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ABSTRACT

he role of excitatory processes in human visual learning has been well characterised through

the use of technologies such as functional magnetic resonance imaging (fMRI). However, es-

tablished imagingmodalities do not distinguish excitatory processes from the inhibitory ones

that are also involved. Here we investigate inhibitory processes using magnetic resonance

spectroscopy (MRS) and the MEGA-PRESS pulse sequence. We measure concentrations of

the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) in diferent brain regions

as functional markers of inhibitory potential. We then investigate the correlations between

GABA concentrations and psychophysical learning metrics. We detail a full analysis pipeline

that improves the accuracy of in vivo GABA quantiication and introduce new scaling meth-

ods to resolve the grey matter contribution to metabolite measurements. We develop visual

learning experiments that are mediated by training diiculty, which we link to inhibitory pro-

cesses across diferent time scales. We also present novel evidence for GABAergic inhibitory

mechanisms across multiple brain areas using ine and coarse discrimination tasks. Our re-

sults support a cooperative top-down and bottom-up model of visual learning in occipital

and frontal cortical regions. Our indings reveal chemical interactions with cognition to con-

tribute to our understanding of inhibitory processes in the human learning brain.
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1
INTRODUCTION

he capacity to learn and assimilate knowledge is a remarkable evolutionary feature that al-

lowsmany species to plan and adapt to the challenges of survival in competitive environments.

his capacity has been extensively studied in humans. Despite considerable eforts across nu-

merous scientiic disciplines, the processes for how we learn remain largely unknown. In fact

understanding the workings of the human brain is still considered as one of the grand chal-

lenges of science and advances in this ield have potential beneits in many important areas

such as health and education.

he reasons why our understanding is incomplete are related to the inherent complexity

of our brains and limitations of existing investigative tools. Explanations of the processes be-

hind learning must integrate across multiple levels of analysis (psychological, computational,

synaptic, cellular, chemical and molecular) and need to encompass the massively intercon-

nected neuronal structure of the brain. Although this integration of analysis scales has yet

to be realised, progress has been made in the mapping of brain activity, largely through the

measurement of cerebral blood low and electrical activity. his has helped us to understand

that the iring of neurons in coordinated networks is involved in how we learn, but this re-

mains an incomplete explanation. he electrical activity is dependent on chemical processes,
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principally the release of neurotransmitters that modulate the activation or suppression of

neuronal activity.

his aspect, the molecular level of analysis, is one that has received less attention in the

scientiic community and is the focus of the research in this thesis. By investigating chemical

interactions with learning we propose that our knowledge of the workings of the human brain

might be extended. For example the measurement of particular neurotransmitters might fur-

ther our understanding of the excitatory and inhibitory balance of neuronal activity, which is

not distinguishable through techniques that measure electrical activity alone.

his is the key idea for the research described in this thesis, to investigate aspects of learn-

ing in the human brain by examining correlates between neurotransmitter concentrations

and learning performance.

1.1 Research Areas

he research areas for this project are interdisciplinary in nature and cover aspects of psy-

chology and physical science. For the life science areas we were interested in learning and

in particular focussed on learning in a vision context. We investigated this through experi-

ments where we tasked volunteers to diferentiate between shape categories in visual learning

psychophysics paradigms. We were also interested in the efect of training diiculty on vi-

sual learning performance, especially across diferent time scales. hese experiments were

designed to elicit diferences in task performance, congruent with the notion that learning

diferences may be mediated by the efect of dissociable neural mechanisms. he results from

psychophysics experiments can be used to suggest that dissociable mechanisms are involved,

but they cannot measure neural activity directly and so cannot be used to conirm that this is

the case.
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he mechanisms involved in visual perceptual learning in humans are most commonly

investigated through the application of functional magnetic resonance imaging (fMRI). his

technique can only be used to study neural activity through the proxy of blood low mea-

surements, in contrast to magnetic resonance spectroscopy (MRS), which is capable of mea-

suring neurotransmitter concentrations directly. Of key interest in this thesis is the role that

inhibitory processes play in learning. he chief inhibitory neurotransmitter in the human

brain is gamma-aminobutyric acid (GABA), and so we propose to use magnetic resonance

spectroscopy techniques to measure GABA concentrations. In this way we intend to use the

measurements as indicators of inhibitory potential, thereby linking them to inhibitory neural

mechanisms.

GABA is present in low concentrations in the human brain and can not be reliably mea-

sured using standard MRS techniques. here are specialised MRS techniques designed for

this task and we focus on the most common method, which uses the MEGA-PRESS pulse

sequence. At the time of this research analysis routines for MEGA-PRESS were not readily

available, so we developed a pipeline of processing methods as part of our overall research

goals. his investigation into MEGA-PRESS MRS acquisition and analysis techniques form

the physical science aspects of our research.

A third aspect of our research is to combine the life science and physical science aspects

by linking learning with inhibitory processes. We planned to do this by examining the corre-

lations between visual learning performance metrics and measures of inhibitory neurotrans-

mitter concentrations.
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1.2 Aims and Objectives

Our overarching aims are to link GABA measurements from MEGA-PRESS MRS with psy-

chophysics performance metrics to characterise learning as a phenomenon that involves in-

hibitory mechanisms. Our aims and objectives are framed within the physical and life science

areas outlined in the introduction. For the psychology based parts our objectives are:

• To develop psychophysics experimental paradigms in visual learning that suggest dis-

sociable learning performance according to task.

• We intend to test the hypothesis that dissociable learning performance is revealed by

increasing the frequency of testing in multi-session psychophysics experiments.

For the physical science based aspects of the research our aims are focussed on the mea-

surement of GABA using theMEGA-PRESS pulse sequence. here are numerous obstacles to

obtaining accurate measurements of in vivoGABA using this sequence and so we determined

to investigate the diiculties and advance solutions:

• A speciic objective is to discover appropriate parameter settings and experimental con-

ditions for running successful MEGA-PRESS scans, including a principled way of tar-

geting relevant brain regions of interest.

• We aim to develop analysis routines and strategies to improve the accuracy of mea-

surements of GABA for in vivo experiments. hese strategies should address sources of

error and areas where there is no consensus among the research community.

Our main hypothesis is that inhibitory processes are involved in visual perceptual learn-

ing and so we propose to measure inhibitory neurotransmitter as an indicator of inhibitory
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potential. We intend to test this hypothesis by bringing the psychophysics and MRS aspects

of the research together:

• In particular we propose to conduct correlative studies of visual learning performance

versus GABA concentration levels.

• We hypothesise that correlations between psychophysics performance and GABA con-

centrations may occur in more that one brain region and we aim to investigate this

with experiments that target multiple brain areas, to investigate top-down inhibitory

processes.

• Our inal objective is to investigate tissue segmentation strategies and alternative scal-

ing paradigms to test the hypothesis that grey matter contributions to GABA concen-

trations might be better predictors for visual learning performance than those from

white matter. his hypothesis is based on the observation that connections between

cells terminate largely in grey matter and these terminals are the site of GABA produc-

tion and expression, whereas the bulk of white matter consists of axons that allow the

transmission of action potentials.

1.3 Overview of Chapters

We arranged the chapters starting with introductory materials that deine the context of our

research hypotheses (Chapter 2: Visual Learning and Magnetic Resonance). We review

key aspects of the neurobiology of the visual system, with respect to the way that neurons

function to release chemicals that modulate activity during cognitive processes. We discuss

our motivation for using psychophysics and MRS techniques to investigate learning and we

survey the state of the art in a literature review for MEGA-PRESS research in visual learning
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paradigms.

We set out our research into acquiringMEGA-PRESS spectra and subsequent signal analy-

sismethodologies inChapter 3: MEGA-PRESSAcquisition andChapter 4: Post-Acquisition

Processing. hese chapters represent the physical science aspects of our research and are

complemented by experiments described in Appendix A: Time Course of MEGA-PRESS.

Further experimental chapters follow, starting with visual learning experiments where

we use psychophysics to characterise dissociable learning performance according to train-

ing diiculty (Chapter 5: Time Course of Training Diiculty Mediated Visual Learning).

his chapter is based on the work of pilot studies, which we describe in Appendix B: Visual

Learning Pilot Studies and together they represent the psychology aspects of our research.

he physical and life science aspects converge in the next two chapters (Chapter 6: GABA

VersusTrainingDiicultyMediatedVisual Learning andChapter 7: GABAVersusCoarse

and Fine Visual Learning). In these chapters we investigate correlations between learning

performance and GABA concentrations to explore our main thesis aims. In Chapter 8: Dis-

cussion and Conclusions, we discuss the thesis as a whole in the context of our research

hypotheses. We include a section on further work, where we suggest that MRS techniques

can be combined with other functional modalities to include information at the molecular

level of analysis. his has the potential to extend our knowledge of brain function by supple-

menting existing measures of activation with chemical measures that point to the excitatory

and inhibitory balance that modulates the workings of the learning brain.

6



2
VISUAL LEARNING ANDMAGNETIC

RESONANCE

2.1 Introduction

he mechanisms underlying cognition consist of biological processes that involve electrical

and chemical transmission of signals through organised networks of specialised cells called

neurons. In humans, learning in visual paradigms has been investigated chiely through be-

havioural testing and brain imaging modalities. hese approaches have been used success-

fully in inferring the underlying mechanisms, but they do not distinguish between inhibitory

and excitatory processes. Our research hypothesis involves the investigation of top-down

inhibitory processes associated with learning and we chose to focus on the relationship of

inhibitory neurotransmitters in a vision paradigm. his chapter sets the context for this re-

search by surveying the neurobiological basis of the functioning brain, covering the excita-

tory and inhibitory responses of neurons and describes the architecture and connectivity that

characterises learning. We introduce ideas in visual learning and psychophysics and discuss

magnetic resonance concepts involved with measuring cognitive processes, in particular the

functional aspects of brain chemistry through magnetic resonance spectroscopy.
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We deine learning in terms of brain plasticity, which can be characterised through be-

havioural changes as measured through performance metrics, or morphological changes that

can be investigated using imaging modalities. Speciically we are interested in the widely

shared theory that brain plasticity in learning is related to modulation of lateral interactions

and feedback from higher cortical areas (Ahissar & Hochstein, 2004; Kourtzi & DiCarlo,

2006). According to this view learning, including visual learning, is a two-way process in-

volving both bottom-up and top-down streams that employs both excitatory and inhibitory

mechanisms. We outline the neurobiology of the visual system by describing the basic func-

tionality of individual neurons and how they connect and communicate in networks across

the brain.

We examine aspects of the development of ideas in perceptual learning and introduce the

discipline of psychophysics to provide the context for our choices of visual learning paradigms

that we use in experimental chapters further on in the thesis. We discuss brain metabolites

and our motivation for concentrating on the inhibitory neurotransmitter GABA.

he most common brain imaging modality is functional magnetic resonance imaging

(fMRI). We discuss fMRI in the context of perceived limitations with regard to the mea-

surement of inhibitory processes. We then introduce magnetic resonance spectroscopy as

the modality that we intend to use for measuring brain metabolite quantities, and we dis-

cuss edited pulse sequences as a solution to the diiculties in measuring low concentration

metabolites in vivo. his introduces the MEGA-PRESS sequence and we link characteristics

of the chemical properties of GABA to the physical science of the acquisition process to show

how GABA can be resolved from more abundant, overlapping metabolites.

We survey the state of the art in a literature review on MEGA-PRESS and learning exper-

iments to contextualise our topic as one that is a niche, but growing research area.

8



CHAPTER 2. VISUAL LEARNING ANDMAGNETIC RESONANCE

2.2 Neurobiology of the Visual System

he neurobiology of the visual system is a description of the neuroanatomy, or structure, and

the neurophysiology, which can be thought of as the functional aspects of vision. It is com-

mon to organise descriptions of neurobiology in terms of diferent levels of analysis; cellular,

molecular, systems and behaviour. Here we will follow this convention by outlining the neu-

robiology of the visual system starting with a description of the neuron’s major structure and

function. We will describe the function of neurons in terms of the electrical and chemical

transmission of signals. We will also introduce the ways in which neurons are organised into

networks of functionally distinct brain regions and discuss the role of excitation and inhibi-

tion in learning. his is in line with the idea that the speciicity of the synaptic connections is

what underlies perception and learning.

2.2.1 Neurons

Structure of the Neuron. he neuron can be described as the basic unit of the brain and

each neuron is a signalling unit. A neuron consists of a nucleus, dendrites that receive im-

pulses and an axon that transmits impulses to other cells (Figure 2.1A). Neurons can be clas-

siied into over 1,000 diferent types, but in essence they can be reduced to four stages of

function; input, integrative, conductive and output stages. hese stages cover the electrical

and chemical transmission of signal that characterises nerve cells in the brain. In terms of

numbers of neurons in the brain, these have been estimated at 86 billion (Azevedo et al.,

2009). A signal originating from one neuron is passed to others along a single axon which

then splits into many branches. heir terminal points come in close proximity to dendrites of

other neurons at synapses. hese are sites at which electrical and chemical signals are passed

from one neuron to another (Figure 2.1B).
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Figure 2.1: Neuronal connections. (A) Schematic of neuronal structurewith presynaptic and postsynaptic
connections. (B) Synaptic connection showing neurotransmitter release: (1) Action potential arrives and
triggers the entry of Ca2+. (2) In response to Ca2+, synaptic vesicles fuse with the presynaptic membrane
then release neurotransmitter. (3) Ion channels open as neurotransmitter binds with receptors, this causes
ions to enter and change the postsynaptic cell potential. Image adapted from Splettstoesser (2015).

Synaptic Connections. A typical neuron forms and receives 1,000 to 10,000 synaptic con-

nections. Synapses are characterised as either electrical or chemical. With electrical synapses

a direct connection allows charge to be transmitted between presynaptic and postsynaptic

cells. In chemical synapses an action potential in the presynaptic cell leads to the release of

a chemical transmitter from the nerve terminal. he transmitter difuses across the synaptic

clet and binds to receptor molecules on the postsynaptic membrane. his leads to changes

in the membrane potential of the postsynaptic neuron, through the opening or closing of ion

channels, which either excites or inhibits the iring of action potentials. Most synapses in the

brain are chemical.

Excitatory and Inhibitory Responses. he difusion of neurotransmitter release exists as

part of a continuum of constantly changing membrane potentials. An excitatory postsynaptic

potential (EPSP) is an action potential that increases the likelihood for a postsynaptic neuron

to ire an action potential. he excitatory response arises when positively charged sodium

ions low into a cell depolarising its membrane, this cumulative depolarisation can lead to
10
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the iring of action potentials. An inhibitory postsynaptic potential (IPSP) usually causes

negatively charged chloride ions to enter a cell, which potentially results in a decrease in iring

rate. he excitatory or inhibitory action depends on the neurotransmitter released at the pre-

synaptic membrane and the nature of receptors at the post-synaptic membrane. Nearly all

fast synaptic actions in the brain are mediated by two main amino acid neurotransmitters;

glutamate, which is excitatory, and GABA, which is inhibitory.

Neuronal iring rate is currently thought to be the primary manner in which informa-

tion is encoded in the nervous system and not the magnitude of the action potentials. he

magnitude of an action potential evolves over time but usually reaches the same threshold

and therefore can be thought of as iring in a binary fashion. In terms of visual perception,

the function of neurons is determined by their tuning to visual stimuli, for example line ori-

entations, directions of movement or responses to colours. A neuron’s discriminability in a

stimulus space can be measured to determine its ‘psychometric’ curve (Gilbert & Li, 2013).

BrainMetabolites. Metabolites are the precursors and products of metabolic processes and

there have been over 3,000 identiied in the human body and 309 in cerebrospinal luid (CSF).

Common brain metabolites include N-acetylaspartate (NAA), creatine (Cr), choline (Cho),

myo-Inositol (mI), lactate (Lac), glutamate (Glu), glutamine (Gln), glycine (Gly), aspartate

(Asp) and γ-aminobutyric acid (GABA) (Ritsner & Gottesman, 2009). Some metabolites act

as neurotransmitters, with the principal ones being Glu and Asp, which are excitatory, and

GABA, which is inhibitory. GABA is of prime interest in this work and is discussed in more

detail in Section 2.5.1.

Plasticity of Neuronal Connections. Neuroplasticity is the term used to describe lasting

changes that occur in the brain including changes at the single cell level. Synaptic plasticity
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refers to changes in the connections between neurons as apposed to non-synaptic plasticity,

which involves changes in the cells’ intrinsic excitability. hese changes can be either short-

term, resulting from modiication of existing synaptic proteins, or long-term, which may in-

volve the growth of new synapses, or the elimination of existing ones. Neuroplasticity is at its

most active during the development of the neural system at the beginning of life. However it

remains active throughout life, playing a central part in learning when the synaptic structure

and function are modiied in response to experience.

Underpinning synaptic plasticity is modulation of transmitter release. Synaptic strength

can be modiied presynaptically, by altering the release of neurotransmitter, or postsynapti-

cally by modulating the response to transmitter. Long term changes in these mechanisms are

important to learning (Kandel, 2013, p. 284).

2.2.2 Neural pathways

As well as being highly connected individually, neurons are organised into tracts from one

structure to another to form pathways or circuits. he complexity of behaviour is linked to the

organisation of cells into anatomical circuits with distinct functions, rather than the number

of diferent types of cells. A simple description of the visual pathway might consist of the eye,

the optic tract, the lateral geniculate body and the primary visual cortex. his arrangement

describes a largely serial pathway that proceeds from input through to low level processing

of visual stimuli. his description can be further elaborated to include higher-order sensory

areas where more complex processing takes place. Higher-order areas can be processed in

parallel and have connections that feed back to earlier areas in the pathway. For example low

level visual processing such as edge detection might occur in the visual cortex in cells organ-

ised with small receptive ields that are connected mainly to nearby cells. hese areas feed

12
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forward to higher-order areas such as the lateral occipital complex, where the edges are con-

structed into overall shapes by neurons with large receptive ields andwhich have connections

to distant areas in the brain such as the frontal and limbic lobes. As higher-order areas project

back to the lower-order areas from which they receive input, areas that are sensitive to global

patterns can modulate the activity of areas that are sensitive to local detail.

Retina. he retina is not just a passive sensor, its neurons carry out the earliest stages of

the process of visual perception. Light photons that fall on photoreceptors (rods and cones)

trigger a change in the photoreceptor’s membrane potential. he nerve impulse is then passed

to bipolar, horizontal and amacrine cells and then to the retinal ganglion cells. Ganglion cells

are involved in the formation of receptive ields, on-centre of-surround and, symmetrically,

of-centre on-surround. he receptive ields are of diferent sizes and have diferent ratios

of the centre and the surround collection area. Ganglion cells integrate the signals from the

receptive ields and pass them on to the visual cortex which then makes use of them at the

stage of responding selectively to local frequencies and orientations (Hubel, 1988).

Visual Cortex. Signal from the retinal neural cells is transmitted via the optic nerve ibres

(via the lateral geniculate body) to the primary visual cortex. he visual cortex forms a part

of the cerebral cortex, a 2–4 mm thick outer layer of neural tissue. Anatomically, the cerebral

cortex is divided into a number of lobes (Figure 2.2A), which have distinct functions; frontal

(short term memory, planning future actions, control of movement), parietal (somatic sensa-

tion, relating body image to extrapersonal space), occipital (vision), and temporal (hearing,

learning, memory and emotion). he lobes can be further divided into motor and sensory

regions (Figure 2.2B).

he primary visual cortex (area V1), which is anatomically equivalent to striate cortex,

13
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visual AA
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auditory cortex
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Figure 2.2: Brain areas. (A) Visual cortex lobes, arrows indicate the dorsal streamor “where pathway” (blue
arrow) and the ventral stream or “what pathway” (red arrow). (B)Motor and sensory regions of the cerebral
cortex. AA stands for association area. Image adapted from Blaus (2014).

maintains the signal’s topographic mapping. Further visual areas, V2–V5, are thought to in-

creasingly correspond to more abstract representations such as local orientations, colour, and

frequency (V2), motion (V3), complex shapes (V4) and global percepts (V5). Whereas the

direction of signal propagation up until V2 is primarily feed-forward, there is evidence for

the existence of feedback pathways into the higher visual areas.

Signals originating from V1 take two distinct pathways: Ventral, going through V2 and

V4, is referred to as the “what pathway” and is related to object recognition and long-term

memory; and dorsal, going through V2, V5 and V6, referred to as “where pathway”, related

to motion, object locations and eye control.

Learning Areas of the Brain. Diferent brain areas and pathways work together to con-

struct and encode the images we see, these processes are what leads to learning in a visual

context. he visual cortex is central to these processes with pathways that include the supe-

rior colliculus pathway, the middle temporal area pathway, the frontal eye ields pathway and

the inhibitory pathway, which regulates activity in the superior colliculus and is responsible

for obligatory attention. hese are all important to the development of visual attention in hu-

mans, but other areas and pathways outside of the occipital lobe are also important in vision
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and visual learning. For example the inferior temporal cortex, the superior parietal cortex

and the cerebellum are all involved in recognising new visual information. Areas in the pre-

frontal cortex (and basal ganglia) have been implicated in learning to form visual categories

and represent task-relevant features (Duncan, 2001; E. K.Miller &Cohen, 2001; B. T.Miller &

D’Esposito, 2005) and Schwarzkopf, Zhang, and Kourtzi (2009) identiied a learning network

that includes occipito-temporal and fronto-parietal areas using fMRI.

Recognition is predicated on neural plasticity or the brain’s ability to reshape itself based

on new information (Poldrack, Desmond, Glover, &Gabrieli, 1998). Ater recognition comes

categorisation and the orbitofrontal cortex and two dorsolateral prefrontal regions have been

implicated in categorising visual information (Vogels, Sary, Dupont, &Orban, 2002). Follow-

ing recognition and categorisation comes encoding, which is essential for learning. Several

brain areas are involved in this including the frontal lobe, the right extrastriate cortex, the

neocortex and the neostiatum. he limbic-diencephalic region is important in transforming

perceptions into memories.

Summary. he intention of this section was to give a broad overview of neurobiology of the

visual system to set the context for the work of the thesis. It was meant to highlight the facts

that learning involves complex interactions at many diferent levels and acrossmany disparate

brain areas, and that these interactions are not yet fully understood. Later on, we will expand

on the idea that the locus for inhibition in learning during visual tasks is spread across diferent

areas of the brain, in particular between visual areas and prefrontal cortical areas.

2.3 Visual Learning

his section gives a historical perspective of perceptual learning to set the context for the visual

learning paradigms that we selected for the experimental chapters in this thesis. According to
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this perspective theories about perceptual learning changed from predominantly feedforward

notions to later include top-down mechanisms. he neuro-anatomical substrates underlying

learning efects are still an open question, although a growing body of literature has identiied

the conditions for generalisation of learning across stimuli and tasks (Sagi, 2011).

2.3.1 Historical Perspective

An early view of perceptual learning was that it involved improving the selection of available

information that was relevant for the task (Gibson, 1969). At this time training had not been

extensively studied and practicewas usually employed to familiarise subjects with a task rather

than to elicit performance improvement. During the 1970s new understandings of visual

cortex led to a shit towards neuronal accounts of learning. Ramachandran and Braddick

(1973) were among the irst to ind learning efects to be orientation selective speciically to

oriented lines introduced in training periods. In work on adapting gratings De Valois (1977)

reported increased sensitivity following practice and concluded that leaning occurred either

by restricting the sample pool to cells most sensitive to gratings, by changing the sensitivity

of detectors or by making new connections between existing units. Early studies established

that perceptual learning involves improvement of sensitivity of low level visual tasks rather

than a change in decisional bias (for example contrast adjustment).

Fiorentini and Berardi (1980) suggested that learning involved modiication at the level

that integrates the output of orientation-selective neurons in the visual cortex in experiments

that showed that learning was selective for stimulus orientation, spatial-frequency and reti-

nal location. Ball and Sekuler (1987) suggested Middle Temporal (MT) as a cortical site for

learning efect in motion discrimination paradigms. he 1980s saw a move to acceptance that

plasticity occurs in the adult visual system, thus challenging the accepted view that critical
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periods were limited to adolescents. Research around this time was concerned with whether

perceptual learning involved the rewiring of neurons in early visual areas or if it was driven by

improved readout from these (unchanged) neuronal representations. What was established

was that diferent tasks rely on diferent brain areas and that neurons in the visual system

responded to a limited set of stimuli.

During the 1990s a feedforward model of perceptual learning was popular, particularly to

explain simple visual features (luminance, colour, motion, orientation). his model posits an

architecture with processing layers stacked hierarchically with parallel image analysis of low

level features feeding selective read out to higher levels of processing (Dosher & Lu, 1999).

his mechanism starts with an input layer and inishes with a decision unit that integrates

weighted inputs from neurons earlier in the processing stream.

Towards the end of the decade and into the 2000s top-down models of perceptual learn-

ing began to appear to explain more complex visual learning paradigms. In these models

early visual areas were thought to become tuned by feedback connections from higher corti-

cal circuits (Roelfsema & van Ooyen, 2005; Roelfsema, 2006). Evidence to support top-down

models was provided from fMRI experiments (Kourtzi, Betts, Sarkheil, & Welchman, 2005;

Sigman et al., 2005) and cortical anatomy, which revealed that long-range interactions do exist

for visual cortex (Gilbert, Li, & Piëch, 2009). Figure 2.3 shows some of the established ventral

pathways concerned with object recognition, including frontal to occipital connections that

we explore in later experimental chapters.

he work and ideas outlined above are largely concerned with the locus of perceptual

learning in the brain and their supporting circuits. here has been less work speciically on

excitation and inhibition, although these two mechanisms are fundamental to the processes

of learning. he glutamatergic system is (depending on the receptor system) a fast-signalling
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PF

FEF

V2
V4

LGN

TEO

Figure 2.3: Ventral brain pathways. The vi-
sual cortical pathways begin inV1, which receives
input from lateral geniculate nucleus LGN. The
feedforward connections (blue arrows) proceed
through the temporal lobe. Feedback connec-
tions (red arrows) provide top-down inluences
that mediate re-entrant processing. Connections
can be direct reciprocal, such as V2 — V1. Alter-
natively they can cascade over successive of areas,
e.g. prefrontal cortex PF— frontal eye ields FEF
—V4—V2—V1. Other areas in the igure are in-
ferior temporal area IT and tectum opticum TEO.
Image adapted from Kandel (2013).

system that is involved in excitation and long-term potentiation (Willard & Koochekpour,

2013). GABAergic processes, which are inhibitory (in addition to other processes such as

generating oscillatory responses), ensure that only those neurons with the most support be-

come strongly active. hat is, features irrelevant to a task are out-competed and so responses

are only to the most relevant features. Distinguishing inhibitory and excitatory mechanisms

has received less attention from the perceptual learning research community compared to

using measures of brain activation that conlate the two. his is because the dominant brain

imaging modalities, fMRI and EEG, can not distinguish inhibitory and excitatory processes

directly.

2.3.2 Psychophysics

Psychophysics is deined as the scientiic study of perceptual performance through the sys-

tematic variation of physical stimuli (Bruce, Green, & Georgeson, 2003). Psychophysics has

been used to characterise perceptual learning for many decades and has oten been used to

demonstrate rapid leaning of diicult tasks. Training has been shown to improve a wide

range of visual perceptual skills from low-level feature discrimination, for example orienta-

tion (Fiorentini & Berardi, 1980; Matthews, Liu, Geesaman, & Qian, 1999), motion direction
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Figure 2.4: Glass pattern stimulus images. Sample images used in psychophysics experiments for this
project. From left to right, these samples were created using spiral angles of 35◦, 55◦, 10◦, 80◦ to produce
radial and concentric patterns. The classiication diiculty of these images can be systematically varied
through the manipulation of the spiral angles. The images in this igure were set to 100% signal (no noise).

(Ball & Sekuler, 1987; Z. Liu, 1999; Lu, Chu, & Dosher, 2006), texture (Karni & Sagi, 1991,

1993; Ahissar & Hochstein, 1996) and high-level shape processing and object recognition

(Furmanski & Engel, 2000; Golcu & Gilbert, 2009). Research in these areas has demonstrated

the remarkable plasticity of the adult visual system (Ahissar, 2001; Fine & Jacobs, 2002; Fahle,

2004; Kourtzi, 2010; Sagi, 2011) and has inluenced our own experimental designs. In this sec-

tion we introduce the stimuli and experimental paradigms that we implemented to investigate

our research hypotheses.

he stimuli we chose consisted of dot images, so-called ‘Glass patterns’ (Glass, 1969), as

the visual paradigm for our investigations. hese images are created by aligning adjacent

pairs of dots to shape templates, for examples see Figure 2.4. Glass patterns are lexible tools

in vision research as they can be varied in shape and according to noise parameters. Variation

by shape allows the diiculty of a discrimination task to be controlled through the parametric

alteration of angles between the dot pairs. Altering the noise levels in these visual experiments

can be used to create distinct detection versus discrimination experiments.

In typical Glass pattern psychophysics experiments, distinct categories of dot images are

shown to subjects. he subjects are then tasked to identify the correct category for each image

shown. he diiculty of tasks like this can be controlled by altering experimental parameters.
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Figure 2.5: Interleaved test and training paradigm. (B) Typical psychophysics design, test blocks (white
background) sandwich training blocks (with audible feedback). (A) Interleaved design, test and training
blocks are alternated. Final performance is the same (C,D), but the diferent within-session and between-
session performance is revealed through the time course of the test blocks.

For example the length of time that the images are displayed for, the levels of additional noise

added and the similarity between shape categories can all efect the diiculty of the task. Sub-

ject performance is oten quantiied with a inal test that follows numerous training runs. he

training runs difer from the test runs as feedback is provided during training runs.

We were interested in the time course of subject performance as we hypothesised that

inhibitory processes might interact with learning in distinct ways across diferent time scales.

his led us to design experiments that extended over several sessions and interleaved testing

and training runs to improve the resolution of performance measures compared with typical

psychophysics paradigms.

A schematic of an interleaved session can be seen in (Figure 2.5A). his is diferent to

typical psychophysics experiments where a pre-training test block is oten followed by train-
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ing blocks and a inal post-training test block is used to measure subject learning perfor-

mance (Figure 2.5B). With the more typical psychophysics scheme, comparing performance

on diferent tasks is limited to inal performance measures (Figure 2.5D). By increasing the

frequency of testing overmultiple sessions, we can access performancemetrics within and be-

tween sessions, rather than being limited to overall performance (Figure 2.5C). We hypoth-

esised that this paradigm might reveal task mediated performance diferences that revealed

dissociable learning mechanisms. If dissociative results were indicated then this paradigm

could be used in collaboration with MRS experiments to probe the mechanisms behind the

diferent performance for each task.

2.4 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is the dominant imaging modality for in-

vestigating neural processes in humans (Figure 2.6). he contrast in fMRI is arrived at by

measuring the spin relaxation properties of the nuclei of atoms within tissues (Webb, 1988),

and activated neurons and resting neurons cannot be diferentiated by this technique directly.

Figure 2.6: Sample fMRI images. Whole
brain echo planar images (EPI). We ac-
quired these images during a Glass pattern
recognition experiment.
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he iring of neurons (excitatory activation) however, involves an energy requirement that is

met by an increase in blood low to the site of activated neurons (Logothetis, 2010; Logothetis,

Pauls, Augath, Trinath, & Oeltermann, 2001).

he brain consumes 20% of the oxygen entering the body despite comprising only 2% of

the total body mass. Imaging techniques for cognitive neuroscience have therefore concen-

trated on themetabolic processes associatedwith neural activity rather than the neural activity

directly, and in particular it is increased blood low that is the process that is measured. he

term BOLD (blood oxygen level dependent) signal is used to describe the contrast obtained

during fMRI experiments (Ogawa, Lee, Kay, & Tank, 1990). he energy requirements of ac-

tivated neurons cause a deoxygenation of haemoglobin (Hb). Deoxygenated haemoglobin

(dHb) has diferent magnetic properties than oxygenated Hb (Kherlopian et al., 2008) and

this should lead to a decreased signal as the dHb introduces ield inhomogeneities that inter-

fere with the MR signal. However, ater an initial dip in signal response there is a continued

low of Hb without a commensurate increase in the oxygen consumption rate (Fox & Raichle,

1986; Fox, Raichle, Mintun, & Dence, 1988). he altered balance between Hb and dHb al-

lows a change in image contrast, with typical activation leading to a 1–5% increase in image

intensity (Parrish, Gitelman, LaBar, & Mesulam, 2000), which relects an increase in neural

activity.

Typical resolutions for fMRI are 1–2 mm and within this volume one might ind 1×105

neurons and 1×108 synapses in the brain (Menon, 2001). herefore the BOLD signal repre-

sents a large population efect, but the spatial resolution is still far higher than can be achieved

in magnetic resonance spectroscopy (MRS) modalities. Despite the enviable spatial resolu-

tion of fMRI it is important to note that the BOLD signal does not distinguish between in-

hibitory and excitatory neuronal activation. his can be seen as a limitation in experiments
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that hypothesise the involvement of inhibitory processes for learning. his limitation led us

to investigate MRS techniques that could measure brain chemicals associated with inhibitory

processes, this area is introduced in the next section. We were keen to view MRS as a com-

plement to fMRI and not as a replacement as there are many uses for MR imaging in MR

spectroscopy applications.

2.5 Magnetic Resonance Spectroscopy

Another way of measuring the functioning brain is to use magnetic resonance spectroscopy

(MRS) techniques. MRS provides information on the chemical environment within tissue

due to resonance frequencies of hydrogen protons (for 1H proton spectroscopy, which is the

most common MRS modality used to investigate the human brain).

Nuclei within diferent chemical functional groups exhibit diferent resonance frequencies

because of uniquemagnetic shielding of local molecular electrons (Dager, Oskin, Richards, &

Posse, 2008). he shielding is based on the bond coniguration within the molecules and this
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Figure 2.7: Sample MRS spectrum. We
acquired this single voxel spectroscopy
measurement with a 3 cm3 volume, cen-
tred on the left hemisphere lateral occipital
area, using a PRESS pulse sequence. GABA
appears at three places along the chemical
shift scale and at each place it is dominated
by overlapping peaks of othermetabolites.
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causes a diference in the local magnetic ield experienced by each nucleus. his means that

the nuclei will resonate at diferent frequencies depending on the chemical composition of the

molecule that the atom resides in. he amount of shit in resonance frequency is termed its

chemical shit and this can be measured by an MRS scan to show the chemical environments

as peaks along the chemical shit axis (Figure 2.7) in units of parts per million (ppm). he

position of the peaks corresponds to particular chemicals and the area under the peaks is a

measure of the relative amount of the chemical.

Another modulating efect on the spectrum is caused by J-coupling. his is the result of

indirect interaction of two spins via the intervening electron structure of a molecule (Blüml

& Panigraphy, 2013). Coupling between the nuclei can result in multiplet patterns, which

means that a particular chemical may show as several distinct peaks at diferent points on

the chemical shit scale. Some chemicals will also have an overlap of peaks despite being

chemically unique. his is because there are limitations in spectral resolution that increase the

width of the peaks, causingmore highly concentratedmolecules to obscure less abundant ones

that are adjacent on the chemical shit axis. he range of chemicals measured through MRS

can be manipulated through speciic acquisition parameters and this allows some molecules

to be disambiguated that would otherwise not be separable from masking molecules, this

technique is called spectral editing.

Research in a clinical setting makes use of MRS to characterise functional aspects of the

brain, for example metabolite diferences between normal and diseased tissues can be used

as markers for pathology. he use of MRS to study cognitive processes in the healthy brain

is more novel and it is this area that we concentrated on for the investigation of inhibitory

processes during learning. A beneit of using MRS rather than (or in addition to) fMRI to

study the functioning brain is thatMRShas the potential to distinguish between excitatory and
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inhibitory neurotransmitters, whereas fMRI cannot dissociate inhibitory processes directly.

2.5.1 MRS for GABAMeasurements

For the work in this thesis, we concentrated on GABA as we were interested in inhibitory pro-

cesses during learning and because of its role in synchronising neuronal networks (Cossart,

Bernard, & Ben-Ari, 2005). Metabolites are present at diferent concentration levels in the

brain and some require diferent acquisition parameters in order to resolve them with MRS

techniques.

H3N
+ 4CH2

3CH2
1COO2CH2

Figure 2.8: Chemical formula of GABA.
Coupling results inmultiplet lines in theMR
spectrum (Govindaraju et al., 2000).

GABA is a metabolite that is diicult to detect in vivo using standardMRS.his is because

it is found in low concentrations in the brain and also because of spectral overlap with more

abundant metabolites. he chemical formulation of GABA (Figure 2.8) has implications for

interpreting GABA spectra, and leads to splitting of the signal into triplets at 3.01 ppm and

2.28 ppm, and a quintet at 1.89 ppm. hese aspects are discussed further in Section 2.5.2.

In order to measure GABA it must be available at concentration levels above the limit of

detection for themodality in question (Waddell, Avison, Joers, & Gore, 2007). Several studies

Table2.1: GABAconcentration levels invivo. Studies that conirm thatGABAexists in concentration levels
that are suiciently high that they can be detected in humans using current technology.

Concentration mM·kg−1 Reference
1.10 Rothman, Petrof, Behar, & Mattson, 1993
1.60 Keltner, Wald, Frederick, & Renshaw, 1997
1.15 Hetherington, Newcomer, & Pan, 1998
0.80 (with MM nulling) Terpstra, Ugurbil, & Gruetter, 2002
1.52 (with MM nulling) Wylezinska, Mathews, & Jezzard, 2003
1.00 Mangia et al., 2006
1.10 (GM), 0.40 (WM) C. Choi et al., 2007
1.30 Duarte, Lei, Mlynárik, & Gruetter, 2012
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have estimated the concentration levels of GABA in vivo (Table 2.1) at above the detection

limits for MRS at 3T.

Our hypothesis about GABA being a marker for inhibitory processes rests on the stability

ofmeasurements across time. GABAhas been shown to remain constant across diferent time

points in the brain (Evans, McGonigle, & Edden, 2010), therefore we concluded that GABA

was suitable for the purposes of testing this research hypothesis. he technology that under-

pins chemical measurements with MRS consists of programmed manipulations of scanner

operational parameters called pulse sequences. Specialised parameter settings are necessary

to resolve GABA in vivo and so we introduce pulse sequences next to help in understanding

how this process works.

2.5.2 Pulse Sequences

In this section we introduce the MEGA-PRESS pulse sequence by irstly outlining the PRESS

pulse sequence on which it is based. he chemical bonding arrangement of GABA is briely

mentioned in the context of spectral line splitting as this has consequences for how theMEGA-

PRESS sequence works in resolving GABA from more abundant, overlapping metabolites.

InMRS experiments, the signals acquired aremanipulated by radio frequency (RF) pulses,

which can be tuned to excite particular atoms in diferent chemical environments and regions

of interest through the use of selective gradient pulses. Pulse sequences are used to acquire

signals from a volume of tissue in single voxel spectroscopy (SVS) experiments. here are two

main types of pulse sequence in SVS experiments; point-resolved spectroscopy (PRESS) and

stimulated echo acquisition method (STEAM).
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Figure 2.9: PRESS pulse se-
quence diagram. Sequence
shows radio frequency (RF)
pulses, gradient waveform and
echo time (TE) and gradients
(GX,GY,GZ), which localise the
MRS volume.

2.5.3 PRESS Pulse Sequence

In the PRESS pulse sequence (Figure 2.9) a 90◦ and two 180◦ RF pulses are used to produce

an echo, which comprises the free induction decay (FID) signal that is measured. he entire

net magnetisation from the voxel is refocussed to produce the echo signal and this means

that spectra from PRESS SVS will include signals from any coupled spins (Brown & Semelka,

2010).

his can be considered a disadvantage compared to STEAM, which is unafected by J-

coupled spins, but PRESS has better signal to noise ratio and we considered that this was

important for detecting low concentration metabolites such as GABA. In a standard PRESS

experiment, all of the signals from GABA are overlapped with the peaks from other more

abundant metabolites. his meant that the GABA signal would be efectively hidden under

larger peaks of metabolites that were not functionally relevant to the processes we wished to

investigate.

2.5.4 MEGA-PRESS Pulse Sequence

To overcome the problems with spectral overlap, we investigated the use of spectral editing

strategies and concentrated on the most popular technique for resolving GABA, which is the
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90o
180o

signal

180oMEGA

180o

180oMEGA

RF

TE Figure 2.10: MEGA-PRESS pulse
sequence diagram. Sequence
shows radio frequency (RF) pulses,
gradient waveform and echo time
(TE), with two identical frequency
selective 180◦ pulses.

MEGA-PRESS (Mescher, Merkle, Kirsch, Garwood, & Gruetter, 1998; Kaiser, Young, Meyer-

hof, Mueller, & Matson, 2008) pulse sequence. he MEGA-PRESS sequence is built upon a

PRESS foundation, but with the addition of two frequency selective pulses that are designed

speciically to resolve GABA from overlapping signals from other metabolites. he position

of the frequency selective pulses can be seen in Figure 2.10 (labelled “180◦ MEGA”) and can

be compared with the standard PRESS pulse sequence (Figure 2.9).

he GABA molecule (Figure 2.11) is arranged in such a way that the bonds between the

hydrogen and carbon atoms will result in the hydrogen atoms experiencing diferent amounts

of magnetic shielding due to the interaction of electrons in the molecule. he chemical shits

that result from this difering amount of magnetic shielding are listed in Table 2.2, as are the

J-coupling constants (Govindaraju et al., 2000), which describe the interaction between the

spins of adjacent atoms within a molecule.

he net efect of this chemical arrangement leads to a splitting of the signals for GABA

across the chemical shit scale. Figure 2.12 shows the spectral splitting of GABA achieved

under high ield in vitro conditions. With 3T scanners and in vivo conditions, the line shapes

C C C

H6

H5

H4

H3

H2

H1

H3N+ COO 

Figure 2.11: GABA bonds. Pro-
ton indices correspond to those in
Table 2.2.
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Table 2.2: Chemical shifts and coupling constants for GABA. Chemical shifts relative to DSS-trimethyl
singlet resonance at zero ppm.

Resonance Chemical Shit (ppm) J-coupling (Hz)
H1 3.0128 H1-H3 (5.37), H1-H4 (7.13)
H2 3.0128 H2-H3 (10.58), H2-H4 (6.98)
H3 1.8890 H3-H5 (7.76), H3-H6 (7.43)
H4 1.8890 H4-H5 (6.17), H4-H6 (7.93)
H5 2.2840
H6 2.2840

are broader due to poorer spectral resolution and this can cause smaller peaks to become

obscured under the overlap of larger ones that are adjacent on the ppm scale. he MEGA-

PRESS pulse sequence uses the coupling between the GABA spins at around 3.01 ppm and

1.9 ppm. By applying an inversion pulse directed at 1.9 ppm, the edit ON pulse will have an

efect on the signal from those spin systems close to 1.9 ppm and any systems that are coupled

to them, which includes GABA at 3.01 ppm.

AMEGA-PRESS pulse sequence consists of alternative edit ON and edit OFF acquisitions.

he efect of the editing pulse (ON) is to lip the GABA resonance at 1.9 ppm by 180◦, which

refocusses the J-evolution of the outer triplet peaks of the GABA at 3.01 ppm (Mescher et

al., 1998). During the OFF acquisitions the inversion pulse is applied elsewhere and the J-

evolution of the GABA resonances 3.01 ppm are allowed to evolve freely through the echo

time. he overlapping creatine resonances at 3.03 ppm are not afected in either the ON or

3.01 2.28 1.89 ppm

Figure 2.12: In vitro GABA spectrum. Posi-
tion of GABA triplets and quintet along the
chemical shift scale (ppm).
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edit ON edit OFF Figure 2.13: MEGA-PRESS combined spec-
trum. Edit ON with MEGA suppression at
1.9 ppm, edit OFF unsuppressed frequency
spectrum and derived GABA peaks by subtrac-
tion of OFF from ON.

OFF acquisitions.

Disambiguation of GABA from creatine is achieved through the subtraction of the edit

OFF from the edit ON (Figure 2.13). In the combined spectrum the outer peaks become

more prominent (subtraction of a negative peak adds to the peak value), whereas the centre

peak is reduced. he overlapping creatine signal at 3.03 ppm is efectively removed by the

subtraction of two identical peaks. At 2.0 ppm the NAA peak becomes negated by the ON

minus OFF operation.

he reproducibility of the sequence was an important factor when we decided on the

methodology for our research and the MEGA-PRESS sequence has been shown to be strong

in this area (Bogner et al., 2010). Having access to the pulse sequence is not in itself suicient

to measure GABA, as there are many operating and experimental parameters that need to be

set. he data generated through a MEGA-PRESS experiment must be combined in a partic-

ular way and the signals needed to be carefully processed before being analysed with spectral

analysis sotware. Once spectra have been analysed, there are further manipulations that can

be applied, for example in scaling measurements according to brain tissue proportions. In

this research we examine aspects of the choices that may be made in respect to MEGA-PRESS

MRS acquisitions (Chapter 3: MEGA-PRESSAcquisition) and also detail an approach to the

post-processing of the data obtained (Chapter 4: Post-Acquisition Processing), in relation

to the physical science aspects of MEGA-PRESS noted in this section.
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2.6 RelatedWork

his section describes the research that motivated our interest in investigating visual learning

with spectroscopic techniques and in particular the MEGA-PRESS pulse sequence.

MEGA-PRESSSymposium. Some of themotivation for the work of this project came from a

symposium about MEGA-PRESS research that we attended near the start of our project. he

symposium discussed the state of the art, the perceived hurdles in obtaining reproducible

spectra and was attended by some of the key researchers involved in this area. his meet-

ing conirmed the idea that there was consensus as to what the diiculties were in GABA

MEGA-PRESS acquisition, but that there was also a wide variety of approaches to solving

the challenges. his meeting provided a stimulus to the direction of our research, for exam-

ple there was considerable interest in developing best practice in data collection and analysis,

with regard to absolute quantiication, macromolecule contamination, echo times, phase cy-

cling, frequency alignment procedures and correction of GABA measurements according to

tissue fraction. Determining a standardised approach was considered challenging as difer-

ent approaches were still being debated, however recommendations based on the consensus

reached at the symposium were subsequently summarised and published.

Review Articles. he aforementioned symposium formed the basis of a review into current

practices in MEGA-PRESS (Mullins et al., 2014). here was another review article that was

concernedwithGABAMRS acquisition (not justMEGA-PRESS), which usefully summarised

current applications in neuroscience and tabulated some key parameters such as experiment

duration and region of interest (Puts & Edden, 2012). his review made the observation

that individual diferences in GABA were not necessarily global across brain regions, this we

found particularly interesting and inspired us to investigate multi-ROI experimental designs
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(discussed further in Section 3.4: Regions of Interest). Another observation made in this

review was that increased ield strength has been used to increase the signal to noise ratio

(SNR) for acquisitions, rather than to decrease the acquisition time for experiments. his led

us to investigate the feasibility of shorter acquisition times in a simulation study of the efects

of reduced scan time on quality metrics (Appendix A: Time Course of MEGA-PRESS). We

identiied a further review, speciically for GABA and motor cortex, that had some interesting

ideas for the mechanisms for GABA and motor plasticity (C. J. Stagg, 2014).

2.6.1 Literature Review

We conducted our own literature review about in vivoMEGA-PRESS research and discovered

that this area was still novel enough that the key papers could be listed comfortably within a

section of a thesis. We were particularly interested in surveying the type of experiments that

had used MEGA-PRESS, and therefore tabulated this information, along with the regions of

interest and the number of participants (Table 2.3).

Table 2.3: MEGA-PRESS experiments. Region of Interest (ROI), participants (n=number, m=number of
males, f=number of females, age=average age or age range) and type of experiment. This tables is ordered
by publication date.

Reference ROI Participants Experiment
Rothman et al., 1993 Occipital lobe n=4 Controls for vigabatrin

study
Hetherington et al., 1998 Occipital lobe n=20 Measurement of GABA
Mescher et al., 1998 Occipital lobe n=8 Water suppression with

MEGA
Terpstra et al., 2002 Occipital lobe n=14, m=6,

f=8, age=30
Measurement of GABA
in vivo

Wylezinska et al., 2003 Occipital lobe n=5 LCM & MEGA-PRESS
Sanacora, Gueorguieva, & Yu-Te,
2004

Occipital cortex n=71 incl. 33
clinical

GABA vs. depression

Jensen, deB. Frederick, & Renshaw,
2005

MRSI slice n=6 Measurement of
WM/GM GABA with
regression

Floyer-Lea, Wylezinska, Kincses, &
Matthews, 2006

Let hand region of mo-
tor cortex

n=36 Time course of GABA
with motor learning

Continued on next page…

32



CHAPTER 2. VISUAL LEARNING ANDMAGNETIC RESONANCE

Table 2.3 MEGA-PRESS Experiments. Continued from previous page.

Reference ROI Participants Experiment
Gasparovic et al., 2006 Above lateral ventricles

parallel to ACPC line
n=14, m=6,
f=8

Spectroscopic imaging
efect of segmentation
strategies

Bhagwagar et al., 2007 Cyngulate gyrus n=49 incl. 31
clinical

GABA vs. depression

Edden & Barker, 2007 Centrally in posterior
WM

n=5, m=2,
f=3, age=31

MEGA & Inner Volume
Saturation

Kaiser, Young, & Matson, 2007 Parieto-occipital GM n=3 PRESS+4 & MEGA
Northof et al., 2007 Anterior cingulate cor-

tex, right hand paracen-
tral cortex (control)

n=12, m=4,
f=8, 25
started)

GABA & negative BOLD
correlation in ACC (2-D
J-resolved)

Waddell et al., 2007 Frontal GM n=20 Measurement of GABA
at rest

Mullins, Chen, Xu, Caprihan, &
Gasparovic, 2008

Anterior cingulate cortex
GM

n=6 & n=4 TE averaged PRESS vs.
PRESS 40 ms

Edden, Muthukumaraswamy, Free-
man, & Singh, 2009

Medial occipital lobe n=13, m=13,
f=0, age=33

Visual task, GABA,
gamma & orientation
selectivity

Muthukumaraswamy, Edden,
Jones, Swettenham, & Singh, 2009

Medial occipital lobe n=12, m=12,
f=12, age=35

GABA, peak gamma &
fMRI amplitude

C. J. Stagg et al., 2009 Let precentral knob mo-
tor cortex

n=16, m=16,
age=27.5

Continuous theta burst
stimulation & GABA/-
NAA

Bogner et al., 2010 Occipital lobe n=11, m=5,
f=6, age=30

Fitting vs. integration

Boy et al., 2010 Supplementary motor
area & dorsal medial
frontal

n=12, m=12,
f=0, age=21-
32

Reversed masked prim-
ing

Donahue, Near, Blicher, & Jezzard,
2010

Visual cortex n=12, m=6,
f=6, age=30

GABA & haemodynamic
measures

Evans et al., 2010 Visual cortex & sensori-
motor cortex

n=8, m=7,
f=1, age=31

Diurnal stability of
GABA

Goto et al., 2010 Frontal & parieto-
occipital lobe

n=41, m=21,
f=20, age=35

GABA & extroversion

Sumner, Edden, Bompas, Evans, &
Singh, 2010

Frontal eye ield & visual
cortex (control)

n=12, m=12,
f=0, age=19-
36

GABA & motor decision
speed

Waddell et al., 2010 Anterior cingulate &
cerebellar vermis

n=19, age=24 Measurement of GABA
& Glu in ACC & cerebel-
lar vermis

Yoon et al., 2010 Occipital lobe n=26 (13 clin-
ical, 13 con-
trol)

Orientation surround
suppression & GABA

Bhattacharyya, Phillips, Stone, &
Lowe, 2011

Motor cortex localised
with inger tapping

n=19, 8 were
discarded
quality,
age=38

GM & WM GABA mea-
surements

O’Gorman, Michels, Edden, Mur-
doch, & Martin, 2011

Let hand dorsolateral
prefrontal cortex

n=14, m=7,
f=7, age=29,
all right
handed

Reproducibility GABA&
gender efects

Continued on next page…
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Table 2.3 MEGA-PRESS Experiments. Continued from previous page.

Reference ROI Participants Experiment
Puts, Edden, Evans, McGlone, &
McGonigle, 2011

Sensorimotor & occipital n=16, m=10,
f=6, age 27.3

GABA & tactile discrim-
ination

C. J. Stagg, Bachtiar, & Johansen-
Berg, 2011a

Motor cortex & occipital
lobe (control)

n=12, m=6,
f=6, age 21-31

tDCS, GABA & motor
learning

Zhu, Edden, Ouwerkerk, & Barker,
2011

MRSI axial slice n=3, m=0, f=3 MRSI & GABA

Edden, Intrapiromkul, Zhu, Cheng,
& Barker, 2012

Occipital lobe n=5, m=2,
f=3, age=40

Measuring T2

Evans et al., 2012 Right sensorimotor cor-
tex, occipital, right dor-
solateral prefrontal cor-
tex

n=18, n=20,
n=15 (difer-
ent experi-
ments)

Investigating alignment
strategies

Michels et al., 2012 Let hand dorsolateral
prefrontal cortex

n=16, m=9,
f=7, age=28,
age range=25-
38

GABA & working mem-
ory

Morgan et al., 2012 Occipital lobe n=33 incl.16
clinical

GABA vs. insomnia

Muthukumaraswamy, Evans, Ed-
den, Wise, & Singh, 2012

Occipital lobe n=15, m=15,
f=0

GABA & BOLD

Robson, Muthukumaraswamy,
Sumner, Evans, & Singh, 2012

Occipital lobe n=126 GABA, gamma & corti-
cal thickness

Rowland et al., 2012 Anterior cingulate n=41 GABA & schizophrenia
Auhaus et al., 2013 Anterior cyngulate cor-

tex
n=48 GABA vs. ageing

Evans et al., 2013 Occipital, sensorimotor,
& DLPFC

n=20, f=7,
age=20–37

Subtraction artefacts

Foerster et al., 2013 Motor cortex, pons n=59 incl. 29
clinical

GABA vs. ALS

Gao et al., 2013 Frontal & parietal n=100, m=49,
f=51, age=20-
76

GABA & ageing

Puts, Barker, & Edden, 2013 Mesial parietal lobe n=10, m=5,
f=5, age=35

Measuring GABA T1

Sandberg et al., 2013 Occipital lobe & parietal n=36, m=36,
f=0, age=25

GABA & cognitive fail-
ures

Shaw et al., 2013 Let inferior frontal & bi-
lateral visual cortex

n=37, m=0,
f=37, age=18-
35

GABA & remitted de-
pression

Blicher et al., 2014 Motor cortex n=41 incl.
21 clinical,
age=60

GABA & stroke

Harris et al., 2014 Precuneus n=11, m=6,
f=5, age=27

Frequency drit

C. J. Stagg et al., 2014 Motor cortex n=12, m=6,
age=21-31 &
n=16, m=2,
age=20-39

GABA & resting state
networks

Wiebking et al., 2014 Let insula n=27, m=17,
f=10, age=22

GABA & interoceptive
awareness

Riese et al., 2015 Posterior cingulate cor-
tex

n=21 & n=15
MCI, age > 54

GABA & Alzheimer’s

Continued on next page…
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Table 2.3 MEGA-PRESS Experiments. Continued from previous page.

Reference ROI Participants Experiment
Harris, Puts, & Edden, 2015 Visual, auditory, sensori-

motor, frontal eye ields
& dorsolateral prefrontal
cortex

n=16 Tissue segmentation

he earliest published works tended to be concerned with the physical science aspects of

the MEGA-PRESS pulse sequence and involved measurement of GABA, oten without any

particular application other than the validation of the measurements obtained. We found the

early work of one group particularly interesting however, as they attempted a time course of

GABA acquisitions during a motor learning task (Floyer-Lea et al., 2006). he major indings

from this studywere that short termGABAmodulationwas speciic for learning, and that this

was associated with encoding of the task rather than long term consolidation. heir results

showed a decrease in GABA concentration during the learning task that was not evident in

a similar, non-learnable task. We have only noted one other attempt to demonstrate a time

course of GABA concentrations during a cognitive task, and that was in a study of working

memory (Michels et al., 2012). he approach in these two studies represented GABA concen-

tration changes as dynamic functional indicators of inhibitory processes during a task. his is

in contrast with all other studies, which characterised GABA as a static marker of inhibitory

potential or eiciency and therefore obtained resting state measurements for correlation with

separate psychophysics experiments.

It was not until recently (the last ive years) that papers started to appear that linked resting

state MEGA-PRESS GABA with the performance results of psychophysics experiments. For

example there have been papers linking GABA and orientation discrimination (Edden et al.,

2009), subconscious motor control (Boy et al., 2010), motor decision speed (Sumner et al.,

2010), orientation surround suppression (Yoon et al., 2010), motor learning (C. J. Stagg et al.,
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2011a), working memory (Michels et al., 2012), cognitive failure (Sandberg et al., 2013) and

interoceptive awareness (Wiebking et al., 2014).

MEGA-PRESS and Visual Paradigms. We identiied just ive papers that were primarily

concerned with visual experiments (Edden et al., 2009; Muthukumaraswamy et al., 2009; Boy

et al., 2010; Yoon et al., 2010; Muthukumaraswamy et al., 2012). Although we found that the

occipital cortex was the most common region to acquire GABA from (n=18, compared with

frontal regions n=9, motor cortex n=9, ACC n=5 and parietal n=3), it should be pointed out

that the visual cortex was oten used as a control area for experiments, rather than the region

of interest that motivated these studies.

In a paper that investigated orientation discrimination with GABA concentrations in the

visual cortex (Edden et al., 2009), a negative correlation was found betweenGABA concentra-

tion and performance on the task. he authors concluded that this demonstrated that resting

state GABA measurements showed the functional action of GABA and presumed that the

measurements would have included both intracellular and extracellular GABA populations.

hey suggested that GABAergic interneurons mediated neuronal inhibition by one of two

mechanisms. Either at a neuronal level, by sharpening the tuning across stimulus contrasts,

or at a network level by coordinating neurons. Although the paper cautioned that the actual

mechanisms for visual representations were unknown, the idea that mechanisms could be

inferred through correlations with inhibitory neurotransmitter inluenced us strongly in the

direction of our own research. Two of the articles that we identiied as being concerned with

GABAand visual stimuli were actually predominantly concernedwith relatingGABA to other

physiological responses like the BOLD signal and peak gamma frequency (Muthukumarasw-

amy et al., 2009; Muthukumaraswamy et al., 2012). However, these articles did conclude that
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functional neuroimaging metrics were dependent on the excitation and inhibition balance in

the cerebral cortex. his added impetus to our hypothesis that inhibitory processes needed to

be investigated in addition to excitatory ones.

In work that looked at the correlation between GABA in the supplementary motor cortex

(SMA) and the reversed masked prime efect (Boy et al., 2010), the authors came to the in-

teresting conclusion that the SMA was the site of production of suppression, rather than the

site where suppression occurred. his led us to consider GABA correlations in the context of

coordinated networks across brain regions. his was not something that we had come across

before or since in the GABA literature and was something that we would return to in our

conclusions for our own experiments.

he ith paper that we identiied as matching our research area of GABA and visual

learning, was a study involving schizophrenic patients and controls, and correlations with

orientation-speciic surround suppression (OSSS). One of themajor indings was a signiicant

positive correlation between GABA levels and the magnitude of OSSS, which by implication

suggested the link between inhibition and resting state GABA measurements.

MEGA-PRESS and Physiological Measures. Most of the papers identiied in the literature

review were more concerned with GABA measurement (n=16) than the link to perceptual

learning performance. We did note some interest in connecting GABA concentrations with

negative BOLD signal (Northof et al., 2007; Muthukumaraswamy et al., 2009; Donahue et

al., 2010; Muthukumaraswamy et al., 2012) and electrical activity (Muthukumaraswamy et

al., 2009; C. J. Stagg et al., 2009), which led us to consider that physiological phenomenon,

such as BOLD signal, could be mediated at a chemical as well as a haemodynamic level.

37



CHAPTER 2. VISUAL LEARNING ANDMAGNETIC RESONANCE

Other Groups. A group centred largely around Cardif University have been especially vis-

ible in publishing MEGA-PRESS research. In addition to publishing their own research in-

terests they have implemented a MEGA-PRESS sequence that runs on all major vendor MRI

machines and have allowed other groups to use these implementations. It is from this group

that we obtained the MEGA-PRESS pulse sequence that we used in our research. hey have

also developed a suite of sotware applications to process MEGA-PRESS data called Gannet

(Edden, Puts, Harris, Barker, & Evans, 2014). here are some parallels between Gannet and

the physical science aspects of this thesis (see Chapter 4: Post-Acquisition Processing), but

it should be pointed out that Gannet was at an early stage of development when we began the

project and so we were motivated to develop our own analysis pipeline. Another group from

the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain have published

widely in GABA and motor cortex studies (Bachtiar & Stagg, 2014), this group is also respon-

sible for brain imaging sotware that is used extensively for tissue segmentation (Jenkinson,

Bannister, Brady, & Smith, 2002).

2.7 Discussion

One of our main aims for this project is to investigate the mechanisms behind visual learn-

ing with a particular focus on inhibitory processes. We framed the introductory materials

around the notion that the usual ways of investigating the learning mechanisms, through

psychophysics and fMRI, had limitations: Psychophysical paradigms might infer dissociative

learning, but can not reveal the mechanisms directly and fMRI can not distinguish inhibitory

activity from excitatory activity. hese perceived limitations motivated the direction that we

wished to pursue for our research. We discovered that the psychophysics literature had many

interesting visual paradigms and selected Glass patterns for our research because of the lex-
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ibility that this paradigm ofered. his lexibility would allow us inely control parameters to

create a variety of experiments based on shape detection and discrimination. he diiculty of

the tasks could also be parametrically controlled, which interested us because we had some

ideas on closely monitoring the time course of visual learning in multi-session experiments.

he limitations of fMRI with regard to inhibitory processes motivated our interest in MRS

and the measurement of the inhibitory neurotransmitter GABA. We discovered that GABA

is a diicult metabolite to measure through standard MRS pulse sequences and this led us to

become interested in investigating the MEGA-PRESS sequence.

Our reading into GABA and MEGA-PRESS research led us to consider that this might

be a novel way to approach an investigation into inhibitory processes and visual learning.

here had been some interesting experiments described in the literature that used MEGA-

PRESS GABA research, but few that had much overlap with our research interests. In fact we

identiied just four papers that were primary concerned with MEGA-PRESS GABA research

and visual learning paradigms. he few papers that were published in this area did inspire

some ideas for how we might investigate inhibitory processes and visual learning, however.

Our reading also alerted us to some of the diiculties that researchers faced in obtaining good

quality spectra from the technology and this led us to make an investigation into processing

the MEGA-PRESS signals a further research goal for this project.

he literature review led us to conclude that the investigation of inhibitory processes in

visual learning in humanswas an area that has hitherto received sparse attention andwe there-

fore suggest that the research context for this thesis is a niche one, but one with great potential

for extending our knowledge concerning how the brain learns.
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3
MEGA-PRESS ACQUISITION

3.1 Introduction

Standard pulse sequences such as PRESS or STEAM are provided by MR scanner manufac-

turers and they usually specify default parameter settings that have been optimised to produce

reproducible scan results. MEGA-PRESS sequences are experimental sequences. his means

that more work is required in the experimental setup and processing of MEGA-PRESS se-

quences than with standard ones. his is partly because optimised default scan parameter

settings are not available for experimental sequences, but also because the scanner sotware

is not designed to process edited scans. One of the aims for this chapter is therefore to de-

scribe appropriate parameter settings for MEGA-PRESS. In doing so we will relect current

best practice so that any results will be comparable with other studies.

It is easier to obtain reproducibleMR spectroscopic signals from in vitro experiments than

it is from in vivo ones. We therefore decided to test our parameter settings by runningMEGA-

PRESS experiments on liquid phantoms that we constructed specially for this process. hese

experiments were designed to investigate the line shape of spectra obtained from the MEGA-

PRESS pulse sequence by comparing it to the theoretical line shape of GABA. In one exper-

iment we test the pulse sequence using a high concentration GABA solution and in another
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experiment we use a solution with chemical formulations designed to match those found in

the human brain.

For in vivo MEGA-PRESS experiments it is important to target regions of the brain that

are involved with the process that is being investigated. We therefore discuss some strategies

for identifying appropriate brain regions based on morphology and fMRI localisers. We also

discuss how to maintain consistency in positioning the acquisition voxels, to aid precision

and reproducibility in MEGA-PRESS experiments. We describe a novel approach to selecting

ROIs based on fMRI BOLD signal measurements and advocate the selection of multiple ROIs

for a single experiment; this is in contrast to MEGA-PRESS experiments currently described

in the literature.

3.2 Acquisition Parameters

Any pulse sequence will have some parameters whose values are chosen by the researcher to

suit a particular experiment. he most important variables for a MEGA-PRESS experiment

are the dimensions (volume) of the acquisition region, the repetition time (TR), the echo time

(TE) and the number of acquisitions per experiment. he volume of the acquisition should

obviously cover the area of the brain under consideration and is expressed inmillimetre units.

However, there is a linear relationship between the size of the voxel and the signal to noise ratio

(SNR) that can be obtained. Larger voxels have higher SNR, so there is an inevitable trade of

between localisation and signal quality. he TRwill control the time between successive pulse

sequences being applied, the unit for this is seconds. he TE (in milliseconds) represents

the time between the application of the 90◦ pulse and the peak of the free induction decay

signal. It is varied to optimise the relaxation values of particular metabolites. he SNR of MR

acquisitions increases as the square root of the number of scans, therefore more acquisitions

41



CHAPTER 3. MEGA-PRESS ACQUISITION

equates to higher SNR. Higher SNR is obtained at the cost of increased scan duration time.

We conducted a review of published MEGA-PRESS experiments in the literature and tab-

ulated themain parameters (Table 3.1). his is intended to be used to help inform suitable pa-

rameter values for other researchers wishing to conduct experiments that will be most widely

comparable with other studies. From this table we can see that the volume for the acquisi-

tion voxel was typically 3×3×3 cm, TR was most commonly 1800 ms, TE mode was 68 ms,

ield strength mode was 3T and acquisition time ranged between 3–15 min for single voxel

spectroscopy experiments.

Table 3.1: Scan parameters. MEGA-PRESS acquisition parameters arranged by publication year. Volume
(cm unless cc or mL speciied), repetition time TR (s), echo time TE (ms), System (Tesla ield strength and
manufacturer) and acquisition time (s).

Reference Volume TR TE System Scan time
Rothman et al., 1993 2x4x3 68 2.1T Oxford Insts.
Hetherington et al., 1998 13.5 cc 2 72 4.1T 266
Mescher et al., 1998 27 mL 3 34 4T Siemens 240
Terpstra et al., 2002 3x3x3 4 69 7T Magnex, Oxford
Wylezinska et al., 2003 3x3x3 3 68 3T Varian Inova
Sanacora et al., 2004 3x3x1.5 2 68 2.1T Oxford Magnet

Technology
1200

Jensen et al., 2005 3 cm thick
MRSI slice

1.25 4T Varian Unity In-
ova

2880

Floyer-Lea et al., 2006 2x2x2 68 3T Varian Inova 200
Gasparovic et al., 2006 7.5x9x1.5 1.5-3.0 135 1.5T Siemens Sonata 582
Bhagwagar et al., 2007 3x3x2 3 68 3T Varian Inova 384
Edden & Barker, 2007 3x3x3 2 68 3T Philips Intera 1020
Kaiser et al., 2007 18 mL 2 72 4T Bruker MedSpec 600
Northof et al., 2007 2.5x2x3 2.5 31–

229
3T Philips Intera 960

Waddell et al., 2007 15–40 mL 2.5 70 3T Philips Achieva 640
Mullins et al., 2008 2x2x3 2 30 vs 40

40 vs 80
3T Siemens Tim Trio
& 3T Philips Achieva

540

Edden et al., 2009 3x3x3 1.8 68 3T GE Signa HDx 900
Muthukumaraswamy et al., 2009 3x3x3 1.8 68 3T GE Signa HDx 900
C. J. Stagg et al., 2009 2x2x2 68 3T Siemens Varian 200
Bogner et al., 2010 2.5x3x3 1.5 69 3T Siemens Tim Trio 390
Boy et al., 2010 3x3x3 1.8 68 720
Donahue et al., 2010 3x3x3 2 69 3T Siemens Tim Trio
Evans et al., 2010 3x3x3 1.8 68 3T GE Signa HDx 600
Goto et al., 2010 3x3x3 3 68 3T GE Signa Excite 360
Sumner et al., 2010 3x3x3 1.8 68 3T 600–900

Continued on next page...
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Table 3.1 Scan Parameters. Continued from previous page.

Reference Volume TR TE System Scan time
Waddell et al., 2010 7.32,

6.1 mL
2.5 73 3T 960

Yoon et al., 2010 3.5x3x2.5 1.5 78 3T Siemens Trio 390
Bhattacharyya et al., 2011 2x2x2 2.7 68 3T Siemens Trio 518
O’Gorman et al., 2011 2.5x4x3 1.8 68 3T 600
C. J. Stagg et al., 2011a 2x2x2 3 68 3T Siemens Varian 900–1200
Zhu et al., 2011 21x18 2 68 3T Philips Achieva 1058
Edden, Intrapiromkul, et al., 2012 3x3x3 2 70,

100,
180

3T Philips Achieva 510

Evans et al., 2012 3x3x3 1.8 68 3T GE HDx
Michels et al., 2012 2.5x4x3 1.8 68 3T GE HDx
Morgan et al., 2012 3x1.5x3 2.5 68 4T Oxford Magnet

Technology
1200

Muthukumaraswamy et al., 2012 3x3x3 1.8 68 SCANNER 900
Robson et al., 2012 3x3x3 3T GE
Rowland et al., 2012 3.5x3.5x3.5 2 68 3T Philips Achieva
Auhaus et al., 2013 4x3x2 3 68 3T Siemens Trio 288
Evans et al., 2013 3x3x3 1.8 68 3T GE HDx 598
Gao et al., 2013 3x3x3 2 68 3T Philips Achieva 660
Puts et al., 2013 3.5cm 1, 2, 3

& 5
80 3T Philips Achieva 256–1280

Foerster et al., 2013 3x3x2 1.8 68 3T Philips Achieva 460
Sandberg et al., 2013 3x3x3 2.5 68 3T Siemens Trio 480–1200
Shaw et al., 2013 3x3.5x3.5

& 3x3x3
1.8 68 3T GE Signa HDx 480

Blicher et al., 2014 2x2x2 2.5 68 3T Siemens Trio 930
Harris et al., 2014 3x3x3 2 68 3T Philips Achieva 640
C. J. Stagg et al., 2014 2x2x2 3.0 68 3T Siemens Varian 768
Wiebking et al., 2014 2.3x4.8x2.7 2 3T Siemens Trio
Riese et al., 2015 3x3x3 1.8 68 3T Philips Ingenia 648
Harris et al., 2015 3x3x3,

4x3x2
2 68 3T Philips Achieva 640

For in vivo experiments at 3T we suggest volume sizes of at least 2 cm3, with 3 cm3 be-

ing preferable in terms of greater SNR. he volume size also needs to be large enough to

suiciently cover the brain area under consideration and we further suggest that the same

volume size be used when comparing diferent brain regions. his is to reduce the chance

that variation in metabolite concentration measurements might vary as a factor of volume

size, rather than brain region. Echo time of 68 ms has been common since the pioneering

papers (Rothman et al., 1993) and has the advantage of being longer than the macromolecule

(MM) relaxation time of 40 ms, which should minimise the co-editing of MM contaminants
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to the GABA signal (C. Choi et al., 2007). his parameter should only be altered if there are

speciic hypotheses that needed to be tested, for example with regard to reducing MM con-

taminants. With TR, a value of 1.8 s has the advantage of being the most commonly used

amongst researchers in this ield and hence makes results more comparable with the great-

est number of other studies. It also means that more repetitions can be acquired in the same

experiment time than experiments with longer TR time.

he parameter with the greatest variability was the scan time. Increasing scan time allows

for more averages to be acquired and therefore improves the SNR of the measurements. For

in vivo experiments, subject movement will adversely afect accuracy of the measurements

and so scan time is usually chosen by the researcher as a compromise between maximising

the scan time, but not making experiments so long as to increase the likelihood of subject

movement predicated by discomfort. he number of dynamic averages acquired and phase

cycling parameters combine with the TR time to set the scan duration. It is an open question

on what the optimal values should be for these parameters (Mullins et al., 2014). Increased

phase cycling improves localisation and water suppression but leaves fewer individual signal

exports from the scanner, which will impose limitations on post-processing operations. For

experiments described later in this thesis, we opted for 32 dynamic averages that consisted

of 16 phase cycled acquisitions each. hese settings would allow for good localisation within

the scanner and also return suicient free induction decays (FIDs) for post-processing for

phase correction (Section 4.4) and spectral realignment (Section 4.5). hese settings led to a

total scan duration of approximately 15 min, which was in the upper range of MEGA-PRESS

scans from the literature. he experiments described in Appendix A conirmed that obtain-

ingmore averages resulted in higher SNR, however the results also indicated that shorter scan

duration times can produce spectra that is adequate for the purpose of GABA quantitation.
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We set the number of samples to 2048 and spectral bandwidth to 2150 Hz. hese parame-

ters were less commonly reported in the methods section of MEGA-PRESS literature and so

we omitted them from Table 3.1. In the publications that did report these parameters, the

values of 2048 (samples) and 2150 Hz (bandwidth) were the most common. It is preferable

for the number of samples to be a power of two as this facilitates the eiciency of the Fourier

transform in subsequent processing (see Section 4.4 for more on this). he setting for spec-

tral bandwidth should allow suicient coverage for a range of metabolites including GABA.

Further parameter choices that we used in the experiments for this project are detailed in

Table D.1.

3.3 Phantom Experiments

Detection of GABA in vitro, for example in a liquid phantom, is considerably easier than

in vivo. here are several reasonswhy this is the case, for example liquid phantoms do not have

the complex arrangement of tissues that the human brain has, with the concomitant artefacts

that this produces in the magnetic ield of the scanner. he artefacts can be visualised with

reference to images taken during MRI experiments (Krupa & Bekiesińska-Figatowska, 2015),

but they have their analogues as interference in MR spectra for MRS experiments. Examples

of MRI artefacts are: Truncation artefacts, which occur near sharp high-contrast boundaries;

aliasing artefacts where anatomical structures outside of the ield of view become mapped

onto the image; and chemical shit artefacts that appear at the lipid-water interface especially

in luid illed structures such as ventricles. Metallic implants, tattoos and even clothing can in-

troduce artefacts inMR experiments and all of these aremitigated when conducting phantom

experiments. Phantoms can also be loaded with elevated concentrations of the metabolite of

interest, which will also make the task simpler. Humans tend to move during scanning and
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this necessitates post-processing of the signals to realign subspectra (Section 4.5), this step

is not necessary with a phantom. For these reasons it is preferable to conduct experiments

using liquid phantoms to test parameter settings as a precursor to in vitro experiments.

he phantom experiments described in this chapter were all conducted ater we had com-

pleted the in vivo scans. his was due to technical reasons, such as the availability of materials

and subjects. However, we present the in vitro experiments irst in order to avoid the need

to explain post-acquisition processing techniques that are necessary for in vivo experiments

(these are the substantive content of Chapter 4: Post-Acquisition Processing).

Whatwewished to investigate through the phantomexperimentswas howclose theGABA

phantom spectra were compared to the theoretical signal shape (Section 2.5.2: Figure 2.13),

using the MEGA-PRESS sequence and basic post-acquisition processing steps.

3.3.1 GABA Phantoms

Our irst experiment consisted of three scans of a 10 mM solution of GABA (A2129, Sigma

Aldritch) in phosphate bufered saline (pH 7.4, P5368, Sigma Aldritch), similar to that re-

ported in (Edden, Puts, & Barker, 2012). We constructed the phantom using a 250 mL glass

lask and scanned it using a Philips 3T Achieva scanner (Philips Healthcare, Best, Nether-

lands). he main scan parameters were TE = 68 ms, TR = 3000 ms, volume = 26 mm3, sam-

ples = 2048, spectral bandwidth = 2150Hz, scan time = 192 s, other parameters were the same

as those in Table D.1. We obtained our irst scan using 32 dynamic averages with 2 phase cy-

cles. For the second scanwe used identical parameters except that we applied the optimisation

setting for water. We obtained the third scan with 64 dynamic averages without phase cycling.

We converted the scanner exported signals to frequency domain spectra and the edit OFF

spectra and the edit ON spectra were combined and averaged (see ListingC.1 and Section 4.4
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Figure 3.1: GABA phantom triplets. Spectrum from a GABA phantom using the MEGA-PRESS pulse se-
quence (A), sequence optimised for water (B), no phase cycling (C) .

for further details). We plotted the averaged spectra and examined the line shapes between

2.8 and 3.2 ppm (Figure 3.1), which is where the GABA signal should appear in a MEGA-

PRESS experiment. We compared the plots with the theoretical line shapes (Section 2.5.2:

Figure 2.13) and concluded that the spectra did match the expected shape with the reduced

central peak compared with the outer peaks of the GABA triplet at 3.01 ppm. he GABA

concentration of 10mM is higher than in vivo concentrations. his concentration was chosen

to improve the chances of unambiguous detection of GABA in the phantoms.

he water optimisation setting (Figure 3.1B) did not not make appreciable diferences to

the line shapes of the spectra, neither did the changesmade to the phase cycling (Figure 3.1C).

hese changed settings might efect the line shapes more with in vivo scans. he phase cy-

cling for example can help with problems that are related to subject movement and this is not

relevant with a static phantom scan.

We concluded from this experiment that the MEGA-PRESS pulse sequence resolved the

GABA triplet at 3.01 ppm, using the acquisition parameters that we chose in a phantom with

10 mM concentration of GABA. his represented a useful validation of the sequence and

parameter settings, but it did not test the disambiguation of creatine from GABA, which is

the main innovation of the MEGA-PRESS sequence.
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3.3.2 GABA and Brain Metabolite Phantoms

To address the limitations of the GABA phantom experiments we created phantoms that in-

cluded additional metabolites that mimic those found in the human brain (Table 3.2). he

additional chemicals would tell us about the eicacy of the GABA inversion in the edited

pulse sequence, in particular the efect of creatine subtraction on the line shape. We chose

two concentrations of GABA to represent lower (2.8 mM) and higher (8.8 mM) concentra-

tion phantoms. hese were still both above in vivo concentrations (see Table 2.1).

We used a combination of phosphate bufered saline (NaCIKCI), mono basic dihydrogen

phosphate (KH2PO4) and dibasic mono hydrogen phosphate (K2HPO4) to raise the pH of the

phantom solution to 7.1. We also added sodium azide (NaN3, 15 mM, 65.01 u, 0.9751 g) to

act as an anti-microbial, this was tominimise the possible side efects of organic contaminants

over time. As before, we constructed the phantoms using 250 mL glass lasks.

We set the values of the main scan parameters to; volume = 30 mm3, TR = 1800 ms,

TE = 68 ms, samples = 2048, spectral bandwidth = 2150 Hz, water suppression = VAPOR,

phase cycles = 16, dynamic scans = 32, scan duration = 921.6 s (15 min 21.6 s) for a spectral

Table3.2: Brainphantommetabolites. List of chemicals used to simulate brainmetabolite concentrations
in MR phantoms with two elevated concentrations of GABA. Conc. is the desired concentration in milli
molars,MW is the molecular weight andMass is the weight of the substance needed to create the desired
concentration in a 1 dm3 phantom. All ingredients were sourced from Sigma Aldritch.

Metabolite Chemical Formula Conc.
mM

MW
g/mol

Mass g

GABA NH2(CH2)3COOH 2.8 103.12 0.2887
GABA NH2(CH2)3COOH 8.8 103.12 0.9075
NAA C12H10O1 12.5 186.21 2.3276
Creatine H2NC(=NH)N(CH3)CH2CO2H 10.0 131.13 1.3113
Choline C11H21NO8 2.5 295.29 0.8859
Myo-Inositol C6H12O6 7.5 180.16 1.3512
Glutamate NaOOCCH2CH2CH(NH2)COOH·H2O 12.5 186.13 2.3266
Glutamine C5H10N2O3 6.0 146.14 0.8768
Lactate C3H5NaO3 5.0 187.13 0.9357
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resolution of 1.05 Hz/point. hese parameters were identical to those we planned to use for

in vivo experiments.

We combined and averaged the frequency domain signals as before (Section 3.3.1). his

involved the minimum of processing steps necessary to produce the frequency domain aver-

ages. More sophisticated processing is required for in vivo experiments, for example phase

correction and alignment, these are explained in detail in Chapter 4: Post-Acquisition Pro-

cessing. For the purposes of this section we wished to take advantage of the simpler exper-

imental paradigm that in vitro scanning provides and plotted the spectra obtained from the

two phantom experiments without additional post-processing of the signals (Figure 3.2). he

higher GABA concentration phantom showed a convincing GABA peak at the expected ppm

range, as well as the expected inverted NAA peak at 2 ppm and GLX signal at 3.7 ppm. he

lower concentration spectrum showed a smaller GABA peak, as was also expected.

We concluded from these scans that the sequence and parameter selections were suitable

3.2 2.8 2 3.2 2.8 2
ppm ppm

A B

Figure3.2: GABAbrainphantomspectra. Spectra frombrainphantomswith twoconcentrations ofGABA.
(A) had GABA at a concentration of 8.8 mM and (B) had GABA at 2.8 mM. The shaded boxes represent the
range on the chemical shift scale for the GABA signal.
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Figure 3.3: GABA brain phantom spectra, diferent scan durations. Spectrum obtained from (A) scan
duration of 460.8 s (7 min 40.8 s) versus (B), which was acquired in a scan lasting for 921.6 s (15 min 21.6 s).

for resolving GABA in a brain-like phantom and that efective GABA inversion at 3 ppm in

the edited sequence had occurred. his conclusion came with the caveat that phantoms rep-

resent fewer challenges for MR techniques than those with human brains and that the GABA

concentrations were relatively high. However, we also noted that good visual agreement with

the theoretical line shape was achieved, even with a rudimentary processing method.

We conducted a further phantom experimentwherewe sought to seewhat efect a reduced

scan time would have on the higher concentration phantom. For this we compared two scans;

the parameterswere identical in both scans, except for the duration of the scan. InFigure 3.3A

we have plotted the spectra where the dynamic scans were reduced from 32 to 16, which

halved the duration of the scan to 460.8 s (7 min 40.8 s). Figure 3.3B was plotted from the

data acquired in a scan that lasted for 921.6 s (15 min 21.6 s). hese plots were not intended

to be quantitative (hence we omit values on the y axes), but we noted that the outer peaks of

the GABA triplet at 3 ppm were still in evidence in the shorter duration scan.

We concluded from this that it might be worthwhile investigating the possibility of using
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shorter scans in subsequent experiments (see Appendix A: Time Course of MEGA-PRESS

for more detail on this idea).

3.4 Regions of Interest

It is very important to choose appropriate regions of interest (ROIs) and accurately position

MRS acquisition voxels, whether the scans are for clinical practice or for research purposes.

If a clinician is trying to characterise the metabolite proile of a brain tumour for example, it

would be crucial that the position of the ROI correspond accurately with the tumour in ques-

tion. Misplacing the acquisition voxel outside of the tumour or using inappropriate voxel

dimensions would not help at all in such a case. Similarly in research situations the place-

ment of the acquisition voxel is important. Not only does the placement of the voxel need to

be chosen with regard to the hypothesis under investigation, it also has to be positioned con-

sistently so that MRS measures can be compared across subjects. Care must taken to acquire

MRS measurements from tissue only, as bone, fat, ventricles and air cavities can all introduce

artefacts into the scan results.

his section discusses some strategies to help with consistent voxel placement that use

MR imaging techniques. hese techniques can be simple, for example using reference brain

images or they can be more sophisticated, such as using localiser scans to identify ROIs. We

introduce the idea of using fMRI BOLD signal brain maps to guide the choice of ROI, which

is a novel practice in the ield. We also discuss the merits of using multiple ROIs in visual

learning experiments, again this has not been widely attempted by other research groups.

3.4.1 MRS Planning, Morphological Features

Some ROIs are readily identiiable through an inspection of morphological features that are

visible on brain images. For example the motor cortex can be seen on a sagittal image as lying
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between somatosensory cortex and the supplementary motor cortex. In order to position an

acquisition voxel at a scanner, which is referred to as planning the experiment, the acquisition

voxel is manipulated into position by the operator using a graphical display that has 3-D MR

anatomical images of the subject on it.

A virtual acquisition voxel, represented by a wireframe cube, can be manipulated into po-

sition with a mouse, directly over the anatomical images. If the region under investigation

can be identiied visually on the anatomical images then this represents the simplest plan-

ning case. he motor cortex is an example of this type of planning, and can be approximately

located with reference to the anatomical images alone (Figure 3.4). Note that the voxel is ro-

tated in the coronal and sagittal views (Figure 3.4B,C), this is to ensure that the voxel covers

the greatest amount of grey matter while keeping within the tissue boundaries. he position-

ing of this ROI is deliberately not centred on the motor hand knob. his is because the ROI is

intended to be used as a control region in experiments that may be extended to include con-

current psychophysics testing. In such experiments GABA concentrations in the motor hand

area could conceivably be a factor, for example if the subjects were required to press buttons

during tasks. We therefore placed the control ROI away from the motor hand knob to avoid

this potentially confounding factor.

A CB

Figure 3.4: Motor cortex planning. MRplanning voxel (white box) for motor cortex in (A) axial, (B) coronal
and (C) sagittal views.
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3.4.2 MRS Planning, Talairach Coordinates

In the case of brain regions that are larger than the acquisition voxel, the challenge is to iden-

tify a particular part of the region to acquire from. his could be the central point of the

region or the part of the region with the most grey matter, depending on the hypothesis un-

der consideration. he mid frontal gyrus is an example of such a region. he approach we

took to identifying this ROI, was to take average Talairach (Talairach & Tournoux, 1988) co-

ordinates reported in the literature (Pernet et al., 2004; Vogels et al., 2002; Heekeren, Marrett,

Bandettini., & Ungerleider, 2004). We then plotted these coordinates onto MRI images that

had been transformed into Talairach space (Figure 3.5A,B). We then used these images as

references whilst planning mid frontal gyrus scans.

During the planning of MEGA-PRESS experiments, we acquired T2 brain images in three

orthogonal planes and used these images to visually position the acquisition voxel at the scan-

Figure 3.5: ROI planning
for MRS acquisition. Sam-
ple T1 images (A, B) marked
with average Talairach coor-
dinates for mid frontal gyrus.
Scanner console T2 images
(C, D) with bounding box for
the MRS voxel.
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ner console. We compared the Talairach reference images (Figure 3.5A,B) with the scanner

console planning images (Figure 3.5C,D) to obtain a consistent positioning for the acquisi-

tion. Achieving this consistency is very important, especially if comparisons between subjects

is intended. he scout T2 images that were used to plan the voxel position were acquired at the

beginning of each experiment and we found that a slice gap of 4 mm gave the best compro-

mise between resolution and scan duration time, which was less than 1 min per plane. his

slice gap meant that we typically acquired between 24 and 36 slices per axis. he T2 images

were also useful when we performed across session alignment of brain images, which became

important for segmentation (Section 4.7).

3.4.3 MRS Planning, Localiser Scans

Some ROIs do not have speciic morphological identiiers, nor is there consensus on their

position among the research community. his means that the approaches outlined above

could be problematic. Lateral occipital (LO) areas such as the lateral occipital complex or the

kinetic occipital (KO) are examples of ROIs that are diicult to identify with standard meth-

ods. Lateral occipital areas are involved in shape recognition (Altmann, Bülthof, & Kourtzi,

2003). his is relevant to the Glass pattern stimuli that we planned to use (Section 2.3.2: Psy-

chophysics) as the stimuli can be manipulated to create distinct shapes. A method that can

be used to locate this region is to use localiser scans. hese use specially designed visual stim-

uli to evoke a BOLD response in the relevant ROI of the subject who views the stimuli. he

BOLD response is quantiied by brain imaging sotware and this can be visualised as an acti-

vation map on a brain image. In the absence of consensus for the location of lateral occipital

areas we decided to conduct our own fMRI localiser scans.

We localised lateral occipital areas of ive participants with a procedure that used intact
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A B

Figure 3.6: Intact versus scrambled localiser. Examples of intact (A) versus scrambled (B) localiser im-
ages.

versus scrambled images (Figure 3.6), with identical experimental details to that described

in Kourtzi and Kanwisher (2000), apart from the scanner, which was a 3T Philips Achieva

scanner (Philips Healthcare, Best, Netherlands). he stimuli were 300×300 pixel images of

objects, including line drawings, modelled objects and photographs. Scrambled versions were

created by dividing the images into grids of 20×20 pixels and randomly reordering them. A

blocked presentation design was used with 16 stimulus epochs of 16 s duration, interleaved

with ixation periods. Presentation time was 200 ms with 600 ms blank interval between

each presentation. he order of conditions was balanced. During the scan, participants were

required to take part in a one-back-matching task to identify two or more consecutive rep-

etitions in each epoch. his task was simply to engage the observers’ attentions during the

scans. Scan duration time was 336 s (5 min 36 s).

We visualised the brain areas that responded with the greatest BOLD signal change be-

tween rest and the stimulus images using Brainvoyager QX (Brain Innovation, Maastricht, the

Netherlands). We supplied the designmatrix, which speciied the time course for each stimu-

lus condition (predictor) and the sotware automatically itted the predictors with the haemo-

dynamic response function. A model was created in the sotware for the time course of each

predictor at each voxel location. he sotware plotted those voxels that showed the most sig-

niicant diferences in the stimulus conditions compared to the rest conditions (Figure 3.7).

hese images showed consistent activation in areas lateral to the early visual cortex and we
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Figure 3.7: Lateral occipital localiser. Colourmap of voxel responses during shape-based stimuli localiser,
warm colours (yellow through to red) signiied greatest diferences between stimulus and rest images.

used them as reference images to plan subsequent MEGA-PRESS experiments.

3.4.4 FMRI Guided ROI Selection

Previous MEGA-PRESS experiments described in the literature were generally limited to a

single region of interest (ROI), sometimes accompanied by a secondary ROI as a control re-

gion (see Section 2.6.1: Table 2.3). he rationale behind the choice of ROI was not always

explicitly described, but the choices were usually intuitively understandable. For example the

ROI in a haptic motor driven experiment might be centred on the motor cortex (e.g. Floyer-

Lea et al., 2006) or in a visual task the ROI would likely be in the occipital lobe (e.g. Ed-

den et al., 2009). Motor cortex and occipital lobe were common choices for ROI selection in

published studies, this was the case in the choice of control area as well as the region under

investigation.

We wondered whether there might be a more principled method of selecting ROIs. his

led us to consider what fMRI BOLD activation might tell us about inhibitory activity. he

relationship between the BOLD signal and inhibitory processing is largely unknown, but it

is reasonable to suppose that a relationship exists. Inhibitory processing might contribute to

the BOLD signal in the same way that excitatory activation has been shown to do. If so, we
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could expect an increase in BOLD signal in areas where GABA is being released and recycled.

Equally, it is also feasible that inhibitory processes might lower BOLD response, as the release

of GABA might reduce excitatory activation and hence decrease the energy requirements of

neurons local to the GABA release. In either case, we thought that fMRI guided ROI selection

was worth investigating.

To do this we designed experiments that characterised the BOLD response from Glass

patterns, to match the psychophysics paradigm that we wished to investigate further. How-

ever, we did not wish to compromise the psychophysics elements by exposing participants to

identical stimuli in the BOLD response experiments. We therefore designed a stimulus space

that used hyperbolic Glass patterns (Figure 3.8), in contrast with the concentric and radial

patterns that we had planned for the psychophysics (Section 2.3.2: Figure 2.4). Details for

the stimuli parameters are provided in Section 5.2.2.

Five participants (4 male, 1 female, mean age 22) participated in the hyperbolic Glass

pattern BOLD response scans. All of the participants were agnostic to the study protocol and

A B

Figure 3.8: Hyperbolic Glass pattern stimuli. (A) Sample hyperbolic image that looks like a ‘+’ character.
(B) Sample hyperbolic image, rotated 45◦ that looks like an ‘x’ character. The larger, central white dot is the
ixation point.
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stimuli and hadnormal, or corrected-to-normal, vision. heUniversity of BirminghamEthics

Committee approved the study. We conducted all scans on a 3T Philips Achieva scanner

(Philips Healthcare, Best, Netherlands) and the participants gave written, informed consent

to participate in the procedure.

We used a blocked presentation design with 18 blocks of 16 s duration, interleaved with

ixation periods (Figure 3.9). Each block consisted of 20 trials with a presentation time of

200 ms and 600 ms blank interval between each presentation. he total run time was 318 s

and each subject took part in 4×318 s runs during a single scanning session. he subjects

were tasked to classify each stimulus image as belonging to one of two categories, although

the task was largely included to ensure that participants attended to the stimuli.

We acquired echo planar imaging (EPI) data from BOLD signals using an 8 channel head

coil. he main scan parameters were: Number of dynamics = 159, TR = 2 s, slice thickness

= 3 mm, slice gap = 0 mm, and TE = 35 ms.

he results were consistent with previous work that identiied areas responsive to Glass

pattern stimuli (Ostwald, Lam, Li, & Kourtzi, 2008). his prior work deined three Glass pat-

experiment

1272 s

run

318 s

block

16 s

trial

0.8 s

run 1 run 2 run 3 run 4

9 x stim blocks�xation 9 x stim blocks

20 x trials

stim response

�xation �xation

Figure3.9: Glasspattern localiserdesign. Participants tookpart in four runs of 318 s each. A run consisted
of two, 9×16 s stimuli blocks and 3×10 s ixation blocks. A block was made up of 20×0.8 s trials. Each trial
consisted of a 0.2 s stimulus presentation and a 0.6 s response period.
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tern response regions: One that was dorsal to occipital complex and inferior to V3a, another

that was ventral and lateral to occipitotemporal cortex and a third that was ventral andmedial

in occipitotemporal cortex. hat work used classiiers to characterise the fMRI data and con-

cluded that lateral occipital areas were better for predicting learning performance than early

visual areas.

Our own observations conirmed that there was less activation for higher cortical areas

(Figure 3.10C,D) and greater activation for occipital areas (Figure 3.10A,B). Increased acti-

vation is usually associatedwith increased excitatory processes, but increased activation is also

LOLO

M1M1

Figure 3.10: Glass pattern activationmaps (inlated brain). Posterior left hemisphere (A), posterior right
hemisphere (B), anterior left hemisphere (C), anterior right hemisphere (D). Approximate positions of brain
areas labelled inwhite: Lateral occipital (LO),motor cortex (M1), mid frontal gyrus (MFG). Cool colours (blue)
represent themorphologyof thebrain (sulci andgyri), warmcolours (yellow/orange) represent BOLDsignals
that responded more to the hyperbolic stimulus images than the rest condition.
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needed to overcome inhibitory processes and therefore might indicate high baseline GABA

concentration (Donahue et al., 2010). Based on the activation that we saw we therefore de-

cided to investigate lateral occipital areas and frontal areas centred on the mid frontal gyrus.

We were also motivated to implement a multi-ROI experimental design as it has been previ-

ously observed that individual diferences in GABA concentrations are not necessarily global

across the brain (Puts & Edden, 2012). We hypothesised that selecting multiple ROIs on the

basis of increased and decreased fMRI activation might be a way to test this observation. We

also required a control area and decided that primary motor cortex would be an appropriate

area to act as a control as we reasoned that this area was unlikely to be involved with visual

learning experiments.

3.5 Discussion

he aim of this chapter was to create the foundation for in vivo MEGA-PRESS experiments

by introducing the options in setting scanning parameters and we demonstrated a method

to target brain regions likely to be involved in visual learning experiments. We suggested

that adopting the scan parameter values that were most commonly used in the literature

would lead to results that would be most generally comparable, apart from scan duration

time, which we suggested should be at the upper end of extant experiments in order to max-

imise SNR. Acquiring GABA measurements in vivo is considered challenging, however our

in vitro experiments showed that the GABA triplet around 3 ppm was well resolved at high

metabolite concentration, with minimal post-processing of data. he brain metabolite phan-

tom also showed a convincing GABA signal at high concentration and evidence of one at a

lower concentration too. hese in vitro experiments are meant to illustrate a suggested route

for researchers preparing for their irst in vivo MEGA-PRESS acquisitions.
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We wanted to choose the brain regions for our in vivo experiments in a principled way.

We therefore conducted fMRI experiments that used visual stimuli that were similar to those

we planned to use in correlative studies of GABA concentration and visual learning. he

brain activation that was observed through these fMRI experiments was then used as a guide

to MRS acquisition voxel placement. We used fMRI to localise activity and hence identify

particular brain regions, but also used the BOLD pattern of activity to target regions of in-

terest for subsequent MRS experiments. As there is no agreed model on the contribution

that inhibitory processes make to the overall BOLD signal, we used our results to select both

highly activated and less activated areas. he use of BOLD signal to guide MRS placement is

not something that is discussed much in the MEGA-PRESS literature, and the use of multi-

ple regions is similarly rare. hese ideas will be explored in subsequent experiments in later

chapters and represent novel approaches to MEGA-PRESS research.
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4.1 Introduction

he raw signals from a MEGA-PRESS experiment consist of two sets of interleaved acqui-

sitions referred to as edit ON and edit OFF. hese signals need to be processed to account

for potential artefacts and problems with data quality before being combined for subsequent

metabolite quantitation. he aim of this section is to investigate the source of noise and errors

in MEGA-PRESS experiments and to describe our research into implementing techniques

that account for these problems and lead to improved metabolite quantitation.

here are several challenges with obtaining in vivo MRS measures of GABA. hese chal-

lenges are partly to do with the anatomy of in vivo specimens and may be seen as a contrast

with the in vitro conditions that we described in Section 3.3: Phantom Experiments. he

human head has scalp, bone, ventricles and air cavities, which all contribute to creating ield

inhomogeneities in the scanner during an MR experiment. hese inhomogeneities result in

artefacts and noise in the signals. he brain is composed of diferent tissue types, such as white

matter, grey matter and cerebrospinal luid and these have diferent water relaxation proper-

ties that can afect the signals in MR spectroscopy. GABA is present in low concentrations in

the brain and its resonance frequencies are overlapped by more abundant metabolites. he
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low concentration levels make it diicult to resolve from background noise (i.e. it has low sig-

nal to noise ratio) and MR experiments are typically run over many averages to improve the

signal to noise of the spectra. hedevelopment of the edited pulse sequences inMEGA-PRESS

was a direct response to the problem of disambiguating GABA from the larger, overlapping

creatine peaks in standard PRESS MRS sequences. he existence of interleaved sequences

leads to the problem of how to combine the signals in a MEGA-PRESS experiment. heoret-

ically this is straightforward and is described as a subtraction of the edit OFF from the edit

ON sequence (Section 2.5.4). However the signals derived from in vivo experiments exhibit

errors and noise related to phenomena such as out of phase acquisitions and poorly aligned

subspectra. hese errors can be visualised by plotting the frequency domain spectra of the

edit ON and edit OFF data, with minimal post-acquisition processing as in Figure 4.1.

Here a general problem with the phase of the spectra can be seen by comparing the slope

of the spectra in Figure 4.1C (ascending baseline) with 4.1E (descending). Ideally the base-

line should be lat, with peaks appearing only above the baseline, rather than a combination

of peaks and troughs that can be seen in this igure. Presumably advances in scanning tech-

nology will lead to more consistently phase aligned signals in the future, but the state of the

art at the present means that researchers have no practical control over the phase of signals in

MEGA-PRESS experiments. However there are options to correct this post-acquisition. We

discuss these options in this chapter.

he poorly aligned subspectra can also be seen in this igure, for example in Figure 4.1B

the arrowed peaks have become misaligned. One efect of averaging such spectra, without

accounting for shited spectra could be a widening of the peak proile that can cause an over-

estimation of the metabolite volume. Another problem could be the appearance of pseudo-

peaks, where misaligned spectra become interpreted as separate components of a peak. his
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Combined Misaligned SpectraCombined

Edit ON

Edit OFF

A

C

E

B

D

F

3.8 3.2 2.8 1.8 3.2 3 2.8

3.8 3.2 2.8 1.8

3.8 3.2 2.8 1.8

3.2 3 2.8

3.2 3 2.8

ppm ppm

Edit ON Ascending Baseline

Edit OFF Descending Baseline

Figure 4.1: Sample misaligned subspectra. Light spectral lines represent individual acquisitions, thicker
lines represent the averaged spectra. The left hand plots (A, C, E) show the spectra along the range 1.8–
3.8 ppm. The right hand plots (B, D, F) show corresponding areas across the range indicated by the grey
boxes (2.8–3.2 ppm). Arrows indicatemisaligned spectra (B) and phase error efect of the baseline slope; (C)
ascending baseline and (D) descending baseline.

has particular signiicance for the GABA resonance at 3.01 ppm (and is discussed further in

Section 4.6: Peak Modelling). In situations where alignment is particularly poor it may be-

come a challenge to distinguishmisaligned peaks from genuinely diferent peaks, for example

choline and creatine peaks near 3 ppm. We discuss how to overcome this challenge by using a

method that employs ofsets fromprominentmetabolite peaks that are unlikely to bemisiden-

tiied, for example the large NAA peak at 2.1 ppm (see Section 4.5: Subspectral Shiting).

We begin this chapter with a description of some MRS tools that are useful for metabolite

quantitation. hese are general purpose MRS tools that can be used for measuring GABA,

but they can be made more accurate by performing the post-acquisition processing steps de-

scribed in this chapter. We introduce these steps, starting with the time domain characteri-
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sation of the FIDs from a MEGA-PRESS experiment, as this illuminates the phase alignment

problems particular to those pulse sequences.

We discuss remedies to phase alignment and advocate an automatic phase correction

step to enhance the reproducibility of measurements. We also describe the nature of sub-

spectral misalignment and explain a method of realignment that uses an independent align-

ment scheme for edited and non-edited spectra.

Segmentation is an important topic as variable proportions of white matter, grey matter

and CSF can skew metabolite measurements in MRS experiments. We describe how to trans-

late the problem from the spectral domain of MRS into the imaging domain, where brain

segmentation has been successfully solved and we detail how to retrieve tissue proportions

using MRI image analysis sotware.

he chapter ends with a discussion on aspects of scaling options for MEGA-PRESS acqui-

sitions. One of our main research hypotheses was that cortical grey matter GABA concen-

trations are involved with learning in visual paradigms. White matter GABA concentrations

might also be involved, but we hypothesised that the white matter would mainly consist of

axons whose role is more to do with routing signals, rather than as the site of GABA expres-

sion. We therefore concentrate our eforts on grey matter tissue segmentation and propose a

scheme to apply this to scale GABA measurements.

he aim for this chapter is to discuss the data processing challenges that are inherent with

MEGA-PRESS acquisitions and to suggest solutions to these based on a pipeline of sotware

that we developed during our experiments. his pipeline covers aspects of spectral manip-

ulations that need to be applied before metabolite quantitation is attempted and also covers

rescaling operations on the quantitated results.
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4.2 Signal Quantiication

Signal quantiication is the process of obtainingmeasures of the abundance of speciicmetabo-

lites from spectra. At its simplest, this usually involves itting a model of the metabolite peaks

to the data and then integrating the area under those peaks, accounting for the number of

protons that contribute to the metabolite of interest. here are several tools available for this

process including LCModel (Provencher, 2001), Tarquin (Reynolds, Wilson, Peet, & Arvani-

tis, 2006; M. Wilson, Reynolds, Kauppinen, Arvanitis, & Peet, 2011), jMRUI (Stefan et al.,

2009) and Gannet (Edden et al., 2014). he test-retest reproducibility of each of these ap-

proaches has been reported as being very similar (O’Gorman et al., 2011), and it is therefore

preferable to use these validated tools instead of bespoke peak integration methods (Bogner

et al., 2010). here are complexities relating to relaxation constants of reference signals (water

or creatine for example) that need to be taken account of as a minimum (Alger, 2010). Also,

any changes in the metabolite model will alter concentration estimates, so we suggest that the

standard basis sets are used unless there is a compelling reason to change them. We suggest

that using the specialised spectroscopy analysis tools in their default conigurations is likely to

be lead to more accurate and comparable measurements across groups. A further advantage

of using these tools is that they provide spectral quality metrics that can assist in determining

the reliability of the metabolite measurements (Mullins et al., 2014).

his is important because anymanipulation, such as subspectral realignment or changes to

the peak model, might negatively impact on the quality of the data. herefore we suggest that

care is taken to monitor the quality of data at each stage of post-processing. In our research

we were closely involved with the developers of the Tarquin spectroscopy sotware, who im-

plemented a MEGA-PRESS analysis routine ater we requested the option. Tarquin sotware

can automatically calculate various qualitymetrics including SNRmax, SNR residual, Q value
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and Cramér-Rao lower bounds (CRLB). We found that scrutinising the quality metrics and

visually inspecting themodel it against the raw spectra at each stage of spectral manipulation

helped in determining the optimal parameters for post-processingMEGA-PRESS signals. For

these reasons we used Tarquin for all signal quantiication in our experiments.

4.3 Time Domain Signals

he data acquired from a MEGA-PRESS experiment consists of edited and non-edited time

varying free induction decay (FID) signals. hese signals are usually Fourier transformed

so that they can be visualised in the frequency, as apposed to the time, domain. he same

information is held in both the time domain and the frequency domain, but the interpretation

of the frequency domain spectra is usually consideredmore intuitive. For this reason, it is rare

to see time domain plots of the FIDs in MEGA-PRESS research. he FIDs can be visualised

however, by plotting the real and the imaginary part of the complex numbers that make up

the FID. If the edit ON and edit OFF FIDs are plotted individually (i.e. not combined and

then plotted), then it becomes apparent that they are distinct from one another and this is

due to the diferent phase of the edited versus the non-edited FIDs. For example if the real
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Edit OFF Figure 4.2: Timedomain, editOFFversus

edit ON. Edit OFF FID (top right quadrant)
and edit ON (bottom left quadrant). Plot
lines represent averaged FID values (n=16).
The edit OFF FID starts at a point on the
positive side of the x and y axes and subse-
quentpoints show theoscillating, descend-
ing decay towards zero. The edit ON be-
gins from a point on the negative side of
the axes and also oscillates and decays to-
wards zero. This plot is meant to show that
there is a phase diference between edited
and unedited spectra that is apparent from
the time domain signals.
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Figure 4.3: Time domain plots, exponen-
tial decay. The inverted nature of the edit
ON FIDs, compared to the edit OFF ones, is
caused by the signals being out of phase
with respect to one another.

components are plotted against the imaginary components (Figure 4.2) then the edit ON

FIDs appear inverted compared with the edit OFF ones.

he FIDs can also be visualised separately as a function of time and this reveals the expo-

nential decay characteristic of the FIDs and the inverted nature of the edited FIDs compared

with the unedited ones (Figure 4.3). he opposition of phase that can be seen in the time

domain signals has an important consequence for combining the edited and non-edited data

and is discussed further in the next section (4.4: Phase Correction).

4.4 Phase Correction

heFIDs can be transformed into frequency domain signals through the use of the fast Fourier

transform (FFT). Metabolite signals can then be identiied by their peaks on the chemical

shit scale, but peak positions are dependent on signals that have been phase corrected. he

FIDs acquired directly from the scanner are not typically phase corrected, as was shown in

Figure 4.3, where the edited signals were out of phase alignment. Phase correction of spectra

is oten achieved through the use of sotware such as jMRUI (Stefan et al., 2009) and involves

the manual adjustment of the phase-zero and phase-one components. his requires some

expertise and is usually done by an experienced MR physicist. For this project we sought
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an automatic solution to phase correction to increase the reproducibility of our experiments.

he algorithm that we used was developed by Chen, Weng, Goh, and Garland (2002) and was

based on entropyminimisation. Herewe demonstrate the data transformation steps necessary

to integrate the algorithm into a Matlab worklow.

his phase correction algorithm required the frequency domain spectra, sample frequency

and the synthesiser frequency as input parameters. On the Philips system that we used, these

data were retrieved from the parameter and data iles (the .SPAR and .SDAT iles respec-

tively). We applied the FFT with the Matlab function fft. he phase alignment algorithm

did not take account of the wrap around efect of the high values (peaks) at the low and

high ends of the spectrum. his discontinuity meant that the frequency domain signals re-

quired that the zero-frequency component be moved to the centre of the data structure and

we used another Matlab function, fftshift, to achieve this (Listing C.2). hese frequency

domain, frequency-shited data, were passed to the phase correction algorithm and the phase-

yes

no

make complex

and conjugate

reshape into

ON/OFF rows

convert row to

frequency domain

apply fftShift

autophase

read binary

data

write to �le

read 

parameters

more

rows?

Figure 4.4: Phase correction lowchart.
Input data to the system were supplied
from text parameter iles (.SPAR) and binary
FID iles (.SDAT). Each data row was pro-
cessed iteratively through the phase cor-
rection algorithm so that the inal data
structure represented frequency domain,
phase corrected spectra. The process box
marked ‘autophase’ (shaded) represents
the algorithm developed by Chen et al.
(2002).
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corrected data were written out to ile. he process is shown diagrammatically in Figure 4.4.

In order to plot the phase corrected spectra we took the non-conjugate transpose of the

output from the phase correction algorithm and plotted the real component of the complex

signal. Typical raw spectra would oten have an uneven baseline (Figures 4.5A,B) and the

edit OFF spectra were out of phase by 180◦ compared with the edit ON spectra. his meant

that the peaks were inverted (Figure 4.5B) and this could lead to processing errors if not

taken account of. For example, a typical brain MR spectrum should have a large NAA peak

at 2 ppm, this is clearly identiiable on phase corrected edit OFF spectra (Figure 4.5D), but

was less clear on uncorrected spectra (Figure 4.5B). Also, the theory for combining MEGA-

PRESS acquisitions is to subtract the edit OFF spectrum from the edit ON (see Section 2.5.2:

Pulse Sequences), if this operation was applied to spectra where the edited and non-edited

spectra were out of phase by 180◦, then the averaged spectrum would not have a peak around

4 3 2 1 4 3 2 1

4 3 2 1 4 3 2 1

A B

DC

Raw Edit OFFRaw Edit ON

Phase Corrected Edit OFF

ppm

Phase Corrected Edit ON

ppm

ppm

Figure 4.5: Sample rawandphase corrected spectra. Edit ON spectra on left hand side (A, C), edit OFF on
right hand side (B,D). Raw spectra above (A, B) and phase corrected spectra below (C,D). Lighter chart lines
represent subspectral components (n = 16) and the darker lines represent the averaged spectra. Arrows on
the raw edit OFF (B) show inverted peaks that are realigned on the phase corrected edit OFF (D).
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Raw Combined Phase Corrected Combined

4 3 2 14 3 2 1

A B

ppm ppm

Figure 4.6: Combined edit ON and edit OFF spectra; raw signal and phase corrected. The raw spectra
havebeen combinedby adding the editONandeditOFF spectra (A). Thephase corrected spectra havebeen
combined by subtracting the edit OFF from the edit ON spectra (B). Arrows indicate approximate expected
position for GABA peaks.

3.02 ppm, which is where we expect to measure GABA. herefore the combination operator

would need to become edit ON plus edit OFF (Figure 4.6A) for non-phase corrected signals.

Phase corrected spectra do not exhibit this problem and can be combined using the subtrac-

tion operator as dictated by theory (Figure 4.6B).

We compared the spectra from the automatic approach outlined above with manual ma-

nipulations using jMRUI and concluded that the automatic phase correction was a suitable

solution that had the advantages of reproducibility and could it into an automated process-

ing pipeline. We used the automatic approach to phase correction of the frequency domain

signals in all operations that required phase correction, for example subspectral shiting.

4.5 Subspectral Shifting

he number of edit ON and edit OFF FIDs that are acquired in a MEGA-PRESS experiment

is dependent on the acquisition parameters chosen by the researcher and is set for each exper-

iment. Speciically, the number of dynamic scans will govern how many FIDs are retrieved.

he dynamic scans parameter is set along with the phase cycling parameter to mediate be-

tween the localisation performed by the scanner and the number of raw FIDs that is thought
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appropriate for optimal post-processing manipulation. With the parameters chosen in Sec-

tion 3.2: Acquisition Parameters the scanner will run the pulse sequences 512 times, with

256 edit ON end 256 edit OFF sequences. As there are two distinct pulse sequences, the num-

ber of dynamic scans can be set in powers of two (2, 4, 8, 16, 32, 64, 128, 256, 512) and the

number of phase cycles will then determine how many FIDs are combined for each dynamic

scan acquisition (the product of the number of dynamic scans and the number of phase cycles

will need to total the number of pulse sequences that are run by the scanner). Maximising the

number of dynamic scans results in the greatest lexibility in post-processing terms, but the

increased number of FIDs also increases the complexity of the task. Decreasing the number

of dynamic scans means that more processing of the FIDs is handled by the scanner, which

results in less complexity in post-processing. he optimum number of dynamic scans there-

fore depends on howwell phase cycling combines the FIDs in the scanner comparedwith how

well the task is completed with post-processing tools. he performance of phase cycling in the

scanner is an unknown quantity as the pulse sequence is an experimental one. At the onset

of this project we had yet to develop post-processing tools, so obviously the performance of

these tools was also unknown.

In the absence of performance metrics for phase cycling versus post-processing algo-

rithms, we selected the median value from the range of possible values for dynamic scans in

experiments of 512 pulse sequence runs. his was 32 dynamic scans per ROI.hismeans that

each exported FID is created from 16 phase cycles (32 × 16 = 512). We reasoned that this

would provide suicient scans to improve through post-processing if needed, whilst keeping

the size of data iles from becoming unwieldy. We transformed the FIDs to frequency domain

spectra and we plotted and overlaid them individually to see if there was good alignment of

the spectra or not (an example of this type of plot was given in the Section 4.1: Introduction,
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Figure 4.1). We found it useful to plot all of our spectra this way and ran the plots as animated

sequences, with one second intervals between the appearance of each subspectral component.

he point to viewing the plots in an animated fashion was to see, across time, whether or not

the spectramoved systematically in one direction or if misaligned spectra occurredmore ran-

domly. hat is, whether the spectra shited along the positive and negative axes of the ppm

scale in one direction only throughout the acquisition (systematic scanner drit as a function

of time), or if they shited in both directions with random frequency.

Analysis of the time course of our acquisitions, led us to conclude that subspectral move-

ment was more random than systematic and the size of the shit also varied within individual

experiments. We assumed that subject movement was the main culprit that produced mis-

aligned spectra (Jansen, Backes, Nicolay, & Kooi, 2006). Another feature of the shit that we

identiied through this process was that wheremisalignment occurred, it happened across the

whole spectrum. For example It was not the case that a peak around 2 ppm would be shited

in one direction and another peak at 3 ppm was shited in the opposite direction. his was

helpful because it meant that to move the spectra back into alignment, we need to identify

a single peak that was out of alignment and move the entire spectrum by the ofset of the

3.1 2.1

B +1.01 ppm

ppm

A NAA

ppm

Cr

Cho

3.1 2.1

Figure 4.7: Disambiguating creatine from choline. A two step process was employed to disambiguate
the creatine (Cr) peak from the choline (Cho) peak in misaligned spectra. (A) The NAA peak was identiied
with a window (shaded box) centred around 2.1 ppm. (B) The creatine was identiied in a narrow window
(shaded box) around an ofset of +1.01 ppm from the identiied NAA peak.
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individual peak.

In order to programmatically identify a particular metabolite peak, we thought it sensible

to focus on the peaks around 3 ppm, which is the approximate position of creatine and GABA

(see Figure 4.7). hese peaks are in close proximity to the choline peak and could potentially

be misidentiied in the case of poorly aligned spectra. We therefore irst identiied the NAA

peak around 2.1 ppm in the OFF spectra with a peak identiication algorithm. his is a large

peak without any similar peaks nearby and is therefore easily identiied even in the case of

poorly aligned spectra. From the identiied NAA peak, a narrow window can be searched

that was centred on the distance between NAA and creatine peaks (approximately 1.01 ppm).

Using this method (Listing C.4) the creatine and GABA peaks are more readily identiied

without misidentifying any out of alignment choline peaks (Figure 4.7). We did the inal

peak identiication by using a weighted average (Listing C.5) of the maximum of the data

points around the window identiied from the ofset from the NAA peak. An alternative to
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Figure 4.8: Paired and
independent alignment.
The edit OFF (A) is shifted
according to the ofset of
the creatine peak from
3.03 ppm (B), labelled ‘X’
on the igure. The edit ON
(C) is shifted according
to the same ‘X’ ofset
in the paired alignment
scheme (D), but by the ON
ofset, labelled ‘Y’ in the
independent scheme (E).
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the weighted average is to use median point of the maximum peak values, we found that this

method had more peak misidentiication errors with our data.

A further choice when realigning spectra was whether realignment should be applied in-

dependently or based on pairs of ON and OFF spectra (Figure 4.8). he paired alignment

approach involves applying the same realignment to the the subspectra in the edit ON pair-

ing that is applied to the edit OFF pairing. In the independent scheme the edit OFF and edit

ON subspectra are realigned irrespective of the shits applied to the other.

A paired approach has been shown to produce less subtraction artefacts than indepen-

dent alignment for data acquired on a GE HDx 3T scanner (Evans et al., 2012). Our analysis

difered in that we found that independent realignment produced the better results.

For example the correlation coeicient for the paired alignment spectra in Figure 4.9B

was r = 0.82 (p < 0.01) compared with r = 0.96 (p < 0.01) for the independent alignment

spectra in Figure 4.9E. We have visualised the correlation matrices for these data in Fig-

3.15 3.03 2.9

C

3.1 3.03 2.9

D

3.1 3.03 2.9

A

3.1 3.03 2.9

B

3.1 3.03 2.9

E

3.1 3.03 2.9

Figure 4.9: Shifting based on NAA and Cr reference peaks for edit ON and edit OFF, independent (IA)
and paired (PA) alignment. Grey lines are the phase-corrected raw spectra, the black lines are the shift-
corrected spectra: (A) edit ON, NAA, PA; (B) edit ON, Cr, PA; (C) edit OFF; NAA, IA; (D) edit OFF, Cr, IA; (E) edit
ON, Cr, IA. The units for the x-scale are ppm.
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Figure 4.10: Paired and
independent alignment
correlation heatmaps.
We computed two correlation
matrices to calculate the
Pearson’s r values for the two
alignment strategies (paired
and independent). The data
for the correlations consisted
of the data points from the 16
spectral lines.
We then visualised each
matrix with a grey scale heat
map.
Plot (A) represents the
r values from the matrix cor-
relating the spectra after the
paired alignment strategy.
Plot (B) represents the inde-
pendent alignment strategy.
The independent alignment
strategy (B) spectra were
more highly correlated, as
represented by the lighter
shadedmatrix comparedwith
the paired alignment (A).

ure 4.10. he corresponding scatter plots can be found in Appendix E : Post-Acquisition

Supplementary (Figures E.2 and E.3).

We compared the efect of paired and independent alignment on 221 MEGA-PRESS ac-

quisitions. We acquired the data set fromROIs situated in frontal, lateral occipital, early visual

and motor cortex areas. Each FID was transformed into the frequency domain, where it was
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phase-corrected and then the individual components of the subspectra were aligned using

paired and independent realignment schemes.

We calculated metrics speciically for the GABA signal at 3.01 ppm and also for the wider

spectrum (Table 4.1). For the GABA speciic metrics, the GABA peaks were constrained to

values between 2.8–3.2 ppm and the noise spectrum was constrained to 0–2 ppm. he SNR

for the GABA peaks was calculated by dividing the maximum value of the GABA signal by

the root mean square of the noise (Listing C.6).

Table 4.1: Independent versus paired alignment. Spectral quality metrics for shift-corrected data ac-
cording to independent alignment and paired alignment schemes. SNR = signal to noise ratio across the
whole spectrum,Q = spectral qualitymetric across the whole spectrum, lower values (down to unity) repre-
sent higher quality, CRLB = Cramér-Rao lower bounds across range 2.8–3.2 ppm, expressed as %SD, lower
values indicate higher quality, SNR GABA = signal to noise ratio across range 2.8–3.2 ppm.

Alignment Scheme SNR Q CRLB GABA SNR GABA
Independent 38.37 ± 8.28 2.38 ± 0.65 5.49 ± 6.21 12.56 ± 3.37
Paired 37.49 ± 10.00 2.50 ± 0.81 7.61 ± 11.70 12.26 ± 3.37

From these metrics independent alignment produced better quality values than paired

alignment (higher SNR, lower Q and lower CRLB). We speculated that this might be due to

hardware diferences (GE versus Philips) as we noted a small systematic tendency for the edit

OFF acquisitions to be shited to the negative x-axis compared with the edit ON acquisitions.

his would render paired alignment unsuitable in the majority of our acquisitions acquired

on Philips hardware.

We compared the efect that the independent realignment scheme had on quality met-

rics versus no realignment. his conirmed that the shited spectra had on average better

SNR (2.5% higher), Q (3% lower) and CRLB values (3% lower) than the uncorrected data. In

addition to improving the quality on average, we noted that individual cases could be dramat-

ically improved, and could lead to the rescue of some data that would otherwise have been
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Figure 4.11: Sample raw and shift corrected spectra. (A) Tarquin (Reynolds et al., 2006; M. Wilson et al.,
2011) processed spectrumwithout shift correction (seeSection4.2). Note the large residuals (top) andpoor
it of model (black line) against the raw averaged subspectra (grey line). (B) After subspectral shifting, the
spectrum’s shape is more typical for a MEGA-PRESS experiment. The SNR values of this sample increased
from 4.14 to 32.1 after shift correction.

discounted from analysis as being too poor for quantitation (Figure 4.11). We also consid-

ered that the improved quality metrics were likely to lead to a reduction in the occurrence of

subtraction artefacts (Section 4.6).

4.6 PeakModelling

he theoretical shape of the GABA peak around 3 ppm that should result from a MEGA-

PRESS experiment is that of a doublet (Section 2.5.2: Figure 2.13). However, limitations such

as the inhomogeneity of the magnetic ield with 3T scanners, have caused some researchers

to doubt whether doublets do in fact reliably occur in the data. Pseudo-doublets can also

occur where misaligned subspectra are averaged to give the appearance of a doublet peak

(Figure 4.12), or during the subtraction of the edit OFF spectra from the edit ON spectra

where subtraction artefacts can produce a pseudo doublet.

At a symposium for GABA researchers organised by Cardif University (Mullins et al.,
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Figure 4.12: Pseudo doublet.
(A) Schematic showing two groups
of misaligned subspectra (grey lines) be-
ing modelled as a single pseudo doublet
(thicker black line) after averaging.
(B) Well aligned subspectra (grey lines)
being modelled correctly as a doublet
(thick black line).

2014), there was some discussion where Philips users reported the appearance of doublets

more frequently than Siemens and GE users. Analysis of the raw spectra in our own acquisi-

tions, acquired using Philips hardware, seemed to suggest that doublets were reliably detected

and so we investigated singlet and doublet models of the GABA peaks. he data points that

make up a peak in a spectrum are usually itted with a curve itting model, for example a

Gaussian function (Weisstein, 2017) such as that in Equation 4.1.

P (x) =
1

σ
√
2π

e−(x−µ)2/2σ2

(4.1)

Ater applying the subspectral shiting techniques (Section 4.5), we analysed themodel it

against the raw spectra using a double Gaussian model of the GABA peaks and a single peak

model (Figure 4.13).

In order to compare the twomodels we integrated the area under theGABApeaks for both

single and double peak models for 140 MEGA-PRESS scans and plotted the measurements

A B Figure 4.13: Double and single peak
modelling. (A) Double Gaussian model it
(black) to the raw GABA peaks (grey).
(B) Single Gaussian model.
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2.1 Figure 4.14: Measurements of GABA us-
ing two peak model versus one peak
model. Triangles show the intersection be-
tween GABA measurements calculated with
a two peak (Gaussian) model and a one peak
model. The least squares it line was calcu-
latedwith the equation 0.75 x+ 0.13 and the
Pearson value was R2 = 0.89 (n = 140).

against each other (Figure 4.14). he single peak model gave higher absolute values for the

measurements, but the closeness of it of the least squares line suggested that a linear scaling

existed between the measurements obtained from the two models that would probably make

little diference in practical terms to correlative studies. his is in agreement with similar

analysis completed by other researchers (Edden et al., 2014).

4.7 Segmentation

Segmentation in the context of brain imaging is the process of separating diferent tissues

in a given brain area. It can be important to know the tissue proportions within an MRS

voxel as the tissue environment can afect quantitative aspects of metabolite concentrations,

for example water relaxation constants are diferent in white matter compared to grey matter.

InMEGA-PRESS experiments voxel volumes are commonly 3 cm3 and therefore contain grey

matter (GM), white matter (WM) and cerebrospinal luid (CSF). GABA is measured from

the entire volume, but as CSF does not contain GABA in any appreciable amounts, then the

potential exists that diferent proportions of CSF in the acquisition voxels might skew the
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measurements. We therefore investigated the amounts of each tissue in our acquisitions to

account for possible tissue driven efects. here have been reports of diferent densities of

GABA in white matter compared to grey matter (Jensen et al., 2005; Petrof, Spencer, Alger,

& Prichard, 1989) and a further argument for accurate segmentation of the acquisition voxels

is that it allows the potential to scale voxels separately for white and grey matter.

Segmentation of tissue types in the brain is achieved through imaging techniques, but

MRS is not an imaging modality. We therefore needed to construct images based on the ge-

ometry of theMRS acquisition voxels as a irst step towards segmenting the tissue proportions

of our acquisition voxels. hese fabricated images can then be registered to high-resolution

anatomical images. Once the registration had been correctly applied, the proportion of dif-

ferent tissues can be calculated using appropriate, existing sotware such as FSL (Jenkinson,

Beckmann, Behrens, Woolrich, & Smith, 2012) or Freesurfer (Fischl et al., 2002; Dale, Fischl,

& Sereno, 1999).

Whole brain segmentation can be achieved by supplying appropriate sotware with a high

resolution 3-D T₁ MRI anatomical and the sotware will create the segmentation with lit-

tle manual intervention. his is the case for several alternatives that can also achieve whole

brain segmentation; for example SPM (Frackowiak, Friston, Frith, Dolan, &Mazziotta, 1997),

Bioimage Suite (Duncan et al., 2004) or Brain Suite (Shattuck, Sandor-Leahy, Schaper, Rot-

tenberg, & Leahy, 2001). Whole brain segmentation is a straight forward operation when

using such sotware. However we found that methods to accurately register acquisition vol-

umes with segmented MRI images required further detailed work to account for diferences

in coordinate systems.

Here we detail our approach to solving the issue of how to calculate the proportions

of white matter, grey matter and CSF from the region targeted during an MRS experiment
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Figure 4.15: SegmentingMRSacquisitions. (A) DICOMiles containing T₁ anatomical andMRS acquisition
coordinates. (B) Automatic whole brain segmentation into GM, WM and CSF with Freesurfer. (C) Simulated
fMRI created with mri_volsynth. (D) Simulated fMRI volume registered to anatomical. (E) T₂ manually reg-
istered with T₁ across sessions. (F) Simulated fMRI volume used as a mask to obtain MRS segmentation
information with mri_compute_volume_fractions.

(Figure 4.15). he location of the acquisition voxel in scanner coordinate space is stored

in parameters within the Digital Imaging and Communications in Medicine (DICOM) iles

associated with an acquisition. he rotation and translation information is most usefully pro-

cessed from the direction cosines (the cosines of the angles between the three coordinate axes),

but these data are not available from the standard exported data in .SPAR iles associated with

the Philips set up. herefore we exported DICOM format iles from the scanner from all of

our scans. he speciic tags that contain the relevant information are ImageOrientation-

Patient, which stores the row and column direction cosines and ImagePositionPatient

that has the ofset information (Listing C.7). he slice direction cosines are not stored in

the DICOM iles, but they can be calculated as the cross product of the row and column di-

rection cosines (Listing C.8). It is worth noting that DICOM used the LPS (let, posterior,

superior) coordinate system and that might difer from the sotware used to synthesise a MRI

volume image for segmentation purposes. In our case, we used a Freesurfer program called

mri_volsynth (ListingC.9) that requires parameters to be organised in RAS (right, anterior,
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superior) coordinates. he DICOM coordinates needed to be converted before segmentation

for our particular experiments (Listing C.10).

he iles that are produced from mri_volsynth can be used as proxies for fMRI vox-

els in brain imaging sotware like Freesurfer. However when they are irst produced they do

not contain information on the coordinates and orientation of the associated MRS acquisi-

tions. To position the newly fabricated fMRI proxies, we can use registration matrices (rigid

transformations) to orientate the image iles to the high resolution anatomical scans that were

taken as part of the MRS scanning procedure (Listing C.11). For situations where the MRS

scan and the anatomical MRI scan occur in the same session, the registration matrix is simply

the identity matrix. For cases where the anatomical scan was acquired in a separate session

then a transform matrix must be generated from the manual registration of images obtained

in the separate sessions. he transform matrix obtained from this process can then be used

to register and orient the fMRI proxy to the anatomical scan.

A visual comparison between screenshots taken during scanning and the visualisation of

the registered fMRI volume can be made to ensure that the process has been correctly applied

(Figure 4.16).

he problem of registration between MRI images is familiar to researchers in image anal-

ysis and computer science and there are sotware tools available to assist with this. However

the particular use case that requires the creation of proxy MRI images for MRS experiments

was less well supported, particularly in areas such as psychology. Due to an absence of tools

that speciically addressed this use case, we needed to adapt our own approach, as described

below.

Our approach to segmenting the tissue proportions of our MRS acquisition voxels was to

register the fMRI proxies to their respective anatomical scans, which had already been seg-
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Figure 4.16: Visualised fMRI vol-
ume. The grey shapes represent
the simulated fMRI volumes (A,B), dis-
played over a T1 anatomical scan. The
white wire shapes (C,D) are the acqui-
sition voxels selected on the scanner
console, displayed on a T2 anatomical
scout scan. Accurate alignment of the
simulated voxels compared to the ac-
tual scanner screenshots can be seen
in this igure.

mented into the tissue types through the automated processing in Freesurfer. To conduct

the whole brain segmentation we used the Freesurfer sotware package, in combination with

the function mri_compute_volume_fractions. Freesurfer has automatic brain segmen-

tation routines, that are lengthy to run, typically over 13 hours to complete per anatomical

image, but they have the advantage that they provide consistent tissue segmentation results

that utilise validated procedures that are based on anatomical mapping information as well as

image intensitymodels. he sotware uses volumetric and surface based algorithms to achieve

whole brain segmentation (and brain region labelling). he mri_compute_volume_fract-

ions function works by producing grey scale images with the same dimensions, orientation

and spatial location as the simulated fMRI images that were produced using mri_volsynth

(Listing C.12). By using the segmentation information that had been calculated for the whole

brain, the function extracts segmentation information that coincides with the boundaries of

the simulated fMRI image. he function outputs three data iles that can be visualised as im-
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Figure 4.17: Sample segmented
MRS acquisition. For colour bar
see Figure 4.18. For monochrome
version see Appendix E.1.
(A) Visualisation of a MRS segmen-
tation mask. A colour gradient has
been applied to map the highest
matrix values to red and the lowest
toblue. These sample images (sagit-
tal, coronal and axial) are of a lateral
occipital acquisition taken in the left
hemisphere.
(B) Grey matter segmentation im-
ages corresponding with the MRS
acquisition. Red tones indicate
higher probability that the voxel is
identiied as GM.
(C) White matter segmentation im-
ages. Red tones indicate higher
probability that the voxel is identi-
ied as WM.
(D) Cerebrospinal luid segmenta-
tion images. Red tones indicate
higher probability that the voxel is
identiied as CSF.

ages (Figure 4.17); one for the white matter (WM), one for the grey matter (GM) and one for

the cerebrospinal luid (CSF).

he segmented image iles consist of 3-D matrices. he matrix values of each ile repre-

sents the probability that each sub voxel consists of the particular tissue types deined by the

ile (WM, GM, CSF). For example a sub voxel that has been identiied clearly as WM has a

value of one in the WM ile and zero in the equivalent sub voxel in the GM and CSF iles. If

a voxel was identiied as being equally likely to be WM or GM, but deinitely not CSF then it

might have value of 0.5 in the WM and GM matrices and zero in the CSF one. Each sub voxel

has a corresponding sub voxel in the other two iles, and the sum of the three related sub voxel

values is always one. Each individual sub voxel can have any decimal value between zero and
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Figure 4.18: Sample segmentation
image.
Colour visualisation of a segmentation
matrix. This image is an enlarged ver-
sion of the leftmost image from Fig-
ure 4.17: B. The range of colours, be-
tween red and blue shades, shows
probability from zero to one.

one (Figure 4.18), this means that when the masks are visualised they are not binary images.

he probabilistic assignment of tissue type to each sub voxel struck us as an improvement

over the binary assignment of FSL and was the deciding factor in choosing Freesurfer over

FSL. However, all of the toolsmentioned for segmentation are likely to producemore accurate

segmentation than bespoke ‘in house’ schemes. he number of sub voxels in the image iles

is related to the MRS acquisition voxel dimensions. For example in the experiments that we

conducted, with acquisition dimensions of 30mm3 and a resolution of 1mm3 per sub voxel,

there were 27,000 sub voxels in each image. A summation of all the values in all of the sub

voxels in each ile can be used to calculate the percentage of tissue type.

We conducted segmentation analysis on 212 MRS acquisitions obtained from 31 subjects.

We tabulated our tissue ratios according to brain region and the variability between subjects

by tissue type was approximately 10% (Table 4.2).

his raised an interesting question as to whether or not scaling was necessary in all cases,

because if the proportions of WM, GM and CSF were the same in every acquisition, then a

linear scaling would alter the measurements by the same proportion. We noted that the tissue

proportions that wemeasured were similar for a variety of brain regions and had low standard

deviations. hat is with the exception of early visual area (centred on V1, but overlapping
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Table 4.2: Proportion of tissue type byROI. The proportion and standard deviations of greymatter, white
matter and cerebrospinal luid in regions of interest related to lateral occipital, motor cortex, mid frontal
gyrus and early visual areas. Separate measurements for left and right hemispheres (except for early visual,
which was acquired medially across both hemispheres). There were 212 MRS acquisitions from 31 subjects.

ROI GM WM CSF
Lateral occipital let hemisphere 0.33 ±0.03 0.61 ±0.04 0.06 ±0.02
Lateral occipital right hemisphere 0.32 ±0.04 0.63 ±0.04 0.05 ±0.02
Motor cortex let hemisphere 0.28 ±0.02 0.63 ±0.05 0.09 ±0.04
Motor cortex right hemisphere 0.27 ±0.03 0.64 ±0.06 0.09 ±0.03
Mid frontal gyrus let hemisphere 0.27 ±0.04 0.65 ±0.05 0.08 ±0.03
Mid frontal gyrus right hemisphere 0.27 ±0.03 0.65 ±0.05 0.08 ±0.03
Early visual cortex 0.39 ±0.03 0.49 ±0.04 0.12 ±0.03
Mean 0.30 0.61 0.08
Mean without early visual cortex 0.29 0.64 0.08

with V2 and V3). We acquired this area by placing the acquisition voxels medially over both

hemispheres and therefore included a greater proportion of CSF from the gap between the

two hemispheres (Figure 4.19A). he early visual region also had greater proportions of grey

matter than other regions, again this was probably related to the medial positioning. hese

results suggest that lateral occipital, motor cortex and mid frontal gyrus areas could all be

compared with or without rescaling the measurements, but that comparisons involving early

visual areas would need to be scaled. As the proportions of tissue and CSF cannot be known

exactly for each acquisition in advance, we suggest that calculating the tissue proportions of

all voxels be done as a matter of course in MEGA-PRESS experiments. he tissue proportions

can then be used to rescale the measurements to take account of diferent tissue proportions,

Figure 4.19: Across hemisphere position-
ing for occipital region.
(A) Acquisition voxel (white box) showing the
position covering both halves of the brain.
This may explain the increased grey matter
proportions measured in this brain region
compared to regions acquired in one hemi-
sphere only.
(B) Motor cortex contained in one hemi-
sphere only.
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or be used to justify not rescaling the measurements if that is appropriate for a particular

experiment.

here are certain conditions where scaling by tissue proportions becomes important even

in the case where the proportions are similar across acquisitions. For example if absolute

quantitation is attempted, if the contribution from particular tissues was sought or if there is

a hypothesis that the metabolite of interest (GABA for example) was at diferent densities in

white matter and grey matter. We explore these conditions over the next few sections.

4.8 Scaling and ReferenceMetabolites

Scaling ofmeasuredGABA according to tissue proportion in the acquisition voxel is an aspect

of processing for which there is no current consensus. Some groups dismissed tissue scaling

altogether, others thought it necessary (Michels et al., 2012; Puts et al., 2011) and those that

scaled their measurements did so using diferent algorithms (Bhattacharyya et al., 2011) and

according to diferent rationales. Diferent groups also reported their GABA measurements

in diferent ways, for example as ratios to othermetabolites such as NAA (C. J. Stagg, Bachtiar,

& Johansen-Berg, 2011b), creatine (Bhattacharyya et al., 2011; I.-Y. Choi, Lee,Merkle, & Shen,

2006; Goto et al., 2010; Jensen et al., 2005; McLean et al., 2002; Waddell et al., 2010; Wylezin-

ska et al., 2003) and water (Bogner et al., 2010; Puts et al., 2011).

he principle behind reporting GABA as a ratio is that the reference metabolite concen-

trations should be considered stable. his stability refers to inter-subject variability (i.e. this

should be low) and also that the reference metabolite is not functionally relevant to the phe-

nomena being investigated. In the case of creatine, it has been shown that creatine variesmore

than water during visual stimulation paradigms (Mumuni et al., 2012) and we concluded that

this could adversely efect our results. Another potential problem that has been identiied
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with creatine is that grey matter density increases of 84% over white matter have been re-

ported (Wang & Li, 1998). his led us to conclude that the interpretation of GABA/creatine

ratios would be complicated unless we accounted for the diferent concentrations within the

tissue proportions. Another diiculty that we identiied with creatine was that it has been

shown to be in diferent concentrations according to brain region (Pouwels & Frahm, 1998).

his would make comparisons across brain areas diicult as the GABA quantity (measured as

a ratio to creatine) could vary based on the concentration of the reference metabolite, rather

than actual variation in GABA concentration.

Creatine concentrations have also been associated with working memory (Ozturk et al.,

2009), and this could have a confounding efect on our experiments if working memory was

part of the learning mechanism for our visual learning experiments. Similarly, the other pop-

ular reference metabolite, NAA, has been linked with verbal intelligence (Pleiderer et al.,

2004), cognitive performance (Jung, Gasparovic, Chavez, Caprihan, et al., 2009; Jung et al.,

2005) and creativity (Jung, Gasparovic, Chavez, Flores, et al., 2009). hese factors led us to

conclude that the assumptions that these reference metabolites were not functionally relevant

were unsafe.

4.8.1 Water Scaled GABA

As there are potential diiculties with confounds related to reference metabolites, we decided

to concentrate on water in place of the other referencemetabolites (Ernst, Kreis, & Ross, 1993;

Kreis, Ernst, & Ross, 1993). he use of internal water as a reference has been considered

advantageous because the water densities and signal relaxation times of grey matter, white

matter and CSF could be reliably estimated and were assumed to not change signiicantly

between subjects (Gasparovic et al., 2006).
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Spectroscopy analysis sotware oten uses simpliied assumptions concerning the water

concentration constants when calculating metabolite concentrations. hese assumptions can

have a distorting efect on the concentration values calculated. For example, both LCModel

and Tarquin spectroscopy sotware use a water concentration value of 35,880 — which is ac-

tually a white matter water concentration constant. As neither sotware has the facility to

specify the proportion of tissue types before quantiication, the metabolite quantiication will

not be accurately scaled according to the actual water concentration value constants for grey

matter and CSF. he equation used by Tarquin for example is reproduced in (Equation 4.2).

waterWM = 35,880mM

signalconc =
signalamp × waterWM × wateratt×2

wateramp
(4.2)

We therefore rescaled the Tarquin output (Equation 4.3) to take account of the tissue pro-

portions and water concentration constants for GM (waterGM) and CSF (waterCSF), using the

values tabulated in Gasparovic et al. (2006).

waterGM = 43,000mM

waterCSF = 53,474mM

rescaled = signalconc ×
pGM · waterGM + pWM · waterWM + pCSF · waterCSF

waterWM
(4.3)

A further simpliication in the quantiication calculations for LCModel and Tarquin is the

assumptions made with the water attenuation factor (Equation 4.4). In both sotware suites,
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the factor assumes a TE (echo time) of 30 ms and a ield strength of 1.5 T.

wateratt =
exp(−t/Twater

2 )

exp(−t/T signal
2 )

wateratt =
exp(−30/80)
exp(−30/400)

≈ 0.7 (4.4)

he default values would lead to an overestimation for the metabolite concentrations

(Yamamoto et al., 2015) in experiments that used TE times of 68 ms. However, contrary

to the indings in that paper, the ix is simple and can be applied to Tarquin by setting the

value directly ater calculating with the correct TE. We can substitute the appropriate TE time

(68 ms for the experiments described in this thesis) to calculate the correct water attenua-

tion factor (which is≈ 0.5), thus circumventing the overestimation. T2 relaxation times have

been found to be independent of ield strength (Stanisz et al., 2005), unlike T1 relaxation times,

which increase with the strength of the magnetic ield. We can therefore use the T2 constants

for water and metabolites from Equation 4.4, which are approximations that are suitable for

1.5 T and 3.0 T.

he value calculated from this scaling operation represented the GABA measurement,

scaled to water in the diferent compartments and the unit of measurement is milli molar

(mM), in contrast to the oten quoted institutional units that is used when this scaling is not

used. here were further scaling operations that could be applied, for example to account for

the CSF proportion or to report values as ratios to other metabolites.
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4.8.2 Tissue Scaled GABA

hemeasurements that we derive from the signals inMRS experiments come from voxels that

contain grey matter, white matter and CSF. However, metabolites are present in CSF in only

negligible amounts compared with tissue. his means that when comparing measurements

across diferent subjects or brain regions the measurements should be scaled so that they are

per unit of brain tissue (McLean et al., 2002; Michels et al., 2012; Puts et al., 2011), to relect

the proportion of CSF in the ROI. he most straightforward way to do this is to divide the

metabolite measurement by the proportions of GM and WM (Equation 4.5).

D =
metabolite

pGM+ pWM
(4.5)

Implicit in Equation 4.5 is the idea that the concentration of the metabolite within GM

and WM are the same, and D is meant to represent a notional density. However, it has been

reported that GABA is twice as concentrated in GM compared to WM (Jensen et al., 2005).

To test this assumption we completed a regression analysis using the same method as that

reported by Bhattacharyya et al. (2011). he regression analysis predicts metabolite densities

in GM and WM from measurements where the tissue fractions have been calculated. his is

done by extending the regression line to zero (WM) and one (GM).

We measured GABA+ from four brain areas for a total of 199 voxels and calculated the

tissue scaled GABA+ quantitation (Table 4.3).

We plotted the tissue scaled GABA+ quantitation versus the proportion of grey matter

divided by the proportion of tissue and performed a regression analysis on the pooled data

(Figure 4.20).
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Table 4.3: Mean GABA+ values by region of interest. Mean tissue scaled GABA+ values for lateral occip-
ital, motor cortex, mid frontal gyrus and early visual cortex.

Region of Interest N Mean SD
Lateral occipital 58 1.64 ±0.18
Motor cortex 53 1.53 ±0.15
Mid frontal gyrus 60 1.53 ±0.22
Early visual cortex 28 1.75 ±0.17
Totals / averages 199 1.59 ±0.20

he regression showed that for every institutional unit of tissue scaled GABA+, grey mat-

ter weighted measurements increased by 1.27, which represented 0.4 of a standard deviation.

95% conidence intervals were 0.86 to 1.68. F(1,197)=37.4, p=<.01 showed that the results

were unlikely to have arisen through sampling error, assuming the null hypothesis to be true.
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Figure4.20: Greymatter concentrations regressionanalysis. Linear itting todetermine thegreymatter
and white matter GABA+ concentrations (r=.4, p=<.01, standard error=0.19). Extrapolating the line to pGM
/ (pGM+pWM) = 0, resulted in a whitematter value of 1.17. Extrapolating the line to pGM / (pGM+pWM)
= 1, resulted in a grey matter value of 2.44, which represented a twofold increase in concentration.
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Table4.4: ROI andgreymatter fraction. Linear regressionmodel for the interaction betweenROI andgrey
matter fraction (GM-fraction). OnlyGM-fraction (pooled data) has a statistically signiicant efect. The ROIs
(Motor, MFG, Visual, relative to Lateral Occipital) have no signiicant efect on the intercept, and the in-
teraction coeicients (Motor:GM-fraction, MFG:GM-fraction, Visual:GM-fraction) indicate no signiicant
efect of ROI on the gradient.

Name Estimate SE tStat DF pValue Lower Upper
Intercept 1.12 0.24 4.71 191 0.00 0.65 1.59
Motor 0.12 0.34 0.35 191 0.73 -0.55 0.79
MFG 0.07 0.31 0.22 191 0.83 -0.55 0.68
Visual -0.01 0.53 -0.01 191 0.99 -1.04 1.03
GM-fraction 1.50 0.69 2.18 191 0.03 0.14 2.86
Motor:GM-fraction -0.38 1.05 -0.37 191 0.72 -2.46 1.69
MFG:GM-fraction -0.33 0.97 -0.34 191 0.74 -2.23 1.58
Visual:GM-fraction -0.08 1.25 -0.07 191 0.95 -2.55 2.38

Extending the regression it line to zero and unity gave the GABA+ values for grey matter

and white matter as 2.44 and 1.17 respectively. We calculated the grey matter to white matter

GABA+ ratio as 2.09, conirming the twofold concentration increase in grey matter reported

in the literature.

he data in Figure 4.20 is pooled across voxels from diferent brain regions and there

appears to be some clustering shown here. We tabulated the results from a linear regres-

sion model so that the interaction between ROI and grey matter fraction could be examined

(Table 4.4). his shows that ROI is not a signiicant predictor as a main efect or as an interac-

tion with the fraction of grey matter. he fraction of grey matter is the only variable that was

statistically signiicant in this table, this suggests that pooling the data makes sense. We plot-

ted the predicted mean and 95% conidence interval from the mixed efects model for each

voxel type and also performed a simple linear regression by itting just the data for each voxel

type (Figure 4.21). he variation within each region is the same as that between regions (the

mean for any region lies within the 95% conidence interval of the predictions for all other

regions in Figure 4.21: A), showing consistency across regions. A beneit of pooling the data

is that this gives narrower 95% conidence intervals at zero and one (Figure 4.21: B).
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Figure4.21: Greymatter concentrationspoolingROIs. (A) Predictedmeanand95%conidence intervals
from two regression models; a mixed efects model and a simple linear model. The simple linear model is
represented by dotted lines that appear almost identically to the mixed efects model, over which they are
superimposed. Shaded areas represent the 95% conidence intervals for the mixed model regression lines.
The 95% conidence intervals are narrower for pooled data (B), when extended to zero and one on the GM-
fraction axis.

hediferent concentrations ofGABAaccording to tissue type, led us to propose an amend-

ment to the standard scaling, which includes a term for a scaling factor to account for any

diferences in concentration between GM and WM (Equation 4.6).

D =
metabolite

pGM · sGM+ pWM · sWM
(4.6)

In Equation 4.6, sGM and sWM refer to the scaling factors for GM and WM. If these

were set to 1, then it would be equivalent to Equation 4.5. However, if we wished to simulate

the double GABA density in GM, then we could simply set sGM to a value that was twice

that of sWM. For example sGM could be set to 1 and sWM set to 0.5, this would scale the

values according to the density assumptions and keep the magnitude of the values similar to

the original unscaled values.

We were interested in the interaction between inhibitory processes and visual percep-
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tual learning and this led us to become interested in investigating the GM contribution to

the measured GABA. It is an open question whether WM GABA concentrations are func-

tionally relevant in learning experiments (Angulo, Le Meur, Kozlov, Charpak, & Audinat,

2008; Fields, 2008), but given that fMRI analysis usually precludes WM from the analysis we

thought it worth trying to separate the WM and GM contributions to the signal. his would

also be consistent with the hypothesis that grey matter GABA concentrations modulated the

eiciency of visual learning rather than those in the white matter. We therefore split the no-

tional density measurement D into the GABA grey matter (gGM) and GABA white matter

(gWM) contributions to the signal (Equations 4.7,4.8).

gGM = D× pGM · D · sGM
GABA

(4.7)

gWM = D× pWM · D · sWM
GABA

(4.8)

D = gGM+ gWM (4.9)

he sum of gGM and gWM would be equal to the original value of D (Equation 4.9), but

when we separated the GM and WM components like this we could account for variations in

GM proportion with the GABA density assumptions chosen with the scaling factors (sWM

and sGM). hese scaling factors could be used with other metabolites. In fact it might be

advantageous when reporting GABA values as ratios, where the reference metabolite was also

known to vary in density in GM compared to WM. Creatine has been used as a reference

metabolite in GABA studies, but this metabolite has been shown to difer in density across

tissue types (Kreis et al., 1993).

It would notmake sense to use these scaling factors in the case where the GABAwas being
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reported as a ratio to another metabolite that had the same scaling factors for GM and WM as

GABA. In this case the ratio would be the same whether Equation 4.5 or Equation 4.6 were

used.

We tabulated the efect of applying these equations to various tissue proportions (Tables

4.5,4.6), including boundary cases and proportions that we calculated from our in vivo ex-

periments. he reason for this was to provide illustrative examples so that the efect of using

the equations could be seen in various scenarios (for example cases where there was elevated

grey matter content versus white matter and vice versa). he bottom row, highlighted, has

tissue proportions that were calculated from our in vivo experiments. When we compared

the values between Tables 4.5 and 4.6 (where the scaling constants for GM were twice that of

WM) we concluded that this scaling method elevated the GM contribution (gGM) compared

to the WM contribution (gWM) from approximately half of WM (3.54 versus 7.32) to almost

the equivalent value (8.06 versus 8.33).

In correlation studies between GABA measurements and perceptual learning, where the

hypothesis involved grey matter inhibition, this had the potential to distinguish the contri-

bution of GM GABA that might otherwise be masked by the inluence of the WM GABA

contribution. We investigated this in the experiments described in Chapter 6: GABAVersus

Training Diiculty Mediated Visual Learning and Chapter 7: GABA Versus Coarse and

Fine Visual Learning.

Other researchers have applied diferent approaches to separating the GM and WM con-

tributions. For example one group (C. J. Stagg et al., 2011a) has used the scheme in Equa-

tion 4.10. In this scheme the GABA measurement was calculated as a ratio to creatine, how-

ever both GABA and creatine were multiplied by tissue proportions and while GABA was

scaled using the proportion of grey matter, creatine was scaled using the proportion of both
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Table 4.5: Grey matter scaling. Sample scaled values where the scaling factor for WM and GM was the
same (sGM= sWM= 1), sCSF was set to 0.001. Calculations for typical tissue proportions (mean) are shown
in the highlighted row. gTOT the measured GABA quantity (set to 10 in all cases); pGM proportion of GM;
pWM proportion of WM; pCSF proportion of CSF;

D =
gTOT

(pGM×1+pWM×1+pCSF×0.001)
nominal density (see Equation 4.6);

gGM = D× pGM×D×1
gTOT

GABA from the GM contribution (see Equation 4.7);

gWM= D× pWM×D×1
gTOT

GABA from the WM contribution (see Equation 4.8);

gCSF = D× pCSF×D×0.001
gTOT

GABA from the CSF contribution.

gTOT pGM pWM pCSF D gGM gWM gCSF
10 1.00 0.00 0.00 10.00 10.00 0.00 0.00
10 0.00 1.00 0.00 10.00 0.00 10.00 0.00
10 0.00 0.00 1.00 1·104 0.00 0.00 1·104

10 0.50 0.50 0.00 10.00 5.00 5.00 0.00
10 0.40 0.40 0.20 12.50 6.25 6.25 0.00
10 0.10 0.30 0.60 24.96 6.23 18.69 0.04
10 0.30 0.10 0.60 24.96 18.69 6.23 0.04
10 0.60 0.20 0.20 12.50 9.37 3.12 0.00
10 0.30 0.62 0.08 10.87 3.54 7.32 0.00

Table 4.6: Grey matter scaling, accounting for diferent density in GM compared to WM. Diferences
in the formulas with Table 4.5 are highlighted in light grey.

D =
gTOT

(pGM×1+pWM× 0.5 +pCSF× 0.0005 )
;

gGM = D× pGM×D×1
gTOT

; gWM= D× pWM×D× 0.5
gTOT

; gCSF = D× pCSF×D× 0.0005
gTOT

.

gTOT pGM pWM pCSF D gGM gWM gCSF
10 1.00 0.00 0.00 10.00 10.00 0.00 0.00
10 0.00 1.00 0.00 20.00 0.00 20.00 0.00
10 0.00 0.00 1.00 2·104 0.00 0.00 2·104

10 0.50 0.50 0.00 13.33 8.89 4.44 0.00
10 0.40 0.40 0.20 16.66 11.11 5.55 0.00
10 0.10 0.30 0.60 39.95 15.96 23.94 0.05
10 0.30 0.10 0.60 28.55 24.45 4.07 0.02
10 0.60 0.20 0.20 14.28 12.24 2.04 0.00
10 0.30 0.62 0.08 16.39 8.06 8.33 0.00
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grey matter and white matter.

scaled_GABA = GABA× pGM
pGM+ pWM+ pCSF

scaled_Cr = Cr× pGM+ pWM
pGM+ pWM+ pCSF

GABA_ratio = scaled_GABA
scaled_Cr

(4.10)

Although this scaling scheme was markedly diferent to the one we employed and used

diferent assumptions, the scaledmeasurements obtained from it were still strongly correlated

with scaledmeasurements calculated according to our equations. Whenwe examined the cor-

relations for the GABA measurements calculated with Equation 4.10 versus those calculated

with Equation 4.5we found them to be strongly correlated, r(201)=.71, p=<.01 (Figure 4.22).

It might be considered surprising that the diferent scaling schemes produced such highly

correlated results. However, when we considered that there was a low variability in tissue

proportions then this made sense. he consistency of voxel placement resulted in there being

similar tissue proportions and thus the scaling made a large diference in the magnitude of
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Figure 4.22: Comparison of scaling
methods, creatine versus tissue. Corre-
lations between two scaling schemes that
use diferent assumptions about GABA
densities in tissue. GABA/Cr scaling that
used a tissue proportion multiplier (x-axis)
versus a water scaled scheme that divided
by tissue proportion (y-axis). Despite
the diferent methods these schemes
produced strongly correlated results,
r(201)=.71, p=<.01.
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Figure 4.23: Comparison of scaling
methods, creatine versus grey matter.
Correlations between two scaling schemes
that use diferent assumptions about
GABA densities in tissue. GABA/Cr scaling
that used a tissue proportion multiplier
(x-axis) versus a water scaled scheme that
accounted for grey matter proportion
(y-axis). Despite the diferent methods
these schemes produced very strongly
correlated results, r(201)=.88, p=<.01.

the scaled values, however they still produced metrics that were well correlated.

In Equation 4.10 the measured metabolite quantities are multiplied by the proportion

of tissue. In our scheme (Equation 4.7) the measured GABA concentration is divided by the

proportion of the tissue of interest. Both operations are intended to emphasise the greymatter

contribution, but do so using equations that one might expect to have very diferent results.

Interestingly, when we examined the correlations between this scheme and our scheme, the

correlations were even stronger, r(201)=.88, p=<.01 (Figure 4.23).

4.8.3 Correlations Between ScalingMethods

We examined the correlation coeicient from GABA measurements taken from Tarquin ver-

sus the same measurements scaled according to Equation 4.6, which essentially scaled by

tissue (GM and WM) and accounted for the CSF proportion in the voxels. he results were

very strongly correlated, r(201)=.97, p=<.01 (Figure 4.24).

he scaling factors for GM and WM are the same in this scheme, but the slight variation

accrued from the diferent proportions of CSF in the voxels. We also looked at the comparison

where the GM scaling factor was set to twice that for WM. his showed a similarly strong

correlation, r(201)=.95, p=<.01 (Figure 4.25).
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Figure 4.24: Correlations, unscaled ver-
sus tissue scaled. r(201)=.97, p=<.01.

As expected the magnitude of the scaled values increased (as the GM values were efec-

tively doubled), but this lead to scaling that was almost linear and therefore resulted in very

similar correlations to those in Figure 4.24.

Next we investigated the correlations between unscaled GABA measurements and grey

matter scaled measurements (Equation 4.7). his efect size was less strong, r(201)=.61,

p=<.01 (Figure 4.26) and this suggested that correlations between learningmetrics andGABA

measurements scaled in this way were likely to be diferent to correlations between learning

metrics and unscaled GABA measurements.
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Figure 4.25: Correlations, unscaled
versus tissue scaled, grey matter scal-
ing factor twice that of white matter.
r(201)=.95, p=<.01.
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Figure 4.26: Correlations, unscaled ver-
sus grey matter scaling. r(201)=.61,
p=<.01.

We also examined the correlations between the unscaled GABA measurements and the

GM scaled values from Equation 4.7, but where the GM scaling factor was set to twice the

WM scaling factor (Figure 4.27). his resulted in a correlation of r(201)=.79, p=<.01, which

indicated a slightly stronger efect size.

he inal correlation that we examined was that between the two GM scaled values, which

difered only in the scaling factor, which was set to twice that of WM in one of the variables.

his was expected to be very strongly correlated, as the scaling factor should be approximately

linear and so it proved to be, r(201)=.96, p=<.01 (Figure 4.28).
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Figure 4.27: Correlations, unscaled ver-
sus grey matter scaling, grey matter
scaling factor twice that ofwhitematter.
r(201)=.79, p=<.01.
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Figure 4.28: Correlations, grey matter
scaling versus grey matter scaling with
scaling factor doubled. r(201)=.96,
p=<.01.

he conclusions that we drew from these correlations were that scaling according to the

CSF proportion is necessary to align it to the known fact that CSF contributes negligible

amounts to the overall measured GABA total. However, in cases where absolute quantita-

tion is not attempted (the majority of MEGA-PRESS experiments) and where the CSF ratio is

consistent (this should normally be the case when comparing the same region of interest and

where voxel positioning is consistent) then the scaling would generally be linear and should

therefore not alter the indings in correlational studies. Where GM scaled correlations are

concerned we concluded that the scaling introduced some variability into the correlations.

his we interpret as potentially helpful in highlighting the contribution of GM GABA over

the dominating contribution of WM GABA, which was found to be in approximate propor-

tions of 2:1 compared to GM in our acquisitions (Section 4.7: Table 4.2). he correlations

between the GABA scaled with a twofold increased density assumption compared to WM

scaled GABA were so strong that we suggest that it would not make much diference which

scheme is used in correlational studies, however we preferred the twofold GM scheme as it

matched the indings from our regression analysis. We therefore conclude that the GMGABA

scaling scheme, with double GM scaling factor, would best suit our hypothesis that inhibitory
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mechanisms in cortical grey matter would mediate performance in visual learning tasks. We

applied this scaling scheme to all subsequent correlative studies.

4.9 Discussion

Once data has been obtained from the scanner for a MEGA-PRESS experiment there are var-

ious approaches that can be employed to quantify and improve the quality of the MRS data.

his chapter discussed these approaches and introduced a sequential pipeline of steps that

went from initial time domain characterisation of MEGA-PRESS phase diiculties through

to rescaling techniques; with spectral correction, tissue segmentation, peak modelling and

quantiication approaches all described along the way.

It is unusual to see time domain plots in research for MEGA-PRESS related work. his

is in part because of an assumption that time domain data are diicult to interpret visually,

compared to frequency domain plots. However this section showed that diferences in phase

between edited and non-edited sequences are unambiguously evident in time domain plots,

where the exponential decay of the edited FID is inverted compared to the non-edited FID.

his is not necessarily the case with frequency domain plots that tend to obfuscate spectral

peaks and troughs in out-of-phase data. Having prior knowledge that one half of the MEGA-

PRESS data are out-of-phase by 180◦ can facilitate optimisations in automatic phase correc-

tion algorithms. his is because a typical phase correction algorithm will sweep through a

range of angles and cease as the phase correction approaches its optimum. If it is known that

a spectrum is approximately 180◦ out of phase then an initial guess of the phase correction

can be provided, thus reducing the time taken to reach the optimum solution.

In the section on phase correction we demonstrated how to integrate an automatic algo-

rithm for each FID acquired. he point to this approach was to improve the processing speed
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and reproducibility of the results data obtained (compared to manual phase correction). We

also showed that this approach leads to consistency in combining edited and non-edited spec-

tra, as edit OFF scans are always subtracted from edit ON ones. Subspectral shiting is an-

other way of realigning spectra that would otherwise lead to erroneous quantitation and other

potential artefacts such as pseudo doublets. We went into some detail here as this process re-

ceives scant attention in most of the MEGA-PRESS literature. We demonstrated signiicant

improvements that this technique can make to poorly aligned data and reported an improve-

ment with independent alignment versus paired alignment strategies, which contrasted with

previous indings.

We concluded that doublet models of GABA peaks would produce data that functioned

similarly to singlet models in correlative studies, based on the strong correlations between

the measurements obtained by integrating the peaks of the two models. However we still

preferred the doublet model as it matched the theoretical line shape of the GABA spectrum

and we believe it more closely matches the raw data that we observed (while accepting that

other researchers, using diferent equipment might observe data more suitably modelled with

a singlet model). his suggests the importance of checking widely held assumptions and the

need to have a lexible pipeline of analysis tools.

An important step in the post-acquisition processing of metabolite signals for correlative

studies is to take account of the volumes of tissue and CSF in the acquisition voxel. he main

obstacle to calculating these volumes is in converting the coordinates, ofsets and dimensions

of the acquisition voxel to an image that can be registered to a high resolution MRI scan. We

demonstrated a method that we hope has been explained in suicient details so that it may

help shorten the learning curve for other researchers wishing to implement this step.

he reasons why the segmentation step is considered important were outlined in the sec-
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tion on scaling and reference metabolites. Here we discussed the diferent approaches that

researchers have taken and proposed a method to concentrate on the grey matter contribu-

tion to the measured signal. his is a novel approach that its with a hypothesis on the role

of GABA in perceptual learning that we develop in later chapters of this thesis. We also show

through several correlative plots that diferently scaled GABA measurements produce similar

(highly correlated) results. Our conclusions for this are that scaling methods are unlikely to

make large diferences where the tissue proportions are similar across brain regions and sub-

jects. However, we do note that diferent scaling operations might be important where there

are speciic hypotheses regarding density diferences of metabolites of interest in diferent

tissue types or if absolute quantitation is attempted.

Since developing our analysis routines other groups have also developed MEGA-PRESS

analysis sotware, with Gannet (Edden et al., 2014) being the most comprehensive. his sot-

ware has some similarities to our pipeline; both are script based, command line driven inter-

faces that interact with other sotware. Gannet is Matlab based and aims to support GABA-

edited data acquired from Philips, GE and Siemens scanners. Gannet modules apply fre-

quency and phase correction in a pairwise manner, they apply outlier rejection and it a single

Gaussian peak to GABA and quantitate it using either water or creatine as a referencemetabo-

lite. In the most recent version, Gannet interacts with SPM sotware to calculate tissue frac-

tions using T1-weighted images taken at the same time as theMRS acquisitions. Our sotware

uses Matlab and Python scripts to support Philips acquired data, we use independent align-

ment strategies and quantitate using Tarquin sotware instead of internal algorithms. Our

segmentation dependency is on Freesurfer, rather than SPM, the major diference being that

SPM produces binary masks and Freesurfer produces masks with variable grey scale values to

represent probabilities of tissue type. Gannet aims to be the more complete analysis suite as
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it supports more vendors and processes more of the analysis steps automatically using inter-

nal algorithms. Our approach was focussed on producing the most appropriate analysis for

our particular experimental settings and this has allowed us to process our data using options

that were not available elsewhere at the time we ran our experiments. his situation is subject

to change however, as we note that some analysis options that were previously absent from

Gannet have now been introduced and we would expect that further lexibility with regard

to processing steps is likely to follow as the user base increases. At the time of writing there

were still tasks and methodological choices that were easier to implement with our sotware,

compared with Gannet. For example segmentation using MRI images acquired in diferent

sessions was not possible using Gannet’s automatic approach, which assumes that the subject

is in the same physical position with regard to the scanner coordinate space.

We found that it was instructive to challenge some commonly held assumptions about

how to approach the post-acquisition processing stages, as such assumptions were likely to

form the default settings of alternative sotware suites. We therefore suggest that there is ben-

eit in creating a pipeline such as the one outlined here that is lexible enough to test alter-

native processing approaches. For example, for work in later chapters, we will process our

MEGA-PRESS scans using the automatic phase correction and independent alignment tech-

niques mentioned above; we will use a double peak model for the quantitation stages, we

will reference the water signal (taking account of the relaxation values appropriate for the tis-

sue proportions) and we will concentrate on the grey matter GABA contribution to suit our

hypothesis that grey matter GABA concentrations are involved in perceptual learning. All of

these choices can bemade because the testing that we have done suggests they are appropriate

approaches to the data we have collected and the hypotheses we wish to test.
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5
TIME COURSE OF TRAINING DIFFICULTY

MEDIATED VISUAL LEARNING

hemain aim for this thesis is to investigate the neural correlates of inhibitory neurotransmit-

ter and perceptual learning, we therefore sought a psychophysics paradigm that would evince

dissociable learning as a step towards this aim. We reasoned that if we could design psy-

chophysics paradigms that elicited dissociable learning, then we could use learning metrics

from these experiments in correlative studies with MRS.

We prepared for the experiments described in this chapter by making some key decisions

about a suitable experimental paradigm and then used a series of pilot experiments to opti-

mise parameters to evoke dissociable learning performance in participants (see Appendix B:

Visual Learning Pilot Studies). he irst decision we made was to select Glass patterns as the

stimulus type. Glass patterns are comprised of dots that can bemanipulated to produce global

shape patterns. his was important to us because we were particularly interested in cortical

areas such as lateral occipital complex, which is involved with shape processing. In our pilot

experiments wemanipulated image parameters such as spiral angles and noise and found that

we could parametrically alter the task diiculty of discrimination experiments through these

his chapter is based on Garcia, Kuai, and Kourtzi (2013).
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manipulations.

his led us to consider the efect of training diiculty on performance. We ran exper-

iments where we compared learning performance as a function of training diiculty. We

discovered that training schemes that subjects found more diicult elicited higher learning

performance than training that was easier. We also varied the length of the tasks and extended

them into multi session experiments so that we could better characterise the time course of

learning. Results from these changes suggested that training diiculty evoked diferences in

performance over diferent time scales, for example across a single session compared with be-

tween sessions. We were interested in the time course of subject performance as we hypoth-

esised that inhibitory processes might interact with learning in distinct ways across diferent

time scales.

Learning is known to facilitate performance in a range of perceptual tasks. Behavioural

improvement ater training is typically shown ater practice with highly similar stimuli that

are diicult to discriminate (Hard-Training), or ater exposure to dissimilar stimuli that are

highly discriminable (Easy-Training). However, little is known about the processes that me-

diate learning ater training with diicult compared to easy stimuli. Here we investigate the

time course of learning where observers discriminated similar global form patterns aterHard

versus Easy-Training. Hard-Training requires observers to discriminate highly similar global

forms, while Easy-Training involves clearly discriminable patterns.

he aim for this chapter is to describe amulti-session, interleaved psychophysics paradigm

that evokes dissociable learning performance as a function of training diiculty. In subse-

quent chapters we will use variations of this paradigm to investigate the correlations between

psychophysics performance metrics versus concentration levels of GABA to probe the main

hypothesis of the thesis.
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5.1 Introduction

Training task diiculty has been identiied as one of themain factors that contributes to train-

ing outcome (Ahissar & Hochstein, 1997; Z. Liu & Weinshall, 2000; J. Liu, Lu, & Dosher,

2012). It is widely believed that supervised training (i.e. training with feedback) on diicult

tasks that require discrimination of highly similar stimuli improves participants’ performance

(Ball & Sekuler, 1987; Shiu & Pashler, 1992; Fahle & Edelman, 1993; Herzog & Fahle, 1997;

Dwyer, Hodder, &Honey, 2004; Seitz, Nanez, Holloway, Tsushima, &Watanabe, 2006; Aberg

& Herzog, 2012). However, there is accumulating evidence that training on Easy discrimina-

tion tasks, when stimuli are clearly discriminable, may also facilitate better performance in

perceptual judgments (Ahissar &Hochstein, 1997; Rubin, Nakayama, & Shapley, 1997; Z. Liu

& Weinshall, 2000; Jeter, Dosher, Petrov, & Lu, 2009; J. Liu, Lu, & Dosher, 2010; J. Liu et al.,

2012).

Although these studies have suggested thatHard versus Easy-Training may relate to difer-

ent learning processes, previous work has focused on assessing the inal outcome of training

rather than the time course of learning. Investigating the time course of learning-dependent

improvements is important for understanding the processes that underlie learning based on

Hard versus Easy-Training.

To address this question, we designed a stimulus space and a paradigm that allowed us to

compare the time course of behavioural improvement during training on Hard versus Easy

shape discrimination tasks. We used parametric manipulations of Glass patterns that com-

prised oriented dot dipoles. For these stimuli, small local changes to dot patterns have a pre-

dictable inluence on the perception of global forms. We manipulated the diiculty of the

training task by varying the similarity between global forms, using linear morphing between

concentric and radial patterns. Hard-Training involved training on similar patterns, while
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Easy-Training involved training on highly discriminable patterns. We assessed training out-

come by testing observers on the discrimination of similar patterns without feedback. To

monitor improvement of behavioural performance during Hard versus Easy-Training we in-

terleaved training and test blocks within each session.

5.2 Materials andMethods

5.2.1 Participants

hirty-six observers (16male, 20 female, mean age 24 ± 6) participated in four experiments.

None of the participants had prior experience with the stimuli or the study protocol. All of the

participants had normal or corrected-to-normal vision, gave written informed consent and

were paid for their participation. he study was approved by the University of Birmingham

ethics committee.

5.2.2 Psychophysics

Stimuli. Glass pattern stimuli (Glass, 1969) were used, as previously described (Li, Mayhew,

&Kourtzi, 2009). In particular, stimuli comprised of white dot pairs displayedwithin a square

aperture (7.7◦×7.7◦) on a black background with 100% contrast. Each dipole comprised two

dots (2.3×2.3 arc min2) with 16.2 arc min separation between them. hese parameters were

chosen based on pilot psychophysical studies (Appendix B: Visual Learning Pilot Studies)

and in accordance with previous work (H. R. Wilson & Wilkinson, 1998) that showed coher-

ent form patterns were reliably perceived for these parameters.

We created Easy-Training and Hard-Training versions of radial and concentric shapes.

We deined these by placing dipoles with respect to the circumference of a circle that was

centred on a ixation dot (Figure 5.1). he angle between the dot dipole orientation and the

radius, from the centre of the dipole to the centre of the stimulus aperture, deined the spiral
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Figure 5.1: Easy-Training and Hard-Training spiral angles. (A) Radial, easily discriminable pattern (black
lines), dipoles arranged with angles of 10◦ to the circumference. (B) Concentric, easily discriminable pat-
tern, (black arcs), dipoles arranged with angles of 80◦. (C) Hard-Training radial and concentric, less dis-
criminable patterns, dipoles arranged with angles of 35◦ (radial) and 55◦ (concentric). Each pattern is 10◦

from the boundary between radial and concentric (dotted line).

angle. Weparametrically altered the spiral angle to generate shapes thatwere characteristically

more radial (spiral angles closer to 0◦, Figure 5.1A) or concentric (spiral angles closer to 90◦,

Figure 5.1B). Sample Easy and Hard stimulus images are reproduced in Figure 5.2.

A 21-inchCRTmonitor (1280×1024, 85Hz frame rate)was used to display the images and

all psychophysics experiments were conducted in low light conditions. We ixed the viewing

distance at 47 cmwith a chin rest. Stimulus imageswere generated andpresented usingMatlab

(he MathWorks, Inc., Natick, Massachusetts, USA) and Psychtoolbox version 3 (Brainard,

1997; Pelli, 1997).

Procedure. Weconducted four experiments. InExperiment 1, we randomly assigned 16 par-

ticipants to an Easy or a Hard-Training group. In the Hard-Training group, observers were

trained to discriminate Glass patterns with spiral angles of 35◦ (radial) and 55◦ (concentric).

In the Easy-Training group, observers were trained to discriminate Glass patterns with spiral

angles of 10◦ and 80◦. Participants in both theHard andEasy-Training groupswere testedwith

spiral angles of 35◦ and 55◦. Observers participated in three sessions conducted on consecu-

tive days. Each session comprised four test blocks without feedback and three training blocks
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Figure 5.2: Stimulus images Easy-Training versus Hard-Training. Easy-Training images: (A) radial 10◦,
(B) Concentric 80◦. Hard-Training images: (C) radial 35◦, (D) concentric 55◦. The perceived size of these
images when presented on screen was 70mm2, this is the size that this igure is intended to reproduce if it
is printed on standard A4 sized paper.

with auditory error feedback. he test and training blocks were interleaved during the session

and the session started and ended with a test block. his design allowed us to characterise the

time course of learning during each session rather thanmeasure performance only before and

ater training. Each block consisted of 200 trials. In each trial, a stimulus image was presented

for 200ms and participants were required to judge whether the stimulus was radial, with a let

mouse click, or concentric using a right mouse click. All experiments were self-paced, so non
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responses were not possible as subsequent stimulus presentation was dependent on subject

response. To avoid participant fatigue, participants took breaks of a minimum of 60 s ater

each 100 trials with a longer break of 180 s half way through the session. hese precautions

were introduced as a result of our observations from previous pilot studies.

In Experiment 2 we tested whether lower performance ater Easy-Training was due to the

limited number of training sessions. Eight participants were trained for six to eight consecu-

tive sessions. he same protocol and stimulus parameters were followed as in Experiment 1.

For each individual participant, training stopped ater performance had saturated. We de-

ined performance saturation as the point at which performance levels in the learning metrics

stopped increasing, whereas they had previously been rising.

For Experiment 3 (n = 5) we controlled for the possibility that performance diferences

between theHard and Easy-Training groups in Experiment 1 were due to the fact that partic-

ipants in theHard-Training group were trained and tested with stimuli presented at the same

spiral angles (35◦ vs. 55◦). Participants were trained with stimuli presented at spiral angles of

40◦ vs. 50◦ and tested with stimuli presented at spiral angles 35◦ vs. 55◦. hat is, the training

stimuli were more diicult to discriminate than the test stimuli.

In Experiment 4 (n= 7), we controlled for the possibility that improved performance could

result from learning during the test blocks rather than from supervised training. Participants

were tested on stimuli presented at spiral angle of 35◦ vs. 55◦ (four test blocks as in Experi-

ment 1) but were not trained with feedback on any additional blocks.
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5.3 Results

5.3.1 Experiments 1and2: Behavioural Improvement FollowingHard Versus
Easy Training

In Experiment 1, we compared learning betweenHard-Training (training to discriminate pat-

terns at spiral angles of 35◦ vs. 55◦) and Easy-Training (training to discriminate patterns

at spiral angles of 10◦ vs. 80◦). An Analysis of variance (ANOVA) of the training blocks

(Figure 5.3A) showed that performance for theHard task improved signiicantly across train-

ing sessions [F (1.2, 8.1) = 23.8, p < 0.01, Greenhouse-Geisser corrected], while performance

for the Easy task was already at ceiling for the irst training session and did not improve signif-

icantly across sessions [F (1.1, 7.5) = 3.6, p = 0.09, Greenhouse-Geisser corrected]. hese re-

sults conirmed that discriminating patterns at spiral angles of 10◦ vs. 80◦ constituted an Easy

task, while discriminating patterns at spiral angles of 35◦ vs. 55◦ constituted a Hard task that

required additional training. Further, analysis of the test blocks (Figure 5.3B) showed that for

both groups (Easy versus Hard-Training) participants improved signiicantly in discriminat-

ing between similar Glass patterns presented at spiral angles of 35◦ vs. 55◦ (test blocks) ater

three sessions of training. In particular, a repeated-measures ANOVA showed a signiicant

main efect of session [Pre- vs. Post-Training session, F (1, 14) = 76.2, p < 0.01]. However, be-

havioural improvement was stronger followingHard rather than Easy-Training as was shown

by a signiicant interaction [F (1, 14) = 9.8, p < 0.01] between-session (Pre- vs. Post-Training)

and training task (Easy vs. Hard). According to the Student’s t-distribution test, no signif-

icant diferences [t (14) < 1, p = 0.8] in performance were observed before training in the

irst test block, which suggested that diferences in post-training performance between Easy

and Hard-Training could not be due to diferences in baseline performance. hese indings

suggested that for the same amount of training, training on aHard discrimination resulted in

better performance than training on an Easy discrimination.
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Figure 5.3: Experiments 1 and 2 mean
behavioural performance across
participants for (A) training blocks in
Experiment 1, (B) test blocks in Experi-
ment 1, (C) test blocks in Experiment 2.
(A) A post hoc t-test on the session
means showed that performance was
higher in the third session than irst for
Hard-Training [t (14) 3.52, p < 0.01], but
this was not the case for Easy-Training
[t (14) 1.67, p = 0.06].
(B) Comparing the performance in the
Post and Pre runs showed that perfor-
mance increases were signiicant in Easy-
[t (14) 3.22, p < 0.01] and Hard-Training
[t (14) 6.01, p < 0.01]. However, by
comparing the diference of Post and
Pre we conirmed that Hard- produced
higher performance than Easy-Training
[t (14) 2.52, p < 0.01].
(C) Performance increased sig-
niicantly between Pre and Post
[t (14) 4.01, p < 0.01], however per-
formance did not increase signii-
cantly between session 5 and Post
[t (14) –0.33, p = 0.63].

To test whether the lower improvement for Easy compared to Hard-Training was due

to the limited amount of training (three sessions), we trained participants (n = 8) on the

Easy-Training task for six to eight sessions (Experiment 2). Participants improved across ses-

sions [F (2.1, 8.4) = 16.2, p < 0.01, Greenhouse-Geisser corrected] but performance lattened

out on average ater the ith session (Figure 5.3C). Comparing post-training performance

for shorter (Experiment 1) and longer (Experiment 2), Easy-Training protocols did not show

any signiicant diferences [t (14) = 1.11, p = 0.28]. Further, performance ater longer Easy-

Training was signiicantly weaker than performance forHard-Training [t (14) = 2.8, p = 0.02],
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which suggested possible limits in behavioural improvement for Easy-Training.

5.3.2 Learning Time Course for Hard Versus Easy Training

We investigated the time course of learning for Hard versus Easy-Training by plotting the

participants’ performance across test blocks in Experiment 1 (Figures 5.4A,C). We observed

diferent time courses for the two training procedures. For Hard-Training, discrimination

performance increased within each of the irst two sessions before reaching a plateau during

the last session. In contrast, for the Easy-Training condition, there was no signiicant im-

provement within a session. However, performance increased between training sessions.

To quantify these observations, we deinedWithin- and Between-Session learning indices.

he Within-Session learning index was calculated by subtracting mean performance in the

irst test block from mean performance in the last test block in each session. he Between-

Session learning index was deined as themean performance diference between the last block

in the preceding session and irst block in the subsequent session. We calculated the Within-
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Figure 5.4: Experiment 1 time course
of learning. Mean behavioural per-
formance across participants per block
for (A) Hard and (C) Easy-Training. We
calculatedWithin- andBetween-Session
learning indices (B) Hard and (D) Easy-
Training. TheWithin-Session index was
calculated by subtracting the mean
performance in the irst test block from
the last test block in a session. The
Between-Session index was calculated
as the mean performance diference
between the last test block in the pre-
ceding session and irst test block in
the subsequent session. Error bars
indicate the standard error of mean
across participants.
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and Between-Session learning indices for the irst two sessions, as there was no subsequent

session to calculate this index for the third session (Figures 5.4B,D). A repeated measures

ANOVA showed a signiicant interaction [F (1, 14) = 10, p < 0.01] between learning index

(Within- vs. Between-) and training task (Easy vs. Hard), consistent with stronger Within-

Session learning for Hard-Training [F (1, 14) = 10.7, p < 0.01] and stronger Between-Session

learning for Easy-Training [F (1, 14) = 7.7, p = 0.02].

ANOVA is usually used to show diferences in means and so some explanation may be

required to explain whywe think it addresses hypotheses about the temporal evolution of par-

ticipant performance (where regression analyses might be more commonly applied). While

ANOVA does not take into account explicit ordering of independent variables, in this anal-

ysis the temporal ordering is implicit in the learning index, which is a measure of the tem-

poral evolution of participant performance. he ANOVA does not compare means of per-

formance, but compares means of temporal evolution, with independent variables ofWithin-

and Between-Session learning and training diiculty.

To support the use of ANOVA described here, we also conducted regression analyses us-

ing the blocks to predict gradients forWithin- and Between-Session performance. heWithin-

Table 5.1: Regression Within sessions, Hard and Easy training. The (Within 1) is itted to blocks 1
through to 4, (Within 2) uses blocks 4 to 9, and (Within 3) uses blocks 8 to 12. The metrics tabulated are
the estimated Gradient of the regression using the relevant blocks, the 95% conidence intervals (CI) and
the signiicance (p). The regression analysis showed improvement for Hard TrainingWithin 1 andWithin 2
but no signiicant improvement for the irst two sessions in the Easy Training. Predictions from theWithin 1
model extrapolated to block 5 overlap with predictions from theWithin 2model for Hard training but not
Easy training (and likewise for theWithin 2models extrapolated to block 9). The gradients and extrapola-
tions of performance support the ANOVA indings for theWithin-Session index in Figure 5.4.

Hard Training Easy Training
Gradient CI p Gradient CI p

Within 1 5.56 [ 4.41, 6.98] < 0.01 0.63 [-1.32, 2.57] 0.52
Within 2 2.22 [ 0.68, 3.76] < 0.01 -0.44 [-2.09, 1.21] 0.59
Within 3 0.05 [-0.91, 1.01] 0.92 -1.40 [-2.38, -0.42] < 0.01

118



CHAPTER 5. TIME COURSE OF TRAINING DIFFICULTY MEDIATED VISUAL LEARNING

Table 5.2: Regression Between sessions, Easy andHard training. In the Easy Training the gradients were
positive and statistically signiicant for bothBetween 1–2 (itted to blocks 4 and 5) andBetween 2–3 (itted
to blocks 8 and 9). The regressions for Hard Training were not signiicant between sessions. These results
support the ANOVA indings for the Between-Session index in Figure 5.4.

Hard Training Easy Training
Gradient CI p Gradient CI p

Between 1–2 -1.88 [-6.52, 2.77] 0.40 6.50 [ 1.81, 11.19] 0.01
Between 2–3 3.81 [-0.25, 7.87] 0.06 11.06 [ 6.62, 15.50] < 0.01

Session gradients (Table 5.1) are overall more positive forHard- than for Easy-Training, while

the Between-Session gradients (Table 5.2) are overall more positive for Easy- than for Hard-

Training. hese indings are consistent with diferences in simple efects that contribute to

the signiicant interaction indicated by the ANOVA analysis. he regression analysis re-

veals which sessions contribute more to the diference in Within-Session simple efects (i.e.

positive/neutral changes in performance for Hard-Training compared with negative/neutral

changes for Easy-Training). Likewise the Between-Session gradients reveal which pairs of ses-

sions contribute more to the diference in Between-Session simple efects.

5.3.3 Experiment 3: Hard TrainingWith Diferent Stimuli Than Testing

In Experiment 3, we trained and tested participants in aHard discrimination but with stimuli

presented at diferent spiral angles. he aim of this experiment was to control for the possibil-

ity that performance diferences between Hard and Easy-Training in Experiment 1 were due

to the fact that participants in the Hard-Training group were trained and tested with stim-

uli presented at the same spiral angle (35◦ vs. 55◦), while participants in the Easy-Training

group where trained and tested with stimuli presented at diferent spiral angles. In partic-

ular, we tested participants with stimuli presented at spiral angles of 40◦ vs. 50◦ and tested

with stimuli presented at spiral angles of 35◦ vs. 55◦. We observed a similar pattern of re-

sults (Figure 5.5) as for Hard-Training in Experiment 1 (Figure 5.4). hat is, behavioural
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Figure 5.5: Experiment 3. Mean per-
formance across participants per (A)
session and (B) block when partici-
pants were trained with stimuli at spi-
ral angles of 40◦ vs. 50◦ that difered
from the test stimuli (35◦ vs. 55◦). Er-
ror bars indicate the standard error of
mean across participants.

performance improved within sessions 1 and 2 and appeared to have reached its maximum

in session 3. In particular, a repeated measures ANOVA showed no signiicant interaction

[F (1, 11) = 2.6, p = 0.14] between learning index (Within- vs. Between-Session) and Exper-

iment (Experiment 1 vs. 3). hese results suggested that diferences in the time course of

learning for Easy vs. Hard-Training were due to diferences in the diiculty of the training

rather than the similarity of the stimuli used for these two training protocols.

5.3.4 Experiment 4: LearningWithout Feedback

To control for the possibility that improved performance resulted from exposure to the test

stimuli rather than training with feedback, we tested participants on the same number of test

blocks (n = 7) as in Experiment 1 (participants were presented with stimuli at spiral angle of

35◦ vs. 55◦ without feedback) but did not expose them to any training blocks with feedback

(Figure 5.6).
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Figure 5.6: Experiment 4 no train-
ing blocks. Mean performance across
participants per (A) session and per
(B) block when only test but no train-
ing blocks were included in each ses-
sion. Error bars indicate the standard
error of mean across participants.
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Our results showed that the observers’ performance did not improve signiicantly across

sessions [F (4, 24) = 1.8, p = 0.17] and that post-training performance was signiicantly lower

without (Experiment 4) thanwith (Experiment 1) training [t (13) = 5.2, p < 0.01]. hese results

suggested that training with feedback rather than mere exposure to the stimuli was required

for improvement in the discrimination of similar global form patterns.

5.4 Discussion

Our results demonstrated diferences in the time course of learning for Hard versus Easy-

Training. In particular, training on a Hard discrimination resulted in stronger behavioural

improvement than training on an Easy discrimination. Interestingly Hard-Training perfor-

mance improved within the time course of a single session, while for Easy-Training perfor-

mance improved across but not within sessions. hese indings suggested diferences in the

processes that underlie learning based on Hard versus Easy-Training. Training on a diicult

task supported continuous and strong improvement in the discrimination of speciic features

that were similar between training and test (i.e. observers were asked to discriminate highly

similar stimuli in both the training and test). However, training on an Easy task required

transfer of learning, as stimulus features difered between the stimuli used for training (highly

discriminable) and test (highly similar). As a result, behavioural improvement was lower fol-

lowing Easy compared with Hard-Training and may have required consolidation across ses-

sions.

Underlying the explanations in this discussion are the actual mechanisms, that is the low-

level neurobiological responses that occur during learning. hese mechanisms entail exci-

tation and suppression of activation through the chemical modulation of excitatory and in-

hibitory neurotransmitters. he experiments described in this chapter did not measure any
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of these mechanisms directly and so any attempts to link them to the psychophysics results

would be purely speculative. However, these results suggest dissociable learning performance

and so we hypothesise that the experimental paradigm described in Experiment 1 might be

suitable for further investigations of the mechanisms. For example by measuring inhibitory

neurotransmitter concentration in brain regions associated with the task we might be able to

discover a link between inhibitory mechanisms and between-session learning.

hese psychophysics results suggest that the experimental paradigm should be suitable to

further probe the mechanisms responsible by correlating the results with measurements of

neurotransmitter concentration. his is the subject of Chapter 6: GABA Versus Training

Diiculty Mediated Visual Learning.
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6
GABA VERSUS TRAINING DIFFICULTY

MEDIATED VISUAL LEARNING

6.1 Introduction

We have previously demonstrated dissociable learning performance under Easy and Hard-

Training conditions using psychophysics experiments over several sessions (Chapter 5: Time

Course of Training Diiculty Mediated Visual Learning). Speciically a between-session

learning mechanism based on consolidation and transfer was suggested for the Easy condi-

tion and a within-session online learning mechanism was suggested for the Hard-Training

condition.

Here, we investigate the dissociable learningmechanisms further bymeasuring theGABA

concentration levels of participants who undertook the same psychophysics training as in

the main experiment in the previous chapter. Our hypothesis was that learning performance

would be correlated with GABA concentrations in visual shape processing regions and higher

cortical regions of the brain, and that this would infer the dissociable learning mechanisms to

be GABAergic inhibitory processes.
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6.2 Materials andMethods

6.2.1 Participants

Sixteen subjects (10male, 6 female, mean age 21 ±3) participated in visual shape learning tasks

and resting state MR scans. All of the participants were agnostic to the study protocol and vi-

sual stimuli patterns and each had normal, or corrected-to-normal vision. he University of

Birmingham ethics committee approved the study. All participants gave written, informed

consent and were paid for their participation. Participants completed questionnaires to as-

certain nicotine, alcohol and pharmaceutical levels. We reviewed all questionnaire responses

and concluded that the MRS and performance results were unlikely to be afected by these

factors.

6.2.2 Psychophysics

he stimuli consisted of Easy-Training and Hard-Training versions of radial and concentric

Glass patterns, which we created using identical methods to those described in Section 5.2.2,

in the previous chapter (5: Time Course of Training Diiculty Mediated Visual Learning).

Procedure. he participants were randomly assigned to either an Easy-Training or a Hard-

Training shape learning task. his resulted in eight participants on the Easy and eight on the

Hard learning paradigms.

We arranged the psychophysics element of the experiment over three sessions, which we

conducted on consecutive days. Individual sessions consisted of four test blocks without feed-

back and three training blocks with feedback (Figure 6.1). he feedback consisted of audible

error warnings ater each trial. We interleaved the test and training blocks in pairs to allow

the time course of learning to be monitored. Each block consisted of 200 trials and stimu-

lus presentation lasted for 200 ms. Subjects were required to categorise the visual stimuli as
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Figure 6.1: Psychophysics design Easy versus Hard-Training. A single trial (A) consisted of stimulus pre-
sentation for 200 ms followed by subject response. The next trial cannot start until a subject has made a
response, and will wait for a minimum of 1.3 s. Trials were arranged in groups of 200, which constituted a
block (B). We interleaved 4 test blocks and 3 training blocks (with feedback) to make a session (C). Three
sessions were run over consecutive days (D).

radial or concentric shapes ater each stimulus presentation with mouse clicks; let for radial

and right for concentric. Ater each block and half way through each block, subjects were

given breaks from the task. he duration of the breaks was determined by the participants,

but minimum breaks of one minute were enforced to help ameliorate the efects of fatigue on

the subjects’ performance.

Behavioural Indexes. Each trial iwithin block j elicited a correct or incorrect response from

the participants, evaluated as c ij .

c ij =



















1, if response to trial i of block j is correct

0, if response to trial i of block j is incorrect

From this we calculated the percent correct metric PCBj , for block j, comprising nj stimulus

presentations (Equation 6.1). When used across all subjects, this metric simply represents
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the mean correct response scores for a block.

PCBj = 100 × 1
nj

nj
∑

i=1

c ij (6.1)

All blocks comprised 200 trials, so for the kth session comprising a set of blocks Sk, we calcu-

lated the percentage correct per session PCSk using the unweighted average of the percentage

correct per block (Equation 6.2). When used across all subjects, this metric simply represents

the mean correct response scores for a session.

PCSk =
1

|Sk|
∑

j∈Sk

PCBj (6.2)

Using PCB and PCS we calculated three behavioural indexes through which we investigated

the psychophysics indings of the previous chapter: Between Session Index, Overall Learning

Index and Normalised Mean Index.

Between Session Learning Index. his metric replicates the one used for measuring the

Easy-Training Between-Session learning efect reported in Garcia et al. (2013). We calculated

it (Equation 6.3) by subtracting the percent correct in the last test block of the second session

(block 8, Figure 6.1D) from that in the irst test block from the third session (block 9).

BetweenSessionIndex = PCB9 − PCB8 (6.3)

In Garcia et al. (2013) we concluded that the performance increases between sessions in-

volved consolidation learning away from the stimuli, possibly requiring sleep between ses-

sions. Our rationale for using the Between Session Learning Index was to use it to represent
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this observed learning performance diference between the Easy and Hard training condi-

tions. Another reason for using this metric is that it represents the largest between-session

learning efect that the Easy-Training condition produced in the previous experiments.

he Overall Learning Index. We used this metric to characterise the learning efect over

all three sessions. It made use of the performance in the irst and last test blocks (numbered 1

and 12 in Figure 6.1D). By using the irst and last test blocks in the calculation, our intention

was to represent the diference between the pre-training test block and the post-training test

block. We used this metric, rather than the simple diference between post and pre blocks, to

account for diferences in starting performance. We reasoned that low starting performance

might unduly accentuate the magnitude of performance increase. As starting performance is

not inluenced by the training we divided the diference of post and pre by the sum of post and

pre (Equation 6.4) to ameliorate the apparent increased performance that low initial scores

might engender.

OverallLearningIndex =
PCB12 − PCB1

PCB12 + PCB1
(6.4)

Normalised Learning Index. We used the percent correct metric in test block one (PCB1)

to represent the pre-training performance. We calculated the Normalised Learning Index by

subtracting the percent correct in the irst session S1 = {B2,B3,B4} from the percent correct

of the last session S3 = {B9,B10,B11,B12}, where Bj denotes block j. Note that S1 does not

include block B1 as this is used to evaluate pre-training performance. We divided both mean
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session values by the pre-training performance PCB1 (Equation 6.5).

NormalisedMeanIndex =
PCS3 − PCS1

PCB1
(6.5)

Our rationale for using this metric was to represent the higher learning performance in the

Hard-Training condition that we observed, compared with the Easy-Training condition, but

using whole session, rather than just the post and pre blocks.

6.2.3 MRS Acquisitions

Regions of Interest. We selected ROIs for the MRS acquisitions to correspond with lateral

occipital areas and higher cortical areas (mid frontal gyrus), in addition to a control voxel

in the motor cortex region (Figure 6.2). hese ROIs were selected following pilot fMRI ex-

periments that showed interesting activation patterns during Glass pattern localiser sessions,

which we described in Section 3.4: Regions of Interest. As the activation patterns showed

symmetry across the hemispheres, we obtained two MRS acquisitions per ROI (one in each

hemisphere). For each subject the inal quantitated GABA measurement was the mean of the

two measurements.

Figure 6.2: Regions of interest. MRS acquisition voxels (highlighted boxes) for lateral occipital, motor
cortex and mid frontal gyrus, respectively. Coronal view T2 weighted images.
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MRS Parameters. he main MRS parameters (Section 3.2: Acquisition Parameters) were:

TR = 1800 ms, TE = 68 ms, volume = 30 mm , samples = 2048, spectral bandwidth = 2150,

dynamic scans = 32, phase cycles = 16, water suppression = VAPOR. his led to a scan dura-

tion time of 921.6 s (15 min 21.6 s) per acquisition. We also obtained a water unsuppressed

acquisition with a standard PRESS pulse sequence for each MEGA-PRESS acquisition; phase

cycles=8, dynamic scans=1. We used a 3T Philips Achieva scanner (Philips Healthcare, Best,

Netherlands) to obtain the MRI and MRS data.

MRSScans Sequence. Voxel planning was completed using T2 anatomical images acquired

in three planes (24-36 slices per plane), we also obtained 3-D high resolution (1 mm) T1-

weighted images for each subject. he scans were at resting state so there was no task to

perform during scanning. We randomised the order in which we acquired the regions of in-

terest. Scanning took place over two to three sessions, which occurred ater the psychophysics

testing. PRESS acquisition used identical voxel positioning as the MEGA-PRESS acquisitions

and automatic shimming was performed for all scans.

MRSProcessing. We converted the time domain signals to frequency domain spectra using

the fast Fourier transform (Section4.3: TimeDomainSignals). Wephase corrected the spec-

tra using an automatic algorithm (Section 4.4: Phase Correction) and applied subspectral

realignment based on an independent alignment scheme (Section 4.5: Subspectral Shit-

ing). We used segmentation techniques (Section 4.7: Segmentation) on the high resolution

T1 anatomical MRI images to obtain tissue proportion estimates for each scan. We averaged

the realigned subspectra and combined themby subtracting the editOFF spectra from the edit

ON spectra (Section 2.5.4: MEGA-PRESSPulse Sequence). We usedTarquin to quantify the

processed spectra (Reynolds et al., 2006), which used a double peakmodel (Section 4.6: Peak
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Modelling) for the GABA signals centred at 3.01 ppm to produce a GABA+ measurement

scaled to the unsuppressed water acquisition. We applied a correction factor (Equation 4.3)

to the measurements and a scaling factor to account for the grey matter contribution to the

measured GABA+ (Equation 4.7).

6.3 Results

We arranged our results in the following order: We assessed the MRS measurements by ex-

amining the signal to noise ratio (SNR) and Cramér-Rao lower bounds (CRLB) of the spectra.

We also inspected the scans for identiiable peaks around 3.01 ppm in the combined (edit ON

minus edit OFF) sequences.

We compared the subjects’ performance on the Easy versus Hard experiments by exam-

ining the correlations between the GABA measurements and the psychophysics performance

metrics, which we deined in Section 6.2.2: Behavioural Indexes. We set the signiicance

level for rejecting the null hypothesis to p < 0.05 for all correlations and calculated 95%

conidence intervals using a bootstrapping procedure with 1000 resamples.

6.3.1 MRS Spectra

Two subjects failed to complete the full scan schedule and therefore the sample size for two

of the results were reduced from eight to seven. We assessed the quality of each spectrum by

examining the signal to noise ratio (SNR) and the Cramér-Rao lower bounds. Mean values

by region of interest are listed in Table 6.1.

Table 6.1: Mean signal to noise ratio and Cramér-Rao lower bounds. Mean values for acquisitions mea-
sured from the lateral occipital, mid frontal gyrus and motor cortex (control) regions.

Measurement Lateral Occipital Mid Frontal Gyrus Motor Cortex
SNR 35.6 45.3 37.6
CRLB 3.6 4.7 4.7
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Figure 6.3: Representative spectra from three scans. (A) lateral occipital, (B) mid frontal gyrus, (C) motor
cortex. GABA+ peaks highlighted on chart. Approximate ROIs shown as white shapes on the sagittal view
brain cartoons.

GABA peaks at 3.01 ppm were reliably observed in the acquisitions, with representative

spectra reproduced in Figure 6.3.

6.3.2 Correlates of GABA and Training Diiculty

In Chapter 5: Time Course of Training Diiculty Mediated Visual Learning, the inter-

esting indings for psychophysics performance results for this paradigm were the between-

session learning for the Easy-Training condition and stronger overall performance for the

Hard-Training condition. We therefore concentrated on metrics that relected those indings

for the correlation study.

he psychophysics metrics were the Between Session Index for the Easy-Training experi-

ment and for the higher performance in theHard-Training we used theOverall Learning Index

and the Normalised Mean Index.

In the Easy-Training condition we examined the correlation between GABA+ in the lat-

eral occipital region and the Between Session Index (Figure 6.4). his showed a very strong

correlation (r=.96, p=<.01), which was not evident in the Hard-Training condition for the

131



CHAPTER 6. GABA VERSUS TRAINING DIFFICULTY MEDIATED VISUAL LEARNING

0 5 10 15

1.1

1.2

1.3

1.4
L

a
te

ra
l O

cc
ip

it
a

l G
A

B
A

+
 (

I.U
.)

Between Session Index

Easy-Training Figure 6.4: Easy-Training condition:
Correlation between lateral occipital
GABA+ versus Between Session Index.
Strong positive correlation
(r=.96, 95% CI=[.76 .99], p=<.01).
The GABA measurement was expressed
as GABA+ to indicate that it contained
contributions from macromolecules and
was scaled in institutional units.

same ROI (r=.43, p=.29). he correlation indicated that the dissociable learning mechanism

inferred by the previous psychophysics learning results were connected with the GABAer-

gic processing that was shown in the Easy-Training, but absent from the Hard-Training. he

correlation for the control voxel (motor cortex) and GABA+ was not signiicant in the Easy-

Training condition (r=.54, p=.28) or the Hard-Training condition (r=.12, p=.65).

In the Hard-Training condition we examined the correlation between the frontal region

GABA+and theOverall Learning Index (Figure 6.5). his showed a strong correlation (r=.72,

p=.04) that did not exist in the Easy-Training condition for the same ROI (r=.42, p=.31). his

suggested that GABA+ mediated the overall learning in theHard-Training as higher concen-

trations of frontal cortex GABA+ predicted improved performance in visual learning. he
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Hard-Training Figure 6.5: Hard-Training condition:
Correlation between frontal region
GABA+ versusOverall Learning Index.
Strong positive correlation
(r=.72, 95% CI=[.15 .97], p=.04).
The GABA measurement was expressed
as GABA+ to indicate that it contained
contributions from macromolecules and
was scaled in institutional units.
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Figure 6.6: Correlations Hard-Training
condition: Lateral occipital region
GABA+ versus NormalisedMean Index.
Strong negative correlation
(r=–.87, 95% CI=[–.97 –.27], p=.01).
The GABA measurement was expressed
as GABA+ to indicate that it contained
contributions from macromolecules and
was scaled in institutional units.

correlation for the control voxel (motor cortex) was not signiicant in the Easy-Training con-

dition (r=.52, p=.24) or the Hard-Training condition (r=.49, p=.28).

We also investigated the correlation between the GABA+ measurements and the Nor-

malised Mean Index (Figure 6.6). his revealed a strong, negatively correlated relationship

(r=–.87, p=.01) in the Hard-Training condition. In the Easy-Training condition for the same

ROI we could not reject the null hypothesis (r=.30, p=.56). his was also the case in the con-

trol voxel (motor cortex) in the Easy-Training condition (r=.19, p=.72) and theHard-Training

condition (r=–.48, p=.28).

he negative correlation in lateral occipital region (Figure 6.6) contrasted with the posi-

tive correlation in the frontal region (Figure 6.5) for the visual learning metrics in the Hard-

Training condition. he negative correlation also contrasted with the positive correlation for

the lateral occipital region versus the Between Session Index in the Easy-Training condition

(Figure 6.4).

6.4 Discussion

he psychophysics learning results from the previous chapter showed that for Easy-Training

therewas a transfer consolidation for between-session learning. For theHard-Training, higher
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inal performance indicated better visual learning than was achieved for Easy-Training. We

investigated the correlations between psychophysics metrics that characterised the diferent

performance versus GABA+ measurements. his was to see if a link might exist between

inhibitory neurotransmitter concentrations and learning performance according to Easy and

Hard training.

We considered how these hypothesised links might be consistent with theories concern-

ing the competition between bottom-up and top-down mechanisms. In these theories it has

been suggested that bottom-up attention is organised by occipital visual stimuli representa-

tions and that top-down attention is mediated through the inhibition of irrelevant stimuli in

prefrontal areas (Desimone, 1998). Accordingly, increased GABA concentrations would in-

dicate a greater inhibitory potential and decreased GABA concentrations would suggest less

inhibition and the possibility that more signal is propagated through the relevant cortical cir-

cuits. In this way we hypothesised that feedforward models of cognition would be supported

by evidence of reduced GABA in visual areas and top-down models would correspond with

increased GABA in higher cortical areas, such as frontal cortex.

Bottom-up processing represents a central idea of sensory information processing and is

based on the transmission of signal through a hierarchy of cortical areas traversing progres-

sively more complex aspects of the visual scene in a feedforward manner. hese cortical cir-

cuits begin in the primary visual cortex and ascend through two main pathways; one is dorsal

and involves attentional control and the other is ventral and is linked to object recognition.

Superimposed on these bottom-up pathways is the top-down, re-entrant pathway that

conveys higher order information to antecedent cortical areas. hese feedback pathways set

up countercurrent streams of processing, with resulting percepts relecting the set of func-

tional states of all the areas in the visual cortical hierarchy (Gilbert & Li, 2013). As we men-
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tioned in the introduction to this thesis, the functional properties of neurons are not ixed,

instead they can be characterised as adaptive processors that modulate their function accord-

ing to behavioural context and the demands of diferent perceptual tasks. Top-down therefore

refers to the inluence exerted by higher-order representations on earlier stages in the process-

ing of visual information. In the context of our work higher-order refers to frontal cortical

regions and the earlier stages are the visual cortex. Additionally, top-down modulation has a

role in the encoding and recall of learned information.

Discussions of bottom-up and top-downmechanisms in learning, linked to in vivoGABA

measurements have started to appear in the literature. Edden et al. (2009) speculated that in-

dividuals with higher GABA may have increased inhibitory control on feedback processes for

example. Sandberg et al. (2013) have suggested that GABA is involved in the selective sup-

pression of irrelevant information, or alternatively that it inluences the speciicity of neural

representations in the visual cortex to improve attentional modulation.

One consequence from the accumulating body of literature on plasticity in the visual sys-

tem is that there is not an exclusive locus for this plasticity. Rather, learning is distributed

across cortical circuits using recurrent mechanisms that support adaptive processing, accord-

ing to task context and demands (Kourtzi & DiCarlo, 2006). his, combined with the ot

stated comment that the neural mechanisms that mediate experience dependent plasticity re-

main largely unknown gives scope to use MEGA-PRESS experiments to suggest both locus

and mechanism to explain observed learning efects and GABA correlations.

6.4.1 Occipital Transfer Efects for Easy-Training

For Easy-Training the lateral occipital (visual processing) region GABA was very strongly,

positively correlated with the Between Session Learning Index (Figure 6.4), but not in the
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Hard-Training condition. his indicated that the dissociable mechanism was linked to a

higher concentration of GABA+ in a visual processing region. Easy training has been sug-

gested to generalise more to new stimuli than hard training does (Ahissar & Hochstein, 1996)

and we hypothesised that learning transfer efects might be involved in the learning mecha-

nism. his could explain why in the Easy-Training paradigm learning did not occur within-

session, but did so across-session. he idea of across-session transfer suggests consolidation

during sleep. his has been shown to enhance perceptual learning (Karni, Tanne, Rubenstein,

Askenasy, & Sagi, 1994; Mednick, Nakayama, & Stickgold, 2003) and in particular to mod-

ulate learning speciicity (Yotsumoto et al., 2009). We suggest therefore that the results for

the Easy-Training condition inferred a GABAergic inhibitory modulation in occipital regions

that promoted a between-session learning efect based on consolidation and transfer efects.

6.4.2 Hard-Training: Occipital Bottom-Up and Frontal Top-Down Correlates

For the Hard-Training condition the GABA+ concentrations in two ROIs were strongly cor-

related with performance indices that showed the total learning efect. he irst was the

strong positive correlation between the frontal region versus the Overall Learning Metric

(Figure 6.5). here was no correlation for the same ROI and learning metric in the Easy-

Training condition. he second strong correlation, this time negative, was between GABA+

in the lateral occipital region versus the Normalised Mean Index (Figure 6.6). Again, we did

not detect a correlation for these variables in the Easy-Training condition.

his is an interesting observation as it shows a very strong negative correlation in the lat-

eral occipital region in the Hard-Training overall learning, which contrasts with the strong

positive correlation in the same ROI for the Easy-Training within-session learning. We sug-

gest that this indicates that inhibitory processes mediate learning using diferent mechanisms
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that are task dependent. his is in addition to the inding that inhibitory processes meditate

learning in a region of interest dependent manner; as was shown by the contrast in correla-

tions betweenGABA concentrations in occipital and frontal areas versus the learningmetrics.

he higher learning performance in theHard-Training paradigm may have occurred through

real-time weight adjustment from feedback in the training sessions, where the stimuli were

the same as the testing sessions (Petrov, Dosher, & Lu, 2005). he strong positive correlation

between GABA concentrations in mid frontal gyrus and the higher learning performance

would seem to indicate a plausible locus for this re-weighting feedback mechanism.

6.4.3 Inhibitory Correlates in Easy- Versus Hard-Training

For the Easy-Training between-session learning that was shown in the psychophysics results,

we suggest that the learning mechanisms are linked to inhibitory, bottom-up processing in

lateral occipital (shape discriminating) visual areas.

For the overall learning efect that accrued from the Hard-Training paradigm the picture

was a little more complicated as there was both a positive correlation with performance met-

rics and mid frontal gyrus GABA+ and a negative correlation with lateral occipital GABA+.

With the positively correlated GABA+ in mid frontal gyrus we might be tempted to con-

clude that this indicated a top-down inhibitory mechanism. his would allow us to contrast

the bottom-up visual region processing in the Easy-Training with the top-down frontal re-

gions processing in the Hard-Training experiments. However, we would also need to take

account of the negative correlation found for lateral occipital in theHard-Training. We could

contrast this inding with the positive correlation found in the same region for the Easy-

Training experiment. his line of argument could then be used to support the idea that the

learning mechanisms were diferent between the two tasks because in the Easy-Training we
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found evidence of bottom-up inhibitory processing, which explained the between-session

learning efects that were not evident in the Hard-Training. his was the case for both the

psychophysics results and the correlations with the learning performance and the GABA+

concentrations. However, the fact that the correlation in theHard-Training was strongly neg-

ative, led us to speculate that there may be some cooperative process occurring in the Hard-

Training learning that involved the visual and frontal areas.

Accordingly we suggest that it is the combination of less GABA in the visual areas and

moreGABA in the frontal areas that explaines the inhibitory learningmechanism thatwewere

investigating. For this cooperativemodel of the learningmechanism, the lower concentration

of occipital GABA indicates a lower potential for inhibition of visual signal and this directly

facilitates the top-down inhibitory processing in the frontal region. he idea being that the

frontal cortex might process the information from the visual stimuli more eiciently if more

uninhibited signal was passed to it from the visual cortex.

In summary these results suggest three conclusions; irstly that GABAergic processes me-

diate learning in Easy compared toHard-Training visual tasks, secondly that increased occipi-

tal GABA+ concentrationsmediate between-session consolidation learning for Easy-Training

visual paradigms, and thirdly, that a combination of reduced occipital GABA+ concentrations

and increased frontal GABA+ concentrations mediate visual learning inHard-Training visual

paradigms. his represents the irst time that a dual-dissociable mechanism (for brain area

and training diiculty mediated task performance) has been stipulated in a visual learning

paradigm with the use of MEGA-PRESS spectroscopy. hese results provide novel evidence

of inhibitory learning processes that support theories concerning cooperative top-down and

bottom-up learning mechanisms.
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7
GABA VERSUS COARSE AND FINE VISUAL

LEARNING

7.1 Introduction

We have shown in Chapter 6: GABAVersus Training Diiculty Mediated Visual Learning

that GABA concentrations are associated with visual perceptual learning metrics. In those

experiments the psychophysics metrics that were correlated with GABA concentrations were

diferent in the two training conditions; for Easy-Training the performance metric was for

between-session learning and for Hard-Training it was for across-session improvements. We

were also interested in investigating whether GABAergic correlations mediated visual learn-

ing performance in diferent tasks, rather than diferent training conditions. We hypothesised

that diferent tasks, that have dissociable psychophysical performance results, might correlate

in distinct ways with GABA concentrations in visual cortex and frontal cortical regions.

We therefore designed a visual learning experiment where the stimuli were diferent in

the training and the testing conditions to create a Fine condition and a Coarse condition. We

measured GABA concentrations using the methods outlined in Chapters 3: MEGA-PRESS

Acquisition and 4: Post-Acquisition Processing, to create a correlative study through which

we tested this hypothesis.
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7.2 Materials andMethods

7.2.1 Participants

hirty-two subjects (15 male, 17 female, mean age 24 ±6) participated in visual shape learn-

ing tasks and magnetic resonance spectroscopy (MRS) scans. All of the participants were

agnostic to the study protocol and stimuli and had normal, or corrected-to-normal, vision.

he University of Birmingham Ethics Committee approved the study. All participants gave

written, informed consent and were paid for their participation.

7.2.2 Psychophysics

Stimuli. he stimulus images consisted of Glass patterns (Glass, 1969), which we arranged

in concentric and radial conigurations (Li et al., 2009). We deined shape patterns by placing

dipoles with respect to the circumference of a circle that was centred on a ixation dot. he

angle between the dot dipole orientation and the radius, from the centre of the dipole to the

centre of the stimulus aperture, deined the spiral angle (Figure 7.1). We parametrically al-

tered the spiral angle to generate shapes that were characteristically more radial (spiral angles

closer to 0◦, Figure 7.1A) or concentric (spiral angles closer to 90◦, Figure 7.1B).

Coarse Task. Spiral angles that are far apart produce shapes that are easily detected in the

absence of image noise, but are hard to detect when embedded in noisy images. We created the

noise condition images to represent a Coarse task. We set the spiral angle for radial shapes to

10◦ and the angle for concentric shapes to 80◦. We added noise by replacing 65% of the signal

dot dipoles with randomly oriented dots (Figure 7.1C). We based the noise ratio on staircase

procedure pilot experiments, which we previously ran to optimise the learning performance.

Fine Task. Spiral angles that are close together represent Fine tasks. Previous experiments

have shown that Fine tasks are challenging (e.g. Chapter 5: Time Course of Training Dif-
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Figure 7.1: Coarse and Fine spiral an-
gles.
(A) Coarse radial pattern (black lines),
dipoles arrangedwith angles of 10◦ to the
circumference.
(B) Coarse concentric pattern, (black
arcs), dipoles arrangedwith angles of 80◦.
(C) Coarse radial noise pattern, dipoles
arranged with angles of 10◦ to the cir-
cumference. 65% have spiral angles
changed (grey circles show original posi-
tion, dotted arc indicates random spiral
angle change).
(D) Fine radial and concentric patterns.
Dipoles arranged with angles of 35◦ (ra-
dial) and 55◦ (concentric). Each pattern
is 10◦ from the boundary between radial
and concentric (dotted line).

iculty Mediated Visual Learning), even in the absence of noise in the stimulus images.

We therefore set the spiral angles for radial images to 35◦ and the concentric angles to 55◦

(Figure 7.1D). No noise was added to the Fine condition stimulus images.

Coarse and Fine Stimuli Parameters. We randomly jittered the magnitude of the spiral

angle ±2.5◦ in both the Coarse and the Fine conditions. his was in order to reduce the

efect of local features and ensure that learning of shapes was based on global patterns. We

generated a unique pattern for each stimulus presentation.

he patterns were formed from white dipoles (dot pairs) on a black background to give

100% contrast between foreground and background. he perceived size of each dipole was

2.3 arcmin and the distance between dots in a dipole was 16.2 arcmin. he images were

projected such that they extended over a square aperture 7.7◦×7.7◦. Representative stimulus

images are shown in Figure 7.2.

A 21-inch CRT monitor (1280×1024, 85 Hz frame rate) was used during the psycho-

141



CHAPTER 7. GABA VERSUS COARSE AND FINE VISUAL LEARNING

F
in
e

C
o
a
r
s
e

A B

C D

Radial Concentric

Figure 7.2: Stimulus images Fine versus Coarse. Fine images: (A) radial 35◦, (B) concentric 55◦, noise 0%.
Coarse images: (C) radial 10◦, (D) concentric 80◦, noise 65%.

physics experiments and all psychophysics experiments were conducted in low light condi-

tions. A chin rest was used to ix the viewing distance at 47 cm. We generated and presented

stimulus images using Matlab (he MathWorks, Inc., Natick, Massachusetts, USA) and Psy-

chtoolbox version 3 (Brainard, 1997; Pelli, 1997).

Procedure. he participants were randomly assigned to either a Fine or Coarse shape learn-

ing task. his resulted in 17 participants on the Fine task and 15 on the Coarse task.
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Figure 7.3: Psychophysics design coarse versus ine. A trial (A) consists of a stimulus image presenta-
tion (200 ms), subject response during a ixation block (minimum 1300 ms) and an audible error beep for
incorrect responses on training blocks (there was no feedback on testing blocks). A block (B) consists of
100 trials. A session (C) consists of 14 blocks, starting with test blocks (shown as darker shapes) and inter-
leaved training (indicated with lighter shaded shapes with audio icons) andmore testing blocks. The whole
experiment (D) consists of three sessions (S1, S2, S3), which the participants completed on consecutive
days. The numbers on (C) and (D) represent sequential test block numbers to help identify particular blocks
in the text.

Each subject participated in three psychophysics sessions that took place on consecutive

days (Figure 7.3). Individual sessions consisted of eight test blocks without feedback and six

training blocks where sound, in the form of error beeps, was used to provide feedback on each

trial. We interleaved the test and training blocks in pairs to allow the time course of learning to

be monitored. Each block consisted of 100 trials and stimulus presentation lasted for 200 ms.

Ater each stimulus presentation, participants were required to categorise the image as radial

with a letmouse click, or concentric with a right mouse click. he next stimulus presentation

would not occur until the participant hadmade a choice. Breaks of at least 60 s weremandated

ater each block and we encouraged observers to take longer breaks if they became fatigued

during the experiments.

he participants also took part in control experiments away from the main shape learn-

ing experiments. hese were designed to assess the participants’ threshold for discriminat-

ing stimuli and their visual short term memory. he stimulus thresholds were assessed with
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Figure 7.4: Useful ield of view.
Sample stimuli of vehicle surrounded by
eight radial placeholders.

useful ield of view (UFOV) experiments (Edwards et al., 2006). he procedure involved a

central stimulus image of motor vehicles surrounded by radial placeholders in eight positions

(Figure 7.4). he participants were tasked with irstly identifying the type of vehicle in the

central image and also the position of a secondary image that appeared at one of eight place-

holder positions. his tested the participants’ visual awareness and was referred to as the

Divided Attention (DA) index. A second index, Selective Attention (SA), involved the same

procedure, but with added distractor images that obscured the subjects’ view of the central

stimulus image (47 triangles). he participants’ visual short termmemory (VSTM) was tested

with a procedure described in Luck and Vogel (1997) and involved identifying the colour of

circle shapes that changed with random frequency between stimulus presentations.

Behavioural Indexes. hevisual awareness andmemory control experiments provided three

behavioural metrics: Visual and Short TermMemory (VSTM), Divided Attention (DA) and Se-

lective Attention (SA).

From the Fine versus Coarse experiments we calculated a further three metrics from the

testing blocks only: Pre-Training Index, Normalised Accuracy Index and theNormalised Mean

Index. hese metrics were based on the percent correct responses in particular blocks (PCB)

and sessions (PCS), whichwedeined in the previous chapter (Equation 6.1 andEquation 6.2).

he block numbers refer to Figure 7.3.
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Pre-Training Index. his consisted of the performance in block one, we therefore considered

this to represent a baseline measure that indicated pre-training performance.

PreTrainingIndex = PCB1 (7.1)

Our rationale for using thismetric was to compare starting (unlearned) performance between

the Fine and Coarse tasks, and to use this metric as a normalising factor across the two exper-

iments.

Normalised Accuracy Index. We selected this metric to investigate the time course of per-

formance over all sessions. We calculated it (Equation 7.2) by normalising the percent correct

score in each block by the percent correct score in the Pre-Training Index block.

NormalisedAccuracyIndexb =
PCBb

PCB1
(7.2)

Our rationale for using thismetricwas to showblock-by-block, learning performance changes

in the Fine and Coarse tasks. his metric is similar to that used in Garcia et al. (2013), except

that in the current chapter we have added a normalising factor. he experiments in the pa-

per had identical experimental methods for the irst block in both Easy- and Hard-Training

conditions. his was relected in similar performance scores in the irst block by both sets of

subjects. he current experiment has diferent stimuli for Coarse compared to Fine condi-

tions. his means that diferences in starting performance might afect the potential perfor-

mance gains depending on how high one groups’ starting performance was compared with

the others’. he normalisation step was performed to account for any diferences in starting

performance between the two tasks.
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NormalisedMean Index. We used percent correct in test block one (PCB1) to represent the

pre-training performance. We calculated the Normalised Mean Index by subtracting the per-

cent correct in the irst session S1 = {B2,B3, ...,B8} from the percent correct of the last session

S3 = {B17,B18, ...,B24}, where Bj denotes block j. Note that S1 does not include block B1 as

this is used to evaluate pre-training performance. We divided bothmean session values by the

pre-training performance PCB1 exactly as we did in Chapter 6, Equation 6.5. Our rationale

for using this metric was to represent diferences in the Fine condition, compared with the

Coarse condition across the entire span of the experiments. his metric has the advantages

that it builds on the work of the previous chapter, it takes account of potential diferences in

initial starting performance across the diferent conditions and it uses all of the blocks in the

irst and third sessions.

7.2.3 MRS Acquisitions

Regions of Interest. We chose regions of interest to cover visual areas including lateral oc-

cipital complex and higher cortical areas encompassing mid frontal gyrus (Figure 7.5). We

also selected a control area coveringmotor cortex. We chose the ROIs based on our hypothesis

that GABAmediated inhibitionwould lead to diferent correlations in visual cortex compared

to higher cortical areas. We also used the results from our fMRI experiments (Section 3.4.4),

which showed interesting activation patterns for these regions, to inform our selection of

these brain areas.

MRS Parameters. For each ROI we acquired a GABA edited acquisition using the MEGA-

PRESS method (Edden & Barker, 2007; Mescher et al., 1998; Mullins et al., 2014). he main

MRS parameters were: TR= 1800ms, TE = 68ms, volume = 30mm , samples = 2048, spectral

BW sample frequency = 2150, water suppression =VAPOR, dynamic scans (rows) = 32, phase
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Figure 7.5: Regions of interest.
Anatomical MRI images, from left to
right, axial view, coronal view, sagit-
tal view. ROIs indicated by high-
lighted wireframe shapes:
(A) Motor cortex (control region).
(B) Lateral occipital.
(C) Mid frontal gyrus.

cycles = 16. We also performed a single PRESS acquisition for each ROI so that the water

concentration could be used in the post-processing stages: Phase cycles = 8 and dynamic

scans = 1. We used a 3T Philips Achieva scanner (Philips Healthcare, Best, Netherlands)

to obtain the MRI and MRS data. We set the parameters in accordance with the literature

review that we conducted in Chapter 3: MEGA-PRESS Acquisition. Each MEGA-PRESS

acquisition took 921.6 s (15 min 21.6 s). We selected this duration to maximise the accuracy

and spectral quality of the data acquired, in accordance with our indings in Appendix (A):

Time Course of MEGA-PRESS.

MRS Scans Sequence. We acquired a 1 mm isotropic resolution T1-weighted anatomical

scan for each participant and we planned the MRS acquisitions using three orthogonal T2

scout scans (slice gap 4mm, 24–36 slices per scan). heorder inwhich theROIswere acquired

was randomised and there was no task to perform during the scans. Alcohol, nicotine and

cafeine intake never exceeded each subjects’ usual levels, which we determined through self-
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reported questionnaires. We randomly varied the time of day for the scans, although we did

not expect this to have an efect on the MRS signals (Evans et al., 2010). All MRS scanning

was performed ater behavioural testing had been completed.

MRS Processing. he detail for the MRS processing pipeline are described in Chapter 4:

Post-Acquisition Processing. Here we briely outline the processing stages and refer to the

sections from that chapter where a more detailed description is given.

We converted the free induction decay signals (Section 4.3: Time Domain Signals) that

we obtained from the MEGA-PRESS scans using the fast Fourier transform. We phase cor-

rected the spectra (Section 4.4: Phase Correction) and realigned to correct for subspectral

misalignment (Section 4.5: Subspectral Shiting), no data was removed during this process.

We averaged the realigned subspectra and combined them by subtracting the edit OFF spec-

tra from the edit ON spectra. We obtained GABA quantities from Tarquin (Reynolds et al.,

2006) and we subsequently rescaled the measurements to calculate the grey matter contri-

bution (Section 4.8: Scaling and Reference Metabolites). We obtained tissue proportions

(grey matter, white matter and CSF) from high resolution T1 anatomical scans (Section 4.7:

Segmentation), using Freesurfer (Dale et al., 1999; Fischl et al., 2002). Each GABA mea-

surement used in this study was the average of two acquisitions per subject, one from each

hemisphere. We used GABA+ designation to indicate the contribution of macromolecules

in the GABA signal, which we quoted as institutional units (I.U.) to indicate that we did not

attempt absolute quantitation.

7.3 Results

We arranged our results in the following order: We assessed theMRSmeasurements by exam-

ining the signal to noise ratio (SNR) and Cramér-Rao lower bounds (CRLB) of the spectra.
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We also inspected the scans for identiiable peaks around 3.01 ppm in the combined (edit

ON minus edit OFF) sequences. We compared the subjects’ performance on the Fine versus

Coarse Normalised Accuracy Index by block. We compared the the Normalised Mean Index

in the Fine versus Coarse experiments. We tabulated the correlations between GABA+ ver-

sus the control experiments (VSTM, DA and SA). We also tabulated the correlations between

GABA+ versus the Pre-Training Index. he main results that we present here are the correla-

tions between GABA+ in two ROIs versus theNormalised Mean Index in the Fine and Coarse

experiments. We set the signiicance level for rejecting the null hypothesis to p < 0.05 for all

correlations.

7.3.1 MRS Spectra

Mean SNR values for the spectra were: Lateral occipital 37.8 ±10.1; mid frontal gyrus 45.0

±6.5 and motor cortex 34.6 ±7.4. Mean CRLB values for the GABA peaks at 3.01 ppm were:

Lateral occipital 3.9 ±1.1, mid frontal gyrus 4.3 ±1.1, motor cortex 4.8 ±1.5. GABA peaks

were reliably observed in the acquisitions (Figure 7.6).

4 3 2 1 ppm

A

B

C

GABA+

Figure 7.6: Representative spectra. (A) lateral occipital (mean SNR=37.8 ±10.1, CRLB=3.9 ±1.1), (B) mid
frontal gyrus (mean SNR=45.0 ±6.5, CRLB=4.3 ±1.1), (C) motor cortex (mean SNR=34.6 ±7.4, CRLB=4.8 ±1.5).
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Figure 7.7: Fine versus Coarse Normalised Accuracy and NormalisedMean indices. (A) Accuracy on the
test blocks was calculated as the percentage of correct trials per block and the results were normalised to
the performance in the irst block. Fine (circular markers) versus Coarse (triangular markers). (B) Fine (n=17)
versus Coarse (n=15) Normalised Mean Index. The grey bar represents the Fine task average performance,
the black bar represents the Coarse task average performance. Error bars are standard error of mean.

7.3.2 Dissociable Learning for Coarse Versus Fine

We plotted the Normalised Accuracy Index for the two tasks (Figure 7.7A). Performance re-

sults on the Fine versus Coarse test runs were quite similar for the irst session (blocks 1 to 8)

across subjects. However, by the end of the third session, subjects on the Fine task had im-

proved more than subjects on the Coarse task. Further, the diference in performance was

most striking between the end of the second session and the beginning of the third session

(blocks 16 and 17). For the Fine task there was a between-session improvement that was not

evident in the Coarse task.

We averaged theNormalisedMean Index by Fine versusCoarse task and plotted the results

to show the diference in learning efect for the two experimental conditions (Figure 7.7B).

7.3.3 GABA Does Not Predict Attention and Short TermMemory Efects

We compared the correlations of the GABA+measurements with theVisual Short TermMem-

ory (VSTM), SelectiveAttention (SA) andDividedAttention (DA)psychophysicsmetrics. hese
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Table 7.1: GABA+ versus memory and attention metrics. In the correlations between GABA+ measure-
ments and Visual Short TermMemory (VSTM), SelectiveAttention (SA) andDividedAttention (DA)metrics, there
were no signiicant correlations in this analysis.

Performance Index Lateral Occipital Motor Cortex Mid Frontal Gyrus

Fine VSTM (r= –.42, p= .07) (r= .14, p= .57) (r= –.14, p= .56)

Fine DA (r= .14, p= .56) (r= .17, p= .49) (r= .10, p= .70)

Fine SA (r= .11, p= .63) (r= .29, p= .22) (r= –.21, p= .36)

Coarse VSTM (r= .25, p= .39) (r= –.15, p= .59) (r= .20, p= .48)

Coarse DA (r= .13, p= .67) (r= .21, p= .49) (r= –.25, p= .40)

Coarse SA (r= –.10, p= .76) (r= .25, p= .42) (r= .03, p= .93)

were control experiments designed to exclude short termmemory and attention efects as po-

tential mediators in the experiments. he results from these controls (Table 7.1) showed low

r-values and p-values that were higher than our signiicance threshold. We did not correct for

false positives in this table because we did not report any correlations that were statistically

signiicant.

7.3.4 GABA Correlates in Coarse and Fine

We wished to control for variation in starting performance and so we correlated the GABA+

measurements with performance on the Pre-Training Index (Table 7.2). he r-values were

low and the p-values were higher than our signiicance threshold. his suggested that the

untrained performance scores at the beginning of the Fine and Coarse experiments could be

discounted as predictors for any dissociable learning that we observed.

Table 7.2: GABA+ versus Pre-Training Index. The r-values were all low and the p-values were above our
level of signiicance, therefore we could not reject the null hypothesis for any of these correlations.

Experiment Lateral Occipital Motor Cortex Mid Frontal Gyrus

Fine (r= –.04, p= .85) (r= .19, p= .33) (r= .10, p= .58)

Coarse (r= .20, p= .35) (r= .07, p= .76) (r= .04, p= .86)
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Figure 7.8: Mid frontal
gyrus GABA+ versus
Normalised Mean Index
in the Fine experiment.
GABA+ in mid frontal
gyrus (triangular markers)
wasmoderately, positively
correlated (r = .40, p = .03)
with the Normalised Mean
Index. GABA+ in lateral
occipital (circular mark-
ers) was not correlated
(r = –.19, p = .35).

We investigated the Pearson correlation coeicient between the Fine versus the Coarse

Normalised Mean Index and the GABA+ concentrations in the lateral occipital versus frontal

regions of the brain. For the Fine experiment we found a moderate positive correlation be-

tween the Normalised Mean Index versus GABA+ in the higher cortical areas (r=.40, p=.03),

which was not evident (r=–.19, p=.35) in the occipital region (Figure 7.8). In the correlation

between the motor control region versus the Normalised Mean Index, we could not reject the

null hypothesis (r=.23, p=.25).

For the Coarse experiment we found a strong negative correlation between the GABA+ in

the occipital region versus theNormalisedMean Index (r=–.63, p <.01), which was not evident

(r=.11, p=.62) in the frontal region (Figure 7.9). We could not reject the null hypothesis for

GABA+ in the motor cortex region versus the Normalised Mean Index (r = −.27, p = .22).
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Figure 7.9: Lateral
occipital GABA+ versus
Normalised Mean Index
in the Coarse experi-
ment. GABA+ in lateral
occipital regions (circular
markers) was strongly,
negatively correlated
(r = –.63, p < .01) with the
Normalised Mean Index.
GABA+ in mid frontal
gyrus (triangular markers)
was not correlated (r = .11,
p = .62).

7.4 Discussion

he psychophysics results for the Normalised Accuracy Index suggested a dissociable learn-

ing mechanism between Fine and Coarse tasks, as the performance of subjects on each task

was diferent (Figure 7.7A). he diferences in performance were most noticeable for the

third session where the Normalised Mean Index highlighted the apparent dissociable learn-

ing mechanism between the two tasks. We hypothesised that the mechanism is based on

inhibitory processes in grey matter in speciic regions of the brain.

Both tasks involved visual awareness, as the stimuli required careful attention to discrim-

inate between the radial and concentric shapes, which only appeared briely (200 ms pre-

sentation time). Short term memory might also be involved with performance, as subjects

would need to remember shape features from the training blocks (i.e. the blocks that had

the feedback). We investigated the correlations between the GABA+ versus the Visual Short

Term Memory (VSTM), the Divided Attention (DA) and the Selective Attention (SA) metrics.

his was to see if we should be interested in inhibitory mechanisms for memory and atten-
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tion. he p-values for the correlations between GABA+ andmemory versus attentionmetrics

(Table 7.1) were all too high for us to be able to reject the null hypothesis. We therefore con-

cluded that inhibitory processes for short term memory and visual awareness did not explain

the dissociable performance we saw in the psychophysics results.

he Coarse and Fine tasks were diferent from one another; the Coarse task involved the

detection of discriminable shapes that were embedded in noise, whereas the Fine task involved

the discrimination of similar shapes in the absence of noise. As the tasks were diferent we

were concerned that any diferences in baseline performancemightmediate performance. We

therefore controlled for diferences in diiculty between the two tasks by investigating the cor-

relations between the Pre-Training Index versus GABA+. he p-values were once again above

the signiicance threshold (p=.05) and so we could not reject the null hypothesis (Table 7.2).

We interpreted this to show that initial scores on the tasks were not mediated by inhibitory

processes in any of our ROIs.

When we turned our attention to the correlations between GABA+ versus theNormalised

Mean Index we found that they were diferent for the Fine and Coarse tasks, both in terms of

brain region and whether the r-values were positive or negative (Figures 7.8, 7.9).

7.4.1 Less Occipital GABA Predicts Learning in Coarse

For Coarse tasks, less GABA+ in the lateral occipital area was correlated with increased per-

formance on the task (Figure 7.9), this observation was supported by the negative sign of the

r-value. his inverse relationship with visual areas and GABA was consistent with other work

in this area as a negative correlation in occipital areas in an orientation selectivity experiment

has been previously reported (Edden et al., 2009). In a motor decision speed experiment a

negative correlation with GABA and frontal eye ield has also been reported (Sumner et al.,
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2010). Further, in regard to negative correlations, it has been hypothesised that simplermech-

anisms, such as low level visual processing, are likely to have inverse relationships with GABA

(C. Stagg & Rothman, 2014).

Indeed, wehave previously found anegative correlation in visual cortex (Chapter 6: GABA

VersusTrainingDiicultyMediatedVisual Learning), whichwe suggestedmay have played

a role in a cooperative model of inhibitory processing between visual and frontal cortex. he

frontal cortex GABA+ correlations in the Coarse experiment described here were positive,

but did not reach statistical signiicance.

7.4.2 More Frontal GABA Predicts Learning in Fine

For the Fine task we found that more GABA+ in frontal areas predicted better performance

on the task (Figure 7.8), as was evidenced by the moderate positive correlation that we dis-

covered. his inding is consistent with top-down theories of neural processing in which

suppression of irrelevant stimuli in prefrontal areas is the key mechanism (Desimone, 1998).

he task was a discrimination one that relied on the evaluation of ine diferences in the ab-

sence of noise. We suggest therefore that top-down theories itted as plausible explanations

to match our inding that increased GABA+ in frontal areas correlated with overall learning

improvement. his is consistent with other work that has shown that the amount of GABA

relects the potential capacity for selective suppression of irrelevant information (Sandberg

et al., 2013). he results were also consistent with our indings (Section 6.4) on the Hard-

Training paradigm, which also showed positively correlated frontal region GABA+ and neg-

atively correlated visual region GABA+ concentrations. he Fine task is similar to the Hard-

Training paradigm described in Chapter 6: GABAVersus Training DiicultyMediated Vi-

sual Learning, in terms of the parameter settings of the stimuli used. We therefore suggest
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that these results further support the conclusions that we made in that chapter.

7.4.3 GABAergic Inhibitory Mechanisms in Coarse Versus Fine

When we compared the correlations between the Coarse experiment versus the Fine one, the

most obvious diference was in the sign of the r-values (Figures 7.8, 7.9). In the Coarse ex-

periment, the learning index was negatively correlated with visual GABA+ concentrations. In

the Fine experiment the learning index was positively correlated with frontal GABA+ concen-

trations. his was an interesting inding by itself, because we found that there is dissociable

learning performance between the two paradigms and this can be explained by the diferent

correlations (i.e. positive and negative) that we found in the diferent brain regions. However,

we also noted that in addition to these (statistically signiicant) correlations, the trend for the

sign of the r-values in visual regions was consistently negative and the sign of the r-values for

frontal areas was positive, regardless of whether the paradigmwasCoarse or Fine. For the Fine

experiments, we observed that the correlations in the two brain regions were consistent with

the Hard-Training results from Section 6.4, which suggested a top-down cooperative model

that included less inhibitory potential in the visual cortex. Although the visual cortex GABA

correlations were negative in the Fine paradigm, they were not statistically signiicant. We

interpreted this to mean that the same cooperative model might apply to the learning mecha-

nisms for the Fine learning as the previousHard-Training learning. However, in the Fine task,

the top-down processing in frontal cortex was the key discriminator in performance, rather

than the amount of inhibitory potential in the visual cortex. In the Coarse task, we suggest

that the lower inhibitory potential in visual cortex is the key factor for better performance,

rather than the top-down inhibitory processing in frontal areas.

he observation that the inhibitory mechanisms are located in diferent brain regions
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shows the importance of targeting speciic brain regions as apposed to inferring global changes

fromGABA concentrations in one region. he importance of targeting speciic ROIs has been

discussed in work that showed correlations between GABA versus reversed masked priming

task performance (Boy et al., 2010). Here we not only show a regionally speciic efect, but

also that there might be cooperation between diferent ROIs that leads to better performance.

In summary, these results represent evidence for GABAergic inhibitory mechanisms for

visual learning, which are dissociable by brain region and task. Moreover, they demonstrate

the dissociable mechanism through correlations with the same psychophysics performance

metric versus GABA+ concentrations in both lower (visual processing) and higher (frontal)

grey matter cortex. his suggests that GABAergic processing is involved in cooperative top-

down and bottom-up mechanisms in visual learning.
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8
DISCUSSION AND CONCLUSIONS

his concluding chapter is organised as follows: Firstly we summarise our research, organ-

ised by the diferent disciplines that comprised our research context. Next we evaluate the

key aims and objectives to discuss the contributions that we made. Following this we identify

limitations that we found in our methodological approaches. We have a section on our rec-

ommendations for how this research could be extended and we inish with some concluding

remarks about what the thesis as a whole represents.

8.1 Introduction

Understanding themechanisms that drive learning in the human brain is a key research aim in

science and progress in this area is expected to hold important beneits, particularly in terms

of long term health. Current knowledge of how the brain learns has been advanced through

behavioural experimentation and measures of brain activity. In humans, the measures of ac-

tivity are usually indirect measures and further advances are expected to rely on technological

improvements in the tools that are used for the measurements. In our research we identiied

that the chemical aspects involved with learning were less fully explored than those aspects

that focussed on brain activation such as electroencephalography or fMRI. Techniques for
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measuring brain chemicals in humans must rely on non-invasive modalities and MRS is a

mature technology for this application that is used primarily in the detection of pathology,

but less so for the healthy brain. Our main research questions revolved around the idea that

using MRS to characterise the learning brain had the potential to supplement the more com-

mon modalities with new information on brain function. Recent advances in MR technology

have allowed researchers to begin measuring GABA concentrations with the MEGA-PRESS

pulse sequence and we took advantage of this to design experiments to link inhibitory neu-

rotransmitter with learning performance, thereby suggesting the involvement of inhibitory

mechanisms in learning.

8.2 Summary

In the pursuance of our main research goal we explored and made contributions to three

diferent disciplines: Psychophysics, physical and computational sciences, and neuroscience

as follows.

Starting from the hypothesis that learning performance results that were dissociable by

task would be most likely to be based on dissociable learning mechanisms, we designed psy-

chophysics experiments that evoked performance diferences. his led to research into the

time course of learning and our irst contribution, which involved novel interleaved testing

and training paradigms that were spread over multiple sessions.

he MEGA-PRESS technique presented several challenges for the researcher, principally

due to a dearth of established tools for processing the MR signals and a lack of consensus on

analysis methodologies, such as scaling by tissue type. We therefore developed a set of tools

and methodologies to address these challenges. We ofer that our eforts will have beneits for

other scientists wishing to conduct research with the MEGA-PRESS sequence. his aspect of
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our work represents our contribution to the physical science aspect of the research.

We brought the behavioural and MR strands together in correlative studies that were de-

signed to probe the links between inferred inhibitory mechanisms and dissociable learning

performance. here were several novel features to these experiments such as the methods for

targeting MR acquisition voxels, the use of multiple ROIs and our use of new scaling meth-

ods. Our results showed correlations that were consistent with our hypothesis that inhibitory

mechanisms, that were invisible to other modalities, can be inferred through MRS experi-

ments. Our results were congruent with our main research aim that was to suggest MRS as a

supplementary tool for probing inhibitory mechanisms in the healthy learning brain.

8.3 Evaluation

he research question addressed in this interdisciplinary project involved the measurement

of inhibitory neurotransmitter in humans as a probe for investigating inhibitory mechanisms

in visual learning.

Our irst objective was to develop visual learning experiments that would engage difer-

ent brain areas in two groups of observers. We developed interleaved, multi-session visual

learning experiments that showed dissociable performance according to training diiculty.

By increasing the frequency of testing we revealed visual learning performance that was dif-

ferent for within and between sessions. Investigations into training regimen are important

aspects of psychological enquiry with consequences in areas such as education. Our work on

this represented represents a new inding for the project and led to a publication (Garcia et

al., 2013).

Other research questions were related to physical science areas of the project, such as ap-

proaches to post-acquisition processing methods and how to target brain regions in MRS
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learning experiments. One way of evaluating this work is to examine the quality of the spec-

tra obtained before and ater applying any signal processing methods developed. We demon-

strated improvements across a range of quality metrics ater applying correcting algorithms

for phase, spectral alignment and peak modelling. We also drew conclusions from this work,

including that independent alignment strategies improved over paired alignment and demon-

strated that fMRI guided ROI selection showed promise in MEGA-PRESS experiments. his

has the potential to make the targeting of relevant brain areas in neurobiological studies more

eicient and thus add a methodological improvement to MRS experimental paradigms.

Our further objectives were to investigate grey matter scaling approaches. he signii-

cance of this is that grey matter is oten considered to be important in cognitive processes

– oten more so than white matter. his has caused researchers involved with fMRI analy-

sis to routinely segment grey matter from the white matter so that only grey matter BOLD

signals are igured in their results. his segmentation is not commonly applied in MRS ex-

periments, but the same arguments about the eicacy of grey matter processing versus white

matter processing should apply just as they do in fMRI. We have demonstrated in this thesis

how to apply segmentation inMRS experiments and have provided some of the irst examples

of neural correlates of GABA and learning that have been scaled by grey matter proportion.

8.4 Limitations

Our work was planned as a multidisciplinary project from the start. As such there is always

the danger that the research areas may become spread too thinly and will fail to satisfy any

one discipline with regard to the methodological rigour employed. For example the metrics

that we used to measure performance might attract criticism for not adhering to standard ap-

proaches in psychology. Similarly our contributions to the psychological areas were largely
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based on correlations and it is a well known scientiic mantra that correlations do not im-

ply causation. hese are limitations that we acknowledge, but suggest that there is value in

simplicity, particularly for nascent research areas. Our approach of reporting correlations

with GABA concentrations and percent correct learningmetrics has the advantage of demon-

strating inhibitory mechanisms in intuitively comprehensible terms, which might encourage

researchers from other neuroscience disciplines to engage with MRS techniques.

We hypothesised that GABA in grey matter might be a better predictor of learning per-

formance than white matter GABA pools and we presented evidence to support this idea.

However, this is a novel approach and would need to be further validated before being advo-

cated as a standard approach for MRS studies, as it is in the case of fMRI research.

8.5 Further Work

Part of the work in this thesis showed time courses for the psychophysics of learning and the

feasibility of shorter scan times than the current norm. We would like to extend this idea

to investigate time courses for MEGA-PRESS acquisitions. If we could optimise the time

taken for reliable GABA measurements, then we would like to focus future research on a

time course for GABA metabolism during a learning experiment. his could follow similar

lines to the motor learning experiment in Floyer-Lea et al. (2006) or the working memory

experiments inMichels et al. (2012), but we anticipate shorter, more frequent time points that

would lead to a high temporal resolution characterisation of inhibitory processes in perceptual

visual learning. A high temporal resolution GABA experiment could help to characterise

GABAas a functionally dynamicmetabolitewhose real timeluctuationsmight lead to a better

understanding of cortical inhibitory processes. Wehavemade tentative steps towards this goal

with work showing that shorter scan times than the current average are feasible with minimal
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negative efects on the quality of spectra obtained.

he focus of the research in this thesis was on the inhibitory neurotransmitter GABA.

However further investigations into excitatory neurotransmitters such as glutamate and as-

partate would certainly be of interest. his would be particularly so if methods of measuring

the excitatory and inhibitory balance could be developed. his has the potential to greatly

advance our understanding of the workings of the human brain.

8.6 Conclusions

he key idea for the research described in this thesis was to investigate inhibitory neurotrans-

mitter concentrations in the human brain and how these might relate to visual learning. Our

primary contribution is to reveal that GABA is a correlate of learning and a potential pre-

dictor of performance. We achieved this through a combination of improving MEGA-PRESS

post-acquisition signal processing anddeveloping experimentalmethods that target greymat-

ter inhibitory processes in multiple brain areas. he detailed methods of how to accurately

measure and process MEGA-PRESS signals are still being reined and critical consensus on

how GABA concentrations explain behavioural improvements have only recently begun to

emerge. By addressing both the methodological details of GABA measurement and linking

these to inhibitory mechanisms in task speciic brain areas means that our research is there-

fore timely.

hrough the development of robust MEGA-PRESS post-acquisition processing methods

we achieved improved GABA signals. his meant we were able to draw conident conclu-

sions concerning links for GABAergic processes in frontal and occipital brain areas to sup-

port feedforward and top-downmodels of visual learning. Speciically we have suggested that

less GABA in lateral occipital areas and more in frontal areas explain performance increases
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in visual learning tasks modulated by training diiculty. For Easy-Training we have found

a novel connection between higher concentrations of GABA in lateral occipital areas and

Between-Session learning. Our results from Coarse and Fine visual learning experiments sup-

port cooperative feedforward and top-down mechanisms that are dissociable by brain region

and task.

Taken as a whole this thesis represents an investigation of aspects of chemical interactions

of learning that have received less attention in the scientiic community than those based on

electrical activation. his approach has the potential to contribute to our understanding about

the chemical level of analysis in neuroscience generally and for inhibitory processes of learn-

ing in particular. Our integrative approach to bothmethodological and experimental research

areas provides a pattern that we hope other researchers will use to add MEGA-PRESS tech-

niques to their existing fMRI and EEG experiments, to further our knowledge of inhibitory

processes in the human learning brain.
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A
TIME COURSE OFMEGA-PRESS

A.1 Introduction

Researchers have taken advantage of increasing ield strengths (3T and higher) to improve

signal to noise ratio (SNR) rather than to reduce acquisition time (Puts & Edden, 2012). How-

ever, a reduction in acquisition time would have advantages for experiments that involve the

quantiication of GABA. For example more regions of interest (ROIs) could be investigated

during a scanning session of the same length. Also, experiments that track changes in GABA

during an experiment, such as the motor learning experiment described in (Floyer-Lea et al.,

2006), should beneit from the increased time resolution of shorter duration acquisitions. For

these reasons we planned to investigate the time course of MEGA-PRESS acquisitions to see

if shorter than typical acquisition times were feasible.

To investigate this we compared measures of spectral quality, such as SNR and Cramér-

Rao lower bounds (CRLB), at 16 time points from 210 MEGA-PRESS scans.

A.2 Materials andMethods

he time course of a MEGA-PRESS experiment is shown in Figure A.1, for a hypothetical

scan of 16 min duration, with 512 dynamic averages and phase cycling set to 16. his illus-

165



APPENDIX A. TIME COURSE OF MEGA-PRESS

time

OFF

ON
spectrum1

ON pulses1-16

OFF
spectrum1

combined
spectrum1

ON
spectrum16

ON pulses240-256

OFF pulses240-256

OFF
spectrum16

combined
spectrum16

1st min 16th min

ON

2nd to 
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post-scan processing

Figure A.1: Time course of a single MEGA-PRESS experiment. Time increases along the x-axis in the
direction of the arrow. Interleaved edited (ON) and unedited (OFF) pulses are phase cycled to produce 16
pairs of serially acquired data from 512 (256 edit ON, 256 edit OFF) individual pulses.

trates the interleaved application of MEGA-PRESS (ON) and PRESS (OFF) pulse sequences.

In the igure, time increases along the x-axis in the direction of the arrow. During the irst

minute, the MEGA-PRESS pulse sequence (ON) runs 16 times, followed by the unedited se-

quence (OFF). he ON and OFF data are phase cycled in the scanner to produce the irst

exportable data sets, labelled “ON spectrum1” and “OFF spectrum1”. hese sets are displayed

as frequency domain spectra for illustrative purposes, although the data will actually consist

of time domain signals in the scanner. his pattern repeats for a further 15 times so that 16

edit ON and 16 edit OFF FIDs are produced for export from the scanner. hese acquisitions

are produced from 512 (256 edit ON, 256 edit OFF) individual pulses.

Altering the phase cycling parameter will change the number of exported data sets. For

example setting the phase cycling to 1 for the hypothetical experiment in Figure A.1 would

result in 512 sets, each one representing a time point of 1.9 s.

To investigate the time course of MEGA-PRESS experiments we acquired data from 210

scans, which covered 7 ROIs. Each MEGA-PRESS scan used the following MRS parameters:

TR = 1800ms, TE = 68ms, volume = 30mm , samples = 2048, spectral BW sample frequency
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= 2150, water suppression = VAPOR, dynamic scans = 32, phase cycles = 16. We used a 3T

Philips Achieva scanner (Philips Healthcare, Best, Netherlands) to obtain theMRS data. Scan

duration was 921.6 s (15 min 21.6 s) per ROI.

We separated the data for each scan according to the 16 phase cycled data sets and plotted

Figure A.2: Representative spectra,
time course. Each spectrum represents
a time point in 57.6 s increments during
a 921.6 s MEGA-PRESS scan, ordered
top to bottom, irst acquired to last.
Grey lines represent the raw spectra
with metabolite model it superimposed
in black. The ROI in this example was
from the right hemisphere of the motor
cortex.
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each as a spectrum to represent the time course of MEGA-PRESS (Figure A.2). Each spec-

trum in this igure represents 57.6 s of scanning. he topmost spectrum was the irst acquired

during the scan and the bottom spectrum was acquired at the end of the scan.

As shown in the igure, there is amismatch between the it lines and the raw spectra. here

are also some noticeable diferences in the line shape of the model it of GABA at 3 ppm in

each spectrum displayed. his indicates noise in the system and explains why MEGA-PRESS,

indeed all MRS techniques, typically average multiple acquisitions to increase the SNR of the

acquisitions.

We can investigate the improvement that this averaging produces in the it between the

model and the raw data by cumulatively adding the data acquired from each time point ac-

cording to Equation A.1.

CS(tn) =
1

N

n
∑

i=1

S(ti) where n = 16, t = time (A.1)

he cumulative addition of spectra in Equation A.1 improves the alignment between the

raw data and the model it with each successive time point (Figure A.3). his provides us

with a model of the efect of shorter scan times. By truncating the data at a particular time

point we can omit all of the scan data that came ater the selected time point. With the scan

parameters that were chosen for this project that means that we can simulate MEGA-PRESS

experiments for 16 diferent durations from the 15 min 21.6 s experiments that we actually

ran.

Our plan was to analyse spectral quality metrics for each simulated experiment. In this

way we expected to characterise the changes in the metrics as a function of time. he reason
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Figure A.3: Representative spectra,
cumulative averages. The data in this
igure comes from the same scan acqui-
sition as Figure A.2. In this igure suc-
cessive spectra are cumulatively added
to the spectra of previous time points.
The improvement in it between the
metabolite model in black and the ac-
quired signal in grey becomes apparent
towards the bottom of the igure, which
represents the longest time point and
hence greatest amount of signal averag-
ing.

for doing this was to see if scan durationsmight be shortened, without compromising the scan

data quality.
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A.2.1 Regions of Interest

he ROIs from our scans covered four brain regions; lateral occipital cortex (covering lateral

visual areas including those responsible for processing shape recognition and movement),

motor cortex, frontal areas centred on the mid frontal gyrus and early visual cortex including

V1 (Table A.1).

Table A.1: Number of samples by region of interest. The ROI refers to the brain area that the acquisition
voxel was centred on, the early visual cortex voxels were acquired medially between the two hemispheres.
Total number of samples = 210.

ROI N
Lateral occipital, let hemisphere 28
Lateral occipital, right hemisphere 30
Motor cortex, let hemisphere 27
Motor cortex, right hemisphere 27
Mid frontal gyrus, let hemisphere 31
Mid frontal gyrus, right hemisphere 31
Early visual cortex, medial 36
Total 210

Wecalculated themeanGABA+quantities (FigureA.4) for eachROI and theCramér-Rao

lower bounds (FigureA.5) so that we could decide whether to characterise all the acquisitions

together or whether we needed to treat each ROI separately.
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FigureA.4: GABA+byregionof interest. MeanGABA+measurement (n=210) byROI; LO=lateral occipital,
M1=motor cortex, MFG=mid frontal gyrus, VC=early visual cortex, lh=left hand, rh=right hand. (A) bars are
95% conidence intervals. (B) bars are one standard deviation. GABA+ quoted in arbitrary units.
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Figure A.5: Cramér-Rao lower bounds by region of interest. Mean CRLB calculations (n = 210) by ROI;
LO=lateral occipital,M1=motor cortex,MFG=mid frontal gyrus, VC=early visual cortex, lh=left hand, rh=right
hand. (A) bars are 95% conidence intervals. (B) bars are one standard deviation.

he mean GABA+ measurement for the ROIs was 1.35 ±0.19 (SD), the range was 1.08.

he mean CRLB for the ROIs was 5.04 ±1.37 (SD), the range was 7.62. As the distribution of

these values for the ROIs had small, overlapping standard deviation bars, we decided to group

the ROIs together. his meant that any indings from the analysis would not be restricted to

a particular brain region.

We split the data for the 210 MEGA-PRESS acquisition into 16 time courses in the same

way that was described for Figure A.3. he irst data set represented the data collected during

the irst 57.6 s, the second data set was collected over the irst 115.2 s (i.e. it included the irst

data set in the average) and so forth until the 16th data set that was an average of all the data

collected during the scan, and which took 921.6 s (15 min, 21.6 s). In this way each data set

simulated the efect of running the same experiment 16 times, with each set being collected

over a longer scan duration.
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A.3 Results

In order to assess the simulated time course we analysed the following quality metrics; Q

metric, signal to noise ratio and Cramér-Rao lower bounds. We also quantiied the GABA+

as a function of time and correlated the longest duration scan data against each time point.

A.3.1 QMetric

he irst metric we looked at for characterising the quality of the spectra was the Tarquin Q

metric (M. Wilson et al., 2011). his is deined as the standard deviation of the frequency do-

main residual between 0.2 ppm and 4.0 ppm, divided by the standard deviation of the spectral

noise and is a measure of it accuracy of the model line. A value of 1 is meant to indicate a

perfect it, with lower values indicating overitting. he deinition of the metric meant that

random noise added to the it would lead to an improvement (lowering) of the Q value. We

therefore used this metric to characterise the decreasing noise levels that coincide with in-

creasing numbers of averages.

his is demonstrated in Figure A.6, which showed a linear increase in Q with each addi-
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Figure A.6: Time course Qmetric. Mean Qmetric for cumulative averaged acquisitions (n=210). Leftmost
bar is the irst 32 samples (16 phase cycles of edit OFF and 16 phase cycles of edit ON), each subsequent bar
adds another 32 samples so that the rightmost bar is derived from512 samples. (A) bars are 95% conidence
intervals. (B) bars are one standard deviation.
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tional 32 samples that were added to the average. his chart should sound a note of caution

when using the Q metric to compare spectra. Lower values (down to unity) should indicate

better its, but not in the case where random noise difers such as the case where spectra have

been acquiredwith diferent numbers of averages. heQmetric would be appropriate in cases

where the spectra were acquired with the same number of averages, in such cases lower Q val-

ues could be interpreted as indicating a better it of the model. For this analysis we instead

noted the implied reduction in noise that increasing Q values indicated.

A.3.2 Signal to Noise Ratio

he next metric we analysed was the signal to noise ratio (SNR). As expected, increasing

the number of samples led to an increase in SNR (Figure A.7). Time point 4 represented

a scan of 3 min 50.4 s, this was 25% of the duration of the longest scan at 15 min 21.6 s.

However, its SNR of 26.7 ±4.69(SD) was 68% of the SNR for the longest time point, which

was SNR = 39.15 ±7.43(SD). To put this into context, a recent paper looked at GABA quality

and set the removal criteria for poor spectra at SNR < 3 (Riese et al., 2015). Even with the
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Figure A.7: Time course, signal to noise ratio. Mean SNR metric for cumulative averaged acquisitions
(n=210). Leftmost bar is the irst 32 samples (16 phase cycles of edit OFF and 16 phase cycles of edit ON),
each subsequent bar adds another 32 samples so that the rightmost bar is derived from 512 samples. (A)
bars are 95% conidence intervals. (B) bars are one standard deviation.
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shortest time point in these data, the mean SNR was comfortably above this threshold and

this could be achieved with a scan time of approximately one minute (57.6 s).

A.3.3 Cramér-Rao Lower Bounds

We also investigated the time course of the Cramér-Rao lower bounds (Figure A.8). hese

are metrics that are typically used to indicate the accuracy of the model it to the data in MRS

quantitation sotware. he values are expressed as%SDand a cut of value is chosen to indicate

the level of accuracy that is acceptable and above which, spectra might be discarded as being

too poor. he value varied in the literature, for example some researchers used a value of 30

(Mangia et al., 2006; Hall, Stephenson, Price, & Morris, 2014) and others used a value of 20

(Ganji et al., 2012; Riese et al., 2015; Northof et al., 2007; Gasparovic et al., 2006). We adopted

the more conservative cut of value of 20 to indicate poor quality spectra, with lower values

indicating higher quality. We plotted the mean CRLB values for GABA across time points to

measure the improving efect that increasing samples had.

Tarquin quantitated GABA as two peaks around 3 ppm and if a it model quantitated an
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Figure A.8: Time course Cramér-Rao lower bounds (CRLB). Mean CRLB metric for cumulative averaged
acquisitions (n=210). Leftmost bar is the irst 32 samples (16 phase cycles of edit OFF and 16 phase cycles
of edit ON), each subsequent bar adds another 32 samples so that the rightmost bar is derived from 512
samples. (A) bars are 95% conidence intervals. (B) bars are one standard deviation.
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Figure A.9: CRLB exclusion criteria set to 20. Per-
centage of spectra whose CRLB was greater than
20 (n=210). Leftmost bar is the irst 32 samples
(16 phase cycles of edit OFF and 16 phase cycles
of edit ON), each subsequent bar adds another 32
samples so that the rightmost bar is derived from
512 samples. Percentages with CRLB greater than
20 reduced exponentially through the irst ive time
points (30.5%, 8.6%, 3.8%, 1.9%, 0.5%), after which
there were no more cases of CRLB values above 20.

individual peak as very low, which was possible given the unreliable appearance of doublets

in the raw data, then the CRLB values would become very high (they were reported as ininity

where the quantitation was zero). his had a distorting efect on the mean values, therefore

any CRLB values above 21 were recoded to the value 21. he mean CRLB values pointed to

reliably itted spectra (Figure A.8A), the irst 32 samples averaged 15.84 ±4.37(SD). Using

the irst 25% of the acquisitions lowered the mean CRLB value to 9.44 ±3.1(SD) and this was

further reduced to 5.04 ±1.37(SD) when all 512 samples were used.

Increasing the number of averages has an improving efect on the mean CRLB values.

However we were also interested in the efect that the number of averages had on the absolute

cutof values. We therefore calculated the percentage of spectra whose CRLB value was above

20 (Figure A.9). According to our cutof deinition, these spectra would have failed to have

met our quality criteria and should therefore be removed from subsequent analysis. he per-

centages of spectra that failed the quality criteria reduced exponentially for the irst ive time

points, ater which there were no further cases of CRLB values above 20.

A.3.4 GABAQuantiication

he quality metrics are important in that they point to the reliability of the metabolite mea-

surements. We were particularly interested on the efect that the number of acquisitions had

on the actual quantiication of GABA. We plotted the mean values per time point in Fig-
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Figure A.10: GABA+ quantiication. Mean GABA+ metric for cumulative averaged acquisitions (n=210).
Leftmost bar is the irst 32 samples (16 phase cycles of edit OFF and 16 phase cycles of edit ON), each subse-
quent bar adds another 32 samples so that the rightmost bar is derived from 512 samples. (A) bars are 95%
conidence intervals. (B) bars are one standard deviation.

ure A.10. his showed a gradual reduction in GABA quantiication as a function of the num-

ber of averages. We conducted a linear regression analysis; this found that for every 57.6 s (or

approximately each minute) of acquisition time the mean GABA measurement decreased by

0.006 arbitrary units, F(1,3358)=63.6, p=<0.001. he 95% conidence intervals for the slope

were -0.008 and -0.005, which led us to conclude that the efect was indeed small. We spec-

ulated that the higher values that accompanied fewer acquisitions were probably due to the

additional noise being modelled as part of the GABA signal. Although the efect was small,

we then wished to a ascertain whether the measurements were linearly scaled as a function of

noise. If this was the case then this wouldmean that a case could bemade for using shorter ac-

quisitions times because the absolute values are less important than the reliability of the mea-

surements when comparing measurements made under identical experimental conditions.

In other words, if each measurement made using a scan time of ive minutes was exactly 5%

higher than one acquired using a scan time of ten minutes we could use either value in a cor-

relation study, where GABA metabolite quantities are rarely expressed in anything other than

arbitrary units anyway. he experiment described here was a simulation of multiple acquisi-
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tions and is not really suitable for testing this hypothesis as longer acquisitions included scans

from shorter ones. hat being said, we plotted each time point against the last one to get an

idea of how the data in the simulation correlated (Figures A.11 and A.12).

For these data we noted that efect sizes of R2 = 0.645 for the fourth time point (230.4 s),

which increased to R2 = 0.779 for the eighth time point, half way through the total scan time

(460.8 s). All correlations were signiicant at the p=<0.05 level.

A.4 Discussion

his experiment investigated the feasibility of reducing the scan time for MEGA-PRESS ex-

periments from a typical scan time of 15 min using a simulation of shorter scan durations

based on splitting the time course of acquisitions. We investigated the GABA signals from

four regions of interest (lateral occipital, motor cortex, mid frontal gyrus and visual cortex)

for 210 acquisitions. We concluded that the quantitation and CRLB values for these acquisi-

tions were similar enough to warrant analysing them all as a group rather than splitting the

data by ROI. his was intended to make any indings applicable to MEGA-PRESS measure-

ments generally and not restricted to a particular brain region.

It is known that with low concentration metabolites like GABA, more acquisitions will

improve spectral quality. However, this analysis was intended to investigate whether shorter

acquisitions could be made with acceptable, rather than optimal, quality. We investigated

the Q metric, which had the disadvantage that the calculation becomes skewed by additional

noise in the spectra, but has the advantage that it is a metric speciic for the GABA peaks in

the edited MEGA-PRESS experiment, as apposed to whole spectrum metrics. We showed

that although noise was reduced throughout the time course of the experiment, as inferred by

the increased Q value, the overlap in standard deviation bars indicated that the values were
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Figure A.12: Correlations, GABA+, 512 samples versus 288 to 480 samples. Plot (9) shows the cor-
relation obtained from 512 samples versus 288 samples (16 edit OFF and 16 edit ON). Each subsequent
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not improved by much. We would characterise the change of Q value as a function of time as

steady and linear.

Signal to noise ratio (SNR) is a common metric for characterising spectral quality. he

analysis for SNR showed a more exponential type of increase for the irst 25% of time points

(approximately 4 min), which then became more linear. here was again overlap of the stan-

dard deviation bars from this time point forward and we concluded that using a scan time

of less than 4 min would lead to spectra with 68% of the SNR of a 15 min scan. he actual

mean SNR values for this time point were 26.7 ±4.69 and we concluded that this represented

an acceptable value that represented good quality spectra.

We also looked at the Cramér-Rao lower bounds (CRLB) for the acquisitions. hese low-

ered, or improved, in an analogous way to the increases seen in the SNR. hat is they reduced

steeply for the irst 25% of time points before reducing steadily and linearly throughout the

simulation. Overlap of the standard deviation range again indicated that a scan duration of

approximately four minutes gave a CRLB value of less than half (9.44 ±3.1) of that commonly

used as a cut-of value used in the ield to indicate poor spectra. More importantly, we noted

that scan durations of approximately 5 min (288 s) led to CRLB values that were lower than

our exclusion criteria for all 210 acquisitions.

In addition to the qualitymetrics we alsowanted to characterise the efect of shorter acqui-

sition times had on the actual quantitation values of GABA+. We noted a small systematic de-

crease in measured quantity, which would mean slightly overestimated values for shorter ac-

quisition times. We also correlated each time point against the cumulatively averaged 15 min

scans. his showed signiicant correlations (all p < .05) for each time point’s GABA+ quanti-

tation values, with strong efects (r values >.6) from scan durations of approximately 4 min.

We concluded therefore that reduced duration scans made very little diference to the quan-
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titated GABA+ values, particularly for use in correlative studies where the absolute values are

less important.

We concluded from the analysis that acquisition times shorter than 15 min might be ap-

propriate for MEGA-PRESS experiments. he evidence from this section pointed to acqui-

sition times as short as 230.4 s (3 min, 50.4 s), which produced acceptable data. However,

these data were simulated rather than actually acquired in separate duration scans. Further

validation of the shorter acquisition scans, with GABA measurements taken over a range of

acquisition times, would be necessary before this conclusion could be conidently asserted.

hat being said, the evidence from this section indicated that shorter acquisition times were

at least feasible and the experiments described here did nothing to negate the hypothesis that

shorter acquisition times could be employed in further experiments. We think that this would

be particularly useful for experiments where the aim was to investigate the time course of

GABA, for example where a reduction of GABA was hypothesised during an experiment as a

function of task mediated inhibitory processing.
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VISUAL LEARNING PILOT STUDIES

In this appendix we document our investigations into psychophysics experiments that formed

the preparations for the experiments described in Chapter 5: Time Course of Training Dif-

iculty Mediated Visual Learning and Chapter 7: GABA Versus Coarse and Fine Visual

Learning. Our aim for these investigations was to produce paradigms that elicited dissocia-

ble learning in the participants, through the manipulation of experimental parameters. he

parameters that we planned to manipulate were those for the stimulus images (spiral angle

and image signal), the length of sessions and the arrangement of test and training runs. As

this appendix forms a record of our early investigations into visual learning paradigms, we

present the pilot studies in the form of an edited lab book.

B.1 Introduction

he very irst experiment that we ran had spiral angles of 30◦ versus 60◦, noise levels of 50%

versus 0%, two test runs and eight training runs of 120 stimulus images per run. Subsequent

experiments were deined by changes made to any of these parameters. For example, in the

second experiment we added a noise condition of 80% and in later experiments we manipu-

lated the frequency of testing. As these pilots were attempts to investigate the parameters, we
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will present them sequentially in the order that they were conceived. his is intended to show

how we decided on the parameters for each new experiment. We used the results from each

pilot to inform the next experiment rather than parametrically altering each variable, which

would have necessitated many more pilots than we had the resources to complete.

B.2 Materials andMethods

he experiments described in this appendix were all variations of radial and concentric dot

pattern classiication tasks. We were interested in exploring the parameters to produce tasks

where participants found it easier or more diicult to discriminate the shapes. We were also

interested in the time course of learning for these paradigms and so experimented with ex-

periment duration, for example we varied the length of runs and sessions throughout the pilot

studies.

B.2.1 Stimulus Presentation

We manipulated the spiral angles and noise levels of dot patterns to produce radial and con-

centric shapes that were more discriminable (Easy) or less discriminable (Hard). A full de-

scription of the procedure is detailed elsewhere in this thesis (e.g. the methods sections of

Chapters 5, 6 and 7), so for brevity wewill omit this here and refer the reader to Section 7.2.2.

In that section we explain how manipulating the spiral angle and noise levels efect the stim-

uli to produce the various experimental conditions, for example Easy or Hard. Samples of

the type of stimuli that we use in the experiments are provided in Figures 5.2 and 7.2 (in

Chapters 5 and 7).

One parameter that we kept constant throughout all of the experiments was the stimu-

lus presentation time, which was 200 ms. We wished to keep the presentation time short for

two reasons: Firstly, we wanted the subjects to base their decisions on global features and
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Table B.1: Stimuli presentation times. A selection of studies with similar stimulus parameters to those we
planned to use.

Time (ms) Stimuli Reference
167 Glass patterns H. R. Wilson & Wilkinson, 1998
300 Gabor ields Altmann et al., 2003
332 Glass patterns Ostwald et al., 2008
200 Glass patterns Li et al., 2009
200 Glass patterns Zhang, Meeson, Welchman, & Kourtzi, 2010
200 Gabor ields Zhang & Kourtzi, 2010
200 Gabor ields Kourtzi, 2010
300 Glass patterns Mayhew & Kourtzi, 2013

limit scrutiny of local features. Secondly, we planned the experiments to make them com-

patible with fMRI experiments, where the duration of the stimuli presentations needs to be

controlled with regard to the scan repetition time (TR). In fMRI experiments the TR is typ-

ically 1.5–2 s, so suicient time for subject response needs to be factored in to the timing of

the stimulus presentations. he short duration of the stimulus presentation has the advantage

that it reduces the opportunity for eyemovement, which is another consideration for fMRI ex-

periments. We consulted literature for similar dot pattern paradigms and noted presentation

times of 167–332 ms (Table B.1), with 200 ms being the most common value.

We reasoned that 200 ms would be suitable for our experiments as it is short enough to

meet the constraints of fMRI and has been shown to evoke learning in experiments that had

similarities to those that we were planning. By ixing the same presentation time for all ex-

periments meant that we had one less parameter to manipulate and therefore reduced the

complexity of the setup.

We presented all stimuli on a 21-inch CRT monitor (resolution 1280×1024 pixels, 85 Hz

frame rate) in low light conditions. We ixed the viewing distance at 47 cm with a chin rest.

We generated and presented the stimulus images using Matlab (he MathWorks, Inc., Natick,

Massachusetts, USA) and Psychtoolbox version 3 (Brainard, 1997; Pelli, 1997).
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From the participants perspective the experiments consisted of stimulus presentations

(trials) that the subjects were tasked to classify as one of two types of shape. he stimulus pre-

sentations were organised in blocks of between 60 and 120 images. Each block was deined

as either a training block or a test block. In training blocks audible feedback was provided for

incorrect responses, no feedback was provided in test blocks. We varied both the number of

blocks and the frequency of testing (test blocks) in diferent experiments.

B.2.2 Performance Evaluation

A typical session for the experiments described in these pilot studies involves approximately

1000 stimulus presentations, which the participants were tasked to categorise as a particu-

lar pattern. he sessions were presented sequentially and arranged in separate blocks with

forced breaks in between. Some sessions were run over several days. his meant that there

were potentially many ways that the performance could be evaluated. For example, perfor-

mance could be grouped into arbitrarily sized bins according time, or metrics could be used

to characterise performance gains across or within sessions. Performance could be evalu-

ated in terms of the percentage of correct responses, or weighted to account for bias by using

techniques such as d-prime (d’).

We began our pilots by concentrating on simple metrics and straightforward groupings.

For example, in Figure B.1 we have a sample chart that shows the performance of a single

subject across one session. he performance is evaluated using a percent correct measure.

We track bias informally by recording the percentage of responses for a given experimental

condition. he sample chart represents the classiication accuracy of two conditions, radial

and concentric. herefore a non biased observer should have equal numbers of responses

to each condition, as there are equal numbers of radial and concentric presentations in each
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Figure B.1: Sample pilot study performance mea-
sures. This chart is representative of the type of chart
we used to investigate learning performance in a ses-
sion. Each run has been divided into ive bins that
show the percent correct metric for ive time points
within each block. The percent of responses that the
subject answered ‘radial’ is indicated by the lower
black line, which can be compared with the 50% line
(dotted).

block. By plotting the percent of radial responses for each block, we can track bias as it will

show as deviations from the (unbiased) 50% line.

We also presented our results averaged over sessions and participants and calculated var-

ious learning indices to produce charts such as the ones in Figure B.2.

Although there are many diferent types of analysis that could be used to characterise per-

formance in psychophysics experiments we wished to keep our metrics as simple as possible.

his suited the exploratory nature of the pilots. By standardising the measurements that we

used in each pilot we were able to compare each iteration rapidly with those that preceded

them. For these reasons we decided to represent performance in the pilot study tasks as the
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Figure B.2: Sample pilot study average performance measures. These charts are representative of the
type of charts we used to investigate performance averaged over sessions or experiments. (A) Comparing
two hypothetical conditions X and Y across three sessions. Lines indicate mean performance and circles
represent individual participant scores on a (unspeciied) learning metric. (B) Individual participants’ per-
formance for condition X, lines indicate statistics such as mean and standard deviation. (C) Contrasting
performance for condition Y.
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percentage of correct classiications in each run. Wedeined thePercent Correct per Block (PCB)

metric as in Equation 6.1 (see Section 6.2.2: Behavioural Indexes) to give the mean correct

response scores for each block.

We also recorded the response time for each trial so that we could determine whether this

changed over the course of the experiments. We expected that participants might become

quicker with practice on the tasks, but we also considered that speed of response on correct

trials might be another indicator of learning performance.

B.2.3 Participants

All observers were screened prior to participating in the experiments. he screening protocol

involved a visual acuity test and a questionnaire for contraindications for the experiments.

We deined the contraindications as poor vision, elevated alcohol, medication, or cafeine

levels (self reported) or prior experience of the stimuli. We also included contraindications for

fMRI experiments, such as metal contamination and history of epilepsy. hese were included

in case we extended the behavioural pilots to magnetic resonance imaging or spectroscopy

studies. New participants were recruited for each pilot study (none were used on more than

one pilot, although some took part in multi-sessions for the same study). he mean age of the

participants was 21 and there was an approximate gender split of 50/50. All participants gave

written, informed consent to take part and were paid for each session they completed. he

studies were approved by the University of Birmingham ethics committee.

B.3 Visual Learning Pilot Experiments

We designed the pilot studies to investigate the parameters of Glass pattern experiments so

that we could optimise settings to evoke dissociable learning performance. We present them

in the order that they were run so that the reader might follow the reasoning that led to the
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experimental setup described inChapters 5, 6 and 7. To facilitate this we present the work as

an edited lab book with a standard structure for each subsection (Aims:, Design, Results and

Conclusions).

Exploratory Pilot

he irst pilot that we ran was was used to get some general ideas about how varying pa-

rameters like spiral angle and image noise might inluence performance in discriminating

radial and concentric patterns. he participants were researchers involved in psychophysics

research, including the author. his was the only pilot that was not completed by participants

whowere agnostic to the stimuli and research goals for the experiments. For this reasonwe re-

fer to this experiment as the Exploratory Pilot to indicate that it was used to gain some insight

into the participants’ experience of the tasks.

Aims: Wehypothesised that spiral angles thatwere closer together (e.g. 30◦ versus 60◦)would

be more diicult to discriminate than those that were further apart (e.g. 0◦ versus 90◦). We

also assumed that patterns with higher signal, that is those with less randomly oriented noise

dots, would be easier to distinguish compared to those with lower signal. To test this we

designed a stimulus space that included closer and wider spiral angles and two levels of signal.

What we wanted to ind out from running this pilot was how the spiral angles and noise levels

inluenced performance between the pre-training and post-training test blocks.

Design: We arranged the sequence of the experiment in blocks of 120 stimulus images per

block (Figure B.3: A). We decided to use 120 images per block as this number has 16 factors

and so is lexible for testing multiple conditions within a single block. We estimated that in a

self-paced experiment, participants would complete each trial within 2 seconds and this lead
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2

1
1

(B) Session
5 blocks

(A)   Block
120 trials

120 Figure B.3: Exploratory Pilot
design. Each block (A) consisted
of 120 trials. The session (B)
consisted of two test blocks
(dark, numbered boxes) and
three training blocks (lighter
boxes with audio icon).

to a block duration time of approximately 4 minutes. We thought that this duration would

not be too fatiguing for the participants, whilst still providing suicient data for us to quantify

any performance improvements.

he arrangement of blocks for our irst experiment had a test block, followed by three

training blocks and a inal test block (Figure B.3: B). his is a common way of arranging

psychophysics experiment, with the irst test block representing the pre-training base per-

formance and the last test block representing the post-training learning efect. he training

blocks were diferent from the test blocks as the training blocks had audible error beeps for

each incorrect trial.

he stimuli consisted of radial and concentric dot patterns and we set the spiral angles to

0◦, 30◦, 60◦ and 90◦ spiral angles. We set the signal levels to 50%and100% to give a total of four

conditions for the experiment. Other experimental parameters are as detailed in Table B.2.

Table B.2: Exploratory Pilot design. Parameters for the Exploratory Pilot: N = number of participants, Im-
ages = number of images per block, Blocks = number of blocks per session, Radial = radial pattern spiral
angle(s) in degrees, Concentric = concentric pattern spiral angle(s) in degrees, Signal = percent of signal
dots, Sessions = number of sessions.

N Images Blocks Radial Concentric Signal Sessions
Test 2 120 2 0 & 30 60 & 90 50 & 100 1
Train 2 120 3 0 & 30 60 & 90 50 & 100 1
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Figure B.4: Exploratory Pilot results. (A) and (B) Percent Correct per Block (PCB) in four conditions, based
on spiral angles and signal percentage. The x-axes are blocks within the session. Test blocks are numbered
1 and 5, training blocks are numbered 2–4. (C) and (D) are the response times in seconds for the four con-
ditions.

Results: We plotted the Percent Correct per Block (PCB) according to the four conditions

for both participants (Figure B.4: A,B). We also plotted the mean response time by block

(Figure B.4: C,D).

Conclusions: he results showed that bigger diferences in spiral angle led to higher perfor-

mance and higher signal images were easier to discriminate than lower signal images. his is

intuitively obvious and completely expected. Results in the post-training block (run number

5) were generally higher than in the pre-training block (run number 1) andwe interpreted this

to indicate that learning had occurred during the training blocks (runs 2–4). he response

times looked like theymight be correlated with the performance, with faster responses for the

more discriminable stimuli. However we did not use any statistical metrics on this data as

the sample size was small. A further caveat to add about these results are that the participants
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might be considered more practised than typical.

We concluded from these results that the 30◦ versus 60◦ spiral angles might be suitable for

further pilot experiments. he performance on the 0◦ versus 90◦ angles indicated that this was

probably too easy to discriminate as performance was above 80% correct before training in

both the high and lower signal conditions. We wished to quantify performance improvement

for the shape discrimination pilots and so preferred parameters that resulted in lower pre-

training performance than those we measured for the 0◦ versus 90◦ conditions. From this

perspective, all of the initial performance (i.e. PCB on the irst run) was probably higher

than we would like as higher initial performance leaves less room for improvement. Ater

considering the results from this pilot, we decided to make subsequent experiments more

diicult. We could do this by either narrowing the spiral angles, whichwouldmake the shapes

less discriminable or by increasing the image noise.

Pilot 1

In this study we dropped the 0◦ versus 90◦ condition that featured in the Exploratory Pilot and

lowered the signal in an attempt to make the tasks more diicult. his study used participants

who were agnostic to the stimuli and were not connected to the research goals of our group.

We increased the number of participants on this study and made the task longer by adding

ive more training runs.

Aims: Our aims for Pilot 1 were to explore trends in visual learning over a single session of

approximately one hour’s duration.

Design: he main diference in the design of Pilot 1 to the previous Exploratory Pilot was

the addition of extra training runs. he extra training blocks were inserted between the pre-

191



APPENDIX B. VISUAL LEARNING PILOT STUDIES

2

Session
10 blocks

1

1

Test

Train

Key Figure B.5: Pilot 1 design. A session
consisted of two test blocks (darker boxes
with number swatches) and eight training
blocks (lighter boxes with audio icon).

training and post-training test blocks, as before (Figure B.5).

In Pilot 1 we trained and tested participants to distinguish between two spiral angles (30◦

versus 60◦). In addition, we manipulated the signal level of the trials on 2 levels: 50% and

100% during training runs and 45% and 95% during testing blocks.

Table B.3: Pilot 1 design. Parameters for Pilot 1: N = number of participants, Images = number of images
per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees, Con-
centric = concentric pattern spiral angle(s) in degrees, Signal = percent of signal dots, Sessions = number
of sessions. Bold numbers represent changes from the previous pilot parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 5 120 2 30 60 45 & 90 1
Train 5 120 8 30 60 50 & 100 1

he parameters for the experiment are listed in Table B.3. Where a parameter is changed

from the previous Exploratory Pilot, we have emboldened the number to help identify the

changes. In Table B.3 the parameters changed were the number of training blocks, the radial

and concentric spiral angles (for test and training) and the signal percentages (for the test

blocks). We lowered the signal by 5% in the testing blocks.

Results: We calculated the average Percent Correct per Block (PCB) for each run of the exper-

iment and split the results according to the high and low signal conditions (Figure B.6: A).We

plotted themean response time, whichwe calculated for correct responses only (FigureB.6:B).
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Figure B.6: Pilot 1 results. (A) Percent Correct per Block (PCB) for high and low signal conditions. (B) Re-
sponse time for correct responses for high and low signal conditions. Error bars are standard error.

Conclusions: he starting performance for the task was high in both signal conditions: It

was≈ 70% in the low signal condition and≈ 80% in the high signal condition. here was no

evidence that the training runs evoked a learning efect as the inal performance on the last

test run (block 10) had not improved from the starting performance.

he response time decreased by approximately 100 ms from block one to block two, al-

though the variability has high as shown by the size of the error bars. We did not discern a

decreasing trend in response times for subjects on this paradigm.

he lack of a discernible learning efect for these parameters, suggested to us that we

needed to rethink the parameters for the next pilot study. In particular we wanted to in-

vestigate parameters that might show some learning transfer from the training blocks to the

inal test block.
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Pilot 2A

Wewere beginning to formulate a hypothesis that training onmore discriminable tasksmight

transfer to less discriminable tasks. his led us to try setting parameters that would make the

training runs more discriminable (Easy) and the test runs less discriminable (Hard).

Aims: Our aims for Pilot 2A were to see if training on Easy tasks transferred to learning on

Hard tasks.

Design: he arrangement of blocks on Pilot 2A was the same as in Pilot 1 (see Figure B.5).

We set the signal level to 80% for all training runs in order to make the training runs more

discriminable. We tested the participants images with signal of 80% and 50%, with the lower

signal representing the Hard condition (Table B.4).

TableB.4: Pilot 2Adesign. Parameters for Pilot 2A:N=number of participants, Images=number of images
per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees, Con-
centric = concentric pattern spiral angle(s) in degrees, Signal = percent of signal dots, Sessions = number
of sessions. Bold numbers represent changes from Pilot 1 parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 4 120 2 30 60 50 & 80 1
Train 4 120 8 30 60 80 1

Results: We plotted the Percent Correct per Block and response times for the high and low

signal (Easy and Hard conditions), see Figure B.7.

Conclusions: Weweremost interested in the performance on theHard condition, whichwas

represented in Figure B.7A as the low signal PCB in blocks one and ten. he performance was

only marginally higher (with overlap of the error bars) in the post-training block compared

with the pre-training block. he performance on the Easy condition showed a similar lack

of improvement throughout the session. We concluded that altering the signal level to make
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Figure B.7: Pilot 2A results. (A) Percent Correct per Block (PCB) for high and low signal conditions. (B) Re-
sponse time for correct responses for high and low signal conditions. Error bars are standard error.

Easy training conditions did not evoke a learning efect. Response time of approximately 1 s

were recorded across the session with no discernible overall improvement.

Pilot 2B

he results from Pilot 2A led us to consider that we should try varying the spiral angle, rather

than the signal level to produce the Easy versus Hard conditions.

Aims: Our aims for Pilot 2B were still to see if Easy training transferred to a Hard task, but

this time we would vary the spiral angle to produce the conditions.

Design: he arrangement of blocks was the same as in Pilot 1 (Figure B.5). he Easy train-

ing condition was deined by discriminable spiral angles of 10◦ versus 80◦ and in the Hard

condition the angles were set to 30◦ versus 60◦. For this paradigm we keep the signal level

TableB.5: Pilot 2Bdesign. Parameters for Pilot 2B:N=number of participants, Images=number of images
per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees, Con-
centric = concentric pattern spiral angle(s) in degrees, Signal = percent of signal dots, Sessions = number
of sessions. Bold numbers represent changes from pilot 2A parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 5 120 2 10 & 30 60 & 80 50 1
Train 5 120 8 10 80 50 1
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constant at 50% for every trial (Table B.5.).

Results: We plotted the Percent Correct per Block and response times for the Easy and Hard

conditions, as in Figure B.8.
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Figure B.8: Pilot 2B results. (A) Percent Correct per Block (PCB) for high and low signal conditions. (B) Re-
sponse time for correct responses for high and low signal conditions. Error bars are standard error.

Conclusions: Performance improved in theHard condition, from≈ 55% in the pre-training

block to≈ 65% in the post-training block. We interpreted this to represent a transfer learning

efect from the Easy training. Response times were on average approximately 200 ms quicker

than Pilot 2A, although they started at a similar duration in the irst block.

Pilot 3

he previous experiment (Pilot 2B) showed a potential learning transfer efect from an Easy

training condition to aHard test condition. We designed Pilot 3 to probe this inding further.

Aims: Wewished to investigate the time course for the learning transfer that we inferred from

the results in Pilot 2B. One way to do this is to increase the frequency of testing. Another idea

we wished to test was whether making the training conditions easier than in Pilot 2B would

elevate the learning efect.
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Key Figure B.9: Pilot 3 design. A session con-
sisted of four test blocks (dark, numbered
boxes), including two ‘mini’ tests and nine
training blocks (lighter boxes with audio
icon).

Design: he main change to the design of Pilot 3, compared to our previous studies was the

addition of two ‘mini’ tests, which we interleaved with the training blocks. hese additional

test runs had 60 stimulus images instead of 120, which was the number of stimuli in the other

runs (Figure B.9).

A further change we made to the experimental design was to increase the signal of the

Easy training images from 50% to 70% (Table B.6).

Table B.6: Pilot 3 design. Parameters for Pilot 3: N = number of participants, Images = number of images
per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees, Con-
centric = concentric pattern spiral angle(s) in degrees, Signal = percent of signal dots, Sessions = number
of sessions. Bold numbers represent changes from pilot 2B parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 1 60 & 120 4 10 & 30 60 & 80 50 & 70 1
Train 1 120 9 10 80 70 1

Results: We plotted the Percent Correct per Block and response times for the Easy and Hard

conditions, as in Figure B.10.

Conclusions: he results for Pilot 3 did not show a learning efect between the pre-training

and post-training test runs (blocks 1 & 13). here was arguably some evidence of learning

during the Easy training blocks, as performance rose from 80% to 90% through the course

of the experiment. Response times were higher on the test runs for this paradigm. As the
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Figure B.10: Pilot 3 results. (A) Percent Correct per Block. (B) Response time in seconds. The pre-training
test (block 1) and the post-training test (block 13) contained Easy and Hard testing conditions.

training tasks had been made easier, we attributed the slower response times as an efect of

the bigger diference between training and testing conditions. he baseline performance (i.e.

the untrained PCB in block one) was higher than we were expecting at≈ 70%. his caused us

to make further changes to the design as we wished to avoid a paradigm where participants

had high initial performance (as this would leave less room for improvement for any training

transfer efects).

Pilot 3A

To address the problem of high starting performance that we observed in Pilot 3we increased

the noise levels in the images.

Aims: he aims were similar to the previous study (Pilot 3), but we increased the testing

frequency.

Design: he main change to the design was an additional ‘mini’ test (Figure B.11). his

brought the total of test blocks to ive (from four) and meant that there were two training

blocks between each test. In Pilot 3 the training blocks were run as groups of three consecutive

runs.

An additional parameter change we introduced was to reduce the signal level of the 10◦
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Key Figure B.11: Pilot 3A design. A session
consisted of ive test blocks (dark, num-
bered boxes), including three ‘mini’ tests
and eight training blocks (lighter boxes
with audio icon).

versus 80◦ images in the test runs from 70% to 50% (Table B.7).

TableB.7: Pilot 3Adesign. Parameters for Pilot 3A:N=number of participants, Images=number of images
per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees, Con-
centric = concentric pattern spiral angle(s) in degrees, Signal = percent of signal dots, Sessions = number
of sessions. Bold numbers represent changes from Pilot 3 parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 5 60 & 120 5 10 & 30 60 & 80 50 1
Train 5 120 8 10 80 70 1

Results: We plotted the Percent Correct per Block and response times for the Easy and Hard

conditions, as in Figure B.12.
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Figure B.12: Pilot 3A results. (A) Percent Correct per Block. (B) Response time in seconds. The pre-training
test (block 1) and the post-training test (block 13) contained Easy andHard testing conditions. Error bars are
standard error.
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Conclusions We did not discern a learning efect for this paradigm, although we did note

that the initial starting performance was lower than in Pilot 3. he response times were fairly

lat throughout the experiment, averaging at approximately 0.8 s per trial.

Pilot 3B

Aims: We sought to investigate the result of lowering the signal level (in order to make the

training and testing more diicult) as we hypothesised that this might evoke a learning trans-

fer efect that was absent in the previous pilot.

Design: he design for Pilot 3B was the same as the previous study (Pilot 3A, Figure B.11).

We dropped the 10◦ versus 80◦ spiral angles for the test conditions and changed the signal

levels in both the test and training blocks (Table B.8).

TableB.8: Pilot 3Bdesign. Parameters for Pilot 3B:N=number of participants, Images=number of images
per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees, Con-
centric = concentric pattern spiral angle(s) in degrees, Signal = percent of signal dots, Sessions = number
of sessions. Bold numbers represent changes from Pilot 3A parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 7 60 & 120 5 30 60 60 1
Train 7 120 8 10 80 50 1

Results: We plotted the Percent Correct per Block and response times for the Easy and Hard

conditions (Figure B.13).

Conclusions he test results increased from ≈ 55% to ≈ 70% during the experiment. he

low pre-training scores were just above chance, whichwas the score that wewere aiming for in

these pilot experiments. he performance in the additional ‘mini’ tests were consistent with

the idea that transfer of learning from the Easy training to the Hard testing was occurring

throughout the experiment, as performance in most test runs was higher than the previous
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Figure B.13: Pilot 3B results. (A) Percent Correct per Block. (B) Response time in seconds. Error bars are
standard error.

test block. We observed similar response times to Pilot 3A.

Pilot 3C

Aims: To verify that the results we found in the previous study were the result of learning

transfer from the Easy training conditions. We decided to test the efect of only using Hard

conditions in both the training and test blocks.

Design: he design was the same as that in Figure B.11. We changed the spiral angles in the

training blocks to 30◦ versus 60◦, so that only Hard conditions were tested (Table B.9). he

signal was set to 60% in both test and training blocks.

TableB.9: Pilot3C design. Parameters for Pilot 3C:N=number of participants, Images=number of images
per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees, Con-
centric = concentric pattern spiral angle(s) in degrees, Signal = percent of signal dots, Sessions = number
of sessions. Bold numbers represent changes from Pilot 3B parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 5 60 & 120 5 30 60 60 1
Train 5 120 8 30 60 60 1

Results: We plotted the Percent Correct per Block and response times for the Easy and Hard

conditions, as in Figure B.14.
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Figure B.14: Pilot 3C results. (A) Percent Correct per Block. (N) Response time in seconds. Error bars are
standard error.

Conclusions: he parameter settings for Pilot 3C did not produce a learning efect as shown

by the lat trend of the Percent Correct per Block. We interpreted this as showing that the

increase in performance that we saw in Pilot 3Bwas likely to be connected to the Easy training

as we did not observe the same efect with theHard training in Pilot 3C. Response times were

similar to the other pilot studies that we have described so far.

Pilot 3BS

Aims: We were interested to see the result of running Pilot 3B (i.e. the previous study) over

more sessions.

Design: hedesign for Pilot 3BSwas identical to Pilot 3B (see Figure B.11, which also shared

the same arrangement of test and training blocks). he parameters for the experiment are

listed in Table B.10. he only diference to the parameters for Pilot 3BS, compared to Pilot

Table B.10: Pilot 3BS design. Parameters for Pilot 3BS: N = number of participants, Images = number of
images per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees,
Concentric= concentric pattern spiral angle(s) in degrees, Signal= percent of signal dots, Sessions= num-
ber of sessions. The only diference to the parameters for Pilot 3BS, compared to Pilot 3Bwas the number of
sessions, which increased to four.

N Images Blocks Radial Concentric Signal Sessions
Test 1 60 & 120 5 30 60 60 4
Train 1 120 8 10 80 50 4
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Figure B.15: Pilot 3BS results. Per-
cent Correct per Block over the four
sessions. The x-axes are block num-
bers. Test blocks are indicated by
lighter shaded bars, training blocks
(with audio feedback) are shown as
darker shaded bars.

3B, was the number of sessions, which we increased to four.

Results: We plotted the Percent Correct per Block and response times for the four sessions in

Figure B.15.

Conclusions: We only tested one participant on this pilot study, so we need to be cautious

when drawing conclusions from the results. However, we did note that within-session im-

provement did seem to occur in most sessions. We also noted that performance in the irst

block did not appreciably increase between sessions. his led us to consider investigating

learning across greater timescales than the single sessions that had characterised our designs

so far.

Pilot 3CS

Aims: We were interested in seeing the result of running Pilot 3C over more sessions.

Design: hedesign forPilot 3CSwas identical toPilot 3C (seeFigureB.11, which also shared

the same arrangement of test and training blocks). he parameters for the experiment are
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Table B.11: Pilot 3CS design. Parameters for Pilot 3CS: N = number of participants, Images = number of
images per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees,
Concentric= concentric pattern spiral angle(s) in degrees, Signal= percent of signal dots, Sessions= num-
ber of sessions. Bold numbers represent changes from Pilot 3C parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 4 60 & 120 5 30 60 60 4
Train 4 120 8 30 60 60 4

listed in Table B.11, these are identical to the parameters for Pilot 3C except that the number

of sessions increased to four.

Results: We plotted the Percent Correct per Block in Figure B.16 and response times in Fig-

ure B.17 for the four sessions.
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Figure B.16: Pilot 3CS results, per-
cent correct. Percent Correct per
Block over four sessions. The x-
axes are block numbers. Test blocks
are indicated by lighter shaded bars,
training blocks (with audio feed-
back) are shown as darker shaded
bars. Error bars are standard error.

Conclusions: In all sessions the performance seemed static across the test runs, as was the

case in the previous experiment (Pilot 3C). However, the starting performance, as measured

by the Percent Correct per Block in the irst run, went from≈ 60% in the irst session to≈ 70%

in the second session and ≈ 78% in the third session. he fourth session had similar perfor-

mance to the third session. We concluded from these results that thisHard training paradigm
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was evoking a learning efect, but that the efect manifested itself as a between-session perfor-

mance improvement. his was diferent to the previous within-session learning that we saw

in Pilot 3B. We felt that these results vindicated the multi session design that we had been ex-

perimenting with for the last two pilot studies. We also observed a steady decrease in response

time over the sessions (approximately 200 ms).

Pilot 3D

Aims: We wished to investigate the efect of Easy training, to compare with Pilot 3C, which

was a Hard training study.

Design: he design for Pilot 3D had the same arrangement of test and training blocks as

Figure B.11. We set the signal to 50% in both the test and training blocks, but the main

diference from Pilot 3C was the spiral angles for the training runs. We set them to 10◦ versus

80◦ to create an Easy training paradigm to contrast theHard training angles of 30◦ versus 60◦

from Pilot 3C. he parameters for Pilot 3D are listed in Table B.12.
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Table B.12: Pilot 3D design. Parameters for Pilot 3D: N = number of participants, Images = number of
images per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees,
Concentric= concentric pattern spiral angle(s) in degrees, Signal= percent of signal dots, Sessions= num-
ber of sessions. Bold numbers represent changes from Pilot 3C parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 3 60 & 120 5 30 60 50 1
Train 3 120 8 10 80 50 1

Results: We plotted the Percent Correct per Block and response times for this study (Figure

B.18: A,B). We also plotted the results for a single participant, whose performance was ele-

vated compared to the mean results (Figure B.18: C,D).
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Figure B.18: Pilot 3D results. (A)
Average Percent Correct per Block
and (B) response time for all partic-
ipants. (C) and (D) are the results
for a single participant (JH52). The x-
axes are block numbers. Test blocks
are indicated by lighter shaded bars,
training blocks (with audio feed-
back) are shown as darker shaded
bars. Error bars are standard error.

Conclusions: When we investigated the Percent Correct per Block in the testing runs, we

noted an increase in performance of approximately 5% from the irst test block to the last.

In the test blocks in between the irst and last (runs 4, 7 and 10), the participants scored

higher results (PCB≈ 59%). hese results seemed to suggest that therewas little improvement

in performance overall. However, the size of the error bars indicated that there was larger

variation in the participants’ performance for the runs 2–12. We therefore lookedmore closely

at the individual participant results to compare them with the average results.
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heperformance of one participant (JH52)was higher than the other two (FigureB.18:C).

We ascertained from JH52 that he was very practiced at performing psychophysics experi-

ments, although like all the other participants he was not familiar with Glass pattern stimuli.

he PCB of JH52 on test block four was approximately 74%, which showed a large perfor-

mance increase from the untrained score of ≈ 52%. Taken in isolation, JH52’s performance

could be interpreted to represent a learning transfer efect from the easy training paradigm.

Taken in the round, we interpreted JH52’s results to represent outlier performance, which

skewed the overall average scores. his sounded a note of caution about the potential for

misinterpretation of results with small sample sizes.

One thing that we observed in the performance of all the participants was a drop for the

last test block compared to previous test runs. his lead us to consider that the participants

may have found the length of the experiment to cause fatigue, which might explain the ap-

parent lowering of performance towards the end.

Pilot 3E

Aims: Our aims for Pilot 3Ewere to run another Easy training study, but this time over three

sessions.

Design: he arrangement of each session’s test and training blocks in Pilot 3E was the same

that it has been for all the studies since Pilot 3A (see Figure B.11).

Table B.13: Pilot 3E design. Parameters for Pilot 3E: N = number of participants, Images = number of
images per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees,
Concentric= concentric pattern spiral angle(s) in degrees, Signal= percent of signal dots, Sessions= num-
ber of sessions. Bold numbers represent changes from Pilot 3D parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 4 60 5 30 60 50 3
Train 4 120 8 10 80 50 3
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FigureB.19: Pilot 3E results. Percent Correct per Block and response time over three sessions, conducted on
subsequent days. The x-axes are block numbers. Test blocks are indicated by lighter shaded bars, training
blocks (with audio feedback) are shown as darker shaded bars. Error bars are standard error.

A change that we made was to reduce the number of trials in the test runs (Table B.13).

We did this to try to address the drop in performance that we noticed at the end of Pilot 3D.

Pilot 3E was another multi-session experiment (this time there were three sessions).

Results: We plotted the Percent Correct per Block (PCB) and response times for the three

sessions (Figure B.19).

Conclusions: he results showed that there was no within session learning for this protocol,

but there did seem to be across session learning evoked by theEasy training paradigm. Percent

Correct per Block on the irst run of each session was ≈ 50%, ≈ 60% and≈ 80% respectively.

Response times were fairly static at approximately 0.8 ms per trial.

Pilot 3F

Aims: We sought to replicate the Easy training, across session improvement that we saw in

Pilot 3E, with some ine tuning of the signal.
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Table B.14: Pilot 3F design. Parameters for Pilot 3F: N = number of participants, Images = number of
images per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees,
Concentric= concentric pattern spiral angle(s) in degrees, Signal= percent of signal dots, Sessions= num-
ber of sessions. Bold numbers represent changes from Pilot 3E parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 3 60 5 30 60 60 3
Train 3 120 8 10 80 60 3

Design: hearrangement of training and test blocks forPilot 3Fwas the same asFigureB.11,

except that Pilot 3F was to be conducted over three sessions. A change to the parameters that

we made for Pilot 3F compared to Pilot 3E was to increase the signal in the stimulus images

(Table B.14).

Results: We plotted the Percent Correct per Block and response times for the three sessions

(Figure B.20).
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FigureB.20: Pilot 3F results. Percent Correct per Block and response time over three sessions, conducted on
subsequent days. The x-axes are block numbers. Test blocks are indicated by lighter shaded bars, training
blocks (with audio feedback) are shown as darker shaded bars. Error bars are standard error.
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Conclusions: he results showed the across session learning improvement that we observed

in the previous Easy training study (Pilot 3E). We also noted across session improvement

with irst run Percent Correct per Block scores of≈ 65%,≈ 70% and≈ 75%. Interestingly, the

improvement was lower than on the previous pilot, which had a lower signal percentage in

the images. We also noted that there seemed to be within-session improvement in the irst

three testing blocks of sessions one and two. his improvement was not sustained for the last

two test blocks, which had a similar PCB scores as the irst test block.

Pilot 4A

Aims: his study was conceived as a further investigation into the Easy training paradigm,

but where we increased the frequency of testing.

Design: In the studies that we had conducted so far, we were generally more interested in

the test results rather than the training results. his was particularly so in the case of Easy

training paradigms, where the performance in training runs was usually high. We therefore

redesigned the experiment so thatwe hadmore testing blocks, while at the same time reducing

the overall length of the experiment. In the design for Pilot 4A (Figure B.21) we had six test

blocks and four training blocks, which we interleaved in pairs. he previous study (Pilot 3F)

had ive test blocks and eight training blocks.

Session
10 blocks

6
5

4
3

2
1

1

Test

Train

Key Figure B.21: Pilot 4A design. A ses-
sion consisted of six test blocks (dark,
numbered boxes) and four training blocks
(lighter boxes with audio icon).
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Table B.15: Pilot 4A design. Parameters for Pilot 4A: N = number of participants, Images = number of
images per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees,
Concentric= concentric pattern spiral angle(s) in degrees, Signal= percent of signal dots, Sessions= num-
ber of sessions. Bold numbers represent changes from Pilot 3F parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 3 100 6 30 60 60 3
Train 3 100 4 10 80 60 3

We set the number of trials in each test and training block to 100. In our previous pilot

studies we had generally used 120 trial per block and also introduced ‘mini’ tests comprising

60 trials. he reasons for using 120 trials per block were so that we could test many diferent

conditions at once if we wished (as discussed in Section B.3). We no longer needed this

requirement and wished to shorten the duration of the experiment. We therefore reduced the

number of trials per block to 100, which simpliied the calculations for the Percent Correct per

Block metric. hese changed parameters doubled the number of test trials compared to Pilot

3F, from 300 to 600. he overall number of trials per session was reduced from 1260 to 1000.

he parameters for Pilot 4A are listed in Table B.15.

Results: We plotted the Percent Correct per Block for each session (Figure B.22) and itted

a curve to the results from the test blocks using a nonlinear least-squares data itting algo-

rithm. he algorithm was the Matlab (he MathWorks, Inc., Natick, Massachusetts) function

lsqnonlin.

We plotted the Percent Correct per Block and the response times for combined pairs of

adjacent blocks (Figure B.23). his simulated the efect of an altered design with ive blocks

(three testing and two training), with double the number of stimulus presentations in each

block. We presented the data in paired groups to see if this made the patterns of performance

any clearer.
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Figure B.22: Pilot 4A results. Average Percent Correct per Block per session. The x-axes are block numbers.
Test blocks are indicated by lighter shaded bars, training blocks (with audio feedback) are shown as darker
shaded bars. The upper igures show the test and training runs, as in previous igures. The lower igures
show the test blocks itted with a nonlinear least-squares data itting algorithm. Error bars are standard
error.
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Figure B.23: Pilot 4A paired results. Percent Correct per Block (upper igures) and response time (lower
igures) over three sessions, grouped by pairs of test and training blocks. The x-axes are block numbers.
Test blocks are indicated by lighter shaded bars, training blocks (with audio feedback) are shown as darker
shaded bars. Error bars are standard error.
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Conclusions: he results suggested a possible across-session learning efect, as performance

at the start of session two and three was higher than performance at the end of session one

and two, respectively. he between-session improvement was more pronounced for session

two to three, rather than session one to two. he nonlinear least-squares curves accentuated

the between-session performance diferences for session one and two, but diminished the im-

provement from session two to three. here was arguably a within-session learning efect for

session one, which we had not expected for the Easy training. he improving trend in session

one was clearer in the paired charts (Figure B.23) than the non paired charts (Figure B.22).

Although there was considerable overlap of the error bars, which caused us to be cautious

in reading too much into this observation. Response times decreased marginally, as we have

observed in the other studies.

Pilot 4B

Aims: For Pilot 4Bwewished to investigate the performance of aHard training learning pilot

to compare it with the Easy training study of Pilot 4A.

Design: he arrangement of test and training blocks was kept identical to that of Pilot 4A

(Figure B.21). he only diference in experimental parameters, compared to Pilot 4A, were

the spiral angles for the training blocks. hese were changed to 30◦ versus 60◦ to make the

discrimination more diicult than the 10◦ versus 80◦ angles in Pilot 4A (Table B.16).

Table B.16: Pilot 4B design. Parameters for Pilot 4B: N = number of participants, Images = number of
images per block, Blocks = number of blocks per session, Radial = radial pattern spiral angle(s) in degrees,
Concentric= concentric pattern spiral angle(s) in degrees, Signal= percent of signal dots, Sessions= num-
ber of sessions. Bold numbers represent changes from Pilot 4A parameters.

N Images Blocks Radial Concentric Signal Sessions
Test 3 100 6 30 60 60 3
Train 3 100 4 30 60 60 3
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FigureB.24: Pilot 4B results. Percent Correct per Block and response time over three sessions, conducted on
subsequent days. The x-axes are block numbers. Test blocks are indicated by lighter shaded bars, training
blocks (with audio feedback) are shown as darker shaded bars. Error bars are standard error.

Results: As in previous pilot studies, we plotted the Percent Correct per Block and response

times for Pilot 4B (Figure B.24).

Conclusions: he starting performance on this paradigm was greater than 60%, which sug-

gested that the experiment was still not diicult enough. We noted that the performance

on the last test block in each session was lower than that in the previous run. We hypothe-

sised that this might be an indication of fatigue, despite our eforts to shorten the duration

of the sessions. We also speculated that this drop in performance might be obscuring any

within-session learning, which is what we had anticipated from this paradigm. he response

times dropped marginally over the course of the experiment, which was a consistent feature

throughout the studies.
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B.4 Discussion

Weobserved some performance improvements for both within and across sessions in some of

our studies. Moreover, the parameter changes that we experimented with suggested that Easy

versus Hard training evoked diferent types of learning (within and across session), rather

than just diferent magnitudes of learning efect. his was most noticeable when comparing

the results of the multisession studies of Pilot 3BS versus Pilot 3CS. We observed a within-

session improvement for Pilot 3BS, which was an Easy training paradigm. he results from

Pilot 3CS suggested an across session learning from theHard training experiment. he results

from these pilot studies were to inform the methodological basis for the Easy versus Hard

training experiments of Chapter 5: Time Course of Training Diiculty Mediated Visual

Learning.

For most of the pilot studies described in this appendix we kept the image signal constant

at approximately 50–60%. Where we varied the signal, we did so to make tasks either more

Easy or Hard. One thing that we considered when we reviewed all of the results at the end

of the pilot studies was that changes in the signal level might alter the character of the ex-

periments themselves, rather than just the diiculty levels. By reducing the signal levels, we

hypothesised that we might be creating the conditions for detection experiments, as apposed

to discrimination studies that resulted from changes made to spiral angles. With detection

experiments the task is to detect a condition that is obscured by noise, whereas in discrimina-

tion experiments it is to make ine discriminatory judgements between similar conditions in

the absence of noise. We investigated the distinction between detection versus discrimination

experiments in Chapter 7: GABA Versus Coarse and Fine Visual Learning.

We found that response time, asmeasured on correct responses, was not a revealingmetric

for characterising learning. he mean response time (RT) for Pilots 1–3C was approximately
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0.75 s and the RT for Pilots 3BS–4Bwas approximately 0.65 s. In each of the pilot studies there

was a reduction of approximately 100–200 ms over the length of a session, but we felt that this

could be explained by familiarity with the paradigm as much as with learning efect. he

diferences between response times for learned and pre-training performance were too small

to be used as accurate predictors of performance. We therefore suspended the response time

analysis on further experiments so that we could better concentrate on the percent correct

measures.

hroughout the pilot studies we had used the Percent Correct per Blockmetric as the main

way that we evaluated performance. We found that by consistently using a simple (intuitively

understandable) metric we were able to rapidly assess and alter our experimental designs.

Where we tried more complicated metrics, for example the nonlinear least squares approach

of Pilot 4A, we found that the results were less interpretable as they required additional as-

sumptions to explain the same indings. As our ultimate goals were to investigate correlations

between GABA concentrations and performance metrics, we decided that in future we would

use simple metrics if they continued to show a clear pattern of performance improvement.

he focus for this appendix was to describe the sequence of experiments that lead to the

Easy versus Hard training experiments of Chapter 5: Time Course of Training Diiculty

Mediated Visual Learning and the detection versus discrimination experiments in Chap-

ter 7: GABAVersus Coarse and Fine Visual Learning. We considered the pilot studies suc-

cessful, in that we felt we had laid the foundations for more detailed studies into Easy versus

Hard training and visual discrimination versus detection tasks. We felt conident from these

preliminary indings that such studies might show dissociable learning efects, particularly

with the interleaved test and training protocol that we developed.
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C
CODE LISTINGS

his appendix contains code fragments to illustrate the approaches and solutions investigated

in Chapters 3: MEGA-PRESS Acquisition and 4: Post-Acquisition Processing.

Listing C.1: Combining MEGA-PRESS FIDs. Matlab function that converts time domain signals to fre-
quency domain spectra and combines them. Line broadening andppmscale calculations are demonstrated
in this script.

f unc t i on f i d s = g e t _ f i d _ r ow s ( f i l e )
lambda = 1 ; % l i n e b r oad en i n g pa rame t e r
s p a r = [ f i l e ’ . SPAR ’ ] ;
s d a t = [ f i l e ’ . SDAT ’ ] ;
[ t ime_ s i g , p a r a s ] = r e a d _ p h i l i p s ( spar , s d a t ) ;
z f i l l = 1 ;
r e f = 4 . 7 ; % wate r
f r e q _ s c a l e =(− pa r a s . f s / 2 : p a r a s . f s / ( p a r a s . s amp l e s * z f i l l ) : p a r a s . f s / 2 . . .

− pa r a s . f s / ( p a r a s . s amp l e s * z f i l l ) ) . ’ ;
f i d s . ppm_sca le=(− f r e q _ s c a l e / p a r a s . t _ f r e q ) *10^6+ r e f ;
t = 0 : 1 / p a r a s . f s : ( p a r a s . s amp l e s / p a r a s . f s −1/ p a r a s . f s ) ; % t f o r t ime
exp_ fn = exp(− lambda * t ) ; % e x p o n e n t i a l f u n c t i o n f o r l i n e b r oad en i n g
e x p _ f n _ r e s i z e d = repmat ( exp_fn ’ , 1 , p a r a s . rows / 2 ) ;
% r e s h a p e t h e da ta i n t o rows s amp l e s x rows ( e g 2048 x32 )
da t a_ rows = re shape ( t ime_ s i g , p a r a s . samples , p a r a s . rows ) ;
% odd rows , t ime domain
ed i t _ on = da ta_ rows ( : , 1 : 2 : p a r a s . rows ) ;
ed i t _on_exp = ed i t _ on . * e x p _ f n _ r e s i z e d ;
f i d s . e d i t _ o n _ f f t = f f t ( ed i t _on_exp ) ;
f i d s . e d i t _ o n _ r e a l _ f f t s h i f t = r e a l ( f f t s h i f t ( f f t ( ed i t _on_exp ) ) ) ;
% even rows
e d i t _ o f f = da t a_ rows ( : , 2 : 2 : p a r a s . rows ) ;
e d i t _ o f f _ e x p = e d i t _ o f f . * e x p _ f n _ r e s i z e d ;
f i d s . e d i t _ o f f _ f f t = f f t ( e d i t _ o f f _ e x p ) ;
f i d s . e d i t _ o f f _ r e a l _ f f t s h i f t = r e a l ( f f t s h i f t ( f f t ( e d i t _ o f f _ e x p ) ) ) ;
combined = ed i t _ on + e d i t _ o f f ; % eg 2048 x 16
combined_exp = combined . * e x p _ f n _ r e s i z e d ; % app l y exp f u n c t
f i d s . c omb in ed_ f f t = f f t ( combined_exp ) ;
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f i d s . c om b i n e d _ r e a l _ f f t s h i f t = r e a l ( f f t s h i f t ( f f t ( combined_exp ) ) ) ;
f i d s . rows = pa r a s . rows ;

end

Listing C.2: Automatic phasing. Example of conversion from time domain FID to frequency domain, for
automatic phasing. Assumes that FIDs have been read into a Matlab structure (fids), autophase_adg is a
wrapper function for the phasing algorithm. The phase-zero and phase-one components are retrievedwith
this code.

% read td from SDAT , SPAR
f i d s = g e t _ f i d s ( [ the_pa th , t h e _ f i l e ] ) ;
f i d s _w a t e r = g e t _ f i d s ( [ the_pa th , t h e _ w a t e r _ f i l e ] ) ;
% c o n v e r t TD_ON to FD_ON
on_fd = f f t s h i f t ( f f t ( f i d s . e d i t _ on_ t d ) ) ;
% c o n v e r t TD_OFF t o FD_OFF
o f f _ f d = f f t s h i f t ( f f t ( f i d s . e d i t _ o f f _ t d ) ) ;
% FD_OFF_phased = au t opha s e ( FD_OFF )
o f f _ p s = NaN( s i z e ( o f f _ f d ) ) ;
f o r i d x = 1 : s i z e ( o f f _ f d , 2 )

[ o f f _ p s ( : , i d x ) , o f f _ p0 ( : , i d x ) , o f f _ p1 ( : , i d x ) ] = . . .
au topha s e_adg ( o f f _ f d ( : , i d x ) ) ;

end

on_ps = NaN( s i z e ( on_fd ) ) ;
f o r i d x = 1 : s i z e ( on_fd , 2 )

[ on_ps ( : , i d x ) , on_p0 ( : , i d x ) , on_p1 ( : , i d x ) ] = . . .
au topha s e_adg ( on_fd ( : , i d x ) ) ;

end

Listing C.3: Visualising subspectral misalignment. Matlab function that creates animated plots to char-
acterise the shift in the subspectral components of MEGA-PRESS acquisitions. The parameter fids contains
frequency domain data for the edit ON and edit OFF acquisitions.

f unc t i on p l o t _ f i d s _ s im u l t a n e o u s l y ( f i d s )
d e l a y =1 ; % s e t t o 1 f o r 1 s e c pau s e be tween i n d i v i d u a l f i d s
f i g u r e
gaba_ppm = 3 . 0 ; % p o s i t i o n on ppm s c a l e where we i d e n t i f y GABA
naa_ppm = 2 . 0 ; % p o s i t i o n o f NAA
i n v _ pu l s e = 1 . 9 ; % p o s i t i o n o f i n v e r s i o n p u l s e
o f f s e t _ s i z e = 0 . 2 ; % a r b i t r a r y o f f s e t t o i d e n t i f y w id th o f m e t a b o l i t e

p e ak s on p l o t s
% f i n d i n d e x e s f o r NAA peak
i dx_naa = f i nd ( f i d s . ppm_sca le >= ( naa_ppm − o f f s e t _ s i z e ) & . . .

f i d s . ppm_sca le <= ( naa_ppm + o f f s e t _ s i z e ) ) ;
n aa_ l b = min ( idx_naa ) ; % NAA l owe r bound ( t o i d e n t i f y NAA peak f o r

p ha s i n g )
naa_ub = max ( idx_naa ) ; % NAA upper bound
% f i n d i n d e x e s f o r GABA peak
i d x_gaba = f i nd ( f i d s . ppm_sca le >= ( gaba_ppm − o f f s e t _ s i z e ) & . . .

f i d s . ppm_sca le <= ( gaba_ppm + o f f s e t _ s i z e ) ) ;
g ab a_ l b = min ( i dx_gaba ) ; % GABA l owe r bound
gaba_ub = max ( i dx_gaba ) ; % GABA upper bound
i d x _ x _ s c a l e = f i nd ( f i d s . ppm_sca le >= ( i n v _ pu l s e − o f f s e t _ s i z e ) & . . .

f i d s . ppm_sca le <= ( gaba_ppm + 4* o f f s e t _ s i z e ) ) ;
x _ l b = min ( i d x _ x _ s c a l e ) ;
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x_ub = max ( i d x _ x _ s c a l e ) ;
x_ l im = [ i n v _ pu l s e − o f f s e t _ s i z e , gaba_ppm + 4* o f f s e t _ s i z e ] ;
min_y = min (min ( f i d s . combined_fd ( x_ l b : x_ub , : ) ) ) ;
max_y = max (max ( f i d s . combined_fd ( x_ l b : x_ub , : ) ) ) ;
% p l o t t h e e d i t ON and OFF a t 3ppm
x_ l im = [ gaba_ppm − o f f s e t _ s i z e , gaba_ppm + o f f s e t _ s i z e ] ;
%s u b p l o t ( 4 , 4 , [ 1 1 1 2 ] ) ;
hold on
s e t ( gca , ’ x l im ’ , x_ l im ) ;
s e t ( gca , ’ xDir ’ , ’ r e v e r s e ’ ) ;
x = f i d s . ppm_sca le ( g aba_ l b : gaba_ub ) ;
min_y_on = min (min ( f i d s . e d i t _ on_ f d ( g aba_ l b : gaba_ub , : ) ) ) ;
max_y_on = max (max ( f i d s . e d i t _ on_ f d ( g aba_ l b : gaba_ub , : ) ) ) ;
min_y_o f f = min (min ( f i d s . e d i t _ o f f _ f d ( g aba_ l b : gaba_ub , : ) ) ) ;
max_y_of f = max (max ( f i d s . e d i t _ o f f _ f d ( g aba_ l b : gaba_ub , : ) ) ) ;
min_y = min ( min_y_on , min_y_o f f ) ;
max_y = max ( max_y_on , max_y_of f ) ;
s e t ( gca , ’ y l im ’ , [ min_y , max_y ] ) ;
f o r i d x =1 : f i d s . rows /2

y_on = f i d s . e d i t _ on_ f d ( g aba_ l b : gaba_ub , i dx ) ;
p l o t ( x , y_on , ’ L inew id th ’ , 1 , ’ Co lor ’ , ’ r ’ ) ;
y _ o f f = f i d s . e d i t _ o f f _ f d ( g aba_ l b : gaba_ub , i dx ) ;
p l o t ( x , y _o f f , ’ L in ew id th ’ , 1 , ’ Co lor ’ , ’ r ’ ) ;
pause ( d e l a y )
% o v e r w r i t e i n b l u e
p l o t ( x , y_on , ’ L inew id th ’ , 1 , ’ Co lor ’ , ’ b ’ ) ;
p l o t ( x , y _o f f , ’ L in ew id th ’ , 1 , ’ Co lor ’ , ’ b ’ ) ;

end
% p l o t t h e mean wi th a r ed l i n e
pause ( d e l a y )
y_mean_on = mean ( f i d s . e d i t _ on_ f d ( g aba_ l b : gaba_ub , : ) , 2 ) ;
e r r_on = s td ( f i d s . e d i t _ on_ f d ( g aba_ l b : gaba_ub , : ) , 0 , 2 ) ;
mean_err_on = mean ( e r r_on ) ;
y_mean_of f = mean ( f i d s . e d i t _ o f f _ f d ( g aba_ l b : gaba_ub , : ) , 2 ) ;
e r r _ o f f = s td ( f i d s . e d i t _ o f f _ f d ( g aba_ l b : gaba_ub , : ) , 0 , 2 ) ;
mean_e r r_o f f = mean ( e r r _ o f f ) ;

p l o t ( x , y_mean_on+err_on , ’ L in ew id th ’ , 2 , ’ L i n e S t y l e ’ , ’−− ’ , ’ Co lor ’ , ’
k ’ ) ;

p l o t ( x , y_mean_on−err_on , ’ L inew id th ’ , 2 , ’ L i n e S t y l e ’ , ’−− ’ , ’ Co lor ’ , ’
k ’ ) ;

p l o t ( x , y_mean_on , ’ L inew id th ’ , 2 , ’ Co lor ’ , ’ r ’ ) ;
p l o t ( x , y_mean_of f+ e r r _ o f f , ’ L in ew id th ’ , 2 , ’ L i n e S t y l e ’ , ’−− ’ , ’ Co lor ’ ,

’ k ’ ) ;
p l o t ( x , y_mean_off−e r r _ o f f , ’ L in ew id th ’ , 2 , ’ L i n e S t y l e ’ , ’−− ’ , ’ Co lor ’ ,

’ k ’ ) ;
p l o t ( x , y_mean_off , ’ L in ew id th ’ , 2 , ’ Co lor ’ , ’ r ’ ) ;
l i n e ( [ gaba_ppm , gaba_ppm ] , [ min_y , max_y ] , ’ L ineWidth ’ , 1 , ’ Co lor ’ , ’ k ’

)
t i t l e ( [ ’ E d i t ␣ON, ␣mean␣ s t d = ’ num2str ( mean_err_on ) . . .

’ ␣ Ed i t ␣OFF , ␣mean␣ s t d ␣= ’ num2str ( mean_e r r_o f f ) ] )
hold o f f

f i l e _n ame = [ f i d s .OUTPUT_PATH, f i d s . s ub j _ i d , ’ _ ’ , f i d s . voxe l , ’ _va r ’ ] ;
s e t ( gcf , ’ PaperPos i t ionMode ’ , ’ au to ’ )
% wi t h ou t t i f f 174KB
pr in t ( ’−depsc ’ , ’−r150 ’ , f i l e _n ame ) ;
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c l o s e
end

Listing C.4: Peak identiication. Matlab fragment that demonstrates creatine peak identiication as an
ofset to the NAA peak.

ex_naa_p lu s_1_do t_01 = naa_ppms + 1 . 0 1 ; % e x p e c t e d ppm f o r Cr
win_ s i z e_Cr = 0 . 1 ; % sma l l e r window as we have u s ed p r i o r k o f naa peak

% f i n d i n d e x e s f o r Cr window ( d i f f t o NAA where we j u s t had one i nd ex )
f o r i d x = 1 : l eng th ( e x_naa_p lu s_1_do t_01 )

idx_Cr ( : , i d x ) = f i nd ( f i d s . ppm_sca le <= ( ex_naa_p lu s_1_do t_01 ( i dx ) +
w in_ s i z e_Cr ) & . . .

f i d s . ppm_sca le >= ( ex_naa_p lu s_1_do t_01 ( i dx ) − win_ s i z e_Cr ) ) ;
Cr_ lb ( i dx ) = min ( idx_Cr ( : , i d x ) ) ; % Cr window l owe r bound
Cr_ub ( i dx ) = max ( idx_Cr ( : , i d x ) ) ; % Cr window upper bound

end

ListingC.5: Weighted average. Matlab fragment that demonstratesweighted average peak identiication.

% g e t a v e c t o r ba s ed on we i g h t e d a v e r a g e
f o r i d x = 1 : s i z e ( o f f _p s , 2 )
% OFF
[ s o r t _ v a l s _ C r _ o f f ( idx , : ) , s o r t _ i d x s _C r _ o f f ( idx , : ) ] = . . .

s o r t ( r e a l ( o f f _ p s ( Cr_ lb ( i dx ) : Cr_ub ( i dx ) , i d x ) ) , ’ de scend ’ ) ;
a _ o f f = s o r t _ i d x s _C r _ o f f ( idx , 1 : num_points ) ;
w_of f= s o r t _ v a l s _ C r _ o f f ( idx , 1 : num_points ) ;
i dx_mid_Cr_peak s_p s_o f f ( i dx ) = round ( sum ( a _ o f f . * w_of f ) . / sum ( w_of f

) ) ;
i dx_mid_Cr_peak s_p s_o f f ( i dx ) = . . .

i d x_mid_Cr_peak s_p s_o f f ( i dx ) + Cr_ lb ( i dx ) −1;
% ON
[ s o r t _ v a l s _C r _on ( idx , : ) , s o r t _ i d x s _Cr_on ( idx , : ) ] = . . .

s o r t ( r e a l ( on_ps ( Cr_ lb ( i dx ) : Cr_ub ( i dx ) , i d x ) ) , ’ de scend ’ ) ;
a_on= so r t _ i d x s _Cr_on ( idx , 1 : num_points ) ;
w_on= so r t _ v a l s _C r _on ( idx , 1 : num_points ) ;
idx_mid_Cr_peaks_ps_on ( i dx ) = round ( sum ( a_on . * w_on ) . / sum ( w_on ) ) ;
idx_mid_Cr_peaks_ps_on ( i dx ) = . . .

idx_mid_Cr_peaks_ps_on ( i dx ) + Cr_ lb ( i dx ) −1;
end

Listing C.6: Calculating the signal to noise ratio for the GABA peaks. Python script that demonstrates
the GABA SNR calculation; the maximum value from the peaks between 2.8 ppm and 3.2 ppm was divided
by the root mean square of the noise from the range -2 ppm to zero ppm.

gaba_da t a = 0 . 0
gaba_data_max = 0 . 0
f o r i d x in range ( idx_3pt2ppm , idx_2pt8ppm ) :

g aba_da t a = f l o a t ( r e a d e r [ i dx ] [ i d x _d a t a ] )
i f ( g aba_da t a > gaba_data_max ) :

gaba_data_max = gaba_da t a

no i s e _ s qu a r e d = 0 . 0
f o r i d x in range ( idx_0ppm , idx_minus2ppm ) :
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gaba_da t a = f l o a t ( r e a d e r [ i dx ] [ i d x _d a t a ] )
no i s e _ s qu a r e d += math . pow ( gaba_da ta , 2 )

mean_no i se_squared = no i s e _ s qu a r e d / num_da ta_p t s_no i s e
rms_no i s e = math . s q r t ( mean_no i se_squared )

gaba_snrPA = gaba_data_max / rms_no i s e

Listing C.7: Scanner coordinates. Python script that demonstrates the retrieval of ofset and angulation
information from DICOM and XML iles.

” ” ”
g e t s p o s i t i o n and a n g u l a t i o n i n f o from DICOM or XML
” ” ”
import os , s u bp r o c e s s
from xml . dom . minidom import p a r s e S t r i n g

i d x _ d i r = 0
i d x _ f i l e _ n ame = 1
idx_dcm = 2
i d x _ d i r _ c o s = 3
i d x _ d i r _ c o s _ c o r r = 4
idx_pos = 5
i d x_po s _ co r r = 6

def g e t _ d i r _ c o s _ r c ( t h e F i l e ) :
” ” ”
row and column d i r e c t i o n c o s i n e s a r e i n t h e DICOM f i l e s
” ” ”
i f t h e F i l e . endsw i th ( ’ xml ’ ) :

xm l _ f i l e = open ( t h e F i l e , ’ r ’ )
d a t a = xm l _ f i l e . r e ad ( )
xm l _ f i l e . c l o s e ( )
dom = p a r s e S t r i n g ( d a t a )
dc_DOM = dom . getElementsByTagName ( ’ Im a g eO r i e n t a t i o nP a t i e n t ’ ) [ 0 ] .

getElementsByTagName ( ’ v a l u e ’ ) [ 0 : 6 ]
d i r _ c o s = [ ]
f o r dc in dc_DOM :

# c a s t t o f l o a t
d i r _ c o s . append ( f l o a t ( dc . f i r s t C h i l d . d a t a ) )

r e turn d i r _ c o s
i f t h e F i l e . endsw i th ( ’ dcm ’ ) :

command = ( ’dcmdump␣+L␣−s␣+P␣ 0020 ,0037 ␣ ’ + t h e F i l e + ’ ␣ | ␣awk␣ \ ’ {
p r i n t $ 3 } \ ’ ␣ | ␣ t r ␣−d␣ \ ” [ ] \ ” ␣ | ␣ t r ␣ \ ” \ \ \ \ ” ␣ \ ” ␣ \ ” ␣ ’ )

# r e t u r n command
p = subp r o c e s s . Popen ( command , b u f s i z e =2048 , s h e l l =True , s t d i n =

s ubp r o c e s s . PIPE , s t d ou t = s ubp r o c e s s . PIPE , c l o s e _ f d s =True )
p . wa i t ( )
# p r i n t p . communicate ( ) [ 0 ]
dc_dcmdump = p . communicate ( ) [ 0 ]
dc_dcmdump = dc_dcmdump . r s p l i t ( )
d i r _ c o s = [ ]
f o r dc in dc_dcmdump :

d i r _ c o s . append ( f l o a t ( dc ) )
r e turn d i r _ c o s
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Listing C.8: Slice direction cosines. Python function that demonstrates the calculation of the slice direc-
tion cosines from the row and column direction cosines.

def g e t _ d i r _ c o s _ s ( r c ) :
” ” ”
c a l c u l a t e s s l i c e d i r e c t i o n c o s i n e s from row and column d i r e c t i o n

c o s i n e s
r c c o n s i s t s o f f l o a t s and w i l l have 6 v a l u e s , x , y & z f o r row and c o l
” ” ”
rx= r c [ 0 ] ; r y= r c [ 1 ] ; r z = r c [ 2 ] ; cx= r c [ 3 ] ; cy= r c [ 4 ] ; c z= r c [ 5 ]
sx = ry * cz − r z * cy
sy = r z * cx − rx * cz
s z = rx * cy − ry * cx
r e turn [ sx , sy , s z ]

Listing C.9: MRI synthesis. Python function that wraps the mri_vol_synth function to create a synthe-
sised MRI volume.

def ge t_cmd_mr i_vo l s yn th ( mr s_va l s ) :
” ” ”
c r e a t e s a t e rm i n a l command t o c r e a t e a s y n t h e s i s e d mri volume
” ” ”
c r a s _ x = s t r ( mr s_v a l s [ i d x _po s _ co r r ] [ 0 ] )
c r a s _ y = s t r ( mr s_v a l s [ i d x _po s _ co r r ] [ 1 ] )
c r a s _ z = s t r ( mr s_v a l s [ i d x _po s _ co r r ] [ 2 ] )
rx = s t r ( mr s_v a l s [ i d x _ d i r _ c o s _ c o r r ] [ 0 ] )
ry = s t r ( mr s_v a l s [ i d x _ d i r _ c o s _ c o r r ] [ 1 ] )
r z = s t r ( mr s_v a l s [ i d x _ d i r _ c o s _ c o r r ] [ 2 ] )
cx = s t r ( mr s_v a l s [ i d x _ d i r _ c o s _ c o r r ] [ 3 ] )
cy = s t r ( mr s_v a l s [ i d x _ d i r _ c o s _ c o r r ] [ 4 ] )
cz = s t r ( mr s_v a l s [ i d x _ d i r _ c o s _ c o r r ] [ 5 ] )
sx = s t r ( mr s_v a l s [ i d x _ d i r _ c o s _ c o r r ] [ 6 ] )
s y = s t r ( mr s_v a l s [ i d x _ d i r _ c o s _ c o r r ] [ 7 ] )
s z = s t r ( mr s_v a l s [ i d x _ d i r _ c o s _ c o r r ] [ 8 ] )
f n _ n i i = mr s_va l s [ i d x _ f i l e _ n ame ]
f n _ n i i = os . pa th . j o i n ( mr s_v a l s [ i d x _ d i r ] , f n _ n i i )

command = ( ’ mr i _ vo l s yn th ␣−−dim␣30␣30␣30␣1␣−−pdf␣ c on s t ␣−−c _ r a s ␣ ’ +
c r a s _ x + ’ ␣ ’ + c r a s _ y + ’ ␣ ’ + c r a s _ z +
’ ␣−−c d i r c o s ␣ ’ + cx + ’ ␣ ’ + cy + ’ ␣ ’ + cz +
’ ␣−−r d i r c o s ␣ ’ + rx + ’ ␣ ’ + ry + ’ ␣ ’ + r z +
’ ␣−−s d i r c o s ␣ ’ + sx + ’ ␣ ’ + sy + ’ ␣ ’ + s z +
’ ␣−−o␣ ’ + f n _ n i i )

r e turn command , f n _ n i i

Listing C.10: Scanner to NifTI conversion. Python function that demonstrates the conversion of one co-
ordinate frame to another.

def g e t _ c o r r e c t e d _ d i r _ c o s ( dc ) :
” ” ”
n i f t i i f i l e s e x p e c t a d i f f e r e n t co−o r d i n a t e f rame than t h e s c ann e r
” ” ”
dc_rx=dc [ 0 ] ; dc_ry=dc [ 1 ] ; dc_ r z=dc [ 2 ] ;
dc_cx=dc [ 3 ] ; dc_cy=dc [ 4 ] ; dc_cz=dc [ 5 ] ;
dc_sx=dc [ 6 ] ; dc_sy=dc [ 7 ] ; d c_ s z=dc [ 8 ] ;
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rx = (−dc_rx ) # x = −x
ry = (−dc_ry ) # y = −y
r z = dc_rz # z doe sn ’ t change

cx = (−dc_cx )
cy = (−dc_cy )
cz = dc_cz

sx = (−dc_sx )
sy = (−dc_sy )
s z = dc_s z

r e turn [ rx , ry , rz , cx , cy , cz , sx , sy , s z ]

Listing C.11: Registrationmatrices. Python functions used to create registration matrices and makes use
of the Freesurfer tool tkregister2.

# ! / u s r / b in / py thon
” ” ”
c r e a t e r e g i s t r a t i o n ma t r i c e s from MRS vo lumes ( s y n t h e s i s e d MRI ) t o
F r e e s u r f e r ana t om i c a l . Us e s t k r e g i s t e r 2 .
Same s e s s i o n u s e s r e g h e ad e r , a c r o s s s e s s i o n manual a l i g nmen t u s i n g T2
as an i n t e rm e d i a t e volume .

For same s e s s i o n r e g i s t r a t i o n mat r i x :
dat_name = o s . pa th . j o i n ( o s . pa th . d irname ( m r i _ v o l n i i ) , da t )
command = r e g _ s am e _ s e s s i o n ( s u b j e c t , m r i _ v o l n i i , dat_name )
o s . s y s t em ( command )

To p roduc e an n i i f i l e f rom a T2 dicom us e :
command = t2_dcm_2_n i i ( t 2 _ d i r )
o s . s y s t em ( command )

For T2 t o ana t om i c a l ( w i l l r e q u i r e manual r e g i s t r a t i o n ) :
s a v e t h e r e g i s t r a t i o n a f t e r w a r d s

For d i f f e r e n t s e s s i o n u s e t h e i n t e rm e d i a t e ( T2 ) image and r e g
s a v e t h e . . . i n t . da t

” ” ”
import os

def r e g _ s ame_ s e s s i on ( s u b j e c t , moveable , dat_name ) :
” ” ”
r e g i s t e r same s e s s i o n MRS and ana t om i c a l :

dat_name = o s . pa th . j o i n ( o s . pa th . d irname ( m r i _ v o l n i i ) , da t )
command = r e g _ s am e _ s e s s i o n ( s u b j e c t , m r i _ v o l n i i , dat_name )
o s . s y s t em ( command )

” ” ”
command = ( ’ t k r e g i s t e r 2 ␣−−s␣ ’ + s u b j e c t + ’ ␣−−mov␣ ’ + moveable + ’ ␣−−

r e gh e ad e r ␣−−r e g ␣ ’ + dat_name + ’ ␣−−no ed i t ␣ ’ )
r e turn command

def r e g _ t 2 _ t o _ a n a t om i c a l ( s u b j e c t , moveable , dat_name ) :
” ” ”
r e g i s t e r t 2 t o ana t om i c a l ( d i f f e r e n t s e s s i o n s )
” ” ”
command = ( ’ t k r e g i s t e r 2 ␣−−s␣ ’ + s u b j e c t + ’ ␣−−mov␣ ’ + moveable + ’ ␣−−

r e gh e ad e r ␣−−r e g ␣ ’ + dat_name + ’ ␣−−s u r f ’ )
r e turn command
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def r e g _ d i f f _ s e s s i o n s ( s u b j e c t , moveable , in t , i n t _ d a t , dat_name ) :
” ” ”
r e g i s t e r d i f f e r e n t s e s s i o n MRS and ana t om i c a l ( u s e i n t e rm e d i a t e r e g ) :
” ” ”
# u s e i n t v o l from manual T2 r e g i s t r a t i o n
command = ( ’ t k r e g i s t e r 2 ␣−−s␣ ’ + s u b j e c t + ’ ␣−−mov␣ ’ + moveable + ’ ␣−−

i n t ␣ ’ + i n t + ’ ␣ ’ + i n t _ d a t + ’ ␣−−r e g ␣ ’ + dat_name + ’ ␣−−fmov␣100␣ ’ )
r e turn command

def t 2_dcm_2_n i i ( path_to_dcm ) :
” ” ”
c a l l d cm2n i i w i th a p p r o p r i a t e p a r ame t e r s t o p r oduc e an n i i f i l e f rom

t h e T2 DICOM
t 2 _ d i r = . . .
command = t2_dcm_2_n i i ( t 2 _ d i r )

” ” ”
command = ( ’ / A p p l i c a t i o n s / osx / dcm2ni i␣− i ␣n␣−d␣n␣−p␣n␣−v␣y␣−x␣n␣−o␣ ’ +

path_to_dcm + ’ ␣ ’ + path_to_dcm + ’ / * ’ )
r e turn command

Listing C.12: Calculating tissue proportions. Python fragment that wraps the function
mri_compute_volume_fractions.

def c r e a t e _ s e gmen t a t i o n s ( r e g_ma t r i x , mrs_vol , o u t p u t _ f i l e _ n ame _ p r e f i x ) :
command = ( ’ mr i_ compu t e_vo lume_ f r a c t i on s ␣ ’ + r e g _ma t r i x + ’ ␣ ’ + mrs_vo l

+ ’ ␣ ’ + o u t p u t _ f i l e _ n ame _ p r e f i x )
r e turn command
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D
MEGA-PRESS PARAMETERS

his sample exam card details the parameter settings that were used in all in vivo MEGA-

PRESS experiments for this project.

Table D.1: Sample exam card. The parameters for a typical MEGA-PRESS experiment as used in the exper-
iments for this project.

Parameter Name Value
Nucleus = “H1”
Coil selection = “SENSE-Head-8”
element selection = “SENSE”
connection = “d”
Dual coil = “no”
VOI orientation = “sagittal”
VOI size AP (mm) = 30
RL (mm) = 30
FH (mm) = 30
Samples = 2048
Spectral BW (Hz) = 2150
Ang. AP (deg) = 0
RL (deg) = 0
FH (deg) = 0
VOI ofc. AP (P=+mm) = 40.9492989
RL (L=+mm) = 36.6866379
FH (H=+mm) = 24.2860928
VOI ang. AP (deg) = 21.4503765
RL (deg) = -0.0441694073
FH (deg) = 40.84758
Chem. shit Dir AP = “A”
Chem. shit Dir LR = “L”

Continued on next page...
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Table D.1 Sample exam card. Continued from previous page.

Parameter Name Value
Chem. shit Dir FH = “F”
Large table movement = “no”
REST slabs = 0
Patient position = “head irst”
orientation = “supine”
Scan type = “Spectroscopy”
Scan mode = “SV”
technique = “ECHO”
VOI selection = “volume”
method = “PRESS”
Gradient Spoiling = “no”
Fast Imaging mode = “none”
Echo acquisition = “half ”
TE = “user deined”
(ms) = 68
Flip angle (deg) = 90
RF pulse set = “normal”
TR = “user deined”
(ms) = 1800
Shim = “PB-auto”
PB order = “second”
Water suppression = “VAPOR”
window (Hz) = 140
WS prescan = “no”
BASING pulse = “MEGA basic”
pulse dur (ms) = 15
water freq (ppm) = 4.67999983
pulse freq1 (ppm) = 1.89999998
pulse freq2 (ppm) = 8.46000004
lip angle (deg) = 180
frequency ofset = “default”
Fat suppression = “no”
Grad. rev. ofres. supp. = “no”
Research prepulse = “no”
Pre-saturation = “no”
SAR mode = “high”
B1 mode = “default”
PNS mode = “moderate”
Gradient mode = “maximum”
SofTone mode = “no”
Cardiac synchronization = “no”
Respiratory compensation = “no”
Startup acquisitions = 0
NSA = 16
Phase cycles = 16
Frequency stabilization = “yes”
Parameter series = “no”
Manual start = “no”
Dynamic study = “individual”
dyn scans = 32
dyn scan times = “shortest”
dummy scans = 0

Continued on next page...
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Table D.1 Sample exam card. Continued from previous page.

Parameter Name Value
prospect. motion corr. = “no”
Arterial Spin labeling = “no”
Preparation phases = “auto”
Manual Ofset Freq. = “no”
Receiver optimization = “ON”
Spectral correction = “no”
Reference tissue = “White matter”
PlanScan metabolite = “user deined”
chemical shit (PPM) = 2.45000005
Shited metabolite displayed = “none”
Preset window contrast = “sot”
Save raw data = “yes”
Hardcopy protocol = “no”
Elliptical k-space shutter = “default”
IF_info_seperator = 0
Total scan duration = “15:21.6”
Rel. signal level (%) = 100
Act. TR/TE (ms) = “1800 / 68”
Dyn. scan time = “00:28.8”
Min. TR/TE (ms) = “1790 / 64”
Spectral resolution (Hz/point) = 1.04980469
Readout duration (ms) = 952.558105
SAR / head = “< 9 % / 0.3 W/kg”
Whole body / level = “0.0 W/kg / normal”
B1 rms [uT] = 0.705540895
PNS / level = “63 % / normal”
Sound Pressure Level (dB) = 0
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E
POST-ACQUISITION SUPPLEMENTARY

his appendix contains supplementary igures for Chapter 4: Post-Acquisition Processing.

Figure E.1: Monochrome seg-
mented MRS acquisition. This
igure represents a grey scale
version of Figure 4.17, which is
suitable for monochrome printing
purposes.
(A) Visualisation of the simulated
fMRI as a proxy for the MRS ac-
quisition (white illed shapes).
These sample images (sagittal,
coronal and axial) are of a lateral
occipital acquisition taken in the
left hemisphere.
(B) Grey matter segmentation
images corresponding with the
MRS acquisition. Lighter pixels
indicate higher probability that the
voxel is identiied as GM.
(C) White matter segmentation
images. Lighter pixels indicate
higher probability that the voxel is
identiied as WM.
(D) Cerebrospinal luid segmenta-
tion images. Lighter pixels indicate
higher probability that the voxel is
identiied as CSF.
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Independent Alignment Correlation Matrix

Figure E.2: Independent alignment correlation matrix. This plot shows the correlations for the spectra
from Figure 4.9E. The correlation coeicient for this data was r = 0.96 (p < 0.01), which demonstrates an
improvement compared with the paired alignment in Figure E.3.
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Paired Alignment Correlation Matrix

Figure E.3: Paired alignment correlation matrix. This plot shows the correlations for the spectra from
Figure 4.9B. The correlation coeicient for this data was r = 0.82 (p < 0.01), which demonstrates a weaker
correlation compared with the independent alignment in Figure E.2.
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