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Abstract

Sex in the jewel wasp Nasonia vitripennis is determined by whether eggs are haploid

or diploid: the radically different male and female phenotypes share the same genome,

showing that their sexual dimorphism is not genetic but rather a specific case of phenotypic

plasticity. As a consequence, all of Nasonia’s genes are selected for both male and female

fitness. The impact of this diverging selective pressure on the evolution of its genome and

whether it is comparable to organisms with sex chromosomes are questions still largely

unanswered.

In this thesis, I develop and apply a set of tools for the integrative analysis of different

aspects of Nasonia’s biology. I characterize the improved gene set of Nasonia and identify

several lineage-specific gene family expansions. I provide an algorithm for detection and

comparison of splicing and transcription signal from transcriptomic data in non-model

organisms. Finally, I identify the different regulatory processes that enable generation of

disparate phenotypes using network analyses on Nasonia’s developmental transcriptome.

Nasonia’s transcriptome shows high amounts of sex-bias not tied to linkage groups

or alternative splicing. Early development shows a prevalence of sex-biased interactions

between transcripts rather than single-gene upregulation, and sex-biased networks are

enriched in lineage-specific regulators.
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INTRODUCTION

Systems Biology in the Age of ’Omics

2016 is an exciting time to be a biologist. Hybridization, sequencing by synthesis and

mass-spectrometry can now be performed thousands of times in parallel in just a few hours.

Powered by these technologies, a multitude of ’omic disciplines have been created with the

goal to detect, characterize and quantify all measurable parameters of living organisms.

Despite the diverse histories and applications of ’omic disciplines, most of them are based

on the same fundamental assumption: Collection of large datasets brings the mechanistic

basis of biological responses into the light.

This reasonable concept has unfortunately lead to the unrealistic public expectation

that complete measurements of a single ’omic dimension (such as the genome) could

lead to complete understanding of organismal responses (Eddy, 2013). As the last 30

years of research have shown, individual ’omics inquiries allow unprecedented insight on

the mechanisms of biological responses. Yet, both responses and mechanisms vary in

often unpredictable manners: epistasis, epigenetics, genotype by environment interactions,

plasticity and condition-dependence are just a few of the concepts that have been borrowed

or created to explain this variation in response mechanisms (Mackay and Anholt, 2006;

Burggren and Crews, 2014; Olson-Manning et al., 2012; Hemani et al., 2014; Golan et al.,

2014). All of them have different modes of functioning, but all are used to account for

variation in responses through the effect of an additional regulatory1 layer via “black box”

modeling.

The pervasive presence of non-additive between-layer interactions (Huang et al., 2012;

Bloom et al., 2013; Golan et al., 2014) presents a strong critique to reductionist approaches,

as no explanation can be provided unless all relevant parameters are accounted for.

1I refer here to broad-sense epistasis, intended as the “masking” effect of the biological background on
genetic changes. Strict-sense epistasis is an exception to this category, since it explains modification in
a gene’s action that depends on the rest of the genomic repertoire. Strict sense epistasis is conceptually
more similar to a second-order term within the same level of regulation rather than an interaction
term as it does not require alternative regulatory processes. Interestingly, both are generally deemed
as a nuisance and neglected in traditional genetic inquiries.
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In accordance, part of the scientific community is leaning towards holistic approaches,

gathering data on multiple regulatory processes and integrating it to explain the final

outcomes. This holistic biology or Systems Biology aims at explaining higher-level responses

(organism, population or even ecosystem) using the interplay of multiple layers rather than

single ’omic approaches (Civelek and Lusis, 2014; Bittleston et al., 2016).

Figure 1: An example of the dangers
of excessive reductionism
Image from Randall Munroe
(xkcd.com).

Systems Biology can be described as an ex-

pansion of physiology that accounts for heritable

differences in the regulatory mechanisms; a more

inclusive genetics that accounts for physiological

responses or even as the branch of cybernetics

that studies how biological systems integrate

internal and external information to produce

adaptive outcomes. Rather than focusing on individual components of a single regulatory

layer (such as causal gene mutations or key hormones) systems biology deals with the

interactions between those elements (Civelek and Lusis, 2014). A genomicist might look

for mutations that impede male development. A biochemist will be interested in which

hormones differ between sexes. An ecologist could assess which environmental factors

influence sexual development. A systems biologist will search for interactions between

genes, hormones and environments to detect those that cause phenotypic changes (Bossdorf

et al., 2008). Interactions within and between regulatory layers are thus integrated in a

single conceptual framework that allows for the exploration of emergent properties of the

whole system (i.e. Williams et al., 2011).

It is now evident that, even when focusing in a single ’omic space, biological systems

display a staggering amount of complexity in the form of numerous non-linear interactions

and intricate regulatory loops (i.e. Davidson, 2002; Gerstein et al., 2012; Stazic and Voß,

2016; Soshnev et al., 2016). Perhaps due to a fascination with this complexity, most

systems biologists consider the description of regulatory networks as the purpose of this

new discipline, with the ultimate goal of being able to generate a perfect predictive model of
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any biological system as exemplified by the prevalent “blueprint”, “program” and “circuit”

metaphors (Stuart, 2003; Barabási and Oltvai, 2004; Marbach et al., 2012a; Rhee et al.,

2014). However, this ultimate goal fails to represent the key feature that sets biological

systems apart: the fact that their current structure is not the result of a goal-oriented

design but rather of a whole host of factors that influenced their evolution (Knight and

Pinney, 2009). Faced with the immediate usefulness of predictive modeling (i.e. Du and

Elemento, 2015), the study of developmental systems’ evolution might seem a purely

academic pursuit. Yet, evolution is a pervasive process and even regulatory mechanisms

vary in accordance to the rules of mutation, selection and random drift (Lowdon et al.,

2016). Adding phylogenetic and evolutionary constraints is thus a necessary complication

if we aim to predict how phenotypic responses can (or cannot) vary across species, between

environments and over time (Blank et al., 2014; Botero et al., 2015). The evolutionary

dynamics of biological regulatory networks ultimately underlie the key question of whether

a population will be able to push the boundaries of its current physiological limits or it

will be constrained by them.

It can be argued that holistic methods are needlessly complex. Predator-prey dynamics

can be explained by elegant modeling equations (Abrams, 2000), local adaptation by

mutation-selection models (Hendry, 2013) and gene regulation by direct molecular interac-

tions (Roy et al., 2010; Marbach et al., 2012b). Guided by the corollary of Occam’s razor2

we should choose the simplest alternative explanation, refusing the overly complex system

inquiries and instead refining current reductionist methods. There is however at least a

caveat to this argument: despite the aesthetic appeal of simple and elegant explanations

the true answer may still lie in more complex models. This is especially true in biological

systems where the observed higher level dynamics are likely to emerge from lower-level

2Occam’s razor is the most popular version of the parsimony principle, a key tenet in scientific and
philosophical inquiries. It states that one should avoid the needless duplication of entities. Therefore,
all else being equal, we should always lean towards models which require as few parameters as possible.
This heuristic method is justified by the observation that we can construct a limitless number of
arbitrarily complex models that fit our system equally well. However, complex models will also be
harder to falsify, and should therefore be considered only if the simpler ones have already been proven
incorrect.
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interactions (Minelli and Fusco, 2012; Burggren and Crews, 2014, and see Hunt et al., 2013;

Payne and Wagner, 2014b for an examples) or are at least sensitive to the environment of

the organisms involved and the molecular context of their cells. In the following section, I

will use the specific case of the development of alternative phenotypes to demonstrate how

biology is rich in systems that present non-reducible multi-layer interactions and how we

now have the tools to investigate them.

Development as a model for Systems Biology

Development is a fitting example of a non-reducible process. In 1958, Gurdon et al. gave

conclusive proof of the genome’s prime importance in determining the phenotype of an

organism through the use of nuclear transfer of Xenopus laevis (see Gurdon, 1986 for a

retrospective). This technique proves that despite transfer in a different cytological context

and development in a foster mother (in the case of placentalia), the genome of a terminally

differentiated cell is still sufficient to drive the ontogenesis of a near perfect replica of its

donor. Even more strikingly, the nucleus of a species can trigger the correct developmental

program when transplanted in a closely related organism’s oocyte (De Robertis and Gurdon,

1977). Yet, just as cloning proves the power of DNA, it also highlights its limitations as

even clones show significant differences. A beautiful proof of how stochastic effects produce

differences between clones is given by calico cats. A single X-linked allele is responsible

for determining whether a cat’s coat will be either red (recessive) or black (dominant).

Males and homozygous females display uniform coloration, but heterozygous females will

display a spotted mosaic of both. This mosaicism arises from the stochastic inactivation

of either copy of the X chromosome and all of its genes. Since the choice between which X

chromosome to inactivate is random and happens independently in different cell lineages

even clones display different color patterns (Shin et al., 2002). It is also worth noting

that the susceptibility of this trait to chance effects is genetically determined. If the locus

responsible for color were to be relocated on an autosome it would no longer be influenced

by X-inactivation and would instead be subject to standard dominant-recessive dynamics

iv



(Brown and Greally, 2003). It follows that genome structure can influence the degree of

randomness that affects development.

As we will see in the next section, the ability of evolution to adapt to stochastic

events can also be turned towards more recurrent cues, such as epigenetic factors and

environmental signals. Even more interestingly, adaptations to developmental variation

can act as the process that leads from a single starting point towards the highly divergent

and specialized outcomes we classify as polyphenisms. Reconstructing the processes that

lead from non-adaptive developmental variation to the highly constrained one observed

in extant polyphenisms is a challenging problem but one that can lead to significant

insights for evolutionary biology. Environmentally induced variability is widely recognized

in the special case of physical and chemical factors that disrupt “normal” developmental

pathways (teratogens). Biological systems can evolve mechanisms to block or neutralize

environmental interferences. This ability of developmental pathways to produce the same

phenotype regardless of perturbations is named robustness (Payne and Wagner, 2014b)

or canalization (Waddington, 1942). The most well studied mechanisms that induces

robustness are molecular buffers3. This broad category includes the proteins and complexes

that counteract environmental perturbations on a molecular scale. They can either shield

the embryo (through impermeable barriers), neutralize the damaging components (export

channels and sequestering molecules) or buffer and undo damage itself (chaperones and

proteasome) (Gilbert and Epel, 2009). These molecules constitute but a small selection of

countermeasures that animals have evolved to protect the delicate ontogenetic dynamics.

The importance of buffering mechanisms in development is underscored by experiments

that ablate them. Heat shock proteins (HSPs) are a family of chaperones whose role is to

assist the folding of proteins (Lindquist and Craig, 1988; Pirkkala et al., 2001). In both

3Robust developmental pathways can theoretically arise without dedicated buffering systems but rather
due to intrinsically robust regulatory architectures (Payne et al., 2014). Feedback loops are one of
such cases. Negative feedback loops protect development against temporary fluctuations in signaling
molecules. Positive feedback loops ensure the irreversibility of fate determination events. Regulatory
robustness presents an efficient alternative to dedicated buffering systems, yet it is difficult to prove
whether it is the result of selective pressure towards robustness or a by-product of emergent biological
network properties.
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Drosophila and Arabidopsis, overloading of the buffering capacity of HSPs through extreme

environmental stress or deletion leads to a slight increase in variation both between and

within individuals (Rutherford and Lindquist, 1998; Queitsch et al., 2002; Takahashi et al.,

2011). Similar effects can be exerted by a wide range of deletions in other genes, suggesting

that robustness might not just be restricted to direct molecular buffering systems but also

mediated by regulatory structures (Takahashi et al., 2012).

It is especially important to underscore that the increase in variation under environmental

stress is not exclusively due to stochastic failures but is mediated by a genetic component

(Badyaev, 2005): a considerable portion of the variants revealed by removal of HSP buffering

can be selected for and is therefore due to otherwise cryptic genetic variation (Takahashi,

2013). Once this latent diversity (Payne and Wagner, 2014a) is revealed it can be shaped by

natural selection just like constitutively expressed alleles, with two evolutionary outcomes

depending on the net fitness of the revealed phenotypes: variants that cause a loss of fitness

will be selected against while those that increase the animal’s fitness will be selected for.

This process will eventually result in a more environmentally robust developmental pathway

which minimizes the chances of induction of maladaptive phenotypes and maximizes those

of generating the adaptive ones4(Badyaev, 2009; Standen et al., 2014). A third outcome is

possible in case the revealed phenotypes are advantageous in the environment that causes

their induction but otherwise deleterious. In this scenario condition-dependent expression

presents already the optimal evolutionary strategy. Natural selection can further refine

the adaptiveness of the induced phenotype by placing additional traits under the control

of the same regulatory mechanisms, a process called genetic accommodation (i.e. Suzuki,

2006). The long term effect of selection for environmentally sensitive expression in genes

4The shift from induced to constitutive phenotypes has been known for a long time by developmental
biologists. The concept was first introduced by James Baldwin (1896a; 1896b). Waddington (1953)
was able to select for constitutive expression of environmentally induced phenotypes in Drosophila
and strongly advocated the term genetic assimilation to describe it, ironically leading to the more
widespread adoption of the term “Waddington Effect”. In more recent times, Gilbert and Epel (2009)
proposed the more generic term “heterocyberny” (shift in mode of control), which has the advantage of
including the opposite phenomenon of genetically encoded phenotypes shifting to environmental control
and is congruent with the other three major categories of innovation of evolutionary developmental
biology (heterochrony, heterometry and heterotopy).
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that confer environmentally-dependent advantages is alternative phenotypes displaying

a correlated suite of traits that increase the organisms’ fitness in the environment that

induces them while avoiding the cost of those adaptations in environments that do not

require them.

It might seem that the evolution of inducible phenotypes requires an unlikely combination

of factors. First, the induced phenotype must provide a context-dependent advantage from

the start to be selected for. Second, selection must be strong enough to counteract the

recombination forces that would break apart alleles required for generating a coordinated

suite of traits. Finally, inducible and non-inducible individuals will not be discriminated

by selection in a non-inducing context, further diminishing the pressure to maintain this

ability5. Despite the theoretical difficulties in both originating and maintaining inducible

phenotypes, organisms with alternative phenotypes are widespread in nature and thrive

due to their ability to integrate environmental information into developmental pathways

to generate adaptive phenotypes.

The paradox of alternative phenotypes (and their continuous counterpart, reaction

norms) gathers interest from several areas of biology. Ecologists are intrigued by how

they enable a single species to fill multiple mutually exclusive niches (Nijhout, 2003;

Shine, 1989). Genomicists and evolutionary biologists are puzzled by their ability to

store and quickly retrieve multiple adaptive phenotypes in a single genome (Chen et al.,

2010; Simon et al., 2011). Taxonomists and developmental biologists are fascinated by

how animals with near identical genomes, such as different sexes, can differ more than

sister species and evolve independently of each other (Jousselin et al., 2004; Hunt et al.,

2013). The sheer diversity of those questions demonstrates that alternative phenotypes

are at a fortuitous crossroads of interests between different sciences, one that requires

5There is currently debate on whether the inducible individuals are truly selectively identical to non-
inducible ones in a non inducing environment. Current theories postulate the existence of a cost of
plasticity (Snell-Rood et al., 2010), which would lead to negative selection towards inducible individuals
under non-inducing circumstances. A simple example is provided by the observation that a minor
proportion of inducible organisms will be subject to random activation of the alternative pathway even
in a non-inducing environment, with maladaptive outcomes. For the purpose of this argument the
hypothesis of the two phenotypes being identical is therefore conservative.
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all of these areas to be integrated to provide a satisfactory explanation. Reductionist

pursuit of each individual component would incur the risk of promoting compartmentalized,

incompatible and ultimately incorrect theories. Mechanistic studies without appreciation

for the rules of change will lead to mere descriptions of observed patterns, unusable for

generalized inferences on the evolution of plasticity. Purely evolutionary inquiries will

instead model fictional constructs such as independent small-effect loci with isotropic and

constant potential for gradual generation of continuous change. Only by approaching

developmental mechanisms in an evolutionary framework and molecular evolution in a

developmentally informed fashion we can achieve theories which adequately represent the

complex reality we can observe with the lens of high-throughput data.

Units of Study in Developmental Systems Biology

A fundamental difference between Systems Biology studies and individual ’omics is that

the latter often include stringent definitions of the units of interest. By contrast, System

Biology studies deals with heterogeneous types of entities ranging from RNAs to histone

modifications. Further to that, relationships between entities can also be altered by

evolution (“re-wired”, Villar et al., 2014; Cotton et al., 2015) and constitute a possible

subject for inquiries by themselves (Bittleston et al., 2016). Innovation can occur by

multiple modes even in a simple toy system comprised by a single transcription factor

regulating a set of genes that contain a single binding motif. Regulation of the transcription

factor’s expression, gain or loss of the target motif by target genes or changes in the

specificity of the TF to motif binding can all alter the final outcome. An accurate choice on

how to represent data acquired in Systems Biology investigations is thus critical to address

evolution at the level or levels of interest, as well as several other ideal properties. Data

representations need to convert highly complex, redundant and noisy datasets to more

manageable ones (Berger et al., 2013). This conversion implies the ability to partition

between relevant variation and noise, which itself depends on formulating realistic models

on the overall expected behavior of entities in our dataset. Systems Biology studies need
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to integrate seamlessly diverse types of data, accounting for the idiosyncratic properties

of the instruments used for data acquisition as well as the known differences in layer-

specific dynamics (Lowdon et al., 2016). Perhaps most important of all, the resulting

non-redundant integrated data representation needs to allow the researchers to easily

trace back to the biological processes they arise from in order to facilitate interpretation

and validation. It is therefore crucial to design data representations not only based on

computational data-handling necessities or generic properties of the type of data, but also

with a clear biological framework in mind centered around the level or levels of primary

interest.

The specific problems addressed in this thesis integrate genomic and phylogenomic data

but focus primarily on transcriptomic measurements in order to test hypotheses. My focus

on this specific regulatory level can be justified by both practical and theoretical motivations.

From a practical point of view the techniques required for transcript identification and

quantification are mature in throughput and accuracy but still lacking a consistent

theoretical framework from which to draw null hypotheses and expectations. While

obtaining quantitatively accurate measurements of transcripts is rapidly becoming less

challenging, data interpretation is still reliant on either differential expression (plagued

by multiple-testing penalization) or machine learning algorithms,which aim to improve

performance scores rather than test predictions. The compresence of a streamlined

data collection pipeline and relative lack of mechanistic models to explain observed

patterns through the underlying processes makes transcriptomics a promising field for the

application of biologically-minded analysis methods. From the theoretical side, transcripts

provide an obligatory step from genetic material to phenotypes. Transcriptome analysis

enables inferring upstream causes of gene regulation without selecting a single regulatory

mechanism (i.e. DNA methylation, transcription factor binding or chromatin remodeling).

As for the downstream effects of genes, while most phenotypic effects are not carried out by

RNAs themselves but rather by the proteins they code for, transcripts remain a necessary

transition step between DNA and phenotypes since all genes need to be transcribed in
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order to exert a function, making transcriptomic analyses at least qualitatively appropriate

for most applications (Roy et al., 2010).

Transcriptomic status is determined by multiple regulatory modes which can be partially

disentangled by appropriate data representations but is instead often interpreted by

collapsing all signal at the gene level. This approach has its roots in a long-standing

tradition of evolutionary modeling and molecular experimenting which helps define clear

expectations and consistently classify deviations from the norm. However, gene-centric

approaches effectively discard all information other than whole-gene expression. Condition-

specific transcripts are either ignored, scored as differentially expressed genes or add up to

transcriptional noise further hindering the discovery of differentially expressed genes. Using

transcripts-specific expression as the unit of study preserves this additional information,

but loses track of whole-gene regulation and is thus unable to address splicing dynamics.

Integration of genomic data is also fundamental for an appropriate characterization of

the regulatory basis of differential expression by analyzing their regulatory sequences

or checking for spatially clustered groups of differentially expressed genomic regions.

Phylogenomic data in the form of reliable orthology assignments and dating of genomic

events are also necessary if we aim to understand the evolutionary processes that lead to

the observed differentiation in gene expression and distinguish between co-evolution and

co-expression. Finally, the effect of numerous transcripts is highly dependent on which

other transcripts are also present in the same cellular context, an interdependence which

frequently results in effects qualitatively different from the sum of their parts. Groups of

coexpressed transcripts can therefore be considered interesting units for selection since

their effect cannot be reduced to their individual components.

Over the course of chapter section §2 and section §3, I will show how the appropriate use

of biologically-informed data representations can help disentangle otherwise inaccessible

forms of gene regulation and unveil how their reciprocal contributions and interactions

generate the diversity required for a single genotype to generate two sexes in our model

system.
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Nasonia vitripennis as a model for Developmental Biology

While alternative phenotypes are widespread in nature, several other properties are

necessary to enable the exploration of interactions between genotype and environment.

Alterations in the environment can be easily induced in a laboratory setup, but the same

is not generally true for genotypes. Traditional genetics employs crosses or molecular tech-

niques to selectively activate and inactivate genes, whose development in novel organisms

remains a challenging and active area of research (Huang et al., 2016). Testing a series

of defined and stable genotypes between different environmental conditions is also a key

requirement for statistical tractability of environmental plasticity, but is only possible

in species with clonal reproduction. Lastly, most ’omics explorations require a mature

knowledge base. This includes, but is not limited to, a reference genome assembly for

QTLs/eQTLs, a metabolomic reference database for chemical identification, a complete

gene set for transcriptomics (van den Berg et al., 2010), a reference methylome for DNA

modification studies and a catalog of protein modifications for molecular interaction

studies.

This thesis deals with the development of Nasonia vitripennis, which displays sexual

dimorphism in spite of its lack of sex-specific chromosomes. I focus on the specific case of

sexual dimorphism as it is both widespread and already extensively modeled in pre-genomic

studies. The term development is here accurate both in the biological and engineering

sense, as this work serves the double purpose of describing the embryonic progression of this

organisms and, at the same time, generating the knowledge base to enable further systems

biology investigations into it. While the individual pieces of work each focus towards the

characterization of the genome, transcriptome or methylome of Nasonia vitripennis, I

included a systems perspective linking gene regulation mechanisms through a phylogenetic

and evolutionary framework.

Nasonia vitripennis is a member of Hymenoptera (ants, bees and wasps) and to date

remains the only wasp with a fully assembled and annotated genome (Werren et al.,

2010). The Nasonia genome project also provided draft genome assemblies of the sister
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species Nasonia giraulti and Nasonia longicornis by mapping them to the vitripennis

genome. The availability of assemblies for three species within the same genus provides

a solid foundation for phylogenetic inquiries. This advantage is strengthened by the

weak reproductive barriers present within the Nasonia genus, which are for the most

part enforced by bacteria-induced cytoplasmic incompatibilities (Bordenstein et al., 2003).

Species cured from those parasites can be crossed in the laboratory thus allowing the study

of the genetic bases of speciation through direct experimentation (Desjardins et al., 2013;

Niehuis et al., 2013). Nasonia is also a parasitoid of dipteran larvae, and is therefore of

high value for modeling predator-prey evolution with potential future applications as a

natural remedy to pests (see Kaufman et al., 2001 for a case study). Nasonia’s venom does

not kill its prey but causes its developmental arrest, converting dipteran larvae into a more

suitable host for its own offspring (Rivers and Denlinger, 1995). This precise regulation

of a prey’s development by a predator’s venom offers a fascinating window on molecular

co-evolution.

The main asset of Nasonia as a genetic model lies in its reproductive cycle. Like

other Hymenoptera Nasonia has haplodiploid sex determination: males are produced

by unfertilized haploid eggs and females by fertilized diploid eggs. Unlike other model

Hymenoptera, Nasonia’s life-cycle is brief, asocial and allows for repeated cycles of

inbreeding. The combination of haplodiploid genetics and inbreeding allows fast and

accurate analyses of its genome via crosses of homozygotic lines (Pultz et al., 2000; Pultz

and Leaf, 2003). It is also important to point out that Nasonia’s molecular toolbox

already includes targeted gene knock-outs which can be directed to either the zygotic or

the parentally inherited supply of RNAs (Lynch and Desplan, 2006), an opportunity that

has already been used to discover a developmental path much less reliant on maternal

inheritance than that of Drosophila (Pultz et al., 2005). Nasonia’s haplodiploid sex-

determination is made even more intriguing by its plastic reactions to environmental

conditions. So far, the list of factors with proven effects on the ratio of males per brood

includes female choice (Werren, 1980), selectable alleles (Pannebakker et al., 2011), bacterial
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infection (Darby et al., 2010) and selfish genetic elements both paternally (Beukeboom and

Werren, 2000; Werren, 1991) and maternally (Skinner, 1982) transmitted. Nasonia’s sex-

determination system is therefore rich with ecologically relevant and naturally occurring

interferences at several regulatory layers.

For the purpose of this work I will focus on the dimorphism present between males

(small, with vestigial wings, pheromone producing and short lived) and females (large,

flying, venomous and long-lived). However I wish to point out that Nasonia, as other

holometabolous insects, possesses a larval stage that is radically different in physiology

and ecology from the adult form and may as well be considered an alternative phenotype

occurring within the same organism at different times.

Non-Genetic Sex Determination in Nasonia vitripennis

From a traditional genetic standpoint sex determination might seem as an unusual place

in which to look for developmental plasticity. Our focus on models with genetic sex

determination has led to a tendency to consider sex ratios as an unresponsive trait fixed

on the 1:1 ratio. The evolutionary argument in favor of this ratio was first postulated

by Fisher in 1930 as follows: polygamous sons confer higher chances of transferring their

parents’ genetic inheritance in populations where females are readily available, as they

will be able to sire more than a single brood. This will lead to a male-biased population

where less than a female per male is available. Female producing alleles will be favored in

a male-biased population, reversing the trend towards male production. This dynamic

equilibrium ensures that the only evolutionarily stable sex-ratio will be 1:1 even if adaptive

optima depend on the population’s current sex ratio. Already in 1967 Hamilton pointed

out that this model is correct only for loci that have the same number of copies in each sex

(Hamilton, 1967). Y-linked loci will favor males as they are the only ones that propagate

them and vice-versa for X-linked ones, which have double copies in females. The same

conflict will be even more widespread in species with haplodiploid sexes, as all loci are

duplicated in females and single copy in males. He also included a list of the several cases
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in which production of sexes is biased among natural populations. This is indeed the

case for our model organism. As we will see, Nasonia vitripennis presents not only a

naturally female-biased life-cycle, but also the ability to plastically adapt the sex-ratios to

its environment with beneficial effects for its fitness. Because of this ability, a vast amount

of effort has been invested in dissecting its sex determination mechanisms.

Cytologically, Nasonia’s sex is determined by the number of copies of its genome like in

other Hymenoptera (Heimpel and de Boer, 2008; Beukeboom and Van De Zande, 2010).

However, we know that its mechanism of primary sex determination is fundamentally

different than that of the main model organism of its order: Apis mellifera. Primary sex

determination in Apis is controlled by a single gene (csd or complimentary sex determiner),

a duplicate of the arthropod transformer (tra) . If csd is present as a heterozygote in the

organism’s genome, it will initiate the female-specific splicing of doublesex (dsx). If present

as either an homozygote or an hemizygote (as in unfertilized eggs), it will instead lead to

the male-specific splicing of doublesex. This locus thus exerts a double function as both a

sex determinant and a control against inbreeding, lowering the amount of homozygosity

in queens (see Gempe and Beye, 2011 for a comparative review). Nasonia lacks the csd

locus, and can be inbred for several generations without leading to increased male counts

(Verhulst et al., 2010a). This suggests either an independent evolution or a drift of the

upstream sex determination mechanisms (Verhulst et al., 2010b). The identity of the

Nasonia primary sex determinant remains unknown. Current consensus tends towards

a gene epigenetically silenced in the maternal copy of the zygotic genome (Trent et al.,

2006). If that is the case only fertilized eggs will inherit the paternal active copy of the

female sex-determining locus, leading to differential transformer splicing and a female

phenotype. However, to date such gene remains to be found and we cannot exclude

several competing hypotheses (Verhulst et al., 2013). As with other arthropods, splicing

appears to play a key role both in the induction and the establishment of sex. Maternal

inheritance of the female-specific splicing isoform of transformer is necessary to induce

the female developmental pathway as failure to provide sufficient amounts of maternal
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transformer RNA results in diploid males (Verhulst et al., 2010a). Despite some evidence

that methylation might be a regulator of splicing in Apis mellifera, knock-out of maternally

provided methyltransferases in Nasonia embryos does not impede the correct processing

of transformer (Zwier et al., 2012). I have already pointed out the numerous factors that

can influence sex determination of Nasonia in nature. It does not seem too far-fetched

to hypothesize that the complex picture emerging from the molecular level might be a

consequence of the evolutionary conflict that is enacted at the ecological scale.

Sexual Development and Sexual Conflict

Compared to the numerous investigations into sex determination, sexual development

remains a relatively neglected area.

It is well known that different sexes of the same species can exhibit a staggering amount

of differences in phenotype and ecology. It seems reasonable to assume that within a species’

genome the same genes will have different expression optima in a female or male context.

In spite of that, animals of both sexes within a species share an almost identical genome.

Genetic differences are limited to non-recombining regions of the genome in species with

genetic sex determination, ploidy level in species with haplodiploid sex determination or

none at all in species with environmental sex determination. Genes will thus tend towards

the same expression pattern in both sexes. Numerous taxa indeed show a high correlation

between male and female gene expression levels(Poissant et al., 2010).

Intersexual genomic constraint generates an evolutionary conflict over the optimal

expression pattern of genes between sexes. Mutations that affect the expression of genes

with sexually conflicting optima will increase fitness in males while decreasing the fitness

of females. Sexual genetic conflict has been verified for a wide variety of species, from

mammals to birds and insects (Bonduriansky and Chenoweth, 2009). In a study from

Chippindale et al. (2001), Drosophila genotypes selected for male or female reproductive

success resulted in a decrease of reproductive success in the other sex. Interestingly, larval

fitness remained positively correlated in the two sexes. A similar pattern of unmasking of
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differential fitness during sexual maturation is also underscored by introgression dynamics

in an hybrid population of Formica ants (Kulmuni and Pamilo, 2014). In this population,

introgressed alleles are present only in the female (heterozygous) background while they

cause complete mortality in (hemyzigous) males during the larva to adult transition.

Females with introgressed alleles by contrast show higher survival rate when compared to

their non-introgressed siblings and are responsible for maintaining the otherwise deleterious

introgressed genetic variants. Conflicts in gene expression patterns seem thus to reflect

the different ecological and physiological needs that arise only after sexual maturation,

emphasized in the case of holometabolous insects due to the abrupt remodeling that

happens during pupation.

The tendency of genes to homogenize expression patterns between sexes is also shown

by a study from Hollis et al. (2014) in which males of Drosophila were released from

sexual-selection pressures. After 65 generations male biased genes showed a marked

decrease in expression in both males and females, while male testes showed a significant

decrease of expression of male-specific genes. As suggested by the previous case, when

sufficient selective pressures are present intersexual genomic constraint can be solved

through the evolution of sex-specific expression patterns. To date, a great deal of studies

on genetic sexual conflict have been focused on the role of sexual chromosomes (Ellegren

and Parsch, 2007; Parsch and Ellegren, 2013), which provide a suitable location for genes

whose expression is deleterious to the homogametic sex. Although sex chromosomes have

been shown to be enriched in sex-biased genes (Innocenti and Morrow, 2010) a considerable

proportion of sex-biased genes are found on autosomes. Alternative solutions include the

duplication and sex-specific specialization of genes (Gallach and Betrán, 2011; Baker et al.,

2012; Wyman et al., 2012), or differential epigenetic silencing in the paternal or maternal

genome (genomic imprinting).

Nasonia lacks a sex-specific portion of the genome. This implies that all genetic changes

present in one sex will be reflected by the other, and exacerbates the genetic conflict

over genes with different optima in different sexes. The co-occurrence of haplodiploidy
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and absence of sexual chromosomes makes Nasonia an interesting model organism for

the study of genomic sexual conflict. Haplodiploidy implies that the whole genome of

males is derived from their mothers and will be selected in an hemizigous background.

By converse only females inherit a copy of the paternal genome and are subject to the

conventional dominant-regressive allele dynamics. Finally, being an holometabolous insect,

Nasonia possesses a larval stage with a vastly decreased amount of sexual dimorphism and

an ecological niche fundamentally distinct from both adult forms. What the proportion,

identity and function of sex-biased genes is in this stage poses an interesting evolutionary

question.

Thesis Outline

In the previous sections I have outlined how my project fits within the overarching

developments in Systems Biology and Evolutionary Theory by using sexual development

and transcriptomic sexual conflict as a specific case for the evolution of alternative

phenotypes and multi-layered solutions of regulatory constraints. I have also clarified the

reasons behind our choice of the wasp Nasonia vitripennis as a model system and the most

relevant traits of its life-cycle.

While Nasonia has ecologically relevant plastic traits and provides the tools to facilitate

their investigation at multiple levels, I must also underscore how little is yet known about

its development. At the time of writing this thesis, searching Web of Knowledge for articles

that include Nasonia in their topic include 878 entries of which only 41 belong to the

developmental biology category. This figure is even more generous than the reality if we

consider that a sizable portion of those articles deals with either its sex determination

or the effects of Nasonia poison on its host species’ development. Basic research on

the unperturbed development of Nasonia is required in order to generate an empirically

supported null-model for the role of gene expression in development, which are in turn

necessary to draw testable hypotheses on the behaviour of genes under perturbed states.

The first chapter of this thesis deals explicitly with the improvement of the Nasonia vit-
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ripennis gene set, a necessary step towards a more complete understanding of this species’

gene regulation. Within this chapter I describe the improved Official Gene Set (OGS2.0),

which raises the number of gene models from 18,850 to 24,388, includes non-coding genic

sequences and improves intron-exon definitions. I take advantage of this more comprehen-

sive characterization of the Nasonia gene set to detect gene families with lineage-specific

increases in gene copy number, devise a method for the identification of genes with lineage-

specific sequence conservation or innovation that does not rely on accurate reconstruction

of phylogenetic tree, and characterize the traits associated with alternatively spliced genes,

explicitly addressing the evidence for different models of evolution in alternative splicing.

The second chapter describes in detail the FESTA algorithm, which I developed for the

analysis of non-transcriptional gene regulation processes. FESTA provides an intuitive

recursive process for splicing detection and quantification based only on exon annotation

and gene expression data. This method also disentangles transcription and splicing,

enabling a comparative analysis of both components of gene regulation as statistically

independent processes.

The third and final chapter builds upon the previous two by using the genome annotation

and the gene expression analysis tool to characterize how gene expression regulation enables

sexual dimorphism in the development of Nasonia vitripennis. This chapter includes an in-

depth overview of regulation from the sub-gene level (splicing) to higher-order sex-specific

coregulation, unveiling cryptic sex-bias in the early development and providing a first

characterization of the network evolution of sex-biased transcriptional clusters.

I also include one additional paper whose publication I contributed to in the appendix.

This paper defines DNA methylation in Nasonia vitripennis from a structural and functional

perspective. It provides evidence that wasp DNA methylation is primarily intergenic

and localized at the 5’ portion of constitutively expressed genes. I contributed to this

paper by adding evolutionary comparisons between gene pairs with recent putative gains

of methylation against their unmethylated paralogs, which shows an overall increase in

expression and decrease in expression variance and sequence evolution. These findings
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justify the use of adult methylation as a coarse evaluation of genes that can be methylated

both in the charachterization of the gene set (section §1) and of developmental dynamics

(section §3).
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1. OGS2: GENOME RE-ANNOTATION OF THE JEWEL WASP NASONIA VITRIPENNIS

1. OGS2: GENOME RE-ANNOTATION OF THE

JEWEL WASP NASONIA VITRIPENNIS

1.1. Abstract

Background: Nasonia vitripennis is an emerging insect model system with haplodiploid

genetics. It holds a key position within the insect phylogeny for comparative, evolutionary

and behavioral genetic studies. The draft genomes for Nasonia vitripennis and two sibling

species were published in 2010, yet a considerable amount of transcriptiome data have since

been produced thereby enabling improvements to the original (OGS1.2) annotated gene

set. I carry out comparative analyses showcasing the usefulness of the revised annotated

gene set.

Results: The revised annotation (OGS2) now consists of 24,388 genes with supporting

evidence, compared to 18,850 for OGS1.2. Improvements include the nearly complete

annotation of untranslated regions (UTR) for 97% of the genes compared to 28% of genes

for OGS1.2. The fraction of RNA-Seq validated introns also grow from 85% to 98% in

this latest gene set. The EST and RNA-Seq expression data provide support for several

non-protein coding loci and 7712 alternative transcripts for 4146 genes.

Nasonia now has among the most complete insect gene set; only 27 conserved single copy

orthologs in arthropods are missing from OGS2. Its genome also contains 2.1-fold more

duplicated genes and 1.4-fold more single copy genes than the Drosophila melanogaster

This chapter has been published as part of Rago et al. (2016). While I include here only the portion of
the project I have directly worked on, I also include the authors’ contributions as stated on the paper
to facilitate the evaluation of my independent contribution.
I performed the statistical analyses on the gene set and wrote the manuscript.
DG conceived, designed and developed gene construction methods, and provided public web access
genome database of Nasonia.
JHC modeled, evaluated and annotated gene constructions, and performed summary analyses.
TS provided the sequencing data and assisted in drafting the manuscript.
YK provided the comparisons between OGS2 and NCBI Annotation Release 101.
JHW and JKC conceived the study, provided scientific guidance and participated in the writing of the
manuscript.
I am also grateful to the associate editor and two referees, who have critically evaluated this work
during the peer review process.
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1. OGS2: GENOME RE-ANNOTATION OF THE JEWEL WASP NASONIA VITRIPENNIS

genome. The Nasonia gene count is larger than those of other sequenced hymenopteran

species, owing both to improvements in the genome annotation and to unique genes in the

wasp lineage.

I identify 1008 genes and 171 gene families that deviate significantly from other hy-

menopterans in their rates of protein evolution and duplication history, respectively. I

also provide an analysis of alternative splicing that reveals that genes with no annotated

isoforms are characterized by shorter transcripts, fewer introns, faster protein evolution

and higher probabilities of duplication than genes having alternative transcripts.

Conclusions: Genome-wide expression data greatly improves the annotation of the

Nasonia vitripennis genome, by increasing the gene count, reducing the number of missing

genes and providing more comprehensive data on splicing and gene structure. The improved

gene set identifies lineage-specific genomic features tied to Nasonia’s biology, as well as

numerous novel genes.
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1. OGS2: GENOME RE-ANNOTATION OF THE JEWEL WASP NASONIA VITRIPENNIS

1.2. Background

The jewel wasp Nasonia vitripennis belongs to the superfamily Chalcidoidea, which is a vast

group of hymenopterans that consists mostly of parasitoids that deposit their eggs in or on

other arthropods. Parasitoids play an important role at controlling insect populations and

are used extensively as an alternative to pesticides (Quicke and Others, 1997). Nasonia is

the genetic model system for parasitoids and a model for evolutionary and developmental

genetic studies (Werren and Loehlin, 2009; Lynch, 2015). As an hymenopteran, it provides

a study system with naturally occurring haploid stages (males) and is a non-social relative

to the ant and bee lineages, having diverged from them approximately 170-180 MYA

(Werren et al., 2010; Misof et al., 2014). The Nasonia genus includes at least four species

(Raychoudhury et al., 2010) that are partially to completely reproductively isolated by

the bacterial parasite Wolbachia, yet can be crossed after its removal (Breeuwer and

Werren, 1990; Bordenstein et al., 2003), allowing the study of speciation from both a

genetic (Werren et al., 2015; Gibson et al., 2013; Niehuis et al., 2013; Loehlin and Werren,

2012) and non-genetic (Brucker and Bordenstein, 2013) perspective. The draft genome

assembly of Nasonia vitripennis was published in 2010 (Werren et al., 2010). At that

time, it provided a first comparative study of hymenopteran genomes with reference to the

honeybee, Apis mellifera. The Nasonia vitripennis genome project also included genome

sequences for the cross-fertile species Nasonia giraulti and Nasonia longicornis, which were

aligned to the Nasonia vitripennis reference genome assembly. Utilizing information from

these genomes, advancements have been made in areas as diverse as behavioural ecology

(Pannebakker et al., 2013), speciation (Gibson et al., 2013; Niehuis et al., 2013), immune

responses (Sackton et al., 2013) and DNA methylation (Wang et al., 2013).

In the coming years, projects such as the i5K and 1KITE (Misof et al., 2014) will continue

to deliver new insect genomes and transcriptomes to the research community, with the

goal of improving genomic knowledge for this most speciose animal clade (Barribeau

and Gerardo, 2012). Expanding the taxonomic breadth and number of well annotated

genomes is important to develop new research avenues, and several quality measures
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are necessary for the accurate interpretation of comparative genomic, transcriptomic

and epigenomic data (Waterhouse, 2015). Completeness (the number of reported genes

compared to the actual number of genes in the organisms’ gene set) is one such measure;

an incomplete gene set may exclude the true causal genes responsible for trait variation in

quantitative genetic analyses and confound the interpretation of genome-wide association

studies. The accuracy and reliability of gene models are equally important for genetic

and genomic studies. Erroneous models can arise either from the fragmentation of true

genes or by falsely joining neighboring genes (also termed fused or chimeric models, not

to be confounded with their biological counterparts) because of mismatched splice sites,

missing exons, or the addition of spurious exons. False models are especially problematic

for the functional study of genes by misrepresenting their true expression levels. Finally, an

accurate annotation of untranslated regions is required to investigate post-transcriptional

regulation. Untranslated regions (UTRs) consist of 5’ and 3’ terminal portions of the

mRNAs, as well as introns that are removed from the final mRNA via splicing. UTRs

are functionally relevant since they are often targets for regulatory mechanisms such

as microRNAs mediated regulation (Pauli et al., 2011; Carthew and Sontheimer, 2009),

ribosomal binding affinity (Xue et al., 2014) and transcript localization (Olesnicky and

Desplan, 2007).

The quality of genome annotations is improved by using more sequence data of gene

transcripts. These data often expand the initially reported gene repertoires, indicating

that (except for a few model species) current gene inventories are still far from completion.

The gene numbers and accuracy of annotations for model species have generally increased

over decades of work (e.g. 10% more genes and 200% more alternates for Arabidopsis

over 15 years, Sterck et al., 2007). Species specific, targeted strategies are employed to

refine the annotated gene sets. For example, by applying specific targeted solutions to

the technical challenges of annotating the Apis mellifera genome (largely because of its

unusual base composition), its initial count of ca 10,000 genes (Weinstock et al., 2006)

increased to a more acceptable gene count of 15,314 (Elsik et al., 2014). Improving a
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gene set’s quality however does not necessarily require targeted strategies. Integrating

multiple gene-model construction algorithms and incorporating novel expression data can

often provide sufficient evidence to improve existing models while also uncovering new loci

and their variants. This is especially true if the source data are tissue-specific or include

novel environmental conditions and developmental stages, which are likely to reveal the

expression of specialized genes or transcripts (Brown et al., 2014; Gerstein et al., 2014).

For example, the Anolis carolinensis gene set was updated in 2013 by adding tissue and

embryonic specific RNA-Seq datasets, which provided sufficient new data to increase the

overall gene count from 17,792 to 22,962 genes and from 18,939 to 59,373 transcripts –

an increase of 29% and 210% respectively (Eckalbar et al., 2013)! These case studies

indicate that we are still far from reaching the point of diminishing returns on investments

at improving the annotation of eukaryote genomes. As such, the genomics community is

aware that updates to integrate novel expression and sequence data must remain a priority

in order to provide a more accurate representation of the real biological background of

animals.

I report on a more comprehensive Official Gene Set for Nasonia vitripennis (OGS2),

which vastly improves our understanding of its genome biology. Since its public release

in 2012 (Gilbert et al., 2012), OGS2 has been used in a number of studies (Niehuis

et al., 2013; Pannebakker et al., 2013; Sackton et al., 2013; Wang et al., 2013, 2015)

and as a resource for comparative genomics (e.g., through databases such as OrthoDB

Waterhouse et al., 2013; Kriventseva et al., 2015). Several information resource projects

support the use of Nasonia for genomics investigations, reviewed by Lynch (Lynch, 2015).

Gene set improvements of OGS2 are available at the Hymenoptera Genome Database

(HGD) (Munoz-Torres et al., 2011) and more recently at WaspAtlas (Davies and Tauber,

2015). The HGD provides genome map views and BLAST sequence searches for Nasonia,

including this OGS2 gene set, and 8 other Hymenoptera species. WaspAtlas offers gene

annotation and functional information searches of Nasonia gene sets including OGS2,

integrating expression and DNA methylation annotations. This OGS2 gene set along with
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associated gene evidence and alternate gene sets are also available with genome map views

and BLAST sequence homology searches through the EvidentialGene project of euGenes

genome database (Gilbert, 2002). NCBI provides genome map views, sequence and gene

annotation searches (Thibaud-Nissen et al., 2013) for their annotations of Nasonia.

Here I describe Nasonia vitripennis OGS2 in detail and compare it to the earlier

annotation set using several quality measures. I use OGS2 for a comparative analysis

of gene family expansion and sequence evolution with reference to other hymenopteran

genomes. Finally, I reveal the usefulness of the novel gene set by presenting a multi-factorial

analysis of the features that characterize alternatively spliced genes, demonstrating that

genes with annotated isoforms are characterized by longer transcripts, greater number

of introns, slower rate of protein evolution and lower probabilities of duplication when

compared to genes with no alternate transcripts.

6



1. OGS2: GENOME RE-ANNOTATION OF THE JEWEL WASP NASONIA VITRIPENNIS

List of abbreviations

OGS2: Nasonia Official Gene Set 2

OGS1.2: Nasonia Official Gene Set 1.2

EST: Expressed Sequence Tags

RNA-Seq: RNA-sequencing

UTR: UnTranslated Region

mRNA: messenger RNA

lncRNA: long noncoding RNA

OG: Orthologous Group

BUSCO: Benchmarking Universal Single Copy Orthologs

CDS: Protein CoDing Sequences

Nvit_1.0: Nasonia vitripennis genome assembly 1.0

Nvit_2.1: Nasonia vitripennis genome assembly 2.1

NCBI-101: NCBI Nasonia vitripennis annotation release 101

GLMM: Generalized Linear Mixed Model
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1.3. Methods

1.3.1. Gene Set Construction Process

As the gene set construction process was developed and carried out entirely by DG, it is

not included in this thesis. The complete methods for the generation of the OGS2 gene

set are presented in full in Rago et al. (2016).

All selected gene models are supported by some kind of evidence; ab-initio predictions

without gene evidence are not included in OGS2. A small set of problem genes were

manually curated and corrected by expert examination of evidence. A final set of 36,327

distinct loci, selected by EvidentialGene methods was compared to other available and

draft Nasonia gene sets (table 1 and table 2). The predicted models include UTRs based

on expression data and genome gene signals. Putative long non-coding genes (lncRNA)

from the transcript assemblies (those with weak coding potential and no homology to

reference proteins) were retained in the full gene set. The models and EST evidence were

assessed with PASA for valid alternate transcripts. Gene proteins were annotated with

Uniprot descriptions, and classified by evidence scores, including transposable elements.

Finally, 24,388 constructions were chosen to be “good models” (table 1), having the

best match to EST and protein homology evidence. Models excluded from the "good" set

include: (1) those with expressed RNA assemblies but with weak or no coding potential,

(2) most of those with significant homology to known transposon proteins, and (3) those

with minor or no expression and protein evidence from the quality assessment. However,

385 genes having homology to putative transposon proteins but also with expression and

homology to other insect species genes were retained as an indeterminate subset annotated

as "expressTE". I used the “good models” set for all downstream analyses, but note

instances where the remainders include some genes of biological value.

1.3.2. Gene set Quality and Completeness metrics

The quality scores per model are calculated using the following types of evidence: (a) the

level of RNA sequence coverage and tiling array signal over the gene model coordinates
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Summary Statistics OGS2 OGS2 OGS1.2
All Models Good Models Final Models

Genes 36,327 24,388 18,850
Protein coding genes 25,725 (71%) 24,388 15,566*
Non-coding genes 3,997 (11%) 0 0
Transposon protein genes 6,605 (20%) 385* 2,935*
Single transcript genes 32,079 (88%) 20,243 (83%) 18,759 (99.5%)
Genes assigned to ortholog** 15,176 (42%) 15,173 (62%) –
Transcripts 44,164 32,101 18,941
Alternative transcripts 7837 7712 91
Mean isoforms per gene 1.22 1.32 1
Complete proteins 41,256 (93%) 30,521 (95%) 18,941 (100%)
Median transcript length 1571 bp 1603 bp 1176 bp
Median CDS length 777 bp 981 bp 1032 bp
Transcripts with UTR 41,313 (94%) 30,512 (95%) 5264 (28%)

Table 1: Summary of the Official Gene Set (OGS2) comparing all gene constructions
to good constructions having expression and/or homology evidence and to the
previous OGS1.2 gene models. Percentages are of the total number of genes for
the set.
* 2,935 OGS1.2 models are classified with strong homology to transposon proteins
during OGS2 work, 385 models with expression and other insect homology but
also transposon homology were retained in OGS2 “good” model set
** 5,763 additional genes of OGS2 have significant protein homology, but are not
assigned as orthologs in OrthoMCL orthology analysis, 3,454 of 24,388 “good”
models lack significant homology, but have expression evidence.
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on the genome assembly; (b) the number of EST and RNA sequence reads spanning the

intron splice sites that matched to annotated exon ends; (c) gene structure agreement, as

end-to-end match of exons in the model with the evidence in support of gene structure,

summarized in table 2 for evidence structure from EST/RNA assemblies and reference

proteins; (d) sequence homology to proteins from eleven species-specific reference databases

using BLASTp scores of all significant matches to the reference set of genes including the

number of reference protein matches, bitscore per protein match, and the similarity scores

for alignments to same species paralog proteins. These quality scores are summarized for

several Nasonia gene sets (table 2) and partitioned according to the source of evidence

(EST, RNA sequences, tiled expression spans, reference sequences (Nasonia RefSeq), and

reference species proteins. Each gene model for each locus is therefore scored by weighted

evidence. Finally, the maximal evidence scored, non-overlapping model set is determined,

with respect to inter-locus effects of gene joins and other factors.

Quality scores per orthologous group ( 10 on page 89) are calculated in the following way:

for each orthology group, the median protein size of all genes among the species within the

group is determined. Then for each species gene set, the maximal BLASTp bit score of a

gene within that group is recorded as metric #1, and the protein size difference from the

group median of that maximal match is recorded as metric #2. These metrics are averaged

for all groups per species, and reported as average bit score, as average size deviation, and

as percentage of size outliers (2 standard deviations below median sizes). These gene set

quality measurements are provided by the Evigene scripts: “eval_orthogroup_genesets.pl”

and “orthomcl_tabulate.pl”. Partial gene models are a common artefact of draft gene sets,

indicated by both a negative deviation from group median sizes, and larger percentage of

outliers. A similar calculation is part of the OrthoDB methodology (Simão et al., 2015).

1.3.3. Ortholog group assignments and gene family expansions

Orthology of Nasonia protein coding genes was assigned using two methods: OrthoMCL

(Li, 2003) and OrthoDB (Waterhouse et al., 2013). OrthoMCL was used during gene
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Evidence Available Statistic OGS1.2 Evidence OGS2 OGS2 NCBI RNA-Seq
Evidence prediction

Set
Good
Genes

RefSeq Assembly

EST 18 Mb Seq. Overlap 0.506 0.814 0.768 0.715 0.672 0.724
Protein 26 Mb Seq. Overlap 0.674 0.696 0.729 0.693 0.616 0.612
RNA 46 Mb Seq. Overlap 0.381 0.551 0.599 0.540 0.468 0.571
RefSeq 17 Mb Seq. Overlap 1.000 0.934 0.958 0.908 0.857 0.839
Intron 66,593 Splices Hit 0.846 0.965 0.981 0.969 0.903 0.975
TAR 75 Mb Seq. Overlap 0.292 0.850 0.533 0.443 0.370 0.386
Transposon 28 Mb Seq. Overlap 0.168 0.282 0.406 0.099 0.009 0.039
ESTgene 10,194 Perfect 2,737 3,996 4,952 4,900 3,631 4,293
ESTgene 10,194 Equal 66% 3,491 5,059 6,283 6,198 4,284 5,187
ESTgene 10,194 Some 6,263 9,940 11,313 11,157 7,123 8,373
Progene 44,040 Perfect 4,808 6,713 8,048 8,010 6,215 4,935
Progene 44,040 Equal 66% 7,759 12,217 14,046 13,837 9,003 8,567
Progene 44,040 Some 11,563 18,173 21,759 19,718 10,861 18,457
RNAgene 28,016 Perfect 6,004 9,531 14,899 13,804 8,502 28,016
RNAgene 28,016 Equal 66% 8,173 13,552 18,829 17,608 10,202 28,016
RNAgene 28,016 Some 11,933 19,602 24,936 22,179 12,258 28,016
Homolog 11,683 Matches 16,174 16,669 23,994 17,341 11,950 13,187
Homolog 11,683 Found 10,426 10,593 11,683 11,683 9,323 9,650
Homolog 11,683 Bits/Amino

Acid
0.449 0.424 0.416 0.455 0.562 0.558

Paralog Matches 12,843 14,503 19,423 12,576 7,904 10,520
Paralog Bits/Amino

Acid
0.459 0.450 0.564 0.517 0.554 0.635

Genome Coding Seq. 28 Mb 31 Mb 36 Mb 29 Mb 10 Mb 16 Mb
Genome Exon Seq. 29 Mb 52 Mb 70 Mb 45 Mb 24 Mb 24 Mb
Genome Gene count 18,941 23,605 36,327 24,388 12,989 20,926

Table 2: The types of evidence and levels of support for Nasonia vitripennis
gene sets.
Sequence-level statistics for the different types of evidence are given as proportions
of the gene sets that are validated. Gene structure level statistics (ESTgene,
Progene, RNAgene) are counts of the number of models that reach three structure
level agreements. Homology level statistics are counts of the number of models
and proportions matching proteins of reference species and paralogous (same
species) proteins. See methods section for details on the evidence types and the
statistics that were measured.
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construction as an essential measure of gene quality, for refining gene model classifications.

For OrthoMCL, related species proteomes with Nasonia gene models were aligned using

all-by-all reciprocal best BLASTp (Altschul et al., 1990, 1997) of 11 species’ proteomes

(wasp plus those listed above). Alternate transcripts were removed after BLASTp matching,

in order to use the most similar gene variants. Clustering of these blast alignments into

gene families was also done using OrthoMCL. The resulting gene families are narrow or

broad, depending on the chosen alignment options, especially the distance at which to

break groups. Resulting groups are rather like the leaves at the tips of a phylogenetic

tree. Further MCL clustering of these groups showed relations between many of the

narrowly clustered groups. Significance criteria were applied using recommended options:

a similarity p-value < 1e-05, protein percent identity > 40%, and MCL inflation of 1.5

(this affects the granularity of clustering). Reciprocal best similarity pairs between species,

and reciprocal better similarity pairs within species (i.e., recently arisen paralogs, or

in-paralogs, proteins that are more similar to each other within one species than to any

protein in the other species) were added to a similarity matrix. The protein similarity

matrix was normalized by species and subjected to Markov clustering (MCL; Enright

et al., 2002; van Dongen, 2000) to generate ortholog groups including recent in-paralogs.

An additional round of MCL clustering was applied to identify between-group relations.

After producing the Nasonia OGS2 genes, its protein sequences were incorporated into

release-6 of the OrthoDB database (Waterhouse et al., 2013). Ortholog groups are here

defined as groups of genes related by descent from a single common ancestor at the base

of the taxonomic level of interest. All genes within a single ortholog group evolved from a

series of speciation and/or gene duplication events from a unique ancestor. Their amino

acid sequences can thus be aligned and compared with each other. Ortholog groups provide

efficient units of analysis for genes over long timescales as they enable partitioning in

evolutionarily relevant categories without the need to resolve precise 1 to 1 relationships.

From the total 24,388 OGS2 genes, 15,173 (62%) could be assigned to an ortholog group

among the Arthropoda in OrthoDB version 6.
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I assessed which ortholog groups are characterized by evolutionary expansions in the

Nasonia lineage. I selected 9601 ortholog groups that have paralogs in Nasonia and over

80% of the other sequenced Arthropoda. To further increase the stringency of the selection

criteria, I removed all genes from this set that have any duplicates in other hymenopteran

species. Of the total 9601 ortholog groups, 411 (0.05%) have duplicates specific to the

Nasonia lineage among the Hymenoptera. I used sequence similarity searches to cross-

validate the absence of ultra-conserved ortholog groups of the BUSCO dataset (OrthoDB)

from the Nasonia genome. I retrieved protein sequences for all genes within those ortholog

groups from all sequenced arthropods.

1.3.4. Identification of fast- and slow-diverging genes in Nasonia relative to ants

and bees

I retrieved amino-acid alignments for ortholog groups among the Hymenoptera from

OrthoDB version 6 and selected those that contained at least one gene in the Nasonia

genome and at least one gene in one ant and one bee genome (8696 OGs). I generated

a pairwise sequence divergence matrix, comparing all genes versus all genes within each

of those ortholog groups by applying a JTT protein evolution model as implemented in

the R package phangorn Schliep 2011. I then estimated the proportion of between-genus

sequence divergence due to the Nasonia genes using the following ratio

AN + BN

AN + BN + AB

where AN and BN are the median pairwise amino-acid distances between the Nasonia

gene and Ant or Bee orthologs respectively, and AB is the median pairwise distance

between the ant and bee orthologs in the genes’ ortholog group. I analyzed this ratio

with a generalized linear mixed model (GLMM) with logit link function, using overall

median sequence divergence of the ortholog group, presence of Nasonia paralogs and

transposon-associated expression as predictors to account for the role of those factors

in protein evolution. I also used the ortholog group ID as a random blocking factor to
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account for individual differences in evolutionary rates between ortholog groups. I then

extracted the GLMM’s residuals to evaluate the remaining unexplained levels of sequence

evolution. I selected genes that exceeded the 95th percentile of the distribution of residuals

as highly diverging, and those below the 5th percentile as slowly diverging. I did not

include relative non-synonymous to synonymous substitution rates in the GLMM because

the analysis is based on protein sequence alignments scored by a weighted matrix of amino

acid substitutions.

To avoid false positives due to exceedingly fast or slow protein sequence evolution in

either the ant or bee clade, I also computed separately the rates of divergence between

Nasonia and the ant or bee lineages ( AN
AN+BN+AB

and BN
AN+BN+AB

). I then generated two

independent GLMMs for these ratios with the same factors used for the compound ratio

and reported the genes that scored as significantly faster or slower (above 80th percentile or

below 20th percentile) in both cases. This second set provides a high confidence list of genes

that are differentially diverging in the Nasonia lineage but show limited differentiation

between the ant and bee lineages. I point out that this is a tool to identify proteins that

may be evolving more quickly at the amino acid level in the Nasonia clade. Because the

analysis is unrooted, the method does not identify proteins that are specifically evolving

more quickly since divergence of Nasonia from its common ancestor with ants and bees, but

also includes changes from that common ancestor to the split between ants and bees. More

precise evolutionary analyses will require phylogenetic reconstruction for all the genes,

but the current set is useful for identifying likely candidates for divergence among these

taxa. Given the very long branches involved in such analyses, use of dN/dS ratios as an

index of adaptive evolution would be inappropriate due to total saturation of synonymous

substitutions.

1.3.5. Functional enrichment testing

I tested all gene sets for functional enrichment of Gene Ontology (GO) terms obtained

by Blast2GO (Conesa et al., 2005), using the two-tailed Fisher’s exact test with a False
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Discovery Rate (FDR) of 5% against the complete gene complement of Nasonia vitripennis.

The Nasonia GO annotation for OGS2 was provided by the Nasonia community (Munoz-

Torres et al., 2011). Of the 24,388 OGS2 genes with supporting evidence, 24,373 are

present in the community-provided Blast2Go annotation files and 6446 of these (26,4%)

have GO assignments.

1.3.6. Alternative splicing analysis

I used GLMMs to test for factors correlated with the presence or absence of alternative

transcripts in OGS2. Our test factors include presence of strict sense paralogs (defined as

reciprocal best sequence similarity match within the same genome versus reciprocal best

match within other genomes), number of broad sense paralogs (genes within the same

genome belonging to the same arthropod OrthoDB ortholog group plus one, log and z

transformed), number of predicted introns (log and z transformed), transcript length (log

and z transformed, using the longest transcript per gene), proportion of coding sequence

over total transcript length (CDS/Transcript length, log transformed and normalized), ratio

of Nasonia-specific protein evolution (see section 1.3.4, log and z transformed), methylation

status in adult females (Wang et al., 2013) and phylostratigraphic age (Sackton et al.,

2013).

I selected only genes with a complete record for all tested factors. Since the detection

of isoforms is proportional to the coverage of that gene, I further restricted our analyses

only to genes with both strong expression support and strong intron support, which

have comparable levels of transcriptional data available. Therefore, our final dataset

was comprised of 5447 genes. To estimate over-dispersion, I fitted a GLM with quasi-

binomial error distribution including all analysis parameters. This model did not show

over-dispersion, with a c-hat of 1. I therefore fitted subsequent models to a binomial

distribution with logit link function. All subsequent models also included a random

intercept error structure for each ortholog group among arthropods, to account for different

selective pressure on different gene families.
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I estimated the support of individual factors by fitting a full model incorporating all

parameters, then compared this model to others incorporating all factor combinations

by applying the Akaike Information Criterion, corrected for finite sample size (AICc). I

calculated the relative importance of factors as the sum of weights of all models containing

that factor over the total weight of all models within the set. Since the final model set

contained several models with similar AICc values (additional file 1, see attached disk), I

choose to present the results as model-averaged estimates rather than to choose a single

best model.

1.3.7. Additional software tools

Most statistical analyses were performed in R version 3.0.0 (R Core Team, 2013) using

the following packages: plyr (Wickham, 2011) and reshape2 (Wickham, 2007) for data

handling, phangorn for sequence analyses (Schliep, 2011), lme4 (Bates et al., 2013) for

GLMMs, MuMIn (Barton, 2011) for multi-model comparisons and model-averaging, vcd

(Meyer et al., 2014) and ggplot2 (Wickham, 2009) for plotting.

1.4. Results and Discussion

1.4.1. Transcriptional and homology data complement each other

I compared the relative contribution of both expression and homology to the construction

of gene models in OGS2. Expression data supports 17,925 genes (74% of OGS2) at strong

or medium (>2
3 and >1

3 expression overlap, respectively) levels of evidence. Strong or

medium homology support (>1
3 sequence overlap) is present for 17,238 genes (71% of

OGS2). The intersection of strong and medium support from both lines of evidence

contains 12,912 genes (53% of OGS2, figure 2), suggesting a high degree of convergence

(p-value = 2E-14, Fisher’s exact test).

While still significant (p-value = 1E-8, Fisher’s exact test, N=13,861), the level of

convergence between expression and orthology support decreases to 44% for the subset of

duplicated genes, likely due to a reduced relative support of expression data (figure 2).
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Figure 2: Number of genes with medium or higher support from sequence or-
thology, evidence of transcription, or both.
Medium support is defined as overlap greater than 30%. Panels show the source
of evidence for genes within the ortholog and paralog subsets and the whole
OGS2

The decrease in expression support can be explained by a more restricted expression profile

for paralogs, which often arises after gene duplication events (Van de Peer et al., 2009).

Therefore, further transcriptomic data from different tissue types and conditions should

increase the level of convergence between the orthology and expression sets. Conversely,

genes without duplicates show greater convergence between orthology and expression

support (81% of 24,388 genes, figure 2).

Most of the 24,388 OGS2 genes that map to the Nasonia vitripennis genome assembly also

map to the genome assemblies of sibling species Nasonia longicornis and Nasonia giraulti

(Werren et al., 2010) using GMAP (Wu and Watanabe, 2005); 664 do not map to

Nasonia longicornis, and 735 do not map to Nasonia giraulti (391 are missing in both,

yet 50 of these have non-wasp orthologs). All 4,141 high identity paralog loci from

Nasonia vitripennis map to assemblies of both siblings, though some are overlapping loci

(table 9). The majority of paralog mapping patterns are the same for all 3 species (i.e.,

their relative positions are shared for all three species): 83% (3442/4141) of the paralogs for
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Gene Families (GF) Gene Counts Proportions
Gene Sets GF Ortholog

GF

GF

Missing

Genes

Genes Species

Specific

Genes

Species

Specific

Paralogs

Single

Ortholog

Genes

Duplicated

Ortholog

Genes

Dupl Singl

OGS2 10,293 8,983 92 24,296 5,446 6,686 8,239 3,925 2.1 1.4
Apis 8,591 8,560 170 10,145 987 88 8,182 888 0.2 0.9
Harpegnathos 9,633 9,291 107 15,029 2,943 1,567 8,710 1,809 0.7 1.2
Tribolium 8,893 8,388 116 16,985 4,586 2,163 7,608 2,628 1.0 1.2
Drosophila 8,464 7,636 187 14,289 2,824 2,556 6,994 1,915 0.9 1.0

Table 3: Number of insect genes classified to gene families (GF) that are com-
mon among the arthropods by OrthoMCL (ARP9, version arp11u11).
Five out of nine insect species are summarized. Dupl and Singl designate the
proportion duplicated and singleton genes relative to the median found among
insects (Dupl:5000, Singl:10000).

all species, 99% (4098/4141) of the paralogs for 2 or 3 species. The differences include both

real biological differences and assembly errors. Of the 2481 paralogs on separate scaffolds of

the Nasonia vitripennis genome, 328 overlap first paralog spans in other species, therefore

may be missing or mis-assembled. Of 239 tandemly arrayed paralogs in Nasonia vitripennis,

128 are also tandem in other species, 101 are on separate scaffolds in other species, and 69

overlap first paralog spans in other species (ie. missing or mis-assembled).

I also report that 3558 genes (15% of OGS2) have no homology support and are therefore

annotated only by means of expression data, and that 1818 genes (7.5% of OGS2) have

no expression support and are therefore annotated only by means of orthology matching.

Eight hundred and thirty-three (833) genes in OGS2 are expert-curated including 38

that span different scaffolds, odorant genes, and other cases that could not be annotated

automatically. Finally, 374 transcripts have complete proteins from transcript assemblies

that do not match genome sequence due to genome gaps and frame-shifts.

1.4.2. Missing gene families are absent from the Nasonia genome

I assessed the level of completeness of the OGS2 gene set using OrthoMCL to classify

genes into orthologous gene families that are common to arthropods (table 3 and table 10).

The comparison of genes among nine species indicates that OGS2 is equally or more

complete than the other insect gene sets, having fewer missing gene families, and similar

numbers of orthologous gene groups and single copy orthologs. Additionally, OGS2 reveals
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that Nasonia has twice the number of duplicated genes than Drosophila melanogaster or

Tribolium castaneum, both with homology (in-paralogs) and without (unique duplicates),

plus a greater number of unique singletons. Measures of protein sizes and alignment score

(table 10) indicate that OGS2 genes are larger on average than genes from other versions

of the Nasonia annotated gene sets, yet near to the Apis mellifera ortholog gene sizes.

The transcript assemblies contain 62 orthologous gene groups that are not included within

OGS2 because these transcripts are only poorly positioned onto the Nasonia genome

assembly. These may be included in a more complete gene set as transcript assemblies,

but are not yet part of this genome-mapped OGS2 gene set. A total of 75 orthologous

gene groups are missing in Nasonia but present in 9 other insect genomes.

I also used the OrthoDB method to independently assess completeness. I counted

the number of missing conserved single-copy genes that are otherwise present among the

sequenced Arthropoda (Benchmarking Sets of Universal Single-Copy Orthologs [BUSCO] in

OrthoDB Release-6), as well as the multi-copy Nasonia genes that are otherwise classified

as single copy in other Arthropoda. For the majority of gene families, there were no

discrepancies between the results obtained from OrthoDB and OrthoMCL. Although the

BUSCO results suggest that OGS2 lacks 67 of the 3377 (2%) conserved ortholog groups,

further analyses found all but 27. Conserved families missing in Nasonia OGS2 according

to OrthoDB can be attributed to (i) genome artifacts (10 missing genes were found split

across assembly scaffolds, or lost in gaps but found in transcript assembly), (ii) gene

model artifacts (9 loci were apparent join errors appended to a second gene protein), (iii)

OrthoDB discrepancies at classifying proteins to families (25 loci were assigned to different

gene families by OrthoMCL and by OrthoDB family). Twenty-seven conserved single copy

genes are either truly missing or sufficiently diverged to avoid detection. This number is

comparable to those in other Arthropoda, which lack a number of BUSCO genes ranging

from 3 (Drosophila erecta) to 708 (Strigamia maritima), with a median of 42.

Experimental evidence supports the lineage-specific gene loss for the three BUSCO genes

involved in developmental regulation: short gastrulation (sog, OG EOG6S4MX5), spaetzle 3
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(OG EOG61C5BT) and daughters against dpp (Dad or smad6, OG EOG69CNQ7). Despite

their ultra-conserved status across currently sequenced arthropods, detailed investigations

of Nasonia development suggest that those genes are truly absent from its genome due to

modifications in the BMP signaling pathway (Buchta et al., 2013) rather than because

of omissions in the current annotation. Since genes in the BUSCO set are defined as

single-copy in 90% of 30 arthropod species, I compared the number of duplicated BUSCO

genes in OGS2 to estimate the fraction of potential false gene duplications. I counted 141

(4%) multiple-copy OGS2 of the total 3377 BUSCO single-copy gene families (additional file

2, see attached disk). Of those, 62 (44%) are reported as duplicates uniquely for Nasonia,

61 for Nasonia plus one additional species, and 18 for Nasonia plus two other species.

Other species have similar rates of duplicated single-copy genes: 78 for Apis mellifera

and Harpegnathos saltator, 96 for Pogonomyrmex barbatus, 119 for Atta cephalotes (all

Hymenoptera), 107 for Anopheles, and 437 for Aedes mosquitos. Nasonia OGS2 is therefore

well within the observed range of duplications of BUSCO genes.

To further assess whether the reported duplicates are likely to be false models, I removed

the best supported gene from each orthologous group and measured the expression support

of the remaining models. One hundred and fifty-three (153) out of 175 genes (87%)

show medium or strong support for expression and only 2 have no expression support.

Lineage-specific duplications are supported by the observation that the majority of genes

belonging to ultra-conserved ortholog groups display moderate to strong expression, even

after removing the most supported duplicate and map to different genomic locations (data

not shown).

1.4.3. Gene model quality and diversity increase

OGS2 improves our knowledge of the Nasonia genome in several ways (table 1). First,

the number of annotated genes climbs from 18,850 to 24,388 (an increase of 29%). This

greater completeness of the Nasonia gene set is corroborated by the sharp decrease in

Arthropod ortholog groups missing from the Nasonia genome. OGS1.2 lacked 609 ortholog
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groups that are present in all other Arthropoda (OrthoDB Release-5). Only 331 conserved

OGs are now missing from OGS2 when compared to the same subset of species (OrthoDB

Release-6) and 253 when considering all currently available arthropod species.

The spans of coding exons are very similar between OGS2 and OGS1.2 for 10,583 loci,

which have a median percent equivalence of 92% between both sets. Changes in coding

sequences are mostly attributable to error correction such as splitting and merging of

models: 1617 original gene models (10% of OGS1.2) have been split into separate genes in

OGS2, while 3555 OGS2 genes (15% of OGS2) contain a portion of an OGS1.2 split gene,

and 494 OGS2 genes result from the joining of two or more OGS1.2 fragment genes (30

from three or more). Moreover, the proportion of genes with UTR extensions is now near

complete: 23,069 (95%) of OGS2 gene models have annotated UTRs compared to only

5,264 genes (28%) within OGS1.2. These gene models match 98% of 66,593 intron locations

on the genome assembly, identified by multiple reads of expressed RNA (>3; table 2),

compared to 85% within OGS1.2 and 90% within NCBI-11 RefSeq. Intron splice sites are

strong indicators of genes, including species-specific genes. This measure therefore indicates

a high level of gene set completeness, independent of protein homology. Finally, OGS2

dramatically increased the number of annotated transcripts from 91 alternate transcripts

in 91 genes (0.5% of OGS1.2, Table S4 in Werren et al., 2010) to 7712 transcripts among

4146 genes (17% of OGS2). Therefore, OGS2 increases the completeness of the reported

Nasonia gene repertoire and the quality of gene models as well as allowing a first overview

of Nasonia transcriptional diversity.

The current release also increases the diversity of annotated wasp genes. Of all OGS2

gene models, 12,296 (50%) could not be assigned a putative function via orthology with

other annotated genes. Four thousand, six hundred and fifty-six (4656) genes from this

subset (38%) could be assigned to 2334 arthropod orthologous groups, 490 of which (21%)

are present as multiple copy in Nasonia. The remaining 7640 genes with no known function

are found exclusively in OGS2 and could not be assigned to orthologous groups shared

with other arthropods (OrthoDB, release 6). This subset is likely to include both incorrect

21



1. OGS2: GENOME RE-ANNOTATION OF THE JEWEL WASP NASONIA VITRIPENNIS

models and innovations along the wasp lineage. Three thousand, nine hundred and eighty-

three (3983) of those Nasonia-only genes (52%) are present as duplicates in OGS2, a

proportion that is significantly greater than that reported for the whole genome (fisher’s

exact test, p-value < 2.2E-16). Of the 7640 lineage-specific genes with no annotated

function, 4498 (59%) have been newly annotated in OGS2.

1.4.4. Nasonia shows biologically relevant lineage-specific duplications

Our examination of the updated gene families of OGS2 identified 411 Arthropoda ortholog

groups that have duplicated exclusively in the Nasonia lineage (4% of all ortholog groups

within OGS2). These groups consist of 1230 genes, of which 599 loci (49%) have no

assigned homolog (additional file 3, see attached disk). The most frequent category

among annotated expanded genes within the “good models” set is that of transposon

associated proteins (102 genes, 30 ortholog groups), followed by kinases/phospatases (38

genes, 16 ortholog groups) and odorant receptors (23 genes, 7 ortholog groups). The

enzyme 5-hydroxyprostaglandin dehydrogenase (6 paralogs, 2 ortholog groups) also shows

an evolutionarily interesting lineage-specific expansion. This protein is essential for male

pheromone processing, and is a prime candidate for driving mate selection and speciation,

based on positional cloning of genes involved in pheromone differences between Nasonia

species (Niehuis et al., 2013).

1.4.5. Wasp lineage diversification is driven by transcriptional regulators

I calculated the sequence divergence of each Nasonia gene from its orthologs in both

ants and bees. I then selected Nasonia genes that have a significantly higher or lower

proportion of sequence divergence to ant and bee orthologs when compared to the rest

of the Nasonia gene set (see section 1.3.4 for details). This method identified 504 genes

(the most extreme 5% of the frequency distribution) for both the rapidly and the slowly

evolving gene categories (figure 3 A and additional file 4, see attached disk).

I also adopted a more stringent approach by measuring the divergence scores of Nasonia
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Figure 3: Protein divergence of OGS2 genes against orthologs in other Hy-
menoptera. Every point represents a gene mapped on three coordinates
originating from the corners. Each gene’s distance from a corner is propor-
tional to the average amino-acid distance of orthologs between the two clades.
AB = ant to bee distance; AN = ant to Nasonia distance; BN = bee to Nasonia
distance. Diverging genes are highlighted in orange (fast) and blue (slow) as
detected by the compound ratio (A) and intersection of ratios (B). See materials
and methods for full description

genes against genes of the ant and bee lineages separately, then selecting only those genes

that scored as rapidly or slowly diverging in both. This intersection method identified

596 and 394 genes that have differentially accelerated or slowed evolutionary rates in the

Nasonia clade, respectively (figure 3 B and additional file 4, see attached disk). I note

that both methods are unrooted, which therefore identify genes with greater divergence in

Nasonia relative to bees and to ants, not to the common ancestor of these three lineages.

In all subsets, the most significantly enriched Gene Ontology terms are “nuclear location”

for the cellular component category, “DNA/chromatin binding” for the molecular function

category and “transcriptional regulation” for the biological process category. These data

are consistent with the view that evolution of unique metazoan traits occurs more by

changes in transcriptional regulators rather than in structural proteins (Knoll, 1999; Chen

and Rajewsky, 2007).
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1.4.6. Histone genes are enriched in lineage-specific evolution

Although histone genes are generally highly conserved, I identified several members of

the histone complex with sequences that evolved relatively rapidly in the Nasonia lineage.

Specifically, I observe a greater rate of sequence divergence for the histone proteins H2A

when compared to ant and bee variants. Histone H2A proteins package DNA into chromatin

and are implicated in epigenetically mediated gene expression regulation in vertebrates

(Pauls et al., 2001; Hardy et al., 2009; Talbert and Henikoff, 2010). Regulatory variants of

H2A histones are also present in the Apis mellifera genome (Lyko et al., 2010). There are

currently twenty-four (24) H2A genes within OGS2, 22 of which are assigned to a single

ortholog group (OG) (Arthropoda OG EOG6VT4F0) and 18 of which are assigned to a

single Hymenoptera group (OG EOG65QGR3). Compared to other Hymenoptera, this

ortholog group is more rapidly evolving in Nasonia and has a greater number of paralogs:

four times greater than Linepithema humile (the 2nd highest number with only five copies).

However, I cannot rule out that the number of H2A genes in other hymenopterans is

underestimated, especially considering the comparable number of H2A genes that are

found in other arthropods (e.g. 21 in Daphnia pulex, 22 in the Culex quinquefasciatus,

22 in Drosophila melanogaster). As of now, only two Nasonia H2A genes have strong

homology with genes within Hymenoptera, while most others have higher scoring BLAST

sequence similarity matches among vertebrate histones. This pattern can be explained

by a lineage specific increase in protein sequence evolution, which would decrease the

similarity between histones of Nasonia and of other Hymenoptera, and therefore increase

their relative similarity to those of more distantly related species by a phenomenon called

long-branch attraction. Thus, even though this result is most likely an artifact, it is still

indicative of a faster evolutionary rate of Nasonia histones compared to those of other

Hymenoptera.

Histone H3 is known to exhibit a wide range of modifications, many of which have

known effects on the transcriptional status of the underlying genes (Gerstein et al., 2014;

Müller et al., 2002). Several Nasonia H3 proteins (Hymenoptera OG EOG6R4ZDK)
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appear to significantly evolve less rapidly when compared to ant and bee orthologs. I

find that this apparently slower evolutionary rate of this orthologous group is due to a

mis-identification of this OG, which is comprised of at least two different paralogs at

the base of the Hymenoptera lineage (additional file 5, see attached disk). One of these

putative sub-groups is retained in two copies across all Hymenoptera. The other sub-group

is present in 2-4 copies in most Hymenoptera; yet Nasonia has 14 copies. The combination

of an artefactual fusion of two OGs and unequal representation of Nasonia duplicates

between the two groups is therefore the cause for an apparent slower relative evolutionary

rate; the the correct interpretation consists of a lineage-specific expansion. Nasonia also

retains an H3 gene of the OrthoDB group EOG62V6ZW, which is shared with other

arthropods but not with other Hymenoptera, and and H3 gene of the OrthoDB group

EOG6ZCRM6, which is seemingly lost in the bee lineage.

The Nasonia H2B histone proteins are encoded by 21 genes; only four are assigned

to an ortholog group containing other Hymenoptera genes (EOG6Z8X7C of OrthoDB,

whereas 8 are assigned to an OrthoMCL group). All genes are diverging at comparable

rates while Nasonia’s copy number within this orthology group is similar to that of

other hymenopterans (5 in Pogonomyrmex barbatus and Atta cephalotes). The remaining

seventeen H2B histones could not be analyzed by our method, as they are not assigned to

other Hymenoptera H2B histone gene families (OrthoDB, release 6). Although these genes

may be mis-identified by the annotation pipelines the NCBI-101 gene set independently

annotates 18 of these 21 loci as H2B histone proteins, suggesting that this annotation may

indeed comprise a Nasonia-specific expanded histone gene cluster(s).

I found that families of histone modification enzymes have specifically expanded in

the Nasonia genome: 4 of 38 histone-related gene families (10%) meet our criteria for

lineage-specific expansion (see methods section). By comparison, expansions are found in

only 0.013% of gene families for the rest of the genome. Our data therefore suggests that

the Nasonia genome is enriched for histone modification enzymes due of lineage-specific

gene expansions (table 8; p-value = 0.024, Fisher’s Exact test). The finding suggests
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that histone modification, rather than DNA methylation, may play an important role in

the lineage-specific features of epigenetic modulation in Nasonia, consistent with findings

that DNA methylation does not differ between the sexes in Nasonia, nor correlate with

epigenetic changes in gene expression (Wang et al., 2015).

1.4.7. Alternative splicing and lola expansion

Figure 4: Alternatively spliced introns
for lola in Apis (blue) and Na-
sonia (red) Graph shows intron
spans from a common hub exon, in
bases on their genomes. Blue and
red bars at top of figure are short in-
trons that join pairs of 3’ end exons
in lola gene span.

OGS2 includes alternate transcripts assem-

bled from available expressed sequence us-

ing genome-mapped assembly and de-novo

assembly methods. A total of 7712 alter-

nate forms are identified for 4145 genes

(17% of the total reported genes). One

thousand, seven hundred and twenty-five

(1725) genes (42%) have at least 3 isoforms,

219 genes (5%) have at least 6 isoforms and

26 genes have at least 10 isoforms. One gene

(longitudinals lacking or lola) has a notable

expansion of over 180 alternate forms, of

which 89 are included in the OGS2 gene set. The remaining alternative transcripts are

identified by read splice introns. Named for its observable wing phenotype in Drosophila,

lola is also expressed in many tissues and developmental stages, and has a putative role in

neuronal development (Giniger et al., 1994). Lola alternate transcripts all share a common

5’ set of six exons, with one hub exon that branches to alternate 3’ coding sequences

of 500-900 bp, spanning 350 kb of the genome, with a new alternate each 1400 bases

(median). Apis mellifera shares this lola alternate expansion, with 58 annotated alternates

branching over 200 kb from the single hub exon, as shown in figure 4. In both species,

additional alternates may be discovered with further expression evidence, as the regular

spacing in Nasonia suggests up to 250 may fit into this region of the genome. Examination
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Figure 5: Number of genes with alternative isoforms in OGS2 (A) split by presence
of paralogs and (B) split by methylation in adult females.

of non-hymenopteran insects shows no similarly large expansion for lola.

The Nasonia gene with the second largest number of isoforms is the neuronal develop-

mental transcription factor fruitless, with 17 alternative isoforms. Fruitless was already

characterized as having an unique gene structure in Nasonia compared to Diptera, and its

differential splicing is involved in both development and sexual differentiation (Bertossa

et al., 2009). Two other fruitless paralogs are also reported within OGS2, while no other

insect genome shows paralogs for this gene. Other genes with a high number of reported

isoforms include mostly transcription factors and various kinases/phosphatases (additional

file 6, see attached disk).

1.4.8. Which factors promote the evolution of alternative splicing in Nasonia?

The augmented number or genes with reported isoforms in OGS2 allowed an examination

of factors that contribute to the evolution of this regulatory mechanism. From a total

of 4146 genes with reported isoforms, only 476 (11% of all genes with isoforms, 2% of
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OGS2) have annotated paralogs (figure 5 A). This proportion is significantly less (p-value

<2.2xE-16, Fisher’s Exact Test) than the product of proportions of genes with alternative

transcripts and that of genes with duplicates (17% x 43% = 7.3%). In addition, genes

without paralogs also have a greater number of introns than those with duplicate copies in

the genome (Kruskal-Wallis rank sum test, p-value <2.2E-16 for both strict and broad

sense paralogs). Possible interpretations of these patterns are considered in the discussion

section below.

Methylation has been proposed as a molecular mechanism for the regulation of alter-

native splicing in humans (Shukla et al., 2011). In Hymenoptera, studies of both bees

and ants consistently locate methylation target sites at the intron-exon junctions (Lyko

et al., 2010; Bonasio et al., 2012; Flores et al., 2012). However, a study on the Nasonia

methylome (Wang et al., 2013) reports alternative transcripts in non-methylated genes and

no correlation between presence of alternate splicing and methylation status. I re-tested

for the overrepresentation of alternative splicing with OGS2 sets of known methylated and

known non-methylated genes (reported in Wang et al., 2013) (figure 5 B). Results indicate

a significant overrepresentation of isoforms among methylated genes (p-value = 2.2e-16,

Fisher’s exact test), with alternative transcripts reported for 41% of methylated genes,

while only 14% of non-methylated genes have transcript isoforms.

To exclude spurious results due to correlation with unaccounted variables, I fitted

a generalized linear mixed model (GLMM) to estimate the probability of observing

alternative transcripts in OGS2 genes according to a variety of factors (see methods section

for details). The final statistical model (figure 6) is composed of the following co-factors:

strict sense paralogy (presence of a reciprocal best match within the genome), number

of broad-sense paralogs (OGS2 genes within the same arthropod ortholog group), ratio

of Nasonia-specific protein evolution within Hymenoptera (see section 1.3.4), number of

introns, methylation status in adult female and furthest matching ortholog. I also fitted a

random error structure to account for individual differences between ortholog groups.

Expression level and intron support are also expected to be main predictors of observed
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Figure 6: Effect of different factors on the probability of observing alternate
isoforms of OGS2 gene models. Factors are ranked by relative importance
(y axis). Factors with complete support and levels of the same factor were
adjusted for plotting. Effect sizes are shown as the fold change in probability
from the intercept (with 95% confidence intervals). Numeric variables were log
transformed prior to analysis.
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alternative isoforms, since isoforms of genes with greater transcript abundances will be

easier to detect via RNA-Seq. I could not include expression and intron support as factors

in our analyses due to their high correlation with methylation status (see figure 16). I

therefore restricted our analyses to the subset of genes that have both strong expression

and strong intron support (N=5447, figure 6).

Results indicate that the number of predicted introns and transcript length are positive

predictors of alternative isoforms. Both findings are consistent with recent studies on the

Apis transcriptome (Flores et al., 2012). The presence of introns enables the evolution

of alternative splicing, since the latter requires differential inclusion of exons. The role

of transcript length is more difficult to interpret. It is possible that genes with longer

transcripts simply reflect better annotation quality. Alternatively, longer transcripts may

allow for longer intronic sequences, which may facilitate the emergence of alternative

splicing by providing a greater number of targets for the generation of novel splice sites or

by switching from the intron signaling mechanism to the more error prone exon signaling

mechanism (Roy et al., 2008). I explicitly included coding sequence to transcript length

ratios among factors of interest to study these effects. I found that the proportion of

coding transcript sequence (CDS/transcript length) is less well supported than transcript

length itself (47% relative importance versus 100%). Furthermore, genes with higher

proportions of non-coding sequence have a lower probability of displaying alternative

transcripts. Even by assuming a role for intronic to exonic sequence length proportions, I

find that shorter exons are prevalent among spliced genes, contrary to both the novel splice

site and exon definition modes of new isoform generation. I should however note that

the prevalence of long introns flanking alternative exons appears to be primarily driven

by isoforms that comprise a minor proportion of all splice variants of a gene (Roy et al.,

2008). It is therefore possible that the slight skew towards genes with low proportions of

intronic sequences might be driven by issues in annotating low-abundance isoforms rather

than by biological constraints.

Our initial genome-wide analyses detected a correlation between methylation and
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alternative splicing. However, I observe alternative transcripts for non-methylated genes

as well as methylated genes. This finding indicates that methylation is not necessary for

alternative splicing in Nasonia. Furthermore, after focusing on the subset of genes with

strong expression and intron support, methylation status in adult females is only weakly

correlated with presence of isoforms (relative importance 30%).

I find low support for a negative correlation between Nasonia-specific sequence divergence

and probability of observing alternative splicing. Methylated genes are known to have

a slower rate of protein sequence evolution in Nasonia (Wang et al., 2013), while the

presence of paralogs often increase protein evolutionary rates by releasing pleiotropic

constraints on individual gene copies. Yet, rate of sequence evolution and lack of isoforms

remained correlated, even after controlling for the effect of methylation and paralogy

(relative importance 52%). This finding suggests that, despite the relatively low level

of support, the inverse correlation between protein sequence evolution and alternative

splicing may be direct result, rather than being derived from indirect correlations, and is

consistent with studies of the Apis genome (Flores et al., 2012).

Both measures of paralogy (by reciprocal best hits or number of genes within the same

arthropod ortholog group) retained a moderate level of support (74% and 57% respectively)

when compared to other factors. Presence and number of paralogs are correlated with a

lower probability of observing alternative transcripts. Since I performed all our analyses

on the subset of genes with strong expression support, I can dismiss an effect due to

the relatively lower expression support available for duplicated genes (see figure 2). The

relatively large confidence intervals of the estimated effect of this factor on the probability

of observing splicing of a given gene may either indicate a weak effect or result from the

under-representation of paralogs in our subset (6% of the “good expression” gene set versus

43% of OGS2).

Finally, I tested whether isoforms are observed more or less frequently amongst genes

which emerged at a specific taxonomic level by using furthest phylostratigraphic match

as a proxy for gene age (Domazet-Lošo and Tautz, 2010). While average probabilities
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decrease with gene age, this trend was not validated as statistically significant (data not

shown). Furthermore, no single gene age category significantly alters the probability of

observing alternative splicing in its assigned genes (relative importance: 0.07).

The inverse relationship between alternative splicing and gene duplication in particular

is consistent with observations on the evolution of mammalian model species’ genomes

(Kopelman et al., 2005). There are currently several competing models that explain the

negative correlation between gene family size and number of isoforms.

The “function sharing” model hypothesizes that duplication events reduce the selective

pressure to maintain alternative transcripts in both gene copies (Roux and Robinson-

Rechavi, 2011). This model is based on the assumption that both paralogs and isoforms

provide equal opportunities for functional diversification. The reduced selective constraint

would lead to the reciprocal loss of isoforms and subfunctionalization of the gene copies

(Su, 2005). Such a scenario had been proposed for the Dscam genes in Arthropoda (Brites

et al., 2013). The function-sharing model predicts that genes will gradually accumulate

isoforms that are lost shortly after duplication events.

By contrast, Roux and Robinson-Rechavi (2011) proposed an “age-dependent” model,

in which the inverse correlation between duplication and gain of isoforms is not direct

but rather arises independently because of structural properties. Short gene length could

be advantageous for whole gene duplication, while genes with an already high number of

exons will have a higher propensity towards single exon duplication due to replication and

recombination errors (Roux and Robinson-Rechavi, 2011). The lower numbers of isoforms

for genes with duplicates would thus result from the different rates of accumulation of

isoforms and duplicates rather than loss of redundant transcripts. This hypothesis has

been criticized in depth (Su and Gu, 2012).

Finally, the underlying equivalence between the diversification potential of duplication

and alternative splicing assumed by both the function-sharing and the age-dependent

models is refuted by (Talavera et al., 2007). This finding suggests that a gene’s probability

of having isoforms rather than duplicates might be less dependent on its structural
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properties and more dependent on the different adaptive potential of the novel proteins

generated by two diversification modes, or functional constraint. Our analyses support

longer transcripts and high numbers of exons as predictors of the presence of isoforms.

While this is in agreement with the age-dependent model, I do not find a significant

correlation between age of a gene family and the presence of isoforms. This could be either

be caused by an actual lack of correlation, inaccurate dating (Moyers and Zhang, 2014) or

by the fact that the divergence from the most recent outgroup (~180 MYA) is sufficiently

great that every new family gains at least one detectable isoform.

Absence of duplicates has moderate support as a predictor of splicing, even after

controlling for the structural properties of genes. Together with the lack of support for

gene family age, this observation is congruent with the predictions of the function-sharing

model. However, I must point out that a true test to falsify the function-sharing model

would require testing the significance of the date from last duplication event, which I could

not measure with our dataset. Comparisons between the sibling species Nasonia giraulti

and Nasonia longicornis are especially suited to this task, as they provide a sufficiently

short timescale to assess transcriptome changes lead by duplication when compared to

more basal Hymenoptera.

Since I lack estimates on the potential functional overlap of duplicates and isoforms in

the genes I analyzed, I could not explicitly test the independent model. However, the fact

that I observe a strong effect of structural gene properties runs contrary to the expectation

of a process driven by their different potential to generate adaptive variants.

In conclusion, while I find no evidence for age itself being a determinant of the presence

of isoforms, I do find strong support for structural gene properties. This might be explained

by an hybrid model in which the final outcome is determined both by the propensity of a

gene to produce isoforms (or duplicates), and by their differential fixation because of their

adaptive potential (independent model) or overlap (function-sharing model).

I must point that our study assesses the presence or absence of isoforms, rather than

their number, and only considers the subset of highly expressed genes, which might have
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different selective pressures than restricted ones. Our choices are necessary to provide a

fair comparison, since lowly expressed genes have intrinsically lower probabilities of having

observable isoforms and the number of isoforms is likely to increase as more diverse RNA

samples are sequenced. However, they also skew our analysis towards a non-random subset

of genes, which might be subject to different selective pressures. As such, tackling a truly

comprehensive analysis of splicing and duplication in the Nasonia genome will require

more sequencing efforts.

1.5. Conclusions

OGS2 provides a major quantitative and qualitative update to the toolbox for Nasonia’s

genomics research. Better-defined UTRs enable the study of post-transcriptional regu-

lation via targeting of small RNAs. Novel reported isoforms provide a more accurate

representation of gene expression. I also highlight interesting areas for future molecular

biology research using this organism, such as histone modification. Furthermore, I provide

an estimate of the most unique traits of the Nasonia genome when compared with other

Hymenoptera, which can assist the discovery of genetic mechanisms underlying the typical

features of this lineage.

The advances in gene annotation for OGS2 are notable today, however as gene evidence

accumulates in the future, new and improved gene sets will need to be constructed until a

verifiably complete and biologically accurate gene set is produced. Transcriptomic data

in the form of high quality and inexpensive RNA-Seq is now the leading form of gene

evidence for most genome projects, surpassing gene prediction and mapping of reference

gene proteins. Along with abundant high quality RNA-Seq for the model Drosophila,

Tribolium, and other insects, the Apis mellifera gene set has recently been improved by

addition of several billion paired reads, sufficient for the assembly of all but the weakly

expressed genes. This approach has been employed at NCBI for updated genome-based

models, and at EvidentialGene with RNA-only assemblies. The RNA assemblies may

well surpass genome-modeled genes for orthology completeness as well as species-unique
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completeness (Gilbert, 2013).

As a proof of concept, all of the novel data that enabled the annotation improvements

made by OGS2 are derived from functional genomics methods (RNA-Seq, tiling arrays

and ESTs). Transcriptomic data can thus improve genome annotation, even when the

underlying genome assembly is frozen. As shown by the publication of results from

the modENCODE Drosophila project (Roy et al., 2010), new genes and transcripts are

discovered, even for a genome that has been intensively investigated for over half a century.

Our modeling estimated that 50% of all Nasonia loci may possess alternative transcripts,

comparable to the 57% observed from the Drosophila transcriptome (Brown et al., 2014),

whereas I recovered alternates from RNA assemblies at only 17% of all loci. Therefore,

even though it is unlikely that the addition of novel data will drastically increase the gene

count for the Nasonia genome, I expect an increase in the number of reported isoforms

with the addition of stage, tissue and condition specific transcriptomes. Perhaps more

importantly, new data will increase the quality of gene models, where RNA transcript

assemblies will validate and improve gene structures, an unresolved subset of which I

believe are fragments or gene joins, and will provide further evidence for intron/exon

patterning.

Our phylogenetic analyses were restricted in scope to the portion of the genome that

could be assigned to an ortholog group, and its interpretation hindered by the large

number of genes of unknown function. In order for the genomics of this organism to be

better linked to its biology, there is a pressing need for more functional studies tailored to

Nasonia’s unique features. Genome wide association studies and quantitative trait loci

are especially complimentary for this purpose, as they provide a first connection between

the well-defined transcriptionally active regions and biologically relevant traits (Mackay

et al., 2009; Ayroles et al., 2009). As a final note, OGS2 is currently rich in models that

have little support. These lowly supported models might prove to be a valuable resource

for future studies on the unique features of the wasp lineage, as their current status as

low-level support loci could either be indicative of a restricted expression pattern or of a
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recent evolution or emergence in the hymenopteran phylogeny.
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2. FESTA:

FLEXIBLE EXON-BASED SPLICING AND

TRANSCRIPTION ANNOTATION

2.1. Abstract

I introduce FESTA, an R based algorithm that allows detection of alternative splicing based

on experiment-specific exon expression data. FESTA disentangles alternative splicing

signal from whole-gene transcription, facilitating the discovery and characterization of

novel regulatory events even in the absence of transcript annotations or paired-end data. I

also include customization options to increase its applicability on different platforms and

experimental designs as well as a tool for the conversion from transcript expression to

inclusion ratios.

Availability and implementation: The scripts described are presented in the sup-

plementary materials of this thesis and as additional file 7 in the attached disk.
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2.2. Background

Alternative splicing is a widespread feature of eukaryotic gene regulation which can be

represented as a two step process. Transcription generates the total amount pre-mRNA

per gene locus, whereas splicing determines the proportions of each alternative transcript

that is produced. Based on this model I can distinguish between constitutive exons, which

are present across all isoforms and facultative exons, which are present in only a subset of

alternative transcripts.

Commonly used methods discard information contained in constitutive exons or average

it to match the proportions provided by transcript-specific exons (Trapnell et al., 2010),

effectively conflating transcription and splicing dependent signal. Furthermore if reads

are mapped to pre-annotated transcripts novel transcriptional events might be missed

entirely. Dataset-specific estimation of constitutive and transcript-specific exons is therefore

advisable for the discovery of novel alternative splicing events relevant to the design of

interest (i.e. Dai et al., 2012; McManus et al., 2014).

Correlation based exon clustering is a simple implementation of such a method (Patrick

et al., 2013). Since strong correlations among exons arise from their coexpression as part

of a single transcript, every cluster represents either an alternative transcript or the subset

of exons that are present across all isoforms (constitutive exons, Chen, 2013). Constitutive

exon clusters will be present in all isoforms and can therefore be identified by having an

absolute expression value either higher or equal to any other exon group. Despite being

intuitive and effective, correlation based hierarchical clustering is limited by its choice of

an a priori threshold.

In this chapter I define a simple algorithm that solves this issue by setting gene-specific

thresholds based on highly customizable biological expectations. I also provide a function

to calculate inclusion ratios of alternative exon groups in order to allow analysis of

transcription independent effects of splicing.
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Figure 7: Outline of the FESTA algorithm. Steps A-C are handled by the ClusterEx-
ons function. Step D and optional step E are handled by the AverageExons
function.

2.3. Implementation and Usage

2.3.1. Data input and filtering

FESTA requires two input files: an exon by sample expression table and an exon to gene

assignment table. In order to avoid spurious grouping resulting from correlations in the

noise component I advise thresholding raw expression data, removing all values that score

below minimal signal and excluding all exons that lack expression in a sufficient number

of biological replicates for at least one of the dataset’s conditions.

2.3.2. Isoform detection

Figure 7 shows an outline of the FESTA algorithm, which is applied to iteratively to

each gene. If a gene has more than one expressed exon, FESTA calculates a clustering
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tree based on the correlation matrix of expressed exons. FESTA then cuts the tree at

the lowest level (one exon per cluster) and ranks each group’s expression in each sample

(figure 7, A).

If any exon group is ranked first or tied for first across all samples I consider it to be

the constitutive part of the gene, record the cluster assignments at the tree cut level and

proceed on to the next gene. If no exon group ranks as first or tied across all samples,

FESTA moves up a level in the hierarchical clustering tree, averages expression scores in

exon groups with more than one exon and re-calculates the exon group rankings across

the dataset (figure 7, B).

FESTA iteratively calculates the expression rankings of exon groups at each level until

a single exon group shows the highest expression across all samples (figure 7, C). If no

exon group meets constitutive exon criteria at the highest level, the algorithm converges

on single-group clustering: all exons are annotated as constitutive and the gene is reported

as lacking significant splicing events.

FESTA generates a single expression score for each group by averaging the expression

scores of all its exons (figure 7, D). These raw expression scores can be directly used

for analyses on individual transcript abundance. Alternative splicing events can also be

converted to inclusion ratios by dividing them by the transcription score of their gene

(figure 7, E). Inclusion ratios range between zero (if the isoform is absent) and one (if all

transcripts produced by the gene include those exons) and can be used to analyze the

effects of alternative splicing independently of the main gene’s overall expression.

2.3.3. Fine tuning parameters

I include two main parameters can be changed to affect the sensitivity and power of the

main clustering algorithm: significant digits and number of exceptions.

Significant digits allows the user to define numerical accuracy of expression measurements.

Setting a high number of significant digits will result in less ties between exon groups but

might cause over sensitivity to minor fluctuations in expression values between biologically

40



2. FESTA:FLEXIBLE EXON-BASED SPLICING AND TRANSCRIPTION ANNOTATION

co-expressed exons. Fewer significant digits increase the number of ties in rankings,

decreasing the ability to differentiate constitutive exons from highly expressed alternative

exons.

Number of exceptions allows to increase the permissiveness of constitutive exon group

definitions. If this number is greater than zero, constitutive groups are re-defined as being

first or tied with any other group in all samples except the exceptions. For instance, in

case the dataset includes 25 samples, exon groups will be identified as constitutive if

they are first or tied in at least 24 samples if exception number is set to 1, at least 23

samples if it is set to 2 and so on. This parameter enables setting tree-cut height based on

experimental design considerations, with more stringent values resulting in less isoforms

and larger constitutive exon groups and more permissive values resulting in more isoforms

and smaller constitutive exon groups.

2.3.4. Caveats

There are three caveats regarding FESTA’s current implementation. Firstly, the algorithm

depends on the number of biological replicates to generate accurate exon rankings. Secondly,

it does not currently make use of paired-end data. Lastly, as the algorithm attempts to

identify isoform-specific exon groups it will not be able to detect isoforms characterized by

different combinations of the same exons such as in the case of hypervariable combinatorial

genes.

2.4. Conclusions

I present an intuitive method for the detection of transcription and splicing in transcrip-

tomic data which requires only an exon by sample expression table. FESTA allows the

end user to customize sensitivity using easily interpreted parameters which can be tuned

to the experimental design and the instrument’s sensitivity. FESTA’s output is a reduced

transcript by sample table, which retains only the splice variants observed in the experi-

ments and can be directly used in downstream analyses. The optional conversion from
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transcript abundances to splicing ratios allows the investigation of the effects of increasing

the proportions of specific isoforms rather than their absolute abundances, allowing for a

comparative study of the impact of transcriptional and splicing regulation.
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3. Transcriptomic Basis of Sexual Dimorphism in

Nasonia vitripennis

3.1. Abstract

Background The generation of sexually dimorphic phenotypes requires a series of sex-

specific regulatory processes to occur throughout development. A more detailed description

of earlier sex-bias patterns is required for understanding the true extent of sex-specific

selection on the genome and how such sex-specific patterns are achieved. In order to expand

our understanding of developmental sex-bias dynamics, I apply a series of network-based

methods to disentangle and characterize the impact of differential expression, splicing,

linkage, gene duplication and whole cluster co-regulation in the sexual development of

Nasonia vitripennis.

Results Sex-lethal and several other sex-biased genes show clustering on the genome.

Sex-biased transcription appears to be more prevalent than sex-biased splicing. Few

transcripts shift from female to male biased expression (or vice versa) during development.

Sex-biased interactions reveal several regulatory events in early development. Compared

to unbiased clusters, sex-biased clusters show enrichment for novel or fast evolving genes

which occupy potentially regulatory positions.

Conclusions Nasonia shows significant amounts of transcriptional sex-bias across all of

its development, often in a stage-specific fashion. Early sex-bias appears to be driven by

transcript-transcript interactions rather than single-gene differential expression. Clustering

of sex-biased genes is present for several regions, despite the lack of sex-determining

loci. Sex-biased clusters appear to have rapidly integrated new and fast-evolving genes

in potentially regulatory positions, suggesting a dynamic evolutionary history of sexual

development.
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3.2. Background

While sex-determination cascades have been explored in a wide array of organisms (Bull

and Others, 1983; Cho et al., 2007; Verhulst and van de Zande, 2014), we still lack

knowledge on how sex-biased expression evolves and how it affects phenotypic evolution.

Most studies on sex-bias have so far focused on the specific case of genes with differences

in their mean expression level between adult males and females, primarily in organisms

with genetic sex determination (Innocenti and Morrow, 2010; Chang et al., 2011). This

focus has led to several interesting findings such as a tendency of sex-biased genes to arise

from gene duplications, evolve more rapidly than non-biased ones and to accumulate in

sex-specific portions of the genome (Vibranovski et al., 2009; Gallach and Betrán, 2011;

Jaquiéry et al., 2013; Dean and Mank, 2014). Some of these processes have been linked

to the uneven action of selective pressure on sex-biased loci, which leads to tug-of-war

dynamics between male and female-specific optimization in gene function, or intragenomic

sexual conflict (Ellegren and Parsch, 2007; Dean et al., 2012; Mank et al., 2013; Parsch

and Ellegren, 2013).

At the same time, the focus on adult differential expression and sex chromosomes

embraces only a small subset of ways by which transcriptomic bias can achieve between-sex

differences. Specific transcripts can display transient sex-bias in earlier developmental

stages, which is not maintained in the adult (Perry et al., 2014; Mank et al., 2010).

Such cases are especially likely for genes involved the establishment and development of

sex-specific cell fates, which need to act before the adult forms are completely functional

(Badyaev, 2002; Sun et al., 2015). Analyses of earlier developmental stages can reveal genes

that are male biased in some stages and female biased in others (Mank et al., 2010; Zhao

et al., 2011). Such changes in sex-bias within the same gene are likely to create sexual

conflict, since the same locus will be under selection for female-specific and male-specific

functions in different developmental stages: a scenario that I call developmental sexual

conflict. Differential splicing has also the potential to generate sex-biased transcripts

without affecting overall gene expression (Telonis-Scott et al., 2008; Hartmann et al., 2011),
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causing exon-specific evolution even in conserved genes (Parker et al., 2013) and potentially

mediating sexual conflict similarly to sex-specific duplicates. A role for splicing regulation

in sex determination has been characterized for the auto regulatory transformer (csd in

Apis and fem in Nasonia) loop in several insect species (Verhulst et al., 2010b, 2013), but

measurements of transcriptome-wide prevalence and role of sex-biased isoforms remain

confined to either standard model organisms such as Drosophila (Telonis-Scott et al., 2008;

Hartmann et al., 2011; Chang et al., 2011; Brown et al., 2014) or specific genes of interest

(i.e. Bertossa et al., 2009).

Characterizing sex-biased gene expression is of even greater importance for the wasp

lineage represented by Nasonia vitripennis, which differs from most of the aforementioned

models on several accounts. As a member of the Hymenoptera, Nasonia shares haplodiploid

sex-determination with ants and bees. Male and female Nasonia lack sex-specific genomic

regions and must share all genes between sexes, allowing for analyses of sex-bias that

avoid the complications of between-sex genetic differences (Heimpel and de Boer, 2008;

Godfray, 2010). We know that Nasonia’s primary sex-determination mechanism is different

from that of other Hymenoptera, as it does not rely on the csd locus, but we lack a

clearer identification for which mechanism may have replaced it (Kamping et al., 2007;

Heimpel and de Boer, 2008). Studies on Nasonia gene expression have so far focused

either on adults, individual tissues or specific pathways (i.e. Pers et al., 2016) so that a

transcriptome-wide description of its developmental gene expression is currently lacking.

Despite the lack of sex-specific genomic regions, a recent study estimated that adult

Nasonia shows expression bias in over 75% of its genes (Wang et al., 2015). This finding

begets the question of how such differences are established over the course of development

and how early on we can detect significant differences in the gene expression of the

two sexes. Phenotypic descriptions of Nasonia’s embryonic development show no clear

divergence in their morphologies (Bull, 1982; Pultz and Leaf, 2003), which become sexually

dimorphic only during pupation. Conversely, molecular studies show evidence of sex-biased

transcription for the sex-determining genes transformer and doublesex as early as 7 and
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12 hours from oviposition, respectively (Verhulst et al., 2013; Zwier et al., 2012). The

lack of morphological dimorphism between sexes before pupation allows us to putatively

assign early sex-biased expression to sex-determination, as opposed to development of

dimorphic adults which occurs during pupation. Thus, using time-series data allows us to

detect the onset of sex-bias for different categories of genes and distinguish their different

roles in sex determination (early development) and sexual development (late development)

from the adult functions of reproduction, flight, poison and pheromone production. From

a Systems Biology perspective, developmental time series data are especially valuable

as they provide the required complexity to distinguish between stable associations and

transient interactions as well as allowing for detection of directional effects thanks to the

explicit presence of a time component.

I choose to analyze Nasonia’s sexual development by reconstructing its coexpression

network. A major advantage of network-based frameworks is that they can detect groups

of regulatory events acting in concert (transcriptional modules) and estimate relationships

between their members based on their connections (Langfelder and Horvath, 2008; Zampieri

et al., 2008; Mozhui et al., 2012). By measuring connections, I was able to identify

potential regulators and assess whether interactions between groups of nodes are sex-biased

themselves (Hudson et al., 2009; Hsu et al., 2015). Such contingent interactions are

especially interesting in the context of gene regulation, since different transcription factors

can combine non-additively, making it crucial to know their interacting partners in order

to predict their effect (Ament et al., 2012; Spitz and Furlong, 2012; Boyle et al., 2014).

In the specific case of sexual development, it is conceivable that the same genes may

cause a sex-specific effect only when coexpressed (Arnold et al., 2009; Van Nas et al.,

2009), giving rise to transcriptional modules whose effect is elicited by sex-biased changes

in the correlation between their members rather than in their overall expression values

(de la Fuente, 2010). Combinatorial effects of this nature are impossible to detect by

independently testing transcripts for changes in mean expression but can be identified

via differential correlation analyses on transcriptional modules (Tesson et al., 2010; Yang
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et al., 2013).

Compared to standard enrichment testing, network methods enable us to ask not only if

specific types of genes are over-represented in a cluster (Conesa et al., 2005; Subramanian

et al., 2005) but also to evaluate whether they occupy preferential positions within their

topology (Khatri et al., 2012). For instance, network-based methods can be used to

separate condition-specific genes between molecular workers which carry out molecular

functions (i.e. structural proteins and enzymes) and hubs which regulate their behaviour

(i.e. Pierson et al., 2015). The ability to assign putative functions independently of

homology assignments is especially valuable for non-model species, since it allows both to

identify new study targets among lineage-specific genes and to estimate if genes with known

homologs have evolved new functions (i.e. Nawaz et al., 2012). At a larger scale, the

structure of entire transcriptional modules can be assessed via several network parameters

such as centralization and density, allowing systematic comparisons of their regulatory

structures (Jeong et al., 2000; Horvath and Dong, 2008). Development-spanning network

reconstructions provide a necessary comparison for testing the generality of more targeted

pathway analysis studies (i.e. Pers et al., 2016) and validating models of evolutionary

change via network remodelling. In the case of Nasonia’s sexual dimorphism, I focus on the

hypothesis that the organization of sex-biased clusters may facilitate the rapid evolution

of sex-biased genes. Two main traits of network structure have been predicted to influence

the evolutionary rates of individual genes: module density and hierarchical organization.

Modules with high density are predicted to show decreased rates of regulatory evolution

for two reasons. First, altering the behaviour of a gene with several molecular interactions

is likely to result in several epistatic effects with random fitness consequences, decreasing

the chances of achieving a net increase in fitness (Kauffman, 1987; Papakostas et al., 2014).

Second, individual regulators in a highly interconnected network are unlikely to produce

new phenotypes due to the counterbalancing effects of other regulators in the same module.

Since dense networks are predicted to hinder rapid regulatory evolution, I expect to find

lower average densities among sex-biased clusters. Hierarchical network have instead been
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shown to strongly facilitate the evolution of new adaptive regulatory interactions under

several simulated circumstances (Mengistu et al., 2016), but have received little attention

from the empirical community. I thus set out to test whether hierarchical organization

may be involved in the rapid evolution of sex-biased clusters using the Nasonia system.

In this chapter, I generate a hybrid transcription and splicing network (developed in

section §2) to detect how different regulatory processes shape sex-bias at the transcriptome

level in Nasonia vitripennis. I a prevalence of sex-biased transcription over sex-baised

splicing, and outline three linkage groups enriched for sex-biased genes. I develop and

utilize differential correlation analyses to identify cryptic sex-bias in early stages and

highlight a previously unrecognized potential role for histone modification in inducing

sex-bias. Lastly, I find that sex-biased clusters show higher hierarchical organization, and

enrichment for recently evolved genes in potentially regulatory positions.
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Definition of Terms

CCRE Constitutively Coexpressed Regulatory Events. Sets of nodes (both splicing and transcription)

with more than 95% correlation among themselves. CCREs are represented by a single node in

all downstream analyses. See Splicing Detection and Network Construction for details.

Developmental Sexual Conflict Sexual conflict arising from selection on the same gene for male-biased

expression in specific developmental stages and female-biased selection in others.

Differential Expression (DE) Differences in the mean expression of a node or cluster between different

types of samples. In our case refers to differences in mean expression values between sexes, or

sex-biased differential expression.

Differential Correlation (DC) Differences in the within-cluster connection density between different

types of samples. In our case refers to differences in within-cluster correlations between sexes, or

sex-biased differential correlation.

Sex-Bias Generic term indicating sex-specific bias in at least one parameter of an element. Can refer

to sex-biased expression of nodes, sex-biased expression of clusters or sex-biased correlation of

clusters.

Splicing Node Node representing the expression of a specific gene’s isoform relative to the expression

of all isoforms. Each gene has a number of splicing nodes equal to the number of splicing events

detected, which varies from zero to the number of exons. See section §2 for details.

Transcription Node Node representing the total production of RNAs from a single gene locus, irre-

spective of their final isoform. Each gene has only one transcription node. See See section §2 for

details.

Density Proportion (0-1 bound). Indicates the number of observed connections compared to the

maximum possible connections. In the case of cluster density it refers to connections between

nodes within the cluster, with 0 indicating that no connection is observed and 1 that all nodes are

connected between each other. In the case of node density it indicates the number of connections

with other nodes of the same clusters, with 0 indicating that the node has no within-cluster

connections and 1 indicating that the node is connected to all other nodes in the same cluster.

Hub Score Product of proportions (0-1 bound). High values indicate that a specific node is highly

connected to other nodes which are not otherwise connected among themselves (hub). Low

values indicate that a specific node is lowly connected to nodes which are already interconnected

(worker).
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3.3. Methods

3.3.1. Biological Materials and Data Collection

The data used in this study consists of a developmental time series of transcriptional

activity of whole animals in males and females of the jewel wasp Nasonia vitripennis.

The experimental design comprises five distinct developmental stages: early embryo (0-10

hr old), late embryo (18-30 hr old), 1st instar larvae (~51 hr old), yellow pupa stage

(~14 days) and sexually mature virgin adults. More specifically, the first embryo stage

comprises the development from a single zygote to the late blastoderm, just before the

beginning of gastrulation. The late embryo stage starts after the end of gastrulation and

comprises most of the remaining pre-hatching development, including segmentation and

organogenesis (for reference timings see Bull, 1982).

All animals used for data collection come from the highly inbred strain AsymCX (Werren

et al., 2010). Each of these conditions was sampled in triplicate for each sex. Due to the

different number of cells at different stages, different numbers of individuals were sampled

pooled for each biological replicate as follows: 300-900 individuals for early embryos,

140-500 for late embryos, 245-520 for 1st instar larvae, 20 for pupae and adults. Pupae

and adults were produced by mated females and sexed by visual examination prior to

extraction and sequencing. Since sexing by visual examination is not possible before the

pupal stage, male embryonic and larval samples were collected from virgin females, which

produce only males. Female embryonic and larval samples were collected from mated

females, which produced ~83% female offspring.

Expression values were measured via single-channel whole-genome tiling path microarrays

using custom NimbleGen high-density 2 (HD2) arrays (Lopez and Colbourne, 2011),

consisting of 8.4 million probes with a 50-60 nt length spanning the Nasonia genome at 33

bp intervals, as well as 27,000 Markov probes which are absent from the genome for noise

detection (see below). Further details on animal breeding, RNA extraction and microarray

processing are available in the supplementary materials of Werren et al. (2010).
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Figure 8: Expression Values Distribution Before Thresholding
Vertical red lines indicate the 50th, 66th, 90th and 99th percentiles respectively.
Expression scores are reported as log ratios against the 99th percentile of random
Markov probes.

3.3.2. Data Pre-processing

Individual probes were assigned to exons according to the latest release of the Official

Nasonia Gene Set (OGS2.0, see Chapter 1 and Rago et al., 2016). Expression for each

exon was measured as the log2 ratio of the 99th quantile of the random Markov probes on

their arrays. I determined a sensible expression cut-off by examining the distribution of

exon expression values across the whole experiment (figure 8). Based on this assessment, I

collapsed all values below the 66th expression percentile to zero in order to avoid spurious

signal from random noise variation among non-expressed exons. Lastly, I retained only

exons which showed expression above our threshold in at least two out of three replicates

for at least one biological condition.

3.3.3. Splicing Detection and Network Construction

In order to disentangle transcription and splicing signal, I utilized the FESTA algorithm

(see section §2) restricting the number of significant digits to 3 and allowing a maximum

of one exception in the whole experiment. Since splicing nodes are expressed as 0-1 bound

ratios, I rescaled transcription nodes to a 0-1 space by dividing them by the maximum
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Figure 9: Network construction workflow:
I select exons based on expression within our experiment and cluster them using
FESTA. Every gene is represented as a transcription node and a variable number
of splicing nodes, each quantifying the inclusion ratios of a correlated set of exons.
Groups of nodes with reciprocal correlations greater than 95% are collapsed into
CCREs. The resulting dataset is converted into a network and clustered using
WGCNA. Final figures indicate the amount of clusters, unclustered nodes and
total genes in my network. See section 3.3.3 for details.
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expression value observed. Our final dataset thus comprises one transcription node per

gene and a variable number of splicing nodes, each representing a splicing event.

I collapsed all nodes with reciprocal correlation values higher than 95% into Constitutively

Correlated Regulatory Events (CCREs) using the collapseRows function from the WGCNA

package. This step enables us to reduce the dimensionality of our dataset by representing

sets of nearly identical nodes as a single unit and indicates their possible shared role across

development. Further to that, reducing highly correlated nodes to a single unit allows

us to avoid the possible over-interpretation of closely tied nodes by reporting all of them

as potentially significant. Our approach is conceptually similar to that of Constitutively

Coexpressed Links (CCELs) in Hsu et al. (2015). I chose to represent each CCRE using

expression scores of the node with the most correlation-based connections to other nodes

in the same CCRE, as it is the most representative of the average behavior of other CCRE

members. In the special case of CCREs with only two nodes, I used the one with the

highest mean expression.

I constructed an undirected weighted interaction network using the R package WGCNA

(Langfelder and Horvath, 2008). WGCNA infers between-transcript links based on power-

transformed robust correlation scores. Since it does not require the input of pre-defined

pathways or functional classes it is ideal for the analysis of species with high amounts of

expression data but sparse functional genomic annotation. WGCNA is also able to rapidly

calculate large networks, a key feature for enabling the permutation-based approaches that

I implemented to monitor differentiall correlations (see 3.3.7). Finally, results obtained

can be directly compared with the wealth of other studies employing the same workflow.

In order to make correlation measures tractable using graph-based approaches, WGCNA

suggest power-transforming pairwise correlation scores (Zhang and Horvath, 2005), effec-

tively increasing the gap between weak and strong links and thus the method’s specificity.

Most natural network studies show a power-distribution of connectivity across nodes (Jeong

et al., 2000; Wagner and Fell, 2001; Barabási and Oltvai, 2004), with few highly connected

nodes and many lowly connected ones, also called a scale-free degree distribution. Based
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Figure 10: Node Parameters in an Example Network:
Table on the right side lists the number of connections (Con) and hub scores
(Hub) of labeled nodes.
Node A is a high order co-ordinator, node B part of a 3 node complex and
node C a worker.

on this “scale-free topology criterion” (Zhang and Horvath, 2005), I selected the lowest

power that generated a scale-free correlation network. Hierarchical clustering applied

to the topological overlap matrix (TOM) based on the power-transformed correlations

identified 174 groups of co-expressed nodes; plus a group of 740 nodes that do not conform

to any expression cluster (grey cluster).

An outline of the network construction process is presented in figure 9.

3.3.4. Network Topology Measurements

I decided to decided to quantify two main parameters per node: connection densities and

hub-scores. My decision to focus on these two main parameters is based on their ability to

classify nodes in three main categories, which are discusseed after the description of each

individual parameter.

I define connection densities as the number of observed connections per node, normalized

by the theoretical maximum possible number of connections. In an undirected weighted

network, this parameter can be calculated with the formula Kdi =
∑

ki
N−1

2
, where ∑

kiis the

sum of the weights for all connections to node i and N−1
2 is the maximum number of links

in an undirected network of size N . This measure quantifies the relative importance of

a node as a measure of its direct connections to other nodes within the same network
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(i.e. nodes A and C in fig 10). While useful to estimate the interactions of individual

genes, connection density does not account for the different regulatory potential of different

connections. For instance, in figure 10, nodes A and B have the same connection density.

However, removing the connections from node A would split the network in two, whereas

removing the connections from node B would only have a minor impact since its neighbours

are already connected. In order to define this topological property, I calculate hub scores

using the formula

Hubi = Kdi · (1 − ni

max(ni)
)

Where Kdi represents the connection density of node i, and ni

max(ni) represents the clustering

coefficient of node i, or the observed connectivity between nodes connected to node i

divided by their maximum possible connectivity with each other. Consequently, nodes

with high hub scores have a high number of connections to nodes that are not otherwise

connected among themselves, and are likely to be involved in the coordination of multiple

processes. Since I calculate hub scores by penalizing connection densities, their scores

cannot be higher than densities themselves. This creates three potential combinations of

parameters: low density and low hub score will indicate marginal nodes (i.e. node C in fig

10), high density and high hub scores will indicate regulators (node A in fig 10), and high

density and low hub scores will indicate genes that are likely to be part of cooperative

interactions (node B in fig 10).

I calculated both scores considering only nodes within the same transcriptional cluster, in

order to provide an accurate representation of their internal regulation. I computed within-

cluster network statistics for each node in a cluster using the fundamentalNetworkConcepts

function from the WGCNA package, as well as weighted betweenness using the tnet package

(Opsahl, 2009).
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3.3.5. Differential Expression of Nodes and Clusters

I assessed the differential expression of individual nodes using generalized linear models

(GLMs) as implemented in the LIMMA package (Smyth, 2005) using the formula

Expression ∼ Stage + Stage : Sex

Which accounts for stage-specific differences in gene expression via the factor Stage and

considers sex only as a second-order interaction term with stage-specific expression changes

(Stage : Sex). The individual p-values were converted to local False Discovery Rates (lfdr),

which represent the individual probability of each hypothesis to be a false positive via

the R package fdrtool (Strimmer, 2008). All contrasts with a lfdr lower than 5% were

considered significant.

In order to detect cluster-level bias, I extracted the first principal component (module

eigengene) of each cluster and applied linear models using the same formulas as per

individual nodes. I converted all p-values to lfdr scores and considered significant all

contrasts with lfdr lower than 5%. Since this method assesses the differences in their mean

expression between sexes, I refer to it as differential expression (DE) in the rest of the

chapter.

3.3.6. Linkage Clusters Enriched in Sex-Biased Loci

I annotated each gene locus as being sex-biased if at least one of its child transcription

or splicing nodes scored as differentially expressed between sexes in at least one stage.

Since each node is tested for sex-bias independently at each developmental stage, it is

possible for a single gene to be both male and female biased at different stages. Likewise,

different transcription and splicing nodes from the same gene can show bias in either sex.

Genes that fall in either category are unlikely to be subject to sex-specific selection and

are thus excluded from linkage group enrichment analyses. I mapped all genes in our

network to the linkage map published in Desjardins et al. (2013). I tested each individual
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linkage group for enrichment in male or female biased genes via one-tailed Fisher’s exact

test, compared to the overall proportions of male and female-biased genes across all other

linkage groups. This process generated two p-values per linkage group: one for female

bias enrichment and one for male bias enrichment. Finally, I applied FDR correction to

the p-values using the package fdrtool, and reported all clusters with a lfdr score lower

than 5%.

3.3.7. Differential Correlation Analyses

In contrast with differential expression based methods, differential coexpression testing

classifies groups of genes as biologically interesting if they show a differential increase or

decrease in their correlations in the conditions of interest. Methods to analyze differential

coexpression can be divided in two main categories: untargeted methods identify changes

in transcript-transcript interactions (Tesson et al., 2010; Ma et al., 2011; Hsu et al., 2015;

Liu et al., 2016), while targeted ones measure correlation changes in pre-defined groups

of transcripts (Yang et al., 2013; Cao et al., 2014). In order to allow direct comparisons

between differential correlations and differential expression data, I developed a targeted

method and applied it to the coexpression clusters found via network construction, a

strategy also known as semi-targeted. Developing a new method was necessary since most

available ones are designed for two-sample tests or to detect individual sample deviation

from a pre-defined baseline (Yu et al., 2011; Walley et al., 2012; Liu et al., 2016), and

are thus unable to account for multi-level and nested experimental designs. Conversely,

untargeted methods would incur in steep costs in both power and computational time as

well as hinder comparisons with cluster-level differentiale expression.

I applied a sub-sampling based procedure, recording the effect that the removal of

male and female samples have on specific cluster parameters. Since our main focus is the

detection of sex-specific co-regulation, I employed a sub-sampling strategy that removes

all possible combinations of 3 samples within each stage. This sub-sampling strategy

maintains a constant number of samples used for the generation of each sub-network, while
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altering the proportion of samples from each sex in a stage-specific manner.

I applied the WGCNA process of network construction to each of the sub-sampled

datasets using the same power transformation and node to cluster assignments as per

main network construction (see section 3.3.3), measuring the within-cluster density of each

cluster in every sub-sampled network. Since WGCNA-based cluster density is effectively

a power-transformed measure of correlation between nodes in a cluster, I refer to its

differential change as differential correlation (DC) throughout the chapter. Within-cluster

density is a proportion measure and as such it is distributed on a 0-1 scale, where 1

indicates that all possible connections between nodes are observed and 0 that none of

them is. It can therefore be analyzed using GLMs with a gamma error distribution and

logit link function. I fitted the following model to each cluster

Density ∼ Stage + Stage : Sex + Network Density

which allows me to detect stage-specific sex-bias in cluster density (Stage : Sex term)

while controlling for stage-specific and whole-network increases in connectivity. In order

to validate whether observed density bias is likely to be generated by random chance I

fitted the same GLM to 1000 datasets generated by randomly permuting sex-labels. I

then extracted p-values for the Stage : Sex interactions for each cluster from the GLMs

of both the permuted and observed datasets. I estimated the probability that each case

of sex-bias is due to random chance by calculating the local fdr of observed Stage : Sex

p-values compared with the distribution of p-values generated by randomly permuted

dataset. Finally, I corrected for multiple-hypothesis testing by calculating the lfdr score

for each cluster’s Stage : Sex lfdr score against all other clusters’ lfdr scores. I considered

all Stage : Sex interactions with a lfdr score lower than 10% as significant, leading to the

expectation of less than 2 false discoveries.
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Density -0.45 0.10 -0.11 -0.41 0.10 -0.12 0.08 0.76
Centralization -0.40 0.37 0.09 -0.13 -0.42 0.26 0.58 -0.31
Heterogeneity 0.28 0.53 0.20 0.41 -0.46 -0.27 -0.09 0.37
Number of Nodes 0.41 0.32 -0.03 -0.36 0.01 0.73 -0.24 0.14
Excess Splicing -0.17 0.37 -0.67 0.48 0.35 0.16 0.05 -0.01
Excess Duplication -0.23 0.21 0.70 0.27 0.56 0.18 0.00 0.03
Median Clustering Coefficient -0.45 0.28 -0.01 -0.17 -0.14 -0.13 -0.74 -0.32
Diameter 0.33 0.47 -0.03 -0.43 0.38 -0.49 0.20 -0.25

Table 4: PCA Scores of individual cluster parameters, approximated to the third
digit

3.3.8. Multivariate analysis of network parameters

Network and sub-network parameters display several non-trivial correlations (Dong and

Horvath, 2007; Horvath and Dong, 2008). Consistently, I observe strong non-independence

between our parameters of interest (see figure 17). I employed Principal Component

Analysis (PCA) to deconvolute the latent independent components that affect network

parameters. Factors included in PCA analysis are cluster size (number of nodes), density,

centralization, heterogeneity and median cluster coefficient as defined in Horvath and

Dong (2008), as well as cluster diameter (the longest among shortest paths within the

network). I also included relative proportion of splicing nodes and relative proportion of

nodes arising from duplicated genes. Both proportions were normalized by their respective

network wide abundances before PCA. All variables were centered and scaled before PCA.

Each of the principal components (PCs) extracted by PCA represents a single linear

combination of the factors provided that maximizes the degree of variance between clusters

and minimizes the reciprocal correlation with other PCs. I determined the biological

significance of each PC by comparing the relative contribution of each parameter to their

score (as estimated by parameter loadings, table 4). Since my goal is to identify whether any

of the latent variables can discriminate between the different classes of sex-biased clusters, I

used binomial GLMs including all PCs as predictors. I fitted three separate model sets using

the following dependent variables: differentially expressed cluster, differentially correlated

cluster, clusters with both differential expression and correlation. I then computed model
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sets containing all possible combinations of factors for each of the three main models and

estimated each factor’s probability of being included in the best model of its set (relative

importance or RI) using AICc based rankings as implemented in the R package MuMIn,

(Barton, 2011). The results for differentially correlated clusters and clusters with both

differential expression and correlation are identical (data not shown), most likely because

only 4 clusters with differential correlations show no differential expression in at least one

stage. Due to this matching, I only report results for the model set targeting differentially

correlated clusters.

In order to detect whether any PC differs significantly between differentially expressed

and differentially correlated clusters, I fitted a fourth binomial model set including only

clusters with either differential expression or differential correlation, using differential

correlation as a dependent variable and the 8 PCs as its predictor.

3.3.9. Phylostratigraphic analyses on network parameters

I retrieved the phylostratigraphic annotation (Domazet-Lošo and Tautz, 2010) of Nasonia

OGS2.0 from Sackton et al. (2013). I used GLMs to test for the impact of phylostratigraphic

age on each node’s within-cluster connection density and hub scores by fitting the following

models

ConnectionDensity ∼ ClusterSize+Stratum+DE+DC+Stratum : DE+Stratum : DC

HubScore ∼ ClusterSize + Stratum + DE + DC + Stratum : DE + Stratum : DC

That estimates the ability of taxonomic strata to predict connection density and hub

scores both independently (term Stratum) and while interacting with my two main sex-

biased parameters (terms Stratum : DE and Stratum : DC), after controlling for variation
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in connection densities due to sex-bias parameters (terms DE and DC) and cluster size.

Since connection densities and hub scores are expressed as 0-1 bound variables I used a

gamma error distribution and a logit link function for GLM analyses. I subsequently fitted

all possible nested models and produced model-averaged parameter estimates and RIs for

each factors using AICc based rankings (as implemented in Barton, 2011).

3.3.10. Gene Ontology, and Protein Family Enrichment Analyses

For Gene Ontology (GO) and PFAM (Protein Family database) enrichment, I used

the interface provided by Wasp Atlas, which returns FDR-corrected q-values for over-

representation of GO and PFAM categories in the gene set of interest by using one-tailed

FDR corrected hypergeometric over representation tests (Davies and Tauber, 2015). The

input I used for enrichment testing was either genes (for linkage group enrichment) or

transcription nodes (for transcriptional cluster enrichment). Throughout the chapter I

consider significant only GO and PFAM terms with a q-value lower than 0.01.

3.3.11. Additional software tools

Most statistical analyses were performed in R version 3.2.2 (R Core Team, 2013) using

the following packages: plyr (Wickham, 2011) and reshape2 (Wickham, 2007) for data

handling, vcd (Meyer et al., 2014) and ggplot2 (Wickham, 2009) for plotting.
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3.4. Results

3.4.1. Stage-specificity of gene-level sex-bias

Stage: Genes Transcripts
Male Female Male Female

Embryo, 10 hr 26 145 29 174
Embryo, 18 hr 187 185 202 220
Larva, 51 hr 17 121 17 137
Pupa, yellow 1,392 434 2,779 581
Adult 3,194 3,093 5,167 5,953

Table 5: Number of sex-biased genes and tran-
scriptional events at each developmen-
tal stage. Genes are counted as sex-biased if
at least one of their transcription or splicing
nodes is sex-biased.

A large portion of nodes dis-

play sex-biased expression or splic-

ing when tested individually (see

table 5). Male biased genes

are prevalent in the pupal stage,

whereas female-biased transcrip-

tional events are most frequent

in the adult stage. Larvae show

the least amount of transcriptomic

bias between sexes. Only one tran-

script (Nasvi2EG005321 or Feminizer) is sex-biased across the whole development, followed

by Doublesex (Nasvi2EG010980), which is female-biased in all stages from late embryo

onward (>18 hours old). The low number of transcripts consistently differentially expressed

across multiple stages is most likely due to the low number of sex-biased events in pre-pupal

stages. Only 751 transcripts (2% of all transcripts) show sex-bias in the embryonic or

larval stages.

Transcripts that are both male and female biased in different developmental stages

are considerably less frequent than expected by chance (Fisher’s exact test, p-value ~0):

only 508 transcripts, generated by 373 genes (26% of all genes in our final dataset). The

majority (66%) of these transcripts display shifts from male bias in pupae to female bias

in adults, and 52% of them are assigned to clusters which show the same developmental

sex-bias pattern (see section section 3.4.4). Other patterns which include both male and

female bias across development consist of male-biased expression in adults and female

biased expression in pre-adult stages (female bias in pupa: 57 transcripts, female bias in

larva: 23 transcripts, female bias in late embryo: 27 transcripts, and female bias in early

embryo: 8 transcripts). Interestingly, transcripts with pre-pupal sex-bias are significantly
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more likely to show both male and female-bias in different stages than transcripts with

post-pupal bias only (Fisher’s exact test, p-value ~0).

3.4.2. Low prevalence of sex-biased splicing

Genes with sex-biased transcription are ~50% more frequent than genes with sex-biased

splicing (6041 versus 3944). Over 67% of genes with sex-biased splicing also show sex-

biased transcription, whereas less than 44% of genes with sex-biased splicing are also

subject to sex-biased transcription (figure 11). Only 1294 genes show sex-biased splicing

alone, compared with 3391 genes with only sex-biased transcription. Taken together, these

observations indicate that transcriptional bias is the main determinant of transcriptome-

wide differences between sexes. My estimates on the adult proportion of the sex-biased

adult Nasonia transcriptome are consistent with those previously reported (Wang et al.,

2015). I include the full annotation of each Nasonia transcript included in this study as

additional file 8 in the attached disk.

3.4.3. Genomic regions enriched in sex-biased genes

Figure 11: Number of Genes with Sex-
Biased Transcription and
Splicing. Yellow cells indicate
over-representation, blue ones
under-representation

Non-recombining regions can provide a suit-

able location for multiple co-adapted alle-

les which need to be co-inherited to pro-

vide a fitness benefit. Such supergenes

have been observed in a few polymorphic

species (Joron et al., 2011; Thompson and

Jiggins, 2014), and could act as pseudo sex-

chromosomes. I investigated whether such

regions are present in the Nasonia genome

by testing individual linkage groups for en-

richment in male or female-biased genes.

Two clusters show enrichment for female-
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Linkage Group Enrichment Male-biased
Genes

Female-biased
Genes

Total
Genes

Recombination
Rate

4.1 Male 49 45% 12 11% 109 9.3 · 10−2

1.065 Female 3 8.3% 18 50% 36 3.8 · 10−1

5.072 Female 12 8.0% 59 40% 147 8.6 · 10−2

Median Values NA 17% 17% 2.5 · 10−1

Table 6: Linkage groups enriched in sex-biased genes.
Numbers indicate gene counts with their percentages compared to all genes in the
linkage group. Recombination rates are expressed as centiMorgan per Mb. The
last row reports median proportions and recombination rate across all linkage
groups.

biased genes and one for male-biased ones (see table 6).

In particular, female-biased group 1.065 is the location of Nasonia’s sex-lethal (Nasvi2EG000104),

homolog of the primary signal of Drosophila’s sex-determination cascade. The same link-

age group also houses histone deacetylase 3, a key component of histone-mediated gene

regulation. Female biased linkage group 5.072 is strongly enriched for the GO terms

“apoptosis of nurse cells” (GO:0045476) and several other developmental terms related

to photoreceptor and neuronal development (R3,R4 and R7 cell development and brain

morphogenesis). Most genes on the male-biased linkage group 4.1 belong to cysteine-rich

secretory secretory proteins (PF00188.21). While these proteins are currently annotated

as venom allergens, I hypothesize that the same secretory domains may in this case be

involved in sperm production, as is suggested by expression patterns of their homologs in

Drosophila (Kovalick and Griffin, 2005).

Overall, the male enriched linkage group accounts for 1.2% of male-biased genes and

the female-enriched linkage groups for 2.0% of female-biased genes. While theory predicts

selection for lower recombination rates in sex-biased genomic regions, recombination rates

in all three linkage groups fall within the interquartile range of recombination rates of all

linkage groups.

64



3. Transcriptomic Basis of Sexual Dimorphism in Nasonia vitripennis

Sex-Bias
Pattern

Number of
Clusters

Number of
Genes

Unbiased 91 15,418 (52%)
....f 32 6,418 (22%)
....m 29 4,929 (17%)
...f. 4 452 (1.5%)
...m. 4 1,120 (3.8%)
...mf 3 324 (1.0%)
...mm 1 343 (1.2%)
..f.. 1 64 (0.2%)
.f... 3 431 (1.4%)
.m... 2 97 (0.3%)
.mf.. 1 59 (0.2%)
f.... 1 79 (0.3%)

(a)

Sex-Bias
Pattern

Number of
Clusters

Number of
Genes

Unbiased 144 25,137 (85%)
....f 6 1,145 (3.9%)
....m 8 967 (3.3%)
...m. 4 1,312 (4.4%)
..f.. 1 64 (0.2%)
.m... 5 661 (2.2%)
f.... 3 373 (1.3%)
m.... 1 75 (0.3%)

(b)

Table 7: Differential Expression (7a) and Differential Correlation (7b) Patterns
across Development and number of Clusters and Genes which exhibit
them. Each pattern is coded as a string of five characters indicating its sex-bias
status at each developmental stage from early embryo to adult: male (m), female
(f), none(.). The number of genes per pattern includes all genes within all clusters
that show that pattern.

3.4.4. Differential Cluster Expression Reveals Meiosis Genes

Differential expression testing at the cluster level shows quantitatively similar results to

single-node testing (table 7a). Almost half of all transcriptional clusters (81 out of 172) are

differentially expressed at some point in development. Most differential-expression based

sex-bias occurs in pupal and adult stages (73 differentially expressed clusters), whereas

only 8 clusters shows differential expression in pre-pupal stages. The complete annotation

of all clusters is included in the attached disk as additional file 9.

Four clusters alternate between male and female sex bias in different developmental

stages. Cluster green3 shifts from male bias in late embryos to female bias in larvae, and

is primarily constituted by retrotranscriptases and unannotated multi-copy genes. It can

therefore be attributed to transposon-related activity rather than developmentally related

processes. The remaining three clusters (antiquewhite4, lightpink2 and yellow4) shift from

male bias in pupae to female bias in adults. Antiquewhite4 and yellow4 comprise multiple

isoforms of the Nasonia homologs of SAK (Nasvi2EG010310) involved in the formation of
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Figure 12: Sex-Bias in Expression and Correlation at the Cluster level.
Positive values indicate male-bias, negative values indicate female-bias.

sperm anoxeme (Bettencourt-Dias et al., 2005) and Cyclin B (Nasvi2EG014042) which

triggers mitotic division, and are accordingly enriched in meiosis and gametogenesis related

GO terms. Cluster lightpink2 contains several gens conding for amino acid binding proteins

(i.e. condensin, Nasvi2EG004100). Since male gametogenesis occurs during pupation and

female gametogenesis during adulthood, the shift in sex-bias observed in these clusters

is likely caused by a sex-related heterochronic shift of gametogenesis. I also note that

cross-referencing the top-ranking hubs in each of those clusters (CCRE 226, 345 and 3023

respectively) with their Wasp Atlas entries reveals that other studies have found them to

be moderately to extremely testes-biased (Akbari et al., 2013).

3.4.5. Differential Correlation Reveals Early Sex-Biased Transcription

Differential correlation based analyses present several discrepancies from differential ex-

pression in both timing and direction (table 7b and figure 12). No single cluster shows
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significant differential sex-biased correlation in more than one stage; several clusters show

differential correlation in the earliest stages, and 5 out of the 65 clusters with differential

expression towards one sex in adults show opposite bias in their differential correlation.

Among the clusters that show differential correlation in early embryos, only cluster

navajowhite3 is also differentially expressed. This cluster is enriched by several GO terms

related to nucleosome assembly, comprising primarily modified histone genes and possibly

including the histone acetyltransferase complex H4/H2A HAT (genes Nasvi2EG008990,

Nasvi2EG008772, Nasvi2EG024702, and Nasvi2EG008770). One of those genes is assigned

to histone H1, one to histone H2A and two to histone H2B. These histone H2A and

H2B nodes currently lack sufficient homology to be assigned to an orthologous group

and are likely to be modified according to a lineage-specific expansion (Rago et al.,

2016, see also section 1.4.6). Histone H1 is part of the most likely hub of this cluster

(CCRE108), alongside an isoform of sex-lethal interactor (Nasvi2EG016490), and bällchen

(Nasvi2EG003614) whose Drosophila ortholog is involved in the maintenance of neuronal

and germline stem-cells via histone phosphorilation (Herzig et al., 2014; Yakulov et al.,

2014).

Two more clusters (lavenderblush3 and palevioletred2) show female-biased correlation

during early embryogenesis. Both are also differentially over-expressed in adult males.

Neither shows enrichment in informative GO terms. CCRE 493 is the most hub-like

node in cluster lavenderblush3 and is comprised by the transcriptional nodes of gene

Nasvi2EG018256 (a CDK inhibitor enriched in Nasonia testes Akbari et al., 2013), Naso-

nia’s Yellow-f protein (Nasvi2EG033442) and Nasvi2EG003903 or Inositol-trisphosphate

3-kinase A, whose Drosophila homolog is necessary for correct wing formation (Dean et al.,

2016). The primary hub of palevioletred2 is CCRE 180, which groups two poorly char-

acterized transcription nodes: the putative chitinase Nasvi2EG007678 and the SMYD-2

like N-lysine methyltransferase Nasvi2EG001109, both of which are enriched in Nasonia

testes (Akbari et al., 2013). The same cluster also includes two fatty acyl-CoA reduc-

tases (Nasvi2EG017071 and Nasvi2EG025693) homologous to Drosophila and Culex male
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sterility proteins. Only the cluster darkseagreen2 shows significant male-biased correlation

in early embryos. Darkseagreen2 is strongly enriched in GO terms related to stem-cell

fate determination, neurogenesis and down-regulation of RNAs. Its hub node CCRE 1500

contains several poorly annotated genes alongside a splicing event for Nasvi2EG022761,

a homeobox-like transcription factor and Nasvi2EG006781, isoform of a testis-biased

putative telomerase.

While the direction of sex-bias is generally consistent between the two regulatory modes,

I find that 5 of the 20 clusters with simultaneous differential expression and correlation show

different bias between expression and correlation. All of those exceptions are observed in

adults. Four of these clusters (antiquewhite4, plum, plum3 and thistle3) are more expressed

in females but more strongly correlated in males, whereas cluster antiquewhite2 is more

expressed in males but more correlated in females. These discrepancies could be caused by

differential tissue representation between the adult phenotypes, since females possess much

larger gonads than males in proportion to their body. The increased proportion of gonadal

tissue could increase representation of non-sex specific and male-biased gonadal transcripts

in females, as well as their average expression compared to male gonadal transcripts.

An increase in mean representation would affect differential expression analyses but not

correlation-based ones, which rely on the relative change of node expression. This seems to

be the case for cluster antiquewhite4, which as mentioned earlier is likely to be involved in

gametogenesis. I also observe an enrichment for gametogenesis, neurogenesis, and histone

modification associated terms in the cluster plum3, while the cluster thistle3 is enriched in

GO terms related to germ cell development and splicing regulation. All genes contained

in the hub nodes of those clusters show moderate testes-bias in adults (Akbari et al.,

2013). Cluster plum does not show significant enrichment in gametogenesis related terms

but rather is enriched in ribosomal biogenesis and RNA-processing related terms. Both

genes within its hub (CCRE106) are testes-biased (Akbari et al., 2013), suggesting it may

also be involved in either spermatogenesis or testicular functioning. By contrast, cluster

antiquewhite2 is enriched mostly in generic OG terms related to signal transduction and
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Figure 13: Network parameters associated with sex-biased clusters
Scaled PCA loading values indicated on the y axis. Each PC is listed with its
associated level of variance explained. Within-panel percentages indicate the
RI of each PC in the model set separating unbiased clusters from differentially
correlated (above) or differentially expressed (below) ones.

its hub contains several isoforms of Nasvi2EG010141, a calcitonin receptor enriched in

female heads (Hoedjes et al., 2015). I find it likely that this cluster may be involved in

female-specific neuronal functioning and its apparent over-expression in males may be due

to the relative smaller size of female brains compared to their gonads.

3.4.6. Sex-Biased Clusters Show Different Regulatory Organizations

I identify three components of cluster architechture which are significantly different (relative

importance >70%) between sex-biased and non sex-biased clusters, shown in figure 13.

The strongest association (RI 92%) is between differentially correlated clusters and PC 1,

which is also the only factor with a significant ability to discriminate between clusters with

sex-biased expression and clusters with sex-biased correlation (RI 93%). The lower scores

of differentially correlated clusters on PC 1 indicate that they tend to have smaller sizes but

higher density and a less centralized structure. According to theoretical models, the higher

density of differentially correlated clusters would predict lower evolutionary potential via

network re-wiring compared to both differentially expressed and non sex-biased clusters.
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Differentially correlated clusters are also moderately associated (RI 71%) with PC 3, which

is positively correlated with enrichment in duplicated genes and negatively correlated

with enrichment for splicing nodes. This finding is in accordance with theories on how

gene duplication can solve sexual conflict at the gene level, but are supported only for

differentially correlated clusters. Taken together with the low potential of evolution by

re-wiring, the enrichment in duplicates could indicate that these clusters evolve primarily

by adding new genes to the existing network.

Despite the fact that PC 7 explains less than 1% of between-cluster variance, it is the only

PC significantly associated with differentially expressed clusters (RI 77%). PC 7 is positively

correlated with cluster centralization and negatively correlated with median clustering

coefficient. The highest PC 7 scores of differentially expressed clusters indicate a more

hierarchical structure, with a stronger divide between hyperconnected hubs and peripheral

worker nodes. Thus, while differentially expressed clusters have average distribution of

densities, their structure could still be promoting rapid turnover of regulatory interactions.

3.4.7. Sex-Biased Clusters Integrate New Genes in Regulatory Positions

In order to validate whether sex-biased clusters show faster evolution compared to non sex-

biased ones, I compared the proportions of gene ages present in each category (figure 14).

All types of sex-biased clusters are more frequently comprised by genes whose most ancient

match is at the Nasonia (or wasp) taxonomic level, although the effect is more pronounced

in clusters with differential correlations. Compared to clusters that show only differential

expression, clusters with differential correlations appear depleted of genes from more

ancient strata, such as Hymenoptera, Insecta, and Metazoa. I further combined data from

the gene’s age with their network properties to address whether new genes present in

sex-biased clusters are more likely to be in regulatory positions than new genes in non

sex-biased clusters. I tested whether gene age can predict the number of interactions with

other genes using within cluster connection density and its regulatory potential using hub

scores (figure 15, see materials and methods for details).
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Nasonia Hymenoptera Insecta Arthropoda Metazoa
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Figure 14: Proportions of genes from each taxonomic stratum in different
classes of sex-biased clusters. Proportions reported are fold-enrichment
compared to the network-wide abundances of genes from each stratum. Y axis
is truncated between 0.5 and 2.5 fold enrichment.
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Figure 15: Effect sizes of sex-bias categories on connection densities (upper) and
hub scores (lower) of individual transcripts of different phylostrati-
graphic age.
Asterisks indicate non-overlapping 95% intervals between sex-bias categories
in the same phylogenetic stratum. All effects are calculated relative to the
Metazoan stratum. For details on the modelling see section 3.3.9.
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Nodes from different phylogenetic strata show wide variation in both density and hub-

score, as indicated by the high relative importance (RI 100%) of the term stratum for

both models. The density of Nasonia stratum nodes increases even further in differentially

correlated clusters (fig figure 15), making Nasonia-stratum genes the strongest interactors of

all phylogenetic layers. Conversely, the hub scores of transcripts in differentially correlated

clusters remains constant across the different strata. Based on these two parameters, new

nodes in differentially correlated clusters appear to have large number of connections but

low regulatory potential, consistently with co-worker type nodes.

Nasonia and Hymenoptera-stratum nodes in differentially expressed clusters are instead

characterized by high hub scores and low connectivity (100% and 95% RI, respectively).

This distribution indicates that nodes from the Nasonia and Hymenoptera strata conform

to the expectation of hubs, which bridge connections between otherwise independent group

of genes and enable co-ordinated regulation. Conversely, nodes from the older Insecta,

Arthropoda and Metazoa strata show high connectivities and low hub scores within

differentially expressed clusters, suggesting low regulatory potential but high co-operation

at the molecular level. Accordingly, Metazoan stratum nodes are enriched in protein

complexes (GO:0043234, q-value ~3.1 e−96), such as flagellar proteins in cluster tomato

and skyblue3, and spindle formation in cluster thistle. Although using homology to assign

functions to Nasonia-specific genes is impossible, their topological properties are highly

indicative of their preferential role as regulators of sex-biased transcriptional clusters.

The different position of new genes in differentially expressed and differentially correlated

clusters is consistent with their general topological properties. High density differentially

correlated clusters show low capacity to evolve new regulators. Low density and high

hierarchy differentially expressed clusters instead seem to allow the rapid integration of

new regulators.
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3.5. Discussion

My assessment of sex-bias across the development of Nasonia vitripennis leads to several

discoveries. At the gene level, I observe a prevalence of sex-biased transcription over

splicing. I find an extremely limited number of genes which shift between male and

female bias across different developmental stages, suggesting developmental constraint

of sex-bias. I also identify several genomic regions enriched in male and female-biased

genes, one of which contains the key sex-determining gene sex-lethal. At the cluster level, I

report two different types of sex-biased clusters with specific temporal expression patterns

and topological properties. Differentially correlated clusters show a surprising amount of

cryptic sexual dimorphism in the earliest developmental stages. Differentially expressed

clusters instead have a more hierarchical structure, with new or fast-evolving genes in key

regulatory positions.

3.5.1. Sex-bias at the Single Locus Level

My analyses at the gene-level suggest that regulation of whole-gene transcriptional levels

may be the most frequent means to induce transcriptome-wide differentiation between

sexs. I find far more loci with evidence of sex-biased gene expression than sex-biased

splicing. More importantly, the majority of genes with sex-biased transcription do not

show sex-biased splicing, whereas most genes with sex-biased splicing also show sex-

biased transcription. This inequality suggests that transcriptional regulation might be the

prevalent method of solving within-locus sexual conflict, while sex-biased splicing may in

most cases be a byproduct a gene’s transcriptional bias. This finding is consistent with

studies in Drosophila development (Brown et al., 2014), which show that the majority

of splice variation is observed either between tissues or between stages and that the

few consistently sex-specific splice variants in adults can be attributed to sex-specific

tissues. Nonetheless, I describe 1,294 (~10%) genes that show sex-biased splicing and

lack sex-biased transcription in the parent gene. This proportion is more than double

the frequency reported for adult Drosophila by Brown et al. (2014) but consistent with
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earlier Drosophila estimates from studies aiming at the specific detection of sex-biased

alternative splicing (Telonis-Scott et al., 2008; Hartmann et al., 2011). It is also worth

noting that Brown et al. (2014) measured transcript expression via RNAseq technologies

whereas both earlier Drosophila studies and this manuscript rely on microarrays. As such,

more molecular data from a range of methods is required in order to validate my findings

on the scope of sex-biased alternative splicing.

Despite the abundance of sex-biased transcripts, only one gene (Feminizer) shows

consistent sex-bias across all developmental stages and the majority of sex-bias is observed

in either pupal or adult stages. This pattern sets Nasonia apart from Drosophila, in which

50 to 60% of sex-biased genes retain their expression bias across all stages (Perry et al.,

2014), but is closer to estimates from vertebrates (Mank et al., 2010) and potentially in

accord with the pattern observed for caste-specific genes in ants (Ometto et al., 2011).

Sexual conflict solution via gene duplication is moderately supported by our analyses:

Differentially correlated clusters are the only clusters that show some enrichment for

duplicates and the result is confounded by the high negative correlation with enrichment

for alternative splicing. As such, I cannot currently determine whether this higher

proportion of duplicates has arisen from duplication and subfunctionalization of conflicting

genes or as a by-product of their lack of single-copy spliced genes.

3.5.2. Sex-biased Linkage Groups

I find three main genomic regions enriched in sex-biased genes, one of which contains

the Nasonioa ortholog to the key Drosophila sex-determiner sex-lethal (Gempe and Beye,

2011). A possible causal explanation of genomic co-localization is that short genetic

distance will lower chances of recombination between each gene. As such, co-localization

allows reliable co-inheritance of different genes and enables them to evolve as a single

supergene (Thompson and Jiggins, 2014). The concept of supergene has already been

invoked to explain genomic clustering of several traits which provide fitness advantages

only when co-expressed (Joron et al., 2011; Kunte et al., 2014). The selective advantage of
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co-inheritance is also considered to promote the formation of sex chromosomes via linkage

of sex-biased genes to the sex-determining locus (Charlesworth and Mank, 2010).

It would be tempting to attribute the female-bias enrichment of the linkage group

containing Nasonia’s sex-lethal to the formation of a pseudo sex-chromosome. On the

other hand, I detect significant transcriptional sex-bias for Nasonia’s sex-lethal only in

the adult stage, and its only detected isoform shows male-bias in the pupal stage. These

findings are in accordance with current literature, which does not report a role for Nasonia’s

sex-lethal. The clustering of female-biased genes around sex-lethal is thus unlikely to be

due to the formation of a pseudo-sexual chromosome. Conversely, modeling studies predict

that genomic clustering of genes involved in local adaptations may provide a substantial

fitness advantage in populations that experience heterogeneous spatial environments

(Yeaman, 2013). This scenario would be congruent with Nasonia’s ecology, which is

characterized by patchy environments with widely varying local optima for sex-ratios

(Werren, 1980). Robust modelling of the interplay between sex-biased linkage, haplodiploid

genetics, sex-biased dispersal and skewed sex-ratios is necessary in order to assess the

biological significance of this linkage group.

Non-adaptive explanations for clustering of co-expressed genes are also possible. In

particular, co-expression of closely related genes may be arising only as a side effect of

tandem duplication, which can generate a large number of closely located genes which may

share expression pattern because of identity by descent. This scenario should be relatively

easy to identify by checking whether the sex-biased genes in the region are paralogs. This

seems to be the case for the male-biased linkage group 4.1, in which a series of tandem

duplications for male-biased “venom allergen” proteins (orthologous group EOG8W9MM2)

is present.

3.5.3. Heterochrony in Gametogenesis Drives Developmental Sex-Bias Shifts

Shifts between male and female bias in different developmental stages are observed only in

3 clusters, suggesting that developmental sexual conflict might be a prominent constraint
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of sex-biased gene expression. The only 3 clusters that show sex-bias changes total 324

genes (1.1% of the whole network) and all three shift from male bias in pupae to female

bias in adults. By comparison, Drosophila studies report sex-bias changes in 4.9% of

autosomal genes and 2.9% of X-linked genes, with a stronger propensity to shift between

female to male bias (Perry et al., 2014).

I find three possible reasons for the sex-bias shifts in these three clusters. First, the

increase of female expression in adults could be due to the greater proportional mass of

gonads present in adult females compared to males. Since RNA extractions were performed

on whole animals, this could lead to increased tissue representation in females rather than

males and consequent overestimation of gonadal gene expression in females. Results from

differential correlation analyses show male correlation bias in four clusters that appear

to be over-expressed in females. Characterization of these clusters reveals enrichment in

testes-related processes, leading me to believe that, at least in these cases, tissue bias in

adults is sufficiently strong to reverse measured gene expression bias. If correct, these

findings would require a conservative reinterpretation of adult sex-bias estimates and

prompt their validation via tissue-specific transcriptomic analyses. To date, only one study

separated gonads from carcassess in males and females before sequencing (Tennessen et al.,

2014). While their findings are similar to those obtained by whole organism sequencing in

Wang et al. (2015) the study focused on genes with at least 100 fold expression differences:

an amount of sex-bias most likely sufficient to overcome tissue bias.

A second possibility is that these shifts in sex-bias direction may be attributed to an

adaptive heterochronic shift in Nasonia’s gametogenesis. Nasonia spermatogenesis peaks

during pupation while its oogenesis occurs primarily during the adult stage (Whiting,

1968). It follows that genes involved in gametogenesis will be under selection for earlier

peak expression in males than females. This scenario would lead to developmental genomic

conflict on the timing of gametogenesis-related genes but not on their function, since

they are likely to be involved in the same process (gametogenesis) in both sexes, albeit in

different developmental stages. As such, I would expect rapid evolution of their regulation,
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but little if any impact on their protein evolutionary rates.

A third possibility is that these clusters may indeed be subject to developmental sexual

conflict by being involved in different sex-specific processes at different developmental

times. Such patterns have been reported in the silkworm Bombyx mori (Zhao et al.,

2011) and Drosophila melanogaster (Perry et al., 2014), although in both cases the shift

observed is from female to male bias. Female to male bias shifts are present in the Nasonia

developmental transcriptome and comprise a significant proportion of pre-pupal bias when

testing transcripts individually but do not form coexpressed clusters. Finally, I point out

that transcripts with pre-pupal sex-bias are significantly more prone to shifts in sex-bias

direction, suggesting that early developmental stages may possess greater flexibility in

their gene regulation.

3.5.4. Sex-Bias in Early Development

I identified several cryptic early regulatory events using complementary analyses based

on both differential expression and correlation. Embryonic stages in particular show

little differentiation between sexes when relying exclusively on differential expression, but

reveal several hidden co-regulatory events when analyzed using differential correlation

methods. For instance, only one cluster comprising 79 genes is differentially expressed

in early female embryos, compared to three differentially correlated clusters containing

a total of 373 genes. Differential cluster expression identifies 156 male-biased genes in

late embryos, whereas differential cluster integration reveals 661 male-biased genes. This

suggests that small proportional changes in the expression of multiple transcripts may play

a previously unrecognized role in early sexual differentiation. Intriguingly, two clusters

with early sex-biased correlation show male-biased expression in adults and varying degrees

of testicular enrichment. More detailed analysis of the genes included in these clusters

reveals a clear enrichment for putative male fertility factors as well as developmental

regulators.

Histone and histone-modification enzymes are enriched and occupy hub positions in the
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only early embryonic cluster that shows sex-bias according to both our measures. While

overexpression of histones in diploid females is expected due to the higher amount of DNA

in their cells, the female-specific increase in correlation suggests that histones and their

modification enzymes may be involved in sex-specific interactions in early embryogenesis.

This result is especially interesting in light of the ongoing debate on Nasonia’s sex-

determination mechanism. While there is now consensus on the need for a silencing

mechanism of maternal Feminizer expression (Verhulst et al., 2010a, 2013), investigations

to identify which mechanism is involved have so far been inconclusive. Several recent

papers aimed at investigating the role of DNA methylation have shown that genes subject

to DNA methylation show less variation across evolutionary and developmental space (Park

et al., 2011; Wang et al., 2013) and there is very limited evidence for sex-biased differential

methylation in adults (Wang et al., 2015). Our study reinforces a lack of support on DNA

methylation as a mechanism for sex-biased genome imprinting, supporting the modification

of specific histones as a possible alternative. Since the genome copy carried by sperm is

bound by sperm-specific protamines (Tennessen et al., 2014) rather than histones, such a

mechanism would provide a robust means of erasing only paternal imprinting without the

need for divergent histone markings in adults. Histone-mediated wasp-specific control of

sex-determination would also be consistent with the findings in section §1, which identify

histone genes as a primary target of lineage-specific gene family expansions in the wasp

clade and potentially with those of Xiao et al. (2013), which find a consistent enrichment

of histone-related GO terms in genes specific to the fig wasp Ceratosolen solmsi compared

to an older and significantly less complete version of the Nasonia gene set.

3.5.5. Network Structure of Sex-Biased Clusters

Sex-biased clusters show high proportions of wasp-specific genes (figure 14); which occupy

different positions within their networks (table 11). In differentially correlated clusters,

Nasonia-specific genes are highly connected but have low hub scores. This result is

consistent with my hypothesis that dense clusters would be more constrained in the
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evolution of new regulators due to pre-existing regulatory overlap between their members.

New genes would thus be likely to correlate strongly with several genes rather than forming

specific interactions. The high density of differentially correlated clusters would also

impede the rise of internal regulators since each pair of nodes is more likely to be already

connected than in a sparse network, reducing the need and impact of novel co-ordinators.

Differentially expressed clusters are more hierarchically organized, as measured by

their lower density and higher centralization. One of my initial hypotheses is that both

sparsity and hierarchy may facilitate the emergence of new regulators. Nasonia-stratum

genes in differentially expressed clusters are sparsely connected and show the highest

hub-scores. Their preferential position between groups of not otherwise connected nodes is

characteristic of gene regulators and reveals a propensity of differentially expressed clusters

to incorporate new genes in control positions. While a sparser network would increase the

odds of a new node to become a regulator, the prevalence of Nasonia-stratum nodes in

hub positions remains surprising when compared to that of equally sparse non sex-biased

clusters, which are instead occupied by nodes from the Arthropoda and Insecta strata.

As the closest available genomes for phylostratigraphic comparisons belong to either

bees or ants, Nasonia-stratum genes could have arisen at any point after the split between

wasps and the other hymenopteran lineages (~180 Mya, Werren et al., 2010; Misof et al.,

2014). The method of phylostratigraphic dating has also been shown to be prone to bias

(Moyers and Zhang, 2014), particularly when attempting to detect deep matches for short

or rapidly evolving genes whose sequence similarity rapidly degenerates below homology

criteria. Considering that sex-biased genes have indeed often been observed to have higher

evolutionary rates (Wang et al., 2015) it is likely that a portion of Nasonia-stratum genes

will be consisting of rapidly diverging genes from older strata.

Depending on the extent of phylostratigraphic bias, I can interpret these findings in two

ways. Either new genes are indeed more readily integrated in key regulatory positions

within differentially expressed networks (low phylostratigraphic bias scenario) or genes

in key positions in differentially expressed networks in the Nasonia clade have rapidly
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mutated beyond homology criteria (high phylostratigraphic bias scenario). Both scenarios

imply that genes in sex-biased clusters show significant evolutionary differences compared

to non-biased ones, and that those differences are closely related to the genes’ positions

within the regulatory network. Rapid integration of novel genes into regulatory positions

of sex-specific networks has already been documented multiple times in Drosophila for

mechanisms as diverse as male fertility (Ding et al., 2010; Chen et al., 2012) and courtship

specificity (Dai et al., 2008), whereas over 75% of the caste-biased genes in the wasp

Polistes canadensis lack homology outside of the species (Ferreira et al., 2013).

The pattern of rapid acquisition I observe in differentially expressed clusters in particular

is consistent with Developmental Systems Drift (DSD, True and Haag, 2001; Haag, 2014),

an evolutionary model which allows for the change of the underlying regulatory pathways

via stochastic drift while conserving the final result through the repeated emergence

and loss of redundant regulators. A similar pattern is already observed for the primary

regulators of sex-determinations across Insecta and Hymenoptera (Verhulst et al., 2010b;

Koch et al., 2014) and could be indicative of a general feature of sexual development. With

rapid rates of molecular evolution and a strong constraint for retaining two functional

phenotypes, sexually dimorphic development might indeed be the optimal scenario for the

prevalence of DSD.

3.6. Conclusions

The characterization of Nasonia’s sexual development offers a powerful tool for future

inquiries in insect biology and reveals numerous interesting properties about the evolution

of sexual dimorphism in this haplodiploid species. I provide for the first time a detailed

comparison of the interplay between transcription and splicing over Nasonia’s sexual

development, assessing the prevalence of transcription and noting instances of splicing

which are most likely to mediate sexual conflict. My analyses of early developmental

expression reveal that differentially correlated sets of transcripts could play a previously

unrecognized role in the onset of sexual differentiation and possibly sex-determination
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itself. Despite the lack of genetic sex-determination, I find at least three genomic regions

enriched in sex-biased clusters, one of which includes homologs of key sex-determinants.

Several scenarios could explain their presence, spanning from selective advantage of their

co-inheritance to non-adaptive linkage hitchhiking. Discriminating between these options

will require modelling that integrates knowledge about Nasonia’s genome with its ecology

and taxonomy.

Compared with other species, Nasonia’s sex-bias is strongly developmentally restricted,

with few transcripts showing sex-bias in multiple stages. While I observe several cases of

male to female bias transitions between stages, they remain mostly confined to meiosis-

related genes or contrasts between pre and post-pupation stages. The recurrence of sex-bias

in the same direction in the majority of transcripts supports strong constraint as the same

gene will tend towards the same sex-bias direction across different stages. The prevalence

of stage-specific sex-bias and the fact that transcript which shift in sexd-bias direction do

so during pupation underscores the importance of treating different life-stages as factors

of interest in order to correctly understand gene expression evolution.

Finally, my characterization of two main classes of sex-biased clusters via network

analyses better understanding of the role of fast and novel genes within co-regulated

clusters. While all sex-biased clusters showed enrichment for novel genes, I find that

they occupy fundamentally different positions in their networks, acting as potential

regulators only in differentially expressed clusters. This finding provides a first empirical

confirmation for hypotheses on how sparsity and hierarchy can facilitate the rapid evolution

of regulatory structures, but should be critically re-examined to determine whether this

effect is general or rather restricted to specific conditions. Comparative studies on the

evolution of pseudoparasitism in wasps would be especially useful, as this ecological shift

is also known to involve rapid genomic restructuring and may explain a sizeable portion of

its lineage-specific genes and possibly interact with sex-biased development.

Nevertheless, the observation that novel genes can be incorporated into pivotal regulatory

positions in sex-biased clusters poses a critique to the evo-devo assumption that regulators
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are conserved over time, supporting instead the model of phenotypic stasis and regulatory

reshaping that characterizes developmental system drift.
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4. General Conclusions

In this thesis, I develop and apply tools for the study of sexual dimorphism in the

development Nasonia vitripennis. My investigation provides different contributions to

different communities. In the case of Nasonia and Hymenoptera biology, I provide a

previously missing characterization of developmental expression patterns in general and

sex-bias pattern in the specific. In the case of sex-bias and sexual conflict studies, I provide

a detailed analysis of the different means by which an organism without sex chromosomes

induces sexual dimorphism and compare them to the literature on models with genetic

sex-determination. In the case of Systems Biology, I provide a proof of concept set of

analyses that demonstrate the power of explicitly integrating evolutionary thinking in

investigations.

In chapter one, I assess the quality of an improved gene set and employ it to detect

genome evolution’s peculiarities in the wasp branch of the tree of life. The results from

phylogenetic expansion analyses in particular are consistent with my findings in chapter

three, where I identify a function of the Nasonia-specific histone genes in early sexual

differentiation and possibly sex-determination. Intriguingly, the histone genes involved in

early sex-biased expression patterns are not the same identified by Nasonia-specific family

expansions or faster evolution along the wasp branch. While their sequence homology is

sufficient to place them firmly among histones, they all appear to have either arisen after

the split from the nearest species or mutated rapidly enough to fall outside of orthology

assignment criteria, further adding interest to the functions of this protein family in wasps.

In chapter two, I design a simple algorithm for the detection of novel splice events based

on experimental data. Developing this algorithm was necessary for several reasons. The

dataset used in chapter three had been generated using microarrays: a platform capable of

producing large amounts of data for competitive costs but whose data analyses methods

are mainly gene-based rather than splicing-oriented. As my interest lies in comparing

the role of both splicing and transcription in polyphenisms, development of a specific

pipeline able to detect experiment-specific events and disentangle the two types of signal
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was necessary. Although the use of the FESTA algorithm as a stand-alone method for

transcript annotation would be inadvisable, data-based estimation of novel alternative

splicing events is crucial in any experiment which previously undescribed transcripts may

be generated; as relying on previously published data may cause false negatives. When

paired with stringent downstream quality control and further testing for involvement in the

biological process of interest, the FESTA algorithm enabled me to detect that splicing plays

a rather minor component in Nasonia’s sexual development. More importantly, the use of

splicing ratios allowed me to represent potential splice events as statistically independent

from parent gene expression, enabling the construction of a hybrid transcription and

splicing network in chapter three and consequently the analysis of both processes and

their interactions’ role in sexual development.

In chapter three, I employ the methods developed in the rest of this thesis to tackle

the unanswered questions posed by sexual dimorphism via network analyses of Nasonia’s

developmental transcriptome. Alongside the methods already mentioned, I also developed

and implemented a permutation-based algorithm to detect sex-biased changes in correla-

tions among genes, based on the assumption that novel functions can be exerted not only

through the expression of different genes, but also by establishing specific interactions and

combinations among transcripts. The results of differential correlation and differential

expression analyses are mostly convergent, yet I find that differential correlation can

complement differential expression as it appears to be less sensitive to tissue bias and more

powerful in detecting small coordinated changes in groups of transcripts. Through the

joint application of differential expression and correlation at the cluster level, I distinguish

between two categories of sex-biased clusters, each with specific topological properties.

Differentially coexpressed clusters appear to be small, dense and democratic. Differentially

expressed clusters are instead sparser and more hierarchical. Both classes of sex-biased

clusters show preferential integration of novel genes compared to non sex-biased clusters,

but each incorporates them in different positions in their networks. New genes in differen-

tially correlated clusters occupy lower-level positions, with several connections but low hub
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potential, consistent with a large overlap in the regulation of cluster members. New genes

in differentially expressed clusters on the other hand show the highest regulatory potential

of all gene ages, suggesting highly selective regulatory interactions in which the regulators

can either be efficiently replaced by younger genes with similar regulatory potential or

rapidly evolve as long as their regulatory effect remains unchanged.

The final picture of sex-bias and sexual conflict in Nasonia is, perhaps unsurprisingly, one

of novelty and rapid evolution. The intersection of sexual dimorphism with haplodiploid

genetics and the absence of sex chromosomes places an intense selective pressure on

loci involved in the differentiation between sexes without the “safe havens” provided

by non-recombining sex-specific genomic regions or recessive loci. Fast and novel gene

families are all overrepresented among sex-biased clusters. When looking at the whole

of Nasonia’s development I was also able to discover that most transcriptional sex-bias

is highly restricted to specific developmental stages. Developmental sex-bias restriction

could conceivably play a role in rapid evolution, as developmentally restricted genes tend

to evolve faster due to lower pleiotropic constraints. Given the incremental nature of

development, transient sex-bias may be pivotal also in generating large-scale dimorphism by

causing alterations in the starting conditions which propagate throughout morphogenesis

long after the initial triggers have disappeared. Both of these factors would be missed

if we focused exclusively on adult expression. Finally, the prevalence of novel genes in

regulatory positions of sex-biased networks demonstrates how network and evolutionary

biology can work in tandem to reveal how the molecular mechanisms that give rise to

alternative phenotypes can arise across phylogenies.
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A.1. Additional Figures and Tables

Table 8: Histone genes present in OGS2.0 annotated with presence or absence of lineage-
specific expansions. NA entries were not assigned to orthologous groups at the
level of Hymenoptera.

Name ODB6 OG ID Expanded?

histone deacetylase 3 (92%a) EOG6N8PM3 No

histone-lysine N-methyltransferase SETDB1 (65%a) EOG6BRV1R No

histone acetyltransferase Tip60 (83%a) EOG6H44K2 No

jmjC domain-containing Histone demethylation protein 3B (66%A) EOG669P90 No

Histone-lysine N-methyltransferase NSD2 (45%A) EOG60GB5Q No

Histone acetyltransferase MYST4 (66%U) EOG63N5W3 No

Histone-lysine N-methyltransferase. H3 lysine-79 specific (60%U) EOG612JM9 No

nucleosomal Histone kinase 1 (49%A) EOG6H18B6 No

jmjC domain-containing Histone demethylation protein (63%A) EOG69CNPT No

Histone deacetylase complex subunit SAP130 (49%U) EOG644J2T No

Histone-lysine N-methyltransferase. H3 lysine-9 specific 5 (Fragment) (55%U) EOG6WSTRM No

Histone-lysine N-methyltransferase PR-set7 (63%A) EOG6H9W32 Yes

Histone-lysine N-methyltransferase PR-set7 (56%A) EOG6H9W32 Yes

Non-histone protein 10 (79%U) EOG65X6CB No

Histone-lysine N-methyltransferase NSD2 (45%A) NA NA

Histone deacetylase 4 (79%U) EOG64QRGN No

jmjC domain-containing histone demethylation protein 1. putative (69%a) EOG6KSN0T No

histone chaperone asf1 (88%a) EOG64TMRB No

Histone RNA hairpin-binding protein (57%A) EOG625491 No

histone acetyltransferase type B catalytic subunit. putative (70%a) EOG69ZW4X No

Histone-lysine N-methyltransferase. H4 lysine-20 specific. putative (19%U) NA NA

set1/Ash2 histone methyltransferase complex subunit ASH2 (77%a) EOG66DJHV No

JmjC domain-containing histone demethylation protein 1D (60%U) EOG6NK99J No

Histone demethylase UTX (92%U) EOG6D51FJ Yes

Histone demethylase UTX (94%U) EOG6D51FJ Yes

Histone-lysine N-methyltransferase Suv4-20 (56%A) EOG64MW6W No

histone acetyltransferase MYST1. putative (80%a) EOG65QFV4 No

Histone-lysine N-methyltransferase SETMAR (46%A) EOG61894T No

Histone demethylase JARID1A (73%U) EOG6X69Q3 No

jmjC domain-containing Histone demethylation protein 2B (50%A) EOG62JM67 No

jmjC domain-containing Histone demethylation protein 2C (81%A) EOG64J10T No

Histone-lysine N-methyltransferase SUV39H2 (46%A) EOG663XT6 No

histone-binding protein Caf1. putative (99%a) EOG6RBP0X No

histone deacetylase Rpd3 (87%a) EOG6N2Z47 No

histone deacetylase complex subunit SAP18. putative (81%a) EOG6BZKK4 No

lysine-specific Histone demethylase 1A (77%A) EOG61C5C8 No
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Table 8: Histone genes present in OGS2.0 annotated with presence or absence of lineage-
specific expansions. NA entries were not assigned to orthologous groups at the
level of Hymenoptera.

Name ODB6 OG ID Expanded?

lysine-specific histone demethylase 1A (83%a) EOG6905R9 No

Histone-lysine N-methyltransferase pr-set7 (Fragment) (23%U) NA NA

Histone deacetylase (51%A) EOG6DJHBF No

Histone-lysine N-methyltransferase Suv4-20 (52%A) NA NA

histone-arginine methyltransferase CARMER. putative (89%a) EOG68SF85 Yes

histone-lysine N-methyltransferase E(z) (84%a) EOG6BZKHM No

histone-arginine methyltransferase CARMER. putative (87%a) EOG68SF85 Yes

Histone-lysine N-methyltransferase Suv4-20 (52%A) NA NA

sin3 histone deacetylase corepressor complex component SDS3. putative (84%a) EOG6VX0NM No

Histone-lysine N-methyltransferase SETD1B (Fragment) (57%U) EOG6F7M0V Yes
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Paralog locus consensus Inparalogs Uniquepar
Count of paralog families (first locus) 874 441
Paralogs on different scaffold 1,795 686
Paralogs >10kb distant on same scaffold 64 15
Paralogs <10kb, same orientation, non overlap 119 70
Paralogs <10kb, reversed orientation 27 23
Gene spans overlap (CDS overlap uncertain) 19 8

Table 9: Consensus in the location of the OGS2 gene set on the genome assem-
blies of sibling species Nasonia longicornis and N. giraulti, including
recent, high identity paralogs. Almost all OGS2 genes are located on 2 sibling
species draft assemblies Werren et al. (2010), using GMAP Wu and Watanabe
(2005) transcript mapping. Paralog locus consensus patterns are tabulated for
inparalogs (sharing orthology to other species) and uniquepar (lacking strong
homology to other species). Of the total paralog families, each with several genes,
most paralogs are on different scaffolds for all species. The counts of tandem
paralogs with different separations are indicated.

Gene set
Average

homology bitscore

Protein size deviation from

median

Percent shorter than 2 SD

from median

Nasonia OGS2 727.6 -7.70 3.2
Nasonia NCBI 722.3 -7.80 2.7
Nasonia OGS1.2 683.5 -12.7 4.0
Apis 733.9 -0.30 2.4
Harpegnathos 694.3 -30.0 7.3
Tribolium 552.0 -26.1 4.5
Drosophila 508.7 54.5 1.3

Table 10: Gene set quality measurements. Including deviation of protein size from
the group median, and maximal bit score per species in pairwise comparisons
within the arthropod orthology groups. The bit score measures both gene model
artefacts of alternative gene sets within species and evolutionary divergence.
Protein sizes may be more evolutionarily conserved, and may detect artefacts
across and within species. See materials and methods for details on how each
score is generated.
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Figure 16: Log counts of methylated and unmethylated genes in different classes
of expression support.
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Heterogeneity 0.51
(0.39,0.61)
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−0.11
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−0.01
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Figure 17: Correlations between different cluster parameters in the Nasonia
developmental network
Yellow squares in the bottom left corner indicate positive correlations, blue
ones negative. Lighter shades are more significant than darker ones. Numbers
at the top right corner indicate the Pearson correlation score with confidence
intervals in parentheses.
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Factor Estimate RI
DE -7.30 0.97
DI 0.26 1.00
nNodes 0.14 1.00
Hymenoptera -4.25 1.00
Insecta -4.96 1.00
Arthropoda -7.89 1.00
Metazoa 0.68 1.00
DE:Hymenoptera 3.38 0.95
DE:Insecta 6.85 0.95
DE:Arthropoda 10.31 0.95
DE:Metazoa 7.72 0.95
DI:Hymenoptera -2.29 0.91
DI:Insecta -4.31 0.91
DI:Arthropoda -2.83 0.91
DI:Metazoa -7.31 0.91

(a)

Factor Estimate RI
DE 0.197 1.00
DI 0.167 1.00
nNodes -0.003 1.00
Hymenoptera 0.172 1.00
Insecta 0.226 1.00
Arthropoda 0.339 1.00
Metazoa 0.022 1.00
DE:Hymenoptera -0.122 1.00
DE:Insecta -0.256 1.00
DE:Arthropoda -0.416 1.00
DE:Metazoa -0.259 1.00
DI:Hymenoptera 0.021 0.23
DI:Insecta 0.046 0.23
DI:Arthropoda 0.024 0.23
DI:Metazoa 0.051 0.23

(b)

Table 11: Predictors of Connection Density (11a) and Hub Scores (11b) with
Model-Averaged Effect Sizes and Relative Importances, or probability that the
factor in question is included in the best model. Stratum coefficients are relative
to the Nasonia stratum. See section 3.3.9 for details.

• Additional File 1: Model selection table for models comprising different combinations

of factors with a putative role in characterizing genes with and without annotated

isoforms.

• Additional File 2: OrthoDB6 BUSCO (Benchmarking Universal Single Copy Or-

thologs) genes present in multiple copies in OGS2

• Additional File 3: OGS2 genes whose ortholog groups are characterized by lineage-

specific expansions or contractions.

• Additional File 4: Protein evolutionary distances of OGS2.0 genes compared to

ant and bee lineages, residuals distances after model fitting and fast/slow evolving

categorization at the 5th and 20th quantile threshold.

• Additional File 5: Protein alignment of the OG EOG6R4ZDK (hymenopteran histone

H3). Clipped to include only residues shared between all genes.
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• Additional File 6: Genes with more than 10 isoforms present in OGS2

• Additional File 7: Script containing the functions used in the FESTA algorithm

• Additional File 8: Complete annotation of each transcript in the Nasonia develop-

mental transcriptome network

• Additional File 9: Complete annotation of each cluster in the Nasonia developmental

transcriptome network
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A.1.1. Code for the FESTA algorithm

Listing 1: Code for the two main function of the FESTA algorithm
## FESTA algor i thm
# Load requ i r ed packages and u t i l i t y f unc t i on s
r e qu i r e (amap)
r equ i r e ( p ly r )

##### Sp l i c i n g de t e c t i on
##### Cluste r genes accord ing to r e c i p r o c a l c o r r e l a t i o n s , then i t e r a t i v e l y cut t r e e ( bottom up) un t i l

one c l u s t e r i s the most expressed or t i e d f o r expre s s i on ac ro s s a l l samples . Uses h c l u s t e r from
amap package f o r c l u s t e r i n g

## Required input data :
## data . f rame with one row per exon and one column per sample , p lus
## " geneID " column with unique gene i d e n t i f i e r
## " exonID " column with unique exon i d e n t i f i e r

# Example data
# geneID <− paste ( " gene " , 100 : 500 , sep = " " )
# exonID <− paste (merge ( geneID , c ( 1 : 1 0 ) ) [ , 1 ] , merge ( geneID , c ( 1 : 1 0 ) ) [ , 2 ] , sep = " exon " )
# exprData <− matrix ( log2 ( rbinom (n = 4010∗10 , s i z e = 1000 , prob = .3 ) ) , nco l = 10)
# exampleData <− data . f rame ( geneID = geneID ,
# exonID = exonID ,
# Evalue = exprData )

## Parameter d e s c r i p t i o n
## except i ons :
## s i gnD i g i t s : number o f d i g i t s rounded from expre s s i on s c o r e s f o r ranking c a l c u l a t i o n s
## distMethod : d i s t ance metr ic used by the c l u s t e r i n g a lgor i thm ( de f au l t : c o r r e l a t i o n ) , s ee func t i on

h c l u s t e r from package amap f o r more in format ion
## l i nk : agglomerat ion method used by the c l u s t e r i n g algor i thm ( de f au l t : complete ) , s ee func t i on

h c l u s t e r from package amap f o r more in format ion
## nbproc : number o f subprocess f o r p a r a l l e l i z a t i o n ( d e f au l t : 1) , s ee func t i on h c l u s t e r from package

amap f o r more in format ion

ClusterExons <− f unc t i on ( data = NULL, except i ons = c e i l i n g (x = ( nco l ( data )−2)∗ . 1 ) , s i g nD i g i t s = 3 ,
distMethod = " c o r r e l a t i o n " , l i n k = " complete " , nbproc = 1) {

r equ i r e (amap)
r equ i r e ( p ly r )
ExonAssTable <− l i s t ( )
except i ons <− except i ons / ( nco l ( data )−2)
row.names ( data ) <− data$exonID
f o r ( gID in unique ( data$geneID ) ){

Evalues<−data [ which ( data$geneID%in%gID) ,−grep ( pattern = " ID" , x = names ( data ) ) ]
i f ( nrow ( Evalues )<2) {

ExonAssTable [ [ gID ] ]<−a s .da ta . f r ame ( matrix ( row.names ( Evalues ) , nco l = 1) )
names ( ExonAssTable [ [ gID ] ] )<−" exonID "
ExonAssTable [ [ gID ] ] $ sp l i c i ng_cat ego ry<−" s ingle_expressed_exon "
ExonAssTable [ [ gID ] ] $ c l u s t e r s<−0
ExonAssTable [ [ gID ] ] $ c l u s t e r r ank s<−1
ExonAssTable [ [ gID ] ]<−ExonAssTable [ [ gID ] ] [ c ( " c l u s t e r s " , " exonID " , " c l u s t e r r ank s " , "

sp l i c i ng_cat ego ry " ) ]
} e l s e {

t r e e<−hc l u s t e r ( Evalues , method = distMethod , l i n k = l ink , nbproc = nbproc )
# eva luate r e l a t i v e t imes i t i s ranked as f i r s t

f o r ( t rans in nrow ( Evalues ) : 1 ) {
Evalues $ c l u s t e r s<−cut r ee ( tree , k = trans )
c l u s t e r r ank s<−ddply ( Evalues , . ( c l u s t e r s ) , c o lw i s e (median ) )
i f ( nrow ( c l u s t e r r ank s )==1){ # there are no subranking i so f o rms

ExonAssTable [ [ gID ] ]<−a s .da ta . f r ame ( matrix ( row.names ( Evalues ) , nco l = 1) )
names ( ExonAssTable [ [ gID ] ] )<−" exonID "
ExonAssTable [ [ gID ] ] $ c l u s t e r s<−0
ExonAssTable [ [ gID ] ] $ c l u s t e r r ank s<−1
ExonAssTable [ [ gID ] ] $ sp l i c i ng_cat ego ry<−" unsp l i c ed "
ExonAssTable [ [ gID ] ]<−ExonAssTable [ [ gID ] ] [ c ( " c l u s t e r s " , " exonID " , " c l u s t e r r ank s " , "

sp l i c i ng_cat ego ry " ) ]
break} e l s e {

c l u s t e r r ank s<−apply ( c l u s t e r r ank s [ ,−1 ] , 2 , f unc t i on (x ){
rank (−round(x , d i g i t s = s i gnD i g i t s ) ,
t i e s .method = "min " , n a . l a s t = T)
})

row.names ( c l u s t e r r ank s )<−unique ( Evalues $ c l u s t e r )
c l u s t e r r ank s<−apply ( c lu s t e r r anks , 1 , func t i on (x ){sum(x==1)/ nco l ( c l u s t e r r ank s ) })

# con t r o l that there i s only one exon group which c on s i s t e n t l y ranks 1 s t or
t i e d a l l ow ing f o r except i ons

i f (sum( ( c l u s t e r r ank s )>=(1−exceptions ) )==1) {
# cr ea t e tab l e with exon subc l u s t e r ass ignments

matchmaker<−Evalues [ , " c l u s t e r s " , drop=F]
# s t o r e subc l u s t e r ranks

c l u s t e r s<−a s .da ta . f r ame ( c l u s t e r r ank s )
# annotate subc l u s t e r ranks with subc l u s t e r IDs

c l u s t e r s $ c l u s t e r s<−c ( 1 : nrow ( c l u s t e r s ) )
# merge exon with subc l u s t e r ID and ranks

matchmaker<−j o i n (matchmaker , c l u s t e r s , by=" c l u s t e r s " , type=" l e f t " )
# add exon names

row.names (matchmaker )<−row.names ( Evalues )
matchmaker$exonID<−row.names (matchmaker )
ExonAssTable [ [ gID ] ]<−matchmaker
ExonAssTable [ [ gID ] ] $ sp l i c i ng_cat ego ry<−" s p l i c e d "
ExonAssTable [ [ gID ] ]<−ExonAssTable [ [ gID ] ] [ c ( " c l u s t e r s " , " exonID " , " c l u s t e r r ank s " , "

sp l i c i ng_cat ego ry " ) ]
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break} e l s e {next }}}
}

}

# th i s s tep causes problem in R below ve r s i on 2
ExonAssTable<−l dp ly ( ExonAssTable , rbind )
names ( ExonAssTable ) [ 1 ]<−" geneID "
# as s i gn c on s t i t u t i v e / s p e c i f i c s t a tu s
ExonAssTable$ c o n s t i t u t i v e<−i f e l s e ( ( ExonAssTable$ c lu s t e r r anks >=(1−exceptions ) ) , " c o n s t i t u t i v e " , "

f a c u l t a t i v e " )
# merge c l u s t e r ass ignments in to unique IDs with de s i gna t i on o f c o n s t i t u t i v e n e s s
ExonAssTable$ t ran s c r i p t ID<−a s . f a c t o r ( paste0 ( ExonAssTable$geneID , "_t" , ExonAssTable$ c l u s t e r s , i f e l s e (

ExonAssTable$ c o n s t i t u t i v e==" c on s t i t u t i v e " , "_con " , " _fac " ) , sep=" " ) )
# code ID va r i a b l e s as f a c t o r s
ExonAssTable$geneID <− a s . f a c t o r ( ExonAssTable$geneID )
ExonAssTable$ sp l i c i ng_cat ego ry <− a s . f a c t o r ( ExonAssTable$ sp l i c i ng_cat ego ry )
ExonAssTable$ c o n s t i t u t i v e <− a s . f a c t o r ( ExonAssTable$ c o n s t i t u t i v e )
ExonAssTable

}

##### Average expre s s i on va lues based on unique e igenexon IDs

## Required input data :
## data . f rame with one row per exon and one column per sample , p lus
## " geneID " column with unique gene i d e n t i f i e r
## " t rans c r i p t ID " column with unique exon i d e n t i f i e r as per as s i gned v ia ClusterExons
## " c on s t i t u t i v e " column i d e n t i f y i n g which t r a n s c r i p t s are from con s t i t u t i v e nodes as per as s i gned v ia

ClusterExons

## Parameter d e s c r i p t i o n :
## sp l i c i n gRa t i o s : L o g i c a l . I f FALSE, expr e s s i on from a l l e n t r i e s i s reported on the same s c a l e . I f

TRUE, expre s s i on from s p l i c i n g e n t r i e s i s normal ized by t h e i r gene ’ s c o n s t i t u t i v e expr e s s i on score
, genera t ing s p l i c i n g r a t i o s

## NAcorrection : L o g i c a l . Appl i cab le only i f s p l i c i n gRa t i o s i s TRUE. I f TRUE, s p l i c i n g r a t i o s h igher
than 1 are s e t to 1 and NA/NaN/ i n f i n i t y va lues to 0 . This accounts f o r exper imenta l e r r o r in
measurements.

AverageExons <− f unc t i on ( data = NULL, s p l i c i n gRa t i o s = F, NAcorrection = F){
i f ( s p l i c i n gRa t i o s == F) {

out <−ddply ( .data = data , . v a r i a b l e s = . ( t r an s c r ip t ID ) , numcolwise (median ) , na.rm = T)
out [ order ( out$ t ran s c r i p t ID ) , ]

} e l s e {
# s p l i t i n to c o n s t i t u t i v e s and f a c u l t a t i v e s
ConTranscr ipts <− data [ which ( data$ c on s t i t u t i v e==" c on s t i t u t i v e " ) , ]
FacTranscr ipts <− data [ which ( data$ c on s t i t u t i v e != " c on s t i t u t i v e " ) , ]
# average exon va lues within t r a n s c r i p t s
ConTranscr ipts <− ddply ( ConTranscripts , . v a r i a b l e s = . ( geneID , t r an s c r i p t ID ) , numcolwise (median ) ,
na.rm = T)
FacTranscr ipts <− ddply ( FacTranscr ipts , . v a r i a b l e s = . ( geneID , t r an s c r i p t ID ) , numcolwise (median ) ,
na.rm = T)
FacSp l i c ing <− apply ( FacTranscr ipts , 1 , f unc t i on (Fac ){

Spl <− as .numer ic (Fac [ −grep ( pattern = " ID" , x = names ( FacTranscr ipts ) ) ] )
Con <− ConTranscripts [ which (Fac [ " geneID "]==ConTranscripts $geneID ) ,−grep ( pattern = " ID" , x = names

( ConTranscripts ) ) ]
Spl /Con

})
FacSp l i c ing <− cbind ( FacTranscr ipts [ , c ( " geneID " , " t r an s c r ip t ID " ) ] , l dp ly ( FacSp l i c ing ) )
i f (NAcorr == T) {
# se t NA/NaN and i n f i n i t y s c o r e s to 0 , s e t s c o r e s g r ea t e r than 1 to 1
FacSp l i c ing [ , sapply ( FacSpl ic ing , i s . numer i c ) ]<−apply ( FacSp l i c ing [ , sapply ( FacSpl ic ing , i s . numer i c )

] , c (1 , 2 ) , f unc t i on (x ){
as .numer ic ( i f e l s e ( i s . n a (x ) , 0 , x ) )
})

FacSp l i c ing [ , sapply ( FacSpl ic ing , i s . numer i c ) ]<−apply ( FacSp l i c ing [ , sapply ( FacSpl ic ing , i s . numer i c )
] , c (1 , 2 ) , f unc t i on (x ){

as .numer ic ( i f e l s e (x>1, 1 , x ) )
})

}
out <− rbind ( ConTranscripts , FacSp l i c ing )
out [ order ( out$ t ran s c r i p t ID ) , ]

}
}
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Abstract

The parasitoid wasp Nasonia vitripennis is an emerging genetic model for functional analysis of DNA methylation. Here, we
characterize genome-wide methylation at a base-pair resolution, and compare these results to gene expression across five
developmental stages and to methylation patterns reported in other insects. An accurate assessment of DNA methylation
across the genome is accomplished using bisulfite sequencing of adult females from a highly inbred line. One-third of genes
show extensive methylation over the gene body, yet methylated DNA is not found in non-coding regions and rarely in
transposons. Methylated genes occur in small clusters across the genome. Methylation demarcates exon-intron boundaries,
with elevated levels over exons, primarily in the 59 regions of genes. It is also elevated near the sites of translational initiation
and termination, with reduced levels in 59 and 39 UTRs. Methylated genes have higher median expression levels and lower
expression variation across development stages than non-methylated genes. There is no difference in frequency of
differential splicing between methylated and non-methylated genes, and as yet no established role for methylation in
regulating alternative splicing in Nasonia. Phylogenetic comparisons indicate that many genes maintain methylation status
across long evolutionary time scales. Nasonia methylated genes are more likely to be conserved in insects, but even those
that are not conserved show broader expression across development than comparable non-methylated genes. Finally,
examination of duplicated genes shows that those paralogs that have lost methylation in the Nasonia lineage following
gene duplication evolve more rapidly, show decreased median expression levels, and increased specialization in expression
across development. Methylation of Nasonia genes signals constitutive transcription across developmental stages, whereas
non-methylated genes show more dynamic developmental expression patterns. We speculate that loss of methylation may
result in increased developmental specialization in evolution and acquisition of methylation may lead to broader
constitutive expression.
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Introduction

DNA methylation is an important epigenetic modification

found in many plants and animals [1–5]. In mammals, DNA

methylation is associated with important epigenetic processes

such as genomic imprinting [6], histone modifications and X

chromosome inactivation [7,8], and plays an important role in

brain development [9]. Clusters of CpG sites (CpG islands or

CGIs) are often found in the 59 regulatory regions including the

promoter regions in mammals [10,11]. Methylation at the

promoter will typically result in silencing of the gene [12]. The

promoters of transposable elements (TEs) are also often repressed

by DNA methylation [13]. Non-CpG methylation has been

observed in mammals, with high percentages in embryonic stem

cells [14].

DNA methylation is also widespread in invertebrates [4,15–26].

In contrast with mammals, methylation typically occurs over gene

bodies, and is correlated with elevated gene expression

[4,15,16,18,19,22,27], rather than gene inactivation. Consistent

with gene activation, several studies of invertebrate methylation

have reported that methylated genes tend to have ‘‘house-keeping

functions’’, whereas non-methylated genes are more tissue-specific

[18,28,29].

DNA methylation is not universal among invertebrates [30,31].

For example, the fruit fly Drosophila melanogaster lacks DNA

methylation in adults due to the loss of two of three DNA

methyltranferases (Dnmt1 and Dnmt3), and the reported DNA

methylation found in early embryonic stages [32,33] may be due

to bisulfite conversion artifacts [31]. Nevertheless, in insects a

combination of insect genome sequencing, identification of a full
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complement of DNMTs, and indirect or direct quantification of

methylation, has uncovered genome-wide methylation in many

species. A common indirect computational method for identifying

genome-wide methylation is gene specific depletion of expected

frequencies of CpG relative to observed (CpG O/E), which occurs

in methylated genes due to mutational biases of methylated C to T

[16]. This approach yielded evidence of genome-wide methylation

in a number of insects, including the honeybee Apis mellifera,

parasitoid wasp Nasonia vitripennis, pea aphid Acrythiosiphon pisum,

and others [16,26,34–36]. Direct methods that have been used to

quantify genome-wide methylation in insects include methylation

sensitive restriction enzymes [37] and methylated DNA immuno-

precipitation (MeDIP) [21]. However, to achieve single-base

resolution of methylation in the genome requires bisulfite

conversion coupled with high throughput sequencing, which has

so far only been reported for honeybee (Apis mellifera) [15,19],

silkworm (Bombyx mori) [15,22] and ants Camponotus floridanus,

Harpegnathos saltator [18] and Solenopsis invicta [38].

Most of the work on arthropod DNA methylation has focused

on the social insects (honeybees and ants) where alternative castes

drive an interest in developmental processes that modulate caste

determination [18,28,29]. Investigations in honeybee and ants

have suggested an association between alternate splicing and

methylation [18,39]. N. vitripennis is a non-social haplodiploid

parasitoid wasp with a well annotated reference genome

[34,40,41]. Prior studies have revealed DNA methylation in

Nasonia [20] and the presence of requisite DNA methyltransferases,

including three members of Dnmt1 [34]. Here, we report findings

of a whole-genome bisulfite sequencing (WGBS-seq) study that

provides base-pair resolution of the genome of Nasonia vitripennis, a

non-social Hymenopteran species [34,40,41]. The highly inbred

strain of Nasonia used here allows for precisely mapping of WGBS-

seq reads and CpG methylation calls to the genome without the

complications caused by SNP variation found within heterologous

DNA samples from variable strains or populations. We analyze

whole genome patterns of DNA methylation in N. vitripennis,

including the relationship between methylation, gene expression,

expression breadth, and gene length, clustering of methylated

CpG sites and methylated genes in the genome, patterns of

methylation among transposons, non-CpG methylation, methy-

lome comparisons with Apis, and changes in gene expression

correlated with changes in methylation among paralogs in the

Nasonia lineage. The Nasonia methylome helps to shed light on the

function(s) and evolution of DNA methylation in insects.

Results

A. Base-pair resolution profile of CpG DNA methylation in
Nasonia vitripennis

To profile the Nasonia methylome, we performed Illumina

whole-genome bisulfite sequencing (WGBS-seq) in adult female

samples with 256haploid genome coverage (Figure S1) and 16.26
average CpG coverage (Figure S2). From the control lambda

DNA alignments, the bisulfite conversion efficiency was 99.7%

(Table S1), indicating highly efficient conversion. Additional

quality control metrics and procedures to assure the high quality

of this methylome are described in Materials and Methods.

Across the 8 million CpG sites in the Nasonia genome covered by

our data, the average percentage methylation is 1.45%, and 1.6%

of sites are defined as methylated CpG sites (mCpG) based on our

criteria of the site having at least 106 coverage and .10%

methylation (see Materials and Methods, Table 1 and Table S2).

The percentage of methylation is not uniform across mCpG sites –

those with 100% methylated sites are highly enriched, and the

distribution is biased toward highly methylated sites with .75%

methylation (Figure S3). In other words, CpG sites tend to either

be largely non-methylated or highly methylated. We established

that genome-wide bisulfite sequencing correctly identifies methyl-

ated and non-methylated CpGs by sequencing multiple clones

from bisulfite converted DNA from three randomly chosen

methylated genes and three non-methylated genes (Figures S4

S5, S6, S7, S8, S9 and Text S1).

Below we describe some of the striking patterns observed in the

methylome of Nasonia.

A.1. CpG methylation occurs on gene bodies and is

enriched in the 59 coding region. DNA methylation in Nasonia

predominantly occurs over gene bodies, and in particular over

exons (Figure 1). While only containing 10% of 14 million CpGs,

the annotated coding regions in Nasonia OGS2 (Official Gene Set

v2; see Evidential Genes for Nasonia vitripennis at http://arthropods.

eugenes.org/genes2/nasonia/) [42] are significantly enriched for

mCpGs (61.4%, P-value,2.2610216, Chi-squared test;

Figure 1A). Overall, 11.9% of CpGs located in exons are

methylated. By contrast, the intergenic (0.2%), intronic (0.7%)

and 1 kbp flanking regions of genes (1%) are depleted of

methylated CpGs (Figure 1A). mCpGs are also clustered in the

Nasonia genome, 78.5% of which are found in 5,440 clusters

(Table 1 and Text S2). 98.8% of mCpG clusters are in gene

regions (Table 1), which is consistent with gene body methylation.

Furthermore, among the 65 mCpG clusters in ‘‘intergenic’’

regions, we found detectable expression in adult female RNA-

seq data for 42 (Table S3). We therefore conclude that methylated

CpG islands in Nasonia occur almost exclusively within transcribed

genes.

To compare Nasonia mCpG clusters to mammalian-type CpG

islands, we ran predictions of CpG islands in the Nasonia genome

using the same criteria as in mammals [20] (see Materials and

Methods). Of 9,265 CpG islands, 36.8% occurred outside of gene

bodies and these were nearly universally not methylated (0.15%

mCpGs). Methylation also shows a clear pattern of being enriched

Author Summary

Insects use methylation to modulate genome function in a
different manner from vertebrates. Here, we quantified the
global methylation profile in a parasitic wasp species,
Nasonia vitripennis, a model with some advantages over
ant and honeybee for functional and genetic analyses of
methylation, such as short generation time, inbred lines,
and inter-fertile species. Using a highly inbred line
permitted us to precisely characterize DNA methylation,
which is compared to gene expression variation across
developmental stages, and contrasted to other insect
species. DNA methylation is almost exclusively on the
59-most 1 kbp coding exons, and ,1/3 of protein coding
genes are methylated. Methylated genes tend to occur in
small clusters in the genome. Unlike many organisms,
Nasonia leaves nearly all transposable element genes non-
methylated. Methylated genes exhibit more uniform
expression across developmental stages for both moder-
ately and highly expressed genes, suggesting that DNA
methylation is marking the genes for constitutive expres-
sion. Among pairs of differentially methylated duplicated
genes, the paralogs that lose DNA methylation after
duplication in the Nasonia lineage show lower expression
and greater specialization of expression. Finally, by
comparative analysis, we show that methylated genes
are more conserved at three different time scales during
evolution.

The Nasonia vitripennis Methylome
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at the beginning of genes (Figure 1C,F,G). Based on this pattern,

we define genes with .10% methylated CpGs in the first 1 kbp

coding region as methylated genes, and genes with #10%

methylated CpGs in the first 1 kpb as non-methylated genes (see

Materials and Methods). Methylation is largely absent in genes

defined as non-methylated (0.31% mCpGs) (Figure 1B–I). In

methylated genes, the highest levels of methylation occur in the 59

exons of genes classified as methylated, and decline toward the 39

region of the gene (Figure 1G–I). Exon methylation in methylated

genes peaks at exon 2 or 400–500 bp into the coding region

(Figure 1D–H); intron methylation was observed around the exon-

intron junctions and also peaks at intron 2 (Figure 1B,C,H). In N.

vitripennis, 26.7% of protein-coding genes are methylated among

the 17,726 genes for which we have sufficient coverage to score

methylation status. Excluding 1,540 expressed transposon genes,

4,739 (29.3%) of protein-coding gene are methylated. Our

genome-wide investigation also confirms an association between

the ratio of observed to expected CpG (CpG O/E) and DNA

methylation status, a pattern that was predicted earlier based on

bisulfite sequencing of 18 individual genes [20] (Figure S10 and

Text S3).

A.2. Transposons are rarely methylated. Among 17,726

annotated genes in OGS2 with adequate uniquely mapped read

coverage, 1,540 are expressed transposable element genes

(expressed TE genes). The TE genes were characterized in

OGS2 with detectable expression level in at least one develop-

mental stage [42]. In adult females, 99.8% of these TE genes are

non-methylated (Figure 1F). However, because many TEs occur in

multiple copies in the genome with insufficient divergence to be

uniquely mapped, we also quantified the DNA methylation

percentages in 839 repetitive TEs annotated in the Nasonia

genome paper [34] that were not covered by uniquely mapped

reads (see Materials and Methods). Among the 803 elements with

adequate WGBS-seq coverage, only five (GYPSY, SPRINGER,

SNAKEHEAD, IFAC and BLASTOPIA) have .5% methylation

averaging across CpG positions, and the top three are highly

expressed in adult female RNA-seq data (Table S4). Therefore, we

can conclude that TEs are rarely methylated and when they are, it

can be associated with activation rather than inactivation. This

finding contrasts sharply with methylation patterns in plants and

mammals, in which methylation of TEs is involved in transcription

suppression [13,43].

A.3. CpG methylation shows a strong exon/intron

pattern, and ‘‘marks’’ the beginning and end of protein-

coding regions. There is a strong exon/intron patterning to

methylation, with significantly heavier methylation levels occur-

ring over exons, and declining in adjacent introns (Figure 1H, I).

For example, there is significantly higher methylation in both the

leading (P-value,2.2610216, Wilcoxon Matched-Pairs Signed

Ranks Test - WMSRT) and trailing coding exons (P-val-

ue,2.2610216, WMSRT) relative to the intervening intron

between the first two 59 coding exons. The pattern persists even

as overall methylation level decreases toward the 39 regions of

genes (Figure 1H, I).

In addition, the protein-coding regions of methylated genes are

enriched for methylation relative to flanking untranslated regions

(UTRs) of the same genes. For methylated genes, only 3.0% of the

covered CpGs are methylated in the 59 UTRs (Figure 1B)

compared to 35.5% in the first coding exons (Figure 1D). Levels of

methylation increase following the start codon for protein-coding

genes, with significantly lower levels of mCpGs within 500 bp 59 of

the start codon (1336/26350 or 5.1% mCpGs) relative to 500 bp

39 of the start codon (30544/46513 or 65.7% mCpGs; (Figure 1G;

P-value,2.2610216, Chi-squared test). We are confident in the

UTR identifications for Nasonia OGS2 because they are based on

extensive RNA sequencing and tiling array data (see http://

arthropods.eugenes.org/genes2/nasonia/), and consistent with

our own adult RNA-seq data.

For smaller genes (e.g. with coding region ,1 kbp), the end of

the protein-coding region after the stop codon is also ‘‘marked’’ by

reduced methylation level (Figure 1H). Comparison of methylation

levels 100 bp before and 100 bp after the stop codon (with $4

covered CpGs) shows a significant decline in methylation level of

the 39UTR in genes with protein coding regions ,1 kbp (11.4%

mean before, 5.7% mean after, P-value = 0.003, WMSRT). The

same does not hold, however, for genes of greater length (1.6%

mean before, 1.6% mean after, P-value = 0.97, WMSRT). For

genes shorter than 1 kbp, the relative number of genes with higher

mCpG percentage before the stop codon is also significantly

greater than those with lower mCpG percentage (P-val-

ue = 4.261027, Chi-squared test), but this is not the case for

larger genes (P-value = 0.21, Chi-squared test). Implications of the

apparent tagging of the protein-coding exons and start codon from

methylated genes are explored in the Discussion.

Table 1. Summary of DNA methylation status for CpG islands and methylated CpG clusters.

CpG islands methylated CpG clusters Genome

Criteria 200 bp–10 kbp, GC% .50%, CpG O/E .0.6 mCpG/covered CpG .80%, average methylation%
.40%

-

Counts/Average length 9265/723 bp 5440/1.2 kbp -

Total length (% of genome) 6,701,356 (2.3%) 6,596,158 (2.2%) 295.1 Mbp

Total number of CpGs (% of genome) 609,994 (4.35%) 109,676 (0.78%) 14,024,488

CpG density (fold of genome average) 9.1% (1.90) 1.7% (0.35) 4.8%

Number of covered CpGs (% of genome) 139,484 (1.8%) 97,310 (1.2%) 7,818,889

Number of mCpGs (% of genome) 177 (0.15%) 91,803 (78.5%) 116,929

Methylation percentage (mCs/all CpG reads) 0.16% (4,405/2,814,740) 64.91% (2,205,276/3,397,307) 1.45%

In intergenic regions 3,412 (36.8%) 65 (1.20%) -

mCpG: methylated CpG sites; mC: methylated cytosines.
doi:10.1371/journal.pgen.1003872.t001
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A.4. Correlation of transcript length and methylation is

driven by 59 bias in methylation. In Nasonia, we initially

observed a significant negative correlation (Spearman’s rank

correlation coefficient r= 20.52, P-value,2610216) between

transcript length and the percentage of mCpGs in methylated

genes, when the entire transcribed region is used (Figure 2A).

However, the majority of DNA methylation is located in the first

1 kbp of the coding region (Figure 1E,G). When we examined the

relationship using one kbp 59 of coding regions (Figure 2A), the

correlation disappeared (Spearman’s r= 20.03 P-value.0.05).

Therefore, the correlation with gene length is a byproduct of the 59

bias to the distribution of methylation within genes.

A.5. Methylated genes are clustered in the Nasonia

genome. Tandem methylated genes (MM) and non-methylated

gene pairs (NN) are significantly over-represented compared to

MN and NM pairs (Figure S11A; P-value,2.2610216, Chi-

squared test), suggesting that methylated genes are clustered in the

genome. The average distance between MM gene pairs (4.8 kbp)

is much shorter than the expected distance under random

distribution of methylated genes, and the distance for NN gene

pairs is significantly longer (18.5 kbp) (Figure 2B; P-val-

ue,2.2610216, Mann-Whitney U Test). Moreover, consecutive

runs of methylated genes (1M, 2M, 3M, etc.), are longer than

expected by chance (Figure 2C; P-value,2.2610216, Chi-squared

test), with a mean cluster size of 2.48. Neighboring genes within

distances ,1 kbp and coding on opposite strands (i.e., in head-

head and tail-tail formations) are enriched among methylated

genes, and head-head formations comprise the highest fraction of

methylation gene pairs (Figure S11B). This observed pattern of

neighboring genes significantly sharing their methylation status

(MM or NN) suggests potential co-regulation of methylation

(Figure S11B). In conclusion, methylated genes tend to occur in

small clusters within the genome.

A.6. The Nasonia genome lacks non-CpG DNA

methylation. Non-CpG DNA methylation is rarely observed

in the Nasonia genome; only 0.18% of Cs among the 60 million

non-CpG positions with adequate read-depth are methylated

(Table S5, Figure S12 and Text S4), which is less than the

unconverted Cs in the lambda DNA used as a bisulfite control

(Table S1). Therefore, many of these counts are likely experimen-

tal artifacts of bisulfite conversion or nucleotide mismatches in the

reference genome (Table S6 and Figure S13). For example, of 28

top candidate non-CpG methylation sites with .30% unconvert-

ed Cs, eight (4 in top 10) are actually methylated at CpG sites, but

were misidentified as non-CpG methylation due to sequence

errors in the reference genome sequence (Table S6, Figure S13

and Text S4). Only one candidate non-CpG methylation site out

of four examined was verified within the coding region of a gene

(Figure S14 and Text S4).

B. CpG methylation and gene expression
We next investigated associations between DNA methylation

and gene expression, using a combination of RNA-seq data from

adult females and genome-wide tiling microarray data from five

different developmental stages: early embryo, late embryo, larva,

pupa, and adult (Figure S15 and Dataset S1, See Materials and

Methods). Here, we compare expression patterns across develop-

mental stages, and also examine copies of duplicated genes that

differ in their methylation status.

B.1. Methylated genes show higher median expression

levels. The relationship between methylation status and gene

expression level was investigated using two different data sets – RNA-

seq data for adult females and tiling microarray data for 5 different

developmental stages (early embryo, late embryo, larva, pupa, adult).

The RNA-seq results displayed a bimodal distribution of gene

expression level in adult females (Figure 3A, P-value,2.2610216,

Hartigans’ dip test for unimodality) [44,45]. Methylated genes have

significantly higher expression level than non-methylated genes (P-

value,2.2610216, Mann-Whitney U Test) and they showed

markedly different patterns. The distribution of gene expression

levels for methylated genes was unimodal (P-value = 1) and is

generally composed of the higher expressed genes (Figure 3A),

whereas the expression of the non-methylated genes is bimodal in

distribution, with the moderately expressed set of genes overlapping

with the expression levels observed from the methylated genes

(Figure 3A, P-value = 0.03). Examination of the expression level for

all genes reveals that non-methylated genes constitute the vast

majority of low expressed genes. Furthermore, the non-methylated

genes account for 99% of the genes that were not found to be

expressed in the adult female RNA-seq data (FPKM ,1).

In conclusion, DNA methylation in adult females is positively

correlated with gene expression level in adult females, and most

methylated genes are more highly expressed than typical for non-

methylated genes (Figure S16). Nevertheless, methylation status is

clearly not the only determinant for high gene expression, as many

non-methylated genes also show high expression levels. The same

general pattern was observed in tiling array data using median

expression level across development (Figure S17). To examine whether

there is a simple linear relationship between gene expression level and

the percentage of mCpGs in methylated genes, we tested the difference

of expression level for genes in different classes of mCpG percentage

(Figure 3B). Among the methylated genes, we observed no positive

correlation between methylation percentage and expression level

(Spearman’s r= 20.08). Therefore, gene expression is correlated with

methylation status (methylated vs. non-methylated), but does not

increase with increasing methylation level among methylated genes.

B.2. Methylated genes are constitutively expressed during

development. Two metrics of gene expression change across

development were calculated from the genome-wide tiling path

Figure 1. Distribution of CpG DNA methylation in the Nasonia genome across protein-coding genes. (A) Distributions across genomic
features for all 14 million CpG sites (Top left), 8 million covered CpG sites (Top middle) and methylated CpG sites (mCpGs, Top right). Plotted in the
bottom panel are the distributions for percentage of mCpGs and methylation percentage at covered CpG sites. (B) Percentage of mCpGs in the 1 kbp
upstream, 1 kbp downstream, UTR and intronic regions for methylated (blue), non-methylated (red) and all genes (purple). (C) Percentage of mCpGs
in introns for methylated (blue), non-methylated (red) and all genes (purple), binned by the nearest distance to the exon-intron junctions. (D)
Percentage of mCpGs across exons for methylated (blue), non-methylated (red) and all genes (purple). (E) Percentage of mCpGs in the coding region
starting from first codon for methylated (blue), non-methylated (red) and all genes (purple). (F) Methylation level in 1 kbp upstream, 1 kbp 59-UTR,
first 2 kbp coding, 1 kbp 39-UTR and 1 kbp downstream regions for 1,540 expressed transposable element genes (TE genes) and 16,186 non-TE
genes. Dark blue line: percentage of mCpGs for non-TE genes; light blue line: average methylation percentage across covered CpGs for non-TE genes;
red line: percentage of mCpGs for TE genes. (G) Methylation level in 1 kbp upstream, 1 kbp 59-UTR, first 2 kbp coding, 1 kbp 39-UTR and 1 kbp
downstream regions for 4,751 methylated non-TE genes and 12,975 non-methylated non-TE genes. Dark blue line: percentage of mCpGs for
methylated genes; light blue line: average methylation percentage across covered CpGs for methylated genes; red line: percentage of mCpGs for
non-methylated genes. (H–I) Plot of Percentage of methylated CpG sites in the 59UTR, the first four exons and introns (H) and 39UTR, the last four
exons and introns (I) for methylated (blue) and non-methylated genes (red). All exons, introns and UTRs were rescaled to the same length.
doi:10.1371/journal.pgen.1003872.g001
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microarray data: a coefficient of expression-level variation across

the five developmental stages (expression CV), and the number of

stages when gene expression is detected above baseline (see

Methods & Materials).

While mean expression CV is lower in methylated (5.07) than

non-methylated (6.07) genes, it is clear that both CV and median

expression level across development covary (Figure 3C), which is

confirmed in a logistic regression analysis (Text S5, Table S7 and

Figure 2. DNA methylation and gene length, exon number and gene locations. (A) Scatterplot for gene length (log10) and percentage of
methylated CpG sites for methylation genes in the entire transcript region (left) and in 59 1 kbp coding region (right). The fitted lines using non-
parametric local regression are shown in red. (B) Left: Distance between neighboring methylated genes (MM), non-methylated genes (NN) and
methylated-non-methylated genes (MN or NM). The expected distributions for the three classes calculated by permuting the methylation status
(N = 5,000) were plotted (MM: blue; NN: red; MN or NM: purple). The observed mean distance for each group was shown using arrows. Right:
Distribution of the distance for the four classes (MM, NN, MN and NM). (C) Distribution of observed (orange) and expected (blue) counts for
consecutive run of methylated genes. The expected counts were computed assuming the methylation status is randomly distributed.
doi:10.1371/journal.pgen.1003872.g002
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S8). Because CV varies as a function of expression level, we

examined the expression CV against the median expression level

across development (Figure 3E). Excluding genes with very low

expression (level,9) because there are too few methylated genes to

make a proper comparison, we find that methylated genes have

lower expression variation than non-methylated genes across a

wide range of median expression levels. Dividing median

expression level into three categories (9–11, 11–13, .13),

methylated genes show significantly lower CV than do non-

methylated genes for all categories (P-value,2.2610216 for all

three categories, Mann-Whitney U Test; Table S9). The same

trend is obtained when adult RNA-seq expression level is used in

place of median expression across development (Figure S18, S19).

Methylated genes have lower CVs across a broad range of median

expression levels, indicating that they are expressed more evenly

across development.

We next investigated the relationship between the methylation

status of genes and the number of developmental stages with

nonzero gene expression (see Materials and Methods). The

majority of methylated genes (95%) are expressed broadly in all

five developmental stages and less than 0.8% of the methylated

genes have expression values below 9 in all five stages (Figure 3F).

In contrast, only 28% of the non-methylated genes are expressed

in all five stages, and 30% are absent (expression value ,9) in all

stages (Figure 3F). However, there is still a good proportion of non-

methylated genes (3062 genes or 28%) that are expressed in all five

stages, allowing us to compare expression breadth to median

expression level across stages. Whereas it is not the case that all

non-methylated genes are stage-specific, most methylated genes

show broad expression across developmental stages, even when

their median level of expression is relatively low.

The number of expressed stages is also correlated with the gene

expression level. Genes present in more life stages tend to have a

higher expression level (Figure S20). Taken together, these results

strongly suggest that methylation is a general signal for constitutive

expression of genes across development, and that this applies both

to moderately expressed and highly expressed genes. Studies in

Apis [28,29], found that methylated genes are more broadly

expressed across tissue/cell types. Here we show that methylated

genes in Nasonia are more broadly expressed across developmental

stages.

B.3. Methylated genes are enriched for basal cellular

functions. We used blast2go (v2.6.0) to explore the enrichment

of Gene Ontology (GO) term categories among methylated genes

in Nasonia. This analysis reveals that methylated genes were

generally enriched for basal cellular functions, such as translation,

mRNA processing, and post-translational modifications (Table

S10 and Figure S21). As the expression of methylated genes is

distributed to the right of the median genome expression, we

were concerned that the GO-term enrichment may be con-

founded by expression level differences between methylated and

non-methylated genes. To adjust for this, we carried out a second

analysis using gene lists restricted to low-, medium-, and high-

expressed genes (See Materials and Methods). The GO-term

enrichment among low-expressed methylated genes (Table S11)

closely reflected those observed for all methylated genes (Table

S10), however, for the medium- and high-expressed methylated

genes (Table S12 and S13), cellular component terms became

significantly enriched, specifically terms related to intracellular

organelles. Both results are consistent with the conclusion that

methylated genes in Nasonia are typically involved in cellular

‘‘house-keeping’’ functions, especially those involving translation,

transcription and organelles.

B.4. Methylation is not required for differential

splicing. We investigated patterns of DNA methylation in

genes showing alternative splicing, to determine whether a signal

of the alternative splice forms is apparent. We found no genome-

wide correlation between methylation status and alternative

splicing in adult females (Figure 4A–C and Figures S22 and

S23, See Materials and Methods). Genes showing differential

splicing are not more likely to be methylated than expected by

chance (Figure 4A; P-value = 0.49, Chi-squared test), and there

was no significant difference in the degree of alternative splicing

between methylated and non-methylated genes, quantified by the

fraction of major spliced forms (Figure 4B, P-value = 0.65,

Kolmogorov-Smirnov test). In methylated genes with multiple

methylated CpG clusters, we found in most cases that alternative

exons within the first 1 kbp of the coding region do retain

methylation (Text S6, Table S14 and Figure S24). However, as

non-methylated genes also show extensive alternative splicing

(Figure 4C), DNA methylation is clearly not required for

differential splicing in Nasonia.

C. Comparative Genomics of Methylated Genes
C.1. Methylated genes are more conserved in

evolution. To check the conservation status for methylated

genes, we investigated 5,039 Nasonia single-copy genes covered in

our WGBS-seq data that have either one or zero orthologs in each

of seven other insect species (Apis mellifera, Tribolium castaneum,

Bombyx mori, Anopheles gambiae, Drosophila melanogaster, Pediculus

humanus and Acyrthosiphon pisum; see Materials and Methods). For

these genes, we compared the methylation status in Nasonia to

other factors among three gene conservation categories: genes

present in single copy in all eight insect species (conserved genes),

genes present in honeybee and Nasonia but not in other species

(Hymenoptera-specific genes) and genes present only in Nasonia

(Nasonia-specific genes) (Figure 5A). Nasonia methylated genes

account for 71% of the genes present in all species, compared to

27% of Hymenoptera-specific genes and 14% of Nasonia-specific

genes (Figure 5B). Therefore, Nasonia methylated genes were

highly enriched in the conserved gene class (P-value,2610216,

Chi-square test). The degree of methylation in methylated genes,

Figure 3. DNA methylation, gene expression and expression breadth. (A) Distribution of RNA-seq expression level (log10 FPKM) in adult
female for methylated (blue), non-methylated (red) and all genes (purple). (B) Distribution of RNA-seq expression level (log10 FPKM) in adult female
for groups of genes binned by percentage of methylated CpG sites in 59 1 kbp coding region. Red: non-methylation genes; blue: methylated genes.
(C) Histograms for distribution of expression coefficient of variation (log10 expression CV) in five developmental stages (early embryo, late embryo,
larvae, pupae and adult) for methylated (blue), non-methylated (red) and all genes (purple). (D) Distribution of expression breadth measurement
(log10 expression CV) in six developmental stages for groups of genes binned by percentage of methylated CpG sites in 59 1 kbp coding region. Red:
non-methylation genes; blue: methylated genes. (E) Scatterplot of expression breadth (log2 expression CV) on y-axis against median expression level
(log2 signal intensity) in tiling array on x-axis, color-coded by adult female methylation status (blue: methylated genes; red: non-methylated genes).
Fitted lines using non-parametric local regression are shown for methylated and non-methylated genes respectively. (F) Top right panel: Stacked
barplot for expressed methylated and non-methylated genes with 0 to 6 expressed stages. Red: unmethylation genes; blue: methylated genes. Top
left and bottom panel: boxplot for distribution of adult female RNA-seq expression level (log10 FPKM) for methylated (in blue), non-methylated (in
red) and all genes (in purple) expressed in 0–5 developmental stages.
doi:10.1371/journal.pgen.1003872.g003

The Nasonia vitripennis Methylome

PLOS Genetics | www.plosgenetics.org 8 October 2013 | Volume 9 | Issue 10 | e1003872



measured by percentages of methylated CpG sites, was not

significantly different among the three classes (P-value = 0.64,

Kruskal-Wallis rank sum test) (Figure 5C).

Methylated genes have higher expression level (in Nasonia) in all

three conservation classes (P-value,10210, Mann-Whitney U Test),

which is consistent with the methylation-expression correlation we

observed (Figure 5D). In addition, Hymenoptera-specific and

Nasonia-specific genes have lower expression levels compared to

the conserved genes (P-value,2.2610216, Mann-Whitney U Test);

however, the over-representation of non-methylated genes among

them was not purely due to the expression difference. For all Nasonia

single copy genes, non-methylated genes have higher expression

variability across the five life stages (P-value,2.2610216, Mann-

Whitney U Test, one-side). This is also true for the conserved genes

(the ‘‘all species’’ category; P-value = 9.1610216, Mann-Whitney U

Test, one-side). However, there is no significant difference in

expression variability for hymenopteran-specific genes (P-val-

ue = 0.17, Mann-Whitney U Test, one-side), while Nasonia-specific

genes showed the opposite pattern with (P-value = 0.018, Mann-

Whitney U Test, one side) (Figure 5E). The reverse pattern found in

Nasonia-specific methylated genes is relatively weak, although

statistically significant.

Because expression level of non-methylated genes declines with

decreasing conservation (Figure 5D) and CV co-varies with

expression level (Figure 3E), CV is not the best index of expression

breadth when comparing methylated and non-methylated genes of

different conservation levels. We therefore examined how broadly

genes are expressed across development for different conservation

levels and methylation status (Figure 5F). Methylated genes are

expressed more broadly than non-methylated genes for all three

conservation categories. Conserved non-methylated genes (i.e.

present in all species) are expressed in 4 stages on average, but the

number dropped to 3.1 for hymenopteran-specific genes and

further dropped to 2.5 for Nasonia-specific genes; methylated genes

showed a much less dramatic decline, from 4.97 for all species to

4.81 for hymenoptera-specific genes and 4.60 for Nasonia-specific

genes (Figure 5F). The median values were significantly different

for all three categories (Table S15). These results show that

methylated genes are more broadly expressed than non-methyl-

ated genes across conservation categories, and therefore indicate

that even more recently evolved methylated genes acquire broader

constitutive expression across development than comparable non-

methylated genes.

C.2. There is significant conservation of gene methylation

status between Nasonia and Apis. We next compared

patterns between Nasonia and Apis, each being a representative of

two major groups of Hymenoptera that have diverged approxi-

mately 180 MYA [34]. The honeybee (Apis) methylome data were

available in the literature [15]. There were 3,206 Nasonia-Apis 1:1

orthologous gene-pairs with methylation status called in both

species. Of these, 71.9% are methylated in Nasonia compared to

47.7% in Apis. Note that the calling of methylation status is

different between the Nasonia and Apis, as data on the distribution

of methylated sites within genes (i.e. 59 to 39) was not available to us

for Apis (see Materials and Methods). Despite these methodological

limitations, there is a strong positive correlation in gene

methylation status between Apis and Nasonia (P-value,2.2610216,

Chi-squared test), with 42.2% of genes methylated in both species,

compared to an expected 34.3%. Furthermore, when we

calculated the % of methylated CpGs across the entire gene (the

same as done for Apis), only 5% of the non-methylated genes

changed status to methylated, and the finding of general

conservation of methylation status was still found. These findings,

based on genome-wide methylation criteria, are consistent with an

earlier study showing conservation in gene methylation between

Nasonia and Apis, based on inferred methylation from CpG O/E

[20].

C.3. Methylated genes evolve more slowly within the

Nasonia clade. We also examined methylation status and gene

conservation at a shorter evolutionary time scale among Nasonia

species. The nucleotide substitution rates in ,7,000 genes were

compared across three Nasonia species: N. longicornis, N. giraulti and

N. vitripennis (see Materials and Methods). In all comparisons,

methylated genes have lower nucleotide substitution rates (P-

value,2.2610216, Mann-Whitney U Test) (Figure 5H).

Figure 4. DNA methylation and alternative splicing. (A) Counts
of alternatively spliced and non-alternatively spliced genes with
different methylation status from OGS2 gene models (left) and RNA-
seq data (right). AS: alternatively spliced; nAS: non-alternatively spliced.
Methylated is shown in blue and non-methylated shown in red. (B)
Distribution of fraction of major spliced forms for alternatively spliced
methylated (blue) and non-methylated genes (red). (C) Gene expres-
sion, DNA methylation and alternative splicing profile for a non-
methylated gene Nasvi2EG003411. Plotted at the top is the IGV browser
screenshot showing adult female RNA-seq coverage (on log scale) and
read alignments in the gene region. Plotted at the bottom are the CpG
methylation profile at covered CpG sites from WGBS-seq data and the
exon model of the alternatively spliced transcripts from OGS2 gene
models. A vertical bar was drawn for each CpG at its position in the
gene, color-coded by the methylation percentage in proportion to the
bar length (blue: methylated Cs; red: non-methylated Cs). All 587
covered CpGs in the gene region were non-methylated. Two of the
three OGS2 transcript variants, Nasvi2EG003411t1 (labelled as t1) and
Nasvi2EG003411t3 (labelled as t3), were covered in the RNA-seq data
with 47% and 41% of the transcript abundance, respectively. Two of the
remaining minor transcript variants (other1 and other2) were also
plotted.
doi:10.1371/journal.pgen.1003872.g004
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C.4. Apis to Nasonia differences in methylation associate

with gene ontology. To investigate whether GO-categories of

methylated genes are conserved between Apis and Nasonia, we

identified all 1-to-1 orthologs between Nasonia and Apis for which we

had confident methylation status calls (3206 loci), and tested for

enrichment of GO-terms where methylation status was either

conserved or diverged between these two hymenopteran species.

Once again, the most significantly enriched GO-terms for genes

methylated in both Nasonia and Apis (1354 loci) are in categories

associated with basal cellular processes such as metabolism and

organelle function (Table S16). Next we restricted our lists to genes

showing lineage-specific methylation within either Nasonia or Apis. For

genes with methylation only in Nasonia (682 loci), ribonucleoprotein

complex was enriched at the 5% FDR cutoff level (Table S17). No

GO term enrichment was observed at this cutoff for genes methylated

in Apis only (176 loci); however, processes related to sensory system

were enriched at a more permissive FDR cutoff (results not shown).

C.5. When duplicated genes lose methylation, they evolve

more quickly and become more developmentally

specialized. Finally, we investigated the patterns of evolution

of genes that have undergone gene duplications in the clade

leading to Nasonia. A total of 145 orthologous gene sets were

identified that are present in a single copy in all other

Hymenoptera (OrthoDB, 13 taxa examined) [46], but which have

undergone a gene duplication in the Nasonia clade. Methylation

status in both Nasonia duplicates and the Apis paralog was available

for 33 of these. In 9 (27%), the Apis ortholog and both Nasonia

paralogs are methylated. In 8 cases, one of the Nasonia paralogs

was non-methylated (N) whereas the other paralog and Apis gene

was methylated (M) (Table S18). Those 8 gene pairs are present in

a single copy across all Hymenoptera, with the exception of

Nasonia. We therefore infer that they underwent a lineage-specific

duplication, followed by loss of methylation in one of the paralogs.

We examined gene expression and rates of divergence in each M

to N conversion, using Apis as the outgroup. Despite the small

sample size, several striking patterns are observed. First, in 7 of 8

cases, the N paralog has lower median expression across

developmental stages than does the M (P-value = 0.016,

Figure 5. DNA methylation and gene conservation. (A) Phylogenetic tree of eight insect species: Nasonia vitripennis, Apis mellifera, Tribolium
castaneum, Bombyx mori, Anopheles gambiae, Drosophila melanogaster, Pediculus humanus and Acyrthosiphon pisum. The methylation status and
correlating factors were plotted in (B–F) for four groups of genes: all 5,039 Nasonia single-copy genes with one or zero ortholog in seven other insect
species, 2,374 genes with one orthologs in all eight insect species, 443 genes with one orthologs in Apis and Nasonia but missing in other six species,
and 320 genes present only in Nasonia. The y-axes plotted in (B–F) are (B): proportion of methylated (blue) and non-methylated genes (red); (C):
percentage of methylated CpG sites in methylated genes; (D): adult RNA-seq expression levels (log10FPKM); (E): coefficient of variation of expression
level in tiling array across six developmental stages; (F): number of expressed tissues. (G) Top: Phylogenetic tree of three Nasonia species: N.
longicornis (L), N. giraulti (G) and N. vitripennis (V). Bottom: boxplots of nucleotide substitution rates between V–L, V–G and L–G.
doi:10.1371/journal.pgen.1003872.g005
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WMSRT). In one case, the N paralog expression was close to the

minimum detection level at all five developmental stages in the

tiling array data, and we therefore excluded it as possible

pseudogene. In the remaining 7 cases, the N paralogs showed

significantly lower median expression levels (Figure 6A; P-

value = 0.031, WMSRT). As is apparent in Figure 6, whereas

the median expression is lower for the N genes, they show a

greater variation of expression (P-value = 0.016, WMSRT in

coefficient of variation) and greater maximum expression differ-

ence than do their M paralogs (P-value = 0.031, WMSRT),

indicating that the N genes have maintained or evolved high

expression within certain life stages. Finally, the N genes have

significantly longer branch lengths (Figure 6B, P-value = 0.016,

WMSRT) than their M paralogs, indicating more rapid evolution.

These results suggest that loss of methylation status following gene

duplication correlates with loss of constitutive expression across

developmental stages, and possibly increased evolution and

specialization of the duplicated gene.

Discussion

In this study, we profiled the genome-wide methylation at base-

pair resolution in Nasonia and found several striking features. First,

1.6% of covered CpG sites are methylated in the Nasonia genome,

and the methylated CpGs are clustered along the genome. As

found in several other invertebrates [15,18,19], DNA methylation

is located mainly in the gene bodies in Nasonia, with coding genes

falling into two distinct groups: around 30% of genes are

methylated and show strong CpG methylation in 59 exons, while

DNA methylation is largely absent in the remaining genes. To

compare the global methylation level across hymenopteran

species, we calculated the percentage of methylated CpGs (mC/

C) in Nasonia, Apis and ants (Text S7). Although it is difficult to

compare genome-wide methylation levels due to differences in

methodology, it appears that Nasonia (1.6%) has a higher overall

methylation level than is found in honeybees (0.8%) or ants (1.05%

in Camponotus and 0.68% in Harpegnathos).

Unlike mammals, where methylation is associated with

suppression of transposon gene expression, with rare exceptions

TEs are not methylated in Nasonia. The finding is in concordance

with honeybee TE methylation profile [19], and suggests that

DNA methylation is not required for TE repression in insects. In

ants, TE methylation is at the genomic background level, but

certain types of TE are hypermethylated and the pattern is species-

specific [18]. In our data, we found five retrotransposon families

with .5% methylation across CpG sites. The top three

methylated TE types (SNAKEHEAD, GYPSY and SPRINGER)

are highly expressed in the adult female RNA-seq data (Table S4),

suggesting that DNA methylation may actually enhance expres-

sion of these elements. We do not know how this is accomplished,

but it is possible that certain TEs may contain (or land near)

sequence signals that promote DNA methylation. But globally the

vast majority of TEs show no methylation in Nasonia.

Close examination of methylation in coding genes revealed a

striking matching of methylation with the transcription unit.

Methylation is low in 59 UTR and increases rapidly near the

transcription start site. Methylation is then consistently higher on

exons and decreases significantly on introns, resulting in a clear

delineation of exon-intron boundaries by methylation ‘‘tagging’’.

Finally, at least for methylated genes ,1 kbp in length,

methylation also declines significantly in the 39UTR (after the

stop codon). These patterns across the gene region suggest that

DNA methylation provides ‘‘tags’’ that mark exons and targets

introns for excision during transcription, but also that mark

location of translational start and stop, even though translation

occurs in the cytoplasm and is not directly associated with the

DNA. If methylation affects the rate of transcription, then it is

possible that methylation-induced transcriptional pausing at the

exon-intron boundary could play a role in splicing [47]. However,

how would the DNA methylation signal result in tagging of mature

mRNA to demarcate translational initiation and termination? One

possibility is through directing mRNA base modifications. For

example, in mammals methylation of the N6 position of adenosine

(m6A) has been shown to accumulate at stop codons and 39UTR

[48], suggesting a possible signal for translation termination.

It has been hypothesized that in insects DNA methylation

regulates alternative splicing [19]; however, a direct causal

relationship between methylation and differential splicing remains

unsubstantiated. In Nasonia, we found no global correlation

between methylation status and alternative splicing, although

methylation changes across exon/intron boundaries suggested a

potential link between DNA methylation and splicing. We should

emphasize that DNA methylation is not required for either intron

splicing or coding region demarcation, as non-methylated genes

show both. Nevertheless, it is possible that methylation expedites

these signals for a subset of methylated house-keeping genes, which

we have shown to be expressed constitutively and at higher levels.

Investigating these mechanisms is an interesting avenue for future

research.

In Nasonia, the exon-intron pattern is augmented by a strong 59

bias in level of methylation. The majority of DNA methylation was

within the first 1 kbp coding exons and clearly drops beyond that

in Nasonia, although an exon-intron distinction is still discernible in

larger genes. A similar 59-biased DNA methylation pattern has

been observed in ants [18]. Studies in honeybee have reported a

negative correlation between gene length and methylation status

[49] and we observed the same pattern in Nasonia when the

methylation percentage across the entire gene was used; however,

this pattern disappears in Nasonia when the score of methylation

level is restricted to the first 1 kbp of the coding region. We found

little evidence for non-CpG methylation in Nasonia, but were able

to confirm a single case. Therefore, non-CpG methylation is

present, but it is extremely rare in Nasonia. Most candidate non-

CpG methylation sites were located in genes nested in CpG

methylation clusters. These findings suggest that non-CpG

methylation may result from the inaccurate methylation at non-

CpG sites by the CpG methylation machinery. It may strengthen

the CpG methylation cluster, but the biological significance

remains an open question.

In mammals, DNA methylation at promoter regions is often

associated with suppression of gene expression [50,51]. However,

in insects, DNA methylation has been shown to be positively

correlated with expression level in silkworm and ants [18,22].

Here, we also observed a strong positive correlation between

methylation and gene expression level; however, methylation is

more strongly associated with constitutive expression across

development independent of expression level. The distribution of

expression levels for methylated genes is unimodal, matching the

high expression class. Non-methylated genes show a bimodal

distribution, with a mixture of both low and moderate expression,

indicating DNA methylation is not the only factor affecting

expression level. Other epigenetic marks such as histone modifi-

cations are likely to play a role in expression differences among

non-methylated genes.

By comparing gene expression levels across five developmental

stages, we found that methylated genes show more even expression

across stages, and this pattern applies to both highly- and

moderately-expressed methylated genes. The finding complements
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Figure 6. Paralog analysis. Differences between two paralogs that have changed in methylation status in the Nasonia lineage are shown. (A)
Comparisons of expression pattern across developmental stages for duplicated genes in the Nasonia lineage where one gene is methylated (M) and
the other lost methylation (N). These genes have 1:1 orthologs in other hymenopteran species, and the ortholog is methylated in Apis. (B) Those
paralogs that lost methylation show significant reductions in median expression level across development relative to the M paralog (N–M), significant
increases in the range of expression level (N–M), and significantly greater divergence from the Apis ortholog (N–M).
doi:10.1371/journal.pgen.1003872.g006
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studies in honeybee, which found methylated genes to be

expressed across multiple tissues, whereas non-methylated genes

showed a more spatially restricted expression pattern [28,29]. In

both cases, methylation appears to be more prevalent in genes that

are constitutively expressed across development and tissue types.

GO-term analysis showed that methylated genes in Nasonia are

enriched for genes with housekeeping functions, as observed in

honeybee and ants [18,19,21]. Furthermore, genes methylated in

Nasonia tend to be more evolutionarily conserved, as also found in

recent studies in ants and other invertebrates [27,52]. Housekeep-

ing genes tend to be expressed in most tissue and cell types, which

may explain the low expression variability for methylated genes

across stages.

Further support for the role of methylation in constitutive

expression of genes comes from the study of duplicated genes

that have lost methylation relative to their paralog in the Nasonia

lineage. Comparing non-methylated and methylated paralogs

reveals both a marked median reduction in expression level, and

evolution toward more developmental stage-specific expression

patterns in the non-methylated genes. Functional category

enrichment analysis showed that methylated genes are enriched

for basic cellular functions, such as transcription and translation,

as also found in honeybee and ants [18,19,21]. Our comparative

genomic analysis also shows that many genes have maintained

their methylation status across the long evolutionary time scale

from Apis to Nasonia. This probably reflects the role of

methylation in constitutive expression of basal housekeeping

genes. We also find that methylated genes are enriched among

the class of genes that are conserved among insects, while non-

methylated genes are enriched among Hymenoptera-specific and

Nasonia-specific genes. Nevertheless, methylated genes are

expressed more broadly across development than are non-

methylated genes for each of these conservation categories. Even

the more recently evolved ‘‘Nasonia-specific’’ methylated genes

show broad expression across developmental stages (median

4.60), considerably greater than for non-methylated genes

(median 2.5). This suggests that broader constitutive expression

is a hallmark of methylated genes whether they are conserved or

recently evolved.

Bisulfite sequencing and expression profiling in our study were

done on whole insects. Therefore, it could be argued that the

correlation between methylation status and expression level occurs

because genes that are methylated in more tissues show both

higher levels of methylation and higher expression. In other words,

tissue specific changes in methylation regulate tissue-specific gene

expression, and this creates a correlation between methylation

status and gene expression in whole animals. Although a

possibility, we found that among methylated genes there is no

correlation between level of methylation and level of expression

(Figure 3B), which would be expected if the proportion of tissues in

which the gene is methylated was driving the pattern. Future work

will help resolve whether some genes are being differentially

regulated by changes in methylation status. However, it appears

that in general DNA methylation is a hallmark of genes that are

constitutively ‘‘turned on’’, at least across developmental stages.

In some eusocial organisms such as honeybee and ants, DNA

methylation was shown to be related to caste determination

[18,19,53]. In Nasonia, we have no evidence as yet that changes in

methylation regulate specific developmental programs. In contrast,

the general data reported above suggest that its primary role is in

maintaining constitutive (and perhaps higher) expression of a

subset of important cellular ‘‘house-keeping’’ genes, whereas non-

methylated genes are more involved in stage-specific differences in

expression.

Investigating the role of methylation in epigenetic processes (e.g.

sexual differentiation, tissue-specific gene expression) will motivate

the future study of establishment, maintenance, epigenetic

reprogramming and interactors of DNA methylation in Nasonia

and other insects. Comparison among closely related Nasonia also

provides the opportunity to study the microevolution of DNA

methylation. In addition, the ability to genetically dissect species

differences in Nasonia through inter-fertile crosses [41,54,55] could

provide tools for the genetic investigation of cis-regulatory

mechanisms of DNA methylation.

Materials and Methods

Sample collection, genomic DNA and total RNA
extraction

Genomic DNA samples were extracted from a pool of 50 24 h

adult females from the standard N. vitripennis strain AsymCX using

DNeasy Blood & Tissue Kit (Qiagen, CA). This is the same strain

used for the Nasonia genome project [34] and is cured of the

intracellular bacterium Wolbachia.

For RNA-seq, total RNA samples were extracted from adult

females ,24 h following eclosion from pupation, using RNeasy

Plus mini kit (Qiagen, CA) following the manufacturer’s protocol.

The DNA, RNA concentration and the A260 nm/A280 nm

absorption ratios were measured by NanoDrop ND-1000 Spec-

trophotometer (Thermo Scientific, DE) to assess quality. RNA

integrity was checked using the Agilent 2100 Bioanalyzer (Agilent

Technologies, CA). All of the samples had a RIN (RNA integrity

number) in the range 9.8–10.0 (RINmax = 10.0).

For tiling microarrays, total RNA was extracted from samples of

5 different life stages, 0–10 h embryos, 18–30 h embryos, 51–57 h

larvae, day yellow pupae (little to no red eye pigment), and 1 day

post eclosion adults. To generate the samples, mated females were

first singly given two Sarcophaga bullata hosts for 48 h and then

given one host for 6 hours, with access to the host restricted to one

end for ease of embryo collection. Embryos or larvae were then

collected from the hosts. Under this experimental design, females

typically produce 85–95% female offspring, and these percentages

were confirmed using control hosts where the offspring were

permitted to complete development. Therefore, the wasps from

these samples are predominantly female, although individual

embryos or larvae were not sexed. For pupal collections, hosts

were opened and female pupae from the ‘‘yellow pupal’’ stage

were collected. Adult females were collected for RNA extraction

,24 h after eclosion from the pupal stage. Six replicates per

sample were used, averaging 400 individuals per replicate for

embryos, 300 for larvae, 20 for pupae and 20 for adults. Samples

were extracted in Trizol (Invitrogen, cat#15596-026) and then

sent to the Indiana University Center for Genomics and

Bioinformatics for sample preparation and tiling microarray

analysis using previously published methods.

WGBS-seq and mRNA-seq library preparation and
Illumina sequencing

20 mg of female Nasonia genomic DNA and 5 mg non-

methylated control lambda DNA (catalog #: D1521, Promega,

WI) were sheared by Covaris S2 system (Covaris, MA) for

480 second with 10% duty cycle, level 5 intensity and 200 cycles

per burst. The DNA fragments were purified with Zymo DNA

Clean & Concentrator-5 columns (Zymo Research, CA), size-

selected for 130–180 bp with E-Gel system (Life technologies, CA)

and QIAquick Gel Extraction Kit (Qiagen, CA), end-repaired

with NEBnext end repair module and NEBnext dA tailing module

(New England Biolabs Inc., MA), ligated with Illumina methylated
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PE adapter oligo (part #1005560, Illumina, CA) and then purified

with Agencourt AMPure XP beads (Beckman Coulter, CA). We

performed bisulfite conversion on purified Nasonia adult DNA and

lambda control DNA using Qiagen EpiTect Bisulfite kit with 26
bisulfite conversion cycles to improve the conversion efficiency and

then purified the elute by AMPure XP beads. The purified

converted DNA was amplified with PfuTurbo Cx Hotstart DNA

Polymerase (Agilent Technologies, CA) using 15 cycles. The final

libraries were purified again using AMPure XP beads and the

library concentration was measured by Qubit (Life technologies,

CA). The library size distribution was checked by Agilent 2100

Bioanalyzer (Agilent Technologies, CA).

We mixed 0.5% of the lambda control DNA library in the

Nasonia DNA WGBS-seq library, and performed Illumina short-

read sequencing in one 84 bp lane on Genome Analyzer IIx

(GAIIx) and one 101 bp paired-end lane on HiSeq2000 instru-

ment. Image analysis and base calling were performed by the

Illumina instrument software. In total, we obtained 27,766,713

reads from the GAIIx lane and 89,739,445 reads from the

HiSeq2000 lane. Illumina WGBS-seq data have been deposited in

GEO under accession no. GSE43423.

The mRNA-Seq library was made from 3.5 mg total RNA

samples from 24 h adult females, using TruSeq RNA Sample

Preparation Kits v2 (Illumina Inc., CA). The library was

sequenced on an Illumina HiSeq2000 instrument and we obtained

65,334,896 reads. IIlumina RNA-seq data in this study have been

deposited in GEO under accession no. GSE43422.

WGBS-seq and mRNA-seq read alignments and data
analysis

The Illumina quality score and nucleotide distribution were

checked by the FASTX toolkits (http://hannonlab.cshl.edu/

fastx_toolkit/index.html). The adapter sequences were removed

from the raw reads by custom scripts (0.7% in GAIIx lane and

0.9% in HiSeq lane). To include only high quality bases in our

analysis, the sequence reads were trimmed to 75 bp. After

trimming, the GAIIx and HiSeq (read 1 only) data gave us

8.75 Gbp of sequences or 256 coverage of the haploid genome,

assuming 350 Mbp genome size.

We first aligned the reads to the plus and minus strands of non-

methylated lambda genome (NCBI reference sequence

NC_001416) with all Cs converted to Ts, using BWA with 4

mismatches [56]. A total of 746,736 (0.64%) reads were uniquely

mapped to the lambda genome without indels, resulting 11556
coverage of lambda genome. We estimated the unconverted Cs to

be 0.31% by subtracting the background TRC sequence error

from the remaining unconverted Cs, therefore the final bisulfite

conversion efficiency, at 99.69%, was ideal for downstream

analysis. The Illumina sequencing error rates for each type of

nucleotide in the GAIIx and HiSeq lane were also estimated from

the lambda control alignments (Table S1).

From the N. vitripennis reference scaffolds [34], we built CRT

converted reference genomes for both the Watson (+) and Crick

(2) strand separately, with all Cs in CpGs context remains Cs

(meth_genome) and all CpG Cs converted to Ts (unmeth_gen-

ome). The rest Illumina sequencing reads were aligned to the

converted genomes with BWA [56] with a maximum of 4

mismatches, and summarized in a single BAM file (Figure S1). We

tested 4, 6, 8 and 10 mismatches and found 4 mismatches will give

the best mapping percentage without ambiguity due to reduced

genome complexity after bisulfite conversion. ,80% of the reads

could be mapped to the converted Nasonia reference genome. To

get accurate methylation estimation, we only used uniquely

mapped reads without any indel (60% of total reads) for the

methylation quantification. CpG methylation percentages were

estimated from the proportion of remaining Cs in CpG context

(Table S2). Non-CpG methylation was also quantified (Table S5).

We aligned adult female RNA-seq reads to the Nasonia reference

scaffolds using TopHat v1.4.1 [57] with a maximum of three

mismatches. 94% of the reads were uniquely mapped to the

genome. Total expression level (FPKM: Fragments Per Kilobase-

pair of exon Model) was calculated using Cufflinks v1.3.0 [58]

based on all mapped reads from the TopHat alignments. The

multiple mapped reads were weighted using the ‘‘-u’’ parameter in

Cufflinks. The RNA-seq alignments were viewed in the IGV

browser [59,60].

CpG methylation quantification and gene methylation
analysis

Among the 14,024,488 CpG sites in Nasonia haploid genome,

we covered .90% with 2 or more uniquely aligned reads and

.55% with 10 or more reads. The average coverage at CpG sites

is 16.26 (Figure S2). To obtain accurate quantification of the

methylation percentages, we only included ,8 M CpGs sites with

10 or more coverage (covered CpGs). To quantify the CpG

methylation levels, we used two metrics: percentage of methylated

CpGs (percentage of mCpGs) and average methylation percentage

in covered CpGs (methylation percentage). Methylated CpGs

(mCpGs) are defined as CpG sites with .10% methylated Cs and

$10 coverage. This definition requires at least two unconverted C

containing reads to call a site methylated, therefore a single TRC

Illumina sequence error will not results a spurious methylated site.

Methylation percentage is the average methylated percentage

over all CpGs in a particular region, which is the total number of

unconverted Cs divided by the total number of reads at CpG sites.

The methylated CpG sites were annotated using both the Nasonia

OGS1.2 (official gene set) and OGS2 gene models [42]. OGS2

gene models incorporated both whole genome tiling expression

array and RNA-seq data from multiple tissues at multiple

developmental time points, proving high quality support for 59-

and 39-UTR annotation. Among the 14,024,488 CpGs, 1,159,303

were located in overlapped gene models and were excluded from

the analysis. To determine the gene methylation status, we

calculated the percentage of mCpG among the covered CpG sites

(depth $10) in both the first 1 kbp coding region and in the entire

transcript region. Since the majority of the mCpGs are located in

the first 1 kbp coding region and the methylation level is under the

UTR level beyond 2 kbp (Figure 1G), long genes with heavy

methylation at the beginning will be averaged out if the entire

transcript length was used. Therefore, we inferred the gene

methylation status using the percentage of mCpG in the first 1 kbp

coding region. Because single or sparse mCpG could be spuriously

generated by TRC sequencing error, local incomplete bisulfite

conversion or alignment problems, we applied arbitrary cut-off

and genes with at least four covered CpGs and .10% mCpG in

the first 1 kbp coding region are classified as methylated genes;

genes with #10% mCpG are defined as non-methylated genes.

To quantify the DNA methylation in repetitive elements and

retrotransposons, we built a non-redundant repeat sequence

database for the repeat library and retroid elements annotation

from the Nasonia genome project [34]. From the 1195 sequences in

the repeat library, 763 that are .100 bp in length and contain 4

or more CpGs were kept. Simple repeats and STRs were excluded

from the analysis. The longest element in each of the 76 retroid

families was included in repetitive elements database. We aligned

the unmapped and non-uniquely mapped WGBS-seq reads to the

database, and quantified the methylation percentage at CpG
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positions. Elements with average read depth four or more were

included in the analysis.

Characterizing the CpG islands and methylated CpG
clusters in the Nasonia genome

To search for mammalian type CpG islands (CGIs) in the

Nasonia genome, we ran predictions of CGIs in the Nasonia genome

using the same criteria as in mammals [10]: GC percent .50%,

CpG O/E (observed/expected CpGs) ratio .0.6, and greater

than 200 bp in length. 9,265 CGIs were found in the Nasonia

genome. We define methylated CpG clusters (mCpGCLs) as

regions with .80% methylated CpGs and .40% average

methylation percentage, and we found 5,440 mCpGCLs in the

Nasonia genome.

Analysis of clustering of methylated genes in the Nasonia
genome

To determine whether the methylated genes are clustered or

randomly distributed in the Nasonia genome, we analyzed the

frequency and distance between neighboring gene pairs (MM:

methylated-methylated; MN: methylated-nonmethylated; NM:

nonmethylated-methylated; NN: nonmethylated-nonmethylated),

as well as the consecutive runs of methylated genes. Scaffold rather

than the chromosomal locations were used for the analysis because

neighboring genes on two different scaffolds are not in proximity.

To eliminate the effect of short scaffolds with few genes in them,

only the top 100 largest scaffolds were included for the analysis,

containing 11,683 genes with methylation status.

Validation of methylated and non-methylated genes
using cloning and sequencing method

To confirm methylation status of individual genes, DNA from

20 pooled 24–27 h virgin Nasonia vitripennis (strain Asymcx) females

was extracted using the Qiagen DNeasy Blood and Tissue Kit (Cat

No. 69504). The bisulfite conversion was performed by the

Qiagen EpiTect Bisulfite Kit (Cat No. 59104) with 1.5 mg of

starting DNA. Bisulfite PCR primers for six selected genes were

designed using Methyl Primer Express software v1.0 (Applied

Biosystems by Life Technologies, CA). The amplified PCR

product was gel purified and cloned using Promega pGEM-T

Easy Vector System II (Cat No. A1380). Direct PCR from the E.

coli ‘‘white’’ colonies with T7 and SP6 primers was used to select

colonies with the right insert size, which were then inoculated in

LB broth with ampicillin and the plasmid was extracted using the

QIAprep Miniprep kit (Cat No. 27104). Prism BigDye Termina-

tor v3.1 Cycle Sequencing Ready Run Kit (Applied Biosystems)

was used to prepare the products for sequencing. BigDye clean-up

was completed using ABgene Dye Terminator Removal Kit (Cat

No. AB-0943). Sequencing was completed at the Function

Genomic Center at the University of Rochester.

Tiling microarray sample preparation
We used NimbleGen high-density 2 (HD2) arrays for tran-

scriptome investigations. The custom 4-array (chip) set consisted of

8.4 million isothermal long-oligonucleotide probes that are 50–

60 nt in length and that span the Nasonia genome sequence at

overlapping intervals of 33 bp, on average. Each slide contained

27,000 Markov model random probes that are not represented in

the genome for setting background level thresholds. All probes

were designed using NimbleGen’s ArrayScribe software and the

quality assurance tests of the probes were conducted using Indiana

University’s Centre for Genomics and Bioinformatics in-house

algorithms. Signal to background ratios were determined by first

calling probes that fluoresced at intensities greater than 99% of the

random probes’ signal intensities; therefore only 1% of fluorescing

probes are likely to be false positives. The arrays reliably produced

high signal to background ratios; log2 ratios of eight were observed

for signal over background.

We conducted three replicates each using RNA from indepen-

dent biological extractions of female early embryo (0–10 h), late

embryo (18–30 h), 1st instar larvae, and pupae. Additional

experiments were performed comparing transcription in testis and

the female reproductive tract. Samples were prepared at 25uC as

follows: Approximately 100 N. vitripennis (AsymCX) virgins were

collected as black pupae. After eclosion, females were provided with

males and allowed to mate overnight. Females were initially

provisions 15–20 Sarchophaga bullata hosts in groups of 20 females for

24 h to induce production of eggs. The hosts were then removed

and females were left overnight (,18 h). Mated females produced

85% female progeny under the design used here, and therefore the

embryo and larval collections are predominantly female offspring.

To collect embryos, individual females were given access to a host at

one end (to restrict the oviposition site) and allowed to lay eggs for 6–

10 h before being removed. Embryos were then harvested

immediately (early embryos), 18 h later (late embryos), or 51 h

later (1st instar larvae). All embryos and larvae were collected in an

RNase free environment. The host was cracked open and the ‘‘cap’’

removed to expose the embryo. Dissecting needles were used to

gently scrape embryos from the surface of the host and transfer them

into a 1.5 ml tube pre-chilled on dry ice. Samples were stored at

280uC. If at any time the host was punctured or embryos were

exposed to host hemolymph, they were discarded. Estimates of the

number of embryos per replicate (three per life stage/sex) were

recorded; early embryos ranged from 300–900, late embryo 140–

500, 1st instar larvae 245–520. Since sex cannot be determined at

larval stage, some of the mated female hostings were allowed to

mature to adulthood then males and females were counted to

determine the sex ratio. Early larvae showed an average of 82.9%

females and late larvae had an average of 84.2%. Pupae collections

were made among the progeny of mated females provided with

hosts for 48 hrs. They were sorted by sex and stage (early yellow,

red-eye, half black, and black pupae). Equal numbers (S20) of pupae

from each stage were then pooled prior to RNA extraction. Female

reproductive tracts (30 per replicate) were removed from 1–3 days

post eclosion virgin females and transferred to a tube on dry ice

prior to RNA extraction.

Tissue was disrupted and homogenized using Trizol reagent

(Invitrogen), and extracted RNA was purified using the Qiagen

RNeasy protocol with optimal, on column DNase treatment from

specific tissues. Beginning with at least 0.5 mg of total RNA (for early

to late embryo) or at least 1.0 mg (for other tissue types), a single

round of amplification using MessageAmp II aRNA kit (Ambion)

produced between 30 and 45 mg of cRNA for embryo RNA and

greater than 100 mg for all other tissue types. Starting with 10 mg of

cRNA, double strand cDNA synthesis was carried out using the

Invitrogen SuperScript Double-Stranded cDNA Synthesis kit using

random hexamer primer followed by DNA labeling using 1 O.D.

CY-labeled random nonomer primer and 100 U Klenow fragment

(3.5 exo) per 1 mg double-stranded cDNA. The use of random

primers ensured that all transcripts hybridize to the array, which

contains probes designed solely from a single strand of the DNA

sequence. Both sexes for each tissue type were alternatively labelled

and a dye-swap was included among the replicate experiments.

Dual-color hybridization, post-hybridization washing and scanning

were done according to the manufacturer’s instructions. Images

were acquired using a GenePix 4200A scanner with GenePix 6.0

software. The data from these arrays were extracted using the
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software NimbleScan 2.4 (Roche NimbleGen). The normalized

tiling array data can be found in Dataset S1.

Tiling array data analysis
The data analysis was performed using the statistical software

package R (http://www.r-project.org/) and Bioconductor (http://

www.bioconductor.org/) [61]. The signal distributions across chips,

samples and replicates were adjusted to be equal according to the

mean fluorescence of the random probes on each array. All probes

including random probes were quantile normalized across repli-

cates. Scores were assigned for each predicted OGS v2 gene, for

each sample, based on the median log2 fluorescence over

background intensity of probes falling within the boundaries of

the largest gene transcript. The genes were deemed to be

transcribed only when greater than K or their tiled length was

expressed. On average, the 23,161 interrogated genes were tiled by

95.461.1 probes. Genes validated by tiling array or EST data are

available online at http://www.hymenopteragenome.org/nasonia/

?q = sequencing_and_analysis_consortium_datasets.

Analysis of alternative splicing
We used two methods to obtain the alternative splicing status for

Nasonia transcripts. First, we used the alternative splicing status

from the OGS2 gene models with good intron information

support. Genes with more than one OGS2 transcripts per gene

were considered as alternatively spliced genes, and genes with a

single form in OGS2 were considered as non-spliced genes. We

also inferred the alternative splicing status from the adult female

RNA-seq data using Cufflinks software. Moderately and highly

expressed genes with expression level FPKM.2 were included in

the study because sufficient RNA-seq coverage is needed to detect

the alter-spliced forms in the RNA-seq data. Genes with the

percentage of second most abundant forms greater than 10% were

considered as alternatively spliced genes.

Methylation conservation and GO-term enrichment
analysis

For inference about conservation of methylation status of genes,

loci were called Nasonia-specific if they did not have a homolog in

OrthoDB BLASTp homolog (1e-5) to a database containing

Human, Mouse, Xenopus, Apis mellifera, Drosophila melanogaster, and

Anopheles gambiae. Arthropod-specific loci were those Nasonia

sequences that had strong BLASTp hits (1e-5) to Apis mellifera,

Drosophila melanogaster, Anopheles gambiae, but had no homology to

proteins from Human, Mouse or Xenopus. GO term enrichment

analysis was performed using blast2go [62] with the Nasonia OGS2

protein sequences and a BLASTp cut-off score of 1E-3 for assigning

terms. Enrichment was determined using Fisher exact test as

implemented by blast2go, with the cut-off for enrichment set to a 5%

false discovery rate. The background gene set was restricted to the

17726 Nasonia genes with a known adult female methylation status as

determined by bisulfite sequencing. For enrichment across different

expression levels, genes were divided into low (9–11), medium (11–

13) and high expression (13–15) based on median array expression

(Table S11, S12, S13), with the background restricted to all genes

with known methylation status that fell within that expression range.

For GO-term analysis of genes with conserved methylation status

between Apis and Nasonia, 1:1 orthologs were selected based on their

known methylation status for Apis (taken from [15]).

Comparative genomic analysis of methylated genes
The orthology status for thirteen Hymenoptera insect species

(Acromyrmex echinatior, Apis florea, Apis mellifera, Atta cephalotes, Bombus

impatiens, Bombus terrestris, Camponotus floridanus, Harpegnathos saltator,

Linepithema humile, Megachile rotundata, Nasonia vitripennis, Pogonomyrmex

barbatus, and Solenopsis invicta) was obtained from OrthoDB [46].

The updated Official Gene Set 2.0 (OGS2) for Nasonia vitripennis

was used in this analysis (http://arthropods.eugenes.org/genes2/

nasonia/). The honeybee methylation status was from Zemach et

al. 2010 [15]. The nucleotide substitution rates between three

Nasonia species (N. longicornis, N. giraulti and N. vitripennis) were from

the Nasonia genome project [34]. Analysis of paralogs that had

undergone changes in methylation status was accomplished by first

identifying all genes that had 1:1 orthologs in thirteen sequenced

hymenopteran genomes, but are duplicated in N. vitripennis, using

the OrthoDB database [46]. These were then divided into

categories based on methylation status. Rates of evolution of the

Nasonia genes relative to the Apis orthologs were measured by

comparing pairwise distances of protein alignments scores

obtained from the AllAll tool (available at http://www.cbrg.ethz.

ch/services/AllAll). Median expression level, range in expression

and largest difference in expression were calculated using tiling

microarray data.

Statistical analyses
The logistic regression analysis of the effect of expression level

and expression breadth on gene methylation status was performed

using the LOGISTIC procedure in SAS 9.1 (Text S5). The

statistical software R (version 2.13.0, www.r-project.org) was used

for the rest of the statistical tests. Comparisons between matched

gene samples were conducted using the Wilcoxon Matched-Pairs

Signed Ranks Test (WMSRT) implemented in wilcox.test()

function in the stats package. The test P-value of unimodality of

gene expression distribution for methylated and non-methylated

genes was calculated using the Hartigans’ dip test for unimodality

(dip package).

Supporting Information

Dataset S1 Tiling array expression level for female develop-

mental stages.

(XLSX)

Figure S1 Illumina WGBS-seq alignment strategies.

(TIF)

Figure S2 Illumina WGBS-seq coverage distribution and

summary at CpG sites.

(TIF)

Figure S3 Distribution of methylation percentages for methyl-

ated CpG sites with methylation percentage .10%.

(TIF)

Figure S4 Validation of CpG methylation status for non-

methylated gene Nasvi2EG001314 in adult females. (A) IGV

browser screenshot of the WGBS-seq alignments in a 277 bp

region on SCAFFOLD2, showing the CpG sites in non-

methylated gene Nasvi2EG001314. All 65 covered CpGs in 59

1 kbp transcript region were non-methylated in the WGBS-seq

data for this gene. (B) Zoom-in view for the boxed region in (A),

demonstrating that all CpG were converted to TpGs in the

WGBS-seq read alignments. (C) Plots of the gene model,

translation start site and CpG methylation profile for Nas-

vi2EG001314. A vertical bar was drawn for each CpG at its

position in the gene, color-coded by the methylation percentage in

proportion to the bar length (blue: methylated Cs; red: non-

methylated Cs). There are 143 covered CpGs in the gene region.

(D) Bisulfite sequencing verification results for the 16 CpGs sites in
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the 201 bp amplicon at the 59-coding region (shown in A) using

the cloning method with 25 clones sequenced. The estimated

methylation percentages at each CpG site from the WGBS-seq

and single-gene bisulfite sequencing were shown on the top.

(TIF)

Figure S5 Validation of CpG methylation status for non-

methylated gene Nasvi2EG000207 in adult females. (A) IGV

browser screenshot of the WGBS-seq alignments in a 237 bp

region on SCAFFOLD1 (1519410–1519646), showing the CpG

sites in non-methylated gene Nasvi2EG000207. All 72 covered

CpGs in 59 1 kbp transcript region were non-methylated in the

WGBS-seq data for this gene. (B) Zoom-in view for the boxed

region in (A), demonstrating that all CpG were converted to TpGs

in the WGBS-seq read alignments. (C) Plots of the gene model,

translation start site and CpG methylation profile for Nas-

vi2EG000207. A vertical bar was drawn for each CpG at its

position in the gene, color-coded by the methylation percentage in

proportion to the bar length (blue: methylated Cs; red: non-

methylated Cs). There are 232 covered CpGs in the gene region.

(D) Bisulfite sequencing verification results for the 17 CpGs sites in

the 237 bp 59-coding region (shown in A) using the cloning

method with 22 clones sequenced. The estimated methylation

percentages at each CpG site from the WGBS-seq and single-gene

bisulfite sequencing were shown on the top. ‘‘?’’ stands for missing

data at the end of the sequences.

(TIF)

Figure S6 Validation of CpG methylation status for non-

methylated gene Nasvi2EG006064 in adult females. (A) IGV

browser screenshot of the WGBS-seq alignments in a 403 bp

region on SCAFFOLD9 (3192664–3193066), showing the CpG

sites in non-methylated gene Nasvi2EG006064. All 75 covered

CpGs in 59 1 kbp transcript region were non-methylated in the

WGBS-seq data for this gene. (B) Zoom-in view for the boxed

region in (A), demonstrating that all CpG were converted to TpGs

in the WGBS-seq read alignments. (C) Plots of the gene model,

translation start site and CpG methylation profile for Nas-

vi2EG006064. A vertical bar was drawn for each CpG at its

position in the gene, color-coded by the methylation percentage in

proportion to the bar length (blue: methylated Cs; red: non-

methylated Cs). There are 137 covered CpGs in the gene region.

(D) Bisulfite sequencing verification results for the 43 CpGs sites in

the 403 bp 59-coding region (shown in A) using the cloning

method with 30 clones sequenced. The estimated methylation

percentages at each CpG site from the WGBS-seq and single-gene

bisulfite sequencing were shown on the top.

(TIF)

Figure S7 Validation of CpG methylation status for methylated

gene Nasvi2EG002725 in adult females. (A) IGV browser

screenshot of the WGBS-seq alignments in a 296 bp region on

SCAFFOLD3 (3229802–3230097), showing the CpG sites in

methylated gene Nasvi2EG002725. All 20 covered CpGs in 59

1 kbp transcript region were methylated in the WGBS-seq data for

this gene. (B) Zoom-in view for the boxed region in (A),

demonstrating that the C in CpG context remains a C after

bisulfite conversion. (C) Plots of the gene model, translation start

site and CpG methylation profile for Nasvi2EG002725. A vertical

bar was drawn for each CpG at its position in the gene, color-

coded by the methylation percentage in proportion to the bar

length (blue: methylated Cs; red: non-methylated Cs). There are

125 covered CpGs in the gene region. (D) Bisulfite sequencing

verification results for the 9 CpGs sites in the 296 bp 59-coding

region (shown in A) using the cloning method with 25 clones

sequenced. The estimated methylation percentages at each CpG

site from the WGBS-seq and single-gene bisulfite sequencing were

shown on the top. Percentages of mCpG labeled in gray in the

WGBS-seq data are the ones with less than 10 read coverage.

(TIF)

Figure S8 Validation of CpG methylation status for methylated

gene Nasvi2EG000295 in adult females. (A) Plots of the gene

model, translation start site and CpG methylation profile for

Nasvi2EG000295. A vertical bar was drawn for each CpG at its

position in the gene, color-coded by the methylation percentage in

proportion to the bar length (blue: methylated Cs; red: non-

methylated Cs). There are 102 covered CpGs in the gene region.

(B) Bisulfite sequencing verification results for the 7 CpGs sites in

the 357 bp 59-coding region using the cloning method with 20

clones sequenced. The estimated methylation percentages at each

CpG site from the WGBS-seq and single-gene bisulfite sequencing

were shown on the top. Percentages of mCpG labeled in gray in

the WGBS-seq data are the ones with less than 10 read coverage.

(TIF)

Figure S9 Validation of CpG methylation status for methyl-

ated gene Nasvi2EG003593 in adult females. (A) IGV browser

screenshot of the WGBS-seq alignments in a 283 bp region on

SCAFFOLD4 (5219843–5220125), showing the CpG sites in

methylated gene Nasvi2EG003593. All 19 covered CpGs in 59

1 kbp transcript region were methylated in the WGBS-seq data

for this gene. (B) Zoom-in view for the boxed region in (A),

demonstrating that the C in CpG context remains a C after

bisulfite conversion. (C) Plots of the gene model, translation start

site and CpG methylation profile for Nasvi2EG003593. A

vertical bar was drawn for each CpG at its position in the gene,

color-coded by the methylation percentage in proportion to the

bar length (blue: methylated Cs; red: non-methylated Cs). There

are 48 covered CpGs in the gene region. (D) Bisulfite sequencing

verification results for the 8 CpGs sites in the 283 bp 59-coding

region (shown in A) using the cloning method with 14 clones

sequenced. The estimated methylation percentages at each CpG

site from the WGBS-seq and single-gene bisulfite sequencing

were shown on the top. Percentages of mCpG labeled in gray in

the WGBS-seq data are the ones with less than 10 read

coverage.

(TIF)

Figure S10 DNA methylation and observed/expected CpG

ratios (CpG O/E). (A) Histograms for distribution of CpG O/E

ratios in the 59 1 kbp coding region for methylated (blue), non-

methylated (red) and all genes (purple). (B) Distribution of CpG

O/E ratios in classes of genes with different percentage of

methylated CpG sites in 59 1 kbp coding region. Red: non-

methylated genes; blue: methylated genes. (C) Top: Stacked

barplot GC content in methylated (blue) and non-methylated

genes (red). Middle: scatterplot of GC percent and CpG O/E

ratios in methylated genes. Bottom: scatterplot of GC percent and

CpG O/E ratios in non-methylated genes.

(TIF)

Figure S11 Clustering of methylated genes in Nasonia genome. (A)

Fourfold plot of the neighboring methylated-methylated genes

(MM), non-methylated-non-methylated genes (NN) and methylat-

ed-non-methylated genes (MN) and non-methylated-methylated

(NM). (B) Middle panel: Counts of non-overlapping close

neighboring genes (,1 kb distance) in four orientation categories

(Head-Head, Tail-Tail, Head-Tail and Tail-Head). Top panel:

Percentage of methylated genes for the first gene (orange) and

second gene (green) gene in the four categories (HH, TT, HT and

TH). The red horizontal line is the genome average. Bottom panel:
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barplot of methylation status for HH, TT and HT/TH groups. The

expected percentages for each category were plotted as a block dot.

(TIF)

Figure S12 Distribution of percentages of unconverted Cs at

non-CpG sites.

(TIF)

Figure S13 Eight candidate non-CpG methylation sites in which

the methylation is actually in CpG context due to reference sequence

error or paralogous sequences in the genome. The IGV browser

screenshot was shown for each candidate non-CpG methylation sites.

The unconverted Cs were in CpG context instead of non-CpG

context. (A) A spurious non-CpG methylation site due to reference

genome sequencing error. (B–H) seven examples of spurious non-

CpG methylation sites due to paralogous sequences in the genome.

(TIF)

Figure S14 Validation of non-CpG methylation site in gene

Nasvi2EG004247 in adult females. (A) IGV browser screenshot of

the WGBS-seq alignments (top) and RNA-seq coverage (bottom) for

Nasvi2EG004247 gene region on SCAFFOLD6 (1765528–

1768213), showing the CpG sites methylation in this gene. The

candidate non-CpG methylation site at position 1767201 is labeled

in the red box. (B) Zoom-in view for the boxed region in (A),

demonstrating that the non-CpG methylation in CAT context on

the minus strand, with 42% methylated Cs estimated from the

WGBS-seq reads. (C) Plots of the gene model, translation start site

and CpG methylation profile for Nasvi2EG004247. A vertical bar

was drawn for each CpG at its position in the gene, color-coded by

the methylation percentage in proportion to the bar length (blue:

methylated Cs in CpGs; red: unmethylated Cs in CpGs). There are

44 covered CpGs in the gene region. The 252 bp target region for

bisulfite sequencing validation of the non-CpG methylation is

labeled at the bottom. (D) Bisulfite sequencing verification results at

the candidate non-CpG methylation site (site #14). The estimated

methylation percentages at all C positions from the WGBS-seq and

single-gene bisulfite sequencing were shown on the top. There are

one CpG C (site #20) and 27 non-CpG Cs in this region. 10/19

(53%) clones have a C at the CpG C position, which is consistent

with the methylation status in WGBS-seq data. Among the rest of the

27 non-CpG Cs, only the candidate non-CpG site has unconverted

C in more than one clone. The non-CpG methylation at site #14

was confirmed and 3/19 (16%) clones have unconverted Cs.

(TIF)

Figure S15 Distribution of the normalized tiling array expres-

sion values in five developmental stages. Plotted on the x-axis is the

normalized tiling array expression value (log2). The y-axis is the

gene count for each stage. The median expression value for each

stage is labeled with the red vertical line.

(TIF)

Figure S16 Stacked barplot for expressed methylated and non-

methylated genes. Stacked barplot of methylated and non-

methylated genes with adult RNA-seq expression level FPKM

$1, binned by different expression level categories. Red: non-

methylated genes; blue: methylated genes.

(TIF)

Figure S17 DNA methylation status and tiling array median

expression level. Distribution of median tiling array expression

level (log2) for methylated (blue), non-methylated (red) and all

genes (purple).

(TIF)

Figure S18 Expression breadth and the adult female RNA-seq

expression level for methylation and non-methylated genes.

Plotted on the y-axis is the log10 coefficient of variation (CV) for

tiling array expression values in five developmental stages. On the

x-axis is the RNA-seq expression level in adult female samples

(log10 FPKM). The methylated genes were represented with blue

dot and non-methylated genes with red dot. The fitted curve and

confidence interval using non-parametric local regression for

methylated and non-methylated genes were plotted in blue and

red curve, respectively.

(TIF)

Figure S19 Expression breadth and the adult female tiling array

expression level for methylated and non-methylated genes.

Scatterplot of expression breadth (log2 expression CV) on y-axis

against adult female gene expression level (log2 signal intensity) in

tiling array on x-axis, color-coded by adult female methylation

status (blue: methylated genes; red: non-methylated genes). Fitted

lines using non-parametric local regression are shown for

methylated and non-methylated genes respectively.

(TIF)

Figure S20 DNA methylation status and gene expression level,

expression breadth and number of expressed tissues. Relationship

between DNA methylation status, gene expression level, expres-

sion CV and number of expressed stages. Plotted on the y-axis is

the average expression CV, and on the x-axis is the average gene

expression level. Methylated (in blue) and non-methylated genes

(in red) present in 0–5 developmental stages are plotted as separate

round dot. The size of the area is in proportion to the number of

genes in each category.

(TIF)

Figure S21 Enriched Gene Ontology categories for methylated

gene in Nasonia genome.

(TIF)

Figure S22 Distribution of RNA-seq expression level for the four

methylation-alternative splicing classes. Plotted here is the distribu-

tion of adult female RNA-seq expression level (log10 FPKM) for

alternatively spliced methylated, alternatively spliced non-methyl-

ated, non-alternatively spliced methylated, non-alternatively spliced

non-methylated genes (from left to right). For methylated genes, the

expression levels of alternatively spliced genes were not significantly

higher than the non-alternatively spliced ones (P-value = 0.67,

Kolmogorov-Smirnov test, one side). For non-methylated genes, the

expression levels of alternatively spliced genes were significantly

higher than the non-alternatively spliced ones (P-value,2.2610216,

Kolmogorov-Smirnov test, one side).

(TIF)

Figure S23 Correlation between percentage of mCpGs and

fraction of major spliced form in alternatively spliced methylated

genes. Scatterplot for percentage of methylated CpGs and fraction

of major spliced form in alternatively spliced methylated genes.

The fitted lines using non-parametric local regression are shown in

red.

(TIF)

Figure S24 Gene expression, DNA methylation and alternative

splicing profile for three methylated genes. (A) Nasvi2EG000107

showing differential 59-exon usage. (B) Nasvi2EG013697 showing

differential middle exon usage. (C) Nasvi2EG022273 showing

intron retention. For each panel, plotted at the top is the IGV

browser screenshot showing adult female RNA-seq coverage (on

log scale) and read alignments in the gene region. Plotted at the

bottom are the CpG methylation profile at covered CpG sites from

WGBS-seq data and the exon model of the alternatively spliced

transcripts from OGS2 gene models. The locations of methylated
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CpG clusters were shown as blue horizontal boxes in (A). A

vertical bar was drawn for each CpG at its position in the gene,

color-coded by the methylation percentage in proportion to the

bar length (blue: methylated Cs; red: non-methylated Cs). OGS2

transcript variants detected in the RNA-seq data with high

abundance were plotted at the bottom. The remaining minor

forms were not shown in this figure.

(TIF)
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