit on scalability measurements.

6.6 REMEDA with sub-Gaussian Random Embed-

dings

Sub-Gaussian distributions are those distributions whose tail decays no slower than that

of the Gaussian [14]. It is a large class of distributions, and includes uniform bit-flipping

and sparse distributions that allow fast matrix-vector multiplication. The theory pre-

sented in our earlier sections was developed for Gaussian embedding. Here we investigate

the possibility to use random matrices R with i.i.d. sub-Gaussian entries instead – specif-

ically the mentioned two random matrices, originally proposed by [3] for efficient random

projections.

The first question is whether the optimum of a D-dimensional function with low

138

5 10 15 20 25 30 35 40 45 50

0.5

1

1.5

2

2.5

3

3.5

x 10
6

Size of effective dimension

N
o.

 o
f f

itn
es

s
ev

al
ua

tio
ns

VTR = 10−3

VTR = 10−5

VTR = 102

VTR = 103

(a) Shifted Sphere Function

5 10 15 20 25 30

0

5

10

15

x 10
6

Size of effective dimension

N
o.

 o
f f

itn
es

s
ev

al
ua

tio
ns

VTR = 10−3

VTR = 10−5

VTR = 102

VTR = 103

(b) Shifted Ackley Function

5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

x 10
6

Size of effective dimension

N
o.

 o
f f

itn
es

s
ev

al
ua

tio
ns

VTR = 10−3

VTR = 10−5

VTR = 102

VTR = 103

(c) Shifted Elliptic Function

5 10 15 20 25 30 35 40 45 50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
6

Size of effective dimension

N
o.

 o
f f

itn
es

s
ev

al
ua

tio
ns

VTR = 10−3

VTR = 10−5

VTR = 102

VTR = 103

(d) Shifted Rastrigin Function

Figure 6.7: Number of function evaluations taken by successful runs of REMEDA to reach
a pre-specified value to reach (VTR) as the problem low intrinsic dimensionality is varied
in di ∈ [2, 50]. The markers represent averages computed from 25 independent repetitions.

intrinsic dimension di can still be found by searching in a d << D dimensional random

subspace? With Gaussian embedding, Theorem 1 of [82] guaranteed this. However, a

crucial point in its proof was that the rank(ΦTR) is no smaller than di with probability

1. This is also required for eq.(6.1). The measure theoretic arguments that ensured this

in the case of Gaussian embedding no longer apply when we draw the entries of R from a

discrete distribution. Indeed, now the rank(ΦTR) = di only holds with high probability.

Analytically computing this probability would be awkward, therefore, we experimentally

139

estimate the rank of ΦTR by Monte Carlo trials, and these results are shown in figure

6.8. We see that the rank very rarely falls below di, only for the sparse R, and only when

the parameter di approaches d. From figure 6.8, as the intrinsic dimension approaches

the ambient dimension, the rank = d setting fails. The intuition is the probability of

succeeding becomes small.

0

5

10

15Intrinsic Dimension (d
i
) 15

20

25

Ambient Dimension (D)

99.8

99.85

99.9

99.95

100

%
 o

f
ra

n
k(

T
r(

Q
)*

A
)

=
 d

i

(a) Bit-flipping sub-Gaussian

Intrinsic Dimension (d
i
) Ambient Dimension (D)

99.8
0

99.85

25

99.9

%
 o

f
ra

n
k(

T
r(

Q
)*

A
)

=
 d

i

5

99.95

20

100

10

15 15

(b) Sparse sub-Gaussian

Figure 6.8: Percentage of trials that satisfies rank(ΦTR) = di out of 10,000 independent
trials.

We then proceed to extend our Theorem 6.3.1 to the sub-Gaussian case in the following

corollary.

Corollary 6.6.0.1 (to Theorem 6.3.1). Under the same conditions and with the same no-

tations as in Theorem 1, and if R is a D×d random matrix with independent sub-Gaussian

entries, then we have ||y∗|| 6 ||x∗t ||√
d−c
√
di−
√

1
c

ln(1
ε

)
with probability at least 1− ε, where c > 0

is a constant. �

The proof is identical to that of Theorem 1, except in the step from eq.(6.2) to eq.

(6.3), we use analogous result that bounds the smallest singular value of a sub-Gaussian

matrix from [79] Theorem 5.39.

140

Proof: From the proof of Theorem 6.2.1 in [82], we know that ∃y∗ ∈ Rd s.t.

ΦΦTRy∗ = x∗t (6.4)

By Rayleigh quotient inequality, we have

||x∗t || = ||ΦΦTRy∗|| ≥ smin(ΦΦTR)||y∗|| (6.5)

where smin(·) denotes the smallest singular value.

Now bounding a rectangular matrix, d > di as in our case, we employ theorem 5.39 from

vershynin [79].

For every ε > 0, for which
√
d− c

√
di − ε > 0, we have

||y∗|| 6 ||x∗t ||√
d− c

√
di − ε

(6.6)

with probability of atleast 1− exp(−cε2). Now setting exp(−cε2) = τ and solving for

ε we get, ε =
√

1
c

ln(1
τ
). Plugging this back and renaming τ to ε gives us,

||y∗|| 6 ||x∗t ||√
d− c

√
di −

√
1
c

ln(1
ε
)

(6.7)

Hence the proof. �

Since the constant c has appeared in Corollary 1 (which was 1 in the Gaussian case),

we may expect that the d-dimensional box guaranteed to contain the optimum may be

larger than it was in the Gaussian case – therefore if we search in the same box sizes we

might find that a larger d will be necessary.

To test this, and to assess the practical potential of using sub-Gaussian embeddings,

we repeated our previous experiments of searching for the value of d using the above

mentioned two sub-Gaussian random matrices, and plotted the results in comparison

141

with the Gaussian embedding in Figure 6.9. We can see that indeed the Sub-Gaussians

were slightly worse than the Gaussian and needed a slightly larger d, which means they

may require slightly more budget. But the differences are not large in practice, and a

more clever searching strategy for setting d may easily resolve this. For instance, on the

shifted sphere function the best d chosen by the Gaussian Random matrix is d = 7; the

bit-flipping sub-Gaussian selected d = 9, and the sparse sub-Gaussian selected d = 12.

For Shifted Schwefel’s Problem 1.2 the selected ds by the Gaussian was d = 9, the sub-

Gaussians chose d = 10, and d = 11 respectively. Clearly, the sub-Gaussian embeddings

remain competitive, and their advantage is fast matrix-vector multiplication, which can

be an asset when the ambient dimension D is very large, or when a speedy approximate

solution to the problem is sought.

6.7 Summary

We proposed random embedding in Estimation of Distribution Algorithm to scale up EDA

by exploiting the low intrinsic dimension of problems whereby the search takes place in

a much lower dimensional space than that of the original problem. Our method is suited

for large scale problems that take a large number of inputs but only depend on a few

linear combinations of them. On such problems we have demonstrated that our method

outperforms the state of the art algorithms in evolutionary computation. Our technique

and its theoretical basis are applicable in principle to any optimisation method, and in

the light that problems with low intrinsic dimension are quite prevalent in real-world

applications, it seems a worthwhile avenue for future work to make use of it more widely.

142

1 2 3 4 5 6 7

d

0

2000

4000

6000

8000

10000

12000

F
itn

es
s

-
O

pt
im

al
 fi

tn
es

s

Shifted Sphere function

Guassian
sub-Gaussian
sparse sub-Gaussian

(a) Shifted Sphere Function

1 2 3 4 5 6 7 8 9

d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
itn

es
s

-
O

pt
im

al
 fi

tn
es

s

×104 Shifted Schwefel Problem 1.2

Guassian
sub-Gaussian
sparse sub-Gaussian

(b) Shifted Schwefel Problem 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
itn

es
s

-
O

pt
im

al
 fi

tn
es

s

×107 Shifted Rot. High Cond. Elliptic Fn

Guassian
sub-Gaussian
sparse sub-Gaussian

(c) Shifted Rot. high Cond. Elliptic

1 2 3 4 5 6 7 8 9 10

d

0

0.5

1

1.5

2

2.5

3

3.5

4

F
itn

es
s

-
O

pt
im

al
 fi

tn
es

s

×109 Shifted Rosenbrock function

Guassian
sub-Gaussian
sparse sub-Gaussian

(d) Shifted Rosenbrock Function

Figure 6.9: Selecting d in the case of sub-Gaussian vs. Gaussian embeddings. Results
are averaged over 25 independent runs.

143

CHAPTER 7

Conclusion and Future Work

The thesis presents approaches that are capable of searching in large dimensional con-

tinuous domains and investigates the capabilities of heavy tails search distributions with

a clarification on a controversy that existed in the literature about the capabilities of

Gaussian versus Cauchy search distributions.

In our framework called MCEDA in chapter 3, we address the susceptibility of Gaus-

sian search distribution to premature convergence by using a heavy tail distribution called

Cauchy as search distribution instead of Gaussian since it has the ability of escaping the

early convergence due to its heavy tail and blend it together with the advantages of mul-

tivariate modelling to efficiently explore the search space. From extensive experiments

conducted on 16 benchmark functions comparing MCEDA with MGEDA, we found that

the long jumps of MCEDA due to its heavy tail paid dividend by outperforming MGEDA

when the population is far from the global optimum. We also found that our method is

able to work even with small population sizes. In comparing multivariate Cauchy EDA

with univariate Cauchy EDA, we found that the former was superior to the later, thus

bring in light the necessity of using Cauchy in a multivariate setting.

In chapter 4, we extended the comparison of Cauchy vs. Gaussian to high dimensional

144

search. The rationale was to check if our finding in the previous comparison will hold in

high dimensions and to resolve the controversy surrounding the merits of Cauchy search

distribution. We conducted a large empirical study to benchmark the performance of

Cauchy and Gaussian search distributions in EDA using a scalable black-box EDA op-

timizer. Our empirical results suggest that Cauchy search distributions perform badly,

especially in high-dimensional spaces. We then developed theory that explains why large

search steps are inefficient in high dimensional search spaces, and we showed that this inef-

ficiency is indeed unavoidable in practice. We argued that a Gaussian search distribution

has an in-built prioritizing strategy that implicitly focuses resources within a generation

on selecting good search directions which Cauchy lacks. Based on our theoretical insights

and understanding of high dimensional domains, a new framework was proposed from a

minor modification to the standard Gaussian EDA which enforces search within a gener-

ation to take place at a fixed radius of the current population centre. This results in a

remarkable improvement in high dimensional search.

Based on the good performances registered as a results of using heavy tail distribu-

tion in chapters 3 and 4(in the low dimensional regime), we decided to devise a new

approach for high dimensional continuous black-box optimization by building on a re-

cently proposed Random Projection Ensemble based EDA. Our focus was on the utility

of the heavy tailed distributions when employed to sample the elements of our Random

Projection matrices and named our approach t-Random Projection ensemble based EDA

(tRP-ENS-EDA). Our results from extensive experiments we carried out to test our new

approach suggest that taking Random Projection matrices with entries drawn with i.i.d t-

distribution increases exploration and at the same time maintains exploitation and focus.

We have shown that our method in comparison with a number of state of the art methods

is very competitive and superior at times on 1000 dimensional problems, which warrants

this method to be given the much needed attention it deserves by the experts/researchers

145

in this community.

Finally, in our effort to remedy the curse of dimensionality Evolutionary Algorithms,

especially the EDA type methods face, we proposed the random embedding technique in

Estimation of Distribution Algorithm to scale up EDA for problems that have a low in-

trinsic dimension by taking into consideration only the important directions of problems.

In this way, our search for the global optimum takes place in a much lower dimensional

space than that of the original problem. This method takes a large number of inputs

but only considers a few linear combinations of them. It can optimise problems of up to

very high dimensions as long as their intrinsic dimensions are low. On such problems we

have demonstrated that our method outperforms the state of the art algorithms which

do not utilise the intrinsic structure of these problems in evolutionary computation. Our

technique and its theoretical basis are applicable in principle to any optimisation prob-

lem with much higher ambient dimensions, provided sufficient computing resources are

available.

In Future, we would like to fully evaluate the promise of our new EDA with uninform

search distribution on a hypersphere method in chapter 4 and further develop it. Another

important direction for future work will be to extend and generalise our methodology to

other evolutionary search methods in order to investigate the generality of our conclusion

beyond EDAs. We will also focus on further developing the method highlighted in chapter

5, by adapting other parameters such as the dimension of the reduced space, k. Due to the

fact that problems with intrinsic dimensions are quite prevalent in real-world applications,

we think it is a worthwhile avenue to venture into for future work to make use of it more

widely. Therefore, we would like to focus on utilising the intrinsic dimensions of such

type of problems in our future methods. We shall be working on developing a more clever

approach of search for the best d that guarantee the existence of the global optimum in

the d dimensional box for problems with higher intrinsic dimensions than the 5 and 2

146

considered here. We shall also endeavour to estimate the intrinsic dimensions of such

type of problems just like it has been done in [15], [16] and [31]. The following paper

[5] and the references there in, could serve as a starting point in estimating the intrinsic

dimensions of such problem suite and project on to the intrinsic dimensional subspace

and do the optimisation there instead of doing it in the Ambient space.

147

APPENDIX A

1

A.1 Some Box Constrained Test Problems from the

CEC 2005 collection

A.1.1 Unimodal Functions

F1: Shifted Sphere Function

-1
100

0

1

50 100

2

×104

3

500

4

0
-50 -50

-100 -100

(a) F1: Shifted Sphere Function

148

Definition: F1(X) = ∑D
j=1(xj −Oj)2 − 450,

where O = {o1, ..., oD}: Shifted global optimum, D: Dimension

Search Space: −100 6 xj 6 100, j = 1, ..., D.

Global Optimum: x∗ = O, F1(x∗) = −450

F2: Shifted Schwefel’s Function 1.2

-2
100

0

50

2

100

×104

4

500

6

0
-50 -50

-100 -100

(a) F2: Shifted Schwefel’s Function 1.2

Definition: F2(X) = ∑D
i=1(∑i

j=1(xj −Oj)2)− 450,

where O = {o1, ..., oD}: Shifted global optimum, d: Dimension

Search Space: −100 6 xj 6 100, j = 1, ..., D.

Global Optimum: x∗ = O, F2(x∗) = −450

149

F3: Shifted Rotated High Conditioned Elliptic Function

0
100

0.5

1

50 100

1.5

×1010

2

500

2.5

3

0
-50 -50

-100 -100

(a) F3: Shifted Rotated High Conditioned Elliptic

Function

Definition: F3(X) = ∑D
j=1(106)

j−1
D−1 ((xj −Oj) ·M)2 − 450,

where O = {o1, ..., oD}: Shifted global optimum, D: Dimension, M : orthogonal matrix

Search Space: −100 6 xj 6 100, j = 1, ..., D.

Global Optimum: x∗ = O, F3(x∗) = −450

150

F4: Shifted Schwefel’s Problem 1.2 with Noise in Fitness

0
100

1

2

0

×104

3

-20
50

4

-40
-60

-80
0 -100

(b) F4: Shifted Schwefel’s Problem 1.2 with Noise in

Fitness

Definition: F4(X) = (∑D
i=1(∑i

j=1(xj −Oj)2)) · (1 + 0.4|N(0, 1)|)− 450,

where O = {o1, ..., oD}: Shifted global optimum, D: Dimension, X = {x1, ..., xD}

Search Space: −100 6 xj 6 100, j = 1, ..., D.

Global Optimum: x∗ = O, F4(x∗) = −450

151

F5: Schwefels Problem 2.6 with Global Optimum on Bounds

-1
200

0

1

100 200

×104

2

1000

3

0
-100 -100

-200 -200

(c) F5: Shifted Schwefel’s Problem 1.2 with Noise in

Fitness

Definition: F5(X) = max{|x1+2x2−7|, |2x1+x2−5|}, i = 1, ..., N, x∗ = [1, 3], F (x∗) = 0,

F5(X) = max{|AjX −Bj|} − 310, i = 1, ..., D, x = [x1, ..., xD]

where O = {o1, ..., oD}: Shifted global optimum, D: Dimension, A = D ∗D Matrix

Search Space: −100 6 xj 6 100, j = 1, ..., D.

Global Optimum: x∗ = O, F5(x∗) = −310

152

A.1.2 Multimodal Functions

F6: Shifted Rosenbrock Function

0

1000

-48 82

2000

-49 81

3000

80-50
79

-51
78

(d) F6: Shifted Rosenbrock Function

Definition: F6(X) = ∑D−1
j=1 (100((xj −Oj + 1)2 − (xj+1 −Oj+1 + 1))2 + ((xj −Oj + 1)−

1)2) + 390,

where O = {o1, ..., oD}: Shifted global optimum, D: Dimension

Search Space: −100 6 xj 6 100, j = 1, ..., D.

Global Optimum: x∗ = O, F6(x∗) = 390

153

F7: Shifted Rotated Griewank Function without Bounds

-180
0

-175

-170

-165

-250

-160

-155

-50

-150

-300

-100 -350

(e) F7: Shifted Rotated Griewank Function without

Bounds

Definition: F7(X) = ∑D
i=1(((xj−Oj)∗M)2

4000)−
D∏
i=1

cos((xj−Oj)∗M√
i

) + 1− 180,

where O = {o1, ..., oD}: Shifted global optimum, is outside of the initialization range

D: Dimension, M ′ : linear transformation matrix, condition number = 3

M = M
′(1 + 0.3|N(0, 1)|)

Search Space: 0 6 xj 6 600, j = 1, ..., D.

Global Optimum: x∗ = O, F7(x∗) = −180

154

APPENDIX B

1

B.1 Parameter Estimation of location(µ) and posi-

tive definite matrix(Σ) for Cauchy -Derivation

Multivariate Cauchy density function is defined as follows:

f(y;µ,Σ, D) =
Γ(1+D

2)
Γ(1

2)πD
2 |Σ| 12 [1 + (y − µ)TΣ−1(y − µ)] 1+D

2

(B.1)

Where y is the observed variable, D the dimension of the function, µ the location

parameter and Σ a matrix value parameter that encodes pairwise dependencies.

If y is our observed variable, then the data log-likelihood is defined as follows:

L(θ) =
N∑
n=1

log
∫
u
N(yi|µ,

Σ
u

).Ga(u|ν2 ,
ν

2)du (B.2)

Where u our unobserved or latent variable and θ is the parameter we want to estimate.

155

Our goal here is to fine the maximum likelihood estimate (MLE) of the parameter θ

which represents µ and Σ.

We Let the posterior probability of u given yi be:

P (u|yi) = P (yi|u).P (u)
P (yi)

(B.3)

This is proportional to the product of the normal distribution and Gamma distribu-

tion as shown below: A convolution of Gaussian and Gamma Distribution

This can be written as

P (u|yi) ∝ N(yi|µ,
Σ
u

).Ga(u|ν2 ,
ν

2) (B.4)

Now plugging in the probability density functions, we have

= 1
(2π)D/2|Σ

u
|D/2

exp(−1
2(yi − µ)T (Σ

u
)−1(yi − µ)) (ν2)ν/2(u)ν/2−1

Γ(ν2) exp(−ν
2u), D is dimension of

the data and ν the degree of freedom.

= 1
(2π)D/2|Σ|1/2(u)−D/2 exp(−

1
2(yi − µ)T (Σ)−1u(yi − µ)) (ν2)ν/2(u)ν/2−1

Γ(ν2) exp(−ν
2u)

∝ (u)D/2(u)ν/2−1exp(−1
2(yi − µ)T (Σ)−1u(yi − µ)− ν

2u)

∝ (u)D+ν
2 −1exp((−1

2(yi − µ)T (Σ)−1u(yi − µ)− ν

2)u) (B.5)

By comparing equation (21) with f(u, α, β) = βαuα−1

Γ(α) e−βu, we have

Ga(ν+D
2 , 1

2 [(yi − µ)TΣ−1(yi − µ) + ν])

156

E(ui) = ν+D
ν+δ(yi,µ,Σ) , where δ = 1

2(yi−µ)TΣ−1(yi−µ) is the Mahalanobis distance from

y to the center µ with respect to Σ. Now,

Now from (18), creating Expectation gives

= ∑N
n=1 log

∫
uQi(u).N(yi|µ,Σu).Ga(u| ν2 ,

ν
2)

Qi(u) du

= ∑N
n=1 logEu∼Qi [

N(yi|µ,Σu).Ga(u| ν2 ,
ν
2)

Qi(u)]

Now for any Qi s.t
∫
Qi(u)du = 1 and Qi(u) > 0, we have

=
N∑
n=1

logEu∼Qi [
P (yi|u; θ).P (u)

Qi(u)] >
N∑
i=1

Eu∼Qi [log
P (yi, u, θ)
Qi(u)] (B.6)

Equation (22) was obatined from Jensen’s inequalities

= ∑N
n=1

∫
uQi(u)log[N(yi|µ,Σu).Ga(u| ν2 ,

ν
2)

Qi(u)]du

This creates a lower bound on the function for any Q

=
N∑
n=1

Eu∼Qi [log
N(yi|µ, Σ

u
).Ga(u|ν2 ,

ν
2)

Qi(u)] (B.7)

Let
N(yi|µ, Σ

u
).Ga(u|ν2 ,

ν
2)

Qi(u) = C (B.8)

For the Jensen’s inequality in (22) to hold for equality, (24) should be a constant

157

So we need to choose Q so that P (yi,u,θ)
Qi(u) = Constant ∀u

To ensure this, the ratio. Qi(u) ∝ P (yi, u, θ) should remain constant. Also

∫
uQi(u) = 1 and Qi(u) > 0. Now the choice of

Qi(u) = P (yi,u,θ)∫
u
P (yi,u,θ)

must sum to 1

= P (yi,u,θ)
P (yi,θ) = P (u|yi, θ), by the definition of conditional probability.

Now in the E-step, we set, Qi(u) = P (u|yi, θ). So the E-step is

Qi(u) ∝ Ga(u|ν+D
2 , 1

2 [(yi − µ)TΣ−1(yi − µ) + ν])

Now from (23), we have , A = ∑N
n=1Eu∼Qi [log

N(yi|µ,Σu).Ga(u| ν2 ,
ν
2)

Qi(u)]

Plugging in the pdf’s, we have

A = ∑N
n=1Eu∼Qi [log(2π)−D/2|Σ|−1/2(u)D/2 − 1

2(yi − µ)T (Σ
u

)−1(yi − µ) + log(ν2)
ν
2 −

log(Γ(ν2))

+ log(u) ν2−1 − ν
2u]− logQi(u)

A = ∑N
n=1[Eui∼Qi(log(2π)−D/2|Σ|−1/2(u)D/2)− 1

2(yi−µ)TΣ−1(yi−µ)E(u)+E[log (ν2)
ν
2

Γ(ν2)]

+ (ν2 − 1)E(log(u))− ν
2E(u)]− E[logQi(u)]

158

∂A

∂µ
=

N∑
i=1

[
∂(−1

2(yi − µ)TΣ−1(yi − µ)E(ui))
∂µ

] (B.9)

∂(− 1
2 (yi−µ)TΣ−1(yi−µ)E(ui))

∂µ
= ∂(− 1

2 (yTi −µT)(Σ−1yi−Σ−1µ)
∂µ

= −1
2(yTi − µT)(−Σ−1) + (Σ−1yi − Σ−1µ)(1

2)

= [−1
2(−yTi Σ−1 + µTΣ−1) + (yiTΣ−1 − µTΣ−1)1

2]T

= [1
2y

T
i Σ−1 − 1

2µ
TΣ−1 + 1

2yi
TΣ−1 − 1

2µ
TΣ−1]T = [yTi Σ−1 − µTΣ−1]T

= Σ−1yi − Σ−1µ (B.10)

now plugging (26) into (25), we have

∂A
∂µ

= ∑N
i=1[(Σ−1yi − Σ−1µ)E(ui)]

Now since ∂A
∂µ

= 0, we have

= ∑N
i=1[(Σ−1yi − Σ−1µ)E(ui)] = ∑N

i=1 Σ−1yiE(ui)−
∑N
i=1 Σ−1µE(ui) = 0

∑N
i=1 Σ−1µE(ui) = ∑N

i=1 Σ−1yiE(ui)

µ
∑N
i=1E(ui) = ∑N

i=1 yiE(ui)

µ =
∑N
i=1 yiE(ui)∑N
i=1E(ui)

(B.11)

159

From (A) again, taking the derivative w.r.t Σ−1, we have

∂A
∂Σ−1 = ∑N

i=1[Eu∼Qi [
∂((log(2π)−D/2|Σ|−1/2(u)D/2))

∂Σ−1 − 1
2
∂((yi−µ)TΣ−1(yi−µ))u

∂Σ−1]

From the definition of ∂log(detA)
∂A

= (A−1)T = (AT)−1 and by the chain rule, we can

deduce that

∂log(detA)
∂A−1 = ∂log(detA)

∂A
∗ ∂A
∂A−1 = A−1 ∗ ∂(A−1)−1

∂A−1 . If B = A−1 Then

∂log(detA)
∂A−1 ∗ ∂A

∂A−1 = A−1 ∗ ∂B−1

∂B
and A−1 ∗ − 1

(A−1)2 = −A−1 ∗ A2 = −A

Now, ∂log|Σ|−
1
2

∂Σ−1 = −1
2
∂log|Σ|
∂Σ−1 = −Σ ∗ −1

2 = 1
2Σ

Therefore, ∂A
∂Σ−1 = ∑N

i=1[1
2Σ− 1

2
∂(yi−µ)TΣ−1(yi−µ)E(ui)

∂Σ−1]

∑N
i=1[1

2Σ− 1
2(yi − µ)(yi − µ)TE(ui)] = 0

1
2
∑N
i=1 Σ = ∑N

i=1
1
2(yi − µ)(yi − µ)TE(ui)]

NΣ = ∑N
i=1 (yi − µ)(yi − µ)TE(ui)

Σ = 1
N

∑N
i=1 (yi − µ)(yi − µ)TE(ui) Hence,

Σ = 1
N

N∑
i=1

(yi − µ)(yi − µ)TE(ui) (B.12)

160

List of References

[1] ”Large Scale Global Optimization 2010.” CEC 2010 Special Session.
http://nical.ustc.edu.cn/cec10ss.php, Accessed on Sept. 10, 2014. 2 citations
in sections 2.6 and 5.4.1.

[2] M. Abramowitz and I. A. Stegun (Eds.). Handbook of mathematical functions with
formulas, graphs and mathematical tables (applied mathematics series 55). Wash-
ington, DC: NBS., 1964. 4 citations in sections 5.2, 5.2, 5.2, and 5.2.

[3] Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with bi-
nary coins. Journal of Comp. & Sys. Sci, 66 (4):pp. 671–687, 2003. 3 citations in
sections 2.4, 2.4, and 6.6.

[4] D. Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with
binary coins. Computer and Systems Sciences, 66(4):671–687, 2003. 2 citations in
sections 2.4 and 2.4.

[5] L. Amsaleg, O. Chelly, and T. Furon. Estimating local intrinsic dimensionality. In
KDD, 2015. 2 citations in sections 6.5.2 and 7.

[6] R. Armañanzas, I. Inza, R. Santana, Y. Saeys, J.L. Flores, J.A. Lozano, Y. Van
de Peer, R. Blanco, V. Robles, C. Bielza, and P. Larrañaga. A review of estimation
of distribution algorithms in bioinformatics. BioData Mining, 2008. One citation in
section 2.3.1.

[7] K. Ball. An Elementary Introduction to Modern Convex Geometry. In: Flavors of
Geometry. MSRI Publications, 1997. One citation in section 4.5.1.

[8] R. Bellman. The theory of dynamic programming. 1955. One citation in section
2.3.2.

161

[9] J. Bergstra and Y. Bengio. Random search for hyperparameter optimization. JMLR,
13:281–305, 2012. One citation in section 6.1.

[10] P. Bosman. On empirical memory design, faster selection of bayesian factorizations
and parameter-free Gaussian EDAs. In Proceedings of Genetic and Evolutionary
Computation Conference (GECCO), pp. 389-396. ACM, 2009. One citation in section
6.5.3.

[11] P. Bosman and D. Thierens. An algorithmic framework for density estimation based
evolutionary algorithms. Technical report, UU-CS., 1999. One citation in section
2.3.1.

[12] P. A.N Bosman and J. Grahl. Matching inductive search bias and problem structure
in continuous estimation of distribution algorithms. European Journal of Operational
Research, pp. 1246-1264, 185.3, 2008. One citation in section 2.

[13] P.A.N Bosman and T. Dirk. Numerical optimization with real-valued estimation of
distribution algorithms. In Scalable Optimization via Probabilistic Modeling, Springer
Berlin Heidelberg, pp. 91-120., 2006. 2 citations in sections 2.8.4 and 2.8.4.

[14] V.V. Buldygin and Yu.V. Kozachenko. Subgaussian random variables. Ukrainian
Math, 32:483 – 489, 1980. One citation in section 6.6.

[15] F. Camastra. Data dimensionality estimation methods: A survey. Elsevier, 2011.
One citation in section 7.

[16] F. Camastra and A. Staiano. Intrinsic dimension estimation, pp 26-41. Information
Sciences, 328, 2016. One citation in section 7.

[17] W.J. Conover. Practical nonparametric statistics. 1999. One citation in section 5.4.2.

[18] P. Constantine. Active subspace methods in theory and practice: applications to
kriging surfaces. SIAM J. Sci. Comput., pages pp. 1500–1524, 36(4). 2 citations in
sections 1.3 and 6.1.

[19] S. Dasgupta and A. Gupta. An elementary proof of the johnson-lindenstrauss lemma.
Random Struct. Alg. 22 , pp 60Ű65., 2002. 2 citations in sections 2.4 and 2.4.

162

[20] K.R. Davidson and S.J. Szarek. Local operator theory, random matrices and banach
spaces, in handbook of the geometry of banach spaces, vol 1. pp. 317-366., 2001. One
citation in section 6.3.

[21] J. DemŽar. Statistical comparisons of classifiers over multiple data sets. Machine
Learning Research, 7:1–30, 2006. One citation in section 5.4.2.

[22] W. Dong, T Chen, P. Tiño, and X. Yao. Scaling up estimation of distribution algo-
rithm for continuous optimisation. IEEE Transaction on Evolutionary Computation,
Vol 17, Issue 6, pp. 797-822, 2013. 10 citations in sections 1.2, 2.3.1, 2.8, 2.8.3, 4.1,
4.2, 4.3.1, 4.3.1, 6.1, and 6.5.2.

[23] W. Dong and X. Yao. Covariance matrix repairing in gaussian based edas. In
Congress on Evolutionary Computation (CEC), 2007. 2 citations in sections 2.4
and 1.

[24] W. Dong and X. Yao. Unified eigen analysis on multivariate gaussian based estima-
tion of distribution algorithms. Information Sciences, 2008. 6 citations in sections
2.3.2, 2.8, 2.8.2, 2.8.2, 2.8.2, and 2.9.

[25] R. J. Durrant and A. Kabán. Error bounds for Kernel Fisher Linear Discriminant in
Gaussian Hilbert space. In Proc. of the 15th international Conference on Artificial
Intelligence and Statistics (AISTATS), pp 337-345, 2012. 2 citations in sections 4.5.2
and 4.5.2.

[26] R.J Durrant and A. Kaban. Random projections for machine learning and data
mining: Theory and applications. Technical report, University of Birmingham, 2012.
2 citations in sections 2.4 and 2.

[27] R.J Durrant and A. kaban. A tight bound on the performance of fisher’s linear
discriminant in randomly projected data spaces. Pattern Recognition Letters, 33:pp
911 – 919, 2012. One citation in section 5.2.

[28] C. Echegoyen, Q. Zhang, A. Mendiburu, R. Santana, and J.A. Lozano. On the limits
of effectiveness in estimation of distribution algorithms. 2011. One citation in section
2.9.

163

[29] A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transaction on Evolutionary Computationtion. Vol 3, Issue 2, pp.
124-141, 1999. One citation in section 5.3.

[30] N. Hansen et al. Comparing results of 31 algorithms from the black-box optimization
benchmarking bbob-2009. ACM, 2010. One citation in section 2.8.4.

[31] M. Fan, N. Gu, H.Qiao, and B. Zhang. Intrinsic dimension estimation of data by
principal component analysis. CoRR, 2010. One citation in section 7.

[32] W. Feller. An introduction to probability theory and its applications., volume 2. John
Wiley & Sons, 2008. One citation in section 2.8.1.

[33] D. B. Fogel. What is evolutionary computation? IEEE Spectrum, pp. 26-32., 2000.
One citation in section 2.2.1.

[34] J. Friedman. An overview of predictive learning and function approximation. NATO
ASI Series of Computer and Systems Sciences, pp. 1-61, 136, 1994. One citation in
section 2.3.2.

[35] N Hansen. The cma evolution strategy: a comparing review. Springer, 2006. 2
citations in sections 2.8.4 and 2.8.4.

[36] N. Hansen. Towards a New Evolutionary Computation. Springer Berlin Heidelberg,
2006. One citation in section 2.8.

[37] N. Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 function
testbed. In Proc. of Genetic and Evolutionary Computation (GECCO), pp. 2389-
2396, 2009. One citation in section 4.1.

[38] N. Hansen, F. Gemperle, A. Auger, and P. Koumoutsakos. When do heavy-tail
distributions help? In Proc. of the 9th International Conference on Parallel Problem
Solving from Nature (PPSN), LNCS 4193, pp. 62-71, 2006. 2 citations in sections 4
and 4.4.3.

164

[39] N Hansen, M. Hausschild, and M. Pelikan. An introduction and survey of estimation
of distribution algorithms. Swarm and Evolutionary Computation, Issue 3, pp. 111-
128, 1, 2011. One citation in section 2.2.

[40] N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, pp. 159-195, 9.2, 2001. One citation in section
2.8.4.

[41] F. Hutter. Automated Configuration of Algorithms for Solving Hard Computational
Problems. PhD thesis, 2009. One citation in section 6.1.

[42] C. Isbell J. De Bonet and P. Viola. Mimic: Finding optima by estimating. 1997.
One citation in section 2.3.1.

[43] J.Sobieszczanski-Sobieski and R.T Haftka. Multidisciplinary aerospace design opti-
misation: Survey of recent developments. Struct. optim, 48:1–23, 2013. One citation
in section 1.2.

[44] A. Kabán. New bounds for compressive linear least squares regression. In The 17-th
International Conference on Artificial Intelligence and Statistics (AISTATS 2014),
2014. One citation in section 3.

[45] A. Kabán. Non-asymptotic analysis of Compressive Fisher Discriminants in terms of
the effective dimension. In Proc. of the 7th Asian Conference on Machine Learning
(ACML), Journal of Machine Learning Research-Proceedings Track, pp. 17-32, 2016.
One citation in section 4.5.2.

[46] A. Kabán, J. Bootkrajang, and R.J. Durrant. Towards large scale continuous eda:
a random matrix theory perspective. In Christian Blum and Enrique Alba, editors,
GECCO, pages 383–390. ACM, 2013. 8 citations in sections 1.2, 2.4, 2.4, 2.9, 5.2,
5.2, 5.2, and 5.4.2.

[47] A. Kabán, J. Bootkrajang, and R.J. Durrant. Towards Large Scale Continuous EDA:
A Random Matrix Theory Perspective. Evolutionary Computation, MIT Press, 2016
(In Print). 8 citations in sections 2.8, 2.8.5, 2.8.5, 3.1, 4.1, 5.2, 6.1, and 6.5.2.

[48] O. Kramer. Self-adaptive heuristics for evolutionary computation., volume 147.
Springer Berlin Heidelberg., 2008. 2 citations in sections 2.8.4 and 2.8.4.

165

[49] P. Larranaga and J.A Lozano. Estimation of Distribution Algorithms: A new tool
for Evolutionary Computation. Kluwer Academic Publishers, 2001. 4 citations in
sections 1.2, 1.3, 2.2.2, and 3.1.

[50] P. Larranga and J.A. Lozano. Estimation of Distribution Algorithms: A new tool
for evolutionary computation. Kluwer Academic Publishers, 2002. One citation in
section 2.9.

[51] T. Sonada M. Hasenjager, B. Sendhoff and T. Arima. Three dimensional evolution-
ary aerodynamics design optimisation with CMA-ES. In Genetic and Evolutionary
computation conference, pages 2173–2180, 2005. One citation in section 1.2.

[52] B. Newhouse M. Mahoney and G. Mukherjee. Algorithms for modern massive data
set analysis. In Lecture Notes. 2009. 2 citations in sections 2.4 and 2.4.

[53] Y. Jin M. Olhofer and B. Sendhoff. Adaptive encoding for aerodynamic shape optimi-
sation using evolutionary strategies. In IEEE Congress on Evolutionary Computation,
volume 2, pages 576–583, 2001. One citation in section 1.2.

[54] D. Goldberg und F. Lobo M. Pelikan. A survey of optimization by building and
using. Computational Optimization and Applications, 2002. 3 citations in sections
2.2, 2.2.1, and 2.2.1.

[55] Mei, Omidvar, Li, and Yao. Competitive divide-and-conquer algorithm for uncon-
strained large scale black-box optimization. ACM Transactions on Mathematical
Software (TOMS), 42(2):13, 2016. One citation in section 2.6.4.

[56] H. Muehlbrandt. Large scale optimization with estimation of distribution algorithms.
Master’s thesis, School of Computer Science, University of Birmingham, 2013. 3
citations in sections 2.3.1, 2.8.1, and 2.8.1.

[57] H. Muhlenbein and T. Mahnig. Convergence theory and application of the factorized
distribution algorithm. Computing and Information Technology, 7:19–32, 1999. One
citation in section 2.9.

[58] M. N. Omidvar and X. Li. A comparative study of CMA-ES on large scale global
optimisation. In Proc. AI 2010: Advances in Artificial Intelligence, pp. 303-312,
2011. One citation in section 4.1.

166

[59] M.N.i Omidvar, X. Li, and K. Tang. Designing benchmark problems for large-scale
continuous optimization. Information Sciences, 316:419–436, 2015. 2 citations in
sections 2.6.1 and 2.6.4.

[60] Mohammad Nabi Omidvar, Xiaodong Li, Yi Mei, and Xin Yao. Cooperative co-
evolution with differential grouping for large scale optimization. IEEE Transactions
on Evolutionary Computation, 18(3):378–393, 2014. 2 citations in sections 2.8.3
and 2.8.3.

[61] T. Paul and H. Iba. Linear and combinatorial optimizations by estimation of dis-
tribution algorithms. In Proceedings of the 9th MPS Symposium on Evolutionary
Computation, 2002. 2 citations in sections 2.2 and 2.3.1.

[62] Petersen & Pedersen. The matrix cookbook. In Version: October 3, 2005, Page 53.
2005. One citation in section 5.1.

[63] D. Peel and G. McLachlan. Robust mixture modelling using the t distribution.
Statistics and Computing, pp. 339-348, 2000. 3 citations in sections 3.2, 3.2.1, and 4.2.

[64] J.J. Liang K. Deb K. Y.P. Chen A. Auger P.N Suganthan, N. Hansen and S. Ti-
wari. Problem definitions and evaluation criteria for the cec 2005 special session on
real-parameter optimisation. Technical report, CEC 2005 Special Session on Real-
Parameter Optimisation., 2005. 2 citations in sections 5.3 and 5.4.1.

[65] P. Poš́ık. BBOB-benchmarking a simple Estimation of Distribution Agorithm with
Cauchy distribution. In Proc. of the 11th annual conference companion on Genetic
and evolutionary computation conference (GECCO), pp. 2309-2314, ACM, 2009. 2
citations in sections 3.1 and 4.1.

[66] P. Poš́ık. Comparison of Cauchy EDA and BIPOP-CMA-ES algorithms on the BBOB
noiseless testbed. In Proc. of the 12th annual conference companion on Genetic and
evolutionary computation (GECCO), pp. 1697-1702, 2010. One citation in section 4.

[67] P. Poš́ık. Comparison of Cauchy EDA and G3PCX algorithms on the BBOB noise-
less testbed. In Proc. of the 12th annual conference on Genetic and evolutionary
computation (GECCO), pp. 1753-1760, 2010. One citation in section 4.

167

[68] Mohsen. Pourahmadi. High-dimensional covariance estimation. 2013. One citation
in section 2.8.2.

[69] P.Poš́ık. Preventing premature convergence in a simple eda via global step size
setting. In In the Parallel Problem solving from Nature.Volume 5199 of lecture notes
in computer science, pages 549-558., 2000. 2 citations in sections 2.7 and 3.1.

[70] R. Raymond and N. Hansen. A simple modification in cma-es achieving linear time
and space complexity. In Parallel Problem Solving from Nature-PPSN . Springer
Berlin Heidelberg, 296-305., 2008. One citation in section 2.8.

[71] R. Ros and N. Hansen. A simple modification in cma-es achieving linear time and
space complexity. In Proceedings of PPSN, pp. 296-305, 2008. 2 citations in sections
2.8.4 and 6.5.2.

[72] N.Hansen D. Büche J. Ocenasek S. Kern, S.D. Müller and P. Koumoutsakos. Learn-
ing probability distributions in continuous evolutionary algorithms- a comparative
review. In Natural Computing, pp. 77-112., volume 3.1, 2004. One citation in section
2.8.4.

[73] M. L. Sanyang and A. Kabán. Multivariate Cauchy EDA Optimisation. In Proc. of
the International Conference on Intelligent Data Engineering and Automated Learn-
ing (IDEAL), LNCS 8669, pp. 449-456, 2014. 5 citations in sections 1.1, 2.3, 2.9,
4.1, and 6.1.

[74] M. L. Sanyang and A. Kabán. Heavy tails with Parameter Adaptation in Random
Projection based continuous EDA. In Proc. of the 2015 IEEE Congress on Evolution-
ary Computation (CEC), pp. 2074-2081, 2015. 2 citations in sections 6.1 and 6.5.2.

[75] T. Schaul, T. Glasmachers, and J. Schmidhuber. High dimensions and heavy tails
for natural evolution strategies. In Proc. of the 13th Annual Conference on Genetic
and Evolutionary Computation (GECCO), pp. 845–852. ACM, 2011. 7 citations in
sections (document), 4, 4.1, 4.3.1, 4.4, 4.4.1, and 4.4.1.

[76] Y.W. Shang and Y.H. Qui. A note on the extended rosenbrock function. Evolutionary
Computation, 14:119–126, 2006. One citation in section 1.2.

168

[77] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger, and S. Ti-
wari, editors. Problem Definitions and Evaluation Criteria for the CEC 2005 Special
Session on Real Parameter Optimisation, 2005. 5 citations in sections 2.6, 3.3, 3.3.1,
4.3, and 4.3.1.

[78] R. Tibshirani T. Hastie and J. Friedman. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer-Verlag, 2008. One citation in section
2.3.2.

[79] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. In
Y. Eldar and G. Kutyniok, editors, Compressed Sensing, Theory and Applications,
Chapter 5, pp. 210-268. Cambridge University Press, 2012. 2 citations in sections 6.6
and 6.6.

[80] Z. Yang W. Chen, T. Weise and K. Tang. Large-scale global optimization using co-
operative co-evolution with variable interaction learning. In Parallel Problem Solving
from Nature, Bd. 11, pp. 300-309, 2010., 2010. 2 citations in sections 2.8 and 2.8.3.

[81] Y. Wang and B. Li. A restart univariate Estimation of Distribution Algorithm:
Sampling under mixed Gaussian and Lévy probability distribution. In Proc. of IEEE
Congress on Evolutionary Computation (CEC), pp. 3917-3924, 2008. 2 citations in
sections 2.9 and 4.1.

[82] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. de Freitas. Bayesian optimization
in a billion dimensions via random embeddings. In IJCAI, 2013. 13 citations in
sections (document), 2.9, 6.1, 6.2, 6.2.1, 6.2, 6.3, 6.3, 6.4, 6.3, 6.4.2, 6.6, and 6.6.

[83] K. Weicker and N. Weicker. On the improvement of co-evolutionary optimizers by
learning variable inter-dependencies. In Proceedings of the Congress on Evolutionary
Computation on. Vol. 3., 1999. 5 citations in sections 2.3.1, 2.8, 2.8.3, 2.8.3, and 2.9.

[84] Y.Y. Wong, K.H. Lee, K.S. Leung, and C.W. Ho. A novel approach in parameter
adaptation and diversity maintenance for genetic algorithms. Soft Computing. Vol.
7. Issue 8. pp. 506-515, 2003. One citation in section 5.3.

[85] Q. Xu, M. L. Sanyang, and A. Kabán. Large Scale Continuous EDA Using Mutual
Information. In Proc. of the 2016 IEEE Congress on Evolutionary Computation
(CEC), 2016 (To Appear). One citation in section 4.2.

169

[86] X. Yao, Y. Liu, and G. Lin. Evolutionary programming made faster. IEEE Transac-
tion on Evolutionary Computation, Vol. 3, pp. 82-102, 1999. 6 citations in sections
1.3, 2.7, 2.8.1, 2.9, 3.1, and 4.1.

[87] B. Yuan. and M. Gallagher. On the importance of diversity maintenance in Estima-
tion of Distribution Algorithms. In Proc. of the Genetic and Evolutionary Compu-
tation Conference (GECCO), Vol. 1, pp 719-729, 2005. 3 citations in sections 2.2.2,
2.7, and 3.1.

[88] K. Tang Z. Yang and X. Yao. Multilevel cooperative co-evolution for large scale
optimization. In IEEE World Congress on Computational Intelligence 2008 (CEC
2008), 2008. 3 citations in sections 2.8, 2.8.3, and 4.

170

