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Abstract 

 Exercise is inherently linked with the production of reactive oxygen and nitrogen 

species (RONS), which are able to elicit an effect on cellular redox status and may augment 

oxidative stress post-exercise. Antioxidant supplements have the potential to reduce exercise-

induced oxidative stress, and interact with redox status but in doing so they may have a 

negative effect on exercise adaptations associated with RONS mediated signalling pathways. 

This thesis presents novel findings on the consumption habits of antioxidant supplements in 

amateur cyclists and the effect of habitual supplementation on exercise-induced oxidative 

stress following a cycling sportive in recreational cyclists (chapters 2 and 3). The thesis goes 

on to assess the effect of habitual supplementation on basal levels of endogenous antioxidant 

proteins and the exercise-induced oxidative stress response to steady-state cycling in trained 

cyclists (chapter 4), and the effects of polyphenol supplementation on cycling recovery and 

subsequent day cycling performance, assessed via markers of oxidative stress, inflammation, 

and a time-trial in trained cyclists (chapter 5). Consumption of antioxidant supplements was 

reported in 40% of the participants sampled and was not associated with age, cycling 

experience or weekly training hours. The main reasons given for antioxidant supplementation 

were to: improve immunity; recovery; and performance. Upon completion of 100 km of 

cycling, antioxidant supplementation did not attenuate exercise-induced oxidative markers 

compared to a non-supplemented group. Both groups displayed augmented oxidative stress 

after cycling 100 km. In trained cyclists, habitual supplementation did not result in any 

differences in resting concentrations of the endogenous antioxidants superoxide dismutase-1 

(SOD1), superoxide dismutase-2 (SOD2) or glutathione peroxidase-1 (GPx-1); nor the 

oxidative stress response to steady-state cycling. Supplementation with a polyphenol based 

drink had no effect on exercise-induced oxidative stress and inflammation markers at any 
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time-point compared to a placebo control drink. Furthermore, supplementation during the 

recovery period (24 hours) did not provide an ergogenic when undertaking a cycling time-

trial in trained cyclists. In conclusion, the results obtained in this thesis do not support a 

beneficial role for the habitual consumption of commercially available antioxidant 

supplements in cyclists. No attenuation in exercise-induced oxidative stress in a ‘real-world’ 

or laboratory setting was observed compared to non-supplemented individuals. Furthermore, 

additional education may be required for cyclists to enhance their knowledge on the 

interactions of antioxidant supplements. The reasons given by cyclists for antioxidant 

consumption were not supported by the current research.  
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1.1 Introduction  

The consumption of antioxidant supplements, particularly vitamin C and E, in people 

undertaking exercise has been greatly debated for over a decade (Carmen Gomez-Cabrera et 

al., 2012; Holloszy et al., 2012). Studies in the late 1970’s and early 1980’s identified the 

ability of exercise to augment the production of free radical species, resulting in what 

appeared to be, undesirable oxidative damage within the cellular environment (Davies et al., 

1982; Dillard et al., 1978) and muscle damage sustained following exercise (Jackson et al., 

1985). Furthermore, exercise undertaken in a vitamin deficient state elevated the degree of 

oxidative damage compared to a non-deficient state (Davies et al., 1982), and 

supplementation with an antioxidant compound – vitamin E – attenuated the observed 

oxidative damage post-exercise (Dillard et al., 1978). These initial observations could be 

responsible for sending exercise scientists off in pursuit of an explanation of the role and/or 

function of antioxidant supplements, predominately vitamin C and E, in reducing exercise-

induced oxidative stress and muscle damage (Arent et al., 2010; Bailey et al., 2011; 

Nakhostin-Roohi et al., 2008; Naziroğlu et al., 2010; Theodorou et al., 2011).   

Unbeknown at the time, the transient release of radical species from contracting 

skeletal muscle are essential in activating cell signalling pathways, known as redox 

signalling, that upregulate endogenous antioxidants and mitochondrial content. Thus, 

providing a greater tolerance against exercise-induced oxidative damage in future exercise 

bouts (Kawagishi and Finkel, 2014; Ristow, 2014). Suggesting, antioxidant supplementation 

could have a negative effect on the redox signalling pathways, reducing the favourable 

cellular adaptations gained from repeated bouts of exercise. Conversely, the reduction in 

oxidative damage and subsequent inflammation in muscle might be appealing to athletes who 

are having to repeatedly perform in events over several days or over a competitive season. 
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Thus, despite evidence to suggest antioxidants may reduce adaptation, supplementation may 

be desirable, where the emphasis is on recovery and performance rather than adaptation.   

 Experiments investigating the effects of vitamin C and E supplementation in both 

animal and human studies provide equivocal results in endogenous antioxidant synthesis and 

mitochondrial biogenesis. Some studies found supplementation to have no effect on redox 

sensitive signalling pathways (Cumming et al., 2014; Higashida et al., 2011; Yfanti et al., 

2010; Yfanti et al., 2012) whereas others reported supplementation inhibited the effects of 

RONS signalling (Gomez-Cabrera et al., 2008; Gomez-Cabrera et al., 2005; Morrison et al., 

2015; Paulsen et al., 2014; Ristow et al., 2009). Although there are methodological 

differences within these studies, both in study design and analysis of outcomes, most studies 

use supra-physiological doses of vitamin C and vitamin E that are ~11 (1000 mg/d) and ~18 

times greater (400 IU/d) than the recommended daily intake (RDI) respectively. Using a dose 

above the RDI in experimental research enables researchers to elucidate possible mechanisms 

of action, but these doses may not reflect the effects that habitual supplementation might 

have. Especially in a real-world setting where recreational athletes consume the RDI.  

Experimental research provides well controlled environments ensuring the internal 

validity of the scientific question; however, when the work is then applied in a real-world 

setting, upholding the control variables that are vital to ensuring internal validity cannot be 

ensured in the general population. Thus, there is a need for research studies that attempt to 

translate lab based controlled studies into applied real-world situations. With relevance to the 

topic of this thesis, research is needed to determine whether habitual supplementation in free-

living athletes, is having any effect on factors which may influence exercise training and 

performance. Do supplements containing vitamin C and E influence the concentrations of 

proteins related to redox signalling or markers of oxidative stress, in a population of 

recreational cyclists? If so, to what extent?   
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The consumption of antioxidant supplements could be beneficial to individuals who 

are looking to improve a sporting performance and/or enhance recovery. The reduction in 

oxidative stress and inflammation during and post-exercise may result in attenuated muscle 

and cellular damage, curtailing performance decrements whilst competing and/or on 

consecutive days of competition. Studies investigating traditional antioxidant supplements 

(vitamin C, vitamin E, and co-enzyme Q10) have not yet provided substantial scientific 

evidence to corroborate these supplements’ ability to improve performance and/or recovery 

by reducing oxidative stress and/or inflammation (Braakhuis, 2012; Braakhuis and Hopkins, 

2015; Peternelj and Coombes, 2011). Recent attention from exercise and sport scientists has 

focused on a subset of metabolites derived from plant based sources called polyphenols, due 

to their anti-oxidant and anti-inflammatory properties (Manach et al., 2004; McCune et al., 

2011; Wallace, 2011). Montmorency tart cherries containing multiple polyphenol compounds 

have become a popular supplement to use in an exercise setting (Bell et al., 2014a; Myburgh, 

2014). Studies have reported that interventions with this supplement improve muscle 

recovery after completing endurance events (Bell et al., 2014c; Bell et al., 2015; Howatson et 

al., 2010) and resistance training (Bowtell et al., 2011; Connolly et al., 2006). There is 

additional evidence supporting the idea that improvements in muscle recovery can have a 

beneficial effect on performance in the days following fatiguing exercise (Bell et al., 2016; 

Bell et al., 2015; Bowtell et al., 2011). However, it is not known if these effects are due to the 

antioxidant properties of the supplement, or the phytochemical compounds contained within 

(Croft, 2016; Forman et al., 2014). 

 In addition, the measures of performance used in studies to date may not be sport 

specific i.e. not transferable or applicable to all sporting disciplines. It may not be appropriate 

to extrapolate measurements that assess closed circuit movements such as, maximal voluntary 

contractions, maximal voluntary isometric contractions, and counter movement jumps to 
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other sporting disciplines. Therefore, interventions need to be conducted examining the effect 

of supplementation on recovery and performance in specific modes of exercise such as 

cycling or running, to determine if these closed-circuit outcomes relate to performance 

outcomes in functional sporting settings.           

Perhaps a point not often considered is why recreational athletes choose to consume 

antioxidant supplements. It is not clear what motivates amateur athletes to supplement in the 

first place. Previous research investigating supplement intake has combined all dietary 

supplements together, making it difficult to determine why an individual supplement may be 

consumed. For example, we might postulate that a protein supplement may be primarily used 

to improve recovery, a carbohydrate supplement to improve performance, and a vitamin 

supplement to maintain health. By grouping all dietary supplements together, it makes it 

difficult for a sports practitioner to either support or dismiss whether an athlete requires a 

specific supplement for the stated reason. The rationale for consuming one dietary 

supplement compared to another may or may not be supported by scientific research; 

therefore, more specific research must be conducted on individual dietary supplements to 

dismiss or support the rationale for their consumption in recreational athletes.  

 

1.2 Oxidative Stress 

1.2.1 Free Radicals  

 The term free radical can denote any species that is capable of independent existence 

and contains one or more unpaired electrons within the atomic or molecular orbit of an 

element or a molecule. As a consequence, free radical species have paramagnetic properties 

making them extremely reactive (Halliwell and Gutteridge 2007) Within a biological system, 
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the reactivity of free radicals can have differential effects on the surrounding cellular and 

molecular environment. To enable in vivo biological systems to systematically control the 

fate of free radicals a matrix of redox reactions maintains redox equilibrium. Redox reactions 

occur through reduction or oxidation. Oxidation results in the loss of an electron and is 

typically assisted by an oxidising agent that can accept electrons. Reduction results in the 

gaining of an electron and is typically assisted by reducing agents that can donate electrons 

(Figure 1.1) (Halliwell and Gutteridge 2007).  

 

 

Figure 1.1 A simple schematic to demonstrate the roll of reducing and oxidising agents in 

transferring electrons during oxidation and reduction reactions. Oxidation results in the loss 

of an electron and reduction results in the gaining of an electron.  

 

1.2.2. Reactive oxygen species and nitrogen species  

Reactive oxygen species (ROS) reactive nitrogen species (RNS) is a collective term 

for both free radical and non-radical species derived from oxygen and nitrogen, respectively; 

and these species can be formed by losing or gaining a single electron. The collective term 

that can integrate both ROS and RNS is reactive oxygen and nitrogen species (RONS). 

Superoxide (O2
-•) and nitric oxide (NO•) are the main oxygen and nitrogen derived free 

radical species produced within RONS. The electron transport chain is one of the main 

producers of O2
-• during cellular respiration through the reduction of oxygen via electron 
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leakage (Muller et al., 2008; Turrens, 2003), or via the specific membrane proteins 

nicotinamide adenine dinucleotide phosphate oxidases (NAD(P)H oxidases) (Bedard and 

Krause, 2007). Nitric oxide is synthesised through the amino acid L-arginine and occurs 

through 3 distinct NO synthases (NOS), depending on the function or location. The three 

NOS isoforms to produce NO• are neuronal NOS (nNOS), endothelial NOS (eNOS), and 

inducible NOS (iNOS) (Radomski et al., 1990).      

Superoxide itself is relatively unreactive but if left unregulated it can produce highly 

reactive radical species. The enzyme superoxide dismutase (SOD) is responsible for 

dismutation of O2
-• to hydrogen peroxide (H2O2) and molecular oxygen (Reaction.1). 

Hydrogen peroxide is classed as a non-radical but in the presence of transition metals, iron 

(Fe2+) and copper (Cu2+), it can produce the hydroxyl radical (OH•) through the metal-

catalysing Fenton reaction (Reaction.2). In the presence of O2
-• the oxidised iron ion (Fe3+) 

(copper) can be reduced allowing for the Haber-Weiss reaction to occur producing OH• from 

H2O2 (Reaction.3)(Jackson, 2005; Powers et al., 2011). If the generation of O2
-• and NO• 

coincide with one another the irreversible formation of peroxynitrite (ONOO--) arises 

(Reaction.4) and when converted into its pronated form peroxynitrous acid (ONOOH), it 

becomes extremely reactive (Beckman & Koppenol, 1996).      

 O2
-• + O2

-• + 2H+ → H2O2
 + O2  (Reaction.1) 

H2O2 + Fe2+ → Fe3+ + OH• + OH-  (Reaction.2) 

O2
-• + H2O2  

Metal Catalyst→ OH• + OH- + O2 (Reaction.3) 

O2
-• + NO• → ONOO-    (Reaction.4) 

      (adapted from Powers et al., 2011) 
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If RONS are left unregulated, due to an inefficient antioxidant system, they can create 

a pro-oxidant environment that leads to detrimental effects on the surrounding biomolecules. 

The imbalance of pro-oxidants and antioxidants, in favour of the former is referred to as 

“oxidative stress” that can have a negative effect on redox signalling and regulation, and the 

structure and functionality of lipids, proteins, and DNA (Sies and Jones, 2007). The chronic 

exposure of RONS throughout a lifetime has been linked to the ageing process through 

several different theories “the free radical theory of ageing” (Harman, 2006), “the redox 

stress hypothesis of aging”, (Sohal and Orr, 2012) and “the cell signalling disruption theory 

of aging” (Vina et al., 2013); and related to several disease pathologies (Berlett and 

Stadtman, 1997; Hecht et al., 2016; Santilli et al., 2015). Paradoxically, the transient 

generation of RONS through such means as exercise has been shown to have positive 

physiological effects by the ability to upregulate antioxidant enzymes (Hollander et al., 

2001), heat shock proteins (Khassaf et al., 2003), and mitochondrial proteins (Gomez-

Cabrera et al., 2008).     

Due to radical species being highly reactive and having a very short half-life, they are 

extremely difficult to measure in vivo. In human cells and tissue, stable end products are 

formed when radical species interact with biomolecules. These end products, known as 

adducts, can be used to estimate oxidative modifications to lipids, proteins, and nucleic acids 

(Mecocci et al., 1999); allowing an indirect measurement of radical interaction to be 

measured. However, they do not provide information on whether the oxidative stress markers 

represent beneficial or detrimental effects. Methods do exist to allow direct capture of radical 

species, such as electron paramagnetic resonance or electron spin resonance, however, the 

capture of radical species is challenging, and where studies are undertaken in human 

participants, especially using exercise interventions, these methodologies do not  offer a 

realistic opportunity to assess redox status (Tanabe et al., 2006; Xu et al., 2012).  
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1.3 Antioxidants  

1.3.1 Overview 

Antioxidants are essential in controlling the fate of RONS when they have been 

generated and play an important role in maintaining cellular homeostasis. Antioxidants can 

be categorised into two main categories: exogenous and endogenous antioxidants. Exogenous 

antioxidants must be consumed through ingestion of foods and/or supplements that contain a 

specific or a variety of antioxidants. Endogenous antioxidants on the other hand must be 

synthesised in vivo with their production and concentrations dependent on the activity of 

RONS in specific cellular compartments (Higuchi et al., 1985; Hollander et al., 2001). 

Antioxidants can function in two differing ways. They can either work as a reducing agent 

through the donation an electron to RONS or as an oxidising agent that accept electrons from 

RONS.     

 

1.3.2. Endogenous antioxidants  

 The endogenous antioxidants could be classed as the front-line defence in the 

neutralisation of RONS. As mentioned previously the endogenous antioxidant superoxide 

dismutase (SOD) can dismutase O2
-• into H2O2. Because O2

-• can be generated in different 

biological compartments, there are several isoforms of SOD to combat against O2
-• 

production. Dismutation of O2
-• in the mitochondria relies on the manganese superoxide 

dismutase (MnSOD/SOD2), in the cytosol by copper-zinc SOD (Cu-ZnSOD/SOD1), and in 

the extracellular fluid by extracellular SOD (ecSOD/SOD3) (Powers et al., 2011). To prevent 

or reduce the interaction of H2O2 with the transition metals copper and iron and the 

subsequent production of OH• there are two main endogenous antioxidants responsible for its 
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removal, catalase (CAT) and reduced glutathione (GSH).  Both compounds can be oxidised 

allowing the reduction of H2O2 to form H2O by accepting an electron. GSH is dependent on 

the enzyme glutathione peroxidase (GPx) that enables its oxidation to form oxidised 

glutathione (GSSG), and GSSG can be recycled back to GSH through the enzyme glutathione 

reductase (GR) and the cofactor NADPH (Urso and Clarkson, 2003). Figure 1.2 represents a 

schematic illustration of the pathway for radical removal via endogenous antioxidants.  

 

1.3.3 Exogenous Antioxidants 

Fruits and vegetables offer the primary source of exogenous antioxidants in a habitual 

diet. Vitamin C (ascorbic acid) and vitamin E are perhaps the most well-known exogenous 

antioxidants and are the two exogenous antioxidants that have been most extensively studied 

in vitro and in vivo. The predominant reason for this is due to their ability to provide 

antioxidant protection in two different cellular domains.  

Vitamin C is a hydrophilic antioxidant enabling it to provide antioxidant protection 

within extracellular fluids such as plasma and the cytoplasm (Rutkowski and Grzegorczyk, 

2012). Vitamin C exerts its antioxidant effect by donating an electron to a RONS leading the 

formation of a stable product and dehydroascorbic acid, the oxidised form of ascorbic acid 

(Pohanka et al., 2012; Talaulikar and Manyonda, 2011). Vitamin C can scavenge several 

RONS that include O2
-•, OH•, and ONOO- (Carr and Frei, 1999).  

Vitamin E is lipophilic antioxidant protecting lipid structures such as cellular 

membranes and lipoproteins from the lipid peroxyl radical (LO2
•) (Rutkowski and 

Grzegorczyk, 2012). The main function of vitamin E is to act as a chain breaking antioxidant 

to protect against lipid peroxidation and is comprised of eight isoforms consisting of four 
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tocopherols (α-tocopherol, β-tocopherol, γ- tocopherol, δ- tocopherol) and four tocotrienols 

(α- tocotrienol, β- tocotrienol, γ- tocotrienol, δ- tocotrienol), with α-tocopherol having the 

greatest bioavailability and biological activity (Niki, 2014). After vitamin E has performed its 

role as an antioxidant it becomes a vitamin E radical, and if in the presence of vitamin C, 

vitamin C can recycle this newly formed radical back to its naive form (Hamilton et al., 

2000).    

More recently, greater attention has focused on a subset of antioxidant compounds 

called polyphenols, derived predominantly from plant extracts. To distinguish between the 

several thousand compounds that contribute to the polyphenol family, each polyphenol 

compound can be classified by the amount and arrangement of their aromatic rings, and the 

structures used to connect them. The four main sub-categories of polyphenols are phenolic 

acids, flavonoids, stilbenes, and lignans; table 1.1 identifies the major subclasses and their 

food derivatives. The greatest volume of research has focused on the subset of polyphenols 

called flavonoids. These compounds are comprised of two aromatic rings with at least one 

aromatic hydroxyl on each. The aromatic rings are referred to as the A and B rings, connected 

by a carbon bridge, with 3 carbon atoms linked to an oxygen and a further 2 carbons from the 

aromatic ring (ring A) to form a third ring, referred to as the C ring (Figure 1.3) (Beecher, 

2003; Manach et al., 2004). In vitro and in vivo studies have demonstrated these compounds 

have antioxidant and anti-inflammatory properties that could prevent the progression of 

disease pathologies associated with oxidative stress (Graziani et al., 2005; Mitjavila and 

Moreno, 2012) and inflammation (Decendit et al., 2013). 
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Figure 1.2 The endogenous antioxidant response to superoxide generation. Superoxide 

(O2
-•) is produced from several cellular sources. Superoxide dismutase (SOD) is responsible 

for the dismutation of O2
-• to hydrogen peroxide (H2O2). In the presence of nitric oxide (NO•) 

O2
-•

 will convert NO• to peroxynitrite (ONOO-) at a faster rate than SOD. H2O2 can be 

converted by catalase (CAT) or reduced glutathione (GSH) in the presence of glutathione 

peroxidase (GPx) to form water (H2+O). GSH can be resynthesized from its oxidised form 

(GSSG) through the electron donor nicotinamide adenine dinucletode phosphate-oxidase 

(NADPH) and glutathione reductase (GR). If H2O2 is in the presence of transition metals (e.g. 

Fe2+) or O2
-•

 the Fenton and Haber-Weiss reactions occur producing the highly reactive 

hydroxyl radical (OH•). 
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Figure 1.3 The general structure of a flavonoid. The aromatic rings (A & B) are connected by 

a carbon bridge that creates a third ring (C). The R groups indicate where different 

arrangements of H, OH, and CH3, attach to the basic flavonoid structure to create the 

numerous subclasses in the flavonoid family, Adapted from Beecher, 2003.       

 

1.4 Exercise and Oxidative Stress 

1.4.1 Sources of RONS during skeletal muscle contractions  

It is well established that exercise is responsible for the generation of reactive oxygen 

and nitrogen species (RONS) within skeletal muscle due to metabolic and mechanical 

stresses during skeletal muscle contractions (Bloomer et al., 2005). Several cellular sites have 

been identified as the main producers of RONS within skeletal muscle: complex I (NADH 

dehydrogenase) and complex III (cytochrome c) of the electron transport chain in the 

mitochondria, nicotinamide adenine dinucleotide phosphate oxidases (NAD(P)H oxidases) 
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enzymes located within the sarcolemma, transverse tubules, sarcoplasmic reticulum, and the 

mitochondria; contraction stimulated phospholipase A2-dependent pathways (PLA2) leading 

to the activation of lipoxygenases and cyclooxygenases; and xanthine oxidases (XO) located 

within endothelial cells (Mason and Wadley, 2014; Sakellariou et al., 2014). These species 

have been identified as important regulators of cell signalling pathways in response to 

exercise (Barbieri and Sestili, 2012; Jackson, 2005; Silveira et al., 2006) and at low levels 

essential for contractile activity (Hernández et al., 2012; McKenna et al., 2006; Powers and 

Jackson, 2008; Westerblad and Allen, 2011). 

 

1.4.2 Reactive oxygen and nitrogen species are involved in exercise adaptations  

Early exercise studies undertaken in rats identified that endurance exercise was 

responsible for an increase in SOD activity after 3 months of endurance training (Higuchi et 

al., 1985). However, this initial study did not identify whether RONS were part of the 

mechanism responsible for the observed elevations in SOD activity. It is now widely 

accepted that RONS are important regulators of redox-states within cells, enabling the 

activation of signalling pathways involved in biological processes (Finkel, 2011; Peternelj 

and Coombes, 2011). The release of RONS during exercise has been well documented 

(Davies et al., 1982; Jackson et al., 1985) with skeletal muscle being a main source of RONS 

production during and immediately following exercise (McArdle et al., 2001). Hollander et 

al., (2001) identified that an acute bout of treadmill running in rats at 65% 𝑉̇O2max until 

exhaustion, generated sufficient stress to activate the redox-sensitive transcription factors 

involved in MnSOD mRNA transcription post-exercise, compared to a non-exercising control 

group. Binding of the redox-sensitive activator-protein 1 (AP-1) and nuclear factor - κβ (NF-

κβ), both downstream targets of the mitogen-activated protein kinase pathway (MAPK), were 
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identified as the targets for RONS mediated endogenous antioxidant generation. It is now 

well accepted that RONS generated during exercise are responsible for the activation of 

signalling pathways that up-regulate endogenous antioxidants post-exercise (Ho et al., 2005; 

Hollander et al., 2001).  

A hormesis paradigm has been suggested to explain how RONS produce 

advantageous adaptations in response to exercise. Hormesis is presented as a dose/response 

relationship to a stress and it has been suggested that a small dose of biological stress, in this 

case caused by RONS, can activate stress response signalling pathways leading to favourable 

adaptations. However, if a large dose of RONS is generated, the reactive species become 

maladaptive causing molecular damage and/or hinder adaptational processes (Radak et al., 

2008).   

 

1.4.3 Factors influencing oxidative stress post-exercise  

 To determine the relationship between exercise and oxidative modifications, indirect 

markers of RONS production can be measured in plasma. The type of measurement is 

dependent on the macromolecule of interest. To determine oxidative changes in lipids several 

measurements are predominantly assessed: lipid hydroperoxides (LOOH), thiobarbituric acid 

reactive substances (TBARS), malondialdehyde (MDA), and F2-isoprosrtanes (F2-IsoP); and 

protein modifications are mainly assessed by changes in protein carbonyl (PC) 

concentrations. Section 1.4.6 describes the limitations of measuring oxidative stress in vivo.  

An increase in oxidative stress in response to exercise has predominantly been studied 

after an acute bout of exercise. Perturbations in exercise-induced oxidative stress can be 

affected by an individual’s training status, exercise duration, intensity and modality. Perhaps 
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one of the most striking differences in oxidative stress following exercise has been reported 

between trained and untrained populations in response to different exercise intensities. In 

untrained individuals, the oxidative stress response post-exercise is largely independent of 

exercise intensity. Wadley et al., (2016a) reported significant changes in post-exercise LOOH 

and PC concentrations compared to baseline upon completion of cycling trials at 60% 

𝑉̇O2max, 80% 𝑉̇O2max, and a low-volume, high-intensity interval exercise (LV-HIIE); with no 

significant differences between any of the trials. However, trained individuals have a greater 

threshold to exercise-induced oxidative stress, demonstrated by an attenuation in oxidative 

stress at lower exercise intensity compared to exercise at higher intensity (Munoz Marin et 

al., 2010) 

Intervention studies have demonstrated that exercise training can have a positive 

impact on reducing oxidative stress when exercise at the same intensity is completed 

throughout intervention period (Fatouros et al., 2004; Shin et al., 2008). In order to stimulate 

a post-exercise oxidative stress, exercise intensity must then increase. It is hypothesized that 

the production of exercise-induced RONS must surpass a biological threshold, even in trained 

individuals to cause oxidative stress (Radak et al., 2017).  

 In addition to exercise intensity, exercise duration can directly affect the levels of 

exercise-induced oxidative stress. Bloomer et al., (2007) demonstrated the augmentation of 

PC after steady cycling at 70% 𝑉̇O2max for 30, 60, and 120 minutes. Although PC 

significantly increased from baseline in all conditions 30 minutes post-exercise, the 120-

minute trial was the only condition to remain significantly elevated 60 minutes post-exercise. 

The PC response was significantly pronounced throughout the post-exercise period after the 

120-minute trial compared to both the 30 and 60-minute trials, further supporting the theory 

that a threshold exists at which RONS generation can overwhelm antioxidant defences. 
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Within this study, PC reached their maximal concentrations immediately post-exercise, 

indicating transient oxidative stress occurred via metabolic stress rather than mechanical 

stress. Oxidative stress markers have been reported to remain elevated for periods between 1 

and 7 days after completing ultra-endurance running events lasting for > 30 hours (Machefer 

et al., 2004; Skenderi et al., 2008; Turner et al., 2011). The combination of metabolic and 

mechanical stress could account for the prolonged oxidative stress response reported in these 

studies. To support the notion of post-exercise oxidative stress occurring from two separate 

pathways, Bloomer et al., (2005) reported anaerobic exercise, consisting of squatting for 30 

minutes, caused a more robust and prolonged oxidative stress response post-exercise 

compared to aerobic exercise, cycling at 70% 𝑉̇O2max. The additional loading of the muscle 

fibres during resistance exercise provides greater mechanical stress, compared to cycling that 

is non-weight bearing, causing greater perturbations of the myofibril filaments resulting in 

enhanced oxidative stress.  

 These studies highlight the importance of selecting exercise protocols that are able to 

stimulate an oxidative stress post-exercise capable of stimulating adaptation. In untrained 

individuals, such an oxidative stress response can be propagated at relatively low-exercise 

intensities, which reflects the untrained individuals’ physiological ability to combat exercise-

induced RONS. However, in trained individuals exercise must be undertaken at a higher-

intensity and/or for longer durations to cause an oxidative stress response post-exercise 

capable of stimulating adaptation. This threshold is hypothesized to increase as enhanced 

physiological defence mechanisms are accrued from performing repeated bouts of exercise. 

Ultra-endurance events provide novel insights into the oxidative stress response following 

extended and often extreme bouts of exercise, but these events are not undertaken by the 

majority of recreational athletes. This thesis focuses on the oxidative stress response to 

exercise in events that are frequently undertaken by recreational athletes.   
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1.4.4 Antioxidant response to exercise  

To establish the antioxidant response during exercise several antioxidant markers can 

be measured in plasma. The most common way to measure the antioxidant activity within 

plasma is to measure total antioxidant status (TAS) or total antioxidant capacity (TAC). More 

specific markers of antioxidant status can also be measured such as SOD, CAT, GSH, GSSG, 

and enzymes involved in the recycling of specific antioxidants.  

The antioxidant response during exercise is dependent on a combination of exercise 

intensity, duration, and fitness levels. Berzosa et al., (2011) observed that exhaustive and 

submaximal cycling in untrained individuals elevated the concentrations of SOD, CAT, GPx, 

GR, and TAS; compared to baseline levels. In contrast to these results Knez et al., (2007) 

reported a decrease in CAT and SOD activity after an ultra-endurance in recreationally fit 

individuals. Indicating that the constant generation of RONS over an extended period can 

potentially reduce the antioxidant pool, regardless of fitness level. There is evidence to 

indicate that repeated exposure to an exercise stimulus can augment the antioxidant response 

to the same relative workload after a training intervention (Fatouros et al., 2004; Shin et al., 

2008) and that the addition of a detraining period returns the antioxidant response back to 

pre-training levels (Fatouros et al., 2004).  An observation study carried out by Serrano et al., 

(2010) in professional cyclists before and after a four-day competition is a good example of 

this adaption. The erythrocyte glutathione pool after the race had no changes in GSH, GSSG, 

concentrations, allowing the riders to maintain the GSSG:GSH ratio.    
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1.4.5 Relationship between exercise-induced inflammation and oxidative stress 

 The production of pro and anti-inflammatory cytokines can be exacerbated by a single 

bout of exercise. The appearance of the anti-inflammatory cytokines interleukin-6 (IL-6), 

interleukin-10 (IL-10), interleukin-1ra (IL-1ra); the pro-inflammatory cytokines tumour 

necrosis factor α (TNF-α), interleukin-1β (IL-1β); and the chemokine interleukin-8 (IL-8) 

have all been reported to increase after exercise (Nieman et al., 2001; Wadley et al., 2016a). 

The mechanisms attributed to the inflammatory response are myofibrillar damage (Pereira 

Panza et al., 2015) and elevations in stress hormones (cortisol, adrenaline, human growth 

hormone) (Nieman et al., 2001; Peake et al., 2007; Wadley et al., 2016a). In response to these 

events, the immune system responds by mobilising and activating phagocytes (Nieman et al., 

2001; Suzuki et al., 1999) and lymphocytes (Wadley et al., 2016a) in the affected area. 

Cytokine formation can be directly affected by the generation of RONS during exercise. 

RONS can activate redox-sensitive pathways controlling cytokine expression in skeletal 

muscle (Aoi et al., 2004; Kosmidou et al., 2002) and lymphocytes (Vider et al., 2001), 

augmenting the inflammatory response. The combination of these factors are responsible for 

the low-grade inflammation following exercise.  

 The inflammatory response is primarily driven by the recruitment, activation, and co-

localisation of neutrophils to the affected cellular location (Wang and Arase, 2014). 

Neutrophils make up approximately 70% of the white blood cell population and function as 

the first responders to invading bacteria and in the removal of tissue debris. They perform 

these functions through the production of O2
•-

 via NADPH oxidase subunits located within 

their cellular membrane, in a process known as the respiratory burst (Tiidus, 1998). The 

initial neutrophil response post-exercise mainly consists of the removal of muscle tissue 

debris through phagocytosis (Butterfield et al., 2006). This is then followed by a secondary 

response within the 24 hours of exercise cessation and is more cytotoxic, containing a greater 
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number of neutrophils with the ability to produce O2
•- (Quindry et al., 2003) leading to the 

formation of H2O2 and hydrochlorous acid (HOCl) (Tidball, 2005).  

The induction of a more cytotoxic neutrophil phenotype is less discriminate than the 

phagocytic phenotype, resulting in untargeted cytotoxic attacks on healthy structures in the 

area where muscle injury occurred. This cytotoxic response results in a more oxidative 

cellular environment where muscle fibres and cell membranes encounter undesirable 

oxidative stress. Generation of O2
•-, H2O2, and HOCl indiscriminately attacks healthy tissue 

and cells, propagating secondary muscle damage (Brickson et al., 2001; Brickson et al., 2003; 

Pizza et al., 2001; Tiidus, 1998) and undesirable oxidative modifications to functional cells 

during recovery (Butterfield et al., 2006; Dahlgren and Karlsson, 1999). The transient 

increase in oxidative stress after neutrophil activation can generate a secondary inflammatory 

response through the activation of the redox sensitive transcription factor NF-κβ (Aoi et al., 

2004; Kosmidou et al., 2002).  

The extent of the inflammatory and oxidative stress response post-exercise is 

dependent on the perturbations in cellular, metabolic and mechanical stress during exercise. 

Any form of exercise that disrupts cellular homeostasis will promote stress signals initiating 

the inflammatory and oxidative stress response. Ultimately the extent of this response will be 

dictated by exercise duration, intensity, and modality. Markers of inflammation and oxidative 

stress increase when exercise intensity is amplified (Ostrowski et al., 1998; Wadley et al., 

2016a) and exercise is undertaken for a prolonged period (Bell et al., 2014c; Howatson et al., 

2010). Furthermore, the modality of exercise has a pronounced effect on post-exercise 

inflammation and oxidative stress. Protocols involving muscle lengthening such as, eccentric-

loading or downhill running promote greater skeletal muscle damage through increased 

mechanical stress compared to running and cycling protocols, shown by prolonged and 

elevated inflammation and oxidative stress immediately post-exercise and in the days 
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following exercise cessation (Bell et al., 2015; Howatson et al., 2010; Levers et al., 2015; 

Peake et al., 2007; Tiidus, 1998). A combination of these factors will influence the amount of 

time it takes a muscle to recover after exercise. Muscle recovery will be inhibited when 

exercise incorporates muscle loading and is performed at maximal intensity for a prolonged 

period, compared to, submaximal exercise that incorporates non-muscle loading exercise for 

a short period.     

In summary, exercise is responsible for the initial inflammatory response observed 

post-exercise through elevated stress hormones, myofibrillar damage and RONS. The 

secondary inflammatory response in the hours and days of exercise cessation is related to 

elevated cytotoxic neutrophil activation that enhances the concentration of RONS, 

propagating secondary myofibrillar damage, oxidative damage, and inflammation. The initial 

inflammatory response is related to exercise duration, intensity, and modality; and will dictate 

the amount of time it takes a muscle to recover. For athletes competing in multi-day events 

finding a strategy to reduce exercise-induced inflammation or oxidative stress post-exercise 

could be imperative for subsequent days performance. Studies are emerging indicating a 

beneficial effect of antioxidant supplementation on exercise-induced inflammation and 

muscle recovery (Bell et al., 2016; Bell et al., 2014c; Bell et al., 2015; Bowtell et al., 2011; 

Howatson et al., 2010), but further research needs to be conducted to elucidate if these 

promising results can improve exercise performance on subsequent days.      

 

1.4.6 Methodological Limitations of Assessing Markers of Oxidative Stress 

 As previously stated in section 1.2.2 the direct measurement of reactive species in 

vivo is extremely difficult due to their high reactivity resulting in their short half-life 

(Halliwell and Whiteman, 2004). To determine their production in a biological system a 
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unique chemical fingerprint (adduct) can be measured on lipids, proteins, and nucleic acids 

that is related to oxidative modifications of these macromolecules. In addition, the enzymatic 

and non-enzymatic antioxidant response can be measured as a guide to indicate the presence 

of reactive species requiring quenching.  

 One of several limitations to measuring adducts in biological samples is the lack of 

specific information that can be determined on the identity, or amount of reactive species that 

has been generated. Most adducts are stable and thus there is no specific information on when 

the adduct was formed, or even which cell or cellular compartment was the source of the 

radical generation (Cobley et al., 2017; Nikolaidis et al., 2012b). Therefore, adducts provide 

limited information on the mechanisms responsible for their generation, they merely suggest 

radical species have been present and have interacted with a biomolecule.  

This is the main limitation in using adducts as a measure of oxidative stress as it is 

impossible to answer questions about the specific pathways of redox signalling involved in 

the reactions and the consequences of the oxidative modifications formed. For example, 

whether a modification might be beneficial/adaptational and part of a signalling process 

designed to stimulate favourable change versus detrimental/non-functional designed to 

promote degradation of the biomolecule or stimulate cell death (Margaritelis et al., 2016). To 

address these questions with more specificity in humans, the use of new methodological 

protocols such as proteomics and lipidomics could provide the break through required in the 

field of redox signalling and exercise (Margaritelis et al., 2016; McDonagh et al., 2014). The 

use of these techniques in an exercise setting is going to require new collaborations between 

sport scientists and redox biologists to fully elucidate the effects of exercise on redox 

signalling due to the expertise and equipment required to perform these analyses.  
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 The use of specific assays and enzyme-linked immunosorbent assay (ELISA) are 

primarily used to determine adduct quantity in any given biological sample and can be used 

to specifically quantify adducts to lipids, proteins and nucleic acids. Spectrophotometric 

assays, high-performance liquid chromatography (HPLC) and liquid/gas chromatography 

mass spectrometry (LC-MS, GC-MS) can also be used to quantify changes in antioxidant 

defences. Although these latter techniques are more sensitive and detect specific molecules of 

interest, they are expensive and require qualified technicians to operate. Therefore, the use of 

assays and commercially available ELISA kits have mainly been used by sport and exercise 

scientist due to their reproducibility, ease of use, especially when undertaking sample 

collection in the field, and cost effectiveness.  

 The use of some of these well-established techniques has come under criticism as new 

methodological advances have been developed (Cobley et al., 2017; Halliwell and Whiteman, 

2004; Sies, 2007). For example, the determination of lipid peroxidation through the detection 

of malondialdehyde (MDA) via the thiobarbituric acid reactive substances (TBARS) assay 

has come under criticism because of its lack of specificity in biological systems (Forman et 

al, 2015). In simple or purified systems, the addition of thiobarbituric acid (TBA) can give an 

accurate account on the amount of MDA as a measure of lipid peroxidation in a sample. 

 However, in more complexed systems, such as human plasma, TBA can react with a 

multitude of different compounds (sugars, amino acids, bilirubin, albumin, and non-related 

aldehydes) in addition to MDA, thus resulting in the non-specific measurement of TBA 

reactions within these biological samples (Forman et al., 2015; Gutteridge and Halliwell, 

1990; Sachdev and Davies, 2008). In addition to this, the boiling of samples during the 

TBARS assay has been proposed to induce lipid decomposition resulting in extraneous lipid 

peroxidation that does not reflect MDA generated in vivo (Cobley et al., 2017; Gutteridge and 

Halliwell, 1990). The gold standard measurement for lipid peroxidation is the quantification 
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of F2-isoprostanes using GC-MS. F2-isoprostanes are the result of free radical oxidation of 

arachidonic acid (Milne et al., 2013). However, even determining F2-isoprostane 

concentrations using GC-MS has come under some criticism. This is due to the peroxidation 

of arachidonic acid occurring either enzymatically or chemically, producing prostaglandin F2α 

(PGF2α) and 8-iso-prostaglandin F2α (8-iso-PGF2α) respectively; thus, leading to the 

overestimation of lipid peroxidation using this technique (van‘t Erve et al., 2015). These 

examples indicate the difficulty that currently exists in accurately measuring adduct 

formation within biological samples. To help combat these issues, using several different 

markers of oxidative change can provide a more robust indication of systemic oxidative 

stress. 

 An overlooked limitation to assessing oxidative stress, especially post-exercise, are 

the sampling time-points. After an acute bout of aerobic exercise, oxidative stress markers 

have been reported to reach their maximal/minimum concentrations from anywhere between 

immediately post-exercise up until 4 hours post-exercise (Michailidis et al., 2007). These 

time-points can be further affected depending on the modality of exercise, and whether the 

exercise is non-muscle damaging versus muscle damaging. In non-muscle damaging exercise, 

there is a monophasic response with oxidative stress markers reaching their maximal values 

immediately post-exercise up until 4 hours post-exercise. However, in muscle damaging 

exercise, there is a biphasic response. In this biphasic response, oxidative stress markers 

initially respond immediately post-exercise, in the same manner to non-muscle damaging 

exercise, and then a secondary response occurs between 24 and 48 hours post-exercise 

(Nikolaidis et al., 2012a). There is a possibility that some research studies could miss the 

maximal/minimum response of oxidative stress markers due to restricted sampling time-

points post-exercise. It is therefore important to choose sampling time-points that co-inside 

with the maximal/minimal concentrations of the marker of interest.   
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1.5 Exercise and Antioxidant Supplementation  

1.5.1 Impact of antioxidant supplementation on RONS mediated signalling post-exercise 

A growing area of research is now focused on the effect of consumption of 

antioxidant supplements on exercise-induced adaptations (Carmen Gomez-Cabrera et al., 

2012; Holloszy et al., 2012). It has been hypothesized that a potential decrease in RONS via 

antioxidant quenching could impact redox-sensitive signalling pathways. As discussed in 

section 1.4.2, RONS are responsible for the upregulation of genes associated with numerous 

processes of ‘exercise adaptation’ including upregulation of the endogenous antioxidant 

system. RONS act through the redox-sensitive transcription factors NK-κβ and AP-1, and the 

master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor-γ 

coactivator-1α (PGC-1α) (Kang et al., 2009). Therefore, it is possible that the use of 

antioxidant supplements in an exercise setting could impact redox-sensitive signalling 

pathways via quenching exercise-induced RONS.     

The effects of antioxidant supplementation on exercise-induced redox signalling have 

been studied in humans (Cumming et al., 2014; Paulsen et al., 2014; Ristow et al., 2009; 

Yfanti et al., 2010; Yfanti et al., 2012) and animals (Gomez-Cabrera et al., 2008; Gomez-

Cabrera et al., 2005; Higashida et al., 2011), and to date results from these studies have not 

determined whether antioxidant supplementation affects exercise adaptation.  

Initial studies conducted in rats reported antioxidant supplementation immediately 

before exercise [allopurinol (32 mg/kg)] inhibited the transcriptional activation of NF-κβ 

following a bout of exhaustive exercise (Gomez-Cabrera et al., 2005), and supplementation 

for a period of 3 weeks [vitamin C (500 mg/kg/d)] inhibited PGC-1α (Gomez-Cabrera et al., 

2008) compared to non-supplemented animals. Inhibition of these pathways resulted in 

diminished training-induced adaptations as shown by decreased gene expression of the 
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endogenous antioxidant system (SOD2, GPx-1), genes associated with mitochondrial 

biogenesis (mitochondrial transcription factor A (mTFA), nuclear respiratory factor 1 and 2 

(NRF1/NRF2)), and mitochondrial subunit protein content (cytochrome C (CyC)) (Gomez-

Cabrera et al., 2008; Gomez-Cabrera et al., 2005).  

In contrast to these findings, Higashida et al., (2011) reported no differences in 

endogenous antioxidant (SOD1, SOD2) or mitochondrial electron transport chain protein 

content (e.g. cytochrome oxidase subunit 4 COXIV) after rats were supplemented for 8 

weeks with vitamin C (750 mg/kg/d) and vitamin E (150 mg/kg/d) and submitted to 3 weeks 

of exercise. The differences observed in these studies could be explained by the duration of 

the exercise bouts, because increasing exercise duration has been shown to propagate the 

oxidative stress response in a time-dependent manner (Bloomer et al., 2007). The protocol 

undertaken in the study by Higashida et al., (2011) exposed animals to 6 hours of exercise per 

day, whereas, Gomez-Cabrera et al., (2008) exposed animals to 85 minutes of exercise per 

day. Therefore, the extended exposure of exercise-induced RONS could have overwhelmed 

the endogenous and exogenous antioxidant systems, even though a higher dose of vitamin C 

was administered (750 mg/kg/d versus 500 mg/kg/d), resulting in augmented redox signalling 

that was not observed in the Gomez-Cabrera et al., (2008) study where exercise duration was 

considerably less.  

Human studies, similarly, have given mixed outcomes. A number of studies have 

indicated that antioxidant supplementation can curtail training-induced adaptations through 

inhibition of genes associated with the endogenous antioxidant system and mitochondrial 

biogenesis (Morrison et al., 2015; Paulsen et al., 2014; Ristow et al., 2009). Ristow et al., 

(2009) demonstrated concurrent exercise training with vitamin C (1000 mg/d) and vitamin E 

(400 IU/d) supplementation for 4 weeks blunted the expression of genes associated with the 

endogenous antioxidant system (SOD1, SOD2, GPx-1) and mitochondrial biogenesis (PGC-
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1α/β, peroxisome proliferator-activated receptor gamma (PPARγ) in trained and untrained 

individuals. In another study consisting of trained participants, Paulsen et al., (2014) observed 

that 11 weeks vitamin C (1000 mg/d) and vitamin E (235 mg/d) supplementation combined 

with multi-intensity running 4 times per week, attenuated the increased protein concentrations 

of COXIV, cytosolic PGC-1α, and mRNA expression of the mitogen-activated protein kinase 

1 (MAPK1) that was observed in the non-supplemented group. Furthermore, Morrison et al., 

(2015) reported 8 weeks of vitamin C (1000 mg/d) and vitamin E (400 IU/d) supplementation 

attenuated the training-induced upregulation in skeletal muscle mTFA and SOD2 protein 

content upon completion of 4 weeks endurance training that coincided with the last 4 weeks 

of supplementation.  

Interestingly, the reductions in gene expression and protein content associated with 

the endogenous antioxidant system and mitochondrial biogenesis did not affect endurance 

performance (Morrison et al., 2015; Paulsen et al., 2014). Antioxidant supplementation, even 

at supra-physiological doses, did not influence changes in 𝑉̇O2max, performance in a 20m 

shuttle test (Paulsen et al., 2014), 𝑉̇O2peak, or maximal power output (Morrison et al., 2015); 

with both training groups demonstrating significant improvements from baseline. These 

studies highlight the difficulties of extrapolating changes in the cellular domain to 

performance outcomes in response to redox-sensitive signalling.  

In contrast to these studies, research conducted by Yfanti et al., (2010; 2012) reported 

16 weeks vitamin C (500 mg/d) and vitamin E (400 IU/d) supplementation combined with 12 

weeks of multi-intensity cycling 5 times per week did not have a negative effect on exercise-

induced training adaptations. Augmentation in the endogenous antioxidant system enzymes 

SOD1, CAT, GPx-1 (Yfanti et al., 2012)l. 2012) and SOD2 (Yfanti et al., 2010) occurred in 

both training groups post-intervention. Additionally, the mitochondrial enzymes citrate 
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synthase (CS) and β-hydroxyacyl-CoA dehydrogenase (β-HAD) were elevated in both 

training groups, suggesting an increase in endurance capacity through increased 

mitochondrial enzyme content (Perry et al., 2008). Further, in a study conducted by 

Cumming et al., (2014) which used the same training intervention and supplementation 

period described previously by Paulsen et al., (2014), no negative effect of supplementation 

was reported for vitamin C (1000 mg/d) or vitamin E (235 mg/d) on NF-κβ activation after an 

acute bout of exercise 5 weeks into the 11-week intervention. These preliminary findings 

persisted until the end of the intervention, with no differences in training-induced adaptations 

reflected by the same directional changes in SOD2, GPx-1, and GSH.    

 The lack of agreement in cellular adaptations between the studies could be related to 

the dose and timing of the supplement, although studies administering the same doses have 

reported opposing outcomes. None the less, there is a lack of consistency in the dose, 

frequency and timing of supplement in research studies. For example, participants in the 

Paulsen et al., (2014) study were instructed to consume 500 mg of vitamin C and 117.5 mg of 

vitamin E in the 3 hours preceding exercise, and to consume the remaining dose (500mg 

Vitamin C and 117.5mg Vitamin E) within 1 hour of exercise cessation. Contrastingly, in the 

study conducted by Yfanti et al., (2010; 2012) participants consumed 500 mg of vitamin C 

each morning, and it is feasible that plasma concentrations of vitamin C would start to decline 

in the hours following consumption (Padayatty et al, 2004). Although the studies by Ristow 

et al., (2009) and Morrison et al., (2015) do not approximately state the timing of the 

supplements before exercise training, both studies reported consumption of 500 mg of 

vitamin C twice daily; tentatively supporting the theory that the dose and timing of the 

supplement in the Yfanti et al., (2010; 2012) study was not sufficient to alter exercise-

induced adaptations related to redox signalling. However, the supplementation period used in 

these studies is not greater than 16 weeks. It could be questioned whether these 



29 

supplementation periods reflect the habitual consumption in the general exercising population 

and/or what affect commercially available doses could have on exercise-induced adaptations 

that are related to redox-sensitive signalling pathways.   

 

1.5.2 Polyphenol supplementation on exercise-induced oxidative stress and inflammation  

As introduced in section 1.2.3. polyphenol compounds have been identified as 

compounds with antioxidant and anti-inflammatory properties. This potential dual role has 

led researchers to investigate the effects of consuming polyphenols during exercise with a 

view to determine whether polyphenol compounds can attenuate exercise-induced oxidative 

stress and inflammation. Thus, hypothesizing that polyphenols could potentially improve 

recovery and/or have an ergogenic effect. 

Fruit and vegetables are the main food sources containing varying combinations and 

amounts of polyphenols. Several thousand polyphenol compounds can be found in a variety 

of foods, and can be divided into four distinct groups according to the arrangement of their 

aromatic rings and the structures connecting them (Manach et al., 2004; Myburgh, 2014). The 

four main classes of polyphenols are: phenolic acids, flavonoids, stilbenes, and lignans. These 

groups can then further be sub-divided into 10 or more subclasses of polyphenols, with these 

subclasses containing hundreds of derivatives (Manach et al., 2004; Myburgh, 2014). 

Flavonoids have the greatest number of subclasses that are categorised according to their 

structural properties: flavonoids, flavones, isoflavones, flavanones, flavanols, and 

anthocyanins. Phenolic acids consist of two additional subclasses made up of benzoic acid 

and cinnamic acid derivatives. Stilbenes are comprised of one major subclass, resveratrol, 

which is responsible for the production of the derivatives in this class (Chong et al., 2009; 

Jeandet et al., 2010). Lignans are the least abundant polyphenol found in foods, with no 
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major subclasses. Derivatives of lignans found in food are all converted into the metabolite 

enterolignan in the human intestine (Kuijsten et al., 2005; Peterson et al., 2010)). Table 1.1 

provides an overview of the main polyphenol classes, their derivatives and food sources.   

At present, there is a great deal of interest in functional foods that exert a nutraceutical 

affect. One such food group believed to have nutraceutical properties are cherries. Cherries 

contain a variety of polyphenol compounds that include phenolic acids (gallic acid, 

neochlorogenic acid, 3-coumaroylquinic acid, chlorogenic acid and ellagic acid), flavonols 

(quercetin, kaempferol, isoramnetin. and their glucosides), flavanols (catechin, epicatechin 

and procyanidins) and anthocyanins (malvidin, cyanidin, pelargonidin, peonidin, delphinidin, 

petunidin) (Howatson et al., 2010; Howatson et al., 2012). The polyphenol compounds 

believed to exert the main antioxidant and inflammatory response within cherries are the 

subclasses of anthocyanins (Blando et al., 2004; McCune et al., 2011). 

     Research has suggested that supplementation with a cherry based supplement can 

have a beneficial effect on reducing oxidative stress and inflammation after exercise. 

Howatson et al., (2010) was the first to demonstrate that cherry supplementation before, on 

the day of and 48 hours after a marathon resulted in a significant attenuation in the production 

of interleukin-6 (IL-6) upon completion of the race, and C-reactive protein (CRP) 24 and 48 

hours after the race compared to a control drink. These differences could be attributed to the 

significantly elevated levels of the plasma total antioxidant status (TAS) throughout the 

intervention period, and the maintenance of TBARS levels in the cherry supplemented 

runners. Levers et al., (2016) reported similar findings after participants completed a half-

marathon. A cherry supplemented group produced significantly lower levels of IL-6, 

interleukin-13 (IL-13), and interleukin-2 (IL-2) 60 minutes, 24 and 48 hours after the half-

marathon, coupled with significantly elevated TAS for the same time periods, when 

compared to a non-supplemented group of runners.  
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Table 1.1 Classification of polyphenol compounds found in fruit and vegetables, arranged by 

their chemical structures into subclasses, derivatives, and potential food sources (Beecher, 

2003; Manach et al., 2004) 

Class Subclass Derivatives 

 

Food Source 

 

    

Phenolic acids Benzoic acid Protocatechuic acid Raspberries/blackberries, 

tea leaves    Gallic acid 

    

 Cinnamic acid Caffeic acid Coffee beans, cherries, 

plums, apples   Chlorogenic acid 

  Coumaric acid 

  Sinapic acid 

    

    

Flavonoids Flavones Apigenin Green leafy spices, 

parsley, celery    Luteolin 

  Chrysin 

    

 Flavanones Hesperetin Citrus fruits and juices 

  Naringenin 

  Eridodictyol 

    

 Isoflavones Daidzein Soybeans, soy foods, 

legumes    Genistein 

  Glycitein 

    

 Flavonols Quercetin Yellow onions, kale, 

leeks   Kaempferol  

  Myricetin 

  Isorhamnetin 

    

 Flavanols Catechin Teas, red wines, red 

grapes, cocoa, tannins    Gallocatechin 

  Epicatechin  

  Epigallocatechin 

  Epigallocatechin 

Gallate 

    

 Anthocyanins  Cyanidin  Red, purple and blue 

berries – strawberries, 

blueberries, black grapes,  

red grape juice  

  Pelargonidin 

  Peonidin  

  Delphinidin 

  Malvidin 
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  Petunidin 

    

    

Stilbenes  Resveratrol  Trans and cis-

resveratrol  

Grapes  

  Trans and cis-piceid Pines 

  Trans-arachidin-3 Peanuts 

    

    

Lignans  Secoisolariciresinol Chickpeas, flax seeds, 

sesame seeds   Matairesinol 

  Lariciresinol 

    

 

The only disparity between the studies was the effect of cherry supplementation on 

TBARS concentrations. Levers et al., (2016) did not find any differences in TBARS at any 

time-point during the intervention period, whilst Howatson et al., (2010) reported significant 

differences after 48 hours. The additional workload during a marathon compared to a half-

marathon could explain this difference, but it is highly speculative. Both studies identified an 

effect of cherry supplementation in attenuating exercise-induced inflammation, but its 

effectiveness in reducing oxidative stress is still unclear. The elevation in TAS observed in 

the supplemented group did not seem to have a beneficial effect on reducing exercise-induced 

oxidative stress, since the markers of oxidative stress used were not significantly altered. 

Whether augmented TAS contributes to the perturbations in inflammation still needs to be 

elucidated.  

A study by Bell et al., (2014c) has demonstrated that the consumption of a cherry 

supplement before (4 days) and during 3 days of prolonged, high-intensity, stochastic cycling 

was sufficient to reduce oxidative stress over the intervention period compared to a non-

supplemented group. Throughout the intervention period the non-supplemented group had 

significantly higher levels of lipid hydroperoxides compared to the supplemented group, 

before and upon completion of each cycling trial. The inflammatory response was also 
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significantly higher in the non-supplemented group across the intervention period. 

Unfortunately, there was no data pertaining to TAS in the study, making it difficult to 

conclude whether the antioxidant capacity of the supplement was responsible for the 

differences in the groups. The use of additional oxidative stress markers could have provided 

a more concise interpretation of how the supplement effects systemic oxidative stress.  

Bowtell et al., (2011) reported ingestion of a cherry supplement before (7 days), on 

the day of, and for 48 hours after intensive strength training had a trend to reduce the increase 

in protein carbonyls (PC) 24 and 48 hours post-exercise compared to a control group. When 

the raw values were adjusted to the percentage change from baseline, a significant trial effect 

was reported, with the supplemented group displaying a less pronounced increase in PC 24 

and 48 hours post-exercise. Interestingly, and in contrast to previous studies, CRP (Bell et al., 

2014c; Bell et al., 2015; Howatson et al., 2010) and TAS (Howatson et al., 2010)  was not 

different between the two conditions at any time-point during the study. Furthermore, 

McCormick et al., (2016) reported that cherry supplementation had no effect on reducing the 

inflammatory markers IL-6 and CRP after completing a week of intensified water-polo 

training compared to a placebo group.   

The use of between-subject  (Bell et al., 2014c; Bell et al., 2015; Howatson et al., 

2010) versus a within-subject design (Bowtell et al., 2011; McCormick et al., 2016) could 

explain the differences between these studies. Although groups can be matched for age, sex, 

fitness levels, and stature; one variable that cannot be controlled for is the individual response 

to exercise, potentially leading to interindividual variability between two independent groups. 

An individual’s baseline level of oxidative stress can influence the subsequent oxidative 

stress response to exercise. Margaritelis et al., (2014) have provided evidence suggesting 

individuals with higher baseline oxidative stress levels have a less pronounced change in 

these markers following exercise, whereas, individuals with low baseline levels have a 
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greater increase. And in contrast, individuals with greater baseline glutathione levels 

demonstrated a greater reduction in glutathione post-exercise, with the reverse effect 

happening with lower baseline glutathione levels. Furthermore, some individuals encountered 

reductive stress after exercise, where 13% exhibited a decrease in oxidative biomarkers and 

10% exhibited an increase in glutathione levels that were in opposite directions of the main 

group findings. This highlights how exercise intervention studies with a between-subject 

design could be influenced by an individual’s response to exercise, rather than the 

intervention per se. A within-subject study design avoids co-founding variables, such as 

interindividual variability, and allows researchers to fully elucidate a treatment effect when 

assessing oxidative markers post-exercise.    

 

1.5.3 Polyphenol supplementation on exercise recovery and subsequent days performance    

A hypothesized benefit of consuming a cherry supplement in the days leading up to, 

on the day of, and the days following strenuous exercise, is in its potential ability to promote 

recovery and therefore improve performance. Several studies have reported a beneficial effect 

of cherry supplementation on muscle recovery in the days following strenuous aerobic 

exercise (Bell et al., 2014c; Howatson et al., 2010), resistance training (Bowtell et al., 2011; 

Connolly et al., 2006), and prolonged intermittent exercise (Bell et al., 2016). The use of 

maximal voluntary isometric contractions (MVIC) and maximal voluntary contractions 

(MVC) have primarily been performed to assess muscle recovery. Studies have indicated that 

cherry supplementation can maintain or result in a lower percentage decrease in MVC/MVIC 

after completing strenuous exercise for a period of 24 to 72 hours (Bell et al., 2015; Bowtell 

et al., 2011; Connolly et al., 2006; Howatson et al., 2010). In addition to improved muscle 

recovery, cherry supplementation can further reduce muscle soreness associated with 
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strenuous exercise (Bell et al., 2016; Connolly et al., 2006; Kuehl et al., 2010; Levers et al., 

2016). Taken together, the combination of improved muscle recovery and a reduction in 

muscle soreness following strenuous and/or muscle damaging exercise could allow for better 

performance on subsequent days of exercise when consuming a cherry supplement.  

 The use of MVC and MVIC have provided an initial indication that cherry 

supplementation could be beneficial in improving exercise performance on subsequent days. 

This has been shown either by a less pronounced reduction, or maintenance in MVC or 

MVIC after performing strenuous exercise, in participants consuming cherry compared to a 

control drink. However, MVC and MVIC are not measures of exercise performance per se, 

which makes it difficult to interpret these findings, and apply them to individual sports and/or 

sporting events. For example, Bell et al., (2015) reported a significant group effect over a 72-

hour period for MVIC after completing a high-intensity cycling protocol. The cherry 

supplemented group maintained MVIC over the 72-hour period, whereas, the placebo group 

failed to maintain MVIC compared to baseline measures. However, when a 6 second 

maximal power test was performed over the same period, there was no difference in power 

output between the two groups. These results indicate that MVIC and MVC can provide a 

good indication of muscle recovery, but translating these findings to applied sport 

performance may not be applicable. There is therefore a need to investigate the effects of a 

supplement on a validated performance outcome in applied sport settings, or in validated 

measures of performance more applicable to sporting settings, such as exercise to exhaustion, 

time-trial, or protocols that relate to the demands of a specific sport.    

Studies that have used applied performance outcomes in the setting of a particular 

sport when assessing the effects of cherry supplementation on subsequent days of exercise 

performance have provided equivocal results. Performance benefits have been reported after 

completing a modified version of the Loughborough intermittent shuttle test (LIST) in semi-
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professional footballers (Bell et al., 2016). In the days following the LIST protocol, counter 

movement jump (CMJ) was decreased from baseline in both the cherry supplemented and 

placebo groups, however, the reduction in the cherry supplemented group was significantly 

attenuated at 24 and 48 hours post-LIST compared to placebo. Furthermore, the agility 

performance improved by 3% over a 72-hour period in the supplemented group, and 20m 

sprints were performed significantly quicker at 48 hours post supplementation when 

compared to the placebo group (Bell et al., 2016). The same authors have also reported the 

benefits of cherry supplementation on cycling efficiency 24 hours after completing a high 

intensity cycling protocol compared to placebo, but as mentioned previously there was no 

difference between the groups when assessing 6 second maximal power output over a 72-

hour period (Bell et al., 2015).  

The null findings in performance outcomes have also been reported in repeated days 

of cycling (Bell et al., 2014c) and in water-polo players (McCormick et al., 2016). In the 

study by Bell et al., (2014c), the authors found pre-supplementation (4 days) and 

supplementation on the day of 3 high-intensity cycling trials, did not affect the amount of 

work performed during 9 minutes of simulated time-trial efforts throughout the 3 cycling 

trials compared to a control group. McCormick et al., (2016) used a battery of performance 

measures related to water-polo to assess the effects of cherry supplementation after 

completing a week of intensified training. In their crossover design study, the authors 

reported no significant differences in vertical jump height, water-polo intermittent swim test, 

repeated swim test or 10 m swim sprints.  

Although initial findings using cherry supplementation provided promising evidence 

that post-exercise recovery and exercise performance on subsequent days could be improved 

through its consumption, studies using applied outcome measures do not seem to support this 

view at present. Study design could potentially explain some of the differences observed 
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between studies, in relation to the effects of cherry supplementation on exercise-induced 

inflammation and oxidative stress as previously explained. To fully elucidate the effects of 

cherry supplementation on post-exercise recovery and subsequent days performance, within-

subject design studies with applied performance outcomes should be conducted in 

appropriate populations.   

 

1.6 Aims of the thesis       

 The overarching aim of this thesis was to examine antioxidant supplementation in free 

living cyclists. Numerous studies had been conducted in laboratory settings, with strict 

control of diet, training, and supplement dose. However, it was not clear if the findings from 

these studies were applicable to recreational cyclists. Thus, this thesis aimed to explore, and 

gain a greater understanding of, the use and effects of antioxidant supplementation in cyclists. 

Polyphenol consumption is becoming increasingly popular in athletes, but little is known 

about the efficacy in free living individuals, and thus a further aim was to explore the effects 

of a popular cherry concentrate in cyclists.  

Data collated within this thesis presents information on the reasons why cyclists 

choose to consume antioxidant supplements and includes data on the effects of 

supplementation on the exercise-induced oxidative stress response to cycling.  

The study presented in Chapter two aimed to identify the rationale for 

supplementation, and to examine the supplementation habits of recreational cyclists 

competing in an organised cycling sportive. Chapter three aimed to investigate the effects of 

100 km cycling sportive on markers of oxidative stress in non-competitive but recreationally 

fit cyclists. Chapter four aimed to explore the effects of habitual antioxidant supplementation 

(≥ 6 months) on endogenous antioxidant content at rest, and to assess whether 
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supplementation affected the response to steady-state cycling compared to a non-

supplemented group in well-trained cyclists, and finally, Chapter five aimed to investigate 

the effectiveness of a polyphenol supplement on exercise-induced oxidative stress, and 

inflammation, during steady-state cycling; and to determine its effectiveness on recovery and 

subsequent performance in trained cyclists. 
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Chapter Two 

2. The prevalence of antioxidant supplementation in amateur cyclists undertaking the Wiggle 

Dragon Ride
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2.1 Abstract 

In the United Kingdom, cycling participation has had the largest increase in 

popularity compared to any other sport since 2013. Both elite and amateur athletes regularly 

consume dietary supplements, perceived to maintain a balanced diet and immune function, 

and to improve performance and recovery. Studies reporting on the consumption of dietary 

supplements often combine supplement types, and in doing so the reasons for consuming a 

specific supplement is unclear. Similarly, by not assessing supplement use in specific 

sporting disciplines, studies have been unable to tease out and relate supplement use to the 

particular demands of a specific sporting discipline.  Therefore, it is difficult to extrapolate 

whether an athlete is consuming a dietary supplement for its intended purpose. The aim of the 

present study was to assess the use of antioxidant supplements in cyclists undertaking the 

2013 Wiggle Dragon Ride Sportive, and to determine whether the reasons for consuming 

antioxidant supplements in this population is supported from current empirical findings. On-

line questionnaires were completed by 75 male participants with an age range between 18 to 

69, in the 2 months before and after the event. Out of the 75 male responders, 40% reported 

taking an antioxidant supplement, with 63% stating that they had been consuming antioxidant 

supplements for a period > 12 months. The main reasons given for consuming supplements 

were: to improve immunity; improve performance; and reduce fatigue. Multivitamins and 

vitamin C were the antioxidant supplements used most frequently by the current cohort. 

Weekly training hours (p = 0.85) were not related to the intake of supplementation, as has 

previously been reported in elite athletes. Although studies have identified the use of 

multivitamins and vitamin supplements in national and international athletes (Luc et al, 2012; 

Douscombe, et al, 2010), there is no evidence to support the consumption of these 

supplements will improve immunity, performance, or recovery. Until such evidence emerges 

individuals should consider whether antioxidant supplementation is entirely necessary.  
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1.2 Introduction 

Over the past 10 years in the United Kingdom (UK) there has been an increased 

participation in cycling, with a reported 2,000,000 people now undertaking at least 30 

minutes of cycling once per week. This has resulted in cycling becoming the 3rd most 

participated in sport within the UK behind athletics and swimming (Sport England, Active 

People Survey 7 October 2012 - October 2013). Cycling sportives are organised road cycling 

and mountain biking events held for amateur cyclists, covering distances from 30 km to 300 

km, and offering a multitude of terrains to challenge the rider’s ability level. The increased 

popularity of cycling has given rise to a large number of cycling sportives being held each 

year, with a 29% increase in 2013 (British Cycling, 2012), and a 900% increase in organised 

cycling sportives from 2002 to 2012 (Wood, 2012). The Wiggle Dragon Ride is an annual 

cycling sportive in South Wales, attracting cyclists to attempt the mountainous routes 

covering distances of 120 km, and 210 km.   

Dietary supplement consumption is prevalent in elite (Braun et al., 2009; Dascombe et 

al., 2010; Heikkinen et al., 2011; Lun et al., 2012; Ronsen et al., 1999) and non- elite athletes 

(Burns et al., 2004; Giannopoulou et al., 2013; Knez and Peake, 2010; Tian et al., 2009; 

Tsitsimpikou et al., 2011), amongst differing age groups (Braun et al., 2009; Knez and Peake, 

2010), genders (Braun et al., 2009; Knez and Peake, 2010), and sporting disciplines (Braun et 

al., 2009; Dascombe et al., 2010; Giannopoulou et al., 2013; Knez and Peake, 2010; Ronsen 

et al., 1999). Dietary supplements are often used by athletes of varying ability levels as they 

are perceived to maintain and/or improve health, boost immunity, prevent and/or reduce 

symptoms of upper respiratory tract infections (URTI), reduce fatigue, supplement poor diets, 

and improve performance and/or recovery (Braun et al., 2009; Dascombe et al., 2010; Knez 

and Peake, 2010; Tian et al., 2009). There is further evidence to suggest athletes who 

compete in individual events are more likely to consume dietary supplements compared to 
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team based sports (Giannopoulou et al., 2013; Heikkinen et al., 2011); however, the greatest 

proportion of research into supplementation use has been conducted in multi-sporting 

disciplines and not focused on a single mode of sport.   

Dietary supplements can be categorised in to two distinct categories: macronutrient 

and micronutrient supplements. The macronutrient supplements primarily consist of proteins, 

and carbohydrates; whilst micronutrient supplements consist of minerals, vitamins, and 

antioxidants. Macronutrients are associated with improved recovery and performance, and 

these supplements have been extensively researched in cyclists. Protein consumed in 

combination with carbohydrates after prolonged cycling can promote myofibrillar protein 

synthesis (Breen et al., 2011; Howarth et al., 2009); whilst carbohydrate ingestion before, 

during, and after competition can result in improved cycling performance (Burke et al., 2011; 

Jeukendrup, 2010; Smith et al., 2013).  

Micronutrients function primarily as coenzymes and cofactors in metabolic processes 

rather than being metabolic substrates themselves. Coenzymes and cofactors are essential in 

metabolism and provide components required for the efficient running of metabolic 

pathways. Vitamins are important macronutrients owing to their function in energy 

metabolism and as antioxidants (Huskisson et al., 2007; Maughan, 1999). Not all vitamins are 

capable of being an antioxidant because they do not have the capability to quench reactive 

oxygen and/or nitrogen species (RONS). The main vitamins classed as antioxidants are 

vitamin C and vitamin E, and together they provide protection against RONS in aqueous and 

lipid environments respectively (Niki, 2014; Padayatty et al., 2003).   

Multivitamin and vitamin supplements are the most prevalent dietary supplements 

consumed by athletes. The frequency of vitamin and antioxidant use in elite athletes ranges 

from 76% to 20% (Braun et al., 2009; Dascombe et al., 2010; Heikkinen et al., 2011; Lun et 
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al., 2012), collegiate athletes 73% to 50% (Burns et al., 2004; Tian et al., 2009), well-trained 

athletes 60% (Knez and Peake, 2010), and recreational exercisers 50% (Tsitsimpikou et al., 

2011). Athletes who undertake large volumes of training and/or compete at a high level of 

competition, such as national or international competitions, consume greater amounts of 

dietary supplements compared to athletes with lower overall training volumes and/or compete 

at an inferior competition level.  

Giannopoulou et al., (2013) reported that dietary supplementation was prevalent in 

44.8% of athletes training for > 5 times per week, 26.1% of athletes training for > 3 times per 

week, and 16.7% of athletes training for 1-2 days per week. These results were consistent 

with findings from a study conducted in university students from Singapore, with students 

training > 5 hours per week reporting increased intake of multivitamin and antioxidant 

supplements, and those who competed in > 3 sports per week being more likely to consume a 

vitamin C or multivitamin supplement, compared to those who reported undertaking less 

exercise (Tian et al., 2009). Furthermore, a study conducted in young elite German athletes 

discovered that 100% of athletes who had achieved top level positions in the Olympic Games 

or World Championships consumed dietary supplements; with a decrease in frequency 

between 70% and 80% for athletes competing at international, national, and regional levels 

(Braun et al., 2009). These studies suggest the amount of time spent training and/or the 

competition level of an athlete could influence dietary supplementation, however this has not 

been investigated in amateur sporting events or in a single mode of exercise.  

The aim of the present study was to investigate the use of antioxidant supplements in 

recreational cyclists competing in an organised sportive. Furthermore, the study aimed to 

determine whether there are any differences in weekly training hours, cycling experience, or 

age between those cyclists who do, and do not, consume antioxidant supplements; and to 



44 

explore the reasons for why supplementation occurs. This is the first study to report these 

factors within participants competing in an amateur cycling event.   
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1.3 Methods 

Seventy-five male amateur cyclists (aged 18-69) volunteered to participate in this 

study. They were all registered in the 2013 Wiggle Dragon Ride Sportive. Participants were 

identified by their use of antioxidant supplements as non-supplemented cyclists or 

supplemented cyclists. The Wiggle Dragon Ride is a cycling sportive held near the town of 

Neath in the South of Wales, United Kingdom; incorporating routes of 120 km (Medio 

Fondo) and 210 km (Gran Fondo) with altitude gains of 1850 m and 3350 m respectively. All 

participants were informed of the risks and benefits of the study and individual consent was 

obtained before the participant could complete the questionnaire. Ethical approval for the 

study was obtained through the University of Birmingham’s Science, Technology, 

Engineering and Mathematics Ethical Review Committee. 

 

Data Collection and Questionnaire 

All data was obtained using an online questionnaire (Appendix 1). The questionnaire 

was advertised in monthly news emails sent to participants undertaking the 2013 Wiggle 

Dragon Ride from the organisers of the event. Participants were invited to complete the study 

via a link to the questionnaire either in the 2 months preceding the event or up to a period of 2 

months following the completion of the event The online questionnaire collected categorical 

data on participants age (18-24, 25-29, 30-34...65-69, 70-74, 75+),  years cycled (< 3 years, 

4-7 years, 8-11 years, > 12 years), training hours per week (0-3 hours, 4-6 hours, 7-9 hours, > 

10 hours), route undertaken (Medio Fondo, Grand Fondo), the frequency of consuming foods 

containing antioxidants (more than once a day, once a day, 4-6 days a week, 1-3 days a week, 

at least once a month, less than once a month, never), use of antioxidant supplements 

(Yes/No). If answered no the questionnaire was completed; however if the participant 
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answered yes, then they were asked additional questions related to their supplementation: 

period consumed for (< 6 months, 6-12 months, > 12 months), reasons for consuming 

antioxidant supplements (boost immunity/improve health, peer recommendations, improve 

performance, reduce fatigue/recovery time, improve training adaptations, dietician/sport 

nutritionist recommendation, maintain a balanced diet), type(s) of antioxidant/vitamin 

supplements consumed (vitamin C, vitamin E, multi-vitamin….other-please specify 

additional supplements not on list) and frequency of consumption (more than once a day, 

once a day, 4-6 days a week, 1-3 days a week, at least once a month, less than once a month, 

never). If questions relating to supplementation usage were not completed, the participant 

was excluded from the study. In total, 88 questionnaires were collated at the end of the data 

collection, 2 questionnaires were excluded due to gender, and a further 11 questionnaires due 

to incomplete data sets. This resulted in 85% of the total number of questionnaires being used 

for data analysis.   

 

Analysis of results    

The results were electronically transferred to Microsoft Excel where they were 

collated and analysed. Differences between groups was analysed using SPSS software for 

Windows 22 (SPSS Inc, Chicago, IL, USA). The data was analysed using descriptive 

statistics, including medians, modes, and frequency in percentages.  To determine differences 

between the supplemented and non-supplemented groups for the variables of interest (age, 

years cycled, training hours per week, and route undertaken on the day of the race) a chi-

squared (χ2) analysis was performed. Significance was accepted at p ≤ 0.05.  
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1.4. Results 

The average age of the participants fell within the 40-44 years of age group category, 

and this finding was replicated in both the supplemented and non-supplemented groups, with 

no significant differences for age between the groups (χ(1) = 6.46, p = 0.692) . When 

participants were grouped according to age, the largest number of non-supplemented 

participants (25%, n = 11) was recruited in the 45-49 years’ age range, and the largest number 

of supplemented participants (23%, n = 7) was in the 40-44 years age range (Figure 2.1). 

 

 

Figure 2.1 The distribution of age ranges for all of the participants and for the supplemented 

and non-supplemented groups. All values are expressed as percentages. White bars = 

supplemented group, light grey bars = non-supplemented group, and dark grey = total 

participants.  

The average amount of years spent cycling by the participants was in the 4-7 years’ 

category, and this finding was replicated in both groups, with no significant differences 

between the groups for years spent cycling (χ(1) = 2.06, p = 0.56) . Thirty-nine percent (n = 

29) of participants reported cycling for 12+ years, 32% (n = 10) of the supplemented group 

and 43% (n = 19) of the non-supplemented group (Figure 2.2). 
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Figure 2.2 Cycling experience measured in years cycled. All values are expressed as 

percentages. White bars = supplemented group, light grey bars = non-supplemented group, 

and dark grey = total participants.  

There was no significant difference between the groups for the amount of hours spent 

training per week (χ(1) = 0.781, p = 0.854) . The category with the greatest number of 

participants in was the 4-6 hours of cycling per week (44%, n = 33) for all of the participants, 

and this finding was replicated for the supplemented (42%, n = 13) and non-supplemented 

groups (45%, n = 20) (Figure 2.3). 

The Gran Fondo was undertaken by 68% (n = 51) of the participants, and the Medio 

Fondo 28% (n = 21). Four percent (n = 3) did not specify a route. The Medio Fondo was 

undertaken by 19% (n = 6) of the supplemented group and 34% (n = 15) of the non-

supplemented group; with the Gran Fondo undertaken by 77% (n = 24) of the supplemented 

group and 61% (n = 27) of the non-supplemented group. There was no significant difference 

between the routes undertaken by the groups, (χ(1) = 2.09, p = 0.148) (Figure 2.4).        

 

0%

10%

20%

30%

40%

50%

0-3 4-7 8-11 12+

P
er

ce
n

ta
g

e 
o

f 
P

a
rt

ic
ip

a
n

ts

Years Cycled



49 

 

Figure 2.3 The distribution of weekly training hours undertaken by the participants. All 

values are expressed as percentages. White bars = supplemented group, light grey bars = non-

supplemented group, and dark grey = total participants.  

 

 

Figure 2.4 The routes undertaken by the participants at the Wiggle Dragon Ride. All values 

are expressed as percentages. White bars = supplemented group, light grey bars = non-

supplemented group, and dark grey = total participants.  
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Antioxidant supplementation 

In total, 41% (n = 31) of the participants reported consuming an antioxidant 

supplement and 59% (n = 44) of the participants did not take any form of antioxidant 

supplementation. In the supplemented group 61% (n = 19) reported supplementing for a 

period > 12 months, 19.5% (n = 6) had been supplementing for a period < 6 months, and 

19.5% (n = 6) had used supplements for a period > 6 months but < 12 months (Figure 2.5). 

 

Figure 2.5 Duration of antioxidant supplementation for the supplemented group. All values 

are expressed as percentages.  

The type of antioxidant supplements reported by the participants were: multivitamins 

(47%), vitamin C (32%), vitamin E (17%), and other (4%) (Figure 2.6). The main reasons 

given for using an antioxidant supplement were: to improve immunity (43%, n = 25), reduce 

fatigue (17%, n = 10), improve performance (16%, n = 9), improve exercise adaptations 

(10%, n = 6), maintain a balanced diet (9%, n = 5), professional recommendations (3%, n = 

2), and peer recommendations (2%, n = 1) (Figure 2.7).  
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Figure 2.6. The frequency of each antioxidant supplement used within the supplemented 

group. All values are expressed as percentages.  

 

 

Figure 2.7 Rationale for the use of antioxidant supplements amongst the supplemented 

group, all values are expressed as percentages.  
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The consumption of antioxidant supplements was reported to be between more than 

once a day to only once per month (Figure 2.8). The frequency for consuming a multivitamin 

supplement was 5% (n = 1) for more than once a day, 68% (n = 15) for once a day, 9% (n = 

2) for 4-6 days a week, 14% (n = 3) for 1-3 day per week, and 5% (n = 1) for less than once a 

month. The frequency for consuming a vitamin C supplement was 7% (n = 1) for more than 

once a day, 47% (n = 7) for once a day, 13% (n = 2) for 4-6 days a week, 13% (n = 2) for 1-3 

day per week, and 20% (n = 3) for less than once a month. The frequency for consuming a 

vitamin E supplement was 12.5% (n = 1) for more than once a day, 50% (n = 4) for once a 

day, 12.5% (n = 1) for 4-6 days a week, 12.5% (n = 2) for 1-3 day per week, and 12.5% (n = 

1) for less than once a month. The frequency of consumption for other antioxidant 

supplements was reported to be 100% (n = 2) for less than once a month (quercetin and grape 

seeds).  The average number of antioxidant supplements used by the participants was 1 with 

68% (n = 21). Nineteen percent (n = 6), reported using 2 antioxidant supplements, and 13% 

(n = 4) reported using 3 or more antioxidant supplements (Figure 2.9).   

 

 

 

 



53 

 

Figure 2.8 The reported rate of consumption for each antioxidant supplement on a daily to 

monthly basis. White bars = more than once a day, light grey bars = once a day, dark grey = 4 

to 6 times a week, black and white stripe bars = 1 to 3 times a week, and grey and white 

stripe bars = less than once a month. 

 

 

Figure 2.9 The number of antioxidant supplements consumed by the supplemented group. all 

values are expressed as percentages.  
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1.5 Discussion 

Vitamin and antioxidant supplements are the most common dietary supplements used 

by elite, non-elite and recreational exercisers taking part in various sporting disciplines. 

Previous studies have reported supplementation frequency rates between 75% and 20% 

(Braun et al., 2009; Dascombe et al., 2010; Heikkinen et al., 2011; Lun et al., 2012). The 

present study focused only on antioxidant supplementation. Forty one percent of participants 

in the study reported taking at least one supplement. There were no statistical differences 

between the supplemented and non-supplemented groups when assessing for age, training 

hours per week, amount of years spent cycling, or the route undertaken by the participants. 

The present study indicates training volume did not influence the frequency of 

antioxidant supplementation in recreational cyclists. Previous research has indicated that 

athletes undertaking > 5 hours a week of training are more likely to use multivitamin, 

antioxidant, and dietary supplements (Giannopoulou et al., 2013; Tian et al., 2009). However, 

the findings from the present study demonstrate the volume of training did not influence 

incidence of supplementation, as equal numbers of participants in the present study reported 

supplementing and not using supplements (Figure 2.3). The reason for these discrepancies 

could be attributed to the population surveyed, both in terms of elite vs amateur and in terms 

of the type of sport being undertaken. The studies conducted by Tian et al., (2009) and 

Giannopoulou et al., (2009) assessed athletes from a variety of sporting backgrounds with 

endurance sports accounting for 9% and 0.4% of the total sample size, respectively. When 

examining factors likely to influence incidence of supplementation, if the results presented in 

the current study are taken together with previous studies, this may suggest the type of sport 

may influence the prevalence of antioxidant supplementation rather than the amount of time 

spent training on a weekly basis.  
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Furthermore, Lun et al., (2012) collected data pertaining to dietary supplementation 

within high performance athletes, which indicated the frequency of supplementation 

increased with the addition of weekly training hours. In this study, the incidence of 

supplementation amongst athletes within different training volume groups increased from 

66% for those who trained between 0-5 hours a week, up to 95% in athletes training for > 25 

hours a week. The same trend was observed with the consumption of multivitamin 

supplements with an increase in weekly training hours accounting for an increase in 

multivitamin supplementation from 33% to 63%. In contrast, the results of the current study 

found that amateur cyclists, who report above 10h of weekly training hours, do not habitually 

supplement more than those training 4-6hrs per week. Taken together it may be speculated 

that training volume is a more reliable predictor for supplementation habits in elite athletes 

compared to amateurs.  

This study observed that there is a high prevalence of antioxidant supplementation in 

cyclists aged between 35 and 49. Many studies have focused on groups of athletes with mean 

ages between 20 and 30 (Braun et al., 2009; Burns et al., 2004; Dascombe et al., 2010; 

Giannopoulou et al., 2013; Lun et al., 2012; Ronsen et al., 1999; Tian et al., 2009), and only 

one previous study has assessed athletes’ with a mean age above 30 (Knez and Peake, 2010). 

By studying elite athletes who have competed at the Olympic Games, World Championships, 

national level competitions, and athletes attending national sporting institutes; these studies 

have only been representative of elite cohorts and not representative of the recreational and/or 

ageing athlete. A study analysing UK high performance athletes indicated the age group with 

the highest frequency of supplementation was the 24 to 29 age group, with athletes over 40 

representing 4.1% of the full sample and 1.7% of the supplement user group (Petroczi et al., 

2008). These results were replicated in Finnish Olympic athletes, with the ‘over 24’of years’ 

age group consuming significantly higher amounts of vitamin supplements and overall 
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dietary supplements compared to the ‘under 21’ age group; unfortunately, the study did not 

provide any additional sub-groups beyond the ‘over 24’ group, so it is not possible to 

establish if there were athletes aged over 30 in their analysis (Heikkinen et al., 2011). The 

present study highlights the frequency of supplementation of antioxidant supplements in an 

age group older than 30 years of age and in a cohort of non-elite athletes, representing the 

wider population of cycling enthusiasts.    

The current study sought to identify the rationale for using antioxidant supplements in 

a non-elite cycling cohort. The most frequent reason given was to improve immunity (43%). 

Other reasons given were to reduce fatigue (16%), improve performance (16%), improve 

exercise adaptations (11%), and maintain a balanced diet (9%). These findings are similar to 

previous research conducted in elite (Braun et al., 2009; Lun et al., 2012) and non-elite 

athletes (Knez and Peake, 2010; Tian et al., 2009; Tsitsimpikou et al., 2011) and support 

common misconceptions that supplementation will enhance immunity levels.  

After prolonged or strenuous exercise, the immune system can become compromised, 

resulting in immunosuppression known as the “open window” where immunity levels are 

supressed for up to 72 hours (Nieman and Pedersen, 1999). It has previously been 

hypothesized that interventions using antioxidant supplements may prevent the occurrence of 

immunosuppression that occurs after prolonged and/or strenuous exercise. However, 

supplementation with vitamin C had no effect on reducing the incidences of URTI in 

marathon runners, when given a dose of 1000 mg/d (Himmelstein et al., 1999). These 

findings were replicated in a laboratory based experiment where vitamin C was given either 

acutely (Davison and Gleeson, 2007; Nieman et al., 1997) on the day of the experiment or 

supplemented chronically for a period of 2 weeks (Davison and Gleeson, 2006).  The main 

factors associated with increased exposure to URTI were faster running speeds, training 
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volumes and the number of marathons competed (Himmelstein et al., 1999). The 

aforementioned studies found no differences between a placebo control group and a vitamin 

C supplemented group after 2.5 hours of exercise in markers related to immunosuppression, 

at the end of exercise bout or in the preceding hours after completing the exercise bout. 

Furthermore, a recent meta-analysis has indicated that well-nourished individuals should 

refrain from taking antioxidant supplements, as antioxidant supplements do not contain any 

compounds that would result in beneficial health effects (Bjelakovic et al., 2014).   

Sixteen percent of participants in the current study reported consuming antioxidant 

supplements to either improve performance and/or reduce fatigue. Fatigue has been defined 

as any exercise-induced reduction in the ability to exert muscle force or power (Gandevia, 

2001), that will subsequently effect one’s performance. The cellular redox state of skeletal 

muscle can affect contractional force (Powers and Jackson, 2008; Reid, 2001) in that an 

oxidised cellular environment, characterised by excessive RONS, results in a reduction of 

contractional force. The mechanisms responsible for the reduction in muscle force during 

exercise are related to various stages of excitation-contraction coupling: 1) oxidation of the 

ryanodine receptor (RYR) affecting calcium (Ca2+) release from the sarcoplasmic reticulum 

(SR) into the t-tubules; 2) decreased Ca2+ sensitivity of the myofibrillar proteins affecting 

cross-bridge formation; and 3) impairment of the SR Ca2+ - ATPase (SERCA) reducing the 

reuptake of Ca2+ into the SR (Allen et al., 2008; Hernández et al., 2012; Westerblad and 

Allen, 2011). These mechanisms influence prolonged low-frequency force depression 

(PLFFD) which is associated with delayed recovery following exercise (Hernández et al., 

2012; Westerblad and Allen, 2011). Therefore, it seems rational to presume that the 

beneficial effects of antioxidant supplementation would enable muscle force/power output to 

be maintained throughout exercise and to improve recovery.  



58 

However, it should be noted that the muscle force maintenance and PLFFD is a 

multifaceted phenomenon that is affected by both central and peripheral factors. Central 

fatigue is associated with processes within motoneurons and the central nervous system 

(suboptimal cortical drive, reduced synaptic efficacy, reduced intrinsic motoneuron 

responsiveness, presynaptic inhibition, firing of group III/IV muscle afferents), whereas, 

peripheral fatigue encompasses processes distal to the neuromuscular junction (myofibrillar 

damage, cross-bridge formation, excitation-contraction coupling failure, ATP-availability) 

(Allen et al., 2008; Carroll et al., 2017; Gandevia, 2001). These various factors could explain 

why empirical evidence does not support the use of vitamin C and/or vitamin E supplements 

in reducing fatigue or improving recovery, with studies mainly showing no effect on reducing 

muscle damage (Theodorou et al., 2011), oxidative stress (Bloomer et al., 2006), or sporting 

performance (Braakhuis, 2012; Braakhuis and Hopkins, 2015).  

Recent research has indicated that a subset of antioxidants called polyphenol 

compounds may be beneficial in reducing oxidative stress and skeletal muscle damage during 

exercise (Bowtell et al., 2011; Howatson et al., 2010; Malaguti et al., 2013), thus potentially 

facilitating sporting performance and/or recovery from exhaustive and/or prolonged exercise. 

However, further research is needed before evidence based recommendations can be given on 

the effects of antioxidant supplementation on reducing fatigue and/or improving sporting 

performance.    

Eleven percent of the study sample reported using antioxidant supplements to enhance 

exercise adaptations. There is a growing number of studies which report negative effects of 

vitamin C and vitamin E supplementation on exercise adaptations, specifically in regards to 

mitochondrial biogenesis and endogenous antioxidant production (Gomez-Cabrera et al., 

2008; Paulsen et al., 2014; Ristow et al., 2009; Strobel et al., 2011). RONS are integral 
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messengers involved in the intracellular signalling cascades responsible for mitochondrial 

biogenesis and endogenous antioxidant synthesis (Jackson, 2005; Ji, 2008), and by reducing 

RONS via antioxidant supplementation these important signalling pathways may be 

inhibited. However, conflicting studies have shown no inhibition of mitochondrial biogenesis 

or endogenous antioxidant expression after periods of supplementation with vitamin C and 

vitamin E (Higashida et al., 2011; Yfanti et al., 2010; Yfanti et al., 2012). Differences in 

exercise intensity and frequency, participant training status, and analytical techniques could 

explain the different outcomes in these studies. Thus, without identifying the intensity of the 

participants training sessions or their exact physical fitness levels, it would be unclear on 

whether antioxidant supplementation would have a detrimental effect on training induced 

adaptations.     

A strength of the current study is its specificity in investigating only one form dietary 

supplement, antioxidants. Previous studies have not focused on a single subset of dietary 

supplements consumed by athletes, but have primarily focused on dietary supplements as a 

whole; including differing sub-categories such as carbohydrates, proteins, amino acids, 

minerals, and vitamins not classified as antioxidants such as the B – vitamins, and vitamin D. 

The main focus of the current study was to identify which antioxidant supplements were 

being consumed by amateur cyclists and the rationale for their use. It could be argued the 

current study does not provide a conclusive account of the true use of dietary supplements 

within amateur cyclists; however, with the main focus orientated on one form of 

supplementation it enables a more precise insight on why this subset of supplements may be 

consumed. Empirical research has identified the clear benefits of consuming carbohydrate 

and protein supplements, providing a clear rationale on why these supplements are used in an 

athletic population. When studies have been conducted on the use of dietary supplements as a 

whole, it is not certain why micronutrient supplements, such as antioxidants, may be used. At 
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present, within the scientific community, there is a consensus that additional antioxidant 

supplementation is not required in individuals who regularly consume a balance diet and 

undertaking regular exercise. There is no conclusive evidence to support their role in 

improving performance and/or recovery, or improving immunity in an athletic population. 

Therefore, it is important to ascertain why antioxidant supplements are being used within the 

current population and to identify interventions to educate non-elite athletes on the use of 

these supplements.  

The main limitation of the study was that participants provided information through 

self-report responses. The use of self-report questionnaires can result in response bias from 

the participants using traits known as social desirability and social approval bias (Furnham, 

1986). Social desirability is used more relatively as a defensive mechanism and is typically 

used to convey social norms to avoid criticism, rather than reflecting their own habits that 

they feel may be undesirable. For instance, reporting a greater intake of fruit and vegetables 

on a daily basis than they normally would consume. On the other hand, social approval bias 

can be effected by the knowledge a person has relating to the questions they are answering 

and generating an answer they believe is the “correct” response for the researcher (Furnham, 

1986). A study investigating the effect of social approval bias on self-reported measures of 

fruit and vegetable consumption, identified that social approval bias was prominent in an 

intervention group that were supplied additional information regarding the health benefits of 

fruits and vegetables, and information regarding to the amount of fruit and vegetables that 

should be consumed on an average day. A control group received the same information pack 

as the intervention group without the additional information relating to the health benefits of 

fruits and vegetables and daily serving amounts. There were no significant differences in the 

groups when completing a 24-hour dietary recall for milk, doughnuts, cookies, cake, pastries, 

pies, or potatoes. However, when total fruit and vegetable intake was collated, the 
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intervention group had a significantly higher intake compared to the control group. The 

authors of the study identified this difference to the information given to the intervention 

group in the days prior to the 24-hour dietary recall, thus promoting social approval bias 

when reporting their fruit and vegetable consumption (Miller et al., 2008). In the present 

study, there is a potential for both social desirability and social approval bias to occur because 

the participants knew before completing the questionnaire the study was investigating the 

intake of antioxidant foods and supplements; resulting in an overestimation of the frequency 

of the foods and/or supplements they consumed to fit in what they believed to be the social 

norm or to provide answers they believed the researchers were trying to identify.    

One of the aims of the thesis was to investigate the relevance of antioxidant 

supplements in real life cycling. The use of an online questionnaire within this study allowed 

the characterisation of use and type of antioxidant supplements in recreational cyclists. 

Previous research on supplement intake primarily focuses on either elite athletes or a range of 

sports and supplements grouped together, making it difficult to interpret why a specific 

dietary supplement may be used. The findings within this chapter provide information on the 

proportion and characteristics of amateur cyclists that use antioxidant supplements, and 

reasons for supplementation.         

The findings from the present study identified habitual consumption of antioxidant 

supplements was not related to age, cycling experience, weekly training hours, or the route 

undertaken; implying that in this population there was not a specific ‘type’ of person who 

consumed antioxidant supplements. The main reasons given for consuming supplements were 

to maintain health, reduce fatigue, improve performance, maintain a balanced diet, and 

improve training adaptations. At present, there is no empirical evidence to support the use of 
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antioxidant supplements within this population for the reasons given by the participants. 

Therefore, participants may be consuming supplements for no beneficial reason.  

To help identify the effects of habitual antioxidant supplementation on individuals 

undertaking recreational cycling events, more applied research should be conducted in this 

area. Future research could explore the effects of habitual antioxidant supplementation on the 

exercise-induced oxidative stress response to cycling in an applied, real-world setting.   
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Chapter Three 

3. Habitual antioxidant supplementation does not affect the oxidative stress 

response after a 100 km cycling sportive 
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3.1 Abstract 

Purpose: The purpose of the study was to investigate the effects of a non-competitive cycling 

event on markers of oxidative stress in recreationally active individuals. The effect of 

habitual antioxidant supplementation on these markers was compared to non-supplementation 

individuals in a “real world” setting.    

Methods: Markers of oxidative stress and antioxidant capacity were assed in recreational 

active individuals who took part in the Tommy Godwin cycling sportive (100 km). Blood 

samples were taken from a supplemented (Supp) (n = 7, mean ± SD: age 53.4 ± 3.5 yrs; 

weekly training hours: 7.6 ± 2.4 hrs) and non-supplemented (NoSup) (n = 10, mean ± SD: 

age 49.9 ± 10.6 yrs; weekly training hours: 6.0 ± 3.1 hrs) group within 30 minutes prior to the 

start and within 10 minutes of finishing the sportive. Protein carbonylation (PC), 

malonaldialdehyde (MDA), and total antioxidant capacity (TAC) was assessed in plasma. 

Whole blood was used to assess reduced glutathione (GSH).     

Results: Following completion of 100 km cycling sportive, TAC significantly increased 

compared to baseline in all cyclists (Supp: p < 0.001; NoSup: p < 0.05), there was a trend for 

a group reduction in GSH (p = 0.054). No change was observed in PC compared to baseline. 

PC was significantly higher in NoSup compared to Supp (p < 0.05) at the end of the sportive.  

MDA significantly increased in the NoSup compared to pre-values (p < 0.05), whereas no 

change was observed in the Supp.  

Conclusions: A cycling sportive over a 100 km caused a change in antioxidant status 

regardless of supplementation. The effect of habitual antioxidant supplementation on other 

markers of oxidative stress could not be fully elucidated from the current results.   
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3.2 Introduction 

The recent success of British cyclists in the Olympic Games, World Championships, 

and the Tour de France has increased the popularity of cycling within the United Kingdom. 

There has also been an increase in non-competitive cycling sportive events, as discussed in 

Chapter 2. The study presented in chapter 2 indicated the prevalence of antioxidant 

supplementation in amateur cyclists is around 40%. The most frequently consumed 

antioxidant supplements were identified as multivitamins that contain a combination of 

antioxidant compounds, and vitamin C and/or vitamin E.  

Field studies that have investigated oxidative stress in response to exercise in the 

general population are under-represented (Knez et al., 2007). Exercise can provoke oxidative 

stress, especially in individuals unaccustomed to exercise. Sportive events are organised non-

competitive cycling events for recreationally active individuals, unlike organised road-racing 

events they do not require a race license to participate in them. Due to the non-competitive 

nature of cycling sportives individuals who undertake them could be doing so for social or 

personal reasons. To our knowledge there are currently no studies investigating the effects of 

these events on markers of oxidative stress or information on why the general population 

choose to undertake these events.  

The majority of field based studies that have investigated the effects of exercise-

induced oxidative stress have focused on ultra-endurance events. These events provide a 

good model to explore the demands of extreme exercise on exercise-induced oxidative stress 

and subsequently evaluate the impact of extreme exercise on health. Studies have included 

assessment of oxidative stress following an ironman triathlon (Neubauer et al., 2008) the 

Grand Union Canal race, a 233 km running event  (Turner et al., 2011) and the Spartathlon 

race, a 246 km running event (Skenderi et al., 2008). Elevations in oxidative stress markers 
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were observed in these studies, but markers returned to baseline within 5 days (Neubauer et 

al., 2008), 7 days (Turner et al., 2011), and 48 hours (Skenderi et al., 2008). These studies 

provide sufficient evidence to suggest that ultra-endurance events do not result in extended 

periods of oxidative stress in well-trained participants. However, the results may not be 

representative of less well-trained individuals who undertake sporting events on a more social 

level and/or to maintain/improve their current fitness levels.       

Antioxidant supplementation in amateur athletes is common. The study presented in 

chapter 2 suggests people take antioxidant supplements to improve immunity, reduce fatigue, 

improve performance, training adaptations, and to maintain a balanced diet. Many 

randomised control studies have investigated the efficacy of antioxidant supplements in 

reducing exercise-induced oxidative stress. The supplementation period, the intensity of the 

exercise protocol, and the type and/or combination of antioxidant administered are all factors 

that can affect oxidative modifications post-exercise (Bloomer et al., 2006; Bunpo and 

Anthony, 2016; Gomez-Cabrera et al., 2006; Mastaloudis et al., 2004).   

One possible explanation to explain why individuals choose to consume antioxidant 

supplements could be related to the health benefits reported from early epidemiological 

studies. These studies have reported that individuals who have sub-optimal levels of 

antioxidants in their diets are at higher risk of cardiovascular disease (Gey et al., 1993), lung 

disease (Miedema et al., 1993), age-related macular degeneration (Snodderly, 1995), 

coronary heart disease (Knekt et al., 1994), cancer (La Vecchia et al., 2001), and reduction in 

telomere length (Freitas-Simoes et al., 2016). Furthermore, a large epidemiological in elderly 

participants reported all-cause mortality and coronary heart disease mortality was reduced in 

those who consumed vitamin E supplements alone or in combination with vitamin C 

(Losonczy et al., 1996). Unfortunately, large scale randomised control trials have failed to 

support the epidemiology populations with risk factors associated with CVD or cancer, or 
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those already suffering from these conditions when supplemented with a variety of 

antioxidant supplements (Stanner et al., 2004; Willcox et al., 2008).  

The data presented in Chapter 2 indicates those who consume antioxidant 

supplements have done for a period greater than 6 months. So, it is important to establish if 

supplementation has an effect. Unfortunately, the doses that have been administered in the 

majority of previous studies are well above the recommended levels for both vitamin C 

(90mg/d) and vitamin E (15mg/d or 22.4 IU/d), and thus may not reflect, or even be relevant 

to the amount being consumed by recreationally active individuals using over the counter 

supplements. Dose of supplement is important. Several training studies conducted in 

controlled laboratory settings have demonstrated an inhibitory effect on cellular signalling 

pathways (Gomez-Cabrera et al., 2008; Morrison et al., 2015; Paulsen et al., 2014; Ristow et 

al., 2009; Strobel et al., 2011). To our knowledge oxidative modifications within plasma do 

not directly relate to signalling processes occurring at a skeletal muscle level (Margaritelis et 

al., 2016); however, plasma oxidative modifications may shed some light on how habitual 

antioxidant supplementation could affect the response to exercise compared to a non-

supplemented group.        

The purpose of the present study was to assess oxidative stress in a group of cyclists 

completing a 100 km cycling sportive. An overarching aim of this thesis was to assess the 

effect of exercise on markers of oxidative stress in ‘real-life’ amateur cyclists, including those 

supplementing habitually with antioxidants, and thus there were no restrictions on 

participation in this study.     
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3.3 Methods  

Participants  

Eighteen participants, 15 male and 3 female, who undertook the Tommy Godwin 

cycling sportive in Solihull, (West Midlands, UK) took part in the current study. All the 

participants who registered to take part in the sportive received an email from the organisers 

informing them of the study. Those who registered an interest in the study contacted the 

researchers and were sent a participant information sheet (PIS) (Appendix 2), general health 

questionnaire (GHQ) (Appendix 9), and a consent form (Appendix 3). Participants were also 

recruited on the day of the sportive after reading the PIS and completing the GHQ and 

consent form. To enable the study to observe the effects of a recreational cycling event in 

weekend cycling enthusiasts’ there were no exclusion criteria for the study. Those 

undertaking the event classed themselves as adequately prepared for the event, with no 

known medical conditions. Those with pre-existing medical conditions declared themselves 

fit and able to undertake the event. Ethical approval for the study was obtained through the 

University of Birmingham’s Science, Technology, Engineering and Mathematics Ethical 

Review Committee.  

 

Experimental design 

The study assessed cyclists undertaking the Tommy Godwin cycling sportive over a 

100 km course. Participants were asked to complete a ‘Personal Information Sheet’ 

(Appendix 4) which included the questions: how many years have you cycled for? On 

average how many hours do you cycle per week? How many cycle sportives have you 

completed, prior to the current one? What is the reason for participating in the Tommy 
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Godwin Challenge sportive? Do you currently consume any vitamin or antioxidant 

supplement? If yes, how long have you taken them for? What vitamin and/or antioxidant 

supplement do you take? Participants were also asked whether they felt their training had 

adequately prepared themselves for the event. At least 30 minutes before the start of the 

sportive, and within 10 minutes of completing the race, a blood sample was taken from an 

anti-cubital vein in the forearm. The participants’ finishing time was also recorded. There 

were no restrictions placed on participants during the race with regard to riding speed, or 

consumption of food or drink. The event took place on Sunday 28th September 2014 and 

began at 9.00am from the Marie Curie Hospice, Solihull. The sportive took place on open 

countryside roads around the county of Warwickshire. The temperature fluctuated between 

17oC and 19oC with a relative humidity between 50% and 60%.   

 

Blood sampling 

Plasma was obtained by centrifuging whole blood (5 mL) in a portable centrifuge 

(E8F Portafuge; LW Scientific, Lawrenceville, GA) at 1350 g for 15 minutes, then aliquoted 

and placed on dry ice. Whole blood (200μL) to allow assessment of GSH was immediately 

placed on dry ice. The samples were kept in dry ice until they were transferred to -80oC 

freezers.    

 

Methodology for assessing oxidative stress markers 

Total antioxidant status assessed via the ferric reducing ability of plasma (FRAP) assay 

The protocol has been adapted from the methodology previously used by Benzie and 

Strain., (1994). A FRAP reagent consisting of a 300 mM sodium acetate buffer (3 g/L sodium 
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acetate, 16 mL/L acetic acid), 10 mM 2,4,6-Tris(2-pyridyl)-s-triazine (TPTZ) in 40 mM HCl, 

and 20 mM ferric chloride; were added together in a 10:1:1 ratio immediately before use. 

Samples were diluted 1:1 with dH2O and 10 μL was loaded into each well in triplicate. 

Standards were prepared using ascorbic acid (0 μM to 1000 μM) and 10 μL was loaded on to 

a 98 well plate in triplicate. The FRAP reagent, 300 μL, was then added to the plates and 

incubated for 8 minutes at room temperature. The absorbance was then read at a wavelength 

of 650 nm and a 6-point standard curve was generated providing a liner equation to convert 

the sample readings to their reducing power relative to ascorbic acid in μM. The intra- and 

inter-plate coefficients of variation were 4.1% and 11.1% respectively.  

 

Lipid peroxidation assessed via the malonaldialdehyde (MDA) assay  

The TBARs assay has been adapted from Kasielski & Nowak., 2001. A 100 μL of 

trichloroacetic (TCA) solution containing 0.05 M sulphuric acid and 1.23 M TCA (2:1) was 

added 1:1 to all samples in 2 mL tubes. All solutions were mixed thoroughly using a vortex.  

The colour/working reagent containing thiobarbituric acid (TBA = 0.067 g in 10 mL dH2O, 

diluted 1:1 with acetic acid before use), deionised water, and 200 mM butylated 

hydroxytoluene in ethanol were added together in a ratio of 60:240:1 respectively. Eight 

hundred microliters (800 μL) was added to the TCA solution containing the samples and 

standards.  All solutions were mixed thoroughly using a vortex. The lids were then tightly 

fastened and left in a water bath at 100 oC for 60 minutes. All tubes were then removed and 

immediately placed on ice for 10 minutes. Once cooled the samples and standards underwent 

centrifugation at 2,000 g 4 oC for 10 minutes. The samples and standards (200 μL) were 

loaded onto 98 well plates in triplicate with the absorbance read at 540 nm. Standards 

containing tetramethoxypropane (0 μM to 50 μM) were used to generate an 8-point standard 
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to allow the samples to be converted into μM of MDA. The intra- and inter-plate coefficients 

of variation were 4.9% and 8.5% respectively.  

  

Protein carbonyl adducts measured via a protein carbonyl ELISA and the protein content of 

the plasma assessed by the bicinchoninic acid (BCA) assay  

Samples and standards underwent a serial dilution in a sodium carbonate buffer (50 

mM, pH 9.2) and 50 μL was then added to the wells of a Maxisorb plate and incubated for 1 

hour at room temperature. The plate was then washed with a Tris buffered saline solution 

with 0.05% Tween (TBST (0.05%)) (50 mM Tris Base, 150 mM sodium chloride, 0.05% 

TWEEN 20) and then 50 μL of 1 mM of 2,4-dinitrophenylhydrazine (DNPH) was then added 

to the plate. The plate with gentle agitation was left for 1 hour at room temperature and 

washed with TBST (0.05%). TBS blocking buffer (50 mM Tris Base, 150 mM sodium 

chloride, 0.1% TWEEN 20) (200 μL) was then added to the plate and incubated overnight at 

4 oC with gentle agitation. After overnight incubation, the plate was washed with TBST 

(0.05%) and 50 μL of anti-DNP antiserum (diluted 1:1000 in TBST blocking buffer) was 

added to the plate for 2 hours at room temperature. The plate was then washed with TBST 

(0.05%). A peroxidise labelled secondary antibody (diluted 1:5000 in TBST blocking buffer) 

was added to each plate (50 μL) and left to incubate for 1 hour at room temperature. The plate 

was then washed with TBST (0.05%) and 50 μL of citrate phosphate buffer (109 mM citric 

acid and 251 mM disodium phosphate 49:51, pH 5.0; add 8 μL of H2O2 and one 1-O-

phenyliamine tablet to 10 mL of citric acid and disodium phosphate solution). The plate was 

then incubated in the dark for 30 minutes and a 2 M sulphuric acid stop solution was added to 

the plate. The absorbance was then read at a wavelength of 490 nm. A six-point standard 

curve was generated using know carbonyl concentrations ranging from 0.65 nM/mg to 3.75 
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nM/mg. All plasma PC values are expressed as nM/mg. The intra- and inter-plate coefficients 

of variation were 6.8% and 8.6% respectively.  

To determine plasma protein concentrations of the samples a bicinchoninic acid assay 

(BCA) was used. Plasma samples were diluted 1:200 in ddH2O and mixed using a vortex. 

Standards for the assay were comprised of bovine serum albumin (BSA) with a concentration 

range of 0 to 10 μg/μL. Plates were loaded with 10 μL of samples and standards in triplicate 

and stored at 4 oC until needed. The working solution contained BCA solution and copper 

sulphate solution in a ratio of 50:1 respectively. The working solution was then added to the 

plate, 200 μL, and incubated in the dark for 30 minutes at room temperature. The absorbance 

was read at a wavelength of 540 nm to determine the protein concentration of the plasma 

samples.     

 

Reduced Glutathione  

To determine the change of reduced glutathione (GSH) a commercial available 

glutathione assay kit was used (GSH-Glo™ Glutathione Assay, Promega, PN: V6911). GSH 

in each sample was determined through the conversion of a luciferin derivative to luciferin, 

which is catalysed by glutathione-S-transferase and is reliant on the presence of GSH for the 

reaction to occur. The amount of GSH present in the sample is determined by the reaction of 

a luciferase reagent, with the resulting luminescence being proportional to the total GSH pool 

in the sample.  In brief, samples were diluted 1:5 with tricine (50 mM, pH 7.9), incubated on 

ice for 15 minutes then centrifuged at 10,000 g, 4 oC for 15 minutes. The supernatant was 

diluted 1:15 with ddH2O and10μL was added to each well in duplicate (Corning® 96 Well 

Flat Clear Bottom White Polystyrene TC-Treated Microplates, PN: #3610). A GSH-Glo 

reagent, 100 μL, was added to each sample, mixed on a plate shaker and incubated for 30 
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minutes at room temperature. A luciferin detection agent, 100 μL, was added to each well and 

incubated for 15 minutes and the luminescence was then read. To determine the concentration 

of the samples, the average luminescence of a negative control was subtracted from the 

luminescence readings of each sample, and GSH concentrations were obtained through a 

linear-equation generated by an 8-point standard curve with values ranging from 0 μM to 5 

μM GSH. The final values are reported as μM of GSH. The intra- and inter-plate coefficients 

of variation were 4.6% and 2.4% respectively.  

 

Statistical Analysis 

All data was analysed using the statistical analysis software package for social 

sciences (SPSS Version 22 for Windows, Chicago, IL). Group differences in baseline 

characteristics were analysed using independent t-tests, with equal variances assumed. 

Changes in oxidative stress markers were analysed using a group (Supplemented v Non-

Supplemented) by time (Pre, Post) mixed-design analysis of variance (ANOVA), with 

Bonferroni correction. Within-subject (time) effects of equal variance was tested using 

Mauchley’s Test of Sphericity, if the assumption of equal variance was not met, within-

subject effects were subsequently taken from Greenhouse Geisser corrections. Between-

subject (supplementation) effects of equal variance was tested using Levene’s Test of Equal 

Variance, if the assumption of equal variances was not met, data was checked for normal 

distribution and data sets that were not normally distributed were log transformed before 

undertaking any statistical analysis. Post hoc analysis of the interaction effects was performed 

by a test of simple effects by pairwise comparisons (with Bonferroni correction). All values 

are means ± standard deviation (SD) unless otherwise stated, with the level of significance set 

at p ≤ 0.05.   
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3.4 Results  

Participant characteristics  

The average age of the participants was 51.3 ± 8.6 (males = 51.4 ± 9.4, females 50.7 ± 

3.8), the total amount of time spent cycling on a weekly basis was estimated at 6.6 ± 2.9 hrs 

(males = 6.9 ± 2.9, females 5.3 ± 3.1), the number of previous sportives undertaken was 4.2 ± 

4 (males = 3.8 ± 4, females = 6 ± 4), and the overall time in minutes to complete the 100 km 

sportive was 287.1 ± 54.6 (males = 277.4 ± 54, females = 335.3 ± 27.6).   

 

Reasons for undertaking the event  

To develop an understanding on why the participants chose to participate in a non-

competitive cycling event each participant was asked the question “What is the reason for 

participating in the Tommy Godwin Challenge sportive?” The responses given from the 

participants were: to raise money for charity, improve fitness, keep fit, pleasure, enjoyment, 

support a friend, undertake a longer distance ride, socialise, and complete first organised 

cycling event.    

 

Supplemented and non-supplemented groups 

The supplemented group consisted of 7 participants (males: n = 6, females: n = 1), 

and the non-supplemented group 11 participants (males: n = 9, females: n = 2). The average 

age of the supplemented groups was 53.4 ± 3.5 (males = 54.2 ± 3.2, female = 49 ± 0.0), and 

the non-supplemented group 49.9 ± 10.6 (males = 49.5 ± 11.9, females = 51.5 ± 4.9). The 

average number of hours cycled in a week for the supplemented group was 7.6 ± 2.4 (males = 



75 

7.8 ± 2.6, females = 6.0 ± 0), and the non-supplemented 6.0 ± 3.1 (males = 6.2 ± 3.1, females 

= 5.0 ± 4.2). The average number of sportives undertook by the supplemented groups was 6.1 

± 4.6 (males = 5.5 ± 4.7, females = 10 ± 0.0), and the non-supplemented group 2.9 ± 3.2 

(males = 2.7 ± 3.3, females = 4.0 ± 2.8). The average finishing time for the supplemented 

group was 281 ± 35.4 minutes (males = 277.3 ± 36.5, females = 309.0 ± 0.0) and the non-

supplemented group was 290.3 ± 65.5 (males = 277.4 ± 65.4, females = 348.5 ± 21.9). There 

were no significant differences between the groups for age, amount of hours cycles in a week, 

number of sportives undertook, or finishing times (Table 3.1).   

 

Table 3.1 Data relating to the group differences between the supplemented and non-

supplemented groups for age, cycling history, and finishing time on the day of the sportive.  

 
Supplemented Group 

(n = 7: m = 6, f = 1) 

Non-Supplemented 

Group 

(n = 11: m = 9, f = 2) 

p-value 

Age (yrs) 53.4 ± 3.5 49.9 ± 10.6 0.415 

Weekly Cycling 

(hrs) 
7.6 ± 2.4 6.0 ± 3.1 0.277 

Finishing Time 

(mins) 
281 ± 35.4 290.3 ± 65.5 0.758 

Previous 

Sportives 
6.1 ± 4.6 2.9 ± 3.2 0.095 
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Antioxidant supplementation type and frequency 

The types of antioxidant supplements consumed by the participants in the 

supplemented group were: multivitamins and vitamin C. With duration of supplementation 

ranging from 1 month to 120 months (10 years) and the average duration of consumption 

being 27.6 ± 42.3 months. The frequency of antioxidant supplementation ranged from daily 

consumption to consumption once a week: daily consumption (n = 5), 3 times a week (n = 1), 

and on a weekly basis (n = 1).    

 

Influence of exercise on markers of oxidative stress  

There were no main effects for time (F(1, 16) = 2.45, p = 0.137, η2 = 0.133), group (F(1, 

16) = 1.120, p = 0.306, η2 = 0.065  ), or interaction (F(1, 16) = 2.31, p = 0.148, η2 = 0.126), in 

MDA throughout the study (Figure.3.1).  Furthermore, there were no main effects for time 

(F(1, 16) = 0.062, p = 0.806, η2 = 0.004), group (F(1, 16) = 2.893, p = 0.108, η2 = 0.153), or 

interaction (F(1, 16) = 1.98, p = 0.179, η2 = 0.110), in PC throughout the study (Figure 3.2).  

 

Influence of exercise on antioxidant status 

There was a significant effect for time in TAC (F(1, 16) = 42.70, p < 0.001, η2 = 0.727); 

but there were no group (F(1, 16) = 0.639, p = 0.436, η2 = 0.038) or interaction effects (F(1, 16) = 

0.146, p = 0.708, η2 = 0.009). Post-hoc analysis revealed TAC significantly increased post-

sportive in the supplemented (baseline: M = 532.4 ± 106.6 μM vs end of sportive: M = 648.2 

± 141.8 μM) and non-supplemented group (baseline: M = 483.6 ± 77.6 μM vs end of 

sportive: M = 614.9 ± 123.4 μM) (Figure 3.3).   
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There was a trend for an effect of time in GSH (F(1, 16) = 3.49, p = 0.08, η2 = 0.179), 

with no significant group (F(1, 16) = 0.796, p = 0.385, η2 = 0.035) or interaction effects (F(1, 16) 

= 0.160, p = 0.694, η2 = 0.01). Post-hoc analysis revealed GSH concentrations declined post-

sportive in the supplemented (baseline: M = 30.2 ± 10.8 μM vs end of sportive: M = 26.1 ± 

16.6 μM) and non-supplemented groups (baseline: M = 36.5 μM ± 13.5 vs end of sportive: M 

= 30.1 μM ± 12.3) (Figure 3.4). 

 

 

Figure 3.1 The change in MDA concentrations before and upon completion of the 100 km 

cycling sportive for all cyclists (black), non-supplemented cyclists (white) and supplemented 

cyclists (grey). Bars represent mean values with SD.  
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Figure 3.2 The change in PC concentrations before and at the end of the 100 km cycling 

sportive for all cyclists (black), non-supplemented cyclists (white) and supplemented cyclists 

(grey). Bars represent mean values with ± SD.  

 

Figure 3.3 The change in total antioxidant capacity (TAC) concentrations before and at the 

end of the 100 km cycling sportive for all cyclists (black), non-supplemented cyclists (white) 

and supplemented cyclists (grey). Bars represent mean values ± SD. * indicates p < 0.001 

compared to baseline concentrations.  
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Figure 3.4 The change in GSH concentrations before and at the end of the 100 km cycling 

sportive for all cyclists (black), non-supplemented cyclists (white) and supplemented cyclists 

(grey). Bars represent mean values ± SD. * indicates p = 0.08 compared to baseline 

concentrations.   
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3.5 Discussion  

To our knowledge, this is the first study to observe the oxidative stress response in 

non-competitive cyclists after completing a 100 km cycling sportive, and to assess the effects 

of habitual antioxidant supplementation on this response. TAC increased and GSH decreased 

in cyclists following the sportive, irrespective of supplementation. However, upon 

completion of the sportive there was a trend for the non-supplemented group to have higher 

concentration of PC compared to the supplemented group post-exercise, and the direction of 

change in PC was dependent on supplementation status. MDA increased from baseline in the 

non-supplemented group, but remained unchanged in the supplemented group. There were no 

significant differences between the groups at baseline or following the sportive for any of the 

measures assessed. Participants reported different reasons for participating in the event, 

primarily social (raise money for charity, support a friend, socialise) and emotional (pleasure, 

enjoyment) rationales.    

Chapter 2 provided information on the type, frequency, and duration of antioxidant 

supplementation in cyclists undertaking a mass participation cycling event, the Wiggle 

Dragon Ride. The findings with the present study are in agreement with the findings from 

chapter 2. Both studies indicate that those who undertake sportive type events and consume 

antioxidant supplements have done so for a period ≥ 1 year, are likely to consume them daily, 

and the most common supplement is multivitamins containing antioxidants or specific 

individual supplements such as vitamin C.   

The increase in TAC measured in both groups indicated that the cycling sportive was 

a sufficient stress to stimulate an antioxidant response, and is in agreement with experimental 

(Bloomer et al., 2006; Theodorou et al., 2011) and observational (Neubauer et al., 2008; 

Skenderi et al., 2008) studies. Studies supplementing participants with antioxidant 
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compounds generally indicate greater antioxidant concentrations in plasma compared to 

control groups (Bloomer et al., 2005; Cumming et al., 2014; Howatson et al., 2010), so it 

would be expected that a group of individuals who habitually consume an antioxidant 

supplement would have a higher baseline TAC than those who do not. The results presented 

herein show the supplemented group had a higher TAC than the non-supplemented group at 

baseline, but this was not significant. A possible explanation for this is the dose of the 

supplement. Research studies elevate the circulating levels of antioxidants above baseline 

concentrations by administering doses above the recommend intake values (Bloomer et al., 

2005; Cumming et al., 2014). However, commercially available antioxidant supplements may 

not contain the higher doses administered in experimental research and, by definition, 

commercially available supplements contain antioxidants in a dose that is more in line with 

the daily recommended allowance. Thus, consumption of commercially available 

antioxidants may not replicate the plasma antioxidant concentrations found in experimental 

laboratory studies. Because of the observational nature of the study, and thus no dietary 

control measures put in place, the non-supplemented group may have consumed foods 

containing antioxidant compounds in the hours or days leading up to the sportive. A 

combination of these two factors could potentially explain the results for TAC in the present 

study.  

As previously described, GSH is the most abundant endogenous antioxidant in the 

body. In previous studies, the concentration of GSH at the end of exercise has been reported 

to not change (Neubauer et al., 2008; Skenderi et al., 2008) or to initially increase post-

exercise with reductions occurring in the hours (Bloomer et al., 2005) or days (Machefer et 

al., 2004; Turner et al., 2011) post-exercise. In contrast to these findings, the present study 

found a group trend (p = 0.08) for a reduction in GSH at the end of exercise. The conversion 

of oxidised glutathione (GSSG) back to GSH may be inhibited in the current study population 
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through a reduction in the enzyme glutathione reductase. Cobley et al., (2014) reported post-

exercise decreases in the endogenous antioxidant proteins in old trained and untrained 

individuals after completing a high-intensity aerobic protocol. Considering the participants in 

the current study had an average age of 50 and undertaking the sportive for social related 

reasons, it could be possible that cellular/endogenous antioxidant senescence is present in 

these individuals, compromising the GSH recycling machinery. 

Supplementation status did not affect the directional change in TAC and GSH at the 

end of the sportive between the two groups. However, the supplemented group displayed a 

reduction in PC and maintenance of MDA, whereas, the non-supplemented group displayed 

increased PC and MDA. Nevertheless, without being able to detect a difference in TAC it is 

difficult to comment on the effects of supplementation on the oxidative stress response 

caused by the sportive. Some caution should be used when interpreting the data for MDA. As 

discussed in section 1.4.6, the TBARS assay can artificially elevate levels of MDA through 

boiling the samples and the non-specific interactions of thiobarbituric acid (TBA) with 

aldehydes and proteins found in human plasma. However, there was no significant difference 

in MDA concentrations pre-or post-sportive between the groups to warrant further lipid 

peroxidation investigation. Previous research has indicated antioxidant supplementation can 

result in a lower concentration of PC at the end of an exercise bout compared to placebo 

(Bloomer et al., 2006; Goldfarb et al., 2011) but no studies have indicated antioxidant 

supplementation can reduce PC below baseline post-exercise. The mechanism responsible for 

the reduction in PC warrants further investigation. In this instance, there is no current 

evidence to support the role of antioxidant supplements reducing PC.    

From the results, the supplemented group was better able to deal with the demand of 

the sportive, with no changes in MDA and a reduction in PC compared to baseline. Of 

course, other factors apart from supplementation may have caused this. The supplemented 
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group reported more cycling hours per week and reported completing a greater number of 

sportive events, potentially resulting in better adaptations to deal with the demands of the 

event. Although these factors were not significantly different between the groups it could be 

an indication as to why these differences existed.  

In Chapter 2 habitual antioxidant supplementation was prevalent in recreational 

cyclists. One of the aims of this thesis was to explore the effect of habitual antioxidant 

supplementation on exercise-induced oxidative stress in a real-world setting. The results 

obtained in this chapter indicate antioxidant supplementation provided no greater attenuation 

in exercise-induced oxidative stress compared to a non-supplemented group in a cycling 

sportive event. The exercise-induced response to cycling was largely similar in supplemented 

and non-supplemented cyclists. This study was conducted in a real-world setting, and as such 

participants were a sample of free living individuals. This study did not seek to control any 

aspect of lifestyle in the participants, thus the results may not accurately reflect the true role 

of antioxidant supplements on exercise-induced oxidative stress in a controlled setting. 

Differences in: finishing times, cycling intensity, and fitness levels are some of the co-

founding variables that could have affected the current results.  

Moving forward, future research should focus on recruiting a subset of individuals 

who habitually consume antioxidant supplements, where co-founders such as exercise 

duration, exercise intensity, and participant fitness can be controlled. This would provide a 

more precise evaluation on the role of habitual antioxidant supplementation on exercise-

induced oxidative stress.      
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Chapter Four 

4. Habitual antioxidant supplementation does not affect resting levels of 

endogenous antioxidants or the oxidative stress response to steady-state cycling    
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4.1 Abstract  

Introduction: Reactive oxygen and nitrogen species (RONS) are important exercise 

signalling molecules. Evidence suggests consumption of antioxidant supplements with 

exercise can attenuate RONS mediated signalling pathway, inhibiting endogenous antioxidant 

synthesis. The aim of the study was to investigate the effect of habitual antioxidant 

supplementation on resting endogenous antioxidants and oxidative stress during exercise.  

Methods: Fourteen trained male cyclists either supplemented (Supp n = 4 mean ± SD: age 33 

± 2 yrs; 𝑉̇O2max 56.2 ± 3.4 mL·kg−1·min−1) or non-supplemented (NoSup n = 10 mean ± SD: 

age 29.5 ± 1.8 yrs; 𝑉̇O2max 59.6 ± 1.7 mL·kg−1·min−1) had a resting muscle biopsy and 𝑉̇O2max 

test, then returned within 7 days to complete steady-state cycling for ~65 minutes (25 mins: 

60% 𝑉̇O2max, 40 mins 80% 𝑉̇O2max, 95% 𝑉̇O2max until fatigue (Post)). Blood samples were 

obtained pre, during, and post exercise to assess for changes in oxidative stress markers. 

Throughout the trial heart rate (HR), rate of perceived exertion (RPE), and 𝑉̇O2 were 

recorded at regular time points.  

Results: There was no difference in HR, RPE, or 𝑉̇O2, between the groups at any time point. 

There was no difference in resting endogenous antioxidant protein concentrations of 

superoxide dismutase 1 or 2 (SOD1/2) or glutathione peroxidase-1 (GPx-1). Markers of 

oxidative stress assessed between the Supp and NoSup groups were not different at any 

individual time point during or following exercise. Total antioxidant capacity (TAC) 

increased significantly during exercise in NoSup (p < 0.05) and protein carbonylation 

decreased significantly during exercise in NoSup (p < 0.05). Malonaldialdehyde (MDA) 

decreased significantly post-exercise in both groups (p < 0.05).  

Conclusion:  Habitual antioxidant supplementation did not affect the resting endogenous 

antioxidant concentrations or compromise the exercise-induced oxidative stress in trained 

cyclists.    
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4.2 Introduction  

In response to the transient increase in RONS that occurs in response to exercise, 

redox-sensitive transcription factors are activated resulting in increased gene transcription of 

endogenous antioxidants enzymes and their subsequent synthesis into functional proteins. 

Two redox-sensitive transcription factors have been associated with the de novo synthesis of 

endogenous antioxidants: nuclear factor – kappa β (NF-κβ) and activator protein – 1 (AP-1) 

(Hollander et al., 2001; Zhou et al., 2001). In vitro and in vivo studies have shown skeletal 

muscle exposed to pro-oxidants augments the binding of NF-κβ and AP-1 activation in the 

pursuing hours after exposure (Hollander et al., 2001; Zhou et al., 2001).  

The induction of a pro-oxidant environment within skeletal muscle, as occurs 

following exercise, results in the activation of the redox-transcription factor NF-κβ through 

its upstream transcription factors extracellular-signal related kinase (ERK) and p38 mitogen 

activated protein kinase (p38-MAPK) (Ho et al., 2005); where AP-1 is activated through the 

combination of transcription factors c-jun and c-fos (Zhou et al., 2001). The majority of 

research investigating the transcriptional control of endogenous antioxidant has focused on 

the transcription factors regulating NF-κβ.  

The activation of these signalling pathways is implicated in the synthesis of 

glutathione peroxidase-1 (GPx-1) (Zhou et al., 2001), Cu/Zn superoxide dismutase (SOD1) 

(Rojo et al 2001), and Mn superoxide dismutase (SOD2) (Hollander et al., 2001), in cell 

culture (Rojo et al., 2004; Zhou et al., 2001) and in animal models (Hollander et al., 2001), 

using a pro-oxidant stimulus or exercise, respectively. Human studies have supported these 

findings by demonstrating upregulation of the respective endogenous antioxidants during 

acute exercise completed until exhaustion and submaximal exercise (Berzosa et al., 2011; 
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Tauler et al., 2004), after consecutive days of exercise (Serrano et al., 2010), and in response 

to chronic aerobic (Shin et al., 2008) and resistance training (Parise et al., 2005).     

The effect of using antioxidant supplements by individuals undertaking regular 

exercise has been debated for several years. Davies et al., (1982) was the first to demonstrate 

that exercise augmented markers of oxidative stress and this effect was enhanced in a group 

deficient in the antioxidant α-tocopherol. To date, the number of research studies reporting an 

effect on endogenous antioxidant enzymes, verses studies reporting no effect is equivocal. 

Several studies identified that antioxidant supplementation did not affect the upregulation of 

antioxidant enzymes in response to exercise training. These studies have been undertaken in 

animals and humans, indicating exercise combined with antioxidant supplementation did not 

have an inhibiting effect on the synthesis of SOD1, SOD2, and GPx-1 (Cumming et al., 2014; 

Higashida et al., 2011; Wadley and McConell, 2010; Yfanti et al., 2012). Furthermore, acute 

response studies conducted by Yfanti et al., (2012) and Cumming et al., (2014) indicated 

mRNA expression for SOD1 and SOD2 respectively, and GPx-1 was elevated compared to 

placebo after consuming vitamin C and vitamin E for a period of 16 (Yfanti et al., 2012) and 

11 weeks (Cumming et al., 2014). However, this did not result in greater protein 

concentrations for the respective proteins at the end of the intervention period. Cumming et 

al., (2014) also indicated no differences in the family of proteins involved in the activation of 

the NF-κβ pathway: cytosolic NF-κβ p65, nuclear NF-κβ p65, and the inhibitory unit of NF-

κβ cytosolic Iκ βα, responsible for the gene expression of SOD2 and GPx-1.  

In contrast to these findings, a number of research studies have observed antioxidant 

supplements altered exercise-induced concentrations of SOD1, SOD2, and GPx-1 (Gomez-

Cabrera et al., 2008; Morrison et al., 2015; Ristow et al., 2009). Several acute exercise studies 

indicate the administration of an antioxidant supplement, allopurinol, can reduce the 

activation of NF-κβ within lymphocytes (Gomez-Cabrera et al., 2006) and skeletal muscle 
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(Gomez-Cabrera et al., 2005), which resulted in a reduction in mRNA expression of SOD1 in 

skeletal muscle (Gomez-Cabrera et al., 2005). Although studies from Ristow et al., (2009) 

and Gomez-Cabrera et al., (2008) reported a reduction in mRNA expression of antioxidant 

enzymes, they did not indicate whether these differences affected the overall protein content 

of these enzymes. Morrison et al., (2015) found no differences in the mRNA expression of 

SOD1, SOD2, and GPx-1 after completing an acute bout of exercise, prior to and on 

completion of a 4-week high intensity training intervention. However, following an 

intervention period consisting of 8-weeks’ supplementation with vitamin C (1000 mg/d) and 

vitamin E (400 IU/d), and 4 weeks high intensity interval training the protein level of SOD2, 

and total SOD activity were significantly higher in the placebo group.  

All the aforementioned studies have used differing supplementation periods, from 

supplementation, for 1 day, on the day of the study (Gomez-Cabrera et al., 2006) to 16 

weeks’ supplementation (Yfanti et al., 2012). Although the latter study would provide useful 

information on longer term antioxidant supplementation, it is still only reflecting a small 

period of supplementation in an untrained cohort. The effects of chronic supplementation (≥ 6 

months) in trained individuals has not yet been addressed. 

It has been postulated that the ingestion of antioxidant supplements in conjunction 

with exercise may have a beneficial effect in reducing exercise-induced oxidative stress.  A 

number of studies have identified a reduction in exercise-induced oxidative stress markers 

after receiving antioxidant supplementation (Bloomer et al., 2006; Goldfarb et al., 2011; 

Gomez-Cabrera et al., 2006; Mastaloudis et al., 2004). Collectively these studies have 

demonstrated a reduction in malondialdehydes (MDA) (Goldfarb et al., 2011; Gomez-

Cabrera et al., 2006), F2- isoprostanes (Mastaloudis et al., 2004) and protein carbonyls (PC) 
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(Goldfarb et al., 2011). However, it is not entirely clear whether the reduction in exercise-

induced oxidative stress has a negative impact on redox-sensitive signalling cascades.  

Therefore, the purpose of the present study was to investigate the effect of habitual 

antioxidant supplementation, for a period longer than 6 months, on baseline concentrations of 

endogenous antioxidant enzymes in the muscle of well-trained cyclists. Furthermore, the 

study also sought to characterise the redox response, in supplemented and non-supplemented 

cyclists, to a submaximal exercise protocol.  
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4.3 Methods 

Participants  

Fourteen trained male cyclists (mean ± SD age, height, mass, body mass index (BMI), 

maximal power output, 𝑉̇O2max was 30.5 ± 5.7 years; 1.84 ± 0.05 m; 76.5 ± 9.6 kg; 22.4 ± 2.1 

kg/m2; 354.2 ± 42.8 Wmax; 58.6 ± 6.0 mL·kg−1·min−1 respectively) were recruited to the study 

from local cycling clubs and distribution of recruitment flyers at cycling events in the West 

Midlands. Individuals who had regularly cycled for a period greater than 12 months, 

undertook 5 or more hours of cycling a week, aged between 18-35 years, non-smokers, 

accustomed to exhaustive cycling and/or strenuous cycling, had no history of metabolic, 

cardiovascular or autoimmune disease, and not consuming non-steroidal anti-inflammatory 

drugs (NSAID’s) or any prescription medications that could potentially interfere with redox 

homoeostasis were invited to participate in the study. Participants who reported consuming 

vitamin supplements for a period greater than 6 months containing vitamin C and E, and 

those who do not consume any form of vitamin supplements were both invited to participate 

in the study. Four males (mean ± SD age, height, mass, body mass index (BMI), maximal 

power output, 𝑉̇O2max was 33 ± 5 years; 1.84 ± 0.06 m; 77.6 ± 8.4 kg; 22.9 ± 1.2 kg/m2; 351.9 

± 19.4 Wmax; 58.3 ± 6.8 mL·kg−1·min−1 respectively) were recruited to the supplemented 

group and 10 males (mean ± SD age, height, mass, body mass index (BMI), maximal power 

output, 𝑉̇O2max was 29.5 ± 5.6 years; 1.84 ± 0.05 m; 76 ± 9.2 kg; 22.3 ± 2 kg/m2; 355.1 ± 19.4 

Wmax; 59.6 ± 6.8 mL·kg−1·min−1 respectively) were recruited for the non-supplemented 

group. Because the study was interested in the effects of habitual vitamin C and E 

supplementation on the oxidative stress response to exercise and resting levels of endogenous 

antioxidants, there was no minimal or maximal dose that would be excluded from the study. 

Before attending the Human Performance Laboratory (HPL), each participant was sent a 
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participant information sheet (Appendix 5) outlining the study objectives and contacted by a 

member of the research team to ensure they met the inclusion criteria and understood the 

study protocol. All participants completed and signed a consent form and a general health 

questionnaire prior to undertaking the study (Appendix 6 and 9). Ethical approval for the 

study was obtained through the Solihull NHS National Research Ethics Committee (West 

Midlands, UK). 

 

Study Design  

The study utilised an independent group design and required participants to attend the 

HPL on two separate occasions over a period of 7-14 days. Participants were asked to attend 

both visits in a rested (no exercise 48 hours prior to each visit) and a fasted state (no food or 

drinks except water for > 8 hours). Visit 1 consisted of a resting muscle biopsy from the 

vastus lateralis, followed by aerobic profiling (𝑉̇O2max, Wmax). Visit 2 was conducted 7-14 

days after visit 1 and required participants to undertake the main exercise protocol described 

below. Between visits 1 and 2, participants were asked to continue daily training and food 

consumption ad libitum, but to refrain from exercise 48 hours before attending visit 2. The 

supplemented participants were asked to carry on consuming their vitamin and/or antioxidant 

supplement throughout the study. Blood samples were collected throughout visit 2 for the 

analysis of systemic oxidative stress at baseline, during the exercise protocol (60% 𝑉̇O2max, 

80% 𝑉̇O2max, Post-Exercise), and in the recovery period (30 minutes post-exercise) (Figure 

4.1. provides a schematic of the study design). 
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Determination of 𝑉̇O2max and maximal power output  

Maximal oxygen consumption (𝑉̇O2max) was undertaken after an overnight fast (10 to 

12 hours) and in the morning to factor for circadian rhythms. Participants undertook a graded 

exercise test on a stationary magnetically braked cycle ergometer (Sport Excalibur, Lode, 

Groningen, Netherlands) until voluntary fatigue. All tests started at 95 W with an increase in 

35 W every three minutes. Participants cycled at a self-selected cadence during the test, the 

cycle ergometer set in hyperbolic mode allowing an independent cadence to be performed. 

Maximal power output (Wmax) was calculated by multiplying the amount of time, in seconds, 

completed in the last stage (a), by the amount of W’s within each stage, 35, divided by the 

total time of the stage in seconds, 180, and adding this to the power output completed in the 

previous stage (b) (eq.1)  

 Eq.1 Wmax = a*(35/180) + (b) 

For a participant who had completed 45 seconds (a) of work in the final stage, and the last 

completed stage was at 340W (b), their Wmax would be calculated as 348.7 W (eq.2) 

Eq. 2 Wmax = 45*(35/180) + (340) 

  Wmax = 45*(.194) + (340) 

  Wmax = 348.7 W 

Throughout the test, participants wore a face mask (7450 V2; Hans Rudolph) to allow 

breath-by-breath respiratory measurements [oxygen uptake (𝑉̇O2) and carbon dioxide 

production (CO2)] to be recorded throughout the test with the use of an automated gas-

analysis system (Oxycon Pro; CareFusion UK Ltd). Before each test, gas analysers were 

calibrated using known concentrations of O2 and CO2 (O2 14.79% and CO2 5.07%; BOC 

Gasses), and the volume transducer was calibrated manually with a 3-L bidirectional syringe 
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(Jaegar) according to the manufacturer’s recommendations. Heart rate (Polar S610i; Polar 

Electro Ltd.) and rate of perceived exertion were measured in the last 30 seconds of each 

stage. The cessation of the test occurred when the participant could no longer maintain a 

cadence over 50 rpm’s or voluntary fatigue had been reached. Maximal oxygen uptake 

(𝑉̇O2max) was calculated from the highest rolling 60 second mean if two of the following 

conditions were met 1) heart rate was within 10% of their age predicted maximum (220 

beats/minute minus age); 2) a respiratory exchange-ratio > 1.1; 3) a plateau in 𝑉̇O2 (< 2 

mL·kg−1·min−1) with a further increase in workload.   

 

Exercise Protocol  

Participants completed a graded cycling protocol for 105-110 minutes on visit 2. The 

cycling protocol was performed on a stationary magnetically braked cycle ergometer (Sport 

Excalibur, Lode, Groningen, Netherlands) and was a prolonged cycling task combining two 

intensities [moderate (60% 𝑉̇O2max); high (80-95% 𝑉̇O2max)] that have been reported to induce 

changes in systemic oxidative stress markers (Wadley et al., 2016a). Workloads for each 

intensity of cycling were calculated from data obtained in visit 1. A linear equation was 

calculated from maximal oxygen uptake (mL· min−1) and maximal watts (W) to estimate the 

power output required to achieve a workload of 60%, 80%, and 95% 𝑉̇O2max. The cycling 

protocol consisted of cycling at 60%, 80%, and 95% 𝑉̇O2max for 25, 40 minutes, and until 

fatigue, respectively, lasting approximately 110 minutes (Figure 4.1). The cycle ergometer 

was set in hyperbolic mode to allow for self-selected cycling cadences. In the 7th minute of 

each 10-minute interval (7-10, 17-20, 27-30, 37-40, 47-50, 57-60) breath-by-breath 

respiratory measures [oxygen uptake (𝑉̇O2) and carbon dioxide production (CO2)] were 

collected to ensure the estimated 𝑉̇O2 level was being achieved. If the estimated 𝑉̇O2 was not 
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met, the wattage was adjusted ± 5% of the estimated workload. Heart rate (Polar S610i; Polar 

Electro Ltd.) and rate of perceived exertion (Borg Scale), was recorded in the last 30 seconds 

of each 5-minute period.  

 

       Assessment of total antioxidant capacity, lipid peroxidation, and protein carbonyls were 

assessed using the methods previously stated in section 3.3.      

 

Muscle Biopsy Procedure 

A lateral section of the vastus lateralis was chosen for the muscle biopsy site and a 

lidocaine (1%, B.Braun, Melsungen, Germany) injection was applied to the skin and facia of 

the muscle. An incision was then made and a muscle biopsy (~50-100 mg) was obtained 

using the suction modified Bergstrom muscle biopsy technique (Tarnopolsky et al., 2011). 

Each muscle biopsy was then dissected to remove any connective tissue and fat then 

immediately snap frozen in liquid nitrogen before being stored at -80 oC until further 

analysis.                                                                         
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Muscle Homogenisation Procedure   

Muscle tissue (~50 mg) was powdered on dry ice using a mortar and pestle. 

Approximately 50mg of crushed muscle was then homogenised using a Subcellular Protein 

Fractionation Kit (Thermo Scientific: 87790) to obtain extracellular and mitochondrial 

extracts.  Tissue extracts were washed in ice-cold phosphate buffered saline (PBS: 0.1 M 

sodium phosphate, 0.15 M sodium chloride; pH 7.2) and placed in pre-chilled 

homogenization tubes. Thermo Scientific Halt Protease Inhibitor Cocktail (Pro No: 87786) 

was added to all buffers (1:100) before being used. To extract cytosolic muscle fractions ice-

cold Cytoplasmic Extraction Buffer (CEB) (500 µL CEB for 50 mg of muscle extract) was 

added to chilled homogenization tubes and homogenised using a Douche handheld 

homogeniser for ~10-20 seconds. Upon homogenisation CEB solution was transferred into a 

Pierce Strainer placed in a pre-chilled 15 mL conical tube. The strainer was then centrifuged 

at 500 x g (4 oC) for 5 minutes. The supernatant, containing the cytosolic fraction, was 

immediately transferred into clean pre-chilled aliquots and stored at -80 oC. Ice-cold 

Membrane Extraction Buffer (MEB) (325 µL for 50 mg of muscle extract) was then added to 

the pellet to extract the membrane muscle fractions. MEB was mixed thoroughly with the 

pellet and then incubated for 10 minutes at 4 oC with gentle mixing. After the incubation 

period, the solution was centrifuged at 3000 x g (4 oC) for 5 minutes. The supernatant, 

containing the membrane extract, was immediately transferred into clean pre-chilled aliquots 

and stored at 80 oC.   
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Protein concentration of muscle fractions 

Muscle fraction protein concentrations were determined using the RC DC Protein 

Assay (Bio-Rad, United Kingdom - Pro No: 5000122). In brief 25 µL of samples and 

standards were added to 125 µL of RC Reagent I (Bio Rad - Pro No: 5000117) and incubated 

for 1 minute at room temperature. 125 μL of RC Reagent II was then added to each tube and 

then centrifuged at 15,000 x g for 5 minutes. The supernatant was discarded after 

centrifugation and 127 μL of Reagent A (DC Reagent A and DC Reagent S 50:1) was added 

to each sample and standard until the precipitate had completely dissolved. DC Reagent B 

(1000 μL) was added to each sample and standard, and vortex immediately. After a 15-

minute incubation period the absorbance was read at 750 nm using a spectrophotometer 

(BRAND - Model). An eight-point standard curve made up of protein concentrations from 0 

mg/mL to 2 mg/mL of BSA was used to generate a linear regression equation to establish 

unknown protein concentrations of each sample.  

 

Sodium dodecyl sulphate – polyacrylamide gel electrophoresis (SDS-PAGE) and Western 

blotting  

Samples (20 mg/mL) containing laemili buffer with 5% mercaptoethanol (1:1) and 

molecular weight markers (20-30 μL) were loaded into stacking gels (0.5 M Tris Base, 0.4% 

w/v sodium dodecyl sulphate (SDS) pH 6.8, 30% w/v acrylamide 0.8% w/v bis-acrylamide, 

10% ammonium persulphate solution (APS), N,N,N,N-tetramethyl-ethylenediamine 

(TEMED), ddH2O) on a 15% SDS resolving gel (15%) (1.5 M Trisma Base, 0.4% w/v SDS 

pH 8.4, 30% w/v acrylamide 0.8% w/v bis-acrylamide, 10% APS: 15 μL –TEMED, ddH2O). 

Gels were then loaded into an electrophoresis rig with running buffer (25 mM Tris Base, 192 

mM glycine, 0.1% SDS) and run for 60 minutes at 200 V. Gels were then transferred onto 
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nitrocellulose membranes (0.2 μm) and placed in a transfer unit with the addition of transfer 

buffer (25 mM Tris Base, 192 mM glycine, 20% methanol) for 60 minutes at 100 V.  

Ponceau S was added to membranes to test the transfer was effective and immediately 

washed with ddH2O. Membranes were then washed 2 x 5 minutes with TBST (0.05%) (50 m 

M Tris Base, 150 mM sodium chloride, 0.05% TWEEN 20) and blocked for 60 minutes in 

TBST (0.05%) with 5% skimmed milk powder (Marvel Original dried skimmed milk powder 

– Republic of Ireland). Membranes were washed in TBST (0.05%) for 6 x 5 minutes and 

primary antibodies [anti-CuZn 1:1000 (millipore 07-403), MnSOD 1:1000(anti-SOD2 

ab16956), and GPx-1 1:1000 (millipore ABN63)] were applied to the membranes and 

incubated at 4 oC overnight with gentle agitation. After the removal of the primary antibodies 

the membranes were washed 6 x 10 minutes with TBST (0.05%) and the secondary antibody 

[anti-Mouse IgG 1:7500 (Sigma A0168), and anti-rabbit 1:4000 (Sigma A6154)] was added 

for 60 minutes with gentle agitation. The membranes were then washed 6 x 10 minutes with 

TBST (0.05%) before a final wash with TBS (50 mM Tris Base, 150 mM sodium chloride). 

An enhanced chemiluminescence (ECL) (Optical ECL reagent, ab133406) was then applied 

to membranes with chemiluminesence signals detected using a G:BOX (Chemi-XR5, 

GeneSys, version 1.4.6.0) and quantified using G:BOX Syngene (Synopitics 5.0 MP) 

software. 

 

Statistical Analysis 

All data was analysed using the statistical analysis software package for social 

sciences (SPSS Version 22 for Windows, Chicago, IL). Group differences in bassline 

characteristics and physiological measures recorded during exercise were analysed using 

independent t-tests, with equal variances assumed. Changes in oxidative stress markers were 
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analysed using a group (Supplemented v Non-Supplemented) by time (Pre, 60% 𝑉̇O2max, 80% 

𝑉̇O2max, 95% 𝑉̇O2max, Post) mixed-design analysis of variance (ANOVA), with Bonferroni 

correction. Within-subject (time) effects of equal variance was tested using Mauchley’s Test 

of Sphericity, if the assumption of equal variance was not met, within-subject effects were 

subsequently taken from Greenhouse Geisser corrections. Between-subject (supplementation) 

effects of equal variance was tested using Levene’s Test of Equal Variance, if the assumption 

of equal variances was not met, data was checked for normal distribution and data sets that 

were not normally distributed were log transformed before undertaking any statistical 

analysis. Post hoc analysis of the interaction effects was performed by a test of simple effects 

by pairwise comparisons (with Bonferroni correction). All values are means ± standard error 

(SEM) unless otherwise stated, with the level of significance set at p ≤ 0.05.        
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4.4 Results  

Participants  

There were no significant differences between the supplemented and non-supplement 

group baseline characteristics for age, mass, height, body mass index, years cycled, weekly 

cycling hours, maximal power output, 𝑉̇O2max, or power to weight ratio (Table 4.1). The 

supplemented group on average consumed 153 mg/d (SD ± 72.7 mg/d) vitamin C and 73 

IU/d (SD ± 47.2 IU/d) vitamin E, in the form of multi-vitamin supplement for a period of 3.1 

years (SD ± 2.4 yrs).   

 

Physiological parameters during steady state cycling at 60% 𝑉̇O2max and 80% 𝑉̇O2max  

 The perturbations in heart rate, power output, rate of perceived exertion, and oxygen 

intake during steady-state cycling at 60% 𝑉̇O2max and 80% 𝑉̇O2max was not significantly 

different between the groups; furthermore, the predicted 𝑉̇O2 for each group during these 

periods was not statistically different (Table 4.2).  
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Supplemented 

(n=4) 

Non-Supplemented 

(n=10) 

p - value 

Age (years) 
33 ± 4 29.5 ± 56 0.28 

Height (m) 
1.84 ± 0.06 1.84 ± 0.05 0.77 

Weight (Kg) 
77.6 ± 8.4 76.0 ± 9.2 0.92 

BMI (kg/m2) 
22.9 ± 1.3 22.3 ± 2.1 0.59 

𝑉̇O2max (mL·kg−1·min−1) 56.2 ± 3.4 59.6 ± 1.7 0.34 

Maximal Power Output 

(Wmax) 

352 ± 19.4 355 ± 41.9 0.89 

Watts per Kg (W/Kg) 4.5 ± 0.5  4.6 ± 0.5 0.85 

Years Cycled (years) 5.2 ± 2.2 5.0 ± 2.1 0.84 

Weekly Cycling (hours) 10.9 ± 3.6 10.7 ± 3.4 0.93 

 

Table 4.1 Baseline demographic measurements of the supplemented and non-supplemented 

group for all baseline measurements. All means ± SD.   
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Supplemented 

(n=4) 

Non-

Supplemented 

(n=10) 

p – value 

60% 𝑉̇O2max 

Heart Rate 

(bpm) 
132.5 ± 7.1 128.2 ± 1.5 0.59 

RPE 10.3 ± 0.9  10.8 ± 0.3 0.47 

Power Output 

(W) 
182.2 ± 11.3 180.5 ± 7.0 0.89 

Actual 𝑉̇O2 

(%) 
61.7 ± 2.5 59.2 ± 0.9 0.25 

𝑉̇O2 

(mL·kg−1·min−1) 
34.6 ± 1.7 35.4 ± 1.2 0.73 

𝑉̇O2 

(mL· min−1) 
2666 ± 82.5 2680 ± 115 0.94 

80% 𝑉̇O2max 

Heart Rate 

(bpm) 
163 ±11.5 162.2 ± 2.0 0.92 

RPE 15.7 ± 0.6 15.9 ± 0.4 0.84 

Power Output 

(Wmax) 
251.5 ± 10.3  255.9 ± 9.2 0.79 

Actual 𝑉̇O2  

(%) 
81.5 ± 2.5 79.6 ± 1.0 0.41 

𝑉̇O2 

(mL·kg−1·min−1) 
45.5 ± 1.8 47.6 ± 1.7 0.49 

𝑉̇O2 

 (mL·min−1) 
3513 ± 71.9 3605 ± 158 0.73 

 

Table 4.2 Exercise physiological measures during both steady-state cycling protocols at 60% 

𝑉̇O2max and 80% 𝑉̇O2max for heart rate, power output, actual 𝑉̇O2 percentage, and 𝑉̇O2 

mL·kg−1·min−1and mL·min−1.  
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Oxidative stress  

 Figure 4.2 shows the response of MDA, PC and Log10TAC at rest, during steady 

state exercise, and post-exercise in a supplemented and non-supplemented group. Throughout 

each time point and for each measurement there were no significant differences between the 

supplemented and non-supplemented group. During recovery MDA significantly reduced 

from 80% 𝑉̇O2max (p = 0.002) and Post exercise (p < 0.001) to Post30 when both groups were 

combined. The supplemented group had a significant decrease in MDA from Post exercise to 

Post30 (p = 0.035) and a tendency for a reduction in MDA from 80% 𝑉̇O2max to the same 

time point (p = 0.058). In the non-supplemented group, exercise significantly increased MDA 

from baseline to post exercise (p = 0.034). The non-supplemented group also had a reduction 

in MDA during recovery with significant reductions at Post30 compared to 80% 𝑉̇O2max (p = 

0.002) and Post exercise (p < 0.001). During exercise, there was a trend for PC to decrease 

during each exercise intensity and Post exercise, with a return towards baseline Post30. 

Exercise caused a significant decrease in PC from baseline to 80% 𝑉̇O2max (p = 0.015) and 

there was a trend for a further reduction in PC post exercise (p = 0.078) compared to baseline 

when both groups were combined. In the non-supplemented group, exercise significantly 

reduced PC from baseline to 80% 𝑉̇O2max (p = 0.025), but this was not replicated in the 

supplemented group (Figure.4.3.). An increase in exercise intensity caused a significant 

increase in TAC at 80% 𝑉̇O2max (p = 0.046) and Post exercise (p = 0.002), which lasted into 

the recovery period, with TAC remaining significantly elevated at Post30 compared to 

baseline (p = 0.009) when the groups were combined. The same pattern emerged for the non-

supplemented group with TAC significantly elevated at 80% 𝑉̇O2max (p = 0.031), Post 

exercise (p = 0.001), and Post30 (p = 0.008). Although the same response was observed in 

the supplemented group, the large standard mean error at baseline may have prevented any 

significant differences being observed.  
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Figure 4.2 Changes in oxidative stress markers in response to steady-state exercise and 

recovery. Values are means ± SEM, * indicates p < 0.05 compared to Post30, ** indicates p < 

0.001 compared to Post30, † indicates p < 0.05 compared to Pre 
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Muscle endogenous antioxidant concentrations  

 The skeletal muscle endogenous antioxidant concentration for SOD1 (p = 0.52), 

SOD2 (p = 0.728) and GPx-1 (p = 0.378) were not different between the non-supplemented 

and supplemented group (Figure 4.3).  

 

Figure 4.3 Mean averages (±SEM) for the superoxide dismutase-1 (SOD1), superoxide 

dismutase-2 (SOD2) and glutathione peroxidase-1 (GPx-1) in the supplemented (grey bars) 

and non-supplemented (light grey bars) groups at rest.  Western blots depict pooled groups 

samples for both groups.  
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4.5 Discussion  

 The present study aimed to examine the effect of habitual antioxidant 

supplementation on the resting levels of the endogenous antioxidants SOD1, SOD2, and 

GPx-1 in trained cyclists. In addition, the study aimed to characterise the effect of 

supplementation on the oxidative stress response during steady state exercise. Resting levels 

of the endogenous antioxidants were not different (as assessed by protein content) between 

the supplemented and non-supplemented group. The oxidative stress response to steady state 

cycling at 60% 𝑉̇O2max, 80% 𝑉̇O2max, and Post-exercise was not different between the groups. 

MDA and TAC increased throughout exercise, with a tendency for a small reduction in TAC 

and a significant reduction in MDA during the recovery period, respectively. Exercise 

resulted in the reduction of PC compared to baseline values throughout each cycling bout, 

returning towards baseline values at the end of the recovery period.  

 The reduction in gene expression and protein content of endogenous antioxidants has 

been shown to be attenuated when exercise is combined with acute (Gomez-Cabrera et al., 

2006) or prolonged (Gomez-Cabrera et al., 2008; Morrison et al., 2015; Ristow et al., 2009) 

antioxidant supplementation. Therefore, the current study wanted to examine the effects of 

habitual antioxidant supplementation on resting skeletal muscle endogenous antioxidant 

protein concentrations in trained cyclists. The current findings indicate there was no effect of 

habitual antioxidant supplementation on protein concentrations of the endogenous 

antioxidants GPx-1, SOD1, and SOD2 compared to a control group who did not consume 

antioxidant supplements. One main caveat within the current study is the low number of 

participants in the supplemented group. This may have impacted the statistical power of the 

results presented and therefore results are interpreted with caution. It was perhaps surprising 

that the current study was unable to recruit cyclists who habitually supplemented with 

antioxidants, given the results of the study presented in chapter 2. However, despite 
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recruitment being active for 2 years, the study was unable to recruit more cyclists who met 

the criteria and were supplementing antioxidants. Differences in TAC and PC may be 

particularly affected by participant number because of the large standard error mean in the 

supplementing group, indicating a high variation between individuals within this group. 

The dose of supplements taken by the participants in the current study is also an 

important factor to consider when comparing the results presented herein with those of other 

studies. Previous studies have used either a dose of 1000 mg/d of vitamin C (Gomez-Cabrera 

et al., 2008) or a combination of 1000 mg/d of vitamin C and 400 IU of vitamin E (Ristow et 

al., 2009). The participants in the current study had an average daily intake of 153 mg/d of 

vitamin C and 74 IU of vitamin E, a tenth and a fifth respectively, lower than previous 

experimental studies. Although the average dose was considerably lower, the average 

duration of supplementation was greater than in all previous studies with an average 

supplementation intake of 3.1 years. Indicating, habitual low-dose antioxidant 

supplementation did not have a negative impact on resting endogenous antioxidant 

concentrations in individuals who undertake regular cycling in the current study. There is a 

need for more research in this area, employing lower doses of vitamin C and vitamin E to 

truly reflect the habitual intake of recreational athletes’ and the general public to gain insight 

into the effect of habitual supplementation. 

 Habitual training volume and intensity is known to affect adaptation (Burgomaster et 

al., 2005; Holloszy, 2004; Jones and Carter, 2000). Yfanti et al., (2012) reported no 

significant changes in skeletal muscle content of SOD1, GPx-1, and catalase (CAT) in active 

men who were pre-supplemented for 4 weeks with vitamin C (500 mg/d) and vitamin E (400 

IU/d), and continued this regime throughout a 12-week training protocol containing different 

cycling intensities. Cumming et al., (2014) reported similar results with no significant 

differences in GPx-1 and SOD2 in recreationally active males and females who consumed 
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vitamin C (1000 mg/d) and vitamin E (253 mg/d: 376 IU/d) during an 11-week training 

intervention that included a combination of different exercise intensities. It should be noted 

that even though both studies identified no differences between the groups in the respective 

interventions, one indicated GPx-1 decreased (Cumming et al., 2014) and the other an 

increase in GPx-1 (Yfanti et al., 2012). This may have been due to the differing mode of 

exercise used throughout training, i.e. running vs cycling.  

In comparison, studies that have used a single exercise mode and intensity throughout 

an intervention period or not stipulated variations in the exercise session intensities have 

presented conflicting results. Ristow et al., (2009) who conducted a study combining 

resistance and aerobic training over a 4-week period in untrained and trained individuals 

reported decreased mRNA expression for SOD1, and GPx-1 in the trained group, and SOD2 

in the untrained group when participants were supplemented with 1000 mg/d vitamin C and 

400 IU/d vitamin E. Furthermore, significant changes were observed from baseline for SOD2 

mRNA expression in the trained non-supplemented group and GPx-1 mRNA expression in 

the untrained non-supplemented group that were not observed in the supplemented group 

(Ristow et al., 2009). Morrison et al., (2015) reported similar findings when active males 

were supplemented for 8 weeks with 1000mg/d vitamin C and 400 IU/d vitamin E which 

included a high-intensity cycling intervention over the last 4 weeks. The protein content and 

activity of SOD1 was significantly increased after the intervention period in the non-

supplemented group that was not replicated in the antioxidant group.  

The findings of these studies taken together might imply that the variation in training 

mode and intensity may be an important factor when considering the effect of consuming 

antioxidant supplements on endogenous antioxidant capacity, and could explain why there 

was no difference in endogenous antioxidants in the current study. In the current study 

participants were trained cyclists, typically competing in time-trials, criterium races, and road 
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stages races; holding British Cycling race licenses. All participants had been involved with 

competitive cycling events for at least 12 months and undertook cycling as their main form of 

training. Thus, adaption to training would have arguably already occurred. When the training 

intensity is kept constant the addition of exogenous antioxidants to the endogenous 

antioxidant pool may be adequate to the deal with the repeated exercise stimuli. However, 

when training intensities are varied and provide differing exercise stimuli’s the exogenous 

and endogenous systems may not be adequate to deal with such stimuli, resulting in 

adaptation in either condition.   

The oxidative stress response between the two groups in the current study was not 

different, which is in agreement with previous exercise studies investigating the effects of 

antioxidant supplementation on markers of oxidative stress compared to control group 

(Bloomer et al., 2006; Theodorou et al., 2011). The response to steady-state exercise is in 

parallel to the results obtained in Chapter 5. The increasing exercise intensity and subsequent 

increase in the production of RONS is represented in the results by an increase in TAC and 

MDA. An interesting finding in the current study, that was also observed in Chapter 5 was 

the decrease in PC with exercise intensity. In the current study, PC decreased independent of 

supplementation that was also observed in Chapter 5, indicating either the exercise stimulus 

or training status of the participants may be responsible for these observed changes. Previous 

studies have also reported a reduction in PC upon completion of exercise (McGinnis et al., 

2014; Wadley et al., 2015a), but the mechanism responsible for this is still unknown. It has 

been proposed by Wadley et al., (2016b) that it could potentially occur in response to 

increased PC clearance during exercise. However, further investigation is warranted to 

support this claim.  

In addition to participant number, there are some notable limitations to the present 

study. Endogenous antioxidant enzyme content was only assessed at rest, and not following 
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an exercise bout. Thus, by not providing any information on redox-mediated signalling 

pathways post-exercise, it is difficult to interpret the effect of habitual antioxidant 

supplementation on these pathways. The supplementation dose was lower than that which has 

been used in previous studies investigating the effects of antioxidant supplementation on 

endogenous antioxidant adaptation. However, although the dose was lower, an aim of this 

thesis was to assess exercise and antioxidant supplementation in a “real world” setting, and 

thus habitual consumption at a dose selected by the cyclist was assessed. 

 Chapter 3 reported habitual supplementation did not attenuate exercise-induced 

oxidative stress compared to a non-supplemented group after a recreational cycling sportive. 

The work undertaken in the current chapter aimed to characterise the exercise-induced 

oxidative stress response to cycling in a controlled laboratory setting. In addition, the study 

addressed an aim of the thesis by establishing whether baseline concentrations of endogenous 

antioxidant enzymes were affected by habitual antioxidant supplementation. As discussed in 

Section 1.4.1, previous studies have primarily focused on short term supplementation (< 16 

weeks) and supra-physiological doses (1000 mg/d vitamin C and 400 IU/d vitamin E), and it 

is not apparent whether habitual consumption of a commercially available antioxidant 

supplement can affect the concentration of endogenous antioxidant enzymes.    

The results in the present study identified that self-reported habitual consumption of 

commercially available antioxidant supplements, for a period greater than 6 months, did not 

have a detrimental effect on resting skeletal muscle endogenous antioxidant enzyme 

concentrations in trained cyclists. Furthermore, supplementation did not attenuate markers of 

oxidative stress during steady-state cycling at 60% 𝑉̇O2max, 80% 𝑉̇O2max or post-exercise 

compared to a non-supplemented group. These current findings indicate that habitual low-

dose antioxidant supplementation did not provide additional antioxidant protection in well-

trained cyclists who undertake 10 hours of cycling per week; and does not seem to negatively 
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affect the production of endogenous antioxidants, as has previously been observed. By 

recruiting free-living individuals who engage in regular exercise and choose to consume 

antioxidant supplements on a regular basis, this study provides additional information on the 

effects, or lack thereof, of antioxidant supplements in response to cycling. 

Presently, the use of traditional antioxidants, such as vitamin C and E, have failed to 

alter the exercise-induced oxidative stress response in Chapters 3 and 4, or improve recovery 

or performance in other studies (Braakhuis, 2012; Braakhuis and Hopkins, 2015).There is a 

growing interest in the effects of polyphenol consumption (Bowtell et al., 2011; Connolly et 

al., 2006; Howatson et al., 2010). However, studies to date have not been conducted in an 

applied sport setting.   
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Chapter Five 

5. Supplementation with a Montmorency Tart Cherry drink in trained cyclists does not reduce 

exercise-induced oxidative stress or improve subsequent days cycling time-trial performance: 

a placebo crossover design study  
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5.1 Abstract  

Introduction: Montmorency Tart cherry (MC) supplementation can improve recovery after 

strenuous exercise by reducing exercise-induced inflammation, oxidative stress, and skeletal 

muscle damage. At present, it is not clear whether these changes can result in improved 

exercise performance in the days following strenuous exercise. The aim of this study was to 

investigate the effect of MC supplementation on recovery and performance 24 hours after 

strenuous excise in well-trained cyclists.     

Methods: Eight male cyclists (mean ± SD: age 29.1 ± 5.3 yrs; 𝑉̇O2max 57.7 ± 5.0 

mL·kg−1·min−1) completed 2 cycling protocols separated by 24 hrs. Steady state cycling at 

60% Wmax , 80% Wmax , and 95% Wmax until fatigue, was followed by a time-trial (TT) after 

24hrs. A placebo (PLA) and MC supplement was taken for 2 x day for 7 days before and on 

the day of the trials. In a cross-over design, participants undertook both arms of the trial 

separated by a 14-day washout. Blood samples were taken pre, during, and post exercise to 

assess oxidative stress and inflammatory markers.  

Results: Throughout each exercise trial there were no differences between MC and PLA for 

protein carbonylation (PC), malonaldialdehyde (MDA), total antioxidant capacity (TAC) or 

interleukin-6 (IL-6). In response to steady-state cycling TAC (p < 0.001) and IL-6 (p < 0.001) 

significantly increased. During the TT, TAC (p < 0.05), IL-6 (p < 0.05), and MDA (p < 0.05) 

significantly increased throughout the trial. After 24 hrs recovery TAC (p < 0.05) and IL-6 (p 

< 0.05) decreased. MC supplementation did not improve TT performance compared to PLA 

(MC, 1605 secs ± 111; PLA 1609 secs ± 115).  

Conclusion:  These findings indicate 8 days of MC supplementation did not attenuate 

oxidative stress, nor augment antioxidant defences in trained cyclists compared to PLA. 

Furthermore, MC did not enhance recovery 24 hours after completing a strenuous cycling 

protocol or provide an ergogenic effect in subsequent TT performance.    
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5.2 Introduction  

Many athletes consume antioxidants to allegedly alleviate the detrimental effects 

associated with strenuous exercise to potentially improve exercise performance and/or 

recovery. Thus, a great number of studies have investigated the effect of antioxidant 

supplementation on the physiological response to exercise. The consumption of traditional 

antioxidant compounds vitamin C and vitamin E has failed to improve exercise performance 

(Braakhuis, 2012; Braakhuis and Hopkins, 2015), or alleviate exercise-induced oxidative 

stress (Stepanyan et al., 2014; Theodorou et al., 2011) and inflammation (Davison and 

Gleeson, 2006; Davison and Gleeson, 2007). Therefore, attention has recently focused on 

polyphenol compounds, a sub-class of antioxidants that consist of several thousand bio-active 

compounds (Beecher, 2003; Manach et al., 2004) with the ability to inhibit oxidative stress 

(Mitjavila and Moreno, 2012; Graziani et al., 2005) and inflammation (Decendit et al., 2013; 

González et al., 2014). These compounds have been of interest to exercise scientists who are 

interested in potentially reducing exercise-induced oxidative stress and inflammation.  

Cherries contain a combination of polyphenols consisting of phenolic acids (gallic 

acid, neochlorogenic acid, 3-coumaroylquinic acid, chlorogenic acid and ellagic acid), 

flavonols (quercetin, kaempferol, isoramnetin. and their glucosides), flavanols (catechin, 

epicatechin and procyanidins) and anthocyanins (malvidin, cyanidin, pelargonidin, peonidin, 

delphinidin, petunidin) (Blando et al., 2004; Howatson et al., 2010; Howatson et al., 2012; 

McCune et al., 2011). The compounds within cherries that have generated the greatest 

interest are the anthocyanin subclasses due to their anti-inflammatory and antioxidant effects 

(Decendit et al., 2013; González et al., 2014; McCune et al., 2011).  
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Exercise studies investigating the effectiveness of cherry supplementation have 

primarily used a Montmorecny cherry tart (MC) supplement to investigate its effectiveness in 

attenuating exercise-induced oxidative stress and inflammation in aerobic (Bell et al., 2014c; 

Bell et al., 2015; Howatson et al., 2010; Levers et al., 2016) and anaerobic (Bell et al., 2016; 

Bowtell et al., 2011; Levers et al., 2015) exercise. Findings from these studies are equivocal 

on the ability of MC to reduce exercise-induced oxidative stress, with some studies indicating 

a beneficial effect (Bell et al., 2014c; Bowtell et al., 2011; Howatson et al., 2010) and others 

reporting no-effect (Levers et al., 2015; Levers et al., 2016; McCormick et al., 2016). The 

positive interactions of MC initially seemed to be related to the attenuation in exercise-

induced inflammation.  

Several studies have reported a less-pronounced increase in the inflammatory marker 

interleukin-6 (IL-6) upon exercise cessation (Howatson et al., 2010) in the subsequent days 

(Bell et al., 2016; Bell et al., 2014c; Bell et al., 2015; Levers et al., 2016). However, 

contradictory findings have been reported with some studies indicating no-effect of 

supplementation on exercise-induced inflammation (Levers et al., 2015; McCormick et al., 

2016). The positive effects of MC on exercise-induced oxidative stress and inflammation 

seem to be augmented in studies where low-phenolic diets are undertaken in the preceding 48 

hours and in the recovery period of the trial (Bell et al., 2016; Bell et al., 2014c; Bell et al., 

2015). However, these studies may not reflect the consumption habits of amateur or elite 

athletes’. There is a need for research which is perhaps more closely related to ‘real’life’. 

Such research could focus on the effect of MC in free-living athletes where there are no 

dietary restrictions on polyphenol intake, and supplements are taken in addition to a balanced 

diet.  

A well-established effect of consuming MC seems to be its ability to improve 

recovery and subsequent performance in the day(s) following strenuous resistance type or 
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weight bearing exercise. Numerous studies have identified a less pronounced attenuation in 

maximal voluntary contractions (MVC) (Bowtell et al., 2011; Connolly et al., 2006) and 

maximal voluntary isometric contractions (MVIC) (Bell et al., 2016; Bell et al., 2014c; Bell 

et al., 2015; Howatson et al., 2010) for periods up until 72 hours post-exercise (Bell et al., 

2016; Bell et al., 2015; Connolly et al., 2006) after consumption of MC prior to strenuous 

exercise and in the recovery period. However, extrapolating these findings to applied sports 

settings could be erroneous at this present time. Bell et al., (2015) demonstrated that 

maintenance of MVIC in the recovery period did not subsequently improve performance in a 

6-second maximal power output cycling bout compared to a control group who displayed 

reductions in MVIC. Furthermore, McCormick et al., (2016) reported no improvements in a 

battery of performance measures related to water-polo after a week of intensified training. In 

contrast to these findings, Bell et al., (2016) confirmed an effect of MC on subsequent days 

performance in soccer players, with less reduced declines in counter-movement jumps (CMJ) 

and 20 m sprints that was reflected by a less pronounced reduction in MVIC over the 

recovery period to the control group. To elucidate the effects of MC on improved recovery 

and the potential for this to allow for better performance on subsequent days, research should 

be conducted with applied sports performance measures, such as time-trials for runners and 

cyclists.  

The aim of the present study is to explore the interaction of MC on exercise-induced 

oxidative stress and inflammation during a strenuous cycling bout and in the subsequent 

recovery period (24 hours) in free-living cyclists. The study aims to further determine 

whether improved recovery, indicated by an attenuation in markers of oxidative stress and 

inflammation, can improve subsequent days performance in a cycling time-trial.   
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5.3 Methods 

Participants 

Eight trained male cyclists were recruited to the study through advertisement at local 

cycling clubs and distribution of recruitment flyers at cycling events within the West 

Midlands area. Individuals who undertook 5 or more hours of cycling a week, had not 

consumed a vitamin and/or antioxidant supplement within the 30 days before undertaking the 

study, were non-smokers, and accustomed to exhaustive cycling were invited to participate in 

the study. Before being invited to the Human Performance Laboratory (HPL) to participate in 

the study, each participant was sent a participant information sheet (Appendix 7) outlining the 

study objectives and contacted by a member of the research team to ensure they met the 

inclusion criteria and understood the study protocol. All participants completed and signed a 

consent form and a general health questionnaire prior to undertaking the study (Appendix 8 

and 9).  

 

Experimental Design  

The study was a counterbalanced, cross-over, single blind study. A counterbalance 

design was incorporated to allow for any learning effects of the study to be balanced and to 

control for any training improvements that may have occurred during the experimental 

period, a schematic diagram of the study design is shown in Figure 5.1. The initial visit to the 

HPL consisted of a fasted baseline blood sample being collected, with height and weight 

measurements recorded. The cycle ergometer (Sport Excalibur, Lode, Groningen, 

Netherlands) was set up to the participants required dimensions; saddle, handle bar height and 
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position were recorded to allow for identical bike set up for each trial. Thereafter, each 

participant undertook a 𝑉̇O2max test to determine 𝑉̇O2 values and maximum power output 

(Wmax). On completion of the 𝑉̇O2max test each participant could recover ad libitum before 

undertaking a 30-minute time-trial familiarisation protocol, to control for any learning effects 

that could occur during subsequent time-trial (TT) performances. 

On the 2nd visit to the HPL participants attended in a fasted state, except for 

consuming the experimental or placebo drink, and in a rested state – no exercise for a 48-hour 

period. Upon arrival a cannula (BD Vialon, 20GA, NJ, USA) was inserted in to an anti-

cubital vein in the arm allowing for blood collections to be obtained at baseline (V1Pre, 

V2Pre, V3Pre), during the cycling trials (V260%, V280%, V360%), and post cycling 

(V2Post, V2Post30, V3Post). Participants then undertook an exhaustive cycling protocol, 

cycling for 60% Wmax for 25 minutes, 80% Wmax for 40 minutes, and 95% Wmax until 

voluntary fatigue or unable to maintain a cadence of 50 revolutions per minute (RPM’s). If 

the cadence dropped below 50 RPM’s during the 80% Wmax workload the watts were adjusted 

to allow the participant to complete this section of the protocol. An alteration in wattage was 

recorded and replicated in the subsequent trial. Blood samples were taken within the last 60 

seconds of the 60% Wmax (V260%) and 80% Wmax (V280%) workloads, and at fatigue 

(V2Post). Participants were then asked to relax for 30 minutes and a post cycling blood 

sample was attained at 30 minutes (V2Post30).  

Participants returned to the HPL for their 3rd visit the following morning in a fasted 

state, except for consuming the experimental or placebo drink. A cannula was inserted in to 

an anti-cubital vein in the arm to allow for a baseline blood sample to be collected and for 

further samples to be obtained during the trial. A 30-minute warm up at 60% Wmax was 

completed by the participant before undertaking the time-trial protocol. Blood samples were 
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obtained at the end of the warm up period (V360%) and upon completion of the time trial 

(V3Post). Upon completing the 3rd visit a 14-day washout period was completed by each 

participant before returning to complete the 2nd and 3rd trials, 4th and 5th trials respectively 

after consumption of the opposing experimental drink. During each trial heart rate was 

recorded every 5 minutes for each workload except during the 95% Wmax, and the TT where 

heart rate was recorded at predetermined time points related to total energy expenditure. Rate 

of perceived exertion (RPE) was recorded every 10 minutes during each workload, apart from 

during the 95% Wmax workload and the TT. The time of the trials was between 7am and 9am. 

Each participant started their trials at the same time in the morning to avoid any circadian 

effects on cycling performance.     

     

𝑉̇O2max test and time-trial 

Maximal oxygen consumption (𝑉̇O2max) and maximal power output (Wmax) tests were 

undertaken after an overnight fast (10 to 12 hours) and in the morning to factor for circadian 

rhythms. Participants undertook a graded exercise test on a stationary cycle ergometer (Sport 

Excalibur, Lode, Groningen, Netherlands) until voluntary fatigue. All tests started at 95 W 

with an increase in 35 W every three minutes. Participants cycled at a self-selected cadence 

during the 𝑉̇O2max and Wmax test with the cycle ergometer set in hyperbolic mode allowing an 

independent cadence to be performed. Wmax was calculated by multiplying the amount of 

time, in seconds, completed in the last stage (a), by the amount of W’s within each stage, 35, 

divided by the total time of the stage in seconds, 180, and adding this to power output 

completed in the previous stage (b) (eq.1)  

 Eq.1 Wmax = a*(35/180) + (b) 
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For a participant who had completed 45 seconds (a) of work in the final stage, and the 

last completed stage was at 340W (b), their Wmax would be calculated as 348.7 W (eq.2) 

Eq. 2  Wmax = 45*(35/180) + (340) 

  Wmax = 45*(.194) + (340) 

  Wmax = 348.7 W 

Throughout the test oxygen uptake (𝑉̇O2), carbon dioxide production (CO2) was 

continuously measured (Jaeger Oxycon Pro, Hoechberg, Germany); with heart rate (Polar 

S610i; Polar Electro Ltd.) and rate of perceived exertion measured in the last 30 seconds of 

each stage. The cessation of the test occurred when the participant could no longer maintain a 

cadence over 50 rpm’s or voluntary fatigue had been reached. 𝑉̇O2max was ascertained when 

𝑉̇O2 did increase with increasing workload, and/or an RER of 1.05 had been achieved, and/or 

the participants’ heart rate was within 10% of their age-predicted heart rate (220-Age).  

The time-trial (TT) was designed for the participants to complete a set amount of 

work as fast as possible. The total amount of work to be carried out in kilojoules (KJ) during 

the TT was calculated through formulas used previously by Jeukendrup et al., (1996) and 

Currell and Jeukendrup, (2008), using desired estimated power output (75% Wmax) and time 

of the TT (1800 secs) to determine the amount of KJ’s required to simulate a 30-minute 

workload. The formula below was used to determine the workload for the TT: 
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Total Amount of Work (KJ)   = (0.75 Wmax x 1800 secs) / 1000 

     = ((0.75 x 348.7) x (1800)) / 1000 

     = (261.5 x 1800) / 1000 

     = (470745)/1000 

     = 470.75 KJ   

The ergometer was set in the linear mode according to the formula:  

 Workload = L(rpm)2 

where the rpm is the pedalling rate and the L is the linear factor. This factor was chosen in a 

way that would elicit a pedalling rate of 80 rpm’s at 75% Wmax. The alpha level to determine 

the linear factor was calculated using the formula below: 

 L = 75% Wmax / (80)2 

 L = 261.5 / 6400 

 L = .041 

During the TT participants could only see the amount of work completed on a 

computer screen connected to the cycle ergometer. All of the time trials were conducted in 

the same environment (19 oC/66.2 oF) without any verbal encouragement and in the absence 

of any factors that could affect the outcome of the TT e.g. music.   
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Drink consumption  

Each participant was allocated the experimental (Cherry Active) and placebo 

(Cordial) drink in a counterbalanced approach. The drinks were consumed for 7 consecutive 

days to allow for a loading period of the experimental drink, taken in the morning (a.m.) and 

evening (p.m.) before returning to the HPL to undertake the 2nd and 4th visits. On the 

mornings of each trial the participants were asked to consume the drinks 30 to 60 minutes 

before undertaking the trial, and to consume the drink in the evening after the 2nd and 4th 

trials. The drinks were also consumed in the evening after completing the 2nd and 4th trials, 

and before the 3rd and 5th trials. This resulted in 9 consecutive days of supplementation for 

each experimental drink. In total 34 drinks were consumed throughout the study – 17 

experimental drinks and 17 placebo drinks. To control for the effects of nutrition before each 

trial, participants were asked to record a 3-day food diary, 2 days leading up to the 2nd visit 

to the and for the remainder of the day after completing the 2nd visit.  Participants were asked 

to eat an ad libitum diet and to consume the same foods and drinks recorded on their 3-day 

food diary when undertaking the cross-over section of the study.  

 

Drink composition 

The experimental drink contained 30 mL Montmorency tart cherry concentrate 

(Cherry Active, Hanworth, United Kingdom) (MC) and made to a final volume of 250 mL 

with water. The manufactures state every 30 mL contains between 90-110 Montmorency tart 

cherries and previous research has reported that CA contains 669 mg.mL-1 carbohydrates, < 1 

mg.mL-1 fat, 31 mg.mL-1 protein, < 1 mg.mL-1 sodium and 9 mg.mL-1 anthocyanins (Bell et 

al., 2014c; Bell et al., 2015). The placebo (PLA) control drink was a commercially available 

fruit cordial (carbohydrates 3 mg.mL-1, fat < 1 mg.mL-1, protein < 1 mg.mL-1, fibre < 1 
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mg.mL-1, and sodium 1 mg.mL-1, and trace of anthoycanins used for colouring) was combined 

with water and dextrose to make a final volume of 250 mL. A dextrose powder 

(MyProtein.com) was added to the placebo drink to ensure the carbohydrate values of both 

drinks were matched.  

Assessment of total antioxidant capacity, lipid peroxidation, and protein carbonyls 

were assessed using the methods previously stated in section 3.3.      

 

High sensitivity interleukin – 6 (IL-6) ELISA 

Interleukin – 6 (IL-6) was measured using a commercially available high-sensitivity 

ELISA kit with a detectable range of 0.2 pg/mL to 10 pg/mL (Human IL-6 Quantikine HS 

ELISA Kit, Pro No: HS600B, R&D Systems, UK). In brief, 100 μL of assay diluent was 

added to each well and 100 μL of the sample and standard were then added and left to 

incubate for 2 hours at room temperature with gentle agitation. Plates were then washed and 

200 μL of Human IL-6 HS Conjugate was added to each well and incubated for a further 2 

hours with gentle agitation. The plates were then washed, 50 μL of substrate solution was 

then added and incubated for 1 hour at room temperature without agitation. After 1 hour 50 

μL of amplifier solution was added and incubated for a further 30 minutes at room 

temperature. Finally, 50 μL of stop solution was added and the plates were analysed using a 

microplate reader set at a wavelength of 490 nm. An additional reading was taken at a 

wavelength of 650 nm and these readings were subtracted from the readings at 450nm to 

correct for optical imperfections within the plate. A linear regression equation was generated 

from an eight-point standard curve consisting of standards ranging from 0 pg/mL to 10 

pg/mL. Plasma values are expressed as pg/mL of IL-6.  The intra- and inter-plate coefficients 

of variation were 6.9% and 9.6% respectively.    
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Statistical Analysis 

All data was analysed using the statistical analysis software package for social 

sciences (SPSS Version 22 for Windows, Chicago, IL). Outcome measures were assessed 

using repeated-measures analysis of variance (ANOVA), with Mauchay’s Test of Sphericity 

used to test for equal variance, if the assumption of equal variance was not met within-subject 

effects were subsequently taken from Greenhouse Geisser corrections. Several statistical 

models were used to answer specific experimental questions for the effect of supplementation 

on the outcome variables at baseline 3(V1pre, V2pre, V3pre) x 2 (MC, placebo), during visit 

2 5(V2pre, 60%, 80%, V2post, V2post30) x 2 (MC, placebo), supplementation effect on 

recovery 2(V2post30, V3pre) x 2(MC, placebo), and during visit 3 3(V3pre, 60%, V3post) x 

2(MC, placebo). All values are means ± standard deviation (SD), with the level of 

significance set at p ≤ 0.05.       
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5.4 Results 

Participant demographics 

All of the participant demographics are displayed in Table 5.1.  

 

Power outputs and cycling times for steady state cycling and time-trial 

The average watts maintained during the steady state trials during visit 2, irrespective 

of supplementation, were: at 60% Wmax 208 W (± 17.5), 80% Wmax 270 W (± 26.8), and 95% 

Wmax 329.5 W (± 28.1). In comparison with predicted workloads: at 60% Wmax all of the 

participants completed their predicted workloads; at 80% Wmax the average workload for all 

participants was 78% Wmax (± 2.4); and at 95% Wmax participants cycled at their predicted 

workload until voluntary fatigue. The total trial time for MC was 4073 seconds (± 172) and 

for the PLA was 4061 seconds (± 206), there was no significant difference in total trial time 

between the groups, nor in the finishing time of the time-trial (MC group: 1605 seconds ± 

111.2; PLA group:1610 seconds ± 114.6) (Table 5.2). Similarly, power output during the 

time-trial was not different between groups (MC group: 292 W ± 34.8; PLA group 292 W ± 

40.1) (Table 5.2). The intra-individual differences of the participants finishing times and 

power outputs over the two trials are represented in figure 5.2. There was no effect of trial 

order, with the participants’ first time-trial completed in 1609 seconds (± 103.9) and the 

subsequent trial in 1606 seconds (± 121.3).    
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Heart rate and perceived rate of exertion for steady state cycling and time-trial  

During steady state cycling at 60% Wmax and 80% Wmax there were no significant 

differences in heart rate (60% Wmax, MC p = 0.59; 80% Wmax, p = 0.148) or rate of perceived 

exertion (60% Wmax, p = 0.402; 80% Wmax, p = 0.142) between the MC and PLA groups. 

There was also no significant difference in heart rate (p = 0.358) or rate of perceived exertion 

(p = 0.451) in the 30-minute steady state cycling at 60% Wmax before the time-trial between 

groups. During the time-trial there was no significant difference in heart rate between the MC 

and PLA groups (p = 0.317) (Table 5.2). 

Table 5.1 Mean demographic characteristics of the male cyclists (n = 8) who completed the 

study.  

n = 8 Mean (SD) 

Age (years) 29.1 ± 5.3 

Height (m) 1.78 ± 0.05 

Weight (Kg) 72.5 ± 7.4 

BMI (kg/m2) 22.7 ± 1.6 

𝑉̇O2max (mL·kg−1·min−1) 57.7 ± 5.0 

𝑉̇O2peak 59.4 ± 4.7 

Maximal Power Output (Wmax) 348.3 ± 27.6 

Watts per Kg (W/Kg) 4.8 ± 0.4 
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Figure 5.2 The mean and intra-individual differences upon completion of the time-trial for a) 

finishing time in seconds and b) power outputs in watts for each condition. There were no 

significant effects for trial order (p = 0.966) 

a) 

b) 
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Effect of supplementation on baseline oxidative stress and inflammation markers 

 To investigate the effectiveness of supplementation on baseline oxidative stress 

markers, baseline samples (preV1, V2pre, V3pre) for both conditions were compared. At 

baseline, there were no significant differences in FRAP, MDA, and PC concentrations 

between the conditions (FRAP: F (1,7) = 1.632, p = 0.242, η2 = 0.189, MDA: F (1,7) = 0.102, p 

= 0.759, η2 = 0.014), PC: F (1,7) = 3.303, p = 0.112, η2 = 0.321). Throughout the intervention 

period baseline concentrations of FRAP significantly increased, independent of 

supplementation (F (2,14) = 12.33, p = 0.001, η2 = 0.638) (Figure 5.3). There was a significant 

increase in FRAP from preV1 to V3pre (preV1: 513.4 ± 48 μM; V3pre: 556.7 ± 38.4 μM; p = 

0.037) and V2pre to V3pre (V2pre: 507.8 ± 46.5 μM; V3pre: 556.7 ± 38.4 μM; p = 0.002). 

The inflammatory marker IL-6 was measured V2pre and V3pre to evaluate the effect of V2 

on V3. There was no significant difference pre-V3 in IL-6 between the conditions (F (1,7) = 

0.557, p = 0.277, η2 = 0.074) (Figure 5.6).   

 

Effect of supplementation on oxidative stress and inflammation markers during and after 

steady state exercise (visit 2) 

 Supplementation did not stimulate any significant differences in oxidative markers 

(FRAP, MDA and PC) between the MC and PLA group during steady state exercise (FRAP: 

F (1,7) = 0.362, p = 0.566, η2 = 0.049; MDA: F (1,7) = 0.028, p = 0.871, η2 = 0.04), PC: F (1,7) = 

0.105, p = 0.755, η2 = 0.015). Independent of supplementation exercise resulted in a 

significant increase in FRAP during the trial (F (4,28) = 23.05, p < 0.001, η2 = 0.767). FRAP 

was significantly increased compared to baseline at each time point in visit 2, V2pre to 60% 

Wmax (V2pre: 507.8 ± 46.5 μM; 60% Wmax: 549.2 ± 54.8 μM; p = 0.015), V2pre to 80% Wmax 

(V2pre: 507.8 ± 46.5 μM; 80% Wmax: 582.2 ± 37.5 μM; p < 0.001), V2pre to postV2 (V2pre: 
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507.8 ± 46.5 μM; postV2: 596.3 ± 46.9 μM; p = 0.003), V2pre to post30V2 (V2pre: 507.8 ± 

46.5 μM; post30V2: 610.7 ± 55.2 μM; p < 0.001), and was significantly higher at V2post30 

compared to concentrations at 60% Wmax (p = 0.04) (Figure 5.3). MDA significantly changed 

during the trial independent of supplementation (F (2.383,16.678) = 9.08, p = 0.001, η2 = 0.565). 

MDA concentrations significantly increased from V2pre to 60% Wmax (V2pre: 10.9 ± 1.4 

μM; 60% Wmax: 11.9 ± 1.7 μM; p = 0.025). MDA concentrations were also significantly 

reduced 30 minutes after cessation of cycling compared to concentrations at 60% Wmax 

(V2post30: 10.5 ± 1.8 μM; 60% Wmax: 11.9 ± 1.7 μM; p = 0.004) and immediately post-

cycling V2post30: 10.5 ± 1.8 μM; V2post: 11.9 ± 1.7 μM; p = 0.001) (Figure 5.5). The 

inflammatory marker IL-6 was not significantly different between the two conditions during 

this branch of the trial (F(1,7) = 2.04, p = 0.196, η2 = 0.226). Independent of supplementation, 

exercise significantly increased IL-6 concentrations (F(2,14) = 33.57, p < 0.001, η2 = 0.908). 

There was a significant increase in IL-6 from V2pre to V2post (V2pre: 0.41 ± 0.31 pg/mL; 

V2post: 3.3 ± .1.1 pg/mL; p < 0.001) and V2pre to V2post30 (V2pre: 0.41 ± 0.31 pg/mL; 

V2post30: 2.3 ± 0.72 pg/mL; p < 0.001). Furthermore, IL-6 was significantly greater at 

postV2 compared to Post30V2 (p = 0.018) (Figure 5.6).  
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Table 5.2 Physiological differences between the two experimental conditions for heart rate 

(HR), rate of perceived exertion (RPE), trial completion time, and power output over the 2nd 

and 3rd trials. All values are means ± SD  

 

 MC PLA p value 

Total Trial Time (seconds) 4073 ± 172 4061 ± 206 0.64 

TT Finishing Time (seconds) 1605 ± 111 1609 ± 115 0.92 

TT Power Output (watts) 292 ± 34.8 292 ± 40.1 1.0 

HR for TT (bpm) 169 ± 11.2 171 ± 9.5 0.32 

HR 60%Wmax 30 minutes (bpm) 136 ± 9.3 134 ± 9.2 0.36 

RPE 60%Wmax 30 minutes (bpm) 12.3 ± 1.2 11.9 ± 1.4 0.45 

HR 60%Wmax 25 minutes (bpm) 135 ± 10.2 137 ± 11.4 0.59 

HR 80%Wmax 40 minutes (bpm) 165 ± 9.7 169 ± 10.2 0.15 

RPE 60%Wmax 25 minutes 11.7 ± 1.0 12.1 ± 0.6 0.40 

RPE 80%Wmax 40 minutes 16.2 ± 1.2 17.1 ± 0.8 0.14 
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Figure 5.3 Changes in total antioxidant capacity (TAC) measured by the ferric reducing 

ability of plasma (FRAP) assay for the MC condition (light grey) and PLA condition (dark 

grey). All values are means ± SD. * indicates p < 0.05 and ** indicates p < 0.001 compared 

to V2pre, *** indicates p < 0.05 compared to V260%, † indicates p < 0.05 compared to 

V3pre, †† indicates p < 0.05 compared to V1pre and V2pre, ††† indicates p < 0.05 compared 

to V2post30. 

 

The effect of supplementation on recovery 24 hours after completing a strenuous cycling bout  

To determine the effectiveness of MC supplementation on recovery and performance, 

oxidative stress and inflammatory markers were compared between the two conditions after 

24 hours (V2post30 vs V3pre) and during the 3rd trial. Supplementation did not stimulate any 
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significant differences between the MC and PLA group for FRAP (F (1,7) = 0.15, p = 0.710, η2 

= 0.021), MDA (F (1,7) = 0.5, p = 0.507, η2 = 0.067), PC (F (1,7) = 1.179, p = 0.314, η2 = 

0.144) or IL-6 (F (1,7) = 0.65, p = 0.447, η2 = 0.085) 24 hours after completing a strenuous 

bout of cycling. Independent of supplementation FRAP and IL-6 concentrations decreased 

from V2post30 to V3pre (FRAP: postV2: 610.6 ± 552 μM; V3pre: 556.7 ± 38.4 μM; p = 

0.005: IL-6 V2post30: 2.3 ± 0.72 pg/mL; V3pre: 0.3 ± 0.17 pg/mL; p < 0.001). There was a 

trend for reduced PC in the PLA group compared to the MC at V3pre (PLA: 1.12 ± 0.33 

nm/mg; MC: 1.33 ± 0.47 nM/mg; p = 0.051) (Figure.5.4).  

 

Figure 5.4 Changes in protein carbonyl (PC) content measured by a protein carbonyl ELISA 

for the MC condition (light grey) and PLA condition (dark grey). All values are means ± SD. 

† indicates p < 0.05 compared to V3pre, †† indicates p < 0.05 for an effect of 

supplementation during the 3rd trial. 
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Figure 5.5 Changes in lipid peroxidation measured by the malondialdehyde (MDA) assay for 

the MC condition (light grey) and PLA condition (dark grey). All values are means ± SD. * 

indicates p < 0.05 compared to V2pre, ** indicates p < 0.05 compared to V2post30, † 

indicates p < 0.05 for an effect of time for the 3rd trial, pairwise comparisons failed to show 

any significant effects between the time points in the 3rd trial.   

 

Supplementation did not stimulate any significant differences between the MC and 

PLA group for FRAP (F (1,7) = 0.471, p = 0.515, η2 = .063), MDA (F (1,7) = 0.02, p = 0.891, η2 

= 0.003) or IL-6 (F (1,7) = 1.127, p = 0.324, η2 = 0.139) during the third trial. However, the 

MC condition (1.19 ± 0.15 nM/mg) had a significantly higher concentration of PC compared 

to the PLA condition (1.05 ± 0.07 nM/mg) during this branch of the trial (F (1,7) = 12.51, p = 

0.01, η2 = 0.641) (Figure 5.4). Independent of supplementation, exercise significantly 
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increased FRAP (F (2,14) = 13.62, p = 0.001, η2 = 0.661), MDA (F (2,14) = 5.99, p = 0.013, η2 = 

0.461), and IL-6 (F (1,7) = 32.77, p = 0.001, η2 = 0.824) but significantly reduced PC (F (2,14) = 

8.92, p = 0.003, η2 = 0.560). FRAP significantly increased from V3pre to V3post (V3pre: 

556.7 ± 38.4 μM; V3post: 606.9 ± 55.1 μM; p = 0.011) and 60% Wmax to V3post (60% Wmax: 

573.3 ± 38.8 μM; V3post: 606.9 ± 18.6 μM; p = 0.046) (Figure 5.3). MDA significantly 

increased over the 3rd trial but pairwise comparisons did not detect any significant differences 

between the time points however there was a tendency for greater MDA concentration V3 

post compared to V3pre (p = 0.093) (Figure 5.5). IL-6 significantly increased from V3pre to 

V3post (V3pre: 0.33 ± 0.17 pg/mL; V3post: 1.95 ± 0.89 pg/mL; p = 0.001) (Figure 5.5). PC 

significantly decreased from V3pre to V3post (V3pre: 1.2 ± 0.41 nM/mg; V3post: 1.01 ± 

0.33 nM/mg; p = 0.001) (Figure 5.4).  
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Figure 5.6 Changes in the inflammatory marker interleukin-6 (IL-6) measured by a high 

sensitivityIL-6 ELISA kit for the MC condition (light grey) and PLA condition (dark grey). 

All values are means ± SD. * indicates p < 0.001 compared to V2pre, ** indicates p < 0.05 

compared to V2post, † indicates p < 0.001 compared to V2post, †† indicates p < 0.05 

compared to V3pre.   
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5.5 Discussion 

The aim of the present study was to assess the effects of supplementing MC on 

markers of oxidative stress and inflammation during a strenuous cycling protocol. Further, 

the study also aimed to investigate the potential for MC to improve recovery and subsequent 

days cycling performance in well-trained male cyclists. The results presented suggest that 

consumption of MC in the days preceding a strenuous cycling protocol did not negate 

exercise-induced changes in PC, MDA, or IL-6, nor did supplementation augment TAC 

during, or upon completion of the protocol, compared to consumption of a placebo controlled 

drink. Consumption of MC over a 24-hour period did not impact markers of oxidative stress 

or inflammation, during or following steady cycling at 60% Wmax, or following a self-paced 

time-trial compared to placebo. Finally, subsequent days performance was not augmented 

through the consumption of MC.  

In contrast to the results presented herein, previous studies have reported improved 

muscular recovery on subsequent days following strenuous or prolonged exercise bouts after 

the consumption of a MC supplement, indicating performance may be improved through the 

ingestion of MC before and upon completion of exercise. Although these studies identified 

significant differences in perceived muscle soreness, markers of oxidative stress, 

inflammation, and muscle recovery in the days following acute but strenuous exercise, none 

have included a direct performance measure to ascertain whether the observed changes had a 

practical performance outcome. However, maintenance of muscle force, as was observed by 

others over a 24 to 72-hour period when consuming a MC supplement (Bowtell et al., 2011; 

Connolly et al., 2006; Howatson et al., 2010), and would suggest increased power output, or 

quicker completion of a set workload compared to placebo. Furthermore, subjective measures 

of muscle soreness post-exercise are attenuated when consuming MC (Connolly et al., 2006; 
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Kuehl et al., 2010), suggesting that participants ‘feel’ less sore, and more able to perform at a 

greater intensity during the exercise bout.  

Perhaps the most comparable work to that presented herein has been led by Bell et al., 

(2015). Bell’s study assessed cycling performance following a simulated road race cycling 

protocol in trained cyclists over a 72-hour period. Pre-loading with MC concentrate for 4 

days, and continual supplementation over the recovery period inhibited the decrease of MVIC 

observed in the control group. However, the decrease in MVIC seen in the control group did 

not affect 6 second maximal power output over the recovery period. An additional study from 

the same group investigated the effects of MC concentrate consumption on 3 consecutive 

days of simulated road cycling, employing the same protocol as the aforementioned study for 

the supplementation period. Performance measures per se were not directly measured in this 

study but the simulated road cycling protocol included 3 time-trial protocols lasting for a total 

of 9 minutes (2 x 2 minutes and 1 x 5 minutes) with the power outputs from each trial 

transformed into total work performed. Over the 3 trials there were no significant differences 

in the amount of work performed between the MC and placebo group, with an overall 

decrement in work performed for both groups over the 3 cycling trials. Although the study 

presented herein employed a different cycling protocol to induce fatigue, and a different 

measure of performance, it does concur with the findings that supplementation with MC does 

not augment performance compared to an isocaloric control drink  (Bell et al., 2014c; Bell et 

al., 2015). The inclusion of a simulated time-trial places emphasis on a practical performance 

outcome.  

The predominant polyphenol compounds that may act as an ‘active ingredient’ in MC 

are the subclasses of anthocyanins. Cyanidins are purported to constitute up to 93% of the 

anthocyanin’s present in MC concentrate (Kirakosyan et al., 2009) with cyanidin 3-

glucosylrutinoside being indicated as the main anthocyanin, followed by cyanidin 3- 
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rutinoside; with other anthocyanin compounds such as cyanidin 3-sophoroside, cyanidin 3- 

rutinoside 5 β-D-glucoside, and peonidin 3-rutinoside contributing to the total anthocyanin 

content (Bell et al., 2014b; Blando et al., 2004; Kirakosyan et al., 2009; Kirakosyan et al., 

2015; Seymour et al., 2014).  

The dose administered during the study should have been adequate to augment the 

plasma levels of metabolites related to MC consumption. Dose-response studies have 

indicated that the consumption of MC was adequate to increase the concentration of 

secondary metabolites associated with the anthocyanin derivatives cyanidin (Bell et al., 

2014b; Keane et al., 2016; Seymour et al., 2014) and peonidin (Keane et al., 2016). Studies 

have reported an increase in cyanidin-3-glucosylrutinoside, cyanidin-3-rutinoside, cyanidin-

3-O-glucoside, protocatechuic acid (PCA), and vanillic acid (VA) after ingesting doses of 

MC equivalent to the consumption of 90 and 180 cherries (Bell et al., 2014b; Keane et al., 

2016; Seymour et al., 2014). Furthermore, plasma concentrations of these secondary 

metabolites have been reported to be significantly elevated from baseline 30 to 60 minutes 

post-consumption and remain elevated for periods between 2 and 4 hours (Seymour et al., 

2014; Keane et al., 2016). Therefore, the timing and the dose used in the current study should 

have been adequate to increase the plasma concentrations of secondary metabolites related to 

MC consumption.  

The results presented here do not support those of previous studies (Bell et al., 2014c; 

Bell et al., 2015). The results show no significant change in MDA, PC or IL-6 in response to 

supplementation. In the two cycling studies conducted by Bell et al., (2014c;2015) 

supplementation resulted in significant differences in IL-6, CRP and lipid peroxidation. There 

are 2 probable explanations: 1) both supplemented and control groups were asked to follow a 

diet low in phenolic compounds; and 2) the difference in the design of the experiments, for 

example, within-subject design verses between-subject design. A low-phenolic diet would 
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potentially exaggerate the effect of supplementation by first reducing a participants’ normal 

antioxidant intake and this may subsequently affect the response to exercise-induced 

oxidative stress. This effect has been seen in studies where diethyl maleate (DEM) has been 

administrated, to deplete skeletal muscle glutathione, and resulted in augmented oxidative 

stress upon completion of an acute exercise bout (Strobel et al., 2014). The present study did 

not restrict the consumption of polyphenols from the participants’ diet because this may not 

reflect the habitual eating habits of an athlete in preparation for an event and/or competition.  

Therefore, within the current study the participants were required to keep a food diary 

for 2 days leading up to and on the day of the trial, and asked to repeat this regime when 

returning to complete the other branch of the trial. By adopting this approach, it allowed the 

supplement to be assessed in an ad libitum setting, reflecting how the supplement responds 

when a participant consumes identical meals over the intervention period, without dietary 

restriction. The use of a within-subject design made it possible to employ this protocol 

because the participants would be returning to complete the second branch of the trial.  The 

inclusion of a within-subject design may also account for the discrepancies between the 

previous studies that undertook a between-subject study design. To reduce the possibility of 

any learning effects affecting the results of the TT, participants were counterbalanced to each 

condition when recruited to the study.  

Where a diet is not restricted during supplementation, addition of MC to the diet 

would be expected to increase antioxidant capacity. The results presented herein did not show 

an increase in antioxidant capacity (TAC) because of MC supplementation. However, TAC 

did increase in response to exercise in both supplemented and control groups. The present 

study used the ferric ion reducing antioxidant power (FRAP) assay to assess TAC, whilst 

other studies have used the Trolox equivalence antioxidant capacity (TEAC) assay. Both 

assays work on the principle of single electron transfer where a single oxidant substrate is 
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reduced through the addition of an antioxidant compound. The donation of an electron results 

in a colour change related to the antioxidant reducing capacity of the sample being 

investigated (equation. 1) (Huang et al., 2005). FRAP and TEAC use different oxidants to be 

subjected to reduction. Where FRAP uses a ferric salt (FeIII (TPTZ)2Cl3) as its oxidant and 

TEAC uses ABST•- through the persulphate oxidation of 2,2-Azino-bi-(3-ethylbenzthiazoline 

sulphonate) (Huang et al., 2005). Even though the assays use differing substrates to detect 

antioxidant capacity the redox potential of both chemicals are very similar, ~0.70V for FeIII 

and ~68V for ABST•-, indicating there is very little difference between the assays (Huang et 

al., 2005). Therefore, in principle, comparing the results of the two different assays should 

not be judged as a limitation between the two studies.   

Oxidant + antioxidant → reduced oxidant + oxidised antioxidant (1)   

Howatson et al., (2010) demonstrated 5 days of supplementation with MC resulted in 

greater plasma total TAC compared to non-supplemented individuals, with significantly 

higher TAC on completion of a marathon. Furthermore, an additional 2 days of 

supplementation post-marathon resulted in TAC being maintained at baseline levels, whereas 

in the placebo group, TAC concentration decreased below baseline levels. In contrast to these 

findings and in agreement with the findings from the current study, Bowtell et al., (2011) 

found no differences in plasma TAC between supplemented and non-supplemented groups at 

any time point, either at the cessation of exercise or in the following days whilst still 

consuming the supplement. It should be noted that throughout the experiment Bowtell et al., 

(2011) did not report an increase in TAC in response to exercise, unlike the current study and 

the findings from Howatson et al., (2010). An explanation for these discrepancies could be 

the duration and mode of exercise. The present study consisted of a constant aerobic 

workload to be maintained for 105 minutes, in comparison to Howatson et al., (2010) where 

participants ran for an average of 240 minutes, which may have placed a higher demand on 
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the antioxidant system to cope with the sustained production of exercise-induced RONS. 

Bowtell et al., (2011) employed a resistance training model allowing for rest periods to be 

taken during each set, potentially leading to oscillating exercise-induced RONS production 

throughout the intervention period, thus reducing the demand of the antioxidant system 

compared to continual aerobic exercise. The time course of response between the two 

differing exercise modes could also explain this difference, with marked changes in 

resistance training occurring during the secondary inflammation phase, hours and days post-

exercise.     

It is now well established that the increase in metabolic activity during exercise 

results in the production of exercise-induced RONS from several sources within skeletal 

muscle and the endothelium upon exercise cessation (Mason and Wadley, 2014; Sakellariou 

et al., 2014). Endogenous antioxidants can neutralise these compounds. However, 

undertaking strenuous and/or unaccustomed exercise bouts produce an augmentation in 

RONS capable of overriding the endogenous antioxidant system, resulting in compromised 

muscle force production (Hernández et al., 2012; McKenna et al., 2006; Powers and Jackson, 

2008; Westerblad and Allen, 2011), undesirable conformational changes to macromolecules 

such as proteins, lipids, and nucleic acids (Turner et al., 2011); and propagation of the 

inflammatory response post-exercise (Peake et al., 2007). A combination of these factors 

could therefore have a negative effect during the recovery period and on performance. To 

counteract these undesirable effects, the ingestion of exogenous antioxidants has been 

hypothesised to provide additional protection against RONS when undertaking strenuous 

and/or unaccustomed exercise  

The present study did not distinguish any differences in markers associated with 

exercise-induced oxidative stress between the two experimental conditions (MC verses PLA). 

The elevation of lipid peroxidation adducts with increasing intensity and/or duration in this 
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study demonstrates all the exercise intensities and duration were adequate to augment 

exercise-induced oxidative stress. The significant decrease in MDA observed in the 30-

minute post-exercise period could be related to its clearance, as MDA is converted to CO2 

and H2O through a series of enzymatic reactions. The use of the thiobarbituric acid reactive 

substances (TBARS) assay has been criticised for its lack of specificity and sensitivity when 

measuring MDA adducts in plasma due to the reactivity of thiobarbituric acid (TBA) with 

sugars, amino acids, bilirubin, albumin, and non-related aldehydes resulting in overestimation 

of MDA (Gutteridge and Halliwell, 1990; Sachdev and Davies, 2008). However, it has been 

postulated that this assay can provide an insight into whether lipid peroxidation has occurred 

or if the samples being processed have remnants of lipid peroxidation within them, enabling a 

snapshot on lipid peroxidation in vivo (Esterbauer et al., 1991). Studies using the same assay 

to assess changes in lipid peroxidation post-exercise have also demonstrated an increased 

clearance of MDA/TBARS in the recovery phase and have postulated this occurs from 

increased catabolism, excretion, and redistribution to other tissues of MDA (Groussard et al., 

2003; Leaf et al., 1997).     

Protein carbonylation (PC) is arguably the most stable marker of ROS interaction with 

biomolecules.  At present there are studies indicating PC concentrations increase (Lamprecht 

et al., 2008; Wadley et al., 2015b), decrease (McGinnis et al., 2014), or remain unchanged 

(Gaeini et al., 2006; Rahnama et al., 2007) in response to cycling in trained individuals. Most 

studies assess PC post-exercise following a single workload. The current study design 

enables a novel insight into how PC change in response to workload. Initially a workload at 

60% Wmax appeared to stimulate clearance of PC. During a steady state workload of 80% 

Wmax for 40 minutes PC levels increased, when workload increased to 95% Wmax until 

exhaustion, PC levels decreased. The 3rd trial further demonstrated a reduction in PC 

concentrations from pre-exercising concentrations with significant reductions occurring at the 
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end of both steady-state cycling and upon completion of the TT. The decrease in PC could be 

explained by the activity of the 20S proteasome, which has been reported to degrade up to 

90% of oxidative modified proteins (Jung and Grune, 2008). However, as the cycling 

intensity increases and the magnitude of RONS produced may also increase, and the pool of 

oxidised proteins would then increase as a consequence. Nevertheless, it should be noted the 

concentration of PC’s did not increase above baseline concentrations. Although this is purely 

speculation, production of new PC adducts vs clearance of existing adducts is the most 

probably explanation for the discrepancy in trend in this biomarker (Wadley et al., 2016b). 

The only significant effect of MC supplementation occurred during the 3rd visit, where mean 

values of PC were higher than the placebo group (MC: 1.25 nm/mg ± .103 vs PLA: 1.18 

nm/mg ± .11). Considering there were no significant differences between the groups 

throughout the previous trial (trial 2) for PC or for any other marker assessed during the 

study, the significant p value could therefore represent a false-positive finding.  The 

responses from both groups throughout the study were homogenous, indicating 

supplementation had little to no effect on the biological markers studied in the present study 

and the group differences occurred by chance, rather than as a direct result of the drink 

consumption. 

The magnitude of the response of IL-6 during exercise depends on the exercise mode, 

duration, and intensity. When the exercise undertaken includes both metabolic and 

mechanical stimuli, such as undertaking a marathon running race over a distance of 42.2 km 

the increase in post-exercise IL-6 concentrations can reach ~80 (Howatson et al., 2010) to 

~100 (Ostrowski et al., 1998) fold above baseline levels. However, exercise modalities that 

place a metabolic stress, without much mechanical stress, such as cycling, have found a less 

pronounced increase in IL-6. With cycling protocols performed at 60% 𝑉̇O2max for 2 hours or 

until fatigue reporting a modest ~2.5 fold increase in IL-6 (Li and Gleeson, 2004), with more 
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intensive cycling protocols lasting an hour reporting a ~5 fold increase (Bell et al., 2014c; 

Bell et al., 2015). Our findings are consistent with the latter studies with a ~6.5 and ~4-fold 

increase observed at cessation of cycling after trial 2 and trial 3 respectively. Indicating the 

stress response to the cycling protocol used in the current study potentially occurred as a 

result of metabolic stress rather than mechanical stress due to the lower levels of IL-6 

production. In contrast to previous studies there were no differences in IL-6 concentrations 

between the experimental and placebo conditions. The attenuation in the inflammatory 

markers IL-6 and CRP in the study conducted by Bell et al., (2014c) was hypothesised to 

occur due to the reduction of oxidative stress in the MC group post-exercise. The augmented 

oxidative stress observed in the control group was associated to increased cellular stress post-

exercise, resulting in the elevated inflammatory response post-exercise. This rationale could 

be tentatively supported from the current results because both oxidative stress and 

inflammation markers increased during the trials. However, because the current study did not 

identify differences in the oxidative stress or inflammatory response between the two 

conditions it is hard to speculate whether the observed differences in the aforementioned 

studies occurred due to supplementation with Montmorency tart cherries or independent 

group responses to the cycling protocol.       

An underlying principle of this thesis was to explore the effects of antioxidant 

supplementation in a real-world setting. With a lack of evidence for the beneficial effect of 

the more traditional antioxidants, athletes appear to be turning to more natural supplements. 

This study aimed to assess the effect of MC supplementation on physiological responses to 

exercise in free-living cyclists. The results presented largely agree with the findings in 

Chapter 4 where habitual low-dose supplementation failed to augment exercise-induced 

oxidative stress in steady-state cycling. Furthermore, the findings contradict the rationale for 

why people choose to consume antioxidant supplements (as reported in Chapter 2). The 
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current study was conducted in free living cyclists, and did not attempt to control or 

manipulate their diet, in order to best reflect common practice in recreational cyclists. 

However, future research may choose to explore the effects of polyphenols in participants 

consuming a high versus low-phenolic diets to explore the interactions between diet and 

polyphenol supplementation on exercise-induced oxidative stress and inflammation.   
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Chapter Six 

6. General Discussion 

 



 

148 

6.1 Summary  

 The work undertaken in this thesis has investigated the habitual consumption of 

antioxidant supplements in a population of recreational cyclists and their effect on exercise-

induced oxidative stress, baseline endogenous antioxidant concentrations, and performance. 

Chapter 2 and 3 investigated the habitual consumption of antioxidant supplements in 

recreational cyclists undertaking non-competitive cycling events. Chapter 3 aimed to 

investigate whether habitual antioxidant supplementation affected the oxidative stress 

response on completion of a cycling sportive, compared to a non-supplemented group. In 

chapters 4 and 5 the main focus was to assess how antioxidant supplementation may impact 

on cycling performance, recovery, and oxidative stress response in trained cyclists. An 

overarching hypothesis of this thesis was that habitual antioxidant supplementation with 

commercially available antioxidant supplements in recreational cyclists who undertake 

regular exercise would not affect exercise-induced oxidative stress. It was also hypothesised 

that the consumption of an antioxidant supplement in the preceding days and on the day of, 

demanding exercise would provide additional protection against exercise-induced oxidative 

stress and inflammation in well trained cyclist, resulting in improved recovery to allow for 

better performance on subsequent days. 

 

6.2 Habitual consumption of antioxidant supplements  

 Chapters 1 and 2 investigated the habitual antioxidant supplementation in 

recreationally cyclists undertaking a cycling sportive. Previous research investigating the use 

of supplements in different exercise settings have predominantly focused on dietary 

supplements as a whole (Dascombe et al., 2010; Tian et al., 2009), incorporated differing 

modes of exercise (individual and team sports) (Heikkinen et al., 2011), focused on elite or 
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high performing athletes’ (Lun et al., 2012) and not clearly defined why a specific dietary 

supplement was consumed (Braun et al., 2009; Dascombe et al., 2010; Tian et al., 2009). 

Therefore, chapter 1 investigated the rationale for individuals taking one particular 

supplement, in an amateur setting, and undertaking one mode of exercise.  

The findings from chapter 1 indicated there was not one particular ‘type’ of person 

who consumed antioxidant supplements at a recreational cyclists’ level. The study did not 

find any differences in age, years spent cycling, or hours spent cycling a week between 

supplemented and non-supplemented participants. The findings give a novel insight on the 

supplementation habits of individuals aged 35-49 that have not been identified previously. 

Forty percent of the participants reported antioxidant supplementation, which is lower than 

the reported rate of elite athletes’ (Heikkinen et al., 2011; Lun et al., 2012) and younger 

athletes’’(Dascombe et al., 2010; Tian et al., 2009) over 60% of the supplemented 

participants had supplemented for a period ≥ 12 months and this finding was replicated in 

chapter 2 with an average consumption period of 27 ± 42.3 months. The main form of 

antioxidant supplementation was multivitamins and individual vitamin supplements such as 

vitamin C and vitamin E, which has also previously been reported in other dietary 

supplementation studies (Lun et al., 2012; Tian et al., 2009). The reasons given for 

consuming antioxidant supplements were also in agreement with previous findings in elite 

(Braun et al., 2009; Dascombe et al., 2010; Lun et al., 2012) and non-elite athletes (Knez and 

Peake, 2010; Tian et al., 2009; Tsitsimpikou et al., 2011), with cyclists indicating their aim of 

improving immunity as the main reason for supplementation, along with exercise related and 

health factors also being stated as reasons for consumption by participants. 
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6.3 Habitual antioxidant supplementation on exercise-induced oxidative stress  

 It is well documented exercise is responsible for the augmentation in post-exercise 

oxidative stress markers (Bloomer et al., 2005; Tauler et al., 2005; Turner et al., 2011). 

Experimental studies investigating the effects of a variety of antioxidant compounds have 

found supplementation to be effective in reducing exercise-induced oxidative stress (Bloomer 

et al., 2006; Goldfarb et al., 2011; Gomez-Cabrera et al., 2006; Mastaloudis et al., 2004); but 

whether or not this attenuation in oxidative stress is detrimental to RONS mediated 

adaptations is still under debate (Carmen Gomez-Cabrera et al., 2012; Cobley et al., 2015; 

Peternelj and Coombes, 2011; Yfanti et al., 2012).  

The effect of habitual antioxidant supplementation on exercise-induced oxidative 

stress was studied in chapters 3 and 4, in both an observational and controlled laboratory 

setting in recreational and well-trained cyclist, respectively. The findings from these studies 

indicated that habitual antioxidant supplementation, for an average period ≥ 2 years, did not 

have an effect on the oxidative stress markers malondialdehyde (MDA), protein 

carbonylation (PC), total antioxidant capacity (TAC), or reduced glutathione (GSH), 

compared to a non-supplemented control group. Identifying these findings in a field based 

setting where exercise intensity cannot be controlled, and in a laboratory setting in two 

differing populations may provide a novel insight into how habitual supplementation can 

affect the oxidative stress response to exercise. It must be noted that the dose of vitamin C 

(153 mg/d) and vitamin E (47.2 IU/d or 31.6 mg/d) consumed in chapter 4 is above the 

recommended daily allowance of 90 mg/d and 22.4 IU/d (15 mg/d), respectively. And 

although the dose is lower than that used in experimental control studies, it reflects a habitual 

intake rather than a preselected dose that may not reflect consumption of commercially 

available products. 
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  The findings from chapter 4 in a population of well-trained cyclists indicates low-

dose antioxidant supplementation does not negatively affect the baseline concentrations of 

SOD1, SOD2, and GPx-1. The inhibition of the synthesis of these proteins has been 

postulated to occur through the inhibition of the RONS mediated redox signalling post-

exercise (Gomez-Cabrera et al., 2006; Morrison et al., 2015; Ristow et al., 2009). The study 

in chapter 4 did not directly measure changes in redox signalling post-exercise, so it would be 

inappropriate to comment on the effects of low-dose antioxidant supplementation on these 

pathways and subsequent adaptations. From available evidence and the activity levels of the 

participants in this study, it might be postulated that variation in exercise intensity and 

duration may be important factors for regulating baseline endogenous antioxidant proteins in 

this population, and that low-dose antioxidant supplementation does not inhibit the 

production of endogenous antioxidants. To fully elucidate the effects of low-dose antioxidant 

supplementation future studies should employ chronic supplementation (> 6 months) and 

investigate the post-exercise redox signalling pathways to support or contradict the findings 

from chapter 4.   

 

6.4 Impact of Montmorency Tart cherry supplementation on cycling recovery and 

subsequent days performance    

 Montmorency Tart cherry supplementation is thought to have favourable effects on 

exercise-induced oxidative stress, inflammation, and an additional effect on these markers 

during recovery (Bowtell et al., 2011; Howatson et al., 2010). Results from chapter 5 add to 

the growing body of evidence regarding the use of MC pre-and post-exercise but are not in 

agreement with previous findings. Supplementation in the preceding days, on the day, and 

during the recovery period failed to illicit any differences in the oxidative stress markers 
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MDA, PC, TAC, and the inflammatory marker IL-6; either during exercise or 24 hours after 

undertaking exercise compared to placebo (PLA). Results from previous studies provided an 

indication that the beneficial changes observed whilst consuming MC could potentially 

improve exercise performance in the hours or days following strenuous exercise. A time-trial 

undertaken 24 hours after completing a strenuous cycling protocol failed to indicate an 

ergogenic effect of MC compared to a PLA. Some of the beneficial effects of MC have been 

observed in studies that have restricted dietary polyphenols, so it may be advised that athletes 

with a low polyphenol intake may benefit from MC consumption.  

 

6.5 Conclusions  

 The research conducted within this thesis has aimed to investigate the role of habitual 

antioxidant supplementation in recreational and trained cyclist on exercise-induced oxidative 

stress and exercise mediated adaptations, as well as investigating the effect of a polyphenol 

supplementation on cycling recovery and performance. The work presented here adds to this 

evidence base with the following novel findings: 

1. Antioxidant supplementation in amateur cyclists was not dependent on age, 

training volume, or cycling experience. Thus, incidence of supplementation in this 

population cannot be predicted.   

2. Habitual antioxidant supplementation did not provide additional protection against 

exercise-induced oxidative stress during field based or laboratory settings in 

recreational or trained cyclists. 

3. The endogenous antioxidant enzymes were not affected by habitual antioxidant 

supplementation in trained cyclists. This suggests that moderate to low antioxidant 

supplementation did not have a negative effect on RONS mediated signalling.  
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4. MC supplementation did not attenuate plasma oxidative stress or inflammation 

markers during or post exercise in trained cyclists compared to placebo. 

5. Time trial performance after completion a strenuous cycling protocol in the 

preceding 24 hours was not enhanced by 8 days supplementation with MC.     
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Page 1 

Participant Information Sheet and Consent Form  

The questionnaire that follows is to form part of a study carried out by the University of 

Birmingham. When the term study is used, it refers to the questionnaire. As the results of this 

questionnaire may be published, you the participant, have to provide consent for us to use any 

of the material you provide. There are no commercial interests and any information supplied 

to the University of Birmingham will be handled in accordance with the Data Protection Act 

1998.  

PARTICIPANT INFORMATION SHEET 

 

Investigating habitual intake of antioxidants through diet and supplementation in cyclists 

competing in the Wiggle Dragon Ride 

 

What is the study about? 

The study is investigating the habitual use of dietary vitamins/antioxidants, and 

vitamin/antioxidant supplements within cyclists of varying abilities competing in the Dragon 

Ride. At present there is no data on the use of vitamin/antioxidant dietary intake and/or use of 

vitamin/antioxidant supplements within cyclists. If supplements are consumed in addition to 

normal dietary intake, we also want to identify why these supplements are being used within 

this population. 

 

What will you have to do? 

If you decide to partake in the study you will be required to fill in an anonymous 

questionnaire. There will be an option for you to provide us with an email address so we can 

invite you to participate in future research projects. The questionnaire will collect data on sex, 

age, training history, dietary intake, supplement intake, and reasons for supplement intake.  

 

What if I do not wish to continue at any stage? 

You are free to withdraw from the study at any time. You can refuse to answer any question 

on the questionnaire. If you provide an email address on your completed questionnaire, you 

have the right to withdraw this information by contacting the principle investigator. 

 

What are the benefits? 

The study will help us identify the use of dietary and supplemented vitamins/antioxidants in 

cyclists. Your participation in this study will contribute to a wider knowledge about the use of 

vitamins and/or antioxidants in cyclists and the reasons why cyclists decide to consume 

vitamin and/or antioxidant supplements. If you are interested in the research you can decide 

to be sent a report of the findings when the study is completed by providing an email address 

at the end of the questionnaire. You can also contact the principle investigator to ask any 

further questions regarding the research. 

 

What are the risks? 

There are no perceived risks in this study. 
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What happens to the information? 

All information is completely confidential to the researcher. All data will be collected and 

analysed by the researchers at the University of Birmingham, and will not be passed on to 

any third parties. 

 

Do I have to take part? 

No. It is up to you to decide whether or not to participate. If you decide you would like to be 

part of this research, you will need to complete the questionnaire below and indicate in the 

appropriate box that you give your consent for us to use the data you have provided. You are 

still free to withdraw from the study at any time and without giving a reason. 

 

Further information 

If you have any further questions about participating in the study, please feel free to contact 

the principle investigator below. 

 

Principle investigator:  

Matthew Soden B.Sc. 

School of Sports and Exercise Sciences 

University of Birmingham 

Edgbaston 

Birmingham 

B15 2TT 

mxs955@bham.ac.uk 

1. I have read the information regarding the study and I am aware that I can ask any further 

questions regarding the study by contacting the principle investigator.  

 

I also understand that I can decline to answer any particular questions in the study, and can 

decline to complete any task requested of me. I agree to provide information to the 

researchers on the understanding that it is completely confidential. I understand that the 

information will be stored in manual and electronic files and is subject to the provisions of 

the Data Protection Act. I acknowledge that the information provided is being used by the 

University in accordance with the Act. 

 

I confirm that I wish to participate in this study under the conditions set out here and in the 

Information Sheet. (tick "yes" to confirm, or "no" to decline) 

Yes  No  

 

If the participant answers NO to question 1 they are taken to the end of the 

questionnaire. 

If they answer YES they move onto the 2nd page of the questionnaire (Q.2).  
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Demographics 

2. Are you male or female? Please tick… 

Male  Female  

 

3. Which category below includes your age? Please tick… 

 

 

 

 

4. How long have you been cycling for? Please tick… 

3 Years 

or Less 
 4-7 Years  

8-11 

Years 
 

12 Years 

or More 
 

 

5. On average, how long do you spend cycling a week? Please tick… 

0 - 3 hours 

 
 

4 - 6 hours 

 
 

7 - 9 hours 

 
 

Over 10 hours 

 
 

 

6. Which route are you participating in at the Dragon Ride? Please tick… 

Corto (37km) 

 
 

Medio Fondo (125km) 

 
 

Grand Fondo (206km) 

 
 

 

 

 

 

 

 

18-25  40-44  60-64  

25-29  45-49  65-69  

30-34  50-54  70-74  

35-39  55-59  75 +  
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Vegetables 

7. Please estimate your consumption of these vegetables – please enter a tick for each item 

 

More Than 

Once A 

Day 

Once A 

Day 

4-6 Days A 

Week 

1-3 Days A 

Week 

At Least 

Once A 

Month 

Less Than 

Once A 

Month 

Never 

Aubergine, 

Okra 
       

Avocado        

Beetroot        

Broccoli, 

Spring 

Greens, Kale 

       

Cabbage        

Carrots        

Cauliflower        

Celery        



 

158 

Courgettes, 

Marrow, 

Squash 

       

Cucumber        

Garlic        

Green Beans, 

Runner 

Beans, Broad 

Beans 

       

Leeks        

Lettuce        

Olives        

Parsnips        

Peas, Mushy 

Peas 
       

Peppers (any 

colour) 
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Spinach        

Swedes        

Sweet corn        

Tomatoes 

(canned/raw/s

auce) 

       

Watercress, 

Mustard & 

Cress 
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Fruit 

8. Please estimate your consumption of these fruits – please enter a tick for each item 

 

More Than 

Once A 

Day 

Once A 

Day 

4-6 Days A 

Week 

1-3 Days A 

Week 

At Least 

Once A 

Month 

Less Than 

Once A 

Month 

Never 

Apples        

Apricots        

Bananas        

Grapes        

Grapefruit        

Kiwi Fruit        

Mangoes        

Melon        

Nectarines        

Oranges        
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Papaya        

Peaches        

Pineapple        

Plums        

Raspberries        

Red Currents 

/ Black 

Currents 

       

Rhubarb        

Strawberries        
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Meat  

9. Please estimate your consumption of these meats – please enter a tick for each item 

 

More 

Than Once 

A Day 

Once A 

Day 

4-6 Days A 

Week 

1-3 Days A 

Week 

At Least 

Once A 

month 

Less Than 

Once A 

Month 

Never 

Bacon        

Beef eg. 

Roast 

Steak, 

Mince, 

Stew, or 

Casserole 

       

Beef 

Burgers 
       

Corned 

Beef, 

Spam, 

Luncheon 

Meats 
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Chicken or 

Other 

Poultry eg 

Turkey 

       

Ham        

Lamb eg 

Roast, 

Chops or 

Stew 

       

Liver, 

Liver Paté, 

Liver 

Sausage 

       

Offal eg 

Liver, 

Kidney, 

Giblets 

       

Pork eg 

Roast, 

Chops, 

Stew or 

Slices 
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Sausages        

Savoury 

pies eg 

Meat, 

Pork, 

Pasties, 

Steak & 

Kidney, 

Sausage 

Rolls 
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Fish  

10. Please estimate the consumption of these fish products – please enter a tick for each item 

 

More 

Than 

Once A 

Day 

Once A 

Day 

4-6 Days A 

Week 

1-3 Days A 

Week 

At Least 

Once A 

Month 

Less Than 

Once A 

Month 

Never 

Fried Fish in 

Batter, as in 

Fish & Chips 

       

Fish Fingers, 

Fish Cakes 
       

White Fish, 

Fresh, 

Canned or 

Frozen eg. 

Cod, 

Haddock, 

Plaice, Sole, 

Halibut 

       

Oily Fish, 

Fresh, 

Canned, or 

Frozen eg. 

Mackerel, 

Kippers, 

Tuna, 

Salmon, 

Sardines, 

Herring 

       

Shellfish, eg. 

Crab, 

Prawns, 

Mussels 

       

Fish Roe, 

Taramasalata 
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Bread and Cereal  

11. Please estimate your consumption of these bread products – please enter a tick for each 

item 

 

More 

Than 

Once A 

Day 

Once A 

Day 

4-6 Days 

A Week 

1-3 Days 

A Week 

At Least 

Once A 

Month 

Less 

Than 

Once A 

Month 

Never 

Crisp Bread eg. 

Rivita 
       

Granary Bread and 

Rolls 
       

White Bread and 

Rolls 
       

Wholemeal Bread 

and Rolls 
       

 

12. Please estimate your consumption of these cereals – please enter a tick for each item 

 

More Than 

Once A 

Day 

Once 

A Day 

4-6 Days 

A Week 

1-3 Days 

A Week 

At Least 

Once A 

Month 

Less 

Than 

Once A 

Month 

Never 

Breakfast Cereals 

containing fortified 

Vitamins 
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Drinks  

13. Please estimate your consumption of these drinks (one serving = one small glass or cup) 

 

More 

Than 

Once A 

Day 

Once A 

Day 

4-6 Days 

A Week 

1-3 Days 

A Week 

At Least 

Once A 

Month 

Less 

Than 

Once A 

Month 

Never 

Cocoa, Hot 

Chocolate 
       

Herbal Tea        

Orange Juice        

Apple Juice        

Cranberry Juice        

Grapefruit Juice        

Grape Juice        

Red Wine        
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Oils and Snacks 

14. Please estimate your usage of the following oils – please enter a tick for each item 

 

More 

Than 

Once A 

Day 

Once A 

Day 

4-6 Days 

A Week 

1-3 Days 

A Week 

At Least 

Once A 

Month 

Less 

Than 

Once A 

Month 

Never 

Canola Oil        

Coconut Oil        

Mixed Nut Oil        

Olive Oil        

Peanut Oil        

Vegetable Oil        

 

15. Please estimate your consumption of the following snacks – please enter a tick for each 

item 

 

More 

Than Once 

A Day 

Once A 

Day 

4-6 Days 

A Week 

1-3 Days 

A Week 

At Least 

Once A 

Month 

Less 

Than 

Once A 

Month 

Never 

Cakes (Home or 

Ready-Made) eg. 

Fruit, Sponge 

       

Almonds 

(Handful) 
       

Mixed Dried 

Fruit eg. 

Apricots, Apples, 

Pears, Mangoes 
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Sunflower Seeds 

(Small Handful) 
       

Fruit Bars eg 

Apricot, Date 

(One) 

       

Cereal Bars / 

Flapjacks (One) 
       

Peanuts or Other 

Nuts (Small 

Handful) 

       

Figs        

Prunes        

Mixed Nuts & 

Raisins (Small 

Handful) 

       

Dates        
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Antioxidant and Vitamin Supplements 

16. Do you consume vitamin or antioxidant supplements?  

Yes  No  

 

If YES, then the participant will carry onto Q.17. If NO, then participant will be taken 

to Q.20 

17. How long have you been consuming vitamin or antioxidant supplements? Please tick… 

Less Than 6 

Months 
 

Between 6 & 

12 Months 
 

Longer Than 12 

Months 
 

 

18. Why do you consume vitamin or antioxidant? Please tick appropriate boxes… 

Boost Immunity / Improve Health 

 
 

Peer Recommendations  

(Coach / Family / Friends) 

 

 

To Improve Performance  

Reduce Fatigue / Recovery Time 

 
 

 

To Improve Training Adaptations 

 

 

Recommendations from a 

Dietician / Sports Nutritionist 

 

 

To Maintain a Balanced Diet Due 

to Inadequate Intake 

 

 

 

Other, please state in the section below 
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19. Please indicate which vitamin or antioxidant supplements you use and how often they are 

consumed – please enter a tick for each item  

 
More Than 

Once A Day 

Once A 

Day 

4-6 Days 

A Week 

1-3 Days 

A Week 

At Least 

Once A 

Month 

Less Than 

Once A 

Month 

Never 

Beta 

Carotene 
       

Iron        

Magnesium        

Minerals        

Multivitamin

s 
       

Grape-Seeds        

Quercetin        

Omega 3        

Vitamin A        

Vitamin B-1        

Vitamin B-2        

Vitamin B-6        
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Vitamin B-12        

Vitamin C        

Vitamin D        

Vitamin E        

Zinc        

 

Please enter any vitamin or antioxidant supplements not on the above list and how often you 

take them. 

(More Than Once a Day, Once a Day, 4-6 Times a Week, 1-3 Times a Week, At Least Once 

a Month) 
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20. Would you like to be contacted by the investigation team with a summary of the present 

study? 

Yes  No  

 

If YES, then the participant will move onto Q.21. If NO, then the participant will move 

on to Q.22 

21. Please enter your email address 

 

 

22. If you live within the Midlands area or a suitable travelling distance from the University 

of Birmingham would you like to be invited to future research projects? All participants are 

reimbursed for travel expenses and their time. 

Yes  No  

 

If YES, then the participant will move onto Q.23. If NO, then the participant will be 

taken to the end page of the questionnaire  

23. Please enter your email address 

 

 

 

 

End of Questionnaire  
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Participant Information Sheet 

 

Examining the effects of a cycling sportive on antioxidant status and oxidative stress 

markers in cyclists who do, and do not, take antioxidant supplements. 

 
Location 
The study will be conducted at the Tommy Godwin Challenge sportive on Sunday 28th September, 
2014 in Solihull.   
 
What is the study about? 
Recent research has shown that consumption of antioxidant supplements, specifically vitamin C and 
vitamin E, might reduce some of the favourable adaptations that happen as a result of exercise. We 
want to investigate this further by measuring the changes that occur when we exercise in 2 groups of 
cyclists: those who do, and those who do not take antioxidant supplements. We want to assess 
indicators of exercise adaptation in these 2 groups of people before and after a cycling sportive.  
 
Do I have to take part? 
No. Taking part in this study is entirely voluntary. If you would like to participate, you will be given this 
information sheet to keep and be asked to sign a consent form, but you are free to withdraw at any time 
and without giving a reason. You can withdraw from the study before any measures have been taken, 
before or after the sportive has been completed, or when all the measures have been collected. After 
the samples have been collected you can withdraw from the study up until the 26th October 2014.   
 
What will I have to do? 
If you decide to take part in the study you will be asked to provide 2 blood samples. One before and 
one after the Tommy Godwin Challenge sportive. The first blood sample will be taken at least 30 
minutes before the start of the sportive. We will contact you in the week leading up to the sportive to 
arrange a suitable time to collect the first blood sample You will also be asked to disclose some 
personal information, for example your date of birth and email address. We would want to record your 
finishing time of the sportive and your reason for undertaking the event.    
 
What are the benefits? 
The study will improve our understanding of how antioxidant supplements may affect exercise training 
adaptations. Your participation in the study will contribute to a wider knowledge in the exercise 
community on the use of antioxidant supplements and may help inform how best to use supplements 
such as these in the future. If you are interested in the research you can choose to be sent a report of 
the findings once the research has been completed. You can also ask the researcher any questions 
about the study, before or during your participation. You can also enquire about future research 
projects that may involve fitness tests, body measurements, or nutritional interventions.  
 
What are the risks?   
Two blood samples will be taken, one before, and one after the sportive. You may experience a little 
discomfort when the needle is inserted, however the researchers are experienced in this technique so 
the pain experienced will be minimal. You may also develop a small bruise on your arm which can be 
prevented by applying pressure on the arm when the needle has been taken out. When giving blood 
there is a small chance of feeling faint, if this does occur you will be monitored before the start of the   
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sportive to assess whether it will affect your participation in the event. If any complications occur as a 
result of giving blood and you are unable to take part in the sportive you will be entitled to a full 
reimbursement of your entry fee (30km £12, 100km £20).   
 
 
 
What happens to the information? 
All information is completely confidential to the researcher. All information will be identified by code 
number, and will be seen only by the researcher. Blood samples will be collected, stored and 
analysed by the researchers at the University of Birmingham. 
 
What happens if something goes wrong on the day of the study? 
This study and all of the procedures within it have been approved by the science, engineering and 
mathematics ethical review committee (ERN_14-0921). As such the study is included within the 
University of Birmingham Liability Insurances and if you are harmed in any way by taking part in this 
research project your normal rights apply and you may have grounds for legal action. 
 
What do I do now? 
If you are still interested in being part of this study you will be asked to complete an informed consent 
form to confirm that you are happy to participate in the research. You will be asked to keep a copy of 
this information sheet and the signed consent forms. If you change your mind you are free to withdraw 
from the study at any time and without giving any reason. 
 
Further Information 
If you have any further questions about participating in the study, please feel free to contact one of the 
principle investigators below.  

 
Investigator 
 
Matthew Soden  
School of Sport, Exercise, and Rehabilitation Sciences  
University of Birmingham 
Edgbaston 
Birmingham 
B15 2TT 

 
 

 
Principal Investigator 
 
Dr Sarah Aldred 
School of Sport, Exercise, and Rehabilitation Sciences  
University of Birmingham 
Edgbaston 
Birmingham 
B15 2TT 
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Study Number:________ 

Subject Identification Number:________ 

CONSENT FORM 

Title of Project: Examining the effects of a cycling sportive on antioxidant status and 

oxidative stress markers in cyclists who do, and do not, take antioxidant supplements. 

Name of Researcher: Mr Matthew Soden, Dr Sarah Aldred 

Please initial all boxes  

1. I confirm that I have read and understand the information sheet dated for the 

above study.  I have had the opportunity to consider the information, ask 

questions and have had these answered satisfactorily. 

   

2. I understand that my participation is voluntary and that I am free to withdraw at 

any time without giving any reason up until the 26th October 2014, without my 

medical care or legal rights being affected. 

 

3. I understand that relevant sections of my data collected during the study, may be 

looked at by individuals from the University of Birmingham.  I give permission 

for these individuals to have access to my records. 

 

4. I understand that my participation in this study will involve me having two blood 

samples taken as stated in the participant information sheet.  

 

5. I agree to take part in the above study. 

 

            

Name of Participant  Date    Signature 

                            

            

Name of Person  Date    Signature  

taking consent. 
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Participant Personal Information 

Tommy Godwin Challenge Sportive Sunday 28th September 2014 

Pre-Sportive 

Subject Identification Number:      

Name:         

Date of birth:      

Age on 28th September 2014:    

Email address:         

Which distance are you undertaking?     29km  100km    

How long have you cycled for (years)?      

On average how many hours do you cycle per week?     

How many cycle sportives have you completed prior to the current one?    

  

What is your reason for participating in the Tommy Godwin Challenge sportive?   

             

Do you currently consume any vitamin or antioxidant supplement?   YES  NO 

If yes, how long have you taken them for? (Please state years or months)    

How often do you take these supplements? (eg. daily, once a week)    

             

What vitamin and/or antioxidant supplements do you take? (eg. vitamin C, multivitamins, 

etc)             

             

 

Post Sportive 

What was your finishing time?     

 

Do you feel your training prepared you for the event?    YES  NO 

  



Appendix 5: Participant information sheet Chapter 4 

178 

 

 

 

 

 

Participant Information Sheet 

 

The effects of habitual antioxidant supplementation on endogenous antioxidants and 

oxidative damage in well trained cyclists 

Location 
The study will be held at the Human Performance Laboratory (HPL), at the department of Sport and 
Exercise Sciences within the University of Birmingham. 
 
What is the study about? 
The study is investigating whether there is a difference in antioxidants that are produced within the 
body, known as endogenous antioxidants, between cyclists who habitually consume antioxidant 
supplements and cyclists who do not. Antioxidants are present naturally in the human body and are 
also found in foods such as fruit and vegetables. Vitamins are a good example of antioxidants in diet. 
These compounds can act as defences against stressors in the body, and are critical for metabolism. 
Recent evidence has demonstrated that the use of antioxidant supplements reduce the body’s ability 
to produce its own defence system against oxidants, which are usually increased after a bout of 
exercise. Studies identifying these effects typically use short term intervention periods over 4 to 8 
weeks. Therefore, we want to identify if habitual antioxidant supplementation has an effect on the 
levels of endogenous antioxidants (the body’s adapted form of defence against oxidants) at rest and 
in response to an exhaustive bout of exercise. 
 
Do I have to take part? 
No. Taking part in this study is entirely voluntary. If you would like to participate, you will be given this 
information sheet to keep and be asked to sign a consent form, but you are still free to withdraw at any 
time and without giving a reason.  
 
What will I have to do? 
If you decide to take part in the study you will be required to attend the Sport and Exercise Science 
Laboratory at Birmingham University on 2 separate occasions. On the first visit a muscle biopsy will 
be obtained from the thigh and a fitness test (VO2max test) will be carried out on a stationary cycle 
ergometer. You will be given a 3 day food diary that you will be asked to fill in before returning to the 
laboratory. The second visit will be arranged 7-14 days after the first visit at a convenient date for you. 
We will ask you not to exercise for the 48 hours before your return to the lab and you will be required 
to attend in a fasted state (you can drink as much as you wish). Upon arrival a cannula will be placed 
in your arm to allow blood collection pre-during-post exercise. The exercise protocol will last for 
approximately 70 minutes and will last until voluntary fatigue has occurred.              
 
Arriving at the laboratory 
 
Before every visit it is important to avoid foods containing high levels of nitrates in the 24 hour period 
leading up to your return to the laboratory. We will therefore ask you not to eat foods such as: 
beetroots, spinach, and lettuce. On the day of the test we would like you to abstain from eating 6 
hours before returning, and to avoid any caffeinated or sugar based drinks until after the laboratory  
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visit is complete. You are free to drink as much water as you please. We will also ask you not to 
exercise for 48 hours prior to returning to the lab.  
 
1st Laboratory Visit 
On your 1st visit to the Human Performance Laboratory you will have a small incision made in your 
thigh and a sample of muscle just smaller than a pea, will be extracted. After this you will then be 
invited to undertake a fitness test known as a VO2max test on a stationary cycle ergometer that will last 
no longer than 30 minutes. The VO2max test assesses the maximum oxygen volume that an individual 
can achieve, and this is a representation of your maximal ability in exercise. This allows us, as 
researchers to identify the correct intensity for your exercise tests. For example, your 2nd exercise 
bout involves a moderate intensity workload that is the equivalent to 60% of your maximal ability or 
VO2max and a vigorous intensity workload that is the equivalent to 80% of your maximal ability or 
VO2max.  
 
 
Before 2nd Laboratory Visit 
We will ask you to keep a food diary for 3 days before you return for your 2nd visit to the laboratory. All 
meals, snacks, and drinks should be recorded and you will be asked to bring the food diary with you.   
 
 
2nd Laboratory Visit 
On your 2nd visit to the Human Performance Laboratory you will have a cannula placed in your arm by 
a trained researcher. This allows us to take several blood samples without the need for multiple 
needle pricks. The amount of blood taken for each sample is approximately the volume of a single 
tablespoon. A baseline blood sample will be taken before you commence any form of exercise. You 
will then perform 2 steady state cycling protocols, one for 25 minutes at a moderate intensity equal to 
60% of your VO2max, followed by an exhaustive cycling protocol equal to 80% of your VO2max for 40 
minutes on a stationary cycle ergometer. A blood sample will be collected at key stages during the 
test. Throughout the cycling protocol, a gas analyser will be used to determine you are working at the 
right intensity. As you attend the exercise session in the fasted state, upon completion of the trial you 
will be provided with a meal to consume, if you wish.  

 
An outline of the study protocol 
 

 
 
What are the benefits? 
The study may help develop our understanding on how antioxidant supplements may affect training 
adaptations. Your participation in the study may help contribute to the wider knowledge on the use of 
antioxidant supplements and how best to use them in the future. If you are interested in the research 
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you can choose to be sent a report of the findings once the research has been completed. You can 
also ask the researcher any questions about the study, during your participation.  
 
You will also receive training information from the fitness test. We can determine your fitness and give 
you information about appropriate training zones that could facilitate future training programs. You will 
be compensated up to the sum of £50 for travel, parking expenses etc.  
 
 
 
What are the risks?   
The aerobic fitness test and exhaustive cycling protocol may cause you to experience fatigue, which 
will be short lived and you should have fully recovered within two hours of the process. As you are 
healthy and active this risk is extremely small and the procedures are regularly conducted within the 
laboratory. All experimenters are first aid trained. 
 
During the 2nd visit to the laboratory 5 blood samples will be taken over the course of the main 
experimental visit. You may experience a little discomfort when the cannula is inserted, however the 
researchers are experienced in this technique so the pain experienced will be minimal. You may also 
develop a small bruise on your arm which can be prevented by applying pressure on the arm when 
the needle has been taken out. 
 
On your 1st visit to the HPL a muscle biopsy will be taken from the outside of the thigh. This procedure 
is a standard tool and has been used successfully on a regular basis by experienced staff in this 
laboratory. You may experience a small amount of pain while the local anaesthetic is administered. 
Thereafter the procedure may be associated with a feeling of pressure and/or mild discomfort, but 
only for a short time. After the experiment, your legs may still feel a bit stiff or sore but this should not 
last longer than 2-3 days. Sometimes a small scar, the width and half the length of a matchstick 
(5mm), where the incision was made will remain visible for a longer period of time. There is a minimal 
chance of infection of the wound, but we will use strict sterile techniques to minimize this risk. 
Complications such as bruising, infection and pain have been reported but this is rare (less than 2% 
chance). In the unlikely event that you experience any of the above symptoms, or any other 
symptoms related to the muscle biopsy following the study, we will contact the study physician who 
will be happy to discuss the problem with you. In the rare event that they are unavailable our advice 
would be to visit the Accident and Emergency Unit of your local hospital.  
 
The National Health Service (NHS) provides a Patient Advice and Liaison Service (PALS) for any 
concerns that may arise after the muscle biopsy has taken place whilst the University department is 
not accessible due to it being closed. You, a family member, friend, or career can contact PALS and 
all matters will be addressed with confidentially. The nearest PALS to the University of Birmingham is 
listed below: 
 
Patient Advice and Liaison Services (PALS): Queen Elizabeth Hospital 
Birmingham 
Edgbaston 
Queen Elizabeth Medical Centre 
West Midlands 
B15 2TH 
 
Contact Telephone Number: 0121 371 3280 
Contact Email Address: PALS@uhb.nhs.uk 
 
If you do not live near to the Queen Elizabeth Hospital visit their website to find the nearest PALS 
provider in your area: www.nhs.uk 
 
All risks will be minimized by safe practice and conducted by trained members of the research team. If 
at any point during the protocol you feel uncomfortable or unable or unwilling to continue, testing will 
be ceased immediately. 
 
 
 

mailto:PALS@uhb.nhs.uk
http://www.nhs.uk/
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What happens to the information? 
All information is completely confidential to the researcher. All information will be identified by code 
number, and will be seen only by the researcher. Blood samples will be collected, stored and 
analysed by the researchers at the University of Birmingham. 
 
Do I have to take part? 
No. Taking part in this study is entirely voluntary. If you would like to participate, you will be given this 
information sheet to keep and be asked to sign a consent form, but you are still free to withdraw at 
any time and without giving a reason.  
 
What happens if something goes wrong on the day of the trials? 
All procedures have been included within the University of Birmingham Liability Insurances and if you 
are harmed in any way by taking part in this research project your normal rights apply and you may 
have grounds for legal action. 
 
 
 
What do I do now? 
You will be asked to complete an informed consent form to confirm that you are happy to participate 
in this study. You will be asked to keep a copy of this information sheet and the signed consent forms. 
If you change your mind YOU ARE FREE TO WITHDRAW FROM THE STUDY AT ANY TIME AND 
WITHOUT GIVING ANY REASON. 
 
Further Information 
If you have any further questions about participating in the study, please feel free to contact one of the 
principle investigators below.  

 
 
Matthew Soden                         Dr Sarah Aldred  
School of Sport and Exercise Sciences              School of Sport and Exercise Science 
University of Birmingham             University of Birmingham 
Edgbaston                                                           Edgbaston 
Birmingham      Birmingham 
B15 2TT                                                              B15 2TT                     
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Study Number:________ 

Subject Identification Number:________ 

CONSENT FORM 

Title of Project: The effects of habitual antioxidant supplementation on endogenous 

antioxidants and oxidative damage in well trained cyclists 

Name of Researcher: Mr Matthew Soden, Dr Sarah Aldred 

Please initial all boxes  

6. I confirm that I have read and understand the information sheet dated for the 

above study.  I have had the opportunity to consider the information, ask 

questions and have had these answered satisfactorily. 

   

7. I understand that my participation is voluntary and that I am free to withdraw 

at any time without giving any reason, without my medical care or legal 

rights being affected. 

 

8. I understand that relevant sections of my data collected during the study, may 

be looked at by individuals from the University of Birmingham.  I give 

permission for these individuals to have access to my records. 

 

9. I understand that my participation in this study will involve me having a 

muscle sample taken using the muscle biopsy procedure stated in the 

participant information sheet.   

 

10. I understand that my participation in this study will involve me having five 

blood samples taken as stated in the participant information sheet.  

 

11. I agree to take part in the above study. 

 

            

Name of Participant  Date    Signature                              

            

Name of Person  Date    Signature  

taking consent 
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Participant Information Sheet 

 

The Impact of Antioxidant Supplementation on Recovery and Level of Repeated 

Performance. 

 
Location 
The study will be held at the Human Performance Laboratory (HPL), at the department of Sport, 
Exercise and Rehabilitation Sciences within the University of Birmingham. 
 
 
What is the study about? 
Recent evidence suggests that cherry juice, a fruit-derived polyphenolic compound, can significantly 
reduce the muscle damage, which often occurs as a result of intense exercise. This study will 
investigate the effect of drinking cherry juice on cycling performance following a bout of intense 
exercise a day prior. We would like to investigate the effect of drinking cherry juice for 7 days on time-
trial performance. We also wish to investigate the physiological changes, i.e. the changes that might 
occur in the blood stream and the muscle, as a result of drinking the cherry juice, which would explain 
any performance benefits we might see.  
 
 
Do I have to take part? 
No. Taking part in this study is entirely voluntary. If you would like to participate, you will be given this 
information sheet to keep and be asked to sign a consent form, but you are still free to withdraw at any 
time and without giving a reason. You can withdraw from the study up until the 1st April 2015 for any 
reason, either before or after any of the trials you have undertaken or about to complete.   
 
 
What will I have to do? 
If you decide to take part in the study you will be invited to attend the Human Performance Laboratory 
(HPL) located at the School of Sport, Exercise and Rehabilitation Sciences at Birmingham University 
on 3 separate occasions over the course of 10 days. On the first visit a fitness test (VO2max test) will 
be carried out on a stationary cycle ergometer, similar to an exercise bike you would find in the gym. 
This will help us to determine the workload for the subsequent exercise trials. The test enables us to 
work out your maximal power output (WattMax) by increasing the amount of energy (watts) you have 
to produce during the fitness test. Within this visit you will also undertake a 20km time-trial to 
familiarise yourself with the protocol that will be used later in the study. You will then be given a 
supply of Montmorency cherry juice or a placebo drink and instructions on when and how to consume 
the drinks. The second visit to the HPL will be arranged 7-10 days after the first visit at a convenient 
date for you. We will ask you not to exercise for the 48 hours before your return to the lab and you will 
be required to attend in a fasted state (you can drink as much water as you please). Upon arrival a 
cannula will be placed in your arm to allow blood collection pre-during-post exercise. Five blood 
samples will be taken in total, but because we will be using a cannula you probably won’t notice we 
are taking a sample. The exercise protocol will last for approximately 70 minutes and will last until 
voluntary fatigue has occurred. The third laboratory visit will comprise a 30 minute steady state 
cycling period followed by a time-trial, where 20km is cycled as quickly as possible. Before you 
undertake the study you can decide whether you would like to undertake both of the   
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experimental conditions. This involves consuming both the Montmorency cherry juice and placebo 
drinks. This will allow us to determine whether either of the drinks has an effect on your personal time-
trial performance, rather than your performance being part of a group comparison, which would be the 
case if you just undertake 1 part of the study. If you decide to undertake both experimental conditions 
there will be a 14 day washout period between the two conditions. Thereafter, you repeat the first part 
of the study; you will consume the opposing drink for the same period of time as during your first trial 
and the protocols undertaken for the 2nd and 3rd visit will be replicated. This is an addition to the study 
and you are not required to complete this, it is completely optional to you as a volunteer.              
 
 
Arriving at the laboratory 
 
For every visit it is important to avoid foods containing high levels of nitrates in the 24 hour period 
leading up to your return to the laboratory. We will therefore ask you not to eat foods such as: 
beetroots, spinach, and lettuce the day before you come in. On the day of the test we would like you 
to abstain from eating 6 hours before returning, and to avoid any caffeinated or sugar based drinks 
until after the laboratory visit is complete. You are free to drink as much water as you please. We will 
also ask you not to exercise for 48 hours prior to returning to the lab.  
 
1st Laboratory Visit 
 
On your 1st visit to the Human Performance Laboratory a baseline blood sample will be collected from 
your arm by a trained researcher. You will then be invited to undertake a fitness test known as a 
VO2max test on a stationary cycle ergometer that will last no longer than 30 minutes. The VO2max test 
assesses the maximum oxygen volume and power output that an individual can achieve, and this is a 
representation of your maximal ability in exercise. This allows us, as researchers, to identify the 
correct intensity for your exercise tests. Following this, you will be required to familiarise yourself with 
the time-trial protocol that will be used in your 3rd visit to the laboratory. 
 
Before 2nd Laboratory Visit 
 
For the 7 days prior to your 2nd visit you will need to consume the cherry juice, or placebo, as directed. 
We will ask you to keep a food diary for 3 days before you return for your 2nd visit to the laboratory. All 
meals, snacks, and drinks should be recorded and you will be asked to bring the food diary with you.   
 
2nd Laboratory Visit 
 
On your 2nd visit to the Human Performance Laboratory you will have a cannula inserted into your arm 
by a trained researcher. This is a very small flexible cannula that allows us to take several blood 
samples without the need for multiple needle pricks. The amount of blood taken for each sample is 
approximately the volume of a single teaspoon. A baseline blood sample will be taken before you 
commence any form of exercise. You will then be asked to perform 3 different steady state cycling 
intensities for a period of 70 minutes. For the first 25 minutes you will be asked to maintain a 
moderate workload equal to 60% of your WattMax. After this period you will be required to cycle for 
40 minutes at an intense workload equal to 80% of your WattMax, followed by a final workload equal 
to 95% of your WattMax until voluntary fatigue; all completed on a stationary cycle ergometer. A blood 
sample will be collected at the end of each workload during the test. As you attend the exercise 
session in the fasted state, upon completion of the trial you will be provided with a meal to consume, if 
you wish.  

 
3rd Laboratory Visit 
 
On arrival a blood sample will be collected when you first arrive at the HPL. You will be asked to 
perform 30 minutes of steady-state cycling at 60% WattMax followed by a 20km time-trial where you 
should aim to complete the distance as quickly as possible. After completing the time trial a 2nd blood 
sample will be taken. Again, upon completion of the trial you will be provided with a meal to consume, 
if you wish. 
 
On completion of this first section of the study, your total time in the study will be 8 days, and we will 
take 4 blood samples.  
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Cross Over Study Design (optional for participants who wish to undertake both experimental 
conditions) 
 
If you decide to undertake both experimental conditions, as explained in the “what will I have to do?” 
section above, you will be consuming both the Montmorency cherry juice and the placebo drink. In 
between these 2 supplements, there will be a 14-day washout period where you will not be 
consuming any antioxidant supplement. After this period you will be invited back to the laboratory to 
repeat the first part of the study, this time consuming a different supplement. You will not be told 
which supplement you receive, to prevent any interference with your performance in the exercise 
tests. If you take part in both sections of our study your total time in the study will be 30 days, which 
includes the 14-day washout period. Eight blood samples will be taken in total over this 30-day period. 
As stated above, if you take part in both sections of the study it will allow us to determine whether 
either of the drinks has an effect on your personal time-trial performance, rather than your 
performance being part of a group comparison, which would be the case if you just undertake 1 part 
of the study. 
 
 
What are the benefits? 
The study may help develop our understanding on how antioxidant supplements may affect cycling 
performance. Your participation in the study may help contribute to the wider knowledge on the use of 
antioxidant supplements and how best to use them in the future. If you are interested in the research 
you can choose to be sent a report of the findings once the research has been completed. You can 
also ask the researcher any questions about the study, during your participation.  
 
You will also receive training information from the fitness test. We can determine your fitness and give 
you information about appropriate training zones that could facilitate future training programs. 
 
 
What are the risks?   
The aerobic fitness test and exhaustive cycling protocol may cause you to experience fatigue, which 
will be short lived and you should have fully recovered within two hours of the process. As you are 
healthy and active this risk is extremely small and the procedures are regularly conducted within the 
laboratory. All experimenters are first aid trained. 
 
During visits 2 and 3 to the laboratory blood samples will be taken over the course of the main 
exercise protocol. You may experience a little discomfort when the cannula is inserted, however the 
researchers are experienced in this technique so the pain experienced will be minimal. You may also 
develop a small bruise on your arm which can be prevented by applying pressure on the arm when 
the needle has been taken out. 
 
 
What happens to the information? 
All information is completely confidential to the researcher. All information will be identified by code 
number, and will be seen only by the researcher. Blood samples will be collected, stored and 
analysed by the researchers at the University of Birmingham. After the study has been completed all 
primary research data and evidence will be accessible in confidence to authorised researchers for 
verification purposes. The data will normally be preserved and accessible for 10 years. 
 
 
Do I have to take part? 
No. Taking part in this study is entirely voluntary. If you would like to participate, you will be given this 
information sheet to keep and be asked to sign a consent form, but you are still free to withdraw at 
any time and without giving a reason.  
 
 
What happens if something goes wrong on the day of the trials? 
All procedures have been included within the University of Birmingham Liability Insurances and if you 
are harmed in any way by taking part in this research project your normal rights apply and you may 
have grounds for legal action. 
What do I do now? 
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If you meet the following inclusion/exclusion criteria (male, aged between 18-35, undertake 2 to 5 
hours of moderate intensity exercise per week, non-smoker, do not suffer from chronic pulmonary, 
cardiovascular, autoimmune, metabolic, haemostatic, anaemic or malignant diseases; and have not 
taken any vitamin/antioxidant supplements, anti-inflammatory, or prophylactic medications in the 2 
weeks before the study starts) you will be asked to complete an informed consent form to confirm that 
you are happy to participate in this study. You will be asked to keep a copy of this information sheet 
and the signed consent forms. If you change your mind you are free to withdraw at any time and 
without giving a reason. You can withdraw from the study up until the 1st April 2015 for any reason, 
either before or after any of the trials you have undertaken or about to complete.    
 
Further Information 
If you have any further questions about participating in the study, please feel free to contact one of the 
principle investigators below.  

 
 
Co-Investigators 
 
Chris Fagg        
School of Sport, Exercise, and Rehabilitation Sciences   
University of Birmingham                                  
Edgbaston                                                            
Birmingham       
B15 2TT                                                                   

                       
                                    

 
Matthew Soden  
School of Sport, Exercise, and Rehabilitation Sciences  
University of Birmingham 
Edgbaston 
Birmingham 
B15 2TT 

 
 

 
Principal Investigator 
 
Dr Sarah Aldred 
School of Sport, Exercise, and Rehabilitation Sciences  
University of Birmingham 
Edgbaston 
Birmingham 
B15 2TT 
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Subject Identification Number: __________ 

 

 

CONSENT FORM 
 

Project title: The Impact of Antioxidant Supplementation on Recovery and Level of 

Repeated Performance. 

 

Please initial box: 

1. I confirm that I have read and understand the information sheet for the above 

study. I have had the opportunity to ask questions and that I agree to take 

part in the above study. 

 

2. I understand that my participation is voluntary and that I am free to withdraw 

any time without my providing any reason up until the 1st April, 2015. 

 

3. I understand that my data and personal information will be saved on the work 

computer, and hard copies will stored in a locked filing cabinet accessible 

only by the lead researchers and will be kept for a period of 10 years, unless I 

ask to have this information deleted. 

 

4. I understand that my participation in this study will involve me having blood 

samples taken as stated in the Participant Information Sheet.  

 

5. I agree to take part in the above study. 

 

If you have opted to volunteer for the cross-over study, please initial the boxes 

below: 

1. I confirm that I have read the additional information on the participant 

information sheet entitled “Cross Over Study Design”. 

 

2. I understand my participation is voluntary and that I am free to withdraw from 

the study during any portion of the “cross-over design” up until the 14th April, 

2015.  

 
________________________  _______________  ___________________ 

Name of Participant    Date    Signature 
 
           
________________________  _______________  ___________________ 

Name of Researcher    Date    Signature
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Subject ID No………… 

The University of Birmingham 

 
School of Sport and Exercise Sciences 

 

General Health and Screening Questionnaire 
 
 
 

Phone/Email: .................................................................................... 
 
Name of the responsible investigator for the study: 
 
  ................................................................................... 
 
Please answer the following questions.  If you have any doubts or difficulty with the 
questions, please ask the investigator for guidance.  Your answers will be kept strictly 
confidential. 
 

1.  
You are....... 
 

 
Male 

 
Female 

2. What is your exact date of birth?   
 
 Day........... Month...........Year 19........ 
 
So your age is........................... Years 
 

  

3.  
When did you last see your doctor?     In the: 
Last week............ Last month.......... Last six months............ 
Year................. More than a year........... 
 

  

4. Are you currently taking any medication? YES NO 

5. Have you taken any anti-inflammatory or prophylactic 
medications in the last 2 weeks? 

YES NO 

6. Has your doctor ever advised you not to take vigorous 
exercise? 

YES NO 

7. Do you currently smoke? YES NO 

8.   
Has your doctor ever diagnosed you with any of the following 
disease states?  

• Cardiovascular 

• Metabolic 

• Pulmonary 

• Haemostatic  

• Anaemic 

• Malignant  
 

YES NO 

9. Has your doctor ever said you have “heart trouble”? YES NO 
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I have completed the questionnaire to the best of my knowledge and any questions I had 

have been answered to my full satisfaction. 

 

 

 

 

Signed:.............................................................  Date:..............................................................

10. Has your doctor ever said you have high blood pressure? YES NO 

11. Have you ever taken medication for blood pressure or your 
heart? 

 
YES 

 
NO 

12. Do you feel pain in your chest when you undertake physical 
activity? 

 
YES 

 
NO 

 

13. In the last month have you had pains in your chest when not 
doing any physical activity? 

 
YES 

 
NO 

14. Has your doctor (or anyone else) said that you have a raised 
blood cholesterol? 

 
YES 

 
NO 

15. Have you had a cold or feverish illness in the last month?  
YES 

 
NO 

16. Do you ever lose balance because of dizziness, or do you 
ever lose consciousness? 

 
YES 

 
NO 

17.  
a) Do you suffer from back pain 
b)  if so, does it ever prevent you from exercising? 

YES 
YES 

 
NO 
NO 

 

18. Do you suffer from asthma? YES NO 

19. Do you have any joint or bone problems which may be made 
worse by exercise? 

 
YES 

 
NO 

20. Has your doctor ever said you have diabetes?  
YES 

 
NO 

21. Have you ever had viral hepatitis?  
YES 

 
NO 

22. 
 
 

Do you know of any reason, not mentioned above, why you 
should not exercise? YES NO 

23. Are you accustomed to vigorous exercise (an hour or so a 
week)? 

 
YES 

 
NO 

24. Do you take part in physical activity one or more times a 
week? 

 
YES 

 
NO 
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