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Abstract

An automatic analysis of bird vocalisations for the identification of bird species, the study

of their behaviour and their means of communication is important for a better under-

standing of the environment in which we are living and in the context of environmental

protection. Currently, the highly skilled bird surveyors who observe and monitor bird

species identify them visually and more often acoustically, especially in habitats with low

visibility. The high variability of vocalisations within different individuals makes species’

identification challenging for bird surveyors. In addition, there are many amateur bird

watchers, all of whom use book-based bird guides in order to identify birds. A device

that could be left on site and could screen bird songs and identify the bird species, would

provide a more complete survey than is possible with a small number of surveyor visits,

and furthermore would reduce the cost. Hence, the availability of a reliable automatic

bird identification system through their vocalisations, would be of great interest to pro-

fessionals and amateurs alike.

A part of this thesis provides a biological survey on the scientific theories of the study

of bird vocalisation and corresponding singing behaviours.

Another section of this thesis aims to discover a set of element patterns produced by

each bird species in a large corpus of the natural field recordings. This is performed in

three steps. First, a set of frequency tracks segments are extracted from each vocalisation

acoustic signal, by using a sinusoidal detection method. Then in the next step, a novel

approach is proposed to search for partial and multiple matchings between each pair of

detected segments, using a modified DTW. This is implemented by several parallel DTW

searches; each performs from a different starting point on one of the segments and can

start anywhere on the other segment. Then in the last step, these DTW searching out-

puts consisting of the obtained pairwise partial similarity score with the corresponding



matching path of the entire detected segments, are used in a novel presented hierarchical

clustering approach to group all the homogeneous structured segments into a set of dis-

tinct element-based vocalisation clusters. The obtained result has demonstrated the good

coherence of element patterns within each cluster and clearly distinctive patterns among

the clusters.

This thesis aims to develop an automatic system for the identification of bird species

from natural field recordings. Two HMM based recognition systems on the frequency

tracks segments, which were detected, are presented in this research. In the baseline

system the entire segments of each bird species are modelled with a single HMM model.

Then in a novel bird identification approach, a element-based HMM recognition system

is presented and each individual vocalisation element is modelled with a single HMM.

To build the corresponding element HMMs, as there is no such labelling information

available for the vocalisation elements in the real natural recorded corpus, the output of the

above-mentioned unsupervised discovery method is used as the training label information.

Experiments have been performed on over 38 hours of natural field recordings, consisting

of 48 bird species. Evaluations have been demonstrated where the proposed element-

based HMM system obtained a recognition accuracy of over 93% by using 3 seconds of

detected signal and over 39% recognition error rate reduction, compared to the baseline

HMM system of the same complexity.
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Chapter 1

INTRODUCTION

1.1 Introduction

Identification of bird species with an automatic analysis of bird vocalisations has many

potential applications in ecology, nature conservation monitoring, and vocal behavioural

studies. Scientific research, such as [1], on different bird species demonstrates that birds

are a good sign of the state of our living environment; since they are widely distributed,

they react rapidly to variations in environmental conditions such as climate change. There

are around 700 environmental consultancy companies in the UK which cumulatively carry

out thousands of bird survey days each year. These bird surveys are performed as a

standard part of the environmental impact assessment of sites due for development, or in

the context of conservation. Currently, these surveys are traditionally performed by a large

number of highly skilled bird surveyors and ornithologists, who observe and monitor bird

species, identify them visually and more often acoustically, especially in habitats with

low visibility. The wide variability of vocalisations within different individuals makes
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species’ identification challenging for bird surveyors. Also, surveys performed by different

people may not be entirely comparable, as each surveyor may have a different level of

skills. Hence, this is an area where automated identification of bird species from their

vocalisation systems could offer huge advantages. Use of an automated analysis of bird

vocalisations in acoustical monitoring systems, provides more efficient observation with

lower surveying costs. Moreover, there are many amateur birdwatchers, all of whom use

textual bird guides, such as books and magazines, in order to identify birds. Thus, an

automatic bird recognition (software) application would also provide an educational and

entertaining alternative for both amateur and professional birdwatchers.

Automatic processing of bird vocalisations is a relatively recent research field [2, 3, 4]

and many previous related approaches are developed based on the techniques which are

used in speech and language signal processing. The main goal of this thesis is to present

an automatic system for the identification of bird species from natural field recordings.

1.2 Major Contributions

The research introduced in this thesis provides original contributions to the field of au-

tomatic processing and classification of bird acoustic signals. The major contributions of

this thesis are summarised as follows:

1- The manual annotation of a large corpus of bird vocalisation recording files, which

are recorded in natural field environments. In order to evaluate the performance of the

automatic segmentation and feature extraction procedures, and also to allow other re-

searchers to perform and evaluate comparative experiments with the real field corpus, the

whole data is inspected manually to obtain the acoustic event-based label file for each
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vocalisation recording. For the sake of refining or modifying the acoustic events in the

provided labelling files, a user interface (a MATLAB script) has been supplied among the

annotation files (Chapter 4).

2- Development of a partial DTW similarity calculation algorithm to search for the

partial and multiple matchings between a given pair of (temporal) sequences. In order

to find the partial paths, the proposed algorithm employs a variant of DTW in several

searching procedures; where each search considers a different time-stamp on one of the

sequences and allows the DTW alignment path to start and end anywhere on the second

sequence. The obtained pairwise partial similarity path can be represented by the partial

similarity score and the corresponding time-stamps of the detected partial path on both

sequences. This novel method is explained in Chapter 6.

3- Development of a novel hierarchical clustering algorithm that employs the (obtained)

partial similarity information, including the similarity scores and the corresponding time-

stamps of the partial path, of the entire vocalisation segments of each bird species in order

to group together all structurally similar segments. Several rules and conditions are used

in this method to control the merging decisions. In other words, the merge decisions of the

clustering procedure are always based on further investigations of the prospective likeness

structure of the group, including both the merging objects. This clustering algorithm,

along with the partial DTW similarity calculation algorithm are used in an unsupervised

manner to discover a set of distinct vocalisation elements for each bird species in the data

set. This novel algorithm is explained in Chapter 6.

4- Development of a novel automatic bird species identification system based on HMM

modelling of individual element vocalisation units. In this approach, instead of employing

a single HMM model for each bird species, a single HMM is used to model each type

of vocalisation pattern that is available in each particular bird species. As there is no
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further element-level information available among the natural field recordings, training the

element-based models is not practical. Hence, this proposed system employs the outcome

of hierarchical clustering algorithm, as label information to train the HMM models. The

experimental evaluations on the proposed identification approach demonstrate that the

recognition accuracy is significantly improved with the error rate reduction between 39%

and 48% in comparison with the proposed baseline system. This novel recognition system

is explained in Chapter 7.

1.3 Thesis structure

This thesis is organised in eight chapters with two appendices, A and B. Figure 1.1 shows

a block diagram of the thesis structure. The following sections summarise the information

provided in each chapter.

1.3.1 Chapter 2 - Literature review of bird sound recognition

systems and techniques

This chapter describes the background techniques of audio pattern processing for devel-

oping a typical automatic audio recognition system.

1.3.2 Chapter 3 - The study of bird vocalisation

This chapter introduces the basic biological theories of bird vocalisations by studying the

communication and singing behaviours of typical passerine birds; this is followed by a
4



description of the corresponding song terminology and the scientific theories about vocal

learning and development procedures in young birds.

1.3.3 Chapter 4 - Bird vocalisation corpus

The first part of this chapter introduces a brief literature review of the large, available

bird vocalisation archives, followed by a description of the data set which has been used in

recent international bird classification challenges. In the second part of the chapter, firstly

the database which is used in all the experimental evaluations of this study is presented;

then each vocalisation audio file of this large database, which was recorded in the natural

habitats of the birds, is manually annotated (classified) into the 12 pre-defined sound

events. A part of this annotated data was used in Chapter 5 to evaluate the performance

of the entire bird detection system in terms of segmentation and feature extraction tasks.

1.3.4 Chapter 5 - Segmentation and estimation of acoustic fea-

tures for bird vocalisation

In this chapter, the proposed sinusoidal detection approach in [5, 6] has been employed

with some modification, as manner of automatic segmentation and a feature extraction

step, to decompose the entire acoustic recordings of the data into the set of distinct

frequency components (frequency track segments) to characterise bird tonal vocalisation.

Then the detected segments are used as temporal sequences for the further processing

stages in the following Chapters 6 and 7.

5



1.3.5 Chapter 6 - Unsupervised discovery of acoustic elements

in bird vocalisation

This chapter presents an approach for unsupervised discovery of acoustic elements in

bird vocalisations recorded in real world natural environments. This proposed system

is comprised of two steps, obtaining the pairwise partial similarity paths and clustering

the entire segments by using the obtained partial matching information. The proposed

approach employs the detected frequency track segments to obtain a set of individual

element vocalisation patterns for each bird species. The obtained result then is used in

the next chapter as element-level labelling information.

1.3.6 Chapter 7 - An automatic HMM-based bird sound recog-

nition system

This chapter presents two automatic HMM based approaches as baseline and element-

based systems, for identification of bird species from the natural field recordings, by using

the detected frequency tracks as temporal sequences. The obtained element-level labelling

information in Chapter 6 is used to train the HMMs in the novel proposed element-based

recognition system. Finally, experimental evaluations on both systems are provided, a long

with presenting a review of previous studies on bird vocalisation recognition systems.
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Figure 1.1: Block diagram of the thesis structure

1.3.7 Chapter 8 - Conclusion

The fi nal chapter summarises the contributions and draws a conclusion of the thesis in

addition to anticipating the possible future directions of the work.
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Chapter 2

LITERATURE REVIEW ON BIRD

SOUND RECOGNITION

SYSTEMS AND TECHNIQUES

2.1 Introduction

The field of automatic bird sound recognition processing is a particular application area

that has developed from the more general fields of audio and speech processing and pattern

recognition. The literature in this chapter is described in two parts. In the first part,

literature on common audio pattern processing methods for developing an example of

automatic audio recognition system is presented. In the second part, a brief review of the

literature on hierarchical clustering methods is presented.
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2.2 An overview of an example of the automatic au-

dio recognition system

This section provides a brief summary of a given example of the automatic audio recogni-

tion system. First, all the available data is split into two parts: training and testing data.

As seen in Figure 2.1, the recognition system example is performed in two main phases,

training and testing, with the following main components in each stage:

Segmentation: the goal in this phase is to remove the parts, which are silence or

void of audio, from the continuous input audio signal. The consequence of this is that the

signal is divided into isolated temporal segments. Hence, the segmentation also performs

data reduction by omitting periods of time in continuous recordings when audio events

are not present.

Feature extraction: in this stage, each detected audio segment will be transformed

into a sequence of features (parametric representations). The goal in feature extraction is

to extract relevant information from the input signal into a compact set of features that

is then used to distinguish between different classes.

Modelling: in the training phase, once individually distinct features have been ex-

tracted from a signal, a model is used to represent each sound class based on a set of

features extracted from the training set of data.

Recognition: in the testing phase, a classifier is used to compare the features ex-

tracted from an unknown signal with the trained models of each class, in such a way as

to find the most likely model which corresponds to the recognition result.
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Figure 2.1: A block diagram of an example of an automatic audio recognition system

Each of the above components of the recognition system forms its own distinct area of

research and faces its own set of basic challenges. Hence, the following sections present a

review of the common approaches for signal segmentation, feature extraction and acoustic

modelling (classifi cation) in the literature.

2.3 Signal segmentation

Signal segmentation is performed after the data preparation stage and aims to split the

continuous acoustic signal into smaller isolated units where sound events are present.

Accurate segmentation is an essential step in the recognition system, in particular for

bird vocalisations recorded in their natural environments containing other background
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sounds; inaccurate segmentation can increase the occurrence of misclassifications. This

procedure can be done manually or automatically. Although manual segmentation was

used in early research on bird sound analysis [7, 8, 4, 9], it is only feasible when using

a small set of data. Therefore, it is essential to use an automatic detection method to

segment all of the large sets of data.
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Figure 2.2: Example of splitting a continuous bird vocalisation signal into smaller seg-

ments (elements).

Most works in audio recognition processing (including bird sounds) have performed

automatic segmentation by using an energy-based detector [10, 11, 2, 12], i.e. computing

an energy envelope for a sound signal, to keep only the parts where the energy is above

a set threshold and remove the parts which have low energy. Furthermore, in most

recent works on bird sound analysis [2, 9, 13, 11], the isolated segments obtained from the

segmentation process can be seen to correspond to individual elements of bird vocalisation

(see Figure 2.2). In Chapter 3, more about these elements as the building blocks of bird

vocalisation will be discussed.
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2.4 Feature extraction

The aim of feature extraction is to compress the audio signal into a distinct form that char-

acterises the important information of each sound event. As the result of the subsequent

classification procedure relies on the feature extraction section, the features should not

be sensitive to some influences such as noise and should be able to discriminate between

various acoustic events.

The most popular acoustic features that are used in bioacoustics signal processing

approaches, including bird vocalisation approaches, are inspired merely from the feature

extraction techniques which are developed in speech and spoken language processing [14].

Mel-Frequency Cepstral Coefficients (MFCCs) [15, 16] and Linear Prediction Cepstral

Coefficients (LPCCs) [17] are two of the most common frame-based features where both

methods represent the spectral envelope of the signal.

MFCCs represent the discrete cosine transform (DCT) of the log-spectral power of the

signal mapped onto the non-linear Mel frequency scale, where the relation between Mel

and frequency f in kHz is derived as;

Mel = 1000log2(1 + f) (2.1)

Figure 2.3 summarizes the procedure of MFCCs’ and LPCCs’ extraction.
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Figure 2.3: Feature extraction process for LPCCs and MFCCs. Dashed lines indicate

equivalents processes.

2.5 Acoustic modelling

After extracting individual distinct features from a signal, a classifier is used to charac-

terize the feature sets and acquire a model for each individual (training phase). It is then

used in the testing stage to compare a given series of features with the saved reference

templates to settle on a choice of identity [18]. In general, each classifier is composed of

one or several classification methods where the main goal is to distinguish and classify a
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series of unknown sequence objects, based on the classification measurements [19].

Classification tasks in audio and speech pattern recognition fields can comprise of

either identification or verification. In identification, an input signal is looked at against

a library of template signals from known acoustic objects (classes), where the best match

is chosen as the identity of the test object [20]. Verification is used exclusively to verify

the asserted identity of a given acoustic signal, by comparing the corresponding feature

vectors with the stored trained templates to accept or reject the claimed identity [20].

In birds’ recognition exercises both of these classification tasks are performed and in this

research bird species’ identification is considered as a means of classification.

There is a wide range of classification methods available in the context of machine

learning and pattern recognition. Some classifiers, such as the hidden Markov model

(HMM) and Gaussian mixture models (GMM), are the generative approaches on which the

data distribution is modelled in order to categorise the given signal; whereas others, such

as support vector machines (SVM) and artificial neural networks, are the discriminative

approaches where the classification decision relies on the characteristics of the data. In

the following sections, the fundamentals of two different widely used classifiers in audio

and speech signal processing, GMMs and HMMs, are outlined.

2.5.1 Gaussians Mixture Models

Gaussian mixture models (GMMs) are the statistical and probabilistic classification ap-

proaches that employ multi-modal Gaussian distributions to capture the acoustic featured

events [21]. As the variability of the feature sequences can be represented to a class

through multi-dimensional Gaussian pdfs [22, 23], GMMs are currently one of the leading

approaches that are used widely for the purpose of modelling and classifying tasks in
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audio and speech pattern recognition fi elds [24, 25, 23, 26, 2].

The pdf of a single Gaussian distribution can be obtained as [27]:

Φ(x;µ, σ) = 1
σ
√

2π
exp

(−(x− µ)2

2σ2

)
(2.2)

Where µ is a mean and σ is a standard deviation. As Gaussian is the unimodal distri-

bution, i.e. it has only one ‘ peak’ , its modelling functionality is limited to fi t the points

on polynomial or arbitrary distribution. Hence, the solution is to use a multimodal dis-

tribution such as mixture of Gaussians. For instance, as it can be seen in Figure 2.4, a

non-symmetrical distribution with two di�erent tails (modes) is modelled with a mixture

of two Gaussians.

0 1 2 3 4 5 6 7 8 9 10
0

3

6

9

Figure 2.4: An example of a non-symmetrical distribution with a mixture of two Gaus-

sians.
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Therefore, the GMM attempts to model the distribution of feature vectors over a linear

combination of Gaussian pdfs, where the mixture density of feature vector x is expressed

as [27, 24]:

p(x|i) =
M∑

m=1
wmbm(x) (2.3)

WhereM is the number of mixtures; wm is the mixture weight; and the mixture component

bm(x) defines a Gaussian density function parameterised with a mean vector µm and a

covariance matrix Um, as [27, 28]:

N(x, µm, Σm) = 1
(2π)D/2|Σm|1/2 exp

[
− 1

2(x1 − µm)
]

(2.4)

Where prime and D are the vector transpose and dimension of the vector xt respectively.

Generally, it is more common in speech processing tasks to use diagonal covariance ma-

trices, as they are more computationally efficient than a full matrix, while they have the

same model capability in linear GMM combination [27]. By giving an adequate number of

mixtures (M), a GMM can model the arbitrary-shaped distributions [29, 23]. For instance,

GMM is a powerful method for performing on the cepstral coefficients, as the cepstrum’s

density can be modelled by the multivariate Gaussian densities [30]. In addition, GMMs

are also computationally efficient and straightforward to implement, even in real-time

tasks [27].

For the training purposes, several methods are provided for estimating the GMMs

parameters [31]. The maximum likelihood (ML) estimation is one of the well-established

methods that employ the special case of the expectation maximization (EM) algorithm [32,

33] to obtain the GMMs parameters. The objective of the EM algorithm is to improve

the parameter estimation by increasing the value of the likelihood probability that the

model estimate matches the observed features, in several consecutive iterations [22].

In classification tasks, the goal is to identify the GMM model that has the maximum
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posteriori probability value for a given observation series. This can be done by using a

likelihood function, such as the maximum a posteriori probability (MAP) method [28],

which has the ability to determine the match between the parameters of the test and the

trained models [30].

2.5.2 Hidden Markov Models

Basics of HMMs

A hidden Markov model is a stochastic state system with a finite number of states [34] and

it can be assumed as two stochastic processes: a hidden Markov chain and an observable

process through using a probabilistic function of the chain states [35]. The states in HMM

can be denoted as a set of S = {S1 · · · , SN}, while the transition among states, in each

time index, is according to the current state transition probabilities. In other words, the

transition from one state to another only depends on the current and previous states.

This is known as a first-order Markov assumption [19]. In HMMs, these states are not

observable, as they are “hidden”. Instead, only their corresponding output or observation

is discoverable. The resulting observations are assumed to be independent from each other

and obtained based on the probability density function (pdf) attached to state by which

they were generated.

In general, the elements of HMM can be denoted by the following parameters [36]:

• A set of states in the model S = {S1, · · · , SN}, where N is the number of states in

the model S.

• A set of distinct objects observed V = {V1, · · · , VM}, where M is the number of
18



distinct observation objects.

• State transition probability distribution A = {aij}, where {aij} = P (qt+1 = Sj|qt =

Si) and (i, j ≤ N).

• Observation probability distribution B = {bj(m)}, where bj(m) = P (Ot = Vj|qt =

Sj).

• The initial state distribution π = {πi}, where πi = P (q1 = Si).

For the purpose of simplicity, as M and N describe the structure elements, a triplet

λ = {A,B, π} is the parameters’ set of a compact HMM. Each various type of HMM the-

ory can be defined by using a different state output function as the observation probability

distribution. Generally, the output spectral distributions can be obtained from various

modelling approaches such as: discrete, continuous and semi-continuous modelling meth-

ods [37]. Gaussian distribution [25] is one of the well-known modelling approaches that

are used widely in terms of modelling the audio and speech feature vectors.

Recognized problems of HMM

The following are the three recognised problems that arise along with the HMM’s imple-

mentation [36]:

1. Recognition problem: how to efficiently compute P (O|λ) for a given model λ and

observation sequence O.

2. Decoding problem: how to find a state sequence that has most likely produced O

for given a model λ and sequence of observations O.
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Solution: to find a maximum over all the possible state sequences, a Viterbi algorithm

is employed.

3. Training Problem: how to set optimum parameters for model λ = {A,B, π} in such

way to maximize P (O|λ).

Solution: a Baum-Welch algorithm is used to train the HMMs, which is a special

case of the expectation-maximization (EM) procedure.

Recognition with HMM

The likelihood P (O|λ) can be calculated as follows:

P (O,Q|λ) = P (Q|λ) P (O|Q, λ)

=
[
(πq1 , aq1q2 , aq2q3 , · · · , aqT −1qT

)
]
.
[
bq1(o1), bq2(o2), · · · , bqT

(oT )
] (2.5)

Where, Q = {q1, q2, · · · , qT} is the state sequence; O is the observations and the

probability of the observations O and the state sequence Q given the model λ is:

P (O|λ) =
∑
Q

P (O,Q|λ) =
∑

q1,q2,··· ,qT

πq1bq1(o1)aq1q2 , bq2(o2)aq2q3 , · · · , aqT −1qT
bqT

(oT−1)

(2.6)

2TNT calculations are needed to perform the above equation. Instead of these enor-

mous calculations, there are two more efficient algorithms available as forward and back-

ward approaches [36], for obtaining the likelihood P (O|λ). In these two approaches the

auxiliary variables called the forward and backward variables are calculated recursively,

within several forward/backward iterations as follows:
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Forward algorithm:

αt(i) is the forward variable which represents the probability of being in the state i at

the time t and observe a partial sequence o1, · · · , ot given the model λ as:

αt(i) = p(o1, · · · , ot, qt = si|λ) (2.7)

If α1(i) = πibio1, the next forward variable (α(t+1)(i)) can be obtained in each iteration t

as;

αt+1(i) =
[ N∑

j=1
αt(j)aji

]
bi(ot+1)

1 ≤ i ≤ N, 1 ≤ t ≤ T − 1
(2.8)

Where, during the induction the αt(i) is calculated at each time moment t for every state

i; then, at the last step P (O|λ) is the result by summing all the αt(i).

Backward algorithm:

The backward variable, βt(i) represents the probability of the partial sequence that

started at (t+ 1), ot+1, ot+2, · · · , oT , given the state si at time t and model λ as:

βt(i) = p(ot+1, · · · , oT |qt = si, λ) (2.9)

If βt(i) = 1, the previous backward variable βt(i) can be obtained in each recursion

step as:

βt(i) =
N∑

j=1
βt+1(j)aijbj(ot+1)

1 ≤ i ≤ N, T − 1 ≥ t ≥ 1
(2.10)
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At the termination point (when the recursion reached the first state), the P (O|λ) can

be obtained as:

P (O|λ) =
N∑

i=1
πibi(o1)β1(i)

1 ≤ i ≤ N

(2.11)

The principles of the backward algorithm are the same as the forward approach; the only

difference is that the backward case needs the information about the entire sequence of

observations before starting its calculations. Both approaches were performed in N2T

numbers of calculation, which is much less than the calculation in equation 2.6.

Viterbi decoding

Since hidden data in HMM is represented with a set of states, the exact sequence that

produces an observation sequence, is unknown. However, the sequence, which has most

likely produced the given observations, can be obtained via the Viterbi algorithm in the

following steps:

The highest probability along a single path, at time t, which accounts for the first t

observations and ends in statesi, is expressed as:

δt(i) = max
q1,q2,··· ,qt−1

P (q1q2 · · · qt = si, o1o2 · · · ot|λ) (2.12)

For the purpose of finding the best state sequence (recognition step), it is necessary

to find the argument which maximizes the δt(t); an array ψt(i) will be used. The steps of
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the Viterbi algorithm are given as follows: 1- Initialisation

δ1(i) = πibi(o1), ψ1(i) = 0, 1 ≤ i ≤ N (2.13)

2- Iteration

δ1(i) =
[

max
1≤j≤N

δt−1(j)aji

]
bj(ot), 1 ≤ i ≤ N, 2 ≤ t ≤ T (2.14)

ψt(i) = arg max
1≤j≤N

[δt−1(j)aji], 1 ≤ i ≤ N, 2 ≤ t ≤ T (2.15)

3- Termination

P ∗(O|λ) = max
1≤j≤N

δT (j) (2.16)

q∗T = arg max
1≤j≤N

δT (j) (2.17)

4- Path backtracking

q∗T = ψt+1 q
∗
t+1, T − 1 ≥ t ≥ 1 (2.18)

The Viterbi procedure is similar to the forward algorithm, with the only difference

being in replacing the summation with maximization operation over previous states. In

order to avoid obtaining the extremely small probability value (in the above calculations),

it is recommended [38] to use a logarithmic form of observation probability at each step

as:

δt(i) = max
1≤j≤N

[
δt−1(i) + log(bi(ot))

]
(2.19)
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HMM training

Each particular training method has a different topology structure. For instance, a left-

to-right model with self-loops is commonly used in audio and speech processing [25].

The number of states in the model is chosen taking into account the modelling unit.

Usually, choosing the number of states depends on the size of the modelling objects, i.e.

vocalisation units in birds, word and phoneme in speech processing tasks [38].

As mentioned previously, the aim of each step in HMM training is to estimate the

parameters of the model λ = {π,A,B}, where the likelihood of the training data P (O|λ)

is maximized. The task of maximizing P (O|λ) does not have a closed-form analytical

solution, hence other appropriate methods such as the Baum-Welch algorithm is used

instead [36]. The Baum-Welch [39] algorithm locally maximizes P (O|λ) by employing the

ideas of the expectation maximization (EM) algorithm [32, 40, 33] to estimate the HMMs’

parameters for a given set of observed features.

2.6 Clustering

Classification and clustering are two main analytic processes that are undertaken in ma-

chine learning and data mining. Generally, classification is used as a supervised learning

method and it requires predefined class labels or training data, to predict a set of categori-

cal class labels for the given test data. However, clustering is employed as an unsupervised

learning method and the aim is to find a new set of partitions for the given data [41].

A clustering algorithm divides the data instances into distinct groups based on their

properties of similarity. Typically, the structure clustering procedure can be described as
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a set of subsets C = C1, · · · , Cn, where the entire data instances or S can be formed as,

S =
n⋃

i=1
Ci (2.20)

,where, Ci ∪Cj = ∅ for i 6= j. In other words, any individual in the data, is associated to

one and only one group [41].

2.6.1 Distance measures

To perform a clustering task, some measures between two objects need to be defined.

There are two fundamental types of measures used for different clustering purposes, such

as: distance measures and similarity measures [41]. Both measurement methods can

determine the likeness or disparity score between any pair of individuals. Formally, the

pairwise distance between two individual objects xi and xj is denoted by d(xi, xj), where

the corresponding value is usually non negative.

2.6.2 Similarity functions

The similarity function can be used as an alternative to the distance. A similarity function

is a symmetrical function that is formally denoted as s(xi, xj); where s(xi, xj) = s(xj, xi).

The pairwise similarity score is obtained by comparing the two input sequences xi and xj

and it has a peak value when xi and xj are close enough to be counted as ‘similar’ [41].
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2.6.3 Clustering methods

Different clustering methods can be categorised based on their induction principle. As

recommended by Farley and Raftery [42], clustering methods can be divided into two pri-

mary groups: hierarchical and partitioning. As there is no precise definition available for

the notion of ‘cluster’, many articles, including [43], suggested an alternative categoriza-

tion for clustering algorithms, based on their fundamental induction [41]. As developing

a hierarchical clustering algorithm is one of the main contributions of this research, thus

the hierarchical methods are mainly focused on in this work.

2.6.4 Hierarchical methods

The clusters or groups in these methods are obtained by sequence partitioning the entities

with several recursive iterations, in either a top-down or bottom-up procedure. Therefore,

hierarchical methods can be separated as [41]:

• Agglomerative clustering - Each individual at first represents its very own group. At

that point clusters are progressively merged until the desired structure is attained.

• Divisive clustering - All individuals at first are placed in one large group. At that

point, the cluster is broken into sub-groups, which are progressively partitioned into

their own particular sub-group. This procedure continues until the sought cluster

structure is achieved.

The output of hierarchical clustering methods can be presented by a dendrogram tree.

The nested clustering objects in a dendrogram, are linked with several lines, where each
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connecting node represents the corresponding merge or split distance, at each partitioning

level (see Figure 2.5). By cutting the dendrogram horizontally, at the desired distance

level, the obtained intersection points show all the formed clusters at that level.

Figure 2.5: The example of a dendrogram tree for ten different observations, obtained
by the agglomerative clustering method.

The merging or division of clusters is implemented by calculating the pairwise distance

or similarity between the new formed group and other remaining objects or groups. There

are several comparability distance measured methods available, where each can lead the

whole clustering procedure to a different direction with various results (see Figure2.6).

The hierarchical clustering methods could be more isolated in the way that the similarity

measure is computed:
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Single-link clustering (nearest neighbour): This includes techniques that consider the

shortest distance between any two members of the cluster as the distance between two

clusters. Assuming that the information comprises of similarity, the closeness between a

pair of clusters is thought to be equivalent to the largest similarity value of any member

from one cluster to any member from the other [41, 44].

Complete-link clustering (furthest neighbour): In contrast with the single-link, this

method considers the distance between two groups to be equivalent to the longest distance

value of any two members from the two clusters [41, 44].

Average-link clustering: In this method, the distance between two groups is estimated

as the average of the distances within any object of one group to any object of the other

group [41].

Figure 2.6 illustrates the different dendrograms which are obtained by employing the

above distance measurement methods separately for the individual examples a1, · · · , a5

with corresponding distance matrix D as:

D =



0 2 5 10 9

2 0 4 8 7

5 4 0 6 5

10 8 6 0 6

9 7 5 6 0



(2.21)
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Figure 2.6: Different dendrogram trees obtained by a) single-link, b) complete-link and

c) average-link clustering methods.

The main disadvantages of the hierarchical methods are:

1- The above classic methods may cause a chaining effect as: some points between

two clusters can make a bridge and this allows the single-link method to merge the cor-

responding clusters into a larger one.

2- There is no undo or swapping procedure available in hierarchical methods; namely

there is no back-tracking capability.

Having multiple partitions or divisions is the main advantage of hierarchical methods;

where by defining the desired similarity level, these methods allow the users to have

multiple clusters [41].
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2.6.5 Standard agglomerative clustering algorithm

In general, the agglomerative method is a bottom-up hierarchical method and creates a

series of divisions of the data as Pn, P(n−1), · · · , P1. At the initial stage, Pn is composed

of n single-member clusters, and as the clustering ends, the last P1 is composed of a

single group of all n individuals [45]. However, in some modified versions, the clustering

procedure will be stopped when the distance exceeds a pre-defined threshold. Merging at

each particular stage of clustering is one of the following cases:

1- two individuals are merged into a new group of two members.

2- one individual is merged into a group containing several individuals.

3- two groups with several individuals are merged in to a new larger cluster.

As mentioned in section 2.6.4, several distance measured methods are available to

define the pairwise distance (similarity score) between the new formed group and other

remaining individuals or groups such as: nearest neighbour, furthest neighbour and av-

erage method that takes the minimum, maximum and the average distance among pairs

of individuals within two clusters, respectively [45]. For clarity purposes, consider that
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there are n = 6 individual segments with the following similarity matrix as SimMat1.

SimMat1 =



[1] [2] [3] [4] [5] [6]

[1]

[2] 2.0

[3] 4.0 5.0

[4] 6.0 9.0 3.0

[5] 9.4 3.0 2.0 1.0

[6] 8.0 7.0 6.0 4.0 3.0



(2.22)

At the beginning, each single segment is assumed as a distinct group G1, · · · , G6. In

the next stage, the highest similarity value in the matrix Sim1 is that for individual 1 and

5 (sim(5, 1) = 9.4); as a result these two segments are merged in to a new group of two

members G(1,5). The pairwise similarities between this new formed cluster G(1,5) and the

other remaining individuals are obtained by using the group average method as follows:

sim(1,5),2 = mean(sim1,2, sim5,2) = 2.5 (2.23)

sim(1,5),3 = mean(sim1,3, sim5,3) = 3.0 (2.24)

sim(1,5),4 = mean(sim1,4, sim5,4) = 3.5 (2.25)

sim(1,5),6 = mean(sim1,6, sim5,6) = 5.5 (2.26)
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Updating the above values in the similarity matrix gives:

SimMat2 =



[1,5] [2] [3] [4] [6]

[1,5]

[2] 2.5

[3] 3.0 5.0

[4] 3.5 9.0 3.0

[6] 5.5 7.0 6.0 4.0



(2.27)

At the next step, individual segments 2 and 4 have the highest similarity score in

matrix SimMat2. Thus these segments, are merged into a new two-member group G(2,4),

followed by updating the distances and the SimMat3 as:

sim(2,4),(1,5) = mean(sim2,1, sim2,5, sim4,1, sim4,5) = 3.0 (2.28)

sim(2,4),3 = mean(sim2,3, sim4,3) = 4.0 (2.29)

sim(2,4),6 = mean(sim2,6, sim4,6) = 5.5 (2.30)

SimMat3 =



[1,5] [2,4] [3] [6]

[1,5]

[2,4] 3.0

[3] 3.0 4.0

[6] 5.5 5.5 6.0


(2.31)
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This procedure of merging into larger clusters and correspondingly updating the sim-

ilarity matrix is repeated recursively until the division of P1. Finally, all the produced

divisions at each stage, can be summarised in Table 2.1.

Table 2.1: Summery of clustering output at each division’s level P .

Stage Groups

P6 G[1], G[2], G[3], G[4], G[5], G[6]

P5 G[1,5] , G[2], G[3], G[4], G[6]

P4 G[1,5], G[2,4], G[3], G[6]

P3 G[1,5], G[2,4], G[3,6]

P2 G[1,5], G[2,3,4,6]

P1 G[1,2,3,4,5,6]
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Chapter 3

THE STUDY OF BIRD

VOCALISATIONS

3.1 Introduction

It is generally agreed that bird songs are among the most stunning and pleasant sounds,

which exist all across our natural world. Despite the fact that everybody might expect

that they can distinguish a bird melody and the way it varies from alternate sounds that

other flying creatures make, the logical investigation of bird tunes has made some vital

contributions to such studies as neurobiology, ethology and developmental science. As

a result, this has produced an extensive and various range of literature, which can be

baffling to those endeavouring to enter or study the field.

In this chapter, the scientific theories of the study of bird songs and the corresponding

terminology will be introduced. Additionally, the purpose of singing and role of the songs
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in birds’ lives will be considered and various related studies will be discussed.

3.2 Bird communication methods

Birds use various channels of communication such as acoustic, visual and olfaction (chem-

ical). Generally, the olfactory system is not of much importance compared to the other

methods as it is relatively less developed in birds [55]. Hence, acoustic and visual channels

are the most notable methods that are open to most of the bird species to communicate

with each other.

Birds use sound as one of their primary means of communication and there are some

particular reasons behind this choice. First, sounds can travel over miles even beyond

the sight of a bird, carrying information over distances despite poor climate conditions.

This gives the birds the ability to communicate with their flock and make their presence

or their place known to them. For humans as well, acoustic communication is one of the

main ways of detecting the birds in conditions where they cannot be easily seen. Secondly,

sound is a rapid way of transmitting the information efficiently. Birds produce songs based

on the demand, so songs carry a vast amount of information [56, 57].

Different species of birds produce different types of songs, which make these sounds

even more interesting to humans as they can use them as a way of distinguishing the

species of birds and the diversity of the regions of study. Although birds produce different

types of sounds such as songs, calls, warbles, trills, croak, drums and whistles, birds’

acoustic sounds can generally be divided into two main categories: vocal and mechanical

(non-vocal) sounds. The majority of bird species use their own vocal organs, such as the

syrinx, to generate different types of acoustic sounds. The latter refers to species-specific
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audio signals that are not produced in the bird’s syrinx.

However, some bird species generate non-vocal sounds by movements of particular

body parts, such as wings and tails, or anatomically adapted features. For example,

ruffed grouse birds make a non-vocal sound by flapping the air with their wings. The

movement of the wings creates a vacuum and air barrels through this space and creates

a mini sonic boom [58]. In other examples, woodpeckers produce a drumming sound by

pecking on a resonant object and pigeons and doves use their wings to create clapping

sounds [59]. The main focus in this study is merely on sounds that are produced by a

bird’s vocal organ and the term ‘acoustic sound’ refers to vocal sounds of birds.

As birds have quite sharp sight, visual demonstration is also an important means of

communication for them. These signals are mostly used in daytime as their sight is low

in the darkness of the night and also, the same as humans, birds are active and awake

creatures during the day. The form of signals they use may vary from colours (like bird

feature) to body postures.

In birds, these visual signals are the product of certain postures in the body and the

features of the bird [58]. They use visuals signals mostly when they are seeking mates or

defending their territory. They may use and combine both acoustic and visual signals to

make their statement more clear.

Visual signals are of an advantage where using other signals would not be safe. How-

ever, they have poor functionality in many particular situations such as at night, in misty

weather and darkness habitats. On occasions like in dense habitats (forests, reeds) where

birds can easily move out of sight behind other objects, using visual signalling cannot be

an efficient way of communication [55]. On the contrary, sound signals can travel to any

corner, pierce through the objects or move around them and reach beyond the miles.
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3.3 Singing behaviours

In this section, the singing behaviour of birds is summarised, including the context of

songs, the occasion of their occurrence and the producer in particular.

3.3.1 Male singing behaviours

Functions of birdsong are being actively studied in behavioural ecology research [60]. In

general, the male singing behaviours can be divided into two functional manners:

1-Territory defending or male-male vocal fighting:

Males of the various species use songs as the first step of their mate fighting [55].

Vocal fighting may happen in two aspects; taking over a new breeding site or defending

the current territories by producing repellent signals. In general, male species may contest

over mates or territory, such as a nest or feeding site, as well as being a means of attracting

females [60].

Several naturalists like Gilbert White [61] and Eliot Howard [62] have observed a

relationship between birds singing and their territory as a fundamental necessity to draw

the attention of females. For a male owner of a territory, singing is a way to brag about

his power in fighting and imply to its rival that in the case of battle he will definitely be

the loser. Therefore, birds use songs to make their rivals withdraw from the combat and

then both of them will benefit [60].

Therefore, the song’s characteristic should reflect the fighting motivation as well as
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assets that can lead to winning of a battle; factors such as physical strength (size, weight

and body conditions) and combat skills can play an important role in a rivalry competition

between males [60].

2- Attracting mates or female choice:

With birds, it is usually the responsibility of males to attract females; in general it is

only the males of the species who sing [60]. According to the literature [55, 60], for birds,

songs are also the principle way of appealing to other mates and showing off their overall

health. For females, reproductive accomplishment is the main criterion in finding a mate;

so characteristics like age, condition, parental ability and the quality of his territory is of

importance when it comes to choosing their partner. Other males are also interested in

knowing of their rivals, their location, the possibility of an attack from them and their

fighting skills [60]. Although sometimes both males and females will find information of

their interest in the same factors in a song, in most cases this information is quite different

and will be extracted from various song aspects [60].

One simple experience shows that if a song is broadcasted from loudspeakers in a

territory which is not protected by any male bird, the territory will remain safe from

intruders for a longer time compared to when it is in silence [63, 64, 65]. The broadcasting

song can attract females to that territory as well [66, 67, 68]. It has even been observed

that females perform copulation solicitation displays in response to the song and get close

to the speakers [69, 70, 55].
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3.3.2 Female singing behaviours

Although it is largely believed that singing is under the control of male species and females

are generally harder to observe singing [55, 60, 71], many studies have found that the

female, in some bird species, may also sing. For instance, singing has been observed with

female superb fairy-wrens [72], white-crowned sparrows [73], blue-breasted waxbills [74],

European robins [75] and long-tailed manakins [76]. Generally, female birds sing regularly

during autumn, winter and spring prior to breeding and their songs are structurally similar

to male songs, but they are shorter and simpler [55, 77].

Females may sing either solo or in a duet, for broadly the same reasons as males.

Their singing may have similar functions as well. One main function of singing for a

female is to attract a male partner. They also may sing to defend their territory from

possible intruders. For example in fairy-wrens, as the males are often away from the

territory, the females take over the singing duty to defend their territory, although at the

same time, their singing may attract other males to their territory to engage in extra-pair

copulations [60]. In robins and mockingbirds, when the food resources are low in winter,

the females sing to defend their territory from intruders who come looking for food [75].

In several polygynous species, singing is a means of aggression of one female to another

who wants to engage in extra-pair copulations with her mate [78].

In parallel with common research on female singing behaviours, in a recent study [79],

the authors investigated over 200 European passerine species to see whether the females

produce songs. Based on their findings, they concluded that the importance of female

singing in birds is broadly underestimated [79]; and they suggested that there is a need

for focused studies on female vocalization to get a deeper understanding of their interesting

behaviour.
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In conclusion, in most species, females have been observed to use songs for quite the

same functions as the males, such as territorial defence and mate attraction. Females also

participate in producing duets with males which will be discussed later in this chapter [55].

3.3.3 Early morning singing behaviours (The dawn chorus)

Studies on bird songs all reveal that the best time of the day to observe, record and

perform field experiments is during the early morning. The birds start singing well before

the sunrise, even before the sky begins to lighten and they will sing for two-three hours.

The peak active time of singing in male birds is about dawn, when a group of birds from

many species may sing together in what has become known as the dawn chorus [55].

Although most species participate in this dawn chorus, different species start singing

at slightly different times. For instance, observations in an English woodland reveals that

robins, blackbirds and song thrushes start singing earlier, known as ‘early birds’ for that

reason, while chaffinches and blue tits start later [55].

So, why is the early morning the best time for singing? Many early and recent studies

such as, [80, 81, 82, 83], reveal that their starting time of singing depends on their seeing

abilities in the low light situation of the early morning; this is why the early birds have been

noticed to usually have larger eyes. In 2002, Thomas et al. [82] studied the relationship

between the size of the eyes and the diameter of the pupils of birds with the time they start

to sing; this study confirms this hypothesis. Berg et al. [83] carried out wide studies on

tropical species and also revealed a similar conclusion regarding the correlation between

a species’ eye size and the time at which they began to sing. However, foraging height

was the most effective variable predictor with canopy species, as they start to sing earlier

than the species that live at the lower levels close to the forest floor. In general, there
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are three main benefits of singing at dawn: it is a good condition for sound transmission;

there are low visibility conditions and overnight abandoned territories [55].

3.3.4 Duet singing

In general, duetting is when birds sing with one another, either at the same time or in

turns [71]. Many studies have observed duet singing in birds and this section is a brief

review of some of the relevant works.

In some species like the dusky antbird [84] or the Polynesian megapode [85], a duet

may be used as a more effective way of a territory rather than a solitary defence. In

other species like bay wrens, the duet may be used for mate guarding [86, 87], but in

this case the role of a male counterpart of a duet is different from the role of the female

counterpart. The author [86, 87], found that the female sings to confront her same-sex

intruders, whereas the male sings to protect his mate from extra-pair copulations.

In long-tailed manakins, two males engage in singing as a pair to attract a female, one

of which is usually the leader and the other is the follower. They may sing together for a

long time and match the frequency of their songs [76].

3.4 Bird vocalisation structure

Bird vocalisations are generally categorised as songs and calls, by the context of their

length and the functionality [55, 81].
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Songs are usually long and complex. These controlled vocalisations are generally

produced by males to attract females or to defend their territory and they mostly occur

in the breeding time of the year [55].

Calls are shorter and simpler. They are not supposedly rhythmic, may be produced

by both males and females and also occur all through the year. Calls usually carry

information like fight, threat, alarm, etc [55].

Although this division is a little unscientific and more traditional, the above terms

needed to be briefly discussed as they are still in use. To achieve a deeper analytical

classification, it is crucial to inspect acoustic signals visually.

3.4.1 Sound visualisation

Before the sonogram became widely used in bird sound studies in about the 1950s, our ears

were the only tools to study birdsong. Until that moment, the cathode-ray oscillograph

machine was the only available device which was used to visualise the sound waves. The

oscillograph machine displays the given sound signal as a two-dimensional graph, in which

the x-axis shows the time index and the y-axis shows the sound wave pressure. However

oscillograms are only helpful to study sounds of insects and not for analyzing sounds which

have a complex frequency structure, like birdsongs or human speech [60].

By developing the first generation of sonogram machines around 1940-50, the use of

speech sound spectrograms became a landmark in linguistics research. Later, in about

1953, Donald Borror [88] and Nicholas Collias [89] were the pioneers who employed spec-

trograms in their early birdsong studies. From that time until now, spectrograms have

served as a powerful method for understanding and analyzing the description of bird
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vocalization signals [60].

As it can be seen in figure 3.1, spectrograms are basically a graphical representation of

the loudness or the amplitude of an acoustic signal (birdsong) in different frequencies over

time. A spectrogram has two dimensions of time and frequency and a third dimension

of magnitude which is represented in colours. The horizontal axis is time, going from

oldest to youngest and the vertical axis is frequency or pitch going from low to high. The

loudness or amplitude is represented on the third axis by colours, going from dark blue

(low amplitude) to red (strong amplitude).
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Figure 3.1: An example of a spectrogram of a birdsong (Magnolia Warbler)

43



3.4.2 Hierarchical terminology of bird song

As complexity is one of the main differentiating parameters that separate most songs

from calls, the development of sound spectrography was a turning point in studying bird

vocalisations. The spectrogram provides discriminating means to define various structures

in a birdsong [90]. By this means, each song can be divided into hierarchical levels of

phrases, syllables and elements. As it can be seen in figure 3.2, elements or notes are the

smallest units in a bird’s song’ being defined as a single line in the sonogram. Syllables

comprise of one or several elements, depending on their complexity. Phrases are a series

of syllables that occur in a pattern [55].

Another factor in defining these structures is their time intervals, with songs having

the longest intervals and elements having the shortest intervals and calls and syllables

are in between. There are great variations in the forms and structures in songs which

make it hard to reach a fixed definition for these terms, as one may face slightly different

descriptions across the research literature. However, for the purpose of this thesis, the

above definitions will be used as a general guide [55].

3.4.3 Song type

For the purpose of machine learning (not a biological perspective), in terms of syllable

complexity the birds’ songs can be divided into four different categories as follows [91]:
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Figure 3.2: Hierarchical divisions of two different songs of a male chaffinch [55]

Monosyllabic:

Most of the bird calls are short and monosyllabic. However, in some birds e.g. spar-

rowhawk and green woodpecker [91], the song is only made of a single syllable. Typically,

these monosyllabic songs will be repeated sequentially during a short vocalisation.

Multi syllables:

In this type of vocalisation, the song is composed of more than one syllable, typically two

or three. These types of songs can be sung by the majority of passerine birds such as:
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wrens, tits and sparrows.

Large vocabulary:

For a small percentage of bird species, even in the UK, their songs have a complex struc-

ture and may consist of some random syllable sequences followed by some fixed patterns.

For example, the skylark employs about 300-400 different vocabularies within her vocali-

sations [91, 92].

Less tonal:

The song structure in some bird species, e.g. jays, crows and screeches, is less harmonic

or tonal. This type of song does not preserve a specific energy within the signal and the

frequency range varies about 1-4 kHz.

3.5 Sound production

As mentioned previously, birds can produce an astonishing variety of songs that often

remind us of the spiritual springtime. However, there is only one order of birds who sing,

namely the passeriformes, which comprises of only half of the birds on the planet [93].

The rest merely use calls to communicate. The passeriformes mostly generate complicated

vocalisations or songs, thus they became known as ’the true songbirds’ [55]. Overall the

principal question is how can birds make these inventive and elaborate vocal sounds? To

answer this question, a brief survey on birds’ vocalisation systems is essential.
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The song production journey in birds starts in their brain, where the distinct neural

pathways continuously control the vocalisation procedure [59, 94]. However, for the sake

of simplicity, this section briefly describes the principle process of the birds’ vocalisation

mechanism by only considering the role of their vocal organs rather than their brain’s

pathway.

3.5.1 Vocal tract’s modulations

Many studies [95, 96, 97] confirm that birdsongs have a pleasant tonal structure. In

birds, this tonal feature is attained by the creation of non-harmonic pure sounds within

a restricted frequency range [55]. The question is does the sound source in birds produce

this tonal quality of sound or does the bird’s vocal tract contribute to such beautiful

singing?

Human speech and birdsongs have similar qualities when considering the vocal artic-

ulation [98]. In both songbirds and humans, the vocalisation sounds are produced by

the flow of air through a vocal system. In humans, the exhalation of breath from the

lungs generates a complex waveform at the vocal folds; the components of this waveform

are subsequently modified by the rest of the vocal tract including the mouth, tongue,

teeth, and lips [98]. The human’s vocal tract acts as a filter by creating concentrations

of energy at particular frequencies, called formant frequencies. As an example, vowels

are characterized by relatively constant formant frequencies over time; whereas during

consonant production, the formant frequencies change rapidly (20-100 ms), resulting in

formant transitions [98].
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Figure 3.3: Vocal organs of a songbird

As fi gure 3.3, the main organs of the sound production mechanism in birds are the

lungs (as in humans), the syrinx (with analogies to the larynx in humans), the trachea,

the mouth and the beak (acts as the nasal cavities in humans) [98, 12, 99]. In songbirds,

sounds are generated by the fl ow of air during expiration through the syrinx. The syrinx

is the most important organ in the sound production mechanism and it is the bird’ s voice

box, a bilateral structure surrounded by specifi c muscles. Unlike the human larynx, which

is at the top of the trachea, the syrinx is situated lower in the bird’ s chest at the end

of the trachea (acts as a resonator) and on top of the two bronchi. The airfl ow from

the lungs to the top of each bronchi, makes a syringeal medial tympaniform membrane

(MTM) to vibrate nonlinearly opposite to the cartilage wall. The bird can control the

pitch by changing the tension on the MTM and can control both the pitch and volume by

ranging the force of its exhalation [12]. The syrinx’ s di�erent position surely contributes
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to the complexity of the songs in birds, as it benefits from two bronchi for two potential

sources of sound [98]. This makes it possible for birds to produce two simultaneous notes

and pitches by controlling the two branches of the trachea independently [59, 99].

Furthermore, just like humans, birds use their upper vocal tract as a selective acoustic

filter to modify the frequencies in the final sound. In general, the sound velocity and

vocal tract cavity determine the acoustic resonance in both humans’ and birds’ vocalisa-

tions procedure [55]. As humans can adjust their speech’s resonant properties merely by

changing the position of their tongue, jaw, lips and the buccal cavity [55, 100], birds also

can control their vocal filter resonances through a variety of actions; such as stretching or

retracting their neck and expanding their throat and beak movements, which is the main

factor in many species [101, 102, 55, 103]. Westneat et al. (1993) [101] and Hoese et al.

(2000) [102], found apparent connections between the width of the beak opening (gape)

and the produced sound frequency by studying head and beak motions in singing birds.

Hoese et al. (2000) [102] stated that birds mostly open their beak widely to generate a

higher frequency sound and close it more for a lower frequency sound. Accordingly, for the

production of a wide frequency syllable, like a trill sound, the bird’s beak should perform

at a broad angle [55]. In terms of how fast this action can be done (performance rate),

there is a trade-off correlation between bandwidth and repetition rate [55]. Hence, in a

study [104], by setting some experiments on American sparrows, the author discovered

that the wide bandwidth (high-pitched) sounds can be only generated at a slow repeti-

tion rate; whereas the narrower bandwidth (low-pitched) sounds can be performed at any

repetition rate.

The final generated birdsong may consist of components which are purely sinusoidal,

harmonic, non-harmonic, broadband and noisy in structure. In general, amplitude mod-

ulations of the fundamental element are mostly produced by the syrinx, but intensity

differences between harmonics is based on the properties of the upper vocal tract [12].
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As discussed previously in section 3.4.2, by visualising the spectrogram, a bird vo-

calisation song can be divided into a set of syllables. As can be seen in Figure 3.4, (in

terms of pitch pattern classification), all bird vocalisation elements can be described by

five basic patterns as follows [105]:
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Figure 3.4: Five basic pitch patterns with real examples

1- Monotone: the sound does not go up or down, just remains at the same pitch from

start to end.

2- Upslurred (or rising): the sounds rise in pitch and appear tilted upwards.

3- Downslurred (or falling): the sound falls in pitch and appears tilted downwards.

4- Overslurred: the sound rises and then falls in pitch, appearing and sounding highest

in the middle.
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5- Underslurred: the sound falls and then rises, appearing and sounding lowest in the

middle.

Moreover, each of the above defined categories can be expanded into the others’ sub-

groups, separately in terms of length and the frequency boundaries. In other words, these

vocalisation patterns can be found to be different, in terms of length and the frequency

boundaries, within different bird species. Later in Chapter 6, the diversity of these vocal-

isation patterns for each bird species will be discovered (see Figure 6.25).

Typically, birdsongs can produce a large set of different sounds in frequency ranges

between 100 Hz and 8 kHz, but the variation between different species is large [12]. In

addition, this variation of frequency boundaries may be found within an individual species

in different geological locations or seasons. The principal question is, how could this range

variation happen in bird vocalisations’ signals?

Body size and anatomy variation over the different bird species: in addition to the vo-

cal tract’s modulation roles, there is a relation between the frequencies that birds are able

to generate and their body size. The larger the body size, the lower the frequency of the

bird’s sounds and vice versa [55, 106]. Furthermore, the distinction between anatomy and

the size of the sound production organs (e.g. syrinx and trachea) in different species, can

affect the frequency range and the pitch information on vocalisation sounds. According

to [12], three different types of syrinx, namely tracheobronchial, tracheal and bronchial,

can be found among bird species because of the distinction between the tracheal and

bronchial elements of the syrinx and the topographical position of the main sound pro-

ducing mechanism. Furthermore, the number of the tracheal cartilage rings, which act as

a resonator to the produced sounds, depends on the length of the neck; it ranges from

about 30 in small passerines to about 350 in long necked flamingos and cranes [12].
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Local dialects: just as humans have regional accents, some bird species develop distinct,

area-specific dialects. Such variation in song often arises when populations of the same

species are isolated by geographic features such as mountains, bodies of water, or stretches

of unsuitable habitat. These local dialects are then passed on to the next generation of

young birds, which hear the songs being performed by their father and other local males.

After many generations, the birds from one area can sound quite different from those from

the next mountain over.

Brain hormones and seasonal songs: birdsong is seasonal and as song production

is controlled via a pathway beginning in the brain, existence of circulating hormones,

e.g. testosterone, play an important role in song production over the year. According

to [60], experiments have established that the vocalisation frequencies of the same pattern-

structured song, are changed up to 400 Hz over the year for some bird species. In the

next section, we will discuss more about the learning and development of birdsong.

3.5.2 Vocal learning and Development of bird song

In the Passeriformes bird species, vocal learning performs an important role in their

singing abilities. Many early studies, such as [88, 107, 108, 109, 110], found that some

species-specific characteristics of bird song can be obtained by listening to other individual

birds. In the late 1950s, William Thorpe [107] demonstrated evidence on the influences

of vocal learning by studying two different groups of young chaffinches [107]. He kept and

raised the first group in an isolated acoustic laboratory, where the recorded songs of an

adult wild chaffinch were played. In contrast, in the second group the imitation songs

were removed. The birds who were in the first group sang species-specific song pieces

as adults; contrariwise, the second group of birds sang anomalous songs. These results

showed that the birds must learn how to sing by listening to their tutor in the early
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seasons of their life. Moreover, in 1970 Peter Marler [110], by introducing a comparative

approach between vocal learning in white-crowned sparrows and language learning by

humans (speech developments in children), found that birds have an inherent ability to

learn the song dialect during a sensitive period.

In birds, learning to sing takes some time to complete. Typically it begins in the first

month after their birth and continues for few months, until just before the bird sets up

his own territory. However, in some bird species this takes longer than in others and also

they may learn additional songs within the first two years of their life [60]. Generally,

similar to human speech development, vocal learning and sound development procedures

in songbirds can be divided into two main stages: the sensory phase and sensorimotor

phase [111, 112].

Sensory phase:

During the sensory or memorisation phase, young birds train their sensory system by

listening to the adults’ singing. Thus, this phase starts by memorising the songs that are

produced by an adult tutor [111, 112, 113]. During the first year of life, though it may

vary among different species, the young bird learns the species-specific sounds.

So how do young birds recognise the same species’ sounds over multiple birds’ species

that are living in their neighbourhood without having advanced hearing experiences?

Some recent studies in the ornithology field, such as [114], demonstrate that birds are

often born with an innate mental power to distinguish their own species-specific songs

from other bird species. Along with this genetic predisposition, the specific timing of

the sensory phase within species [111], may increase the chance of learning the correct

species-specific songs.
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In addition, a recent study [91] named the above-mentioned locality learning effect as

the ‘regional accent effect’. The study then claimed that the existence of common syllable

vocalisations within individual species that sing in the same neighbourhood may refer

back to this effect.

Sensorimotor phase:

In this phase, the young birds start making motor patterns out of this sensory memory

and producing songs [113]. This means that over time and by practicing and comparing

their vocalization to the template, they will learn to sing [111]. Also hearing in this phase,

plays an important role in birds’ singing behaviours. Konishi in his study [115] on the

effects of hearing their own vocalisations in a bird’s song development, found that even if

a bird deafens after the sensory phase and before going through the sensorimotor phase,

she still produces some abnormal kinds of songs [115].

In general, in this stage the birds generate three different types of songs (in terms of

the structure and the loudness) such as: subsong, plastic and crystal. The first type is

named ‘subsong’ and it is generated during the initial stage of the sensorimotor phase.

These songs are almost silent, roughly structured and very unstable in form. As they go

further, the songs get louder and improve in structure, but they still do not have consistent

forms. Eventually, the structure of these plastic songs will become quite similar to the

version they have been heard to sing during the sensory model. Finally, by the existence

of circulating testosterone (T) [116, 117] in birds, they can produce crystal songs which

are the stereotyped form of the sensory model [113].
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3.6 Conclusion

This chapter has discussed the basic biological theories of bird vocalisation. It began

with studying the communicational behaviours of birds, followed by an explanation of

their singing behaviours. Then, by using the spectrograms, the birds’ vocal signals were

distinguished into the various hierarchal levels of bird sound, such as songs, calls, sylla-

bles, phrases and elements. In the sound production section, the mechanisms of sound

production in typical birdsongs were discussed by describing their vocal organs. Finally,

the sound development procedure in birds was studied with two various learning phases,

the sensory and sensorimotor phase.
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Chapter 4

BIRD VOCALISATION CORPUS

4.1 Introduction

The classifying of sounds of birds based on their species has been the subject of many

studies in the last two decades, dating back to McIlraith and Card [10] in 1997. In the

early studies, the databases which were used were quite small, often free of noises and/or

being manually segmented. Furthermore, the number of species the studies studied was

relatively small, which made them impractical in ecological applications. As a result,

there developed an increasing demand for a large database of recorded birds’ sounds for

research purposes [118]. In other words, the amount of training data which is used to build

the training models, is an important factor for assessing the performance of different

classification approaches. Thus the availability of a large dataset of bird vocalisation

sounds is crucial.

In the following sections, first a brief literature review of the large, available bird
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vocalisation archives is presented, followed by a description of the data which has been

used in recent bird classification challenges; then a large database of bird sounds has been

classified and labelled into different sound events manually.

4.2 Available large-scale bird sounds’ archives

Only a few bird sound archives exist in the ornithology field which provide a large col-

lection of data sets of bird sounds. Some of these are laboratories or websites, such

as xeno-canto [119]; and the websites are community databases which share their entire

collection publicly on the Internet. Other archives, such as the Borror Laboratory of

Bioacoustics [120] and the Macaulay Library [121], are only open partly to the public

and the rest, including high-quality copies of recordings, are accessible to researchers and

other professionals merely through their requesting or ordering procedures.

The following is a brief review of three different accessible archives which are used

in related bird sound identification or classification research. As this data has usually

been recorded in natural fields, the files are commonly infected with several background

sounds other than bird vocalization, such as the sound of wind or water, speech and other

noises. However, all the recorded files provided by the libraries or archives below, have

been merely labelled with the name of the bird species, with no further segment level

annotation information available with them.
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4.2.1 The Macaulay Library

The Macaulay Library is part of Cornell Lab of Ornithology [122] and is the world’s leading

scientific collection of biodiversity media. According to the information provided on their

website, their archive with more than 175,000 audio and 60,000 video recordings provides

a vast documentation on the diversity of behaviour among birds and other animals. The

library includes more than 130,000 recordings of bird sounds, more than 70% of which

are Passeriformes or tonal bird species from all over the world (though mostly in the US).

There is a small description note available with each recording representing the recording

quality level (score from one to five stars), bird sounds behaviour, date and the location

of the recordings (see Figure 4.1).

4.2.2 Xeno-Canto

Being a community database, xeno-Canto has provided a worldwide collection of record-

ings of wild bird sounds on its website. Their archive comprises more than 224,000 record-

ing files from over 10,000 different bird species, including more than 128 different Passer-

iformes. The entire database can be searched based on different parameters such as the

bird’s name, time and length of the recording, location and the recording quality levels

(see figure 4.2). The recording quality of each sound file is described with alphabetic label

characters from A to E (the best and worst quality are labelled with characters ‘A’ and

‘E’ respectively).

58



Figure 4.1: Example of information provided along with recording files in Macaulay li-
brary [121].

4.2.3 Borror Laboratory of Bioacoustics

As one of the earliest and most comprehensive databases of animal sound recordings,

this still-growing archive comprises over 40,000 recordings of animal sounds, in company

with more than 700 audio files of different Passeriforme bird species. All these data were

recorded by field observers of the natural habitats of birds, mostly in aspen forests, dense

forests and marshlands of the western United States over past decades.
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Figure 4.2: Example of information provided along with recording files in Xeno
Canto [119].

The recordings are categorised based on the taxonomy name or geography location.

They also provide some additional descriptions about each recording such as the quality

level; sound types; and the location of the recordings (see figure 4.3). All the recordings

in Borror’s archive are classified into seven different recording quality levels, from poor to

very good quality (see table 4.1).
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Figure 4.3: Example of information provided along with recording files in Borror’s
archive [120].

Table 4.1: Seven different recording quality levels, from poor to very good quality, as

classified in Borror’s archive [120].
Score:

Quality description: Poor Poor to fair Fair Fair to good Good Good to very good Very good

4.3 Recent bird classification challenges with corre-

sponding data sets

In recent years, a few international challenges [123, 124, 125, 126] have been taken place

on the identification of birds based on their songs or calls. All these challenges proposed

their tasks to be evaluated on their own collected and provided data set. Here is a

summary of the four most notable bird classification challenges including a review of their

61



corresponding data sets.

4.3.1 ICML4B 2013

As a joint contribution to 30th International Conference on Machine Learning in Atlanta

in June 2013, the ICML4B bird challenge [123] provided researchers with a data set of 90

audio files and challenged them to develop an algorithm to identify 35 bird species among

them. The algorithm was expected to be developed based on the up-to-date knowledge

of machine learning.

Their provided data are available in [127] and it consists of a training and a testing

data set. The training data includes 35 recording files with a total training duration of

18 minutes. The duration of each file is 30 seconds and it contains the song of one bird

species after which the file is named. The test data are longer and larger than the training

data and consist of 90 recording files with a total test duration of more than 3.5 hours.

The data is provided by the Museum national d’Histoire naturelle [128]. The institute is

well-known as one of the most respected bird survey institutions in the world. All the

training and test data were recorded in 16bit wav format with a sampling frequency of

44.1 kHz.

4.3.2 MLSP 2013

At the 23rd MLSP workshop in August 2013, the 9th annual MLSP competition [124] was

conducted as a bird classification challenge, comprising of 15 species and 79 participants.

The data set used in this competition was comprehensively collected in real-life situations

and field conditions. The participants were provided with a ten-sound audio recording
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and their task was to identify the bird species present in the recording by developing a

classifier.

The new data set introduced in this competition comprises of 645 ten-second audio

files in uncompressed mono WAV format, with a 16 kHz sampling frequency and bitrate

of 16 bits per sample; it embodies 19 bird species. The sound files were collected over

the years with several recording per day, taken usually around dawn when birds are more

active.

The recordings have been inspected by a group of experts and have been labelled

only with the name of the set of the species which they present. The inspections are

performed by listening to the audio files and analysing their spectrograms; each expert

provides a rating of their confidence in detecting the correct species along with each label

set. Confidence weight majority voting is then used to form the final label set. The entire

data including some relevant information about the competition are available in [129].

4.3.3 NIPS4B 2013

Taking place in Lake Tahoe, Nevada, in December 2013 during the Neural Information

Processing Scaled for Bioacoustics (NIPS) international conference, the NIPS4B chal-

lenge [125] was the biggest bird classification challenge in 2013. The data provided by

the Biotope Society [130], consists of two subsets of training and test data. The training

data comprises 687 short recording files with the overall length of nearly 1.5 hours and

it was annotated to 87 different sound classes of birds and their ecosystems. Apart from

53 different bird species, it includes 7 insect species and a batracian which were living

alongside these birds. The testing data consists of 1000 sound files with the total length

of nearly 2 hours and it contains all the species which exist in the training data. All
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the sound files are recorded as a mono WAV format file and sampled at 44.1 kHz with a

variable duration from 1 up to 5.75 seconds. The entire data is available in [131] to down-

load freely. The aim of the NIPS4B competition was to identify which of these 87 sound

classes exist in the other 1000 test recording files. More than thirty teams participated in

the NIPS4B 2013 challenge. A description of the entire competition along with the best

provided systems are summarised in [125].

4.3.4 BirdCLEF 2014

BirdCLEF 2014 [126] was conducted with the partnership of the NIPS4B competition

but improving and enlarging many of its aspects. The number of species employed in

this competition was significantly higher and the data was recorded in real world situa-

tions with a large number of recordists. By using the metadata and defining information

retrieval oriented metrics, they provide a more usage-driven and system-oriented bench-

mark. However, the huge diversity in the data collection conditions such as recording

devices, recordists, context, background noise, etc. has raised the risk of confusion be-

tween different classes and as a result, the task of bird sound identification is notably

harder. It will therefore probably produce substantially lower scores and offer a better

progression margin towards building real-world generalist identification tools.

As mentioned previously, the entire data set available for this challenge needed to be

divided into two sets of training and testing. To do so, one third of the observations of

each species were randomly selected to move to the testing set and the rest were added to

the training set. All the recordings of one species which had been recorded by one person

on a single day were regarded as one observation, so had only be fitted into one of the

two subsets.
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The data sets used in BirdCLEF for both training and testing were all made up from

audio files hosted on xeno-canto (XC) [119]. There are 501 species from Brazil as, with

14027 recordings, it has the highest number of recordings on XC. There is a range of 15 to

91 recordings per species, with 10 to 42 different recordists involved. The audio files are in

wav mono format (16 bits), being normalised to the bandwidth of 44.1 kHz. Each audio

file is associated with a set of metadata such as the type of sound (call, song, alarm, fight,

etc.), the date and location of the recording, some common names and quality ratings.

In total, 87 research groups from all over the world attended this competition and

their task was defined as capturing the most singing species in each file from the test set.

The summary of their works and research is presented in [126].

4.4 Data description used in experimental evalua-

tions

In this section the data sets that are used in all the experimental evaluations in this

study are introduced. These data are provided by the Borror Laboratory of Bioacoustics’

archive of bird sounds [120], where all the quality-based recording files are selected from

the categories of 4 to 7 in Table 4.1.

As the diagram in Figure 4.4 illustrates, our data set consists of 50 different sub-sets

of bird species (see appendix A) and each has been presented with several files. A total

of 964 audio recording files are included in this data with an overall time of 38 hours,

where each individual species has between 30 and 95 minutes of recording. This makes an

average of 45 minutes of data per species, which is typically available in several recording

files of between one and fifteen minutes each. All the sound files are recorded as mono
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38 Hours Data

30-95 
Minutes

Data

Mono 16-bit 48 kHz wav File
1-15 Minutes Length

50 Bird Species

Total of 964 
Recording Files

Figure 4.4: The collected data description provided by the Borror Laboratory

16-bit wav fi les with a sampling rate of 48 kHz and each recording is labelled with the

name of particular bird that produced the main vocalisations . The information about

each available bird species in our data, followed by the common name, total number of

fi les and the total length of each species are presented in appendix A. Moreover, detailed

information about each recording fi le including: the fi le ID number, the recording’ s length

and the corresponding recording quality scores are presented in appendix B.
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4.5 Manual annotation of recording files

As the data have been recorded in real world natural habitats of birds, along with the

desired bird vocalisation sound, each recording may also contain some irrelevant informa-

tion, including various background noises from other animals or humans. Each individual

file is labelled with the name of its own bird species; however, there is no further anno-

tation information available with the data to describe the content of the corresponding

bird sound in the entire file. Furthermore, in order to evaluate the performance of the

automatic segmentation and feature extraction procedures (see Chapter 5 section 5.4),

and also to allow other researches to perform and evaluate comparative experiments with

the real field corpus, this research aimed to annotate each individual recording of data

manually into pre-defined audio sub classes.

To do this, first each individual recording file has been played and aurally inspected.

During this manual inspection, each audible part of the signal is detected as a non-silent

audio segment (or a sound event). Then, each detected audio segment is assigned to its

relevant sound sub-class based on the nature of its content. Finally, all this annotation

information with its corresponding time-stamps was written in a label text file.

4.5.1 Pre-defined labelling sound classes

As discussed above, in order to have a segment level annotation for each recording and

based on the different possible sounds in the context, twelve labelling classes have been

defined as follows:

1. Bird vocalisations: Since the name of each recording file is associated with a specific
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bird species, all the vocalisation of that bird, including songs and calls, can be assigned

into this class.

2. Other birds’ vocalisations: Sometimes along with the sound of the main species

that each individual file represents, there are audible sounds of other birds also in the file.

In that case, all the parts related to the vocalisations of other species are labelled as bird

vocalisation background noises.

3. Human speech: Many of recording files contain some human speech, as the recordist

provided some useful information about the study/observation in speech on the recording

file. Most of the speech testimonies are about the species name, behaviour of the subject,

date and time of the recording and the location, habitat description and the distance to

the species. All the discovered speech segments are labelled as the human speech class.

Figure 4.5 illustrates an example of a human speech segment along with the bird

vocalisation segment within a Borror’s sound file.

4. Flying insects’ sounds: This annotation class consists of sounds which are produced

by flying insects and bugs. As the sound files are recorded in nature, data may contain

the buzzing-like sounds which are produced by flying insects including bees and flies.

5. Other animals’ sounds: It is typical to hear sounds of other animals near a bird’s

habitat in nature. There are plenty of sound files which contain sounds of other animals,

such as frogs, cows, pigs, and sheep; these all are labelled as in this category.

6. Microphone and recording noises: Since all the data is recorded by various types of

recording devices or microphones, the audio signals may be affected by the different types

of microphone or audio noises. All these affected parts are annotated in this class. As it
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Bird vocalisations Human speech

Bird vocalisations in background 

Figure 4.5: Sample of a speech segment in a Borror’ s recording fi le; recordist saying: ” This
male Baltimore Oriole, the side by side as seen, and about 25 meters ...” .

can be seen in Figure 4.6, a part of the Borror’ s recording is a�ected by a noise which is

created by an ordinary portable recorder. Hence, the fi rst and third segments are labelled

as bird vocalisation and the second segment is labelled as microphone noise.

7. Tap sounds: All tap-like sounds such as hard knocking, tapping a hammer or

dropping sounds are examples of sounds that can be labelled as in this category.

8. Wind sound noises: Many of the sound fi les were recorded in windy fi elds and

consequently their recording signal contains some high wind background noise. Therefore,

any part of the signal which is a�ected by high wind background noise is labelled as in

this class.

9. Water sound noises: All the water sound noises include waterfalls and pouring rain
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Bird vocalisations Bird vocalisations 
Microphone 

noise

Figure 4.6: Sample of a microphone noise segment in a Borror’s recording file

sounds and are recognised as water sounds in our data.

10. Motors and road noise: In some recording files, the bird’s nest was located close to

the road and the recording files are affected by several road background noises including

car engines. Also, in some recordings there are a few low flight background noises audible.

So any road or flight background noises are categorised as the motoring sound class.

11. Footsteps’ sound noise: One of the main undesirable sounds which affect most of

the recordings is the inevitable noises created by the recordist him/herself. During the

recording process, recordists might need to change their position by walking or moving

towards their subject. Hence, all the walking or moving background noises are labelled

as in this class.

12. Other background noises: There are other types of background noises existing in

the data, such as clock bell sounds, alarm sounds, siren and chainsaw sounds. As they

happened rarely in the data, all the other minor background noises have being labelled
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as in this class.

For the sake of simplicity and speed in the labelling process, a unique keyword is

assigned to each class which is used in annotation process (see table 4.2).

Table 4.2: The keywords associated with each of the 12 predefined annotation classes.

Name of class label Keyword name

1 Bird vocalisations BIRD

2 Other birds vocalisation noises BIRDBACK

3 Human speech SPEECH

4 Flying insects’ sounds FLYINS

5 Other animals’ sounds ANIM

6 Microphone and recording noises MICREC

7 Tap sounds TAP

8 Wind sound noises WIND

9 Water sound noises WATER

10 Motors and road noise MOTOR

11 Footsteps’ sound noise WALK

12 Other background noises NOISEOTH
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4.5.2 Single and multiple labels

To perform the process of labelling, first all the existing segments of each recording signal

need to be detected and marked. Then each segment will be labelled according to its

comprising components. Two major situations may be encountered while inspecting each

segment: there might be parts of the signal which represent only one single class of sounds;

in that case, whether it is the relevant bird sound or a sound from any of the other pre-

defined classes, the corresponding part will receive one single label. This procedure is

called “single labelling”in our study.

On the other hand, there may be parts of the segment where two or more sounds

from different pre-defined classes overlap each other. Consequently, that segment will

receive several parallel labels based on its content. This situation is called “multiple

labelling”. Figure 4.7 demonstrates a possible situation of multiple labelling; the current

segment is divided into three parts, two of which have received one single label of “Other

bird vocalisation in background”; while the middle part of the segment is labelled as a

combination of “Bird vocalisation”and “Other bird vocalisations in background”.

4.5.3 Labelling the data using Transcriber software

There are many free licence annotation tools available publicly on the Internet for assisting

with the manual annotation of audio and speech signals. However, a proper software

environment is essential for annotating a vast number of recorded data. Transcriber is a

user-friendly graphical annotation tool which can be used for segmenting, labelling and

transcribing recorded speech [132]. It supports most standard audio file formats including

wav files and the annotation output can be provided in text file format. This software has
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Bird Vocalisations in Background

Olive-sided Flycatcher

Figure 4.7: Example of a multiple labelling task in the annotation procedure

a simple one-step installation and is available for Windows, Linux and Mac OS operating

systems.

In this work, Transcriber version 1.5.1 has been used for annotating our selection of

the Borror data set.

1. Pre-setting and importing the recording files

The manual bird sound annotation process for each individual file starts with importing

the recording file into the Transcriber software. This can be done by dragging the file

into the Transcriber’s interface or importing it through the menu bar. Subsequently, the

recording signal can be viewed in the signal window (see figure 4.8) with pre-set customised
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Figure 4.8: Transcriber interface: a) Transcription window: It is synchronised with the
segmentation panel and the label name of each segment can be typed in a corresponding
text editor line. b) Signal view panel with red curser: It shows the input signal and
it is synchronised with the time bar and segmentation panel. Display resolution can
be changed from 1 second to a maximum 5 minutes. The red curser shows the current
position on the signal. c) Segmentation panel: It shows all the segments’ blocks and their
label names which are synchronised with the transcription window. d) Time bar.

time resolution. The next steps are as follows:

2. Segmenting the signal

By listening to the recording signal, the audible parts (non-silent parts) of the signal can

be extracted as sound events. Then, each sound event is marked as a new segment by

defining its boundaries on the timeline in the signal’s window (see figure 4.8).
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3. Labelling the segments

Each detected segment will then be labelled with one or more of the pre-defined sub-

classes. This can be done by typing the corresponding label title of each segment in the

transcription text editor section (see figure 4.8). In the case of multiple labelling, in

which each segment needs to be labelled with more than one class, all the relevant par-

allel sound classes will be mentioned, separated by the character ‘/’ in the transcription

window. The silence parts of the signal should remain empty in the transcription window.

Adding, splitting, or removing any part of the signal can be easily carried out by a simple

mouse manipulation in the signal view panel. With just a single keystroke, the user can

easily select, zoom and play any portion of the signal; and also pause and restart in the

case of playback.

4. Exporting the annotation file

At the end of this process, all the annotation and labelled objects with their transcription

information are exported into a single textual output file, as .typ text format. As it

can be seen in Figure 4.9, the first piece of information provided in each output file is the

starting time of the signal as header information e.g. <sr 0.000> and the example finishes

with pointing out the signal’s end time, e.g. <sn 39.036>. Then, each detected labelled

segment is described by showing the starting and ending time of the segment along with

its corresponding annotation name.
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Signal starting time

Segment starting time

Segment label name

Segment ending time

Signal ending time

Figure 4.9: Example of Transcriber output text fi le (.typ fi le)

4.5.4 Scoring the quality of the recordings

As mentioned previously in the data description section, all the recording fi les used in this

data set are selected from the quality categories of 4 to 7 of Table 4.1. Apart from the

above-mentioned annotation process and instead of using the Borror’ s own quality rating,

two di�erent rating scores have been incorporated; namely, the recording quality score

and background noise level score, in order to express the overall quality of each recording

in a much more precise way. All the obtained scores are available in appendix B, along
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with the file ID and the length of each sound file.

1. Recording quality score

As the data was recorded by different recordists and with different recording devices, a

recording quality score to describe the quality of the recording of each sound file was

devised. This score is a five-point scale rating score and is obtained manually by listening

to the entire signal. Table 4.3 shows all the quality levels with their corresponding score

value.

Table 4.3: Quality of recording rating scale

Score: 1 2 3 4 5
Quality description: Poor Poor to fair Fair Good Very good

2. Background noise level score

Due to the existing background noises along with the recordings, the background noise

level score is the measurement rating that expresses the overall background noise in the

entire recording files. It is a six-point rating scale which demonstrated in Table 4.4. The

score is rated as zero if there is no background noise or other sound classes (except of

bird vocalisation) available in the recording file. Otherwise, it is rated from 1 to 5 with

regards to the overall amount of multiple background noises.

Table 4.4: Background noise rating scale

Score: 0 1 2 3 4 5
Background noise No Very low Low Medium High Very high
level description : background noise background noise background noise background noise background noise background noise
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4.5.5 User interface

As mentioned previously, the Transcriber output file includes some useful information,

such as the annotation name of each detected segment with corresponding starting and

ending points. There is also some more relevant information available along with Tran-

scriber’s annotation information (see Figure 4.10), such as the corresponding bird species

name and the file ID of each sound file, extracted directly from the Borror data informa-

tion. Moreover, the recording quality score and background sound level score, which have

been obtained manually during the annotation process, are also included in each labelling

file.

As mentioned earlier, the Transcriber output file includes some useful information

such as the annotation name of each detected segment with corresponding starting and

ending points. There are few more relevant information available along with Transcriber

annotation information (see Figure 4.10), such as the corresponding bird species name

and the file ID of each sound file, extracted directly from the Borror data information.

Moreover, the recording quality score and background sound level score which have been

obtained manually during the annotation process is also included in each labelling file.
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Figure 4.10: Summary of the annotation process

For the purpose of creating a text grid labelling output fi le for each individual recording

fi le in our data, which accommodates all the above annotation information, and in order

to refi ne and customize the output fi le, a MATLAB script has been developed.

The MATLAB script provides several fl exibilities to the users in terms of customising

the labelling fi les as follows:
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1. Modifying the name of each pre-defined annotation class

The script provides the facility for users to modify the name of each annotation class

based on their preferences. For example, instead of ‘bird vocalisations’ they may use their

own words such as ‘Bird’ or ‘B’.

2. Exporting multiple label files

One of the main features of this MATLAB script is that it provides users with the facility

of managing their annotation classes based on their requirements and preferences. This

includes the possibility of having individual label files for each detected annotation class

within a sound file, rather than the default option of having one single label file per sound

file. For instance, as it is demonstrated in Figure 4.11, the example recording file from

the data set with the approximate length of 35 seconds has been labelled in six different

segments by Transcriber, in which the first three and the fifth segments (red coloured)

have been labelled as ‘bird’ and the fourth and sixth segments (green coloured) have been

labelled as ‘speech’. The user has the choice of storing the information of all the detected

segments in two separate label files named ‘18826_Bird.typ’ and ‘18826_Speech.typ’,

each containing the relevant information of their corresponding annotation class. It even

provides users with the facility of only including their preferred annotation classes in the

output file and eliminating others. It only requires the entering of the desired classes in

the function’s setting prior to the processing.
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a)

c) b) d)

Figure 4.11: a) Transcriber interface, b) Transcriber’ s output fi le, c) Bird label fi le for

sample fi le 18826, d) Speech label fi le for sample fi le 18826.
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3. Modifying the output structure

The user can also modify the structure and format of the output file to include their own

preferred information. By default, the output file has the structure shown in Figure 4.12

including this information: file ID number, bird’s species name, quality score, background

noise level score and annotation labelling information and it is exported as a ‘.txt’ file.

Recording file ID 

Bird s species name  

Quality score

Background noise level score

Annotation labelling information

Figure 4.12: Default structure of the output file

4.6 Conclusion

In this chapter, first the available large data files of bird sounds were introduced as well as

the current demand for their associated labelling and annotation information, which leads

to the work conducted in this part of the research. Then the available data set used in

recent bird classification challenges was briefly discussed. Also, the specific data set used

in this thesis was introduced. The first step of the annotation was performed manually by

listening to each recorded sound file. In the next step, each file was segmented and labelled
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in its comprising annotation classes by the Transcriber software. Moreover, each sound

file has been investigated manually regarding its recording quality and the background

noise level and has been rated based on this information. Lastly, a user interface has

been designed as a MATLAB script which enables the user to manage the label files

based on their preferences. In order to improve the annotation process and as a future

plan to develop this research further, more specific annotation classes can be defined and

employed in labelling to increase accuracy.
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Chapter 5

SEGMENTATION AND

ESTIMATION OF ACOUSTIC

FEATURES FOR BIRD

VOCALISATION

5.1 Introduction

As mentioned previously in Chapter 2, the first step of a bird sound identification system is

to split the continuous acoustic signal into smaller isolated units (segments), where sound

events are present, along with extracting relevant information from these segments into a

compact set of features which can represent the characteristics of the bird species. In this

chapter, with the assumption that the bird’s vocalisation is tonal and for the purpose of

feature extraction and the signal’s segmentation, the algorithm introduced and presented
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in [5, 6] has been employed with some modifications that we introduced in [133, 134].

The authors in [5, 6] introduced a method for the detection of sinusoidal signals of

speech and sound signals in a noisy environment. In this thesis, their proposed sinusoidal

detection algorithm was employed in order to obtain the frequency tracks’ segments for

bird vocalisation parts in the data. Further modification and refinement steps were also

presented (see section 5.3.3) to deal with the background noises existing in the data

(described in Chapter 4).

Sinusoidal components are fundamental building blocks of sound. Based on Fourier’s

theorem, every sound can be presented as a sum of sinusoids having fixed amplitude and

frequency, but this is a highly inefficient model for non-tonal and changing sounds. In

other words, any tonal sound can be modelled efficiently as sum of windowed sinusoids over

short stationary time, and a spectral peak is naturally modeled as a sinusoidal component

which has been shaped by some kind of window function or amplitude envelope in the

time domain [135].

In this study, the segmentation of the audio signal is performed based on detecting

sinusoidal components in the signal. The detection of sinusoidal component is taken as

a pattern recognition problem. It is performed on a signal frame basis. Since spectral

peaks in the short-time spectrum are effective in capturing the tonal aspects of a sound

signal, each peak in the spectrum of a signal frame is considered as a potential sinusoidal

component. A set of features, extracted from the spectrum, is then obtained for each

spectral peak. In the recognition stage, the detection’s decision is based on the comparison

of the distribution of the feature vectors of these potential sinusoidal components with our

large collection of features corresponds to spectral peaks of noise and sinusoidal signals.

At the end of the detection, a segment would be a sequence of these detected sinusoids.

Furthermore, each obtained segment is characterised as a sequence of frequencies of these
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sinusoids at each frame signal. This continuous sequence is named as a frequency track

segment, for the purpose of simplicity in this thesis.

In the following section, the procedure for the estimation of frequency tracks will

be discussed in more detail, along with the further refinement of the frequency track

extraction results.

5.2 Estimation of frequency tracks

5.2.1 Obtaining spectral magnitude shape and the phase conti-

nuity

As the short-time spectrum can be expressed by a set of features such as, spectral magni-

tude and the phase continuity information, the purposed method in [5, 6] uses both types

of spectral information to obtain each spectral peak.

Sl(k) denotes the short-time spectrum of the lth frame of the signal and the kp denotes

the frequency index of a detected spectral peak in the short-time magnitude spectrum.

A multivariate feature vector y is extracted for each peak representing both the spectral

magnitude shape and phase continuity information around the peak [5, 6]. To obtain the

magnitude shape feature, M number of magnitude spectral’s point is used over the range

of frequency bins from kp −M to kp +M as follows [134]:

y1 = (|S̃l(kP −M)|, ..., |S̃l(kP − 1)|, |S̃l(kP + 1)|, ...|S̃l(kP +M)|)
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Where | ˜Sl(k)| is the normalised spectral magnitude and it obtained by |Sl(k)|/|Sl(kp)|;

where |Sl(kp)| is the magnitude value at the peak and M is the number of bins considered

around the peak.

The phase continuity features are obtained by using the spectral phase difference values

over the range of frequency bins from kp −M to kp +M , as follows:

y2 = (∆φl(kp −M), . . . ,∆φl(kp − 1),∆φl(kp + 1), . . . ,∆φl(kp +M))

[134]

Where the phase difference between the current and previous signal frame is defined

as ∆φl = φl(k)− φl−1(k)− 2πkL/N , as φl(k) and φl−1(k) are the phase of the frequency

point k at frame-time l and l− 1, respectively; and the term 2πkL/N is included in order

to compensate for the shift of the sinusoidal signal between the adjacent signal frames,

with L being the frame-shift in samples [6, 53].

5.2.2 Probabilistic modelling

The corresponding magnitude shape and phase continuity information of each detected

spectral peak can be represented by the distribution of the multivariate feature vector

y = (y1, y2). In this section GMM is used to model this distribution.

The training process provided a large collection of features of y, corresponding to

spectral peaks of noise and sinusoidal signals at various SNRs [6]. These data will be used

to estimate the GMM parameters of noise, λn and of sinusoidal signal, λs. As mentioned
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previously, the maximum likelihood criterion is then employed to decide whether a spectral

peak corresponds to signal or noise. For instance, if p(y|λs) > p(y|λn), the peak will be

detected as sinusoid [6].

The above provides a set of detected sinusoidal components at each signal frame; the

signal-frames in which no sinusoid is detected indicate no presence of tonal bird vocali-

sation. Each continuous sequence of these detected frames is considered as an isolated

segment. Then, each frequency track segment is presented as a sequence of frequencies of

that sinusoid at each frame signal.

5.3 Experimental evaluation

5.3.1 Experimental procedure

The data used in this approach is the exact data that was introduced in Chapter 4, with

the initial Borror’s labelling files. This means that each existing recording file is labelled

only with the name of the main bird species and the further obtained annotation labelling

files (annotated data, as described in Chapter 4 section 4.5) are used to evaluate the

quality performance of the entire automatic detection procedure (see section 5.4).

As can be seen in Figure 5.1, in this chapter all the available recording files within each

subset data (all the data within the 50 bird species) are being used as a means of feature

extraction. Therefore, at the end of this experimental evaluation, a set of frequency tracks

sequences will be obtained for each recording file and these detected sequences will be used

in further evaluations as the temporal data.
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Data
50 Bird Species

Total of 964 
Recording Files

Recording file

Frequency tracks segments

Figure 5.1: Data sets used in experimental evaluation procedure

5.3.2 Parametric setup

As the entire data was recorded with the sampling rate of 48 kHz, each acoustic signal

is divided into frames of 256 samples corresponding to 5.3ms. There is also a shift of 48

samples between the adjacent frames which corresponds to 1ms. In accordance with the

outcomes of some previous research [3, 133], the frame length is chosen to be shorter than

that which is common in most bird processing studies. The use of longer frame lengths

would provide better frequency resolution, however, due to the fast frequency variations in
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bird vocalisations, this would lead to some smearing in the spectrum. Then, a rectangular

analysis window is applied to the signal and in order to provide a finer sampled Discrete

Fourier Transform (DFT) spectrum, a 512− point DFT is used, which means the signal

is added by 256 zeros. The parameter M (section 5.2.1) is set to 6 frequency bins. The

training of the models of the sinusoidal signals was performed using simulated sinusoids,

with a range of linear frequency modulation. The models consist of 32 Gaussian mixture

components.

5.3.3 Refinement of the detection results

The outcome of the sinusoidal detection method can be regarded as an initial segmentation

of the acoustic scene. The following steps are presented, in a conservative way, to further

refine this detection result, in which the frequency tracks’ segments are obtained only for

the parts in the signal where bird vocalisation exists and excluding all other background

sounds and speech signals.

1-Discarding very short segments with a length less than 4 frames:

All the detected segments with a considerably short length, in this case less than 4 frames,

will be assumed to be detected by errors. As such, all these very short segments are

discarded in the first step.
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2-Interpolating the segments:

For all the segments that are apart from each other for up to two frames and two fre-

quency bins, an interpolation is performed between the beginning and the end point of

the segments. This will avoid the accidental split of a segment due to a missed detection

of a few frequency bins.

3-Discarding all the short segments with a length less than 14 frames:

Next, all the segments with a length of less than 14 frames are discarded. These short-

length segments are unlikely to include any bird vocalisations in our data.

4-Excluding background co-vocalisations’ segments:

As mentioned previously, the data which has been used here are recorded from natural

bird habitats and they include some co-vocalisation of other birds or animals with the

recordings. As this research is not interested in employing and modelling these back-

ground co-vocalisations’ segments, the assumption has been made that the birds’ species

vocalisations are of a higher energy compared to any other background vocalisations in

the recording. As a result, all the segments where their average energy were 15 dB below

the highest average segment energy in each recording have been eliminated.
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5-Excluding the human speech segments:

Finally, as the bird vocalisation segments correspond to the frequency regions greater than

2 kHz in this data, and in order to get rid of human speech vocalisations presented in

the recordings, all the segments with a median frequency less than 2kHz have also been

discarded.

Figure 5.2 shows a sample spectrogram of an audio fi eld recording from the Borror data

containing concurrent vocalisations of two bird species and the estimated frequency tracks

before and after applying the refi nement procedure. As can be seen, the detected frequency

tracks (before the segmentation) clearly fi t into corresponding birds vocalisations including

even the weakest; examples of which are high frequency components around frequency

index 120 and around frame time index 560, 600 and 1050. As listening to the recordings

also reveals, these were related to the co-vocalisations of other birds’ in the background.

Furthermore, the desired birds vocalisations were all captured well in the fi nal frequency.

Figure 5.2: A sample spectrogram: (a) of audio fi eld recording and the corresponding

estimated frequency tracks, initial (b) and fi nal (c).
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5.4 Quantitative evaluations of the performance of

the frequency tracks’ detection system

This section provides two quantitative analysis methods to evaluate the quality perfor-

mance of the entire automatic feature detection system, in terms of feature tracking and

segmentation purposes.

5.4.1 Database description

In order to evaluate the quality of the entire automatic detection system, it is necessary to

have a reliable reference for further analysis steps. All the quantitative evaluations were

performed using some of the ground truth annotated data from Chapter 4 (as reference

labels) to compare with the final outcome of the frequency tracks’ estimation system.

The data set that is used in this section consists of six different subsets of bird species

which are randomly selected from the available 50 sets of bird species. As Table 5.1 shows,

a total of 88 variable-length audio recording files are included in this selected data set

with an overall time of 4.5 hours, where each individual species has between 32 and 95

minutes of recording. Typically, this (selected) data set is about 14% of the entire data

which is presented in Chapter 4.
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Table 5.1: Datasets used for quantitative evaluations of the performance of the frequency

tracks’ detection system

Name of bird species Number of recording file Data length (minutes)

Bird 1: Carolina Wren 19 95

Bird 9: Louisiana Waterthrush 15 36

Bird 20: Hooded Warbler 11 41

Bird 31: Prothonotary Warbler 12 32

Bird 35: Kentucky Warbler 19 34

Bird 43: Savannah Sparrow 12 34

Total: 88 272 (4.5 hours)

5.4.2 Obtaining the detected output signal

As it is mentioned in section 5.1, we consider that birds produce tonal vocalisations.

Furthermore, the estimation of the frequency tracks method provides a set of detected

sinusoidal components at each signal frame; the signal-frames in which no sinusoid is

detected indicate no presence of tonal bird vocalisation. In other words, the procedure

for obtaining the frequency track performs similarly to a two-layered classifier, which la-

bels the entire signal as two separate classes: bird vocalisation and non-bird vocalisation

(includes silences). Hence, as can be seen in Figure 5.3, the detection outcome in each

recording file is transformed to a binary transcription signal; where the one’s value indi-

cates bird vocalisation and the zero’s value indicates non-bird vocalisation on each frame

of the signal. For the sake of simplicity, this binary transcription signal is named “detected
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output signal” in this chapter.
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Figure 5.3: Obtaining the detected output signal, for each recording file, from the

outcome of the frequency tracks’ estimation procedure

5.4.3 Obtaining the reference transcription signal

According to the manual annotation procedure (described in Chapter 4) each recording file

has been investigated manually and segmented into a set of smaller non-silent parts. The

annotated data provide the information about the sound class existing in each labelled

segment with its corresponding time-stamps. The 12 pre-defined annotation classes, such

as bird vocalisations, wind noises, human speech and other background noises (see Table

4.2), were provided for the purpose of labelling the signal. In order to compare the

detected outcome with the ground truth labels, apart from the ‘bird vocalisations’, all

other labelling classes (including silences) in the annotated data are considered as the
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non-bird vocalisation class. Therefore, at the beginning, each manual annotated label file

is transformed to a binary transcription signal (see Figure 5.4); where the one’s value

indicates bird vocalisation and the zero’s value indicates non-bird vocalisation on each

frame of the signal. This frame-based signal is named the “reference transcription signal”

in this section.
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Figure 5.4: Obtaining the reference transcription signal from manual annotated labels

Fine tuning borders and splitting the (human labelling) bird singing segments

into individual vocalisation

It is assumed that manual segmentation to mark the borders was not an entirely accu-

rate process because of human listening errors. In addition, hand segmentation was not

perfect enough to split all the bird vocalisation songs into smaller elements, similar to de-

tected frequency tracks’ segments. Therefore, an energy-based bird vocalisation detector

is used with the purpose of fine tuning borders and possibly splitting the long bird singing
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segments into individual vocalisations.

The basic principles of this system are that first, it calculates the spectral energy

from the input signal and then, since the energy of the bird singing parts are higher than

the background energy, it compares these values with the threshold. The parts whose

measured values are above the threshold will be considered as bird vocalisation and the

rest will be considered as non-vocalisation. This energy-based detector system is described

more in detail below and in Figure 5.5.

As Figure 5.5 illustrates, this procedure starts with taking the DFT at the frame

level of the bird sound waveform along with calculating the energy at the spectral level

(with the same parameter set-up presented in section 5.3.2). After obtaining the spectral

energy for the entire sound signal, the energy sequence of each hand labelled segment (bird

vocalisation segments only) is then passed to the energy-based bird vocalisation detector.
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Figure 5.5: The procedure of fi ne tuning borders and splitting the bird vocalisation song

into six individual vocalisation segments

It should be mentioned that the accuracy of the energy-based detector system de-

pends heavily on the decision thresholds. Adaptation of the thresholds’ value helps to

track time-varying changes in the acoustic environments and hence, gives more reliable

bird vocalisation segmentation results. The (adaptive) threshold for each incoming bird
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vocalisation segment is based on the energy levels of Emin and Emax, and it is estimated

as:

Threshold = Emin + α(Emax − Emin) (5.1)

where Emin and Emax are the minimum and maximum energy values of the input energy

frames, respectively; and α is a coefficient set to 0.4 empirically, as to achieve a very low

false-acceptance error overall.

Along with the above threshold calculation, a stopping criterion is designed to check

whether further classification is needed, as follows: if Emin > (Emax −K), it is assumed

that no gap or silent part was found within the entire input vocalisation segment; where

K is a constant value and it is set to 30 dB empirically by observing the recordings.

Finally, the classification decision is based on the comparison of energy values of frames

against the threshold’s value. Bird vocalisation is declared if the measured values exceed

the threshold; otherwise, that corresponding frame is classified as non-bird vocalisation.

Meanwhile, the starting and ending points of the possible individual vocalisation segments

were marked as the energy values crossed the threshold line.

Refinement of the reference transcription signals

As mentioned in section 5.3.3, the outcome of frequency track detection has been refined

in terms of length and the average energy. In order to have a comparable condition, the

same refinement rules are applied here as follows:

• Discard all the short bird vocalisation segments with a length less than 14 frames

(e.g. rejected segment in Figure 5.5)
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• Discard all the bird vocalisation segments where their average energy is 15 dB below

the highest average segment energy in each recording.

The output of the energy-based detector is a binary decision on a frame-by-frame basis

that presents the whole signal with a set of bird vocalisation and non-bird vocalisation

frame-based labels. Finally, the reference transcription signal is amended based on the

output of the energy-based detector.

5.4.4 Feature tracking evaluation measures

This section provides a performance analysis of the feature tracking procedure by com-

paring the outcome of the frequency tracks’ extraction (detected output signal) with the

reference transcription signal, in terms of bird vocalisation identification. These compar-

isons are assessed on a frame-by-frame basis and each frame of the detected output signal

is checked with its corresponding frame (label) of the reference transcription signal. The

performance measures of precision (the fraction of the identified instances that are rele-

vant); recall (the fraction of relevant instances that are identified); and the false positive

rate (FPR) are used to evaluate the performance of the above matchings as:

Precision = TP

TP + FP
× 100% (5.2)

Recall = TP

TP + FN
× 100% (5.3)

FPR = FP

FP + TN
× 100% (5.4)
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where, TP (True Positive) and TN (True Negative) are respectively, the number of frames

correctly identified as belonging to the bird vocalisation class and the number of frames

correctly identified as belonging to the non-bird class. In addition, FP (False Positive)

and FN (False Negative) are respectively, the number of frames incorrectly identified

as belonging to the non-bird vocalisation class and the number of frames that are not

identified as belonging to the bird vocalisation class but should have been. The results

for the performance analysis of the feature tracking procedure are shown in Table 5.2.

Table 5.2: Results for performance analysis of the bird vocalisation classification (precision

and recall scores)

Name of bird species Precision (%) Recall (%) FPR (%)

Bird 1: Carolina Wren 84.30 76.01 3.92

Bird 9: Louisiana Waterthrush 87.42 75.08 1.47

Bird 20: Hooded Warbler 73.80 77.88 1.87

Bird 31: Prothonotary Warbler 94.18 62.45 0.47

Bird 35: Kentucky Warbler 90.25 83.39 0.99

Bird 43: Savannah Sparrow 86.41 62.16 0.92

Overall: 86.06 72.83 1.61

5.4.5 Quantitative analysis of automatic segmentation proce-

dure

The performance of the automatic segmentation procedure is assessed based on two criteria

as follows:
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1-Accuracy of segmentation procedure:

In this criterion, boundaries from the annotation data (reference transcriptions) are com-

pared to the boundaries produced by the automatic algorithm. As can be seen in Fig-

ure 5.6, a simple rule is applied here for the entire comparison: if the boundary of the

segment, which is produced by the automatic algorithm, falls within one reference bound-

ary or has more than 50% overlap, that segment is considered as a hit or found boundary.

In addition, insertions are produced when there are boundaries created by the automatic

algorithm that do not match any annotated (reference) boundary. Deletions are produced

when there is a boundary marked in the reference transcriptions, but the automatic detec-

tion algorithm produces no corresponding boundary. Once the alignment of two signals

(reference vs detected output) was found, the quality of the automatic segmentation pro-

cedure can be obtained by percentage accuracy (PA) as:

PercentageAccuracy = N −D − I
N

× 100% (5.5)

where N is the total number of segments (boundaries) in the reference transcriptions; D

and I are the total number of deletion and insertion errors, respectively.
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Figure 5.6: Examples of produced hits, insertions and deletions

2-Fragmentation score:

If there are several boundaries produced in the vicinity of only one reference boundary,

fragmentation of the segment is considered for that corresponding boundary. In other

words, if there is more than one hit available in one reference boundary, it is considered

that the corresponding segment is split into more than one part in the automatic detection

algorithm (see the example in Figure 5.6). The quality of the fragmentation can be

presented in terms of the percentage score of the number of splits versus the total number

of detected segments.

The results of the above segmentation analyses are presented in Table 5.3.
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Table 5.3: Results for performance analysis of the segmentation task

Name of bird species
Percentage
Accuracy

(%)

Fragmentation score (%): split into

1 part 2 parts 3 parts

more
than
3

parts
Bird 1: Carolina Wren 77.70 84.13 11.60 3.40 0.87
Bird 9: Louisiana Waterthrush 67.14 80.25 15.65 3.41 0.69
Bird 20: Hooded Warbler 61.64 66.49 19.63 8.78 5.09
Bird 31: Prothonotary Warbler 76.83 30.31 31.34 30.79 7.56
Bird 35: Kentucky Warbler 80.14 60.79 22.50 10.88 5.84
Bird 43: Savannah Sparrow 70.87 89.65 5.37 1.77 3.21
Overall: 72.39 68.60 17.68 9.84 3.88

5.4.6 Discussion on performance results

As can be seen in Table 5.2, the entire automatic detection system, when used at frame-

level, can correctly detect over 72% of bird signal frames in the data, along with false-

acceptance (FPR) of only 1.61% and very good overall precision of 86%. Furthermore,

the obtained results for the performance analysis of the segmentation task (as can be

seen in Table 5.3), show a very high level of overall accuracy of 72.39% for detecting the

individual segments. Meanwhile, fragmentation scores demonstrate that some bird species

have a complex structure in their vocalisations; e.g. about 70% of the found segments

from the prothonotary warbler are split into more than two individual vocalisation parts

(elements).

Here it has been observed that the improvement of the above evaluation results is

heavily dependent on the manual data annotation procedure, since falsely labelled re-

gions may be seriously detrimental to the detection accuracy. The manual inspection of

examples of data showed that there were often several birds singing simultaneously, or

other birds singing in background. The manual annotation requires a skilled level of ex-
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pertise to precisely label these parts in their true label classes: as main bird vocalisation,

or bird vocalisation in the background, with corresponding boundaries.

In general, it can be concluded that the proposed frequency tracks’ detection method

with the presented refinements steps, can be used to provide an accurate automatic seg-

mentation of a bird signal recorded in a real natural environment, into individual vocali-

sation elements.

5.5 Summary

In this chapter, the segmentation and estimation of frequency tracks is performed, based

on the dividing of the whole vocalisations’ signal into distinct sinusoidal components, by

employing the presented algorithm in [5, 6]. The detection procedure proceeds in two

steps, the training and the recognition stages. First, the frame-based analysis has been

performed in the training stage to detect the spectral peak points. Then, in the recog-

nition stage, these obtained spectral points are classified into two sinusoidal and noise

components, by comparing the corresponding magnitude shape and phase continuity dis-

tribution with the GMMs models. The experimental evaluation on the described vocali-

sation corpus successfully obtained a set of frequency tracks sequences for each recording

file. Furthermore, performance analyses on the obtained results demonstrated that the

entire frequency tracks’ detection method provides very good accuracy in detecting the

bird tonal spectral components, along with an accurate automatic segmentation of bird

signals in real natural noisy environments.
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Chapter 6

UNSUPERVISED DISCOVERY OF

ACOUSTIC ELEMENTS IN BIRD

VOCALISATIONS

6.1 Introduction

The segmentation and frequency track feature extraction procedure, as described in Chap-

ter 5, provides a set of detected segments for a given audio recording, where they are only

labelled with the name of the corresponding bird species. In general, there is not a wide

range of publicly available annotated data for bird vocalisations. Such annotated bird

acoustic data and the inventory of units of bird vocalisations are important for bioa-

cousticians, for instance, to study differences between individuals and populations, or

behaviour contexts; and furthermore for the development of more advanced automated

systems for the processing of bird vocalisations [133].
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The novel contribution of Chapter 6 is the development of a discovery approach in

an unsupervised way that can find a set of individual vocalisation elements for each bird

species, based on these detected frequency track segments. The resulting outcome of this

novel approach also offers the label information for each discovered segment of the data.

This approach is accomplished in two consecutive stages. In the first stage (section

6.2), unlike a conventional dynamic time warping (DTW) algorithm which calculates the

similarity of whole sequences, the presented modified DTW algorithm allows searching

for multiple matches, possibly partial, between each pair of detected segments (frequency

tracks segments). The outcome of the DTW search is a set of found partially matching

paths, with their corresponding similarity values. These similarity values are called partial

similarity scores, as they were obtained during the searching for partial paths. Each partial

similarity score is calculated based on a combination of the cumulative distance of the

DTW path match, the length of the matching path and the ratio of the length of the

matching path to the total length of the segment. In the next stage (section 6.3.2),

the outcome of the DTW searches is then used in an agglomerative hierarchical clustering

approach to group all the homogeneous structured frequency tracks’ segments into a set of

distinct element-based vocalisation clusters. The final outcome is then used in Chapter 7,

as the element-level vocalisation labelling information, to train the models in this proposed

novel approach to the bird recognition system.

As mentioned earlier in Chapter 3 (section 3.4.2), elements can be taken as the smallest,

structurally distinct, stereotyped acoustic units produced by a bird; and these can be

thought of similarly as phonemes in the context of speech processing. Experimental results

(section 6.4.3) show that the individual segments, which are grouped in each distinct

vocalisation cluster, have similar structured patterns in terms of length and frequency

values (see Figure 6.25). These found segments correspond to elements in a bird song

signal and the patterns of the corresponding frequency values correspond to the pitch
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vocalisation pattern that was described in Chapter 3 (section 3.5.1). Therefore, in Chapter

6 (and later in Chapter 7), the term of “vocalisation pattern” refers to the pattern of the

frequency values of the segments which are discovered in each distinct vocalisation cluster.

The following sections of this chapter explain the entire unsupervised discovery ap-

proach in more detail, along with the experimental evaluations’ section.

6.2 Segment similarity calculation using modified

DTW

The application of the sinusoidal detection method described in Chapter 5, results in

a form of an initial segmentation of the signal; for instance, signal frames in which no

sinusoid is detected indicate no presence of tonal vocalisations. However, these initial

frequency tracks segments may contain several repetitions of vocalisation elements and/or

other tonal vocalisation sounds, which could be anywhere within the detected segments.

Hence, to identify and group all the similar acoustic units together, a partial similarity

searching method is required here.

In order to search for the partial and multiple matchings between a pair of detected

segments, the use of conventional DTW that searches for the similarity of whole sequences

is not suitable. Therefore, in this work a partial similarity searching method that employs

modified DTW for a pair of segments to obtain the corresponding partial matching paths

is introduced.

There are two main benefits of partial searching in DTW. First, this is effective for

suppressing the result of potential wrong detection at the starting and ending point of
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segments. Secondly, it is useful for dealing with situations when the detected segment

actually consists of several repetitions [134].

In the following sections, first the principal of a modified DTW method with employed

constraints on the warping path is expressed; then, the whole proposed partial similarity

searching method is presented. It is useful to note that the further stages of the processing

are not dependent on the specific feature, so the presented work could also be applied to

other applications with different types of features [133].

6.2.1 Modified DTW

For the purpose of simplicity, it can be considered that there are two single dimensional

time series sequences as X = (x1, · · · , xNx) of length Nx ∈ N and Y = (y1, · · · , yNy) of

length Ny ∈ N. The distance matrix d(xi, yj) is simply measured by using the Euclidean

distance. The optimal warping path w = (w1, · · · , wK), defines a mapping between two

sequences X and Y , in such a way that it minimises the cumulative distance DW (X, Y ) =∑K
k=1 d (xik

, yjk
) [133].

Constraints on warping path:

In order to control the possible routes of the alignment path between two sequences and

also to avoid any unpleasant the warping of the time-axis, a variety of rules and constraints

are employed on warping path w = (w1, · · · , wK). These constraints are described as

follows:

• Step pattern condition: This constraint allows the warping path to move one frame
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in horizontal, vertical or diagonal direction. As it can be seen in fi gure 1, the warping

path w(k-1) is only one of the following (ik, jk − 1), (ik − 1, jk − 1) or (ik − 1, jk).

Additionally, this constraint satisfi es the monotonicity and continuity conditions on

the warping path as well.

i

j

k

1k

k

1k

)(kw

Figure 6.1: Illustration of warping path satisfying the step pattern condition

• Local constraints on time warping: This local constraint controls the possible re-

lationship among several consecutive horizontal or vertical moves on the warping

path. By setting up the allowance step parameter C, as it is set to 2 in this re-

search, the modifi ed DTW algorithm does not allow the path to have more than

two consecutive moves in a horizontal or vertical direction (see Figure 6.2).
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i

j

X

X

Figure 6.2: Illustration of warping path satisfying the local constraint conditions

• Boundary constraint: With conventional DTW the warping path usually starts at

the bottom-left and ends at the top-tight of the matrix; whereas in modifi ed a DTW

di�erent boundary constraint is employed, where the path starts from the fi rst frame-

time on segment Y and anywhere on segment X (see Figure 6.3). Additionally, this

constraint allows the warping path w to end anywhere on the matrix. In other words,

as it can be seen in Figure 6.3, each obtained cumulative path at the last frame-time

on sequence Y , has a di�erent starting point on sequence X and frame-time y1.
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Figure 6.3: Illustration of warping path satisfying the boundary constraint

Normalising the cumulative distance value

Since the distance DW (X, Y ) accumulates over the warping path, the use of this distance

value directly would cause the length of the sequence to affect the value. Thus, in modified

DTW each cumulative distance value is normalised by the length of the warping path.

6.2.2 Partial and multiple matching using a modified DTW

In this section a partial searching method that employs the modified DTW algorithm to

detect the similarity matches over two corresponding segments is presented.

Assuming again that there are two individual sequences: X = (x1, · · · , xNx), and

Y = (y1, · · · , yNy); in order to find multiple partial matching paths, it is considered that

the starting and ending points can be anywhere within the NX ×NY matrix. This can be
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done by performing several DTW searches in parallel, each considering a different starting

point on one of the sequences, for example Y , and allowing the start anywhere on the

other sequence X.

In other words, as it can be seen in Figure 6.4, during each searching procedure a range

of frames of sequence Y is selected to compare with the entire sequence X. This shorter

segment can be defined with two indices yst and yend, as starting and ending frame-time

on sequence Y , respectively, where, 1 ≤ yst ≤ yNy , 1 ≤ yend ≤ yNy . In each DTW search

iteration, the value of yst does not change, whereas, the value of yend would be increased

by jstep number of frames up to frame-time yNy for further searching purposes. For clarity,

this partial segment on the y-axis and the entire sequence of X are called segment y and

x in this work, respectively.

Segment x

Se
g

m
en

t 
y

Sequence X

Se
q

ue
n

ce
 Y

DTW matrix

sty

m
in

L

min 1 Lyy
yNst 

yNendst yyLy     min
Where , and 

stepjendy

endy

+

Continued DTW matrix

Figure 6.4: Example of DTW search for a selected range of frames on sequence Y and

the entire frames on sequence X.
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Initial partial DTW searching procedure:

In the fi rst part of DTW searching, yst = 1 and yend = yst + Lmin, where Lmin is the

minimum length of a cumulative path that the modifi ed DTW algorithm considers for

matching and this is used to discard short accidental match [133]. As mentioned pre-

viously, the boundary constraint in modifi ed DTW, allows the cumulative path to start

from the fi rst frame-time on segment Y and anywhere on segment X; hence, the ending

point of partial DTW paths can be anywhere on the x-axes. As the DTW calculation

progresses, the cumulative distance values are obtained for subsequent points in the DTW

matrix. Then, the values of the normalised cumulative distance can be examined at the

frame-time yend on the segment Y and any frame-time i on the sequence X. As the

fl owchart shows in Figure 6.5, there are two possible decisions at this stage as:

Modified DTW

     Sequence

     Sequence ),...,( 1 yNyyY 

),...,( 1 xNxxX 

       Segment x = Sequence 

       Segment y = 

X

1sty

DTW Matrix

For all

No minimum-length partial 
match is found  

minLyy stend 

Stop processing

Increase ending point of segment y

stependend jyy 

stst yy 

Yes

No  thrnorm DjiD ,

Update start/end points of segment y

stepstst jyy 

minLyy stend 

No

Yes

xNi ,...,1

endyj 

Save the information
 (e.g. starting / ending points,          )  

of the paths  that 
normD

xNi ,...,1

endyj 

),...,(
endst yy yyminLNy yst 

  thrnorm DjiD ,

Figure 6.5: DTW Partial searching procedure over two sequences X and Y
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1- Termination of current DTW calculation: If there is no i such that the normalised

cumulative distance Dnrom is below a given threshold Dthr, i.e. Dnorm(i, yend) > Dthr, for

all i = 1, · · · , Nx, then it is considered that there is no minimum-length partial match is

found for the DTW search starting at the yst on the sequence Y . Hence, the current DTW

calculation of partial segment y = (yyst , · · · , yyend
) over the segment x (at the frame-time

yst) is stopped.

2- The continuation of DTW searching on frame-time yst: If at least, there is such an

i that Dnorm(i, yend) ≤ Dthr, it is considered that the minimum partial match is found.

There are three further steps available here. First, the algorithm saves the information

about each of the found partial matching paths along with its associated starting and

ending points, on both segments and the corresponding normalised cumulative distance.

At the second step, in order to continue DTW searching at this starting frame-time yst,

the algorithm extends the length of partial segment y over sequence Y by updating its

ending frame time as:

yend = yend + jstep (6.1)

Where jstep is the minimum number of frames that is used to increase the length of

segment y on sequence Y , after each successful DTW searching.

In the next step, the DTW calculation continues to obtain the cumulative distances for

additional subsequent points in the DTW matrix. Once again, the values of normalised

cumulative distances at the frame-time yend + jstep on the segment Y and any frame-time

i on the segment X will be inspected, as means of the continuation DTW searching on

the current frame-time yst.
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The three above steps: saving, inspecting and extending the ending point on segment

y (changing the value of yend), continue until no further match is found for any longer

segment that starts at frame-time yst on sequence Y .

For clarity purposes, Figure 6.6 shows an example of parallel DTW searching for two

sequences X and Y . The segment y starts from frame-time yst and ends at frame-time yend

on sequence Y . There are nine different warping paths among two time-frames yst and

yend on segment y and anywhere on sequence X. The red circle on the DTW path shows

that the value of the normalised cumulative distance is larger than a given threshold Dthr

and the green circle shows vice versa. At the first level of DTW searching, at least six

minimum-length partial matches are found as, B, D, E, F , G and I. During each level of

searching, the algorithm always updates the associated information of all these successful

matching paths. At the second level of searching, the DTW calculations continue to

expand the cumulative distance matrix until frame time yend + jstep on the y-axis. By

inspecting Dnorm(i, yend + jstep) for all i = 1, · · · , Nx, it is considered that Dnorm at the

end of the path of E and F , are larger than Dthr. Hence, their associated ending points

and its normalised distance remained as those that were obtained in the previous level

of searching; whereas, the partial information in the other paths, B, D, G and I, were

updated as the corresponding Dnorm value is still below the threshold. The recursive

DTW searching procedure continues for the current segment y and x, until the frame-

time yend + 3jstep on the y-axis, where both values of the Dnorm for paths D and G, are

larger than the threshold. Hence there are no longer partial matchings path available for

the current starting frame-time on sequence Y . Then, all the obtained partial matching

paths, which are marked with yellow lines, with their associated partial information, will

be presented in the DTW searching’s outcome.
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Figure 6.6: Illustration of the DTW searching procedure for candidate segments y over

sequence X

Starting new partial DTW searching procedure on y-axis:

At the termination criterion of the above described steps, the algorithm starts a new

DTW searching iteration for new partial segment y, by changing the starting and ending

points on sequence Y as follows:

yst = yst + jstep (6.2)

yend = yst + Lmin (6.3)
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All the above described searching procedures are performed within new segment y and

segment x, until the final stopping criterion is reached by the algorithm as:

yst > Ny − Lmin (6.4)

where, Ny is the last frame-time on sequence Y .

6.2.3 Path selection refinement

So far, based on the above parallel DTW searchings along with two given sequences

X and Y , a set of partial matching paths with their associated starting/ending points

and the normalised cumulative distance are obtained. Typically, there are exponentially

many matching paths available within the same rectangular area between the starting and

ending points on two sequences. Thus, this stage presents a refinement method in such

way that if there is more than one path falling within the rectangular area defined by the

starting and ending points of the given partial warp path, only the path with maximum

length is selected. This proposed refinement method is named a ‘boxing’ procedure in

this thesis.

The boxing procedure employs a simple rule to discover the longest path as: if the

start or end of a path, or any part of the path falls within a rectangular box of another

path (vice versa), then keep only the longer one, otherwise keep both. This condition

rule is then performed with several recursive procedures within the entire obtained partial

paths of two corresponding segments.

For example, as Figure 6.7 shows, there are 10 obtained partial paths within sequences

x and y, such as P1 to P10. The boxing procedure starts from the bottom-left and ends
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at the top of the matrix of x and y. First, the rectangular falling areas of two candidate

paths P1 and P2 are checked. By finding the overlap area among them, P2 is selected

as the longer path and P1 is discarded. In the next step (Figure 6.7-c), P2 and P3 are

examined, followed by keeping P3 as the longer path. As the searching progresses until

step i, other paths such as P3, P5, P6, P7 and P8 are discarded in competition with

the longer path P4. As it can be seen in step j, there is no overlap between P4 and P9,

thus the boxing procedure keeps both paths. Finally, the refinement procedure ends by

removing P10 as a shorter path in competition with P9. Therefore, both paths of P4 and

P9 remain as the results of the above boxing investigations.

6.2.4 Similarity calculation

For the purpose of further refinement on the obtained paths, the aim of this section is to

select only one partial path, instead of many, within two subsequent segments. This can

be done by keeping only the partial path which has the maximum similarity score within

the others.

Up to this section, the similarity within each pair of segments is presented by the cor-

responding value of normalised cumulative distance. Instead of using that single distance

criterion, a probability-like criterion that incorporates a combination of the normalised

cumulative distance and the length of the matching path is used, to calculate the simi-

larity score for each existing match. As a result, the similarity score is delivered from the

below equation below as:

Sim(pathi,j) = P (xD, xL)× lR (6.5)

where, P (xD, xL) is the probability like criterion that can be presented by a specific logistic

119



0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

L:28

L:17

L:49

L:22

L:18

L:12L:12L:12L:12

L:49

L:18

L 12L:12L:12

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

L:12

L:28

L:17

L:17

L:35

L:20

L:49

L:22

L:18

L:12

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

L:28

L:17

L:17

L:35

L:20

L:49

L:22

L:18

L:12

L:1717

L:35 L:49

1717

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

L:28

L:17

L:35

L:20

L:49

L:22

L:18

L:12

L:35 L:49

LL:20

Sequence X

Se
qu

en
ce

 Y

P1 P2

P3

P5

P4

P6
L:18

L
P7

P8

P9

P10

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

L:28

L:17

L:35 L:49

L:22

L:18

L:12L:12

L:18

L 12

L:35 L:49

L:12

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

L:28

L:49

L:28

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

L:28

L:17

L:49

L:28

L 17L 17L:17L 17

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

L:28

L:49

Sequence X

Se
qu

en
ce

 Y

P4

P9

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

L:28

L:17

L:49

L:22

L:12L:12L:12

L:49

L 12L:12

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

L:28

L:17

L:49

L 17

L:28

L:17L 17

L:49

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

L:28

L:17

L:49

L:22L:22

L:49

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

L:12

L:28

L:17

L:17

L:35

L:20

L:49

L:22

L:18

L:12

L:17
L:12

a) b) c)

d) e) f)

g) h) i)

j) k) l)

Figure 6.7: An Example of boxing procedure within ten partial matching paths,
P1, · · · , P10

function or sigmoid function, as:

P (xD, xL) = 1
1 + exp(−αD(xD − βD)) ×

1
1 + exp(−αL(xL − βL)) (6.6)
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The sigmoid function is a squashing function that produces an ‘ S’ shape curve and

the bound output P (xD, xL) is always between 0 and 1; hence, it can be interpreted as

a probability criterion function. The terms βD and βL are the midpoint’ s constants and

αD and αL are the steepness constants of the sigmoid curve, the xD and xL are the values

of the normalised cumulative distance and the length of a matching path respectively.

Figure 6.8 is an example of P (xD) that shows the e�ect of varying parameters’ midpoint

and steepness constants.
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Figure 6.8: E�ect of varying parameter: a) βD = 1, b) βD = 1.2, c) βD = 1.5, in

Sigmoid’ s curve.

The term lR in Equation 6.5, represents the ratio of the length of the matching pathn

to the total length of the corresponding segments i and j, as Lseg i and Lseg j respectively

and it can be expressed as:

lR =
√
wx(lRx)× wy(lRy) (6.7)

lRx = lx
Lseg i

× wx, lRy = ly
Lseg j

× wy (6.8)

where, lx and ly are the length of the scalar projection of pathn, on segment i and j
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respectively (see fi gure 6.9); wx and wy are the weight coe�cients and can be obtained as

(see fi gure 6.10):

w =


1.8(lR)− 0.8 , lR ≥ 0.5

0.1 , lR < 0.5
(6.9)
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Figure 6.9: An example of the scalar projections of matching paths on given segments i

and j

By keeping the path which has the highest similarity score within the others, the

corresponding matching path between segments i and j is described as follows: start and

end points of segment i, start and end points of segment j and the similarity score sim(i,j)

(see Figure 6.11).
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Figure 6.11: An illustration of found partial path between segments i and j
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6.2.5 Structure of DTW output results

After the processing of all the above partial similarity searching procedure for N number

of given sequences, the entire result, including the information of the obtained partial

path and the similarity score for all the segment pairs, can be presented by two (N ×N)

information matrices: the partial path matrix and the similarity distance matrix.

1- Similarity distance matrix: a symmetric square matrix, where each cell of the

matrix shows the similarity value for a pair of segments at ith row and jth column. For

example, as Figure 6.12(a) illustrates the simDisMat(m,n) shows the found similarity

score between two segments m and n equal to 0.98.

2- Partial path matrix: this is also a symmetric square matrix where each cell of the

matrix shows the starting/ending information of a detected path for a pair of segments

at ith row and jth column. For example, as it can be seen in Figure 6.12(b), the obtained

path within segments m and n is defined as;

partPathMat(m,n) =



Start ofsegment m

End ofsegment m

Start ofsegment n

End ofsegment n


=



1

40

3

42


(6.10)
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Figure 6.12: The result of partial match searching for given N numbers of sequences can

be expressed by two matrices a) partial distance matrix and b) partial path matrix.

An example of the result obtained by the whole DTW searching procedure on a pair

of real-world bird recordings is given in Figure 6.12. The blue lines indicate all the partial

matchings found. For simplicity, the lines are drawn by connecting the starting and ending

points of the found match. It can be seen that the procedure found 13 partial matches

between the given two sequences that align well to each other.
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Figure 6.13: Illustration of the output of multiple partial matchings, a) before path

selection refi nement step, b) within an example boxing procedure, c) after similarity

calculation step, for two given bird recordings.
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6.3 Clustering

The outcome of the partial DTW algorithm is a large collection of segments and their

associated distances one to another. Here, a modified agglomerative hierarchical clustering

method is presented to identify and group together all structurally similar segments that

were produced by a particular bird.

6.3.1 Problems and limitations with conventional hierarchical

clustering algorithms

Although the conventional hierarchical clustering algorithm is thought for as simple, it

often comes upon some difficulties regarding the selection of merge links. In the ordinary

techniques, including the single linkage and the group average method, the individuals or

small groups have a tendency to cluster together at relatively early levels [45]. Also, once

the clusters at one level are merged into another group of individuals, the further merging

at the next step is on the newly formed cluster. Hence, the merge decision is such a critical

performance, as there is no undo or swapping procedure available in this method [136]. If

the merge or split decisions are not taken well, the whole clustering procedure may lead

to a poor performance result. Moreover, as the ordinary method does not clearly evaluate

the merging or splitting procedure [136], a few internal pre-examinations are needed to

analyse the further structure of the clusters just before taking any merging or splitting

decisions.

One promising guideline for enhancing the clustering quality of the hierarchical meth-

ods is to incorporate the external relationship information data alongside of the distance

matrix; such as partial matching information in this research that describes the relations
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within whole entities. Furthermore, at the end of each merging iteration, the mutual rela-

tionship information of each cluster, should be updated in parallel with distances among

the clusters. Therefore, the traditional approaches are often unable to deal with this

information [137].

6.3.2 Modified unsupervised clustering method (Cluster repre-

sentative calculation)

In this section, a modified agglomerative clustering method that employs several specific

rules and constraints is presented, in order to identify and group together all structurally

similar segments that were produced by a particular bird. As such, this algorithm incor-

porates both obtained similarity distance and partial relationship information matrices,

as the input attributes of clustering.

1-Initial step and parameters’ definitions:

As mentioned in section 6.2.5, the output of DTW searching for N number of given

segments of frequency tracks seg1, · · · , segN , is represented by two matrices: the simi-

larity distance matrix and the partial path matrix, where both data describe the par-

tial intrinsic characteristic along with each indices. In the proposed clustering method,

simDisMat(N,N) refers to the similarity distance matrix and it is considered as the major

clustering data source or distances; whereas the partial path matrix or parPathMat(N,N),

is incorporated as the external relationship information matrix to influence the grouping

decisions.

At the initial stage, each frequency tracks segment is assumed as a distinct single-
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member group or Gi = segi, where i = 1, · · · , N . Then the clustering proceeds with

several consecutive iterations, where the initial aim of each iteration is to find the two

closest segments that have the largest pairwise similarity score within all the rows and

columns of simDisMat. The resulting pair of segments at each level is presented by segm

and segn in such a way that,

simDisMat(m,n) = max(simDisMat) (6.11)

In the first level of clustering, there is no restriction or condition to stop the merg-

ing, therefore the first segment m and n are merged into a larger group of G(m,n) =

{segm, segn}.

Despite the ordinary hierarchical clustering methods where the pairwise distances of

the new formed cluster and the remaining clusters are often measured after each merging

step, this method does not calculate these pairwise similarities. Instead, the algorithm

calculates the corresponding group average similarity or groupAveSim for each cluster

with multiple individuals. The group average similarity for cluster G with n number of

individuals can be estimated as:

groupAveSimG=seg1,··· ,segn =
∑n

i=1
∑n

j=i+1 simDisMat(i, j)
n2−n

2
(6.12)

For example, if n = 3 the group average similarity for cluster G = {seg1, seg2, seg3}

can be evaluated as;

groupAveSimG = simDisMat(1, 2) + simDisMat(1, 3) + simDisMat(2, 3)
3 (6.13)
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The group average similarity of each cluster with two individuals, including the first

formed cluster G{m,n} = {segm, segn}, is equal to the pairwise similarity between segment

m and n as simDisMat(m,n).

In addition, the mutual path overlap, or overlap, of both segments of any two-member

clusters, e.g. segment m and n in cluster G{m,n} = {segm, segn}, are obtained from

parPathMat, directly after the joining of two segments as follows;

partPathMat(m,n) =



Start ofsegment m

End ofsegment m

Start ofsegment n

End ofsegment n


=



1

40

3

42


(6.14)

overlapm =

 Start ofsegment m

End ofsegment m

 =

 1

40

 (6.15)

overlapn =

 Start ofsegment n

End ofsegment n

 =

 3

42

 (6.16)

As the overlap parameter shows the partial matching boundaries of each segment with

entire linked segments in its associated group, this mutual overlap area of the segment

can be changed or shortened only when another individual segment or a multi-member

cluster is joined into the same cluster where the corresponding segments are available

there. In both situations, the overlap parameter of all the segments of the new larger

formed cluster, should be updated. The updating procedure of theses situations will be
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discussed later in this chapter.

Both the mentioned clustering parameters, groupAveSim and overlap, alongside with

the partial matching path information matrix, can describe the likeness structure of each

formed group and they will be used as a means of pre-joining the evaluations to analyse

the next merge decisions, for the rest of the clustering procedure.

2-Rules of joining:

As the clustering method progresses to the second level, a set of rules and restrictions

are employed to influence the possible group merging transaction. In other words, the

merging into groups only happen when the joining criterion is reached by the algorithm.

At the beginning of each iteration, as mentioned previously, the algorithm searches for

the next closest pair of segments. After that, both obtained segmentsm and n, which have

the next largest pairwise similarity value in the distance matrix, are examined in terms of

whether they are a member of any obtained group. The result of this examination leads

the algorithm to one of the three following stages:

2.1- Both segments are chosen from the remaining single segments:

If both candidate segments are of the single-type cluster, or an individual segment,

there is still no restriction available here to stop the merging procedure. Thus, these two

segments are joined into the new cluster G with an occupancy of two; followed by the

calculation of the corresponding group’s average similarity value or groupAveSim and the

mutual path’s overlaps, or overlap, for both segments m and n (see Figure 6.14).
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Figure 6.14: a) Searching the maximum pairwise similarity within distance matrix. b)

Obtaining the group average similarity value and the mutual path overlaps of the new

formed group of two individual segments m and n.

2.2- The first segment is a single-typed cluster and the second one is associated to a

specific group with several individuals, or vice versa:

If one of the candidate segments is previously linked to any group with several individ-

uals, the algorithm does not allow the merging to proceed until all the further conditions

are checked. These conditions with corresponding evaluations at this stage are described

as below:

2.2.1- Checking the mutual path overlaps with obtained partial matching path:

For clarity purposes, assume that the segm is a single segment and segn is one of the
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current segments of Group A {segn, sega, segb, segc}. At this stage, the current mutual

path overlap of each individual member of group A, including segment n, is examined

with the partial match of the corresponding member that the path between segments m

and the corresponding segment shows. As it can be seen in Figure 6.15, the information of

the partial path between single segment m and each member of group A can be delivered

from its subsequent partial information matrix parPathMat as:

parPathMat(segm, segi) =



Start ofsegment m

End ofsegment m

Start ofsegment i

End ofsegment i


(6.17)

Where, segment i is the corresponding member of group A as i ∈ {n, a, b, c}; the

starting and ending points of segment i defines the obtained matching part of segment i.

If there is such an overlap found for all pairwise examinations, then the algorithm goes

to the next checking point. If not, the algorithm does not allow the segment m to join

into a larger cluster A, followed by continuing with a new clustering iteration to find the

next highest similarity and the next closest admission pair of segments.

Figure 6.15 displays both successful and failed examples, alongside the entire overlap

checking procedure between segment m and all segments in group A.
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group A. b) shows an example of failed overlap searching.

2.2.2- Checking the drop in the group average similarity of the possible merge with

candidate segment, with the given threshold thrdrop:

Clusters with low occupancy are formed at the early stages of clustering. As the

method progresses, the additional individuals or other groups may change the mutual
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structure of these clusters rapidly at the initial stages. In order to prevent such fast

disorders, the adopted criterion for judging when the candidate segment (or group; as

this will be described later) should not be added to the current cluster is used.

The current check point analyses the prospective likeness structure of the group with

the additional single segment, by calculating the drop in the group average similarity. As

it is described previously, the group similarity is calculated averagely, since it has been

formed from the merge of two single segments. Therefore, the drop for any group G can

be obtained as:

Drop = groupAveSimĜ − goupAveSimG (6.18)

where, G is the group with current occupancy before merging as G = {seg1, · · · , segn},

Ĝ is the group with addition candidate segment segn+1 as Ĝ = {seg1, · · · , segn+1}.

If the drop is greater than a given threshold thrdrop, i.e., Drop > thrdrop, then the

candidate segment should not be added to the cluster G. If it is not greater, the final

joining criterion is reached, thus the algorithm allows the candidate segment, i.e., segment

m, to merge into the corresponding group G, where the other obtained closest segment,

i.e. segment n, is associated.

In the next step, as the joining procedure is accomplished, the new group average

similarity and all the corresponding mutual overlap paths should update in the algorithm.

Therefore, the value of the calculated group similarity of Ĝ or groupAveSimĜ, is placed

into the group similarity value of the updated cluster G, with the additional candidate

segment or groupAveSimG.

Moreover, as it can be seen in Figure 6.16, the subsequent mutual overlap path of each

segment in new cluster G, i.e. segi for all i = {n, a, b, c}, excluding the newly merged
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segment m, can be replaced by the corresponding found overlap as follows:

overlapsegi
= overlapsegi

∩ [stsegi
: endsegi

] (6.19)

where stsegi
and endsegi

are delivered from:

parPathMat(segm, segi) =



stsegm

endsegm

stsegi

endsegi


(6.20)

Also, the mutual overlap path for the newly merged individual, i.e. segment m, can

be obtained as:

overlapsegm =

 max(stsegm)

min(endsegm)

 (6.21)

where, max(stsegm) takes the largest value of stsegm in parPathMat(segm, segi) for all i =

{n, a, b, c}, andmin(endsegm) takes the smallest value of endsegm in parPathMat(segm, segi)

for all i = {n, a, b, c}.

Finally, before the new clustering iteration begins, all the pairwise similarities within

all the members of the newly formed cluster are assumed as zero in the distance matrix

for the purpose of finding the next admissions
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segment m.
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2.3- Both segments are previously assigned into the two different clusters with several

individuals:

at this stage, as both the candidates belong to the two various multi-member clusters,

the merge would be within these two clusters with all their associated segments, only if the

corresponding merge criterion is reached. For simplicity purposes, assume that segmentm

and n are the current closest pair of the segment, where segm ∈ GroupA, segn ∈ GroupB,

GroupA = {segm, segd, sege} and GroupB = {segn, sega, segb, segc}.

Initially, the algorithm does not allow the merge to proceed, between GroupA and

GroupB, until all the further conditions are checked. The principles of these step condi-

tions are similar to the above described conditions in the previous section, only with some

additional evaluations within the entire candidate clusters.

2.3.1- Checking the mutual path overlap of the entire segments of both candidate groups:

In contrast with the previous section where the comparisons were only between the

single segment, i.e. segment m, and other members in GroupB, at this check point the

comparisons are between the entire segments of both groups A and B. In other words, at

each examination, the current mutual path overlap of each individual member of GroupB

including segn, sega, segb and segc, is examined with its corresponding partial path, which

is obtained with each segment of GroupA, including segm, segd and sega (see Figure 6.18),

and vice versa (see Figure 6.17).
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Figure 6.17: Searching for overlap between the mutual overlap path of each member of

group B and its corresponding partial path with group A.

If there is such an overlap found for all the examinations, then the algorithm goes

to the next checking point; if not, the algorithm does not allow the merging between

these two candidate groups, it then proceeds to a new clustering iteration to fi nd the next
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highest similarity and the next closest admission pair of segments.
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Figure 6.18: Searching for overlap between the mutual overlap path of each member of

group A and its corresponding partial path with group B.
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2.3.2- Checking the drop in the group average similarity of both candidate groups, with

the given threshold thrdrop:

The current check point analyses the prospective likeness structure of the larger merg-

ing group C that is composed of both groups A and B. Hence, the drop in group average

similarity value of both candidate groups GroupA = {segm, segd, sege} and GroupB =

{segn, sega, segb, segc}, can be expressed as:

DropA = groupAveSimC − groupAveSimA (6.22)

DropB = groupAveSimC − groupAveSimB (6.23)

where, C = {sega, segb, segc, segd, sege, segm, segn}. If both calculated drops are below a

given threshold thrdrop, i.e., Drop A < thrdrop and Drop B < thrdrop, then the merging

criterion is reached and the entire segments of both candidate groups A and B are merged

into a larger cluster C. Otherwise, the algorithm does not allow the merging between these

two candidate groups, followed by the proceeding of a new clustering iteration to find the

next highest similarity and the next closest admission pair of segments.

In the next step, as the joining procedure is accomplished, the group average similarity

for the newly formed cluster C is updated as groupAveSimc. Then, as it can be seen in

Figure 6.19 and 6.20, the new mutual overlap paths for each segment of cluster C can be

calculated as follows:

overlapsegi
= overlapsegi

∩ [max(stsegi
) : min(endsegi

)] (6.24)

where, i = {a, b, c, d, e,m, n}, stsegi
and endsegi

are set a of starting and ending points

that were obtained at the previous check point.
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Figure 6.19: Updating mutual overlap path for the segments that were associated to the

previous group B.
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Figure 6.20: Updating mutual overlap path for the segments that were associated to

previous group A.
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3- Termination criterion

The procedure of merging into larger clusters and correspondingly updating the clus-

tering relationship information is repeated recursively until the pairwise similarity of

the next closest pair of segments, is not available or is below a pre-defined value, i.e.

simDisMat(m,n) < Dthr. In the latter, the remaining single segments, which is not

assigned to any cluster with several segments, are assumed as a distinct single-member

group.

6.3.3 Clustering output results

The outcome of the modified unsupervised clustering at the reached termination level can

be expressed as a set of distinct clusters C = C1, · · · , Cn, and the entire data instances

can be formed as S = ⋃n
i=1 Ci, where Ci ∩ Cj = ∅ for i 6= j.

Each obtained clusters is described with a series of indices of its own members followed

by evaluating a corresponding representative pattern. The representative pattern is a

time series vector and it is used to illustrate the overall shape of its corresponding cluster.

Moreover, this representative pattern vector or repPat is employed as a new input segment

for further DTW searching within different sound files of a particular bird species in the

data and it will be explained in the following experimental evaluations’ section.

The representative pattern vector of each cluster can be evaluated from the following

two steps:

Step 1 : finding the two closest segments in the cluster which have the largest pairwise
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similarity within the entire members. For simplicity purposes, consider that cluster C =

{seg1, seg2, · · · , segn} and seg1 and seg2 are the two closest segments where, max(simi) =

sim(seg1, seg2), for all i = 1, · · · , n.

Step 2 : the representative pattern vector is selected partially from the first segment of

the closest pair or seg1 as: repPat = seg1(st1 : end1), where st1 and end1 are the starting

and ending frame of seg1 and they can be defined from the partial path matrix as,

parPathMat(seg1, seg2) =



st1

end1

st2

end2


(6.25)

6.4 Experimental evaluations

This section describes the experimental evaluation of the entire system that incorporate

both the described methods; the modified DTW similarity calculation and the hierarchal

unsupervised clustering method to discover a set of structurally distinct acoustic units of

each particular bird’s vocalisations dataset.

6.4.1 Data description

The outcome of the sinusoidal detection method (as described in Chapter 5), provides a

set of distinct frequency tracks segments within each recording file. Thus, these obtained

segments, within each particular bird species dataset, are used as a means of temporal
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input sequences for the entire proposed vocalisations’ discovery system. Moreover, since

there is no element-level label information available with the data, the result of this eval-

uation system then will be used for training purposes in our bird vocalisations recognition

system, as described in Chapter 7. At the beginning of the following experiments, the

whole vocalisations’ data is split into training and testing parts. The selected partition

ratio of training to testing is 2 : 1. In this implementation procedure, every three sec-

onds of data is split into three different folds of frames, of which the first two folds and

the third fold are assigned to training and testing data, respectively. Hence, in order to

have labelling information for building the recognition system, the following experimental

evaluations are only performed on frequency tracks segments of training data.

6.4.2 Procedure of experimental evaluations

In order to perform the experimental evaluations within each particular bird species, the

whole procedure in each bird subset, initially proceeds in every particular recording file;

then it continues within the entire files of each bird species. As it can be seen in Fig-

ure 6.21, at the first stage, the frequency tracks segments are used as a means of temporal

input sequences for both DTW similarity calculating and clustering purposes. The out-

come of the modified clustering method provides a set of information for every obtained

cluster, including the representative pattern vector with corresponding information about

the group occupancy and the list of associated segments. All the obtained pattern vectors

with the other remaining single segments in each separate file are then used as a new set

of individual segments. The procedure in the second stage is the same as the previous

stage; while, in the final outcome of the system, instead of keeping the pattern vectors’

indices, the indices of all assigned segments which are linked with each corresponding

pattern vector, are replaced by using the clustering information of stage one (clustering

information result that was obtained in each recording file).
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In general, the outcome of the second clustering function provides some useful infor-

mation about every obtained cluster over each particular dataset (bird species); such as:

list of segments in each group, list of single segments and other relevant group occupancy

within each level of clustering.

Data

50 Bird Species
Total of 964 

Recording Files
Frequency-

tracks’ segments

St
ag

e 
1:

DTW similarity calculation Hierarchical clustering 
method

Obtained 
Pattern vectors  

+

Clustering 
information  

Single segments

+

St
ag

e 
2:

Data

50 Bird Species The outcome of stage 1

+ +
DTW similarity calculation Hierarchical clustering 

method

Final output 
information file  

Figure 6.21: Diagram of the procedure of experimental evaluations

Parameters’ setup

In the modifi ed DTW algorithm, fi rst, the value of the local constraint’ s parameter C was

set to 2 for vertical and horizontal movements on the warping path. In the partial DTW

searching procedure, the value of Dthr and Lmin (minimum length) were set to 1.2 and 15,

respectively. Moreover, the value of jstep was set to 4 frames in each continuous and new
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DTW searching iteration. In the similarity calculating procedure, the steepness and mid-

point’s coefficients αD and βD of P (xD), were set to −3 and 1.2, respectively empirically.

In the next probability function P (xL), coefficients αL and βL can be estimated based on

the overall lengths in the detected partial path of each particular recording file. Hence,

these values are calculated automatically in the DTW searching procedure separately, for

each given set of segments as follows:

βL = mean(
n∑

i=1
LengthparP ath(i)) (6.26)

σ = std(
n∑

i=1
LengthparP ath(i)) (6.27)

aL =
log( 0.95

1−0.95)
2× σ (6.28)

where,mean and std are the mean and standard deviation function, respectively; LengthparP ath(i)

represents the corresponding length of the ith partial path; n is the total number of the

detected partial paths in each recording file; and σ is the standard deviations value.

In the clustering procedure, the values of thrdrop and Dthr were set to 0.13 and 0.5,

respectively, as they were found empirically.

6.4.3 Experimental results

As, the data which is used in this research doesn’t have any element-level labelling in-

formation (time-stamps), therefore, the entire unsupervised discovery system can not be

evaluated numerically. Furthermore, the effect of clustering procedures is evaluated in

terms of bird species recognition accuracy in Chapter 7.
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In general, the obtained result of the whole proposed bird vocalisation learning system

could not be investigated or analysed separately before any incorporation among the bird

recognition systems, where this clustering information is considered as further labelling

information. Hence, the corresponding outcome of the proposed system can be observed

along with the possible improvements on further recognition accuracy.

In the following section, the clustering grouping results in terms of occupancy attract-

ing rate on the whole data and each bird species separately are observed.

Results in stage 1:

As it mentioned in 6.4.2, in the first stage of the experimental procedure, the proposed

system was performed on the entire segments of each individual recording file. By em-

ploying the DTW searching outcomes such as, the DTW partial path’s information and

the similarity distance matrix, the proposed clustering method provides a set of district

clusters for each recording file. Then, each initial cluster can be presented with the list of

its own corresponding segments.

The obtained results in clusters and the other remaining segments will be used in

further experimental evaluations; thus these results are considered as an initial outcome.

Also, as these evaluations were performed on a large data set with more than 900 recording

files, for the purpose of visual inspection of the output result, only the result of three

recording files are observed at this stage and the final occupancy result within each sub

data set will be discussed more precisely in the next stage.

Three candidate files with file ID’s, 28321, 4588 and 1396 in our data, are selected

from the data set number 10 with the corresponding labelling name of,”Nashville Warbler"
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(more details are available in appendix A and B). The initial clustering results of these

recording files are discussed as follows.

Clustering outcome of recording file 28321:

The first recording file is composed of 55 different segments, 33 of which belong to the

training data. The obtained frequency tracks and corresponding clusters are depicted in

Figure 6.22. At this stage, the segments of this file are grouped into five multi-member

clusters as cluster1, · · · , cluster5; where the assigning occupancy in each cluster is between

6 and 7 and there is only one segment remaining as a single cluster. As it is demonstrated

in Figure 6.22, all the individual segments in each cluster have a homogenous vocalisation

pattern. Hence, it can be assumed that a set of structurally distinct bird vocalisation pat-

terns are obtained in this single recording file. Investigation on both length and frequency

pattern of the remaining single segment shows that this segment is not a bird vocalisation

and this segment can be considered as a vocalisation noise.
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Figure 6.22: The clustering outcome of fi le 28321 from data set number 10, with illustra-

tion of frequency tracks (on top) and the obtained clusters.

Clustering outcome of recording file 4588: The second recording fi le is composed

of 83 di�erent segments, 60 of which belong to the training data. The obtained frequency

tracks and corresponding clusters are depicted in Figure 6.23. At this stage, the segments

are grouped into ten multi-member vocalisation clusters as cluster1, · · · , cluster10; where

the occupancy in each cluster varies between 2 and 13 and the cluster of single segments

consists of 10 single segments. About 40% of the segments are in the fi rst two clusters

151



with the occupancy above 12 (cluster1 and cluster2) and only less than 17% are remain

as a single segment. Further investigation on the single segments and obtained clusters

shows that the employed joining rules in the algorithm did not allow the clusters to attract

these single segments, as their corresponding length or frequency range does not match

to the singles. There is only one miss-matching segment found (segment 28 with the

yellow pattern), as the corresponding pairwise similarity of this single segment among the

other individuals in cluster4 is less than the termination threshold. As it can be seen in

Figure 6.23, a set of structurally distinct bird vocalisation patterns are obtained in this

single recording file.
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Figure 6.23: The clustering outcome of fi le 4588 from data set number 10, with illustration

of frequency tracks (on top) and the obtained clusters.
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Clustering outcome of recording file 1396: The third recording fi le is composed

of 34 di�erent segments, of which 21 belong to the training data. As it can be seen in

Figure 6.24, the initial resulting clustering shows that the segments of this short fi le are

grouped into three multi-member clusters: cluster1, cluster2 and cluster3. More than

50% of the segments occupied cluster1, all with a similar frequency range and pattern.

The other two clusters each have three segments. Also, the cluster of single segments

consists of four segments. By analysing the length and the frequency range of each single

segment, it is considered that the segments may correspond to a variety of other acoustic

events such as tonal noise and other bird/animal vocalisations in the background.
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Figure 6.24: The clustering outcome of fi le 1396 from data set number 10, with illustration

of frequency tracks (on top) and the obtained clusters.
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In general, the investigation on the above recording files shows the good coherence of

the frequency range and the pattern structure in each cluster.

Results in stage 2:

1-Visual inspections: A part of the obtained clustering result for data set number 10

(bird 10) is illustrated in Figure 6.25. In the figure, each row corresponds to an individual

cluster found and each column shows an example of the frequency track segment that is

associated with that cluster. The rows are sorted in terms of the occupancy; hence the

first row represents the largest found cluster in the collection data 10. As it can be seen

from Figure 6.25, frequency tracks within each cluster show great similarity to each other,

while across clusters show clearly distinctive patterns.

2-Occupancy inspection: The occupancy information of the final obtained vocalisa-

tion clusters, when using the above parameters’ setup, for each data set can be illustrated

in Figures 6.26, 6.27 and 6.28. Each graph in the figures displays the occupancy of the

hundred (or less in some bird species, e.g. 32 and 38) largest clusters, in decreasing order.

Meanwhile, the clusters are presented with the indices varying between 1 and 100, as the

largest and smallest cluster, respectively. In addition, the percentage value in each section

(between two red lines), shows the occupancy proportion rate of each 10 clusters to the

total number of the training segments in each data set. For instance, as it can be seen in

Figure 6.26, plot 1, there are 10 clusters with an occupancy above 150 segments, which

means that over 19.3% of the detected segments in dataset 1 occupied this set of clusters.

Also, over 50% of the training segments of this bird species were assigned to the first 40

largest clusters with an occupancy above 70 segments.

By investigation of the attracting ratio for the first 10 clusters of each data set, it is
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Figure 6.25: A part of the outcome of the unsupervised clustering depicting several ex-
amples of frequency tracks (where the x and y-axis corresponds to the frame-time and
frequency index, respectively) of segments associated with ten different clusters (corre-
sponding to each row).

considered that bird 32 has the best attracting ratio, as more than 75% of the detected

segments are assigned into the first 10 largest clusters; whereas, bird 22 has the lowest

attracting ratio with 8.47%. Additionally, the first cluster in bird 12 has the highest

occupancy in the whole data.
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Figure 6.26: The relative occupancy information for data set 1 to 18
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Figure 6.27: The relative occupancy information for data set 19 to 36
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Figure 6.28: The relative occupancy information for data set 37 to 50

The occupancy information of all 60 largest clusters of each bird species along with the

size information of each data collection can be summarised in Figure 6.29. As can be seen
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in this fi gure, the black bars indicate the total number of segments in each data collection,

while the coloured bars show the total number of segments within each corresponding

occupancy division. For instance, bird 12 is composed of more than 5100 segments and

about 3990 and 2400 of these segments are attracted into the fi rst 60 and 10 largest

clusters, respectively.

Figure 6.29: Illustration of the total number of training segments for each defi ned clus-

tering proportion of each data set 1 to 50

The overall clustering occupancy of the fi rst 10 to 80 largest clusters among the whole

corpus data is presented in Figure 6.30, by obtaining the average and the standard de-

viation (above and below) of the entire corresponding occupancy values over all the bird

species. As it can be seen in Figure 6.30, about 30% and 70% of the detected segments of

the whole training data are assigned into the fi rst 10 and 80 largest clusters, respectively.
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Figure 6.30: Illustration of overall clustering performance of fi rst 10 to 80 largest clusters
within the entire corpus data

6.5 Summary

In this chapter, an approach for unsupervised discovery of acoustic patterns in bird vocal-

isations is proposed. This approach employed the detected frequency tracks in Chapter 5,

as features to characterise bird tonal vocalisations. The whole discovery system was com-

posed of two consecutive parts. First, a modifi ed DTW algorithm that enabled the search

for multiple and partial matchings between two segments was developed. For each pair of

sequences, the modifi ed DTW algorithm was then employed in several parallel searches,
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each performed from a different starting point on one of the sequences and allowed to

start anywhere on the other sequence. Then, the similarity score for each obtained par-

tial matching path was calculated based on a combination of the normalised cumulative

distance and the length of the DTW matching path. The similarity calculation was com-

pleted by keeping out of these paths only a match with the highest similarity score. This

selected path with its associated similarity score was then considered as a final partial

DTW searching outcome, for each given pair of segments. After processing the partial

DTW searching of all the detected segments, the DTW searching outputs with the entire

detected segments (of each particular bird species) were then used in a novel proposed

hierarchical clustering approach, to group all the homogeneous structured segments into

a set of distinct element-based vocalisation clusters. Several joining rules and conditions

were employed in the proposed clustering method to control the joining procedures. The

merge decisions were always based on further investigations on the prospective likeness

structure of the group, including both the merging objects. Finally, experimental evalua-

tions demonstrated that the obtained clusters showed good coherence and provided a set

of structurally distinct bird vocalisation patterns.
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Chapter 7

AN AUTOMATIC HMM-BASED

BIRD SOUND RECOGNITION

SYSTEM

7.1 Introduction

This chapter presents two automatic HMM based recognition approaches as baseline and

element-based systems, for identification of bird species from the natural field record-

ings, by using the detected vocalisation elements (frequency tracks segments) as temporal

sequences.
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7.2 Building an automatic bird species recognition

system

The feature extraction process along with the segmentation procedure, as explained in

Chapter 5, deliver a set of detected segments for a given audio file of the corpus data. As

these obtained frequency tracks represent the vocalisation’s element units (the smallest

structurally stereotyped acoustic units produced by bird), they are considered as element

segments in this research.

For the purpose of building a bird species recognition system, HMM is employed to

provide the model(s) for each bird species. Each corresponding model is built based

on modelling the temporal evolution of frequency tracks of elements, by employing a

left-to-right topology in each HMM. Moreover, Gaussian distribution(s) with a diagonal

covariance matrix, which are used widely in audio/speech pattern processing, are pre-

ferred as the HMM state output probability density functions (pdf) for computational

purposes [134].

In the following sections, two HMM recognition systems are presented; the base line

system where a single HMM model is provided for each bird species, and the proposed

element-based system, where a set of single HMM models is provided for individual vo-

calisation elements for each bird species.
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7.2.1 Baseline HMM-based system

In the HMM baseline system, the entire detected segments within the training data set

of each bird species, are modelled with the single HMM model. The probability density

function in each state is modelled by mixture of Gaussians, to allow for the collection of

element pitch patterns and the diversity of individual entities of vocalisations [134].

7.2.2 Individual element-based HMM

In this section, a element-based HMM recognition system is presented. In the proposed

system, instead of employing a single model for each bird species, the aim is to build a

separate HMM to model each type of bird vocalisation element for each bird species.

Element-level label information

Obtaining the individual element models is straightforward if the labelling metadata for

the elements was available or if the set of vocalisation patterns produced by each bird

species was known [134]. Accordingly, there is no such information available in our corpus

data (it is rare for it to be available for other large corpus typically). As such, a question

is raised here, of how the individual element HMMs could be trained in the aspect of an

unsupervised procedure? The described unsupervised discovery of elements in the bird

vocalisation method in Chapter 6 deals with this problem, by providing a set of clusters

of element patterns for each bird species. Therefore, the resulting outcome also offers the

label information for each discovered segment of the data [134].
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Modelling individual bird elements

By employing the above mentioned element-level information, a fixed number of clusters,

based on the highest occupancy, are used for the purpose of training the individual element

HMMs of each bird species. As it is assumed that each obtained bird vocalization cluster

is composed of a set of similarly structured patterns, only a single Gaussian distribution

is used as the state output probability density function (pdf) of each individual element

HMM.

Moreover, to the above individual element HMMs, an additional single HMM model

is employed to model all the remaining segments in clusters which are not assigned into

those selected largest clusters, along with all the remaining single segments in each bird

species. For fitting the variety of these remaining segments, several Gaussian mixture

components are used as the state output pdf of this HMM [134].

The Baum-Welsh algorithm is employed to train all the mentioned individual element

HMMs. Furthermore, Figure 7.1 illustrates the state output pdf of nine trained individual

element HMMs of two particular bird species.
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Figure 7.1: Illustration of of the mean values of the state output Gaussian pdf, modelling

frequency track features, for nine trained element HMMs of bird species House Finch (a)

and Northern Cardinal (b). The x- and y-axes denote the HMM state and frequency

index, respectively [134].

7.2.3 Recognition of bird species

The goal of the recognition step, in both presented systems, is to identify the bird species

from a fi nite set of species based on a given utterance of a test signal.

The recognition stage starts with providing a set of N detected frequency tracks

segments for each utterance with a given length. This set of test segments are ob-

tained with the segmentation and feature extraction step (as described in Chapter 5)

and can be expressed as, O = {Os}N
(s=1), where each segment s is a sequence of features

Os = {o1
s, · · · , oTs

s }, where Ts defi nes the number of frames in segment s. The recognition

procedure is treated based on each detected segment, separately, as the Viterbi method

is employed to obtain the probabilities of each corresponding test segment s on each bird

species model λb as, p(Os|λb) [134].
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The recognition procedure in the proposed element-based HMM system is progressed

by calculating the probability of Os on each individual element model of each bird species,

followed by taking the maximum.

By assuming that all the vocalisations in the given test utterance Os belong to only

one single bird species, the probability of the utterance being performed by each bird

species b, can be calculated as the product of the individual segment probabilities as,

p(O|λb) = ∏N
s=1 p(Os|λb) and the identification can be obtained by [134, 53]:

b∗ = arg maxb p(O|λb) (7.1)

For the assumption that there is a possible existence of other birds/animals’ vocalisations

in the given test utterance Os, other than the current species in the vocabulary list,

the further calculation of the overall probability p(O|λb) has been done in a similar way

to [53, 138]; by removing the product of those segments, where their probability was below

a given threshold in all the models. The observed results show no improvement in the

system.

7.3 Experimental evaluations

7.3.1 Data description

Experimental evaluations were performed on all the outcomes of the frequency tracks

detection and segmentation step presented in Chapter 5. Also, the outcome of partial

DTW searching and the modified hierarchical clustering method are used in the following

experiments as corresponding labelling metadata for the detected elements.
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For the purpose of training and testing, as mentioned in Chapter 6, the entire bird

vocalisations’ corpus data is split into two parts and the selected partition ratio of training

to testing is 2 : 1. In other words, every three seconds of each recording fi le is split into

three di�erent folds of frames, of which the fi rst two folds and the third fold are assigned to

training and testing data, respectively. Moreover, the testing data is divided further into

a set of utterances, where each utterance is composed of a signal containing approximately

the given length of the detected segments [134]. Figure 7.2, illustrates the summary of

data which are used in the proposed recognition systems.

Feature extraction 
and segmentationData

Test data

Training data
Training frequency 

tracks

Test utterances

DTW searching

Clustering

Recognition system

Element label 
information

Figure 7.2: The data description used in the proposed recognition system

As the minimum required number of obtained clusters for each bird species is set at

40 in further experiments, a set of 48 (out of 50) bird species are selected from the above

corpus data. These are selected in such a way that for each bird species at least a set of
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40 bird vocalization clusters are available. As it can be seen in Figure 6.26 (in Chapter

6), the entire segments of two bird species number 32 and 38, are grouped into less than

30 clusters. As a result, these two subsets are skipped for the further experiments.

7.3.2 Experimental setup

Each frame time of the detected frequency tracks sequences in Chapter 5 only shows

the obtained frequency information (see section 5.1). As the current frequency features

do not include any information to describe how the features derive over the time index,

and in order to add local dynamic information such as the temporal time derivatives to

the statics parameters, the delta and acceleration features are calculated in [139] with

the window parameters set to 3 and 2, respectively. The resulting derivatives are then

added to the corresponding frequency tracks’ statics, in such a way to form 3-dimensional

feature vectors. Furthermore, in the following experiments, the number of states in each

HMM model is set to 13, in order to reflect the minimum allowed length of the detected

elements [134].

7.3.3 Experimental results of baseline recognition system

As it can be seen in Table 7.1 the result of the HMM baseline system is achieved by

the number of Gaussian mixture components at each HMM state. A different varying

utterance length of 1, 2 and 3 seconds, is observed in the experimental evaluations.

As Table 7.1 shows, the recognition accuracy is quite high for 10 mixture compo-

nents. The resulting recognition accuracy gradually increments as the number of mixture

components increase up to 60 and then become flat.
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Table 7.1: Bird species recognition accuracy (RA) achieved by the baseline HMM-based
system using a single model for each bird species with a given number of mixture compo-
nents per state.
Utterance
length
(sec)

Number of mixture components per state
10 20 30 40 50 60 70 80 90 100 110

Recognition accuracy (%)

1 68.75 72.30 74.36 75.21 75.67 76.02 76.03 75.95 76.00 76.22 76.38
2 75.89 79.91 81.40 81.60 82.03 82.19 82.31 82.18 81.85 82.02 81.99
3 80.30 83.97 84.66 85.12 84.92 85.25 85.27 85.40 85.48 85.73 85.55

7.3.4 Experimental results of element-based recognition system

In this section the achieved results with the proposed element-based recognition system

are presented. As mentioned previously, the state output pdf for each individual element

HMM was composed only of a single Gaussian distribution; whereas, the additional model

that is used to cover all the remaining segments in each bird species, employed a mixture

of Gaussians with m number of components. In order to compare the new models to the

baseline model, as presented in Table 7.1 at the first step a fixed number of individual

models as parameter n, are used for all bird species. For each experiment, the values

of both n and m were set in such a way that the summation of these two parameters

is equal to 60, in order to have comparable conditions to the baseline model with 60

Gaussian mixture components per state used [134]. Using different values for the corre-

sponding number of individual models (n) and number of mixture components (m) gives

the outcome results in Table 7.2.
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Table 7.2: Bird species recognition accuracy (RA) obtained by the element-based HMM
system using individual models of bird elements.

Element-based HMM system
Number of individual element models

10 20 30 40 50

Utterance
length
(sec)

Baseline
system

Number of mixture components per state
for single HMM

50 40 30 20 10
Recognition accuracy (%)

1 76.02 79.38 82.12 84.85 86.33 86.67
2 82.19 84.94 87.43 90.10 91.01 90.54
3 85.25 87.93 90.13 92.52 93.44 92.90

As can be seen in Table 7.2, the resulting recognition accuracy with the proposed

element-based system improved considerably; while the complexity of the models of both

systems is identical. Furthermore, the recognition accuracy increases gradually while the

number of used individual element models increments up to 40 and then becomes flat.

Another similar set of experiments were performed to analyse the proposed system

when the given number of individual models (n) is not fixed within all bird species.

Therefore, each value of parameter n for a particular bird species was calculated based on

the corresponding occupancy of each cluster, by defining the threshold in a way that the

number of individual models is 40 on average over all data sets [134]. The corresponding

threshold is set to 0.54 based on the obtaining results in Figure 6.30 in Chapter 6. It

means, the proportional occupancy rate of each cluster to the total number of detected

segment of each bird species is compared with the given threshold. Once again the value

of parameter m (number of mixture components for additional single model) was set to

20, in order to keep the same complexity recognition system in comparison to the baseline

system. The obtained results of this experiment, for the varying test utterance length,

between 1 to 3 seconds, are illustrated in Table 7.3.
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Table 7.3: Bird species recognition accuracy obtained by baseline system and the proposed
element-based system with two different configurations.
Utterance
length
(sec)

Recognition accuracy (%)
Baseline System
(Single HMM)

n=60

Element-based HMM

(n=40, m=20) (Average number of individual
models is 40, m=20)

1 76.02 86.33 85.45
2 82.19 91.01 90.13
3 85.25 93.44 92.42

Table 7.4: Bird species recognition accuracy and error rate reduction obtained by the
baseline single and individual element HMM-based recognition system.
Utterance
length
(sec)

Recognition accuracy (%) Error Rate
Reduction

(%)
Baseline System
(Single HMM) Element-based HMM

1 76.02 86.33 39.32
2 82.19 91.01 44.58
3 85.25 93.44 48.31

As Table 7.3 shows, there is no further improvement found for this proposed recognition

system with the new performed parameters set up. Therefore, the best accuracy rate for

utterance lengths of 2 and 3 seconds, resulted from the proposed element-based system;

achieved by using 40 individual element models for each bird species and 20 as the number

of mixture components per state for single HMM (see Table 7.2). For the 1 second long

utterance the best result was obtained for the two parameters set up


n = 40

m = 20
and


n = 50

m = 10
, as both recognition values were considered equally (see Table 7.2).

Finally, as Table 7.4 shows, in all cases of using the proposed individual element models

there was significant recognition accuracy improvement, with the error rate reduction

between 39.32% and 48.61%.
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7.4 Review of the recent state of the art in bird

species recognition systems

In the following sections, a brief review of previous studies on bird vocalisation recognition

systems is presented, a long with presenting a full detailed table of review of these recent

state of the art in bird species recognition systems (see Table 7.5).

7.4.1 Data and segmentation procedure

Automatic bird species recognition, based on their vocalisation sounds, has been the

subject of many relatively recent studies in the last two decades, dating back to McIlraith

and Card [10] in 1997. The data used in many studies up to date, consists of small number

of individual bird species [7, 8, 26, 10, 14] with several continuous recordings and nearly

all collected from isolated bird vocalisations without noise [7, 8, 10].

In some studies segmenting the continuous recording files into smaller vocalisation

segments is performed manually by human intervention of spectrograms [7, 8, 4, 9, 14],

or automatically by using an energy-based threshold decision in time or time frequency

domain [10, 26, 12, 47, 48, 140, 141]. However, using such an energy-based segmentation

method on the data that are recorded in different non-stationary noisy natural environ-

ments may obtain low classification accuracy, due to the existence of various background

noises or vocalisations of other birds or animals. Instead, some studies [2, 9, 13, 11, 50]

used the specific sinusoidal decomposition approach that was proposed in [49], as a manner

of automatic segmentation procedure.
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McAulay et al. [49] introduced a sinusoidal representation method for speech analysis

to obtain a set of sinusoidal components for the speech signal. In the proposed method,

first a set of time domain sinusoidal wave segments were detected, then Short Time Fourier

Transform (STFT) was applied on the each frame of the corresponding segment. Finally

the sinusoidal components were estimated from each spectrum by using the specific peak-

picking algorithm. However, the proposed spectral peak picking in [49], manages to find

a high number of false sinusoids. In [6, 5] the authors introduced an advanced method for

the sinusoidal detection based on the probabilistic modelling of the spectral magnitude

pattern and phase continuity around each detected spectral peak. Furthermore, their

proposed method is able to use on both stationary and non-stationary sinusoidal signals.

7.4.2 Signal representation and modelling

For the purposes of feature extraction, a large number of previous studies were influenced

by common STFS-based feature representations that are employed in the field of speech

signal processing, such MFCCs which are used in bird recognition studies [7, 26, 50, 2,

51, 52, 141, 142, 143, 144] and LPCCs [7, 50, 9]. As the general form of MFCCs is

capable of storing the entire frequency range, they are likely to capture the environmental

background noises along with the other frequency bands corresponding to other concurrent

bird vocalisation in the data. Some studies such as [2, 9, 13, 4, 145] employed a series

of spectral statistic frames that were capable of characterising each obtained spectro-

temporal segment. Since this feature representation is in the form of a single dimension

vector, these features may not be able to present the syllables that have more complexity

in pattern and also could be sensitive to any variations in segmentation. A few recent

studies [6, 48, 2], including this thesis, employed the segments which are obtained in the

segmentation step by performing sinusoidal detection as a means of a temporal sequence

of frequencies features (which are referred to as frequency track in this thesis). These
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frequency track features are powerful to deal with the various background noises and

often also other concurrent birds/animals’ vocalisation, which exist in the real naturally

recorded field data. The performance of using the frequency track, which was obtained

based on the proposed method in [6, 5], for the recognition of tonal bird sounds in a noisy

environment is demonstrated in [3], with further comparison to MFCC features. The

obtained result in [3] illustrates that the accuracy of the recognition system based on the

frequency track features has been significantly improved, compared to the MFCC-based

system in noisy background conditions.

The most commonly used modelling approaches include dynamic time warping (DTW)

[8, 7, 9], Gaussian mixture modeling (GMM) [2, 26, 140, 146, 14, 143], hidden Markov

models (HMMs) [7, 2, 48, 9], support vector machines (SVM) [12, 142, 141], and Artificial

neural networks (ANNs) [10, 147, 47, 51].

All the relevant information about the data set, segmentation procedure, signal repre-

sentations (features), classification methods and the best achieved recognition results of

previous best studies in bird sound recognition systems is reviewed in more detail, along

with this proposed novel element-based recognition approach, in Table 7.5. The main

application of the studies which are referenced in Table 7.5, is to develop a bird species

identification system, unless otherwise stated in the note’s section.
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Table 7.5: Previous works in bird sound recognition systems

Papers Data set used Segmentation Feature(s) Classification

method(s)

Best achieved

result

This

thesis

48 bird species (38

hours in total)

Automatic Frequency tracks HMM 93.44%

(Element-based

HMM)

[8] 2 bird species Manual Spectral signal DTW 97% (for

song-based

system)

Note:

The proposed method directly compared the spectrograms of input bird sounds with a set of manually predefined

templates, corresponding to each class of recognition. The authors applied this method to small vocalisation data

from two bird species, recorded in a low-noise environment; 97% and 84% accuracy was achieved, respectively, for

the song-based and syllable-based methods. The proposed method did not use amplitude normalization, so the

results may be sensitive to amplitude differences.

[10] 6 bird species (133

songs in total)

Automatic Short-time spectrum of

the signal

ANNs 93%

Note:

This study was among the first to apply automatic classification to a larger number of bird species (in total 6 bird

species). In the proposed method the bird signal was represented with spectral and temporal parameters of the

songs. The classification accuracy is 82% using a backpropagation neural network for identification and 93% using

quadratic discriminant analysis.

[7] 2 bird species Manual MFCCs vs LPCs MFCC-HMM vs

LPC-DTW

Above 95% (for

both proposed

methods)
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Papers Data set used Segmentation Feature(s) Classification

method(s)

Best achieved

result

Note:

In this study, the performance of two classification methods, HMM and DTW, is compared for automated recogn-

ition of bird song units from continuous recordings. Each recording was segmented into a set of syllables’ signals,

manually. The method was based on template matching of spectrograms of these segments.

[11] 4 Bird species Automatic Spectral features (based

on sinusoidal modelling of

syllables)

- -

Note:

The authors proposed an approach, related to the development of techniques for automatic recognition of bird

species, to classify the bird sounds into four classes based on their harmonic structure. Each harmonic component

was modelled with one time-varying sinusoid. The features’ extraction step was performed by using a parametric

line spectrum estimation method, to obtain a sinusoidal model for the syllables. Actual recognition results have

not been reported in the current article, but the study shows that the use of a time-varying sinusoidal model

instead of the centre frequency of a syllable, improves the accuracy of the song recognition rate by 10-30 %.

[147] 289 bird species

(2400 audio files in

total)

Automatic A subset of spectral

features

Artificial neural

networks (ANNs)

73% (obtained

with seven

features)

Note:

In this study, the syllable segmentation was done by means of short-time signal energy and the short-time maxi-

mum of the spectrum. Also, each syllable is represented with 19 low-level acoustical features: seven features

measuring the short-time behaviour of the syllable; followed by the mean and variance of the feature trajectories;

and lastly, five features to describe static properties over the entire syllable. The best overall recognition result

was 73%, obtained with seven features. However, it seems, that the number of parameters is probably too high

for an efficient recognition algorithm.
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Papers Data set used Segmentation Feature(s) Classification

method(s)

Best achieved

result

[2] 14 bird species Automatic MFCCs vs a vector of

various descriptive

features

GMM vs HMM 71.3% (for

MFCC-GMM

system)

Note:

In this study, the segmentation of a recording into individual syllables is performed using an iterative time-domain

algorithm [11]. The recognitions were performed based on two methods: the use of single syllables and song frag-

ments. The single-syllable based recognition accuracy was around 40% and using song-based recognition increased

the accuracy rate to around 70%. There were only small differences between the results of the GMMs and HMMs

in general. Also, the authors described that the results with song level parameterisation are significantly better

than the results from the recognition of single syllables.

[9] 12 bird species (20

sound files per bird

species)

Manual MFCCs, LPCCs and a

set of spectral features by

time-variant analysis

(spectral peak tracks)

DTW, HMM and

SPT

99% (for SPT)

Note:

This article compares the performance of three recognition systems on the same bird database: LPCC-DTW based

(90% correct matches for clean data and 71% for noisy data), MFCC-HMM based (95% correct matches for clean

data and 76% for noisy data) and Spectral peak track (SPT) method (99% correct matches for the entire natural

and synthetic database at a high SNR). In the segmentation stage, the segment is assumed to be edited manually

to contain a suitable segment for the matching process.

[50] Two noise free

datasets: 420 and

561 bird species

(one recording file

for each species)

Automatic LPCCs vs MFCCs Linear discriminant

analysis (LDA)

87%

(MFCC-LDA

system)
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Papers Data set used Segmentation Feature(s) Classification

method(s)

Best achieved

result

Note:

In this study, each input signal is first segmented into a set of syllables using the automatic method proposed by

[11]. Also, for the purpose of modelling, the authors used a codebook consisting of several representative feature

vectors to model the detected syllable segments.

[26] 11 bird species Automatic MFFCs GMM 90%

[145] 15 bird species

(each bird has

recordings ranging

from 3 to 7 in

number)

Automatic MFCCs vs the average

spectrum over time

DTW, GMM and

SEAV

87% (SEAV)

Note:

This study introduced a new representation for bird vocalisation syllables, which is based on the average spectrum

over time, for identification of bird calls. Each representation feature is calculated on the FFT spectrum of each

bird and is called the spectral ensemble average voice print (SEAV) of that particular bird. The SEAV classificat-

ion method was based on template matching and it achieved the best accuracy over other reference recognition

systems (DTW and GMM based approaches).

[47] 8 bird species Automatic Wavelet coefficients ANNs 96% (for MLP

system)

Note:

In this study, each detected segment (syllable-based) was presented with four parameters derived from a wavelet

decomposed signal representation. Then, these features were used as inputs of two neural networks: the unsuper-

vised self-organizing map (SOM) and the supervised multilayer perceptron (MLP). The results showed that the

SOM network recognized 78% and the MLP network 96% of the test sounds correctly.
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Papers Data set used Segmentation Feature(s) Classification

method(s)

Best achieved

result

[12] 8 bird species Automatic MFCCs vs a set of

low-level signal

parameters (11 low level

descriptive parameters)

Support vector

machine (SVM)

97% (for

MFCC-based

system)

Note:

The segmentation of a recording into individual syllables is performed using an iterative time-domain energy

based detector method, which is presented in [147]. It seems, however, that the number of parameters is pro-

bably too high for an efficient recognition algorithm.

[48] 9 bird species (520

calls segments in

total)

Automatic The peak frequency and

short-time frequency

bandwidth

HMM 84% (overall for

bird)

Note:

This study presents an automatic call recognition system for birds, crickets and frogs that have a narrow short-

time frequency bandwidth in their vocalisation. Also, it proposed an approach to extract vocalisation signals

from background noise using a frequency band threshold filter on spectrograms. It is concluded that the perfor-

mance of the above process is sensitive to the threshold-band filtering step.

[13] 4 bird species

(includes about 200

short vocalisation

signals)

Automatic Frequency track sets Mahalanobis

distance function

79%

[51] 420 bird species

(one recording file

for each species)

Automatic MFFCs ANNs 65% (overall)
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Papers Data set used Segmentation Feature(s) Classification

method(s)

Best achieved

result

Note:

The amount of data for each bird species is very low (only one recording per bird species).

[14] 4 bird species Manual MFCCs GMM 90.45% (overall)

[140] 94 bird species

(four bird song

signals per bird

species)

Automatic MFCCs GMM, Note

n-gram modelling

89.5% (overall

for system

combination)

Note:

This study introduced a bird species’ identification system, by using GMM and a universal background model

(GMM-UBM) on a closed set. The segmentation was performed using a simple VAD system to extract bird

vocalisation segments from background signals.

[4] 13 bird species (90

minutes of data in

total)

Manual A set of spectral features

(e.g. min-frequency,

max-frequency and

bandwidth)

MIML 96.1%

Note:

This study presents a bird sound detection system by using a multi-instance multi-label (MIML) framework. The

segmentation procedure was done manually.

[142] 75 bird species Automatic MFCCs SVM 59.75% (overall)

Note:

This study presents a method that deals with the segmentation step of the audio signal in the automatic bird

species’ identification problem. The authors mainly focused on comparing the recognition results of their proposed

automatic segmentation system with a manual segmentation system. The obtained results showed that using an

automatic segmentation method improves the overall recognition accuracy from 52.78% to 59.75%.
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Papers Data set used Segmentation Feature(s) Classification

method(s)

Best achieved

result

[144] 10 bird species Automatic Permutation Coefficients

(PCs) and MFCCs

k-NN 65% (using

PCs)

Note:

The main focus of this article is introducing a new parametric representation (refers to permutation coefficients)

of bird sounds for automatic identification of their species. The method is based on the distribution of short temp-

oral patterns in bird vocalization. The classification was done using a k-Nearest Neighbours (k-NN) method.

[143] 40 bird species (5.3

hours in total)

Automatic MFCCs GMM 71.5%

Note:

This study proposed a robust frame selection for bird species’ recognition. Only best frames that represent the

dominant sounds were selected and parametrized by MFCCs.

[141] 30 bird species Automatic MFCCs vs MWSC SVM 85.25% (for

MWSCC-SVM)

Note:

This paper proposed a new bird sound classification approach based on adaptive energy detection, to improve the

recognition accuracy of bird vocalisation in noisy environments. The proposed approach extracted two types of

feature representations: MFCC and mel-scaled wavelet packet decomposition sub-band cepstralc Coefficient

(MWSCC). The results show that the MWSCC-based representation has a better noise immunity function, and

the recognition performance was improved significantly, by using the proposed adaptive energy detection.

[146] 127 recording files

from 15 individual

male-chiffchaff bird

species (about 11

hours in total)

Automatic Linear Frequency

Cepstral Coefficients

(LFCCs)

GMM-UBM 78.5% (overall)
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Papers Data set used Segmentation Feature(s) Classification

method(s)

Best achieved

result

Note:

This article presents an automatic system for recognition of bird individuals based on a GMM and a universal

background model (GMM-UBM) method, extended by an advanced voice activity detection (VAD) algorithm.

The overall achieved identification accuracy is 78.5% . The above proposed approach was only tested with 15

individual males of one bird species (chiffchaff), whereas in this study, the performances over multiple species

are of interest.

As can be seen in Table 7.5, each system was performed with different data sets, seg-

mentation, features and modelling/classification approaches. The studies which employed

manual segmentation [7, 8, 4, 9, 14], obtained a very good recognition accuracy of more

than 90%. However, employing manual segmentation is not of interest in this section, as

the aim of this review is to compare the result of this proposed element-based approach

with different developed automatic systems for the identification of bird species. Hence,

the best achieved accuracy rate, over all automated approaches referenced in Table 7.5,

ranges between 59.75%-97% (on average 81%). Compared to these recognition rates, the

experimental results of the proposed novel element-based recognition system demonstrate

a very high accuracy rate of 93.44%. There are only a few automated identification systems

stated in Table 7.5 which obtained a higher recognition rate (more than 94%) [9, 12, 47].

However, these systems are tested with a small amount of data or number of bird species.

In general, most of the mentioned studies used a data set with less than 15 bird species,

and only some studies [147, 50, 51, 140, 142, 143, 141] used data from more than 30 bird

species. While this proposed approach is evaluated with a data set that consists of 48 bird

species, with an overall time of 38 hours and recorded in real-world natural environments.
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7.5 Summary

In this chapter, two automatic bird sound recognition systems were developed. First, a

baseline system is presented that used only a single HMM for each bird species. Secondly,

a novel element-based system is presented that employed a set of HMMs to model the

individual elements. In the second system, the clustering outcome of the unsupervised

discovery of the bird vocalisation approach (as presented in Chapter 6), was used as the

input element-level labelling information. All the proposed recognition systems are based

on the frequency track segments which were detected by employing the described sinu-

soidal detection and segmentation approach in Chapter 5. The temporal frequency track

and the corresponding dynamic derivative features (delta and acceleration) were modelled

by using hidden Markov models (HMMs). Experimental evaluations were performed on

a total of 48 bird species’ subsets; the entire data lasts about 38 hours, from several

field recordings. The experimental results demonstrated that the proposed individual ele-

ment HMM-based system provided over 39% bird species recognition error rate reduction,

compared to the single HMM-based system of the same complexity.
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Chapter 8

SUMMARY AND FUTURE

WORKS

8.1 Introduction

This chapter summarises and concludes the outcome of this research and also includes

novel contributions. Furthermore, recommendations for further studies in this field of

research are included in this chapter.

8.2 Major Contributions

The research introduced in this thesis provides original contributions to the field of au-

tomatic processing and classification of bird acoustic signals. The major contributions of

this thesis are summarised as follows:
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1- The manual annotation of a large corpus of bird vocalisation recording files, which

are recorded in natural field environments. In order to evaluate the performance of the

automatic segmentation and feature extraction procedures, and also to allow other re-

searchers to perform and evaluate comparative experiments with the real field corpus, the

whole data is inspected manually to obtain the acoustic event-based label file for each

vocalisation recording. For the sake of refining or modifying the acoustic events in the

provided labelling files, a user interface (a MATLAB script) has been supplied among the

annotation files (Chapter 4).

2- Development of a novel discovery approach in an unsupervised way that can find

a set of individual vocalisation elements for each bird species, based on the detected

segments in the data. This approach is performed in two consecutive stages:

• Development of a partial DTW similarity calculation algorithm to search for the

partial and multiple matchings between a given pair of (temporal) sequences. In

order to find the partial similarity paths, the proposed algorithm employs a variant

of DTW in several searching procedures; where each search considers a different

time-stamp on one of the sequences and allows the DTW alignment path to start

and end anywhere on the second sequence. The obtained pairwise partial similarity

path can be represented by the partial similarity score and the corresponding time-

stamps of the detected partial path on both sequences. This stage is explained in

Chapter 6 (section 6.2).

• Development of a novel hierarchical clustering algorithm that employs the (obtained)

partial similarity information, including the similarity scores and the corresponding

time-stamps of the partial similarity path, of the entire vocalisation segments of each

bird species in order to group all the homogeneous structured (detected) segments

into a set of distinct element-based vocalisation clusters. Several rules and conditions

are used in this method to control the merging decisions. In other words, the merge
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decisions of the clustering procedure are always based on further investigations of

the prospective likeness structure of the group, including both the merging objects.

The resulting outcome of this novel approach offers the label information for each

discovered segment of the data, and is then used in Chapter 7, as the element-

level vocalisation labelling information, to train the (HMM) models. This stage is

explained in Chapter 6 (section 6.3.2).

3- Development of a novel automatic bird species’ identification system based on HMM

modelling of individual element vocalisation units. In this approach, instead of employing

a single HMM model for each bird species, a single HMM is used to model each type

of vocalisation pattern that is available in each particular bird species. As there is no

further element-level information available among the natural field recordings, training

the element-based models is not practical. Hence, this proposed system employs the

outcome of a hierarchical clustering algorithm, as label information, to train the HMM

models. This novel approach is explained in Chapter 7.

8.3 Summary

This thesis aimed to present an automatic system for the identification of bird species

from natural field recordings. In the first part of this thesis (Chapter 3), a literature

review of the biological theories of bird vocalisations by studying the communication and

singing behaviours of typical passerine birds is presented. This is followed by a description

of the corresponding bird vocalisation terminology, as in songs, calls, syllables, phrases

and elements; and finally, the scientific theories about vocal learning and development

procedures in young birds are discussed.
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Then in the next chapter (Chapter 4), a summary of the large, available bird vocalisa-

tion archives is presented, followed by a description of a smaller data set which has been

used in recent bird classification challenges. Based on this literature, a large data set

from the natural field consisting of 50 tonal bird species with over 900 recording files were

collected from the Borror Laboratory of Bioacoustics’ archive of bird vocalisation. Each

corresponding recording file of this vocalisation corpus was originally labelled with the

name of the particular bird that produced the main vocalisations in the file. This original

labelling was used in all the provided experimental evaluations in this study. Meanwhile,

as the data had been recorded in the real habitats of birds, each recording also contained

some irrelevant audio information along with the desired bird vocalisation signal. In order

to allow other researchers to perform and evaluate comparative experiments with the real

field corpus, each recording of the data was annotated manually into set of pre-defined

audio sub classes.

In order to develop an automatic bird sound recognition system, for the purpose of

automatic segmentation and feature extraction tasks, by using the proposed sinusoidal

detection approach in [5, 6], each recording file of the data was extracted and separated

into the set of distinct peak frequency components (frequency track segments) to char-

acterise bird tonal vocalisation (Chapter 5). These obtained segments are used as input

sequences for the further processing of this research.

HMMwas employed in this research for training the models and classification purposes.

Hence, two automatic HMM based recognition systems, baseline and element-based, were

developed in this thesis for the identification of bird species from natural field recordings

(Chapter 7). Both systems are bird species’ recognition based. For the base line system the

entire training frequency tracks’ segments of each bird species were modelled with a single

HMM model with 13 HMM states. Each state was modelled by a mixture of Gaussians,

to allow for the collection of element patterns and the diversity of individual entities of
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vocalisations. For the second proposed system, it was the aim to build a separate HMM

to model each type of bird vocalisation pattern for each bird species, instead of employing

a single model for each bird species. As there is no further element-level information

available among the natural field recordings, training the element-based models is not

practical. To deal with this issue, an approach for unsupervised discovery of acoustic

elements in bird vocalisations is presented in this research (Chapter 6).

This approach is accomplished in two consecutive stages. In the first stage (section

6.2), unlike a conventional dynamic time warping (DTW) algorithm which calculates the

similarity of whole sequences, the presented modified DTW algorithm allows searching

for multiple matches, possibly partial, between each pair of detected segments (frequency

tracks segments). The outcome of the DTW search is a set of found partially matching

paths, with their corresponding similarity values. These similarity values are called partial

similarity scores, as they were obtained during the searching for partial paths. Each

partial similarity score is calculated based on a combination of the cumulative distance

of the DTW path match, the length of the matching path and the ratio of the length

of the matching path to the total length of the segment. In the next stage (see section

6.3.2), the outcome of the DTW searches, including the similarity distance matrix and

the associated time-stamps information of the obtained partial similarity paths, were then

used in a novel proposed hierarchical clustering approach, to group all the homogeneous

structured segments into a set of distinct element-based vocalisation clusters. Several

joining rules and conditions were employed in the proposed clustering method to control

the joining procedures. The merge decisions were always based on further investigations

of the prospective likeness structure of the group, including both the merging objects. The

experimental evaluations in Chapter 6 demonstrated that the obtained clusters showed

good coherence and provided a set of structurally distinct bird vocalisation patterns.

Finally, the resulting outcome of above discovery approach offers the label information
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for each discovered segment of the data. Hence these label information were used to

train the HMMs in the novel proposed element-based recognition system. Experimental

evaluations were performed on a total of 48 bird species’ subsets; the entire data lasts

about 38 hours, from several field recordings. The experimental results demonstrated

that the proposed individual element HMM-based system obtained a recognition accuracy

of over 93% by using 3 seconds of detected signal and over 39% recognition error rate

reduction, compared to the baseline HMM system of the same complexity.

8.4 Future research directions

Perpetually there will be a countless number of ways in which the current work can be

extended. In the following, some of the possible extensions and future works are expressed.

• The current corpus data are collected from Borror’s bird vocalisation archive with

its own quality categories between ‘fair to good’ and ‘very good’ in Table 4.1. These

collected data are relatively clean, in comparison with the real world which contains

many more background noises. Hence, it is suggested to extend the corpus data

with vocalisation audio files that are recorded in a noisier natural environment.

• More experts are needed to annotate the vocalisation recording files.

• In the partial DTW similarity calculation method the following suggestions are made

to overcome the current limitations:

– Modification of the DTW function by incorporating the other constraints on

the warping path, e.g. constraints on the slope variation of the cumulative

path, to improve the partial similarity detection.
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– In the case of obtaining multiple partial matching paths after the boxing proce-

dure (section x), the corresponding segments may consist of several repetitions.

By further investigation among the segments, i.e. the gaps between paths, the

corresponding segment can split into a few smaller segments, if possible.

– Automatic estimation for the value of the minimum length of a cumulative

path (Lmin) for each bird species separately, instead of using a fixed value for

all the bird species.

• In the proposed agglomerative hierarchical clustering method, the following sug-

gestions are available to improve the clustering outcome by detecting the the least

number of mismatched segments in each vocalisation cluster:

– Automatic estimation for the value of parameters thrdrop and Dthr (in section

6.3.4) for each bird species separately, instead of using a fixed value for all the

bird species.

– Optimizing the whole clustering procedure in order to obtain a smaller number

of clusters with a higher occupancy of elements, for each bird species.

• Modifying the proposed recognition system in order to deal with the multiple species

in the given utterances of the test signals.

• Modifying the proposed recognition system in order to deal with the test utterances

that contain the vocalisation information of a particular bird species which is not

listed in the system.

• Employing the outcome of the manual annotation procedure to build separate train-

ing models for each obtained audio sub-class, to deal with irrelevant background

sounds and noises.

• Developing the proposed identification system by using the discriminative classifica-

tion approaches, such as: Support Vector Machines and Artificial Neural Networks.
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• Speeding up the computational demands for the model training procedure and the

partial DTW searching procedure.
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Appendix A

LIST OF AVAILABLE BIRD

SPECIES IN CORPUS DATA

Bird # Bird Name Number of
File

Data Length
(Minutes)

Num Groups

Bird 1 CarolinaWren 19 95 285
Bird 2 IndigoBunting 33 89 366
Bird 3 LarkSparrow 10 56 255
Bird 4 CanadaWarbler 15 28 177
Bird 5 ChippingSparrow 17 31 245
Bird 6 FoxSparrow 14 52 146
Bird 7 HermitThrush 20 55 257
Bird 8 HouseFinch 24 45 355
Bird 9 LouisianaWaterthrush 15 36 96
Bird 10 NashvilleWarbler 16 34 124
Bird 11 NorthernWaterthrush 13 33 151
Bird 12 PineWarbler 38 54 176
Bird 13 PurpleFinch 18 42 348
Bird 14 BaltimoreOriole 22 51 70
Bird 15 CommonYellowthroat 13 38 88
Bird 16 EasternMeadowlark 17 34 85
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Bird # Bird Name Number of
File

Data Length
(Minutes)

Num Groups

Bird 17 EasternWoodPewee 31 55 85
Bird 18 GrayCatbird 18 48 288
Bird 19 GreenTailedTowhee 19 65 238
Bird 20 HoodedWarbler 11 41 138
Bird 21 HouseWren 11 48 533
Bird 22 MarshLlongBilledWren 17 50 270
Bird 23 NorthernCardinal 25 93 103
Bird 24 Ovenbird 18 43 136
Bird 25 RoseBreastedGrosbeak 24 56 231
Bird 26 ScarletTanager 26 49 151
Bird 27 SummerTanager 21 46 147
Bird 28 SwampSparrow 26 45 106
Bird 29 VesperSparrow 44 63 303
Bird 30 YellowWarbler 21 46 186
Bird 31 ProthonotaryWarbler 12 32 88
Bird 32 OliveSidedFlycatcher 13 37 28
Bird 33 MagnoliaWarbler 32 47 191
Bird 34 KirtlandsWarbler 18 40 79
Bird 35 KentuckyWarbler 19 34 66
Bird 36 AmericanGoldfinch 34 47 272
Bird 37 AmericanRedstart 25 42 182
Bird 38 CarolinaChickadee 9 33 24
Bird 39 BlueGrosbeak 13 34 158
Bird 40 WilsonsWarbler 21 41 169
Bird 41 WhiteEyedVireo 10 61 133
Bird 42 WarblingVireo 15 30 216
Bird 43 SavannahSparrow 12 34 131
Bird 44 NorthernYellowShaftedFlicker 27 32 109
Bird 45 FieldSparrow 19 32 84
Bird 46 SlateColoredJuncoDarkEyed 27 32 175
Bird 47 WillowFlycatcher 11 29 103
Bird 48 WinterNorthernWren 9 42 209
Bird 49 WesternMeadowlark 8 57 87
Bird 50 YellowThroatedWarbler 14 33 123
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Appendix B

LIST OF AVAILABLE BIRD

SOUND FILES IN CORPUS DATA

File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

Bird 1: CarolinaWren
2418 5 0 03:20
6133 5 0 03:40
6175 5 0 04:10
6206 5 0 08:07
8876 5 0 02:19
10965 5 1 03:11
12240 5 0 04:08
13309 5 0 05:31
13402 5 0 15:42
13893 5 0 05:51
14005 5 0 15:49
14164 5 1 10:51
15713 5 0 02:58
15722 5 0 03:10
15871 5 0 01:19
15897 5 0 02:00
16375 5 0 01:25
16377 5 0 01:12
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

24088 5 0 00:31
Bird 2: IndigoBunting
1466 5 0 00:58
1982 5 1 01:49
2607 5 1 01:43
3349 5 1 01:50
3392 5 0 02:43
5152 5 0 03:20
5201 4 1 06:43
6957 5 0 01:42
7478 5 0 01:24
8318 3 3 04:45
8319 3 3 02:15
8320 4 2 03:03
8353 5 1 01:36
8373 4 3 04:55
8389 5 1 02:45
8392 5 1 03:36
8393 5 2 04:19
8395 5 1 04:09
8396 5 0 02:12
8558 5 0 02:04
8642 5 1 03:52
9489 5 0 01:19
13556 5 0 01:25
14329 5 1 06:37
14796 5 0 01:42
14824 5 0 01:16
15634 5 0 00:52
16387 5 0 01:54
17086 5 1 01:28
22588 5 0 00:22
30114 5 1 05:29
30119 5 0 02:23
30124 5 0 02:18
Bird 3: LarkSparrow
3384 5 0 16:11
3385 5 2 01:44
3386 5 2 09:22
4402 5 0 04:40
4418 5 1 03:31
5536 5 1 02:02
5580 5 0 02:38
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

5596 5 1 05:12
8563 5 2 06:51
30814 4 1 04:00
Bird 4: CanadaWarbler
1060 5 0 01:18
1460 5 1 01:50
2668 5 0 01:33
2909 5 1 01:48
3443 5 0 03:57
3445 5 1 01:14
4037 5 0 02:12
4082 5 1 03:24
5213 5 0 01:41
5311 5 0 02:01
6845 5 0 01:45
6907 5 0 00:44
7533 5 0 01:56
11838 5 2 01:25
14789 5 0 01:42
Bird 5: ChippingSparrow
7542 5 0 01:02
9941 5 0 03:23
10025 5 0 01:46
10895 5 1 01:18
11113 5 0 01:05
12376 5 0 01:54
14102 5 0 01:12
15971 5 2 01:27
16050 5 0 02:15
16423 5 1 01:09
16464 5 0 01:15
16468 5 2 01:14
17055 5 0 02:40
18728 3 4 05:33
22191 5 0 01:28
22192 5 2 01:16
24426 4 2 01:13
Bird 6: FoxSparrow
1664 3 1 00:13
18806 5 0 03:57
18829 4 3 04:55
23974 5 1 02:34
23981 5 0 02:23
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

24022 5 1 06:14
24560 4 0 04:20
24941 5 2 03:51
26408 5 1 15:00
27843 5 2 01:54
28482 4 2 02:17
28459 5 0 02:12
29975 5 0 01:30
34995 4 3 00:44
Bird 7: HermitThrush
619 5 1 01:34
1551 5 0 02:08
2184 5 0 04:15
2206 5 0 03:48
2214 5 0 03:45
2217 5 0 03:49
2233 5 1 01:53
2942 4 1 01:48
3001 5 1 02:09
3553 4 1 02:35
4375 3 1 04:49
7862 5 1 01:43
9199 5 0 02:12
16950 5 0 04:20
20571 4 2 02:06
22657 5 0 00:24
24025 5 1 05:54
29046 5 0 01:22
29047 5 0 03:50
32658 5 1 01:16
Bird 8: HouseFinch
7080 5 0 00:48
7129 5 0 02:34
10115 5 1 01:07
10186 5 0 00:48
10256 5 0 00:51
11581 5 0 02:04
11591 5 0 00:58
11613 5 0 01:50
11892 5 1 02:37
12380 5 0 02:02
16447 5 0 00:12
16451 5 0 02:19
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

16804 5 0 05:25
16866 5 1 01:49
16903 5 0 00:30
17548 5 0 01:19
18892 5 1 04:00
24085 4 3 03:47
24977 5 0 01:04
25293 5 1 02:15
26098 4 1 00:35
26404 5 0 04:09
28901 5 1 00:54
33630 3 2 01:09
Bird 9: LouisianaWaterthrush
796 5 0 03:44
1691 5 1 04:45
1924 5 0 00:39
4537 5 0 02:00
5099 5 0 02:06
5814 5 0 02:26
7421 5 0 01:28
12129 5 0 00:38
12134 5 0 02:00
12656 4 2 04:06
12682 4 3 03:51
12823 5 0 01:02
15773 5 0 01:48
21888 5 0 01:45
24421 5 0 03:33
Bird 10: NashvilleWarbler
1396 5 0 02:20
2113 5 0 01:12
3336 5 0 01:48
3487 5 0 02:13
4209 5 0 02:05
4588 5 0 01:10
4756 5 0 01:42
5761 5 1 02:09
15620 5 0 02:00
15883 4 1 02:15
18692 4 1 03:29
18827 5 0 00:57
28298 5 0 01:29
28321 5 0 02:42
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

29220 5 0 04:34
34924 5 1 01:58
Bird 11: NorthernWaterthrush
1418 5 0 02:36
3936 5 0 01:35
4636 5 0 03:21
8260 5 0 02:55
9473 5 1 01:20
10569 5 1 01:35
12592 4 2 03:18
12593 5 1 02:44
12596 5 0 02:36
12618 5 1 04:48
12619 5 1 03:13
17554 5 1 01:12
23963 5 0 03:00
Bird 12: PineWarbler
2115 5 0 02:00
3775 5 1 02:48
4202 5 0 02:18
4429 5 0 01:24
4450 5 2 01:58
4469 5 0 01:04
4966 4 3 01:09
5028 4 2 02:07
5717 5 0 01:50
5730 5 0 01:42
8371 5 0 02:31
9042 5 0 01:24
9347 5 1 00:40
10550 5 0 02:12
11100 5 0 02:13
11935 5 1 00:49
11939 5 0 00:57
13156 5 0 00:31
13621 5 0 00:24
13853 5 0 00:06
14083 5 0 00:20
14092 5 0 01:02
14741 5 0 00:45
14748 5 0 00:57
14753 5 0 01:04
15059 5 1 01:20
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

15469 5 1 02:08
15602 5 1 00:42
15716 5 0 01:43
15725 5 0 01:18
16232 4 2 00:59
16239 5 0 00:54
16452 5 0 00:09
16555 5 0 00:18
16696 5 1 01:10
16706 4 3 02:47
26423 2 4 03:19
26424 3 3 03:28
Bird 13: PurpleFinch
1556 5 0 01:07
1876 3 1 02:40
2875 5 0 02:18
3371 5 2 01:20
3467 5 0 03:32
3621 5 1 01:12
3676 5 0 02:08
3874 5 1 02:15
3890 5 1 01:31
4858 5 1 02:18
6948 5 0 01:47
6218 4 2 02:15
7735 5 0 02:16
7874 5 0 01:39
8303 5 1 02:03
9284 5 0 03:10
11112 5 1 03:28
29677 5 1 05:29
Bird 14: BaltimoreOriole
503 5 1 01:13
515 4 2 01:02
527 4 3 02:13
1446 5 1 01:34
2798 5 0 03:05
3340 4 3 02:22
5129 5 0 01:19
5766 5 0 01:04
5822 5 1 00:15
7499 5 1 01:27
7540 5 2 04:41
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

7579 5 3 02:36
8935 5 1 02:25
9471 5 2 02:48
11209 5 1 02:20
11383 5 1 04:14
12184 5 1 02:35
12220 5 1 02:47
12894 5 1 03:05
15828 5 1 02:12
16311 5 1 02:10
30234 5 1 03:18
Bird 15: CommonYellowthroat
7556 5 0 04:54
7885 5 0 01:27
9052 5 0 03:18
9387 5 0 01:29
9738 5 0 02:30
13504 5 0 03:23
14846 5 1 01:31
15798 5 1 02:08
15942 5 2 09:32
16265 5 1 01:57
16400 5 2 01:43
16690 5 1 00:50
17092 5 3 04:04
Bird 16: EasternMeadowlark
5181 5 0 03:57
5529 5 0 01:07
5751 5 0 02:48
6228 4 2 01:08
6229 5 0 02:15
6253 5 0 01:35
7375 5 1 01:32
9850 5 1 02:09
9984 4 2 03:58
10415 5 0 01:28
11003 5 0 03:15
11018 5 0 02:16
11287 5 0 02:21
12072 4 4 01:23
13386 5 0 01:27
14236 5 1 01:03
17635 4 2 00:41
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

Bird 17: EasternWoodPewee
1459 5 0 04:26
3452 5 0 02:12
4064 5 1 02:41
4072 5 1 01:53
4084 5 2 01:35
4100 5 1 03:03
5113 5 0 01:15
5175 5 0 01:45
5715 5 0 01:41
6411 5 0 01:52
6857 5 2 01:25
6953 5 1 01:33
7532 5 1 01:41
9004 5 1 01:35
9007 5 0 00:55
10524 5 0 00:48
10609 5 1 01:33
11266 5 0 00:47
12248 4 3 00:30
12262 5 2 00:44
12983 5 1 01:26
13539 4 1 01:10
13704 5 0 05:46
13912 5 2 01:03
14814 3 2 01:48
15710 3 2 01:15
16345 4 2 00:42
17587 3 3 00:56
21529 3 3 01:47
25230 4 1 01:06
29998 5 1 04:22
Bird 18: GrayCatbird
1371 5 0 02:04
4574 4 0 02:05
6259 5 0 03:06
8187 5 0 02:39
8225 5 0 03:26
10037 5 0 01:18
11191 5 0 01:24
11301 5 1 02:17
12513 5 0 00:44
13128 5 0 02:48
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

13824 5 0 03:48
14856 5 0 03:46
15638 5 0 04:32
15822 5 0 03:05
15881 5 0 04:23
28431 5 1 02:29
28490 5 1 02:45
28495 5 1 02:04
Bird 19: GreenTailedTowhee
10338 5 0 03:45
10761 5 0 04:18
10764 5 0 03:33
10773 5 0 02:14
11534 5 0 04:23
22787 5 1 01:34
26906 5 1 06:15
26908 5 0 02:58
26909 5 0 01:31
27956 5 0 01:59
28933 5 0 00:54
29100 5 0 02:51
29101 5 0 01:06
29102 5 1 02:56
29569 5 0 00:58
30963 4 3 09:57
30964 3 5 12:45
32310 5 1 00:31
32313 4 3 01:17
Bird 20: HoodedWarbler
16783 5 2 04:47
16793 5 2 03:03
17064 5 1 02:28
17516 4 3 05:38
17579 5 1 03:04
17593 5 2 01:41
17909 4 2 01:20
17955 4 3 03:20
17947 4 1 09:23
17949 5 1 02:32
17963 5 2 04:14
Bird 21: HouseWren
12110 5 0 01:59
12844 5 0 01:08
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

16263 4 2 03:18
28579 1 4 00:34
28839 4 3 05:05
29141 5 1 01:03
29511 4 3 10:52
29580 5 1 06:10
30824 4 3 04:22
30825 4 3 06:34
30826 4 3 07:45
Bird 22: MarshLlongBilledWren
493 4 2 07:00
3413 5 0 03:03
4983 3 3 03:44
4985 3 4 03:13
5979 5 0 01:34
6422 5 1 01:25
7679 5 0 01:15
7774 5 1 01:39
7817 5 0 03:27
9181 5 1 01:55
11361 5 0 02:19
14060 5 0 02:21
14108 5 0 01:27
14689 5 0 01:13
18824 5 0 01:11
28721 5 2 09:54
33979 5 0 03:17
Bird 23: NorthernCardinal
4405 5 0 02:30
4941 5 2 02:49
8054 4 2 02:25
12750 5 1 03:43
13690 5 0 01:04
14368 5 0 02:30
16009 5 0 01:14
16291 5 0 02:07
16412 5 0 02:00
16436 5 0 07:58
21945 5 0 01:52
21947 5 0 03:06
21948 5 0 03:43
21964 5 0 05:04
21978 5 0 03:00

206



File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

22002 4 0 06:39
22019 4 1 03:41
22020 4 1 01:34
22037 4 1 01:32
22054 4 1 02:25
22088 4 0 08:16
22106 4 2 06:22
22115 4 1 10:34
22145 4 1 04:32
26421 4 2 02:57
Bird 24: Ovenbird
3288 5 0 01:27
3363 5 0 01:03
4625 5 0 02:05
8913 5 0 01:12
10778 5 0 00:47
12696 5 0 01:38
12704 4 1 02:36
12715 4 1 02:19
12719 5 0 02:07
12720 4 1 02:06
13861 5 1 01:21
16024 5 1 02:18
16543 5 1 01:17
16898 4 2 01:51
17623 1 5 02:32
17929 1 5 01:27
29778 5 1 04:27
30107 5 1 03:38
30370 5 1 07:06
30372 5 0 04:03
Bird 25: RoseBreastedGrosbeak
470 3 1 02:27
472 4 2 01:31
978 5 2 03:58
2791 5 1 02:11
3373 5 0 00:45
3394 5 0 02:25
3965 5 0 02:09
3990 5 0 03:00
3996 5 0 01:52
6837 5 0 01:07
6914 5 0 03:52
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

7414 5 0 01:49
8261 5 1 05:16
8299 5 0 02:04
9422 5 1 02:31
11140 5 1 01:34
11173 5 0 01:53
12949 5 0 01:11
14279 3 2 03:41
14354 5 0 02:10
14399 4 2 02:47
15830 5 0 01:24
15887 5 0 02:33
16493 5 1 02:07
Bird 26: ScarletTanager
949 5 1 01:26
1012 5 0 01:25
1108 4 1 01:31
1363 5 0 01:12
1367 5 0 01:13
1372 5 0 00:55
1932 5 0 02:35
2220 5 0 01:20
3447 5 0 02:41
5756 5 0 03:39
5802 5 1 02:22
5976 5 0 02:21
6262 5 0 01:37
6399 5 0 01:42
6401 5 0 02:08
8306 5 0 01:20
8907 4 0 02:05
9419 5 0 02:18
9435 5 0 02:37
10478 5 1 02:02
11194 4 2 02:51
12255 5 0 02:10
12911 5 0 01:12
13913 5 0 01:13
15681 5 0 00:57
16358 5 0 02:02
Bird 27: SummerTanager
1020 5 0 03:10
1081 5 0 01:49
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

4045 5 0 02:30
4048 5 0 03:36
4090 5 0 00:31
5657 5 1 02:05
5712 5 0 01:34
7043 5 1 02:21
7049 5 0 02:50
8364 5 0 03:56
9010 5 0 02:38
9914 5 0 03:15
10513 5 0 01:08
13533 5 0 01:36
14695 5 0 01:04
14829 5 0 01:57
15646 5 0 02:50
16562 5 0 02:19
25966 5 0 01:32
28863 5 1 02:02
30810 5 0 01:45
Bird 28: SwampSparrow
3563 5 0 02:29
4205 5 1 01:47
5076 5 0 02:18
5078 5 2 01:16
5082 5 0 02:10
6053 5 2 02:36
6525 5 1 03:17
6807 4 3 01:36
6937 4 2 02:48
6947 5 0 01:42
7510 5 2 01:36
10923 5 1 01:21
12158 5 2 01:17
13151 5 1 00:55
13474 4 1 02:31
13489 5 0 01:00
14653 5 0 01:28
14657 5 0 01:47
14785 5 0 00:53
14869 5 0 01:45
14871 5 0 00:24
14873 5 0 01:36
14874 5 1 00:45
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

14876 5 0 02:50
14878 5 0 02:07
16485 4 3 00:58
Bird 29: VesperSparrow
1663 5 1 01:59
1745 5 0 00:38
1768 5 0 01:41
1987 4 1 02:20
2528 5 0 00:26
2596 5 0 00:16
2772 5 1 01:02
2785 5 0 00:41
3201 5 0 01:37
3222 5 0 01:44
3232 5 0 01:13
3233 5 0 01:41
3430 5 1 01:41
4042 5 0 01:46
4086 5 1 01:12
4108 5 1 00:58
4110 5 0 01:02
4532 5 1 02:25
5008 5 0 00:35
5794 5 0 02:18
6403 5 0 01:59
6595 5 0 00:50
6618 5 0 00:15
6782 5 2 02:19
7272 4 4 01:05
7436 5 0 01:25
7485 5 0 02:36
7823 5 1 02:36
7824 5 1 01:38
7875 5 0 04:56
7876 5 0 00:26
7903 5 1 00:58
7907 5 1 01:38
8104 5 1 01:00
8265 5 2 01:58
8528 5 0 00:46
8559 5 0 00:29
8667 5 0 00:56
9140 5 0 00:42
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

10772 5 0 02:56
11405 5 0 00:05
11492 3 5 01:09
12392 5 0 01:20
29567 5 2 02:07
Bird 30: YellowWarbler
456 5 1 04:25
2531 4 0 02:24
3304 5 2 02:01
3484 5 0 03:06
3722 4 1 02:38
3973 5 1 02:11
4733 5 2 01:13
5063 5 1 02:01
5203 5 1 02:07
5842 5 1 02:09
6051 5 0 01:55
7140 5 0 02:24
8937 5 0 01:36
12119 5 1 00:51
12474 5 0 01:34
13096 5 0 02:24
13475 5 0 00:29
15501 5 0 01:39
15516 5 0 01:57
28480 5 1 03:32
28842 5 0 03:58
Bird 31: ProthonotaryWarbler
1068 5 0 03:31
1444 5 0 04:54
5695 5 0 02:51
6944 5 1 03:22
7581 5 0 02:33
8419 5 0 02:28
8971 5 0 02:00
8988 5 0 01:24
11834 5 0 01:25
14703 5 0 01:25
14711 5 0 02:15
28971 3 3 03:59
Bird 32: OliveSidedFlycatcher
1494 5 0 06:01
1561 5 0 00:26
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File Number Recording
Quality

Background Noise
Level

File Length
(mm:ss)

1578 5 0 02:57
2046 5 1 01:41
2199 3 0 01:37
2234 4 1 00:54
4363 5 0 01:31
5234 4 2 02:15
5407 5 1 05:15
8675 5 0 00:59
25810 4 1 05:14
29055 5 0 05:04
33365 4 2 03:56
Bird 33: MagnoliaWarbler
3490 5 0 02:14
3594 5 0 02:39
3991 5 0 01:42
4152 5 0 01:55
4157 5 0 02:12
4295 5 0 02:06
4746 5 0 01:06
4804 4 2 00:43
4844 4 3 00:48
5224 5 0 01:45
5301 5 0 01:15
5317 3 4 00:31
6096 5 0 01:24
6362 5 0 01:40
6373 5 0 00:11
6859 5 0 01:49
8902 5 0 03:15
8921 5 0 01:18
9023 5 0 00:29
9429 3 4 00:52
9442 5 0 01:42
10555 5 1 01:38
11292 5 0 03:26
12869 5 1 00:35
12913 5 0 00:32
14788 5 0 01:02
15111 5 0 00:58
15123 5 0 01:11
15650 5 0 02:32
15816 5 1 01:16
16003 4 2 00:29
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Quality
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(mm:ss)

16224 5 1 01:35
Bird 34: KirtlandsWarbler
2753 5 0 00:57
2755 5 0 02:21
2758 5 0 00:41
2761 5 0 03:01
2762 5 0 03:46
2764 5 0 02:12
2765 5 0 02:14
2769 5 0 00:48
2771 5 0 01:25
2774 5 0 01:13
2778 5 0 01:21
2779 5 0 01:06
2780 5 0 01:06
2784 5 0 00:50
2787 5 0 01:36
2790 4 1 09:08
2804 5 0 01:27
8585 4 2 04:52
Bird 35: KentuckyWarbler
7432 5 1 02:05
8367 5 1 02:05
8955 5 0 02:51
9915 5 0 02:25
9932 5 0 01:57
10060 4 1 02:11
10530 5 1 00:38
10655 5 1 01:25
11792 5 0 00:54
12147 5 0 00:42
13112 5 1 01:09
13862 5 0 01:59
14864 4 2 01:55
15468 5 2 01:53
15994 5 2 04:43
16213 5 1 01:22
16252 5 1 01:22
16325 4 3 01:22
16518 4 2 01:33
Bird 36: AmericanGoldfinch
1782 5 0 02:25
2503 4 2 01:38
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Level
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2595 5 0 01:19
3645 5 1 03:06
5084 3 0 00:47
5909 5 0 01:08
6273 4 2 01:44
6896 5 1 01:39
6997 5 0 01:25
7846 4 1 00:30
8194 4 2 02:19
8860 5 1 01:28
8962 5 0 01:07
9443 5 0 01:02
10044 5 2 00:38
10580 5 1 01:07
11745 5 0 00:54
12060 3 3 00:54
12068 5 1 00:53
12096 4 1 00:39
12101 4 2 00:57
12114 5 3 01:13
12804 5 2 00:51
13428 5 0 01:21
13447 5 1 04:13
13925 5 0 00:47
14272 5 1 00:38
15049 5 1 01:27
15993 5 0 00:48
16437 5 0 01:57
24580 1 5 05:06
33856 5 1 00:14
33858 1 4 00:18
34553 2 4 00:46
Bird 37: AmericanRedstart
475 5 1 01:24
1078 4 0 02:19
1156 5 1 02:28
2041 5 1 01:57
2504 4 1 01:21
3459 5 1 01:44
3517 5 1 01:02
3521 5 0 02:59
3610 5 1 01:15
4154 5 0 01:39
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Quality

Background Noise
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4597 5 3 02:55
4737 5 0 01:19
5734 5 0 01:11
5983 5 1 02:16
6366 4 0 01:01
6853 5 1 02:40
9058 5 1 01:37
9106 5 2 01:03
9109 5 0 01:00
9572 5 0 01:51
10658 5 0 01:15
10935 5 0 00:41
11375 5 0 02:46
12168 5 1 01:14
28794 3 3 01:02
Bird 38: CarolinaChickadee
6205 5 0 02:05
9026 5 0 01:47
13627 5 1 00:40
17023 5 1 01:17
17029 5 0 02:01
17084 5 2 12:33
17441 4 2 01:18
17566 4 1 05:04
17567 3 2 06:19
Bird 39: BlueGrosbeak
2524 5 0 05:12
2575 5 2 03:15
3369 5 2 05:50
3436 5 1 02:08
6333 5 1 02:19
7087 5 0 02:03
7166 5 0 01:39
9727 5 0 02:06
10147 5 0 01:23
10187 5 0 00:24
12349 5 0 02:15
14087 5 0 02:40
17118 4 1 02:58
Bird 40: WilsonsWarbler
3224 5 1 01:30
5150 5 0 02:19
5185 5 0 03:37
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5190 4 1 03:05
5328 5 0 02:09
7708 4 0 00:44
7758 5 0 01:45
7790 5 0 01:21
7856 5 0 01:27
7867 5 0 01:25
8973 5 1 02:01
8995 5 2 00:37
9484 5 2 01:29
9486 5 2 01:02
11288 5 1 03:02
12221 5 2 01:42
15521 5 1 03:13
15705 5 1 01:08
18826 5 0 00:35
28929 5 0 04:01
28987 5 0 03:32
Bird 41:WhiteEyedVireo
16283 4 2 05:59
16321 3 2 05:07
16349 3 3 08:05
16373 3 0 10:01
16391 4 1 02:14
16491 4 1 09:57
16528 4 2 05:52
16541 5 1 07:56
16664 5 0 02:25
16878 5 2 03:52
Bird 42: WarblingVireo
1059 5 0 01:00
1376 5 0 01:33
6856 5 0 01:56
6909 4 2 01:32
7042 5 0 01:42
7772 5 1 01:41
8388 3 1 03:25
10511 5 1 01:19
10928 5 0 00:49
11082 5 0 01:39
13492 5 0 02:32
16882 4 2 03:01
18752 4 2 01:59
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28458 5 0 03:26
29653 5 0 02:55
Bird 43: SavannahSparrow
469 3 1 07:35
2129 4 1 02:52
3530 5 0 01:11
4112 5 0 02:00
4114 5 1 02:47
8530 5 1 03:53
11388 5 1 00:54
12436 5 1 02:38
21203 4 2 01:07
23917 5 0 04:36
29705 5 0 03:31
29788 5 0 01:02
Bird 44: NorthernYellowShaftedFlicker
730 4 2 03:43
1697 5 1 01:09
2342 5 0 00:33
3090 5 0 00:32
3172 5 1 01:32
3186 5 0 01:58
3188 5 0 00:46
3189 5 0 01:03
3242 5 0 01:24
3266 5 0 00:16
4358 5 0 00:21
4579 5 0 00:59
4694 5 0 00:46
4833 5 0 00:43
5294 5 0 00:27
5824 5 0 01:00
5825 5 0 02:49
6695 5 0 00:40
6697 5 0 00:30
6756 5 2 02:11
6760 5 0 02:42
7370 5 0 01:08
8045 5 0 01:05
8743 5 0 00:25
8761 5 0 00:53
9867 5 1 01:41
10836 5 1 01:37
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Bird 45: FieldSparrow
670 4 1 02:14
1240 5 1 01:38
1651 5 0 01:33
1776 5 0 02:44
3168 5 1 01:52
3794 5 1 01:26
3827 5 0 01:31
3911 5 0 01:36
6742 4 1 02:12
6744 5 2 02:37
10430 4 0 00:28
11002 5 0 01:03
11006 5 0 00:59
11027 5 0 01:17
24168 5 1 01:30
24242 4 3 02:10
24248 4 1 02:27
32183 4 4 01:18
32202 5 2 01:42
Bird 46: SlateColoredJuncoDarkEyed
1140 5 0 03:12
1151 5 0 01:08
1274 5 0 01:28
2763 5 0 01:33
3567 5 0 01:01
3567 5 1 00:50
3589 5 0 00:03
3638 5 0 00:09
3646 5 0 00:24
3650 5 0 02:17
3657 5 0 01:38
3661 5 0 01:06
4164 5 0 00:44
4266 5 0 01:52
4767 5 0 01:35
4805 5 0 00:46
4866 5 0 01:39
5345 5 0 02:00
5454 5 0 00:30
7288 5 0 01:11
7958 4 2 01:53
8040 4 2 00:52
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8069 5 0 01:02
10391 5 2 00:53
21129 5 1 00:59
21278 3 3 00:51
24092 5 2 00:41
Bird 47: WillowFlycatcher
5823 5 1 02:22
6384 3 4 02:56
7743 5 0 00:57
8580 5 0 01:38
10064 5 0 02:02
10647 5 0 01:53
12399 5 0 01:32
29018 5 1 01:50
29313 2 4 04:07
29748 5 1 08:39
29749 5 0 01:53
Bird 48: WinterNorthernWren
601 4 4 07:11
2040 5 0 02:57
2073 3 1 04:08
2955 3 3 02:54
4319 5 2 08:23
4802 4 1 03:31
5431 5 2 04:02
10880 5 3 03:56
21598 5 1 05:06
Bird 49: WesternMeadowlark
441 5 1 06:21
4696 4 3 08:14
5774 5 2 08:57
5816 5 1 08:30
6610 5 0 03:09
7395 5 2 04:44
7416 5 0 06:05
8769 5 3 11:01
Bird 50: YellowThroatedWarbler
909 5 0 01:07
1122 5 0 01:20
2330 3 1 05:00
3127 5 0 04:54
4438 5 0 01:52
4488 5 0 04:11
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4511 5 0 02:12
4960 5 1 02:13
5677 5 0 01:32
6302 5 1 01:14
7620 5 1 01:51
10532 5 1 01:40
14308 5 0 02:26
16212 4 3 01:42
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