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Abstract

In this thesis, we consider two types of positional games; Waiter–Client and Client–Waiter

games. Each round in a biased (a : b) game begins with Waiter offering a+b free elements

of the board to Client. Client claims a elements among these and the remaining b elements

are claimed by Waiter. Waiter wins in a Waiter–Client game if he can force Client to

fully claim a winning set, otherwise Client wins. In a Client–Waiter game, Client wins if

he can claim a winning set himself, else Waiter wins.

We estimate the threshold bias of four different (1 : q) Waiter–Client and Client–Waiter

games. This is the unique value of Waiter’s bias q at which the player with a winning

strategy changes. We find its asymptotic value for both versions of the complete–minor

and non–planarity games and give bounds for both versions of the non–r–colourability

and k–SAT games. Our results show that these games exhibit a heuristic called the

probabilistic intuition.

We also find sharp probability thresholds for the appearance of a graph in the random

graph G(n, p) on which Waiter and Client win the (1 : q) Waiter–Client and Client–Waiter

Hamiltonicity games respectively.
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Chapter 1

Introduction

1.1 Positional Games

A positional game is a two–player game with no chance moves where, unlike Poker or

Bridge, no information is hidden from either player. Such games are known as perfect

information games. In a positional game (X,F), play occurs on a (usually finite) set

X which we call the board. X contains special finite subsets called winning sets that

are defined by the family F . In each round, players take turns to claim some previously

unclaimed (free) elements of X in an attempt to achieve some goal that involves either

claiming or avoiding a winning set, depending on the role of the player and the type of

positional game in play. The specific number of elements that a player claims per round is

dictated by a fixed quantity known as his bias. Often the bias of each player is expressed

in the title of the game as a ratio referred to as the bias of the game. Once all elements of

X have been claimed by some player, the game ends. If a player achieves his goal by the

end of the game, we say that he wins and his opponent loses. However, if neither player

achieves his goal by the end of the game, we say it ends in a draw.

Given a positional game, we are most interested in its outcome. Does it end in a draw?

If not, which player wins? However, we do not care for an instance of a game where players
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cheat or make mistakes. We only study play between perfect/optimal players i.e. players

that always choose the best possible valid move per round. Thus, in this setting, any

given game has one fixed outcome and a player can only win or draw if he possesses

what is known as a winning or drawing strategy respectively. A strategy is a collection of

instructions that dictate how a player should play in each round of the game. If a player

following some strategy S is guaranteed to win, no matter how his opponent plays, then

S is a winning strategy. If S cannot guarantee a win but ensures at least a draw, it is a

drawing strategy.

Although one may be tempted to use brute force to find such strategies in order to

deduce the outcome of a game, an exhaustive search of all possible sequences of play

quickly becomes intractable as the size of the board grows (see Chapter 6). Positional

game theory uses combinatorial arguments to find the outcome instead and this has

become a widely researched area of combinatorics since the influential papers of Hales

and Jewett [57], Lehman [78] and Erdős and Selfridge [44]. For an extensive survey on

positional games, the interested reader may refer to the monographs of Beck [13] and

Hefetz, Krivelevich, Stojaković and Szabó [64].

Many different types of positional games appear in the literature. We focus on the five

main types; strong, Maker–Breaker, Avoider–Enforcer, Waiter–Client and Client–Waiter

games.
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1.2 Types of Positional Games

Figure 1.1: Tic–Tac–Toe (left) and Hex (right).

1.2.1 Strong Games

Strong games are often viewed as the most natural type of positional game as the player

that claims a winning set first is the winner. The beloved Tic–Tac–Toe (a.k.a. Noughts

and Crosses) is a well known example. However, those well versed in this childhood game

will know that it is better to play first if you want to win. Indeed, a result from classical

game theory (see e.g. Theorem 1.3.1 in [64]) states that the player that starts playing

a strong game after his opponent can never have a winning strategy. The best outcome

he can hope for is a draw. Since a draw is a feasible outcome and each player effectively

has two goals to focus on throughout; to claim a winning set for themselves and to pre-

vent their opponent from doing so before them, strong games are notoriously difficult

to analyse. In fact, the aforementioned first–player–wins–or–draws result essentially con-

stitutes all that is known about a general strong game. One may wonder if giving each

player a goal that complements their opponent’s goal makes the analysis easier, since this

removes the possibility of a draw. This motivates what are known as weak games or

Maker–Breaker games.
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1.2.2 Maker–Breaker Games

In an (a : b) Maker–Breaker game, one player takes the role of Maker and the other

takes the role of Breaker. Here, a represents Maker’s bias and b represents the bias of

Breaker. Maker’s goal is to claim a winning set by the end of the game. However, in

contrast to strong games, Maker does not have to be the first player to do so. Breaker’s

goal is simply to prevent Maker from achieving this. Therefore, a draw is not possible in

a Maker–Breaker game, arguably making it more attractive to play and to study. Indeed,

this is demonstrated by the popularity of Maker–Breaker games in the literature (see e.g.

[15, 21, 62, 61, 74]).

A subtle example of a Maker–Breaker game is the well known Hex. The board consists

of a block of tessellated hexagons, surrounded by four walls coloured red or blue, such that

opposing walls have the same colour. The two players, called Red and Blue, alternately

claim one hexagon at a time in an attempt to build a bridge connecting the two walls of

their colour. The first player to complete their bridge wins the game.

At first glance, Hex seems to be a strong game. But the winning sets in Hex are

different for each player. Blue will not win if he builds a bridge connecting the red walls.

He has to connect the walls of his colour to win. In [54], Gale proved that building

a bridge between the walls of your colour is equivalent to blocking your opponent from

building their bridge. Thus, one can view, say, Red as Maker and Blue as Breaker. So

Hex is indeed a Maker–Breaker game.

1.2.3 Avoider–Enforcer Games

Another type of positional game is the Avoider–Enforcer game (see e.g. [70, 65, 31]).

Sometimes known as the miseré version of Maker–Breaker games, one could view the

winning sets in an Avoider–Enforcer game (X,F) as losing sets instead. This is because,

once Avoider claims a set in F , he loses. Enforcer’s goal in this game is to ensure that this
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occurs. The process of claiming elements is the same as for Maker–Breaker and strong

games, with Avoider claiming a elements per round and Enforcer claiming b elements per

round in an (a : b) game. Also, as with Maker–Breaker games, Avoider and Enforcer can

never draw.

1.2.4 Waiter–Client and Client–Waiter Games

Waiter–Client and Client–Waiter games are the final types of positional games that we

will discuss here and serve as our main focus for this thesis. These were first introduced

by Beck under the names Picker–Chooser and Chooser–Picker (see e.g. [12]). However,

in [20], Bednarska–Bzdȩga, Hefetz and  Luczak introduced the names Waiter and Client

to replace Picker and Chooser respectively. We adopt this renaming to avoid confusion

between the roles of the players.

In a Waiter–Client game, Waiter wins if he can force Client to claim a winning set by

the end of the game, otherwise Client wins. However, in a Client–Waiter game, Client wins

if he fully claims a winning set, and Waiter wins if he prevents this from happening. Thus,

no draw is possible. What distinguishes these games from those discussed previously is

the process of claiming elements. In both an (a : b) Waiter–Client game and an (a : b)

Client–Waiter game, where a and b represent the bias of Client and Waiter respectively,

every round consists of Waiter choosing a + b free elements from the board and offering

them to Client. Client then claims a of these offered elements and rejects the remaining

b elements, which Waiter then claims. If there are r < a + b free elements left in the last

round, Waiter offers all remaining free elements to Client. However, for technical reasons,

which will become apparent later, the way that Client claims and rejects elements in the

final round differs depending on whether a Waiter–Client or a Client–Waiter game is in

play. In the last round of an (a : b) Waiter–Client game, Client rejects min{b, r} elements

in Waiter’s final offering and claims the rest. Whereas, for the (a : b) Client–Waiter
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game, Client claims min{a, r} elements from Waiter’s final offering first and then rejects

the rest.

These games are interesting for a number of different reasons. Firstly, when Waiter

plays randomly in a Waiter–Client (Client–Waiter) game, it becomes the avoiding

(embracing) Achlioptas process (see e.g. [22, 23, 75, 76]). Secondly, these games often

obey a fascinating heuristic (discussed in Section 1.4) known as the probabilistic intuition.

Finally, recent research (see e.g. [12, 38, 17, 72]) has revealed interesting connections with

Maker–Breaker games.

1.3 Variable Parameters of the Game

As mentioned previously, much of the research on positional games centres around finding

the outcome of a given game. Further, we are interested in how the outcome is affected

when we vary certain parameters of the game. To illustrate this, let us first consider a

(1 : 1) Waiter–Client game (X,F). As Waiter and Client can never draw, we would like

to know which of the two has a winning strategy. Since both Waiter and Client have bias

1, each round removes only two free elements from the board X. Hence, the game lasts

many rounds and so Client owns many elements by the end of the game. This makes

it very difficult for Client to avoid claiming a winning set and in fact, at least for the

interesting choices of X and F , Client will lose this game. A similar argument shows that

Waiter loses the (1 : 1) Client–Waiter game (X,F) in most instances. What parameters

can we change to help Client and Waiter win in their Waiter–Client and Client–Waiter

games respectively? As it appears that a surplus of elements owned by Client at the end

of the game is the cause of their loss in their respective games, a natural move would be

to vary parameters that can reduce this amount. The first obvious choice is to increase

the bias of Waiter. This causes Waiter to remove more free elements from the board per

round, making the game shorter and therefore ensuring that Client has less elements at
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the end of the game. The other parameter we could vary is the board X itself. If we

remove some elements from X before play begins, this will also reduce the total number

of elements that Client can claim. We study each of these options in turn.

1.3.1 The Bias

We first consider the option of increasing the bias of Waiter. If this truly helps Client to

win the Waiter–Client game, then the continued increase of Waiter’s bias past the value at

which Client wins the game for the first time should guarantee that Client keeps winning.

The same should be true for Waiter in the Client–Waiter game. This property that we

require from Waiter’s bias is known as bias monotonicity.

Bias Monotonicity

Definition 1.3.1 (Bias Monotonicity) Consider a positional game (X,F) with play-

ers A and B, where a and b denote the bias of A and B respectively in an (a : b) game.

(X,F) is said to be bias monotone in B’s bias if there exists some player P ∈ {A,B}

such that the following property holds for any a > 1:

If P wins the (a : b) game (X,F), then P also wins the (a : b + 1) game (X,F).

One can also define a game to be bias monotone in A’s bias in an analogous way.

In [29], Chvátal and Erdős observed that Maker–Breaker games are bias monotone

in both player’s biases, with each player helped by the increase of their own bias. But

since (1 : 1) Maker–Breaker games are often won by Maker, it is Breaker’s bias that is

commonly chosen to vary. In contrast, Avoider–Enforcer games are not bias monotone in

any player’s bias (see [63] for a counterexample that demonstrates this).

Waiter–Client and Client–Waiter games lie between these two extremes. By simply

ignoring one arbitrary element offered to him in each round, Client can use his winning
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strategy for an (a : b) Waiter–Client game as a winning strategy in the (a : b + 1) game

too. Hence, Waiter–Client games are bias monotone in Waiter’s bias.

Fact 1.3.2 In a Waiter–Client game, Client wins the (a : b + 1) game whenever he wins

the (a : b) game.

However, in general, Waiter–Client games are not bias monotone in Client’s bias (see

Example B.0.4 in Appendix B).

For Client–Waiter games, the opposite is true. In general, these are not bias monotone

in Waiter’s bias. In fact, increasing Waiter’s bias can harm both players (see Example

B.0.5 in Appendix B). However, Client–Waiter games are bias monotone in Client’s bias.

Fact 1.3.3 In a Client–Waiter game, Client wins the (a + 1 : b) game whenever he wins

the (a : b) game.

This is because Client can use his winning strategy S for the (a : b) game to win the

(a + 1 : b) game by simply following S and claiming an extra arbitrary element in each

round. Indeed, the extra elements he claims do not destroy the winning set that following

S guarantees him.

Thus, increasing Waiter’s bias is a viable option to truly help Client win in the Waiter–

Client game. However, we have seen that Client–Waiter games are not bias monotone in

Waiter’s bias and therefore its increase does not truly help Waiter win. Also, increasing

Client’s bias is not an option for this game since this helps Client (the winner of the (1 : 1)

Client–Waiter game) instead of Waiter. So, to enable the existence of some bias whose

increase truly helps Waiter in the Client–Waiter game, we relax its rules in the following

way.

Relaxing the Rules

In an (a : b) monotone Client–Waiter game, Waiter is allowed to offer less elements than

the bias of the game specifies. More precisely, in each round he may offer r elements for
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any r in the range a 6 r 6 a + b, with Client claiming a of these elements as usual. This

relaxation makes the game bias monotone in Waiter’s bias, whose increase helps the loser

(i.e. Waiter) of the (1 : 1) game. Indeed, when playing the (a : b + 1) game, Waiter can

simply follow his winning strategy for the (a : b) game to prevent Client from claiming a

winning set.

Fact 1.3.4 In a monotone Client–Waiter game, Waiter wins the (a : b + 1) game when-

ever he wins the (a : b) game.

Throughout this thesis, we will only study the monotone version of Client–Waiter games.

A similar relaxation can also be performed on Avoider–Enforcer games. In the mono-

tone version, Avoider and Enforcer are allowed to claim more elements than their bias

specifies per round, if they choose to. This relaxation makes the game bias monotone in

both Enforcer’s bias and Avoider’s bias. However, since Avoider is often the loser of the

(1 : 1) game and the increase of Enforcer’s bias helps Avoider, it is Enforcer’s bias that is

commonly chosen to vary.

The Threshold Bias

q
0 |X| − 1bF

BB . . . . . . . . . . . . . . . . . . . . .AA . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.2: The threshold bias of (X,F) played between A and B.

Given some player’s bias that is chosen to vary, it is natural to ask which player wins

the game generated by each possible value of this variable bias. If the game at hand is

bias monotone in the chosen bias, we can obtain this information without the need to

study every game generated. Indeed, suppose we consider a (1 : q) game (X,F) between

players A and B, with the varying bias q belonging to B. If (X,F) is bias monotone in

9



B’s bias, then increasing q helps some player, say A, by definition. Thus, if we know that

A wins the (1 : q) game, for some positive integer q, then we know that A also wins all

(1 : r) games (X,F), where r > q. Identifying the smallest value bF for which A wins

the (1 : bF) game therefore fully characterises who wins the (1 : q) game (X,F) for every

positive integer value of q. bF is known as the threshold bias of (X,F) (see Figure 1.2).

Every game that is bias monotone in some player’s bias has a unique threshold bias that

we aim to locate when we choose the bias as our varying game parameter. In light of our

discussion concerning the most common loser of the (1 : 1) Maker–Breaker, Waiter–Client

or Client–Waiter game and the resulting choice of variable bias, player A in our definition

of the threshold bias represents Breaker, Client and Waiter for these games respectively.

For Avoider–Enforcer games (excluding the aforementioned monotone version) it is not

clear whether a threshold bias exists since these are not bias monotone in any player’s

bias. Instead, we look for what are known as the lower and upper threshold biases,

denoted by f−
F and f+

F respectively for a game (X,F). These were first defined by Hefetz,

Krivelevich and Szabó in [65] as follows. The lower threshold bias f−
F is the largest integer

for which Enforcer wins the (1 : q) game, for every q 6 f−
F and the upper threshold bias

f+
F is defined to be the smallest integer for which Avoider wins the (1 : q) game, for every

q > f+
F .

1.3.2 The Board

As mentioned previously, varying the bias of some player need not be our only option.

We may also remove some elements of the board before play and observe the effect that

this has on who wins, whilst keeping the bias of both players fixed. This process is

known as thinning the board. In [86], Stojaković and Szabó first introduced the idea that

this can be implemented randomly by retaining each element independently with some

fixed probability p (or equivalently removing each element independently with probability

10



1 − p). Under this random setting, we’d like to know how low our retaining probability

p can be such that the winner of the game on the complete board continues to win on

the thinner board it generates. We can formulate this aim more precisely in terms of

probability thresholds.

Probability Thresholds

Let us consider the set/board X(p) generated by the retaining probability p and let

X := X(1). Informally, a probability threshold for a monotone increasing property P is

a function p∗(|X|) for which a.a.s. (with probability tending to 1 as |X| → ∞) X(p) ∈ P

when p is larger than p∗(|X|) and a.a.s. X(p) /∈ P when p is smaller than p∗(|X|).

However, unlike the threshold bias of a game, p∗(|X|) is not unique since there is a window

around p∗(|X|) in which lim|X|→∞ P[X(p) ∈ P ] grows quickly from 0 to 1. Depending on

the size of this window, a probability threshold falls into one of two categories; coarse and

sharp. p∗(|X|) is coarse if the following statement holds:

lim
|X|→∞

p(|X|)
p∗(|X|) =















∞ =⇒ lim|X|→∞ P[X(p(|X|)) ∈ P ] = 1,

0 =⇒ lim|X|→∞ P[X(p(|X|)) ∈ P ] = 0.

On the other hand, we say that p∗(|X|) is sharp if, for any fixed ε > 0, the following

holds:

lim
|X|→∞

p(|X|)
p∗(|X|)















> 1 + ε =⇒ lim|X|→∞ P[X(p(|X|)) ∈ P ] = 1,

6 1 − ε =⇒ lim|X|→∞ P[X(p(|X|)) ∈ P ] = 0.

With the knowledge that A wins some (a : b) game (X,F) against B, we would therefore

like to find a sharp probability threshold for the property

PF = {X ′ ⊆ X : A wins the (a : b) game (X ′,F)}.
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But how can we be sure that a probability threshold exists? In each of the games we

have seen (excluding strong games), the claiming of a winning set is desired by one player

and unwanted by the other. If our game on a full board is won by the player who does not

desire a winning set to be claimed, removing elements from the board only makes it easier

for this player to continue winning. Thus, no change of winner occurs as the retaining

probability decreases. Our interest therefore only lies in the case where the game on the

full board is won by the player desiring a winning set. Note that, when playing on a board

X, a winning strategy for Maker in a Maker–Breaker game or Waiter in a Waiter–Client

game can also be followed in any game whose board contains X, either directly (in the

case of Waiter) or by choosing arbitrary free elements within X to replace those claimed

outside X by the opponent. This is also true for any winning strategy S of Client’s in a

monotone Client–Waiter game on X. Indeed, when playing on some board X ′ ⊇ X, Client

may follow S by ignoring any element offered by Waiter in X ′\X and claiming arbitrarily

in the rounds where every element offered lies outside X. Therefore, our property PF is

monotone increasing for these games. Bollobás and Thomason proved in [27] that this

is enough to guarantee the existence of a probability threshold. Following this, Friedgut

[50] went on to characterise all properties for which this probability threshold is sharp.

1.4 The Probabilistic Intuition

Although the threshold bias and probability threshold of a game are interesting in their

own right, our underlying motivation for studying positional games comes from an interest

in what is known as the probabilistic intuition. This is a heuristic which was first employed

by Chvátal and Erdős in 1978 during their study of the Maker–Breaker connectivity game

[29]. It states that the player with the highest chance of winning when both players play

randomly is the player with the winning strategy when both players play optimally. In

particular, this heuristic provides a predicted outcome of a game based on the typical

12



properties possessed by a random set of board elements.

To illustrate this, let us consider the (1 : q) Maker–Breaker game (E(Kn),F) played

on the edge–set E(Kn) of the complete n–vertex graph Kn. Suppose Maker and Breaker

play randomly, choosing each edge of their turn uniformly at random out of the free edges

available to them. Then, at the end of the game, Maker’s graph M is a random graph on

n vertices with m = d
(

n
2

)

/(q + 1)e edges. The probabilistic intuition predicts that Maker

will win the game if a.a.s. M contains some winning set A ∈ F . If a.a.s. M does not

contain a winning set, the probabilistic intuition will predict that Breaker wins. For us

to discover what is predicted, we therefore need to know when a winning set appears in

the random graph M . Fortunately, the area of random graphs is widely researched (see

e.g. [25, 69]). However, out of convenience, most results refer to the Erdős–Rényi random

graph G(n, p) obtained by including each edge of Kn independently with probability p.

Since it is known that G(n, p) can model the random graph on n vertices with m edges

when p = m/
(

n
2

)

(see e.g. [25, 69]), we can model Maker’s graph M , in our example,

with the random graph G(n, 1/(q + 1)). Equipped with the knowledge of a probability

threshold pF for the graph property PF = {G ⊆ Kn : G contains some A ∈ F}, we are

therefore able to decipher what the probabilistic intuition predicts for our (1 : q) Maker–

Breaker game (E(Kn),F). Note, however, that the existence of a small interval around pF

(discussed in the previous section) within which limn→∞ P[G(n, p) ∈ PF ] ∈ (0, 1) means

that a prediction is only made for the (1 : q) game whenever q is not too close to 1/pF .

There are different levels of success that indicate how well the probabilistic intuition

predicts the outcome of the game at hand. Indeed, suppose we are studying the game

(X,F) with threshold bias bF and suppose that the threshold probability of a random

X ′ ⊆ X containing some A ∈ F is pF . We say that (X,F) exhibits strong probabilistic

intuition if bF = (1 + o(1))/pF . If this is not true, but bF = Θ(1/pF), then we say (X,F)

exhibits intermediate probabilistic intuition. If the order of magnitude of bF and 1/pF
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differs, the game (X,F) does not exhibit the probabilistic intuition. Alternatively in this

case, we may say that the probabilistic intuition fails. In general, the strength of the

probabilistic intuition exhibited by the game increases with the number of values of bias

q for which it gives a correct prediction.

Even within the class of Maker–Breaker games alone, we see examples of every level

of probabilistic intuition exhibited in the literature. Many natural Maker–Breaker games

exhibit strong probabilistic intuition. For example, this is true for the Maker–Breaker

connectivity game (E(Kn), C), where C consists of the edge–sets of all connected sub-

graphs of Kn. Indeed, it is well known that the probability threshold for a connected

random graph G(n, p) is pC = log n/n (see e.g. [25, 69]). In 1978, Chvátal and Erdős

[29] proved that the threshold bias bMB
C for the Maker–Breaker connectivity game satis-

fies (1/4 − o(1))n/ log n 6 bMB
C 6 (1 + o(1))n/ log n. Later, in 1982, Beck [11] improved

the constant factor in their result, proving that Maker wins the (1 : q) game when-

ever q < (log(2) − o(1))n/ log n. Finally, in 2009, Gebauer and Szabó [55] proved that

bMB
C = (1 − o(1))n/ log n = (1 − o(1))/pC.

The Maker–Breaker non–planarity game (E(Kn),NP), where Maker’s goal is to build

a non–planar graph, exhibits intermediate probabilistic intuition. In [59], Hefetz,

Krivelevich, Stojaković and Szabó showed that the asymptotic threshold bias for this

game is bMB
NP = (1/2−o(1))n. Since 1/n is a sharp probability threshold pNP for planarity

(see e.g. [25, 69]), it follows that bMB
NP = Θ(1/pNP).

We also have Maker–Breaker games in which the probabilistic intuition fails. An exam-

ple is the Maker–Breaker K3–game, where each triangle in Kn constitutes a winning set.

In [29], Chvátal and Erdős found that the threshold bias of this game is Θ(n1/2). However,

the threshold probability for having a triangle in the random graph has order Θ(1/n) (see

e.g. [25, 69]). From this, the probabilistic intuition predicts that the threshold bias is

Θ(n), which has a different order of magnitude to Θ(n1/2). In fact, upon generalising
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the result of Chvátal and Erdős, Bednarska and  Luczak [16] found that the probabilistic

intuition fails for every Maker–Breaker H–game, where H is any fixed, pre–determined

graph.

A characterisation of all games that exhibit the probabilistic intuition would be a very

powerful tool in the study of positional games. Indeed, this would allow us to correctly

predict the threshold bias of any game for which the random setting is understood, without

needing to study the game itself. However, as we’ve just seen, our desired characterisation

for all games in which this phenomenon works is non–trivial in the sense that the class of

games that exhibit the probabilistic intuition is a non–empty proper subset of the set of

all positional games. So far, no sufficient condition for a Maker–Breaker game to exhibit

the probabilistic intuition has been found. For Waiter–Client and Client–Waiter games,

the same is true. However, despite the existence of games within these classes that do not

exhibit the probabilistic intuition, such as the Waiter–Client Hamiltonicity game [18] and

the Client–Waiter maximum degree game [40], there also exist many examples of games

whose outcomes strongly mimic typical behaviour in the random setting; for example,

the Waiter–Client giant component game [18] and the Waiter–Client and Client–Waiter

Ramsey games [12]. Hence, it is thought that greater progress towards understanding this

phenomenon might be achieved here. Unfortunately, despite our research identifying yet

more examples of Waiter–Client and Client–Waiter games that exhibit the probabilistic

intuition, we are no closer to understanding it.

1.5 Main Results

In this thesis, we give bounds on the threshold bias for a range of Waiter–Client and

Client–Waiter games, played on graphs, hypergraphs and sets of k–clauses. More precisely,

we focus on games defined by the properties of containing a complete–minor, being non–

planar, being non–r–colourable, and being a satisfiable conjunction of k–clauses. As we
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shall soon discuss, the large amount of existing research regarding these properties in

the random setting makes their corresponding games prime candidates for investigating

the probabilistic intuition. Indeed, our results show that all of these games exhibit the

probabilistic intuition. The Maker–Breaker and Avoider–Enforcer versions of these games

have also been well studied, thereby allowing interesting comparisons with our findings

to arise. We additionally give sharp probability thresholds for the (1 : q) Waiter–Client

and Client–Waiter Hamiltonicity games played on the random graph G(n, p) when q is

fixed. These are more precise than existing analogous results for the Maker–Breaker and

Avoider–Enforcer versions. In what follows, we discuss each of the aforementioned games

in greater detail and state our results in full.

1.5.1 Complete–Minor Games

Our first game of interest is the Kt–minor game (E(Kn),Mt) played on the edge–set

E(Kn) of the complete graph Kn, where

Mt = {E(M) : M is a Kt–minor admitted by Kn}.

Much is known about both the Maker–Breaker and Avoider–Enforcer versions of this

game. Indeed, in 2005, Bednarska and Pikhurko [14] showed that Breaker can ensure that

Maker does not build a cycle when playing any (1 : q) Maker–Breaker game on E(Kn)

with q > n/2. Hence, Breaker wins the (1 : q) Maker–Breaker Kt–minor game, for all

t > 3, when q > n/2. In the other direction, Hefetz, Krivelevich, Stojaković and Szabó

[59] proved that, for every fixed ε > 0, there exists a constant c = c(ε) > 0 such that

Maker wins the (1 : q) Maker–Breaker game (E(Kn),Mt), for every t 6 c
√

n/ log n,

whenever q 6 (1/2− ε)n. Together, these two results show that the asymptotic threshold

bias for the Maker–Breaker Kt–minor game is (1/2 + o(1))n.

For the Avoider–Enforcer version, bounds for the lower and upper threshold biases,
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f−
Mt

and f+
Mt

respectively, are also known. In [59], Hefetz et. al. showed that, for

every ε > 0, there exists a constant c = c(ε) > 0 such that Enforcer wins the (1 : q)

Avoider–Enforcer game (E(Kn),Mt), for every t 6 nc and every q 6 (1/2 − ε)n. Thus,

f−
Mt

> (1/2 − ε)n. On the other hand, Clemens, Ehrenmüller, Person and Tran [31]

recently improved a result in [59] by showing that Avoider wins the (1 : q) Avoider–

Enforcer Kt–minor game, for every t > 4, whenever q > 200n log n. Thus,

f+
Mt

6 200n log n.

Jointly with Dan Hefetz and Michael Krivelevich, we show that the asymptotic thresh-

old bias of the Waiter–Client Kt–minor game, for every t in the range 4 6 t = O(
√
n), is

(1 + o(1))n.

Theorem 1.5.1 ([67]) Let n be a sufficiently large positive integer and let

ε = ε(n) > 4n−1/4 > 0. Also let q and t be positive integers with t 6 ε2
√
n/5.

Consider the (1 : q) Waiter–Client Kt–minor game (E(Kn),Mt). If q 6 (1 − ε)n, then

Waiter can force Client to build a graph that admits a Kt–minor. On the other hand,

if q > n + η, where η = η(n) > n2/3 log n, then Client can ensure that his graph will be

K4–minor free throughout the game.

In Theorem 1.5.1, the upper bound ε2
√
n/5 on the size of the complete–minor that

Waiter can force Client to build is best possible, up to a constant, when q is close to n.

This is because Client’s graph must have at least
(

t
2

)

edges to admit a Kt–minor. Since

q ≈ n gives Client O(n) edges at the end of the game, a complete–minor of size O(
√
n)

is the largest that his graph can contain.

Additionally, Theorem 1.5.1 guarantees a complete–minor of larger size than that

achieved by Maker in [59]. Unlike those in [59], the accuracy of our bounds increases

as the size of the complete–minor that Waiter is trying to force decreases, due to the

dependency of ε on n. We expect this since, intuitively, a smaller minor should be easier

to force Client to build than a larger one.

17



We also show, together with Dan Hefetz and Michael Krivelevich, that the asymptotic

threshold bias for the Client–Waiter Kt–minor game matches that of the corresponding

Maker–Breaker game with value (1/2 + o(1))n.

Theorem 1.5.2 ([67]) Let n, t and q be positive integers with n sufficiently large and let

0 < ε = ε(n) 6 1/2. Consider the (1 : q) Client–Waiter Kt–minor game (E(Kn),Mt). If

q > dn/2e−1, then Waiter has a strategy to keep Client’s graph K3–minor free throughout

the game. On the other hand, if q 6 (1/2− ε)n, then Client can build a graph that admits

a Kt–minor for t > (εn)cε, where c > 0 is an absolute constant.

With regards to the probabilistic intuition of the Kt–minor game, it is well known

(see e.g. [25, 69]) that, for arbitrarily small but fixed ε > 0, a.a.s. G(n, p) has at

most one cycle, and is therefore K4–minor free, when p 6 (1 − ε)/n. Also, in 2008,

Fountoulakis, Kühn and Osthus [48] found that, for arbitrarily small but fixed ε > 0,

G(n, p) a.a.s. admits a Kt–minor for t = Θ(
√
n) when p > (1 + ε)/n. Thus, for every

4 6 t = O(
√
n), 1/n is a sharp probability threshold for having a Kt–minor. From

this, the probabilistic intuition predicts that the threshold bias for the Kt–minor game,

when 4 6 t = O(
√
n), is n. Hence, both the Client–Waiter and Maker–Breaker versions

of this game exhibit intermediate probabilistic intuition. In contrast, the Waiter–Client

Kt–minor game exhibits strong probabilistic intuition.

1.5.2 Planarity Games

Kuratowski’s Theorem (see, e.g. [91]) states that a graph is planar if and only if it

does not admit a K5–minor. Thus, we obtain the asymptotic threshold bias of both the

Waiter–Client and Client–Waiter non–planarity games (E(Kn),NP) as simple corollaries

of Theorems 1.5.1 and 1.5.2 respectively, where

NP = {E(H) : H ⊆ G and H is non–planar}.
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These results were also achieved in collaboration with Dan Hefetz and Michael Krivelevich.

Corollary 1.5.3 ([67]) Let n, q and t be positive integers where n is sufficiently large

and consider the (1 : q) Waiter–Client non–planarity game (E(Kn),NP). If q 6 (1−ε)n,

where ε = ε(n) > 5n−1/4, then Waiter can force Client to build a non–planar graph. On

the other hand, if q > n + η, where η = η(n) > n2/3 log n, then Client can keep his graph

planar throughout the game.

Corollary 1.5.4 ([67]) Let n, q and t be positive integers where n is sufficiently large and

consider the (1 : q) Client–Waiter non–planarity game (E(Kn),NP). If q > dn/2e − 1,

then Waiter can keep Client’s graph planar throughout the game. On the other hand,

there exists a constant c > 0 such that Client can build a non–planar graph whenever

q 6 n/2 − cn/ log n.

Consequently, the probabilistic intuition exhibited by these non–planarity games matches

that of the Kt–minor games from which the above results follow.

1.5.3 Colourability Games

The next game of interest is the non–r–colourability game (E(K
(k)
n ),NC(k)

r ), where

k, r > 2, played on the edge–set of the complete n–vertex k–uniform hypergraph K
(k)
n .

The winning sets belong to the family

NC(k)
r = {E(H) : H ⊆ K(k)

n and χ(H) > r},

where χ(H) denotes the weak chromatic number of H (see Chapter 2). We first consider

the case k = 2 i.e. when the game is played on a graph.

The Maker–Breaker version was studied by Hefetz et. al. in [59], where they proved

that the threshold bias has order Θ(n/r log r). In particular, one can take c1 = 2 + or(1)

and c2 = log 2/2− or(1) to be the upper and lower bound constant factors respectively as
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r tends to infinity. In the same paper, Hefetz et. al. also proved that, for an appropriate

absolute constant c > 0, Enforcer wins the Avoider–Enforcer non–r–colourability game

whenever his bias q is at most cn/(r log r). However, their result regarding Avoider’s win

was improved by Clemens et. al. [31] when they showed that Avoider has a winning

strategy, for every r > 3, whenever q > 200n log n.

Jointly with Dan Hefetz and Michael Krivelevich, we show that the threshold bias

for both the Waiter–Client and Client–Waiter versions of the non–r–colourability game

(E(Kn),NC(2)
r ) has the same order as that of the aforementioned Maker–Breaker version.

Note that these two results refer to games played on graphs.

Theorem 1.5.5 ([67]) Let r, q and n be positive integers, with n sufficiently large and

r > 2 fixed, and consider the (1 : q) Waiter–Client non–r–colourability game

(E(Kn),NC(2)
r ). There exists a function α = α(r) = or(1) > 0 such that whenever

q > (8e + α)n/(r log r), Client can keep his graph r–colourable throughout the game and

whenever q 6 (log 2/4−α)n/(r log r), Waiter can force Client to build a non–r–colourable

graph.

Theorem 1.5.6 ([67]) Let r, q and n be positive integers, with n sufficiently large and

r > 2 fixed, and consider the (1 : q) Client–Waiter non–r–colourability game

(E(Kn),NC(2)
r ). There exists a function α = α(r) = or(1) > 0 such that whenever

q > (4 + α)n/(r log r), Waiter can keep Client’s graph r–colourable throughout the game

and whenever q 6 (log 2/2 − α)n/(r log r), Client can build a non–r–colourable graph.

The chromatic number of the random graph G(n, p) has been studied by many (see

e.g. [43, 56, 26, 83, 28, 90, 7, 5, 34]). Currently, we know that the probability threshold

for χ(G(n, p)) 6 r lies in the interval [((2r − 1) log r − 2 log 2 + or(1))/n, ((2r − 1) log r −

1 + or(1))/n], with the lower bound due to Coja–Oghlan and Vilenchik [35] and the

upper bound due to Coja–Oghlan [32]. Thus, the probabilistic intuition predicts that
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the threshold bias for the non–r–colourability game, when r is large, should be around

n/(2r log r). This is true, up to a multiplicative constant, for the Maker–Breaker, Waiter–

Client and Client–Waiter versions. Hence, all three games exhibit at least intermediate

probabilistic intuition.

Generalising to the Hypergraph Setting

By generalising our techniques used to prove Theorems 1.5.5 and 1.5.6, we obtain bounds

on the threshold bias for the Waiter–Client and Client–Waiter non–r–colourability games

(E(K
(k)
n ),NC(k)

r ), for any k > 2. More precisely, we prove that the threshold bias for the

Waiter–Client and Client–Waiter versions is 1
n

(

n
k

)

rOk(k) and 1
n

(

n
k

)

r−k(1+ok(1)) respectively.

Theorem 1.5.7 ([87]) Let k, q, r and n be positive integers, with n sufficiently large

and k, r > 2 fixed, and consider the (1 : q) Waiter–Client non–r–colourability game

(E(K
(k)
n ),NC(k)

r ). If q 6
(dn/re

k

)

log 2
2((1+log r)n+log 2)

, then Waiter can force Client to build

a non–r–colourable hypergraph. Also, if q > 2k/rek/r+1k
(

n
k

)

/n, then Client can keep his

hypergraph r–colourable throughout the game.

Theorem 1.5.8 ([87]) Let k, q, r and n be positive integers, with n sufficiently large

and k, r > 2 fixed, and consider the (1 : q) Client–Waiter non–r–colourability game

(E(K
(k)
n ),NC(k)

r ). If q 6
(dn/re

k

)

log 2
(1+log r)n

, then Client can build a non–r–colourable

hypergraph. However, when q > k3r−k+5
(

n
k

)

/n, Waiter can ensure that Client has an

r–colourable hypergraph at the end of the game.

Thus, for the Waiter–Client and Client–Waiter versions, we have a multiplicative gap

of (1+o(1))(1+log r)·2k/r+1ek/r+1rkk/ log 2 and (1+o(1))(1+log r)r5k3/ log 2 respectively

between the upper and lower bounds of q.

For brevity, let us denote by cr,k a threshold (although only conjectured to exist)

for c for which a random n–vertex k–uniform hypergraph with m = cn edges is r–

colourable. Many results bounding cr,k appear in the literature, particularly for the case

21



r = 2. This began with the bounds c̃ · 2k/k2 < c2,k < 2k−1 log 2 − log 2/2, for some

small constant c̃ > 0, of Alon and Spencer [8]. Together with subsequent improvements

(see [1, 3, 36]), this gives an edge threshold of c2,kn = 2k(1+ok(1))n. Consequently, the

probabilistic intuition predicts that the threshold bias for the (1 : q) non–2–colourability

game (E(K
(k)
n ),NC(k)

2 ) is 1
n

(

n
k

)

2−k(1+ok(1)) which matches the threshold bias (up to the error

term in the exponent) given by Theorems 1.5.7 and 1.5.8 when r = 2. Research pursuing

cr,k for general r > 2 also exists. By generalising a result of Achlioptas and Naor [5] on r–

colouring a random graph (2–uniform hypergraph), Dyer, Frieze and Greenhill [41] proved

that (r−1)k−1 log(r−1) 6 cr,k 6 (rk−1−1/2) log r. The lower bound was subsequently im-

proved by Ayre, Coja–Oghlan and Greenhill [10] to (rk−1−1/2) log r− log 2−1.01 log r/r

for sufficiently large r. Thus, for such r, the edge threshold for the r–colourability

of a random n–vertex k–uniform hypergraph is cr,kn = rk(1+ok(1))n. Therefore, the

probabilistic intuition predicts that the threshold bias for the (1 : q) non–r–colourability

game (E(K
(k)
n ),NC(k)

r ) is 1
n

(

n
k

)

r−k(1+ok(1)) when r is large, which again matches the thresh-

old biases in Theorems 1.5.7 and 1.5.8 (up to the error term in the exponent). Thus, the

Waiter–Client and Client–Waiter non–r–colourability games on a k–uniform hypergraph

exhibit at least intermediate probabilistic intuition.

1.5.4 k–SAT Games

Given some boolean formula φ, the boolean satisfiability problem (SAT) asks whether

there exists an assignment of the values 0 or 1 to the boolean variables involved such

that φ evaluates to 1. If such an assignment exists, φ is said to be satisfiable. If φ is the

conjunction of k–clauses, where a k–clause is the disjunction of exactly k literals taken

from some set of fixed boolean variables, it is said to be in k conjunctive normal form

(k–CNF) and the problem is known as k–SAT. In 1971, Cook proved that SAT is NP–

complete [37]. Therefore, not only does SAT lie within the complexity class NP; the class
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of all problems solvable by a non–deterministic Turing machine in polynomial time, but

additionally every problem in NP can be reduced to an instance of SAT in polynomial

time. Hence, proving that SAT lies in the complexity class P; the class of all problems

solvable by a deterministic Turing machine in polynomial time, is equivalent to resolving

the famous P versus NP problem first introduced by Cook in [37].

By viewing literals as vertices, k–clauses as edges of a k–uniform hypergraph, and

a satisfying {0, 1}–assignment to the boolean variables as a special 2–colouring of the

vertices, it is natural to consider the Waiter–Client and Client–Waiter k–SAT games

(C(k)
n ,FSAT ) after dealing with non–r–colourability games on k–uniform hypergraphs. The

k–SAT game is played on the set C(k)
n of all

(

2n
k

)

possible k–clauses, where each k–clause

contains literals taken from n fixed boolean variables x1, . . . , xn. By literal, we mean a

boolean variable xi or its negation ¬xi. The set FSAT of winning sets is defined to be

FSAT = {S ⊆ C(k)
n :

∧

S is not satisfiable},

where
∧S denotes the conjunction of all k–clauses in S. To our knowledge, no other

research of the k–SAT game appears in the literature. However, the Achlioptas process

for k–SAT has been studied (see e.g. [84, 81, 39]).

By applying the techniques used to prove Theorems 1.5.5 and 1.5.6 in the case r = 2,

we show that the threshold bias for the (1 : q) Waiter–Client and Client–Waiter versions

of (C(k)
n ,FSAT ) is 1

n

(

n
k

)

up to a factor that is exponential and polynomial in k respectively.

Theorem 1.5.9 ([87]) Let k, q and n be positive integers, with n sufficiently large

and k > 2 fixed, and consider the (1 : q) Waiter–Client game (C(k)
n ,FSAT ). When

q 6
(

n
k

)

/(2(n + 1)), Waiter can ensure that the conjunction of all k–clauses claimed

by Client by the end of the game is not satisfiable. However, when q > 23k/2ek/2+1k
(

n
k

)

/n,

Client can ensure that the conjunction of all k–clauses he claims remains satisfiable
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throughout the game.

Theorem 1.5.10 ([87]) Let k, q and n be positive integers, with n sufficiently large and

k > 2 fixed, and consider the (1 : q) Client–Waiter game (C(k)
n ,FSAT ). When q <

(

n
k

)

/n,

Client can ensure that the conjunction of all k–clauses he claims by the end of the game

is not satisfiable. However, when q > 29k3
(

n
k

)

/n, Waiter can ensure that the conjunction

of all k–clauses claimed by Client is satisfiable throughout the game.

Thus, for the Waiter–Client and Client–Waiter versions, we have a multiplicative gap

of (1 + o(1))23k/2+1ek/2+1k and 29k3 respectively between the upper and lower bounds of

q.

These games also exhibit at least intermediate probabilistic intuition. Indeed, Coja–

Oghlan and Panagiotou [33] found that the threshold for the satisfiability of the conjunc-

tion of random k–clauses in C(k)
n is (2k log 2− (1 + log 2)/2 +ok(1))n (see [49, 30, 53, 2, 52,

4, 6] for earlier work). Hence, the probabilistic intuition predicts that the threshold bias

for the (1 : q) k–SAT game (C(k)
n ,FSAT ) is 1

n

(

n
k

)

(log 2 − ok(1))−1. This is matched, up to

a constant factor, by the lower bounds for the threshold bias given in Theorem 1.5.9 and

1.5.10 respectively. Since the gap between the upper and lower bounds depends only on k

(exponentially in the Waiter–Client game and polynomially in the Client–Waiter game),

the threshold bias for both versions of the k–SAT game has the same order of magnitude

as that predicted by the probabilistic intuition.

1.5.5 Hamiltonicity Games on the Random Graph

Finally, we consider the Hamiltonicity game (E(G(n, p)),HAM) played on the binomial

random graph G(n, p), where

HAM = {E(G) : G ⊆ Kn is Hamiltonian}.
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As discussed in Section 1.3.2, for this game we are interested in finding probability thresh-

olds for graph properties Wq
HAM and Cq

HAM, for every positive integer q, where

Wq
HAM = {G ⊆ Kn : Waiter wins the (1 : q) Waiter–Client game (E(G),HAM)},

Cq
HAM = {G ⊆ Kn : Client wins the (1 : q) Client–Waiter game (E(G),HAM)}.

The (1 : 1) Maker–Breaker version was first considered by Stojaković and Szabó [86]

when they proved that a.a.s. Maker can build a Hamilton cycle in G(n, p) whenever

p > 32 log n/
√
n. Later, Stojaković improved this lower bound to 5.4 log n/n in [85]

before a further improvement was subsequently made by Hefetz, Krivelevich, Stojaković

and Szabó in [62] to (log n + (log log n)`)/n, for some constant ` > 0. This is close to

best possible since G(n, p) a.a.s. has at least three vertices of degree at most 3 when

p = (log n + 3 log log n − ω(1))/n, where ω(1) is any function tending to infinity with n

arbitrarily slowly (see e.g. [25, 69]). Because of this, Breaker is able to ensure that Maker

has a vertex of degree at most one at the end of the game, thereby preventing Maker

from building a Hamilton cycle. A more recent result of Ben–Shimon, Ferber, Hefetz

and Krivelevich [21] improved this further still by showing that a.a.s. Maker can build a

Hamilton cycle in G(n, p) for every p > (log n+ 3 log log n+ω(1))/n. In fact, they proved

a stronger result; that a graph on which Maker can build a Hamilton cycle in the (1 : 1)

Maker–Breaker game appears a.a.s. at the same time as a vertex of degree at least 4

appears when the edges of Kn are added to the empty graph, one by one, in a uniformly

random order. Results regarding the more general (1 : q) game are not as accurate. It

was conjectured in [86] that, for every 1 6 q 6 (1 − o(1))n/ log n, the smallest edge

probability p for which a.a.s. Maker has a winning strategy in the (1 : q) Maker–Breaker

Hamiltonicity game is Θ(q log n/n). This was proved by Ferber, Glebov, Krivelevich and

Naor in [45], where an analogous statement for Avoider–Enforcer games was proved as
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well. An even stronger result was proved in [45] under the additional assumption that

q = ω(1). In this case, the graph property of being a board on which Maker wins the

(1 : q) Maker–Breaker Hamiltonicity game has a sharp threshold at q log n/n.

Jointly with Dan Hefetz and Michael Krivelvich, we show that the (1 : q) Waiter–Client

and Client–Waiter versions have sharp probability thresholds for every fixed positive

integer q.

Theorem 1.5.11 ([68]) Let q be a positive integer. Then log n/n is a sharp threshold

for the property Wq
HAM.

This threshold for property Wq
HAM coincides with the sharp threshold for the appear-

ance of a Hamilton cycle in G(n, p), found by Komlós and Szemerédi [73] and indepen-

dently Bollobás [24].

In contrast to the Waiter–Client game, we find a sharp threshold for the property

Cq
HAM that grows with q, and even for q = 1, is already larger than the threshold for the

Hamiltonicity of G(n, p).

Theorem 1.5.12 ([68]) Let q be a positive integer. Then (q + 1) log n/n is a sharp

threshold for the property Cq
HAM.

The aforementioned sharp threshold of log n/n for the appearance of a Hamilton cycle

in G(n, p) leads the probabilistic intuition to predict that, for every integer q ∈ [1,
(

n
2

)

−1],

(q + 1) log n/n should be a sharp threshold for the properties Wq
HAM and Cq

HAM. Since

Theorems 1.5.11 and 1.5.12 refer only to fixed values of q, we are in no position to confirm

the accuracy of this prediction in full yet, despite the fact that our thresholds are of

the predicted order. We will discuss possible thresholds in the case where q = ω(1) in

Chapter 6.
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1.6 Summary

In summary, we have introduced the notion of a positional game and looked at a variety

of game types within this class; strong, Maker–Breaker, Avoider–Enforcer, Waiter–Client

and Client–Waiter. We saw the importance of bias monotonicity in the games we study

to enable full characterisation of which player has a winning strategy when we vary one

player’s bias and fix the other. This led to defining the threshold bias of a game and

motivated the need to relax the rules in Client–Waiter games. We also saw how one may

choose to fix both player’s biases and vary the board they play on instead, by randomly

removing elements before play begins and looking for a probability threshold at which the

winner of the game played on the full board no longer prevails. The probabilistic intuition

was then discussed, with its potential to predict the outcome of a game between optimal

players motivating a desire to find a characterisation of games that exhibit it. In the hope

of aiding this pursuit, our thesis adds the Waiter–Client and Client–Waiter versions of

the Kt–minor, non–planarity, non–r–colourability and k–SAT games to the set of games

that exhibit this phenomenon. The sharp probability thresholds we find for both versions

of the Hamiltonicity game on the random graph when Waiter’s bias is fixed also point to

the possibility that this game exhibits the probabilistic intuition. However, there is room

for improvement in all of the results we present here. Hence, in Chapter 6, we discuss

related open problems that the interested reader may wish to explore.
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Chapter 2

Preliminaries

In this chapter, we present notation and basic definitions required to understand the con-

tent of the following chapters. We also present and discuss game–theoretic tools/winning

criteria that we will use to develop winning strategies for Waiter and Client.

2.1 Notation and Terminology

Most of our results are asymptotic in nature and, whenever necessary, we assume that

the number of vertices/boolean variables n is sufficiently large. Throughout this thesis,

log stands for the natural logarithm, unless explicitly stated otherwise.

2.1.1 Graphs

Our graph–theoretic notation is standard and follows that of [91]. In particular, we use

the following.

A graph G consists of a pair (V (G), E(G)) of sets, where E(G) is a set of unordered

pairs {u, v} of elements u, v ∈ V (G). We call members of V (G) and E(G) vertices

and edges respectively. For any edge e = {u, v} ∈ E(G), we often refer to the vertices

u and v as endpoints of e and write e = uv for simplicity. Let v(G) = |V (G)| and

e(G) = |E(G)|. For a set A ⊆ V (G), let EG(A) denote the set of edges of G with both

endpoints in A and let eG(A) = |EG(A)|. For disjoint sets A,B ⊆ V (G), let EG(A,B)
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denote the set of edges of G with one endpoint in A and one endpoint in B, and let

eG(A,B) = |EG(A,B)|. A graph G′ with vertex set V ′ ⊆ V (G) and edge–set E ′ ⊆ EG(V ′)

is a subgraph of G and we write G′ ⊆ G to denote this. For a set A ⊆ V (G), let G[A]

denote the subgraph of G which is induced on the set A, i.e. with vertex set A and edge–

set {e ∈ E(G) : e ⊆ A}. Also, let NG(A) = {v ∈ V (G)\A : ∃u ∈ A such that uv ∈ E(G)}

denote the outer neighbourhood of A in G. For a vertex u ∈ V (G) we abbreviate NG({u})

under NG(u) and let dG(u) = |NG(u)| denote the degree of u in G. The maximum degree

of a graph G is ∆(G) = max{dG(u) : u ∈ V (G)} and the minimum degree of a graph G

is δ(G) = min{dG(u) : u ∈ V (G)}. Often, when there is no risk of confusion, we omit the

subscript G from the notation above. Given a pair of subgraphs G1 and G2 of a graph

G, we write G1 ∪ G2 to denote the subgraph of G with vertex set V (G1) ∪ V (G2) and

edge–set E(G1) ∪ E(G2).

A path is a graph P = (V,E), with |V | > 1, such that there exists an ordering

v1, v2, . . . , v|V | of the vertices in V where E = {vivi+1 : i ∈ [|V | − 1]} if |V | > 1 and

E = ∅ if |V | = 1. If |V | > 3 and v1v|V | is also an edge in E then P is a cycle. A cycle

that visits every vertex of a graph exactly once is a Hamilton cycle. If a graph contains a

Hamilton cycle, it is said to be Hamiltonian. A path that visits every vertex of a graph

exactly once is a Hamiltonian path. A graph G is connected if every pair of its vertices

is contained in some path of G. A maximal connected subgraph of a graph G is called

a connected component. If each connected component of a graph G contains no cycle, G

is called a forest. A star is a connected graph S = (V,E) with some vertex v ∈ V such

that v ∈ ⋂E. A graph is called a linear forest if each of its connected components is

a path. The girth of a graph G is the number of edges in a shortest cycle of G (if G is

a forest, then its girth is infinity). A set A ⊆ V (G) is said to be independent in G if

EG(A) = ∅. The independence number of a graph G, denoted by α(G), is the maximum

size of an independent set in G. A graph G = (V,E) is a clique or complete graph if every
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pair of vertices in V is an edge in E. A clique with t vertices may be referred to as a

t–clique. We denote the complete n–vertex graph (i.e. the n–clique) by Kn. The clique

number of a graph G, denoted by ω(G), is the largest t such that G contains a t–clique.

The chromatic number of a graph G, denoted by χ(G), is the smallest integer k for which

V (G) can be partitioned into k independent sets. For a positive integer t and a graph G,

we say that G admits a Kt–minor if, for every 1 6 i 6 t, there exists a set Bi ⊆ V (G)

such that the following three properties hold:

(i) G[Bi] is connected for every 1 6 i 6 t.

(ii) Bi ∩ Bj = ∅ for every 1 6 i < j 6 t.

(iii) EG(Bi, Bj) 6= ∅ for every 1 6 i < j 6 t.

A graph G is planar if it can be drawn in the plane such that every edge uv ∈ E(G) only

intersects other edges of G at its endpoints u or v.

Assume that some Waiter–Client or Client–Waiter game, played on the edge–set of

some graph H = (V,E), is in progress. At any given moment during this game, let EW

denote the set of all edges that were claimed by Waiter up to that moment, let EC denote

the set of all edges that were claimed by Client up to that moment, let GW = (V,EW )

and let GC = (V,EC). Moreover, let GF = (V,EF ), where EF = E \ (EW ∪EC); the edges

of EF are called free.

2.1.2 Hypergraphs

For a positive integer k, a k–uniform hypergraph H consists of a pair (V (H), E(H)) of

sets: vertex set V (H) and edge–set E(H) ⊆ 2V (H), where each edge e ∈ E(H) consists of

exactly k vertices. For a subset A ⊆ V (H), let EH(A) denote the set of edges e ∈ E(H)

with e ⊆ A. For such A, let dH(A) denote the number of edges in H that contain at least

one vertex of A but are not contained entirely in A. When A = {v} for some v ∈ V (H),
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we abuse notation slightly and write dH(v) instead of dH({v}). Often, when there is no

risk of confusion, we omit the subscript H from the notation above.

Let H[A] denote the hypergraph with vertex set A and edge–set EH(A). The maximum

degree of H is defined by ∆(H) = max{dH(v) : v ∈ V (H)} and the minimum degree of H

is δ(H) = min{dH(v) : v ∈ V (H)}. We say that A is independent in H if EH(A) = ∅. The

independence number of H, denoted by α(H), is the maximum size of an independent set

of vertices in H. A subhypergraph H′ ⊆ H (i.e. a hypergraph H′ with V (H′) ⊆ V (H)

and E(H′) ⊆ E(H)) is a clique in H if every set of k vertices in V (H′) is an edge of H′.

We sometimes refer to a clique with t vertices as a t–clique. The clique number of H,

denoted by ω(H), is the largest t such that H contains a t–clique. The weak chromatic

number of H, denoted by χ(H), is the smallest integer r for which V (H) can be partitioned

into r independent sets. For a set F ⊆ E(H), we abuse notation slightly by using χ(F )

to denote the chromatic number of the hypergraph with vertex set V (H) and edge–set

F . Given some partition P = {V1, . . . , V|P|} of V (H) and an edge e ∈ E(H), we define

P(e) = {Vi ∈ P : e∩Vi 6= ∅}. We define a linear forest in H with respect to the partition

P to be a sequence (e1, . . . , em) of edges in E(H) such that P(ei) ∩ P(ej) 6= ∅ only if

j ∈ {i− 1, i, i + 1}. Note that our use of linear here does not refer to the definition of a

linear hypergraph where every pair of edges must intersect in at most one vertex. Two

distinct edges e, e′ ∈ E(H) with vertices in parts Vi1 , . . . , Vik of P are complementary if

e ∩ e′ = ∅. We also define ∆P(H) = max{dH(Vi) : i ∈ [|P|]}.

Let us denote the complete n–vertex k–uniform hypergraph by K
(k)
n (i.e. K

(k)
n is

an n–clique). At any given moment in a Waiter–Client or Client–Waiter game, played

on E(K
(k)
n ), let EC denote the set of edges currently owned by Client. We denote the

hypergraph with vertex set V (K
(k)
n ) and edge–set EC by HC . Moreover, let HF be the

hypergraph consisting of all edges of K
(k)
n that are free at a given moment.
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2.2 Tools for Finding a Winning Strategy

2.2.1 A Potential–Type Method

In 1973, Erdős and Selfridge [44] proved a very useful sufficient condition for Breaker to

win the (1 : 1) Maker–Breaker game (X,F).

Theorem 2.2.1 ([44]) Let X be a set and F ⊆ 2X . If

∑

A∈F
2−|A| < 1/2,

then Breaker, as the second player, has a winning strategy for the (1 : 1) weak game

(X,F). If Breaker is the first player, the condition can be relaxed to
∑

A∈F 2−|A| < 1.

Theorem 2.2.1 is commonly known as the Erdős–Selfridge Theorem and its condition is

tight. Indeed, Erdős and Selfridge showed in [44] that, for every integer n > 2, there is

an n–uniform hypergraph F satisfying
∑

A∈F 2−|A| = 1/2 such that Maker has a winning

strategy for (X,F).

If both players play randomly, the probability that Maker owns a winning set at

the end of the game is at most
∑

A∈F 2−|A|, which is less than 1 by the hypothesis of

Theorem 2.2.1. This tells us that there exists a way for Maker and Breaker to play such

that Breaker wins the game. The proof of Theorem 2.2.1 is a de–randomisation that

converts this existence into a deterministic winning strategy that Breaker can follow. It

employs what is known as a potential–type or quasiprobabilistic method and is, in fact, an

instance of the method of conditional probabilities (see [9]). At the end of each player’s

turn in the (1 : 1) Maker–Breaker game, each winning set A ∈ F is given a potential

pA whose value is the probability that every element of A belongs to Maker, given that

all remaining free elements of the board X are assigned to Maker or Breaker uniformly

at random. The game potential at the end of each turn is the sum of potentials pA
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over all A ∈ F . Note that this is equal to the expected number of winning sets owned

by Maker after the described random assignment of remaining free board elements. By

always claiming a free element whose occupation minimises the resulting game potential,

Breaker ensures that the decrease in game potential caused by his turn outweighs the

increase caused by Maker’s claim immediately after his. Thus, the game potential at

the end of Maker’s turn is never greater than its value at the end of Maker’s previous

turn. Since a winning set A ∈ F fully claimed by Maker produces potential piA = 1, this

strategy is sufficient for Breaker to win the game, provided the game potential just before

Breaker’s first move is less than 1. This explains the sufficient condition for Breaker’s win

given in Theorem 2.2.1.

In [13], Beck generalised this argument to create a sufficient condition for Breaker

to win the biased (p : q) Maker–Breaker game. Thanks to the similarity between the

roles of Maker and Breaker and the roles of Waiter and Client, an analogous result for

Waiter–Client and Client–Waiter games is implicit in Beck’s proof. We explicitly prove

this here.

Theorem 2.2.2 (implicit in [13]) Let X be a set, let F ⊆ 2X , and let p and q be

positive integers. Suppose Waiter and Client play a (p : q) game (X,F) where Waiter

offers r elements per round in the range q 6 r 6 p + q, except for possibly in the last

round. Also, in each round suppose that Client rejects min{r, q} elements offered to him

before he claims any for himself. Then Client has a strategy to avoid fully claiming more

than
∑

A∈F(q + 1)−|A|/p members of F for the duration of the game. In particular, if

∑

A∈F
(q + 1)−|A|/p < 1,

then Client has a strategy to ensure that he does not fully claim any A ∈ F by the end of

the game.
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Proof. We must first introduce some notation. Let M denote the number of rounds for

which this game lasts. In the ith round of the game, where 1 6 i 6 M , let Zi = {zi1, ..., zir}

be the set of free elements of X that Waiter offers Client, let Xi = {xi
1, ..., x

i
min{r,q}} be

the set of elements in Zi that Client rejects, and let Yi = {yi1, ..., yir−q} = Zi \Xi be the

set of elements in Zi that Client claims. Note that, by hypothesis, q 6 r 6 p + q, except

possibly in the final round when r may be less than q. Set W0 = ∅ and C0 = ∅. For every

integer i, where 0 6 i 6 M , let Wi =
⋃i

j=1 Xj and let Ci =
⋃i

j=1 Yj. Let F0 = F and,

for every integer i, where 1 6 i 6 M , define Fi = {A \ Ci : A ∈ F and A ∩ Wi = ∅}

as Client’s focus at the end of round i. Note that Fi is a multi–family in the sense that

it may contain more than one copy of the same set. Let F (0,0)
i = Fi for every integer

i, where 0 6 i 6 M − 1. For every 1 6 w 6 min{r, q} and every 0 6 i 6 M , let

F (w,0)
i = {A ∈ Fi : A ∩ {xi+1

1 , ..., xi+1
w } = ∅} be Client’s focus immediately after he

has rejected w elements in round i + 1. For every 0 6 i 6 M − 1, if r > q then let

F (q,c)
i = {A \ {yi+1

1 , ..., yi+1
c } : A ∈ F (q,0)

i } be Client’s focus immediately after he claims

c elements in round i + 1, for every 1 6 c 6 r − q. For any family H ⊆ 2X of sets and

any element v ∈ X, let H(v) = {A ∈ H : v ∈ A}. Finally, let Φ(H) =
∑

A∈H(q + 1)−|A|/p

denote the potential of a family of sets H and set λ = (q + 1)1/p.

If Waiter succeeds in forcing Client to fully claim t > Φ(F) members of F by the end

of the game, then there exists an integer 1 6 i 6 M such that t copies of ∅ lie in Fi. In

particular, this means that

Φ(Fi) =
∑

A∈Fi

λ−|A|
> tλ0 = t > Φ(F).

Therefore, if Client wishes to avoid fully claiming more than Φ(F) members of F for the

duration of the game, it is enough for him to implement a strategy that ensures that

Φ(Fi) 6 Φ(F) for every 1 6 i 6 M . Since F′ = F , it therefore suffices to show that
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Client has a strategy to ensure that Φ(Fi+1) 6 Φ(Fi) for every integer 0 6 i 6 M − 1.

We claim that this occurs when Client implements the following strategy.

Client’s Strategy: For every integer 1 6 i 6 M , after Waiter offers r elements in the ith

round, Client first identifies an element xi
1 ∈ Zi such that Φ(Fi−1(x

i
1)) > Φ(Fi−1(z)) for

all z ∈ Zi. He then rejects xi
1. Let 1 6 j 6 min{r, q} and suppose that Client has rejected

j elements xi
1, ..., x

i
j ∈ Zi so far. Client then identifies an element xi

j+1 ∈ Zi \ {xi
1, ..., x

i
j}

such that Φ(Fi−1(x
i
j+1)) > Φ(Fi−1(z)) for all z ∈ Zi \ {xi

1, ..., x
i
j}. Once Client has

rejected min{r, q} elements xi
1, ..., x

i
min{r,q}, he claims the remaining elements, if any,

yi1, ..., y
i
r−q ∈ Zi \ {xi

1, ..., x
i
min{r,q}}.

To show that the above strategy ensures that Φ(Fi+1) 6 Φ(Fi) for every integer

0 6 i 6 M − 1, we fix an arbitrary i in this range and consider when Waiter offers r free

elements to Client at the beginning of round i + 1 via the following cases.

Case 1: q < r 6 p + q. We first show that

Φ(Fi+1) = Φ(Fi) −
q
∑

k=1

Φ(F (k−1,0)
i (xi+1

k )) +

r−q
∑

j=1

(λ− 1)Φ(F (q,j−1)
i (yi+1

j )). (2.2.1)

Indeed, suppose the (i+ 1)st round of the game is about to begin. At this point, Client’s

focus is Fi. After Waiter has offered r > q free elements at the beginning of the (i + 1)st

round, Client first rejects element xi+1
1 ∈ Zi+1. Then, every A ∈ Fi containing xi+1

1 is

removed from Client’s current focus. So Client’s rejection of xi+1
1 removes Φ(Fi(x

i+1
1 ))

from the current potential Φ(Fi) and Client’s focus is updated to F (1,0)
i . Client then

rejects element xi+1
2 ∈ Zi+1\{xi+1

1 }, thereby removing every set A ∈ F (1,0)
i containing xi+1

2

from Client’s current focus. This then removes Φ(F (1,0)
i (xi+1

2 )) from the current potential

Φ(F (1,0)
i ). Continuing in this way, once Client has rejected q elements xi+1

1 , ..., xi+1
q ∈ Zi+1,

the potential of the game has decreased by
∑q

k=1 Φ(F (k−1,0)
i (xi+1

k )) since the beginning
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of the (i + 1)st round. At this point, Client’s focus is F (q,0)
i . Client then claims his first

element yi+1
1 ∈ Zi+1 of the round. In doing so, Client’s focus becomes F (q,1)

i , thereby

removing yi+1
1 from every set A ∈ F (q,0)

i (yi+1
1 ). This increases the current potential by

(λ − 1)Φ(F (q,0)
i (yi+1

1 )). Continuing in this way, once Client has claimed all r − q of his

elements for this round, the potential has increased by
∑r−q

j=1(λ−1)Φ(F (q,j−1)
i (yi+1

j )) since

Client began to claim elements in the (i + 1)st round. Therefore, we obtain (2.2.1) as

claimed.

Let m ∈ Zi+1 \ {xi+1
1 , ..., xi+1

q } be such that Φ(F (q,0)
i (m)) > Φ(F (q,0)

i (z)) for every

z ∈ Zi+1 \ {xi+1
1 , ..., xi+1

q }. By definition, for every 1 6 k 6 q we have F (q,0)
i ⊆ F (k−1,0)

i .

In particular, F (q,0)
i (m) ⊆ F (k−1,0)

i (m) and therefore Φ(F (q,0)
i (m)) 6 Φ(F (k−1,0)

i (m)). So

by Client’s choice of xi+1
k , we obtain

Φ(F (k−1,0)
i (xi+1

k )) > Φ(F (k−1,0)
i (m)) > Φ(F (q,0)

i (m)). (2.2.2)

Observe that, for every 1 6 j 6 r − q 6 p, we have

Φ(F (q,j−1)
i (yi+1

j )) =
∑

A∈F(q,j−1)
i (yi+1

j )

λ−|A| =
∑

A∈F(q,0)
i (yi+1

j )

λ−|A\{yi+1
1 ,...,yi+1

j−1}|

6
∑

A∈F(q,0)
i (yi+1

j )

λ−|A|+j−1 = λj−1Φ(F (q,0)
i (yi+1

j ))

6 λj−1Φ(F (q,0)
i (m)). (2.2.3)

36



Therefore, via (2.2.1), (2.2.2) and (2.2.3), we obtain

Φ(Fi+1) = Φ(Fi) −
q
∑

k=1

Φ(F (k−1,0)
i (xi+1

k )) +

r−q
∑

j=1

(λ− 1)Φ(F (q,j−1)
i (yi+1

j ))

6 Φ(Fi) − qΦ(F (q,0)
i (m)) + (λ− 1)Φ(F (q,0)

i (m))

p
∑

j=1

λj−1

= Φ(Fi) + Φ(F (q,0)
i (m))

(

(λ− 1)
λp − 1

λ− 1
− q

)

= Φ(Fi),

where the penultimate equality follows from the evaluation of the geometric series

N
∑

r=0

xr =
xN+1 − 1

x− 1
,

and the last equality follows from the definition of λ.

Case 2: r 6 q. Then Client rejects all r elements in Zi+1. Thus, Client’s focus is

updated to F (r,0)
i = Fi+1. Hence, the potential at the end of the round is

Φ(Fi+1) = Φ(F (r,0)
i ) = Φ(Fi) −

r
∑

k=1

Φ(F (k−1,0)
i (xi+1

k )) 6 Φ(Fi).

Hence, Φ(Fi+1) 6 Φ(Fi) for every 0 6 i 6 M − 1. �

By the definition of a Waiter–Client game, the following result follows immediately

from Theorem 2.2.2.

Theorem 2.2.3 (implicit in [13]) Let q be a positive integer, let X be a finite set and

let F be a family of (not necessarily distinct) subsets of X. Then, when playing the

(p : q) Waiter–Client game (X,F), Client has a strategy to avoid fully claiming more

than
∑

A∈F(q + 1)−|A|/p sets in F . In particular, if

∑

A∈F
(q + 1)−|A|/p < 1,
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then Client has a strategy to avoid fully claiming any A ∈ F .

Sometimes it may benefit Client in a Client–Waiter game to avoid members of some

family F of subsets of the board; for example in the proof of Theorem 1.5.2. Yet, since the

way we define Client–Waiter games allows Waiter to offer fewer board elements per round

than his bias specifies (see Section 1.3.1 in Chapter 1), Client cannot have a strategy that

guarantees the avoidance of every A ∈ F . However, the following result of Dean and

Krivelevich [40] shows that Client can ensure that he does not claim too many forbidden

sets of F .

Theorem 2.2.4 ([40]) Let q be a positive integer, let X be a finite set, let F be a family

of (not necessarily distinct) subsets of X and let Φ(F) =
∑

A∈F(q + 1)−|A|. Then, when

playing the (1 : q) Client–Waiter game (X,F), Client has a strategy to claim the elements

of a set XC ⊆ X of size |XC | > b|X|/(q + 1)c which fully contains at most 2Φ(F) sets

in F .

2.2.2 Transversal Games

For a finite set X and a family F of subsets of X, the transversal family of F is defined to

be F∗ := {A ⊆ X : A∩B 6= ∅ for every B ∈ F}. We refer to the positional game (X,F∗)

as a transversal game. It can be beneficial for Waiter or Client to focus on winning some

transversal game to aid them in winning the game at hand. For example, if having large

minimum degree helps Client win a game played on E(Kn), he can focus on claiming

an edge in every large star of Kn to achieve this. By using an alternative perspective of

Client’s role in a Waiter–Client or Client–Waiter game, we can obtain a winning criteria

for Client in a Client–Waiter transversal game directly from Theorem 2.2.2.

A Different Perspective

In reality, each (p : q) positional game (X,F) begins with two empty bins B1(p) and

B2(q), with B1(p) and B2(q) only able to accept at most p and q elements of X per round
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respectively. The interaction of the players with the elements of X partitions X between

the bins and each player has a different aim in mind regarding what these bins should

contain at the end of the game. When Waiter and Client play, Client’s job is to decide

how the elements Waiter gives him in a round should be split amongst B1(p) and B2(q).

With this perspective of the game, Theorem 2.2.2 says that, if
∑

A∈F(q+ 1)−|A|/p < 1 and

Waiter offers r elements in each round for some r in the range q 6 r 6 p + q (except for

possibly the final round), then Client has a strategy S to sort the elements of X, round

by round, such that B1(p) contains no A ∈ F at the end of the game. Additionally,

S ensures he places exactly q elements per round in B2(q), except possibly in the final

round. Since each member of X must be in one of the two bins at this point, B2(q) must

contain at least one member of each A ∈ F . In other words, B2(q) must be a member of

the transversal family F∗.

Suppose we swap variables p and q in the discussion above and set p = 1. Then

Theorem 2.2.2 says that, if
∑

A∈F 2−|A|/q < 1, then S sorts the elements of X, round by

round, so that B2(1) contains a member of F∗ at the end of the game. Since S achieves

this whilst allowing Waiter to offer less than q + 1 elements per round (but at least one)

if he wishes and instructing Client to place an element in B2(1) before he places any in

B1(q), we may view this game as a (1 : q) Client–Waiter game (X,F∗). In particular, we

have the following result.

Theorem 2.2.5 (implicit in [13]) Let X be a set, let F ⊆ 2X , and let q be a positive

integer. If
∑

A∈F
2−|A|/q < 1,

then Client has a winning strategy for the (1 : q) Client–Waiter game (X,F∗).

In fact, the sufficient condition in Theorem 2.2.5 can be improved as the following theorem

demonstrates.
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Theorem 2.2.6 ([68]) Let q be a positive integer, let X be a finite set and let F be a

family of subsets of X. If
∑

A∈F

(

q

q + 1

)|A|
< 1,

then Client has a winning strategy for the (1 : q) Client–Waiter game (X,F∗).

Proof. Client will play randomly, that is, in each round he will choose one of the elements

Waiter offers him uniformly at random, independently of all previous choices. Since

Client–Waiter games are finite, perfect information games with no chance moves and no

draws, in order to prove that Client has a winning strategy, it suffices to show that, given

any fixed strategy SW of Waiter,

P[Client loses (X,F∗) | Waiter follows SW ] < 1.

Fix some strategy SW of Waiter and a set A ∈ F . Given that Waiter plays according to

SW , let r denote the total number of rounds played in the game and, for every 1 6 i 6 r,

let Zi denote the set of elements Waiter offers Client in the ith round, let zi = |Zi| and

let ai = |A ∩ Zi|. Note that r, zi and ai might depend on Client’s random choices. For

every 1 6 i 6 r, given zi and ai, the probability that Client claims an element of A in

the ith round is ai/zi, independently of his previous choices. Hence, the probability that

Client does not claim any element of A throughout the game is

r
∏

i=1

(

1 − ai
zi

)

6

r
∏

i=1

(

1 − ai
q + 1

)

6

r
∏

i=1

(

1 − 1

q + 1

)ai

=

(

q

q + 1

)|A|
,

where the second inequality holds by Bernoulli’s inequality.

Taking a union bound over the elements of F , we conclude that

P[Client loses (X,F∗) | Waiter follows SW ] 6
∑

A∈F

(

q

q + 1

)|A|
< 1 ,
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as claimed. �

The following rephrasing of Corollary 1.5 in [17] also gives a sufficient condition for

Waiter to win a (1 : q) Waiter–Client transversal game.

Theorem 2.2.7 ([17]) Let q be a positive integer, let X be a finite set and let F be a

family of subsets of X. If
∑

A∈F
2−|A|/(2q−1) < 1/2 ,

then Waiter has a winning strategy for the (1 : q) Waiter–Client game (X,F∗).
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Chapter 3

Complete–Minor and Planarity

Games

3.1 Results

In this chapter, we focus on the Waiter–Client and Client–Waiter complete–minor games

played on the edge–set E(Kn) of the complete n–vertex graph Kn. We also discuss both

versions of the non–planarity game played on the same board.

3.1.1 Complete–Minor Games

For each positive integer t, the Kt–minor game (E(Kn),Mt) has its winning sets defined

by

Mt = {E(M) : M is a Kt–minor admitted by Kn}.

In Section 3.3.1 we show that the asymptotic threshold bias of the (1 : q) Waiter–Client

Kt–minor game has order (1 + o(1))n, for every t in the range 4 6 t = O(
√
n), by

presenting the proof of Theorem 1.5.1, restated here for convenience.

Theorem 1.5.1 ([67]) Let n be a sufficiently large positive integer and let

ε = ε(n) > 4n−1/4 > 0. Also let q and t be positive integers with t 6 ε2
√
n/5.
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Consider the (1 : q) Waiter–Client Kt–minor game (E(Kn),Mt). If q 6 (1 − ε)n, then

Waiter can force Client to build a graph that admits a Kt–minor. On the other hand,

if q > n + η, where η = η(n) > n2/3 log n, then Client can ensure that his graph will be

K4–minor free throughout the game.

Proof Overview.

Waiter’s Strategy: Waiter forces Client to build a Kt–minor by partitioning

V (Kn) into two sets A and B. He then performs the following three steps:

1. Only offering edges in EKn(B), Waiter forces Client to build a long

path P .

2. Offering only edges of EKn(A, V (P )), Waiter forces Client to build a

large matching M .

3. Waiter partitions P into t consecutive vertex–disjoint paths P1, . . . , Pt,

each containing many endpoints of the matching M . We use Di to

denote the set of vertices in A adjacent to some vertex in V (Pi) via

an edge of M , for each i ∈ [t]. Offering only edges of EKn(A), Waiter

then forces Client to claim an edge between each pair of sets Di and

Dj for i, j ∈ [t], i 6= j.

Once the above steps are completed, one may contract the edges of the

matching M and paths Pi to see that Client’s graph admits a Kt–minor

(see Figure 3.1).

Client’s Strategy: Client avoids building a K4–minor throughout the game

by using Theorem 2.2.3 to avoid building pairs of intersecting cycles. It is

clear that a graph with no intersecting cycles cannot contain a K4–minor.

�
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Since the threshold bias is defined to be a unique integer, Theorem 1.5.1 seems to sug-

gest that the Waiter–Client Kt–minor game has threshold bias n. However, the following

theorem demonstrates that the threshold bias drops below n when t is large.

Theorem 3.1.1 ([67]) Let n, α and t be positive integers where n is sufficiently large,

0 < α < ct log t for some sufficiently small constant c > 0, α = o(n) and t > c log logn
log log logn

for some sufficiently large constant c. Then Client can avoid building a Kt–minor when

playing the (1 : q) Waiter–Client game (E(Kn),Mt) for every q > n− α.

Proof Overview.

Client’s Strategy: Using Theorem 2.2.3, Client can ensure that he builds

fewer cycles than are required to contain a Kt–minor. �

We also prove Theorem 3.1.1 in Section 3.3.1. In Section 3.3.1, we show that the asymp-

totic threshold bias for the (1 : q) Client–Waiter Kt–minor game is (1/2 + o(1))n by

presenting the proof of Theorem 1.5.2, restated here for convenience.

Theorem 1.5.2 ([67]) Let n, t and q be positive integers with n sufficiently large and let

0 < ε = ε(n) 6 1/2. Consider the (1 : q) Client–Waiter Kt–minor game (E(Kn),Mt). If

q > dn/2e−1, then Waiter has a strategy to keep Client’s graph K3–minor free throughout

the game. On the other hand, if q 6 (1/2− ε)n, then Client can build a graph that admits

a Kt–minor for t > (εn)cε, where c > 0 is an absolute constant.

Proof Overview.

Waiter’s Strategy: Waiter forces Client to have a connected graph by the

end of the game via a result by Bednarska–Bzdȩga, Hefetz, Krivelevich

and  Luczak [18] (see Theorem 3.2.3). For large q, Client has too few edges

at the end of the game to have both a connected graph and a cycle. His

44



endgame graph is therefore a spanning tree which contains no cycle and

therefore no K3–minor.

Client’s Strategy: Using Theorem 2.2.4, Client ensures his graph contains

few short cycles. By deleting an edge from each of the short cycles present,

we obtain a graph with average degree and girth large enough to satisfy

the conditions of a result by Hefetz, Krivelevich, Stojaković and Szabó [59]

which guarantees a Kt–minor. �

3.1.2 Planarity Games

Thanks to Kuratowski’s Theorem (see, e.g. [91]), which states that a graph is planar if

and only if it does not admit a K5–minor, we obtain the asymptotic threshold bias of the

Waiter–Client and Client–Waiter non–planarity games (E(Kn),NP), where

NP = {E(H) : H ⊆ G and H is non–planar},

directly from our results for the Kt–minor game. More precisely, Corollaries 1.5.3 and

1.5.4 show that the asymptotic threshold bias of the Waiter–Client and Client–Waiter

non–planarity games is (1 + o(1))n and (1/2 + o(1))n respectively. We restate these

results here for convenience and prove them in Section 3.3.2.

Corollary 1.5.3 ([67]) Let n, q and t be positive integers where n is sufficiently large

and consider the (1 : q) Waiter–Client non–planarity game (E(Kn),NP). If q 6 (1−ε)n,

where ε = ε(n) > 5n−1/4, then Waiter can force Client to build a non–planar graph. On

the other hand, if q > n + η, where η = η(n) > n2/3 log n, then Client can keep his graph

planar throughout the game.

Corollary 1.5.4 ([67]) Let n, q and t be positive integers where n is sufficiently large and

consider the (1 : q) Client–Waiter non–planarity game (E(Kn),NP). If q > dn/2e − 1,
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then Waiter can keep Client’s graph planar throughout the game. On the other hand,

there exists a constant c > 0 such that Client can build a non–planar graph whenever

q 6 n/2 − cn/ log n.

3.2 Useful Tools

Along with winning criteria from Section 2.2 of Chapter 2, our proofs will make use of

the following results. The first will be used in our proof of Theorem 1.5.1.

Claim 3.2.1 Playing a (1 : q) Waiter–Client game on E(Km), Waiter can force Client

to build a path on at least m− q vertices.

Proof. Waiter first chooses an arbitrary vertex x1 ∈ V (Km) and sets P1 = x1. Then he

offers q + 1 edges, each with x1 as an endpoint. By claiming one of these edges, say x1x2,

Client creates a path P2 = x1x2. Waiter continues in a similar way, responding to the

creation of path Pi = x1 . . . xi in Client’s graph, for a positive integer i, by offering the

edges of {xiyj : 1 6 j 6 q+1}, where y1, . . . , yq+1 are arbitrary vertices of V (Km)\V (Pi).

By claiming any one of these edges, Client extends Pi to a path Pi+1 = x1x2 . . . xixi+1.

Once Waiter can no longer offer in this way, we must have m−i = |V (Km)\V (Pi)| < q+1,

entailing i > m− q. �

In the proof of Theorem 1.5.2, we will make use of the following two results; the first

by Hefetz, Krivelevich, Stojaković and Szabó [59] and the second by Bednarska–Bzdȩga,

Hefetz, Krivelevich and  Luczak [18].

Proposition 3.2.2 ([59], Lemma 4.8) Let G be a graph with average degree 2 +α, for

some α > 0, and girth g > (1 + 2/α)(4 log2 t + 2 log2 log2 t + c′), where c′ is an absolute

constant ( i.e. independent of t and α). Then G admits a Kt–minor.
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Theorem 3.2.3 ([18], Theorem 1.3) For every integer n > 4, when playing a (1 : q)

Waiter–Client game on E(Kn), Waiter can force Client to have a connected graph at the

end of the game if and only if q 6 bn/2c − 1.

3.3 Main Proofs

Here we present the proofs of our results in Section 3.1.

3.3.1 The Kt–Minor Game (E(Kn),Mt)

The Waiter–Client Kt–Minor Game

Proof of Theorem 1.5.1. Let n be sufficiently large.

Waiter’s Strategy: We describe a strategy for Waiter to force a Kt–minor in Client’s

graph when q 6 (1−ε)n; it is divided into the following three stages (see also Figure 3.1):

Stage I: Let A ⊆ V (Kn) be an arbitrary set of size εn/2 and let B = V (Kn)\A. Offering

only edges of EKn(B), Waiter forces Client to build a path P on at least εn/2 vertices.

Stage II: Offering only edges of EKn(A, V (P )), Waiter forces Client to build a matching

M of size at least ε2n/5.

Stage III: Let P be split into t consecutive vertex–disjoint paths P1, . . . , Pt, each con-

taining at least b√nc endpoints of the matching M . For every 1 6 i 6 t, let

Di = {u ∈ A : ∃v ∈ V (Pi) such that uv ∈ M}.

For as long as there exist indices 1 6 i < j 6 t such that EGC
(Di, Dj) = ∅, Waiter

chooses such indices arbitrarily and offers Client q + 1 arbitrary edges of EKn(Di, Dj).

Once EGC
(Di, Dj) 6= ∅ for all 1 6 i < j 6 t, Waiter plays arbitrarily until the end of the

game.
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A
D1 D2 Dt

B
P1 P2 Pt

Figure 3.1: An illustration of the graph that Waiter forces Client to build.

Assuming that Waiter can follow the proposed strategy, by contracting every edge

with both endpoints in V (Pi) ∪Di for every 1 6 i 6 t, we obtain the graph Kt. Hence,

Client’s graph admits a Kt–minor as claimed. It thus remains to prove that Waiter can

indeed play according to the proposed strategy; we do so for each stage separately.

Since |B| − q > n − εn/2 − (1 − ε)n = εn/2, the fact that Waiter can follow Stage I

of the proposed strategy is an immediate corollary of Claim 3.2.1.

Next, we prove that Waiter can follow Stage II of the proposed strategy. Note that, by

the description of Stage I, all edges of EKn(A, V (P )) are free at the beginning of Stage II.

For as long as possible, in each round of this stage, Waiter offers Client q + 1 arbitrary

edges, which are disjoint from any edge Client has previously claimed in Stage II. It is

thus evident that the graph Client builds in this stage is a matching; it remains to prove
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that it contains at least ε2n/5 edges. Suppose for a contradiction that, when following

this strategy, Waiter can only force a matching of size r < ε2n/5 in Client’s graph. Since

Waiter cannot further enlarge Client’s matching, it follows that he does not have enough

edges to offer in accordance with Stage II of the proposed strategy. In particular, since

there are at least (εn/2 − r)2 edges in EKn(A, V (P )) that do not share an endpoint with

Client’s matching and at most qr of these were claimed by Waiter during the rounds

where this matching was built, the number of free edges that Waiter can offer according

to Stage II is at least (εn/2 − r)2 − qr. Thus, if Waiter cannot continue to obey the

proposed strategy of Stage II, we must have

(εn/2 − r)2 − qr < q + 1 . (3.3.1)

However, by the assumed lower bound on ε we have

(εn/2 − r)2 − qr > (εn/2 − ε2n/5)2 − ε2n2(1 − ε)/5 > ε2n2/20 > (1 − ε)n + 1 > q + 1 ,

contrary to (3.3.1).

Finally, we prove that Waiter can play according to Stage III of the proposed strategy.

It follows by Stage II and by the assumed upper bound on t that |M | > ε2n/5 > t
√
n.

Therefore, P can indeed be split into t consecutive vertex disjoint paths P1, . . . , Pt, each

containing at least b√nc endpoints of M . By definition, |Di| > b√nc holds for every

1 6 i 6 t. Therefore, |Di||Dj| > b√nc2 > (1− ε)n+ 1 > q + 1 holds for all 1 6 i < j 6 t.

Since, by the description of Stages I and II, all edges of EKn(Di, Dj) are free at the

beginning of Stage III, it follows that Waiter can ensure that Client will claim an edge of

EKn(Di, Dj) for all 1 6 i < j 6 t.

Client’s Strategy: Next, assume that q > n + η. Let F1 denote the family of edge–sets
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of cycles of Kn of length at least 3
√
n/2. Then

Φ(F1) =
∑

A∈F1

(q + 1)−|A| =
n
∑

k= 3√n/2

(

n

k

)

(k − 1)!

2
(q + 1)−k <

1

2

∞
∑

k= 3√n/2

1

k

(

n

q

)k

<

(

n

q

) 3√n/2−1 ∞
∑

k=1

1

k

(

n

q

)k

=

(

n

q

) 3√n/2−1

log

(

q

q − n

)

6

(

n

n + n2/3 log n

) 3√n/2−1

log

(

n + n2/3 log n

n2/3 log n

)

6 exp

{

−( 3
√
n/2 − 1)n2/3 log n

n + n2/3 log n

}

· log n = o(1) , (3.3.2)

where the third equality follows from the Taylor expansion − log(1 − x) =
∑∞

k=1 x
k/k.

Let F2 denote the family of edge–sets of all pairs of cycles (C1, C2) of Kn, such that

|C1| = `1, |C2| = `2, `2 6 `1 6 3
√
n/2, and C1 ∩ C2 is a path on s > 1 vertices. Then

Φ(F2) =
∑

A∈F2

(q + 1)−|A|
6

3√n/2
∑

`1=3

`1
∑

`2=3

`2
∑

s=1

(

n

`1

)

(`1 − 1)!

2
· `1 · (n)`2−s · (n + η)−(`1+`2−s+1)

6

3√n/2
∑

`1=3

`1
∑

`2=3

`2
∑

s=1

1/n 6 ( 3
√
n/2)3 · n−1 = 1/8 . (3.3.3)

Let F = F1 ∪ F2. Combining (3.3.2) and (3.3.3) we conclude that Φ(F) < 1. It thus

follows by Theorem 2.2.3 that Client has a strategy to build a graph GC such that, if C1

and C2 are cycles of GC , then V (C1) ∩ V (C2) = ∅. It is easy to see that a graph with no

pair of intersecting cycles is K4–minor free. �

Proof of Theorem 3.1.1. Let n, t and α be as in the statement of the theorem. If a graph

admits a Kt–minor, it must contain at least

t
∑

k=3

(

t

k

)

(k − 1)!

2
>

(t− 1)!

2
> (c1t)

t
> ec2t log t
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cycles, where c1 and c2 are positive constants. It is therefore sufficient to show that Client

has a strategy to avoid building ec2t log t cycles.

Let F = {E(C) : C is a cycle of Kn}. Then

Φ(F) =
∑

A∈F
(q + 1)−|A| =

n
∑

k=3

(

n

k

)

(k − 1)!

2
(q + 1)−k

6

n
∑

k=3

1

k

(

n

n− α

)k

6

n
∑

k=1

eαk/(n−α)

k
6 e(1+o(1))α

n
∑

k=1

1

k
6 e(1+o(1))α(log n + 1) < ec2t log t ,

where the third inequality holds since α = o(n) and the last inequality holds by the

assumed bounds on t and α.

It thus follows by Theorem 2.2.3 that Client has a strategy to avoid fully claiming

ec2t log t cycles. This concludes the proof of the theorem. �

The Client–Waiter Kt–Minor Game

Proof of Theorem 1.5.2. Let n be sufficiently large.

Waiter’s Strategy: Assume first that q > n/2 − 1. We consider two cases according to

the parity of n. If n is even, then by monotonicity, and since n/2 is an integer, we may

assume that q = n/2 − 1. Note that
(

n
2

)

/(q + 1) = n − 1; in particular, Waiter offers

exactly q + 1 edges in each round of the game. By Theorem 3.2.3, Waiter has a strategy

to force Client to build a connected graph. Since, moreover, e(GC) = n− 1 at the end of

the game, it must be a spanning tree which is K3–minor free.

Assume then that n is odd. By monotonicity, and since q is an integer, we may assume

that q = (n + 1)/2 − 1. By Theorem 3.2.3, Waiter has a strategy to force Client to build

a connected graph when playing on E(Kn+1); let S be such a strategy. We present a

strategy S ′ for Waiter to force Client to build a K3–minor free graph when playing on

E(Kn). Waiter pretends the board is E(Kn+1), i.e. in his mind he adds an imaginary
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vertex and n imaginary edges, and follows S. If in some round he is instructed by S to

offer only imaginary edges, then he pretends that he did, and then he chooses one of these

edges arbitrarily and pretends that Client claimed it. If in some round he is instructed

by S to offer at least one imaginary edge and at least one real edge (i.e. an edge which is

actually on the board E(Kn)), then he offers only the real edges (recall that in a Client–

Waiter game, Waiter is allowed to offer fewer board elements than his bias specifies) but

pretends he offered all edges S instructed him to claim. In every other round he plays

precisely as S instructs him to. Thus, in his mind, Waiter follows S exactly. Since S is a

winning strategy for the game on E(Kn+1), this means that Client’s graph is a subgraph of

a spanning tree of Kn+1 at the end of the game. Hence, GC is a forest which is K3–minor

free.

Client’s Strategy: Now, suppose that q 6 (1/2 − ε)n; by monotonicity we can in fact

assume that q = b(1/2 − ε)nc. Assume first that ε 6 1/7. Let α be a constant satisfying

⌊

(

n
2

)

b(1/2 − ε)nc + 1

⌋

> (1 + α)n.

Note that α > ε
1−ε

. Let k = blog3(αn/4)c and let Fk denote the family of edge–sets of all

cycles of Kn whose length is strictly smaller than k. Then

Φ(Fk) =
∑

A∈Fk

(q + 1)−|A| =
k−1
∑

s=3

(

n

s

)

(s− 1)!

2
(q + 1)−s <

k−1
∑

s=3

(

n

b(1/2 − ε)nc

)s

<
k−1
∑

s=3

3s < 3k
6 αn/4 ,

where the second inequality holds by our assumption that ε 6 1/7.

Using Theorem 2.2.4 we infer that Client has a strategy to build a graph GC which

contains a subgraph HC with at least (1+α)n edges and fewer than αn/2 cycles of length

at most k − 1. Deleting one edge from each such cycle results in a graph H with average
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degree at least 2 + α and with girth at least k. Let t be the largest integer for which

(1 + 2/α)(4 log2 t + 2 log2 log2 t + c′) 6 k; it is easy to see that there exists a constant

c > 0 such that t > (εn)cε. It follows from Proposition 3.2.2 that H admits a Kt–minor.

Clearly, GC admits the same minor.

Finally, if ε > 1/7, then, by monotonicity, Client can build a graph which admits a

Kt–minor for t = (n/7)c/7 > (εn)c
′ε for appropriate positive constants c and c′. �

3.3.2 The Non–Planarity Game (E(Kn),NP)

The Waiter–Client Non–Planarity Game

Proof of Corollary 1.5.3. Let n be sufficiently large.

Waiter’s Strategy: Assume first that q 6 (1 − ε)n. If ε > 5n−1/4, then ε2
√
n/5 > 5

and thus it follows by Theorem 1.5.1 that Waiter can force Client’s graph to admit a

K5–minor; Client’s graph is then non–planar.

Client’s Strategy: Assume then that q > n+ η, where η = η(n) > n2/3 log n. It follows

by Theorem 1.5.1 that Client has a strategy to keep his graph K4–minor free. It is easy

to see that both K5 and K3,3 admit a K4–minor and thus Client’s graph is planar by

Kuratowski’s Theorem (see, e.g. [91]). �

The Client–Waiter Non–Planarity Game

Proof of Corollary 1.5.4. Let n be sufficiently large.

Waiter’s Strategy: Assume first that q > dn/2e − 1. It follows by Theorem 1.5.2 that

Waiter has a strategy to force Client to build a K3–minor free graph; in particular, such

a graph is planar.
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Client’s Strategy: Assume then that q 6 n/2 − cn/ log n. Then q 6 (1/2 − ε)n, where

ε = c/ log n. For a sufficiently large constant c, it follows by Theorem 1.5.2 that Client

has a strategy to build a graph which admits a K5–minor and is thus non–planar. �
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Chapter 4

Colourability and k–SAT Games

4.1 Results

The following chapter is devoted to Waiter–Client and Client–Waiter colourability games

played on the edge–set of the complete k–uniform hypergraph K
(k)
n , for every integer

k > 2. The closely related k–SAT games will also be discussed.

4.1.1 Colourability Games

For every pair of integers r, k > 2, the winning sets of the non–r–colourability game

(E(K
(k)
n ),NC(k)

r ) are defined by the set

NC(k)
r = {E(H) : H ⊆ K(k)

n and χ(H) > r},

where χ(H) denotes the weak chromatic number of H (see Chapter 2).

Playing on a Graph

We first focus on the case k = 2, i.e. the non–r–colourability game played on the edge–

set of the complete graph Kn. Indeed, in Section 4.3.1, we show that the Waiter–Client

version has threshold bias of order Θ(n/r log r) by proving Theorem 1.5.5, restated here

for convenience.
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Theorem 1.5.5 ([67]) Let r, q and n be positive integers, with n sufficiently large and

r > 2 fixed, and consider the (1 : q) Waiter–Client non–r–colourability game

(E(Kn),NC(2)
r ). There exists a function α = α(r) = or(1) > 0 such that whenever

q > (8e + α)n/(r log r), Client can keep his graph r–colourable throughout the game and

whenever q 6 (log 2/4−α)n/(r log r), Waiter can force Client to build a non–r–colourable

graph.

Proof Overview.

Client’s Strategy: For large r, using Theorem 2.2.3, Client avoids building

intersecting pairs of cycles of length 3 and 4, avoids having too large a

proportion of the edges among any set of vertices, and avoids having a

high proportion of the available edges both in some set S of vertices and

between S and V (Kn) \ S. This produces a graph GC at the end of the

game with the following properties:

(a) No two cycles of length at most 4 have intersecting vertex sets.

(b) Amongst every set S of vertices, GC does not contain too many edges

from EKn(S).

(c) If GC has a large proportion of the edges on a set S of vertices, GC

has few edges between S and V (Kn) \ S.

By partitioning V (Kn) into two parts; a set X containing all low degree

vertices in GC and a set Y = V (Kn) \X, we observe that (a) guarantees

the existence of a partition (X1, X2) of X where both GC [X1] and GC [X2]

have girth at least 5. The definition of X also ensures that ∆(GC [Xi])

is small for i = 1, 2. A result of Kim [71] (see Theorem 4.2.1) then en-

sures that χ(GC [X]) 6 χ(GC [X1]) + χ(GC [X2]) 6 2r/3. The definition
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of Y , together with (b) and (c), ensure that all subsets Z of Y have low

minimum degree in GC . This ensures that χ(GC [Y ]) 6 r/3 which gives

χ(GC) 6 χ(GC [X]) + χ(GC [Y ]) 6 r.

For small r, it is enough for Client to ensure that (b) holds. With an appro-

priate definition of few, this gives a graph GC where each of its subgraphs

contains a vertex of degree at most r − 1.

Waiter’s Strategy: Using Theorem 2.2.7, Waiter forces Client to claim an

edge in each dn/re–clique of Kn, thereby ensuring that α(GC) < dn/re.

This suffices since α(GC)χ(GC) > n. �

Our bounds on the threshold bias for the Waiter–Client game can be tightened in the

case r = 2. In particular, we have the following theorem.

Theorem 4.1.1 ([67]) Let q and n be positive integers, with n sufficiently large, and

consider the (1 : q) Waiter–Client non–bipartite game (E(Kn),NC(2)
2 ). If q 6 (1/2− ε)n,

where ε = ε(n) >
√

3/n, Waiter can force Client to build a non–bipartite graph. However,

if q > n+α, where α > (1−tanh(2))n/ tanh(2) ≈ 0.04n, Client can keep his graph bipartite

throughout the game.

Proof Overview.

Waiter’s Strategy: Waiter forces Client to build an odd cycle by first forcing

him to build a long path P . He then partitions V (P ) into two parts V1, V2

such that the edges of P lie between them. By offering only edges from

EKn(V1)∪EKn(V2) in the following round, Waiter forces Client to close an

odd cycle in his graph.

Client’s Strategy: Using Theorem 2.2.3, Client can avoid building an odd

cycle. �
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Theorem 4.1.1 is proved in Section 4.3.2. Additionally, we show that the threshold bias

of the Client–Waiter non–r–colourability game has the same order as the aforementioned

Waiter–Client version. More precisely, we prove Theorem 1.5.6 in Section 4.3.1, restated

here for convenience.

Theorem 1.5.6 ([67]) Let r, q and n be positive integers, with n sufficiently large and

r > 2 fixed, and consider the (1 : q) Client–Waiter non–r–colourability game

(E(Kn),NC(2)
r ). There exists a function α = α(r) = or(1) > 0 such that whenever

q > (4 + α)n/(r log r), Waiter can keep Client’s graph r–colourable throughout the game

and whenever q 6 (log 2/2 − α)n/(r log r), Client can build a non–r–colourable graph.

Proof Overview.

Waiter’s Strategy: For large r, Waiter’s strategy consists of two stages.

In Stage I, he forces Client to build a graph H1 with small maximum

degree and girth at least 5, leaving few free edges at each vertex of Kn.

He does this by offering q + 1 arbitrary edges in the first round and, in

each subsequent round of this stage, he offers as many edges touching the

last edge claimed by Client as possible (up to (q + 1)/2 at each endpoint),

whilst never offering an edge that closes a 3 or 4–cycle. If every free edge

touching Client’s most recent edge closes a 3 or 4–cycle, Waiter performs

this procedure on any viable edge previously claimed by Client. If no such

edge exists, the first stage ends.

In Stage II, Waiter forces Client to build a linear forest H2 in the following

way. In the first round of this stage, he offers all edges touching a chosen

arbitrary vertex. In each subsequent round i, he offers all free edges that

share an endpoint with the edge claimed by Client in round i − 1. If no

such free edges exist, Waiter plays as in the first round of Stage II.
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A result of Kim [71] (see Theorem 4.2.1) guarantees that χ(H1) 6 r/2.

Also, since H2 is a linear forest, it has chromatic number at most 2. Hence,

χ(GC) 6 χ(H1)χ(H2) 6 r.

For small r, Waiter can keep ∆(GC) 6 r − 1 using a method similar to

that in Stage I described above. Clearly this also gives χ(GC) 6 r.

Client’s Strategy: Using Theorem 2.2.6, Client claims an edge in each

dn/re–clique to ensure that α(GC) < dn/re. This suffices since

α(GC)χ(GC) > n. �

As with the Waiter–Client version, we also obtain tighter bounds for the Client–Waiter

game in the case r = 2. However, the gap is greater here than in Theorem 4.1.1. Our

proof of this result is proved in Section 4.3.2.

Theorem 4.1.2 ([67]) Let q and n be positive integers, with n sufficiently large, and con-

sider the (1 : q) Client–Waiter non–bipartite game (E(Kn),NC(2)
2 ). Whenever

q > dn/2e − 1, Waiter can keep Client’s graph acyclic and therefore bipartite. How-

ever, whenever q 6 (1/4 − o(1))n, Client can build an odd cycle i.e. a non–bipartite

graph.

Proof Overview.

Waiter’s Strategy: Waiter simply follows the strategy described in the

proof of Theorem 1.5.2 to keep Client’s graph acyclic.

Client’s Strategy: Using Theorem 2.2.6, Client prevents Waiter from claim-

ing a pair of cliques whose collective number of vertices is n by claiming

an edge in each such pair. Since Waiter must own such a pair of cliques if

Client’s graph is bipartite at the end of the game, this is sufficient. �
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Playing on a Hypergraph

We also generalise the techniques used in Theorems 1.5.5 and 1.5.6 to obtain bounds on

the Waiter–Client and Client–Waiter (E(K
(k)
n ),NC(k)

r ) threshold biases for every k, r > 2.

Indeed, in Section 4.3.3 we show that the threshold bias for the Waiter–Client version is

1
n

(

n
k

)

rOk(k) by proving Theorem 1.5.7, restated here for convenience.

Theorem 1.5.7 ([87]) Let k, q, r and n be positive integers, with n sufficiently large

and k, r > 2 fixed, and consider the (1 : q) Waiter–Client non–r–colourability game

(E(K
(k)
n ),NC(k)

r ). If q 6
(dn/re

k

)

log 2
2((1+log r)n+log 2)

, then Waiter can force Client to build

a non–r–colourable hypergraph. Also, if q > 2k/rek/r+1k
(

n
k

)

/n, then Client can keep his

hypergraph r–colourable throughout the game.

We also prove Theorem 1.5.8 in Section 4.3.3, thereby showing that the threshold bias

for the Client–Waiter game (E(K
(k)
n ),NC(k)

r ) is 1
n

(

n
k

)

r−k(1+ok(1)). Here, Theorem 1.5.8 is

restated for convenience.

Theorem 1.5.8 ([87]) Let k, q, r and n be positive integers, with n sufficiently large

and k, r > 2 fixed, and consider the (1 : q) Client–Waiter non–r–colourability game

(E(K
(k)
n ),NC(k)

r ). If q 6
(dn/re

k

)

log 2
(1+log r)n

, then Client can build a non–r–colourable hy-

pergraph. However, when q > k3r−k+5
(

n
k

)

/n, Waiter can ensure that Client has an r–

colourable hypergraph at the end of the game.

4.1.2 k–SAT Games

Finally, we consider the k–SAT game (C(k)
n ,FSAT ), played on the set C(k)

n of all
(

2n
k

)

possible

k–clauses, with winning sets defined by

FSAT = {S ⊆ C(k)
n :

∧

S is not satisfiable},

where
∧S denotes the conjunction of all k–clauses in S.
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By applying the same techniques used for the colourability games, we show that 1
n

(

n
k

)

is the threshold bias for the Waiter–Client and Client–Waiter k–SAT games, up to a factor

that is exponential and polynomial in k respectively. More precisely, we prove Theorems

1.5.9 and 1.5.10 in Sections 4.3.4 and 4.3.4 respectively. We restate these results for

convenience.

Theorem 1.5.9 ([87]) Let k, q and n be positive integers, with n sufficiently large and

k > 2 fixed, and consider the (1 : q) Waiter–Client k–SAT game (C(k)
n ,FSAT ). When

q 6
(

n
k

)

/(2(n + 1)), Waiter can ensure that the conjunction of all k–clauses claimed by

Client by the end of the game is not satisfiable. However, when q > 23k/2ek/2+1k
(

n
k

)

/n,

Client can ensure that the conjunction of all k–clauses he claims remains satisfiable

throughout the game.

Theorem 1.5.10 ([87]) Let k, q and n be positive integers, with n sufficiently large and

k > 2 fixed, and consider the (1 : q) Client–Waiter k–SAT game (C(k)
n ,FSAT ). When

q <
(

n
k

)

/n, Client can ensure that the conjunction of all k–clauses he claims by the end

of the game is not satisfiable. However, when q > 29k3
(

n
k

)

/n, Waiter can ensure that the

conjunction of all k–clauses claimed by Client is satisfiable throughout the game.

4.2 Useful Tools

Along with tools from Chapter 2, we will make use of the following results in our proofs.

Our proofs for Theorems 1.5.5 and 1.5.6 require the following well known result by Kim

[71].

Theorem 4.2.1 ([71]) Let G be a graph with maximum degree ∆ and girth at least 5.

Then

χ(G) 6 (1 + ν(∆))∆/ log ∆ ,

where ν(∆) is a function which tends to zero as ∆ tends to infinity.
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We will also use the following lemmas when proving Theorems 1.5.8 and 1.5.10 which

result from a standard application of the Lovász Local Lemma ([42], see e.g. [55, 64] or

Chapter 5 in [9]). For completeness, we include their proofs here.

Lemma 4.2.2 (Lovász Local Lemma (Symmetric Case)) Let A1, A2, . . . , An be

events in an arbitrary probability space. Suppose that each event Ai is mutually

independent of all but at most d other events Aj, and that P[Ai] 6 p for all 1 6 i 6 n. If

ep(d + 1) 6 1, then P
[
∧n

i=1 Ai

]

> 0.

Lemma 4.2.3 (Corollary 1 in [42]) Let H be a k–uniform hypergraph with maximum

degree ∆(H) 6 rk−3/k. If k > 5 and r > 2 then H is r–colourable.

Proof. Suppose that we assign a colour from the set {1, . . . , r} to each vertex of V (H)

uniformly at random and let us label the edges of E(H) with e1, e2, . . . , e|E(H)|. For

each 1 6 i 6 |E(H)|, let Ai denote the event that edge ei is monochromatic. Then

P[Ai] = 1/rk−1 =: p for each i. Since H has maximum degree ∆(H) 6 rk−3/k, every

edge of H meets at most d := rk−3 other edges of H. Hence, for each i, Ai is mutually

independent of all but at most d other events Aj. Additionally,

ep(d + 1) =
e(rk−3 + 1)

rk−1
6 1.

Thus, by Lemma 4.2.2, the probability that no edge is monochromatic, under our random

colouring, is positive. Hence, H is r–colourable. �

Lemma 4.2.4 (see Theorem 1 in [55]) Let k > 4 be an integer. Any k–CNF boolean

formula in which no variable appears in more than 2k−4/k k–clauses is satisfiable.

Proof. Suppose that we assign a value from {0, 1} to each boolean variable uniformly

at random and let c1, c2, . . . , cm denote the k–clauses in our boolean formula. For each
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1 6 i 6 m, let Ai denote the event that k–clause ci is not satisfied (i.e. the random

assignment has caused every literal in ci to have value 0). Then P[Ai] = 2−k =: p for

each i. Since each boolean variable appears in at most 2k−4/k k–clauses, each k–clause

shares the same variable with at most d := 2k−4 others. Hence, for each i, Ai is mutually

independent of all but at most d other events Aj. Additionally, ep(d + 1) 6 e/8 6 1.

Thus, by Lemma 4.2.2, the probability that every k–clause is satisfied, under our random

assignment, is positive. Hence, our boolean formula is satisfiable. �

4.2.1 Core Lemmas

To reduce repetition, we begin by presenting some core lemmas that will be useful in the

proofs following this section.

Lemma 4.2.5 Let S denote some set of dn/re–cliques in K
(k)
n . In a (1 : q) game on

E(K
(k)
n ), a strategy to ensure that HC contains an edge in every member of S at the end

of the game exists for Waiter in the Waiter–Client version if q 6
(dn/re

k

)

log 2
2 log(2|S|) and for

Client in the Client–Waiter version if q <
(dn/re

k

)

log 2/ log(|S|).

Proof. Let F = {E(H) : H ∈ S} and let us first suppose that q 6
(dn/re

k

)

log 2
2 log(2|S|) . Observe

that
∑

A∈F
2−|A|/(2q−1) < |S|2−(dn/re

k )/(2q) 6
1

2
,

where the final inequality follows from our choice of q. Thus, by Theorem 2.2.7, Waiter

can force Client to claim an edge in every member of S as stated.

Now suppose that q <
(dn/re

k

)

log 2/ log(|S|) and observe that

∑

A∈F

(

q

q + 1

)|A|
6
∑

A∈F
2−|A|/q

6 |S|2−(dn/re
k )/q < 1,

where the final inequality follows from our choice of q. Thus, by Theorem 2.2.6, Client

can claim an edge in every member of S by the end of the game as stated. �
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Corollary 4.2.6 In a (1 : q) game on E(K
(k)
n ), a strategy to ensure that χ(HC) > r at the

end of the game exists for Waiter in the Waiter–Client version if q 6
(dn/re

k

)

log 2

2(log 2+log ( n
dn/re))

and for Client in the Client–Waiter version if q <
(dn/re

k

)

log 2

log ( n
dn/re)

.

Proof. By taking S to be the set of all dn/re–cliques in K
(k)
n , Lemma 4.2.5 provides

strategies for Waiter and Client to ensure that α(HC) < dn/re at the end of the game.

Since χ(HC)α(HC) > n, the result follows. �

Lemma 4.2.7 For k > 2, let HP denote some k–uniform hypergraph with a partition

P = {V1, . . . , Vn} of its vertex set such that each part has the same size ` ∈ {1, 2} and

contains at most one vertex from any edge in E(HP). Consider a (1 : q) Waiter–Client

game on E(HP). If

q > (2`r)k/rek/r+1k

(

n

k

)

1

n
,

then Client has a strategy to ensure that, for every S ⊆ P, there exists some A ∈ S such

that dHC [∪S](A) 6 r − 1 at the end of the game.

Proof. Let F = {F : ∃S ⊆ P s.t. S 6= ∅, F ⊆ E(HP [∪S]) and |F | = dr|S|/ke}. Observe

that

Φ(F) =
∑

A∈F
(q + 1)−|A|

6

n
∑

t=k+`−1

(

n

t

)(
(

`t
k

)

drt/ke

)

q−drt/ke
6

n
∑

t=k+`−1

(en

t

)t
(

e
(

`t
k

)

drt/keq

)drt/ke

6

n
∑

t=k+`−1

(en

t

)t
(

ek
(

`t
k

)

rtq

)drt/ke

6

n
∑

t=k+`−1





en

t

(

ek
(

`t
k

)

rtq

)r/k




t

6

n
∑

t=1

[

en

t

(

e`ktk−1

rq(k − 1)!

)r/k
]t

6

n
∑

t=1





en

t

(

1

(2e)k/r

(

t

n

)k−1
)r/k





t

=
n
∑

t=1

[

1

2

(

t

n

)
r
k
(k−1)−1

]t

<

∞
∑

t=1

[

1

2

]t

= 1,

where the fourth and sixth inequalities follow from our choice of q and for n sufficiently
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large. Thus, by Theorem 2.2.3, Client can avoid claiming any member of F . In particular,

this means that, for every S ⊆ P , Client must have strictly less than r|S|/k edges in

HP [∪S] at the end of the game. Hence, in every S ⊆ P there exists some A ∈ S for which

dHC [∪S](A) 6 r − 1, as stated. �

Lemma 4.2.8 For k > 2, let HP denote some k–uniform hypergraph with a partition

P = {V1, . . . , Vn} of its vertex set such that each part has the same size ` ∈ {1, 2} and

contains at most one vertex from any edge in E(HP). Consider a (1 : q) Client–Waiter

game on E(HP) where q > 2k − 2. Waiter has a strategy to ensure that

dHC
(Vj) <

2kdHP (Vj)

q
+ 2

for every j ∈ [n] at the end of the game.

Proof. In the first round, Waiter offers q + 1 arbitrary free edges. In each round i, let

us denote the edge claimed by Client by ei and the parts of P in which ei has a vertex

Vi1 , . . . , Vik ordered arbitrarily. In round i + 1, Waiter responds to Client’s claim of ei in

the following way. With

Sij = {e ∈ E(HF ) : Vij ∩ e 6= ∅}

for each j ∈ [k], let Fi1 ⊆ Si1 with size

|Fi1 | = min{dHF
(Vi1), b(q + 1)/kc}

and, for each 2 6 j 6 k, let Fij ⊆ Sij \
⋃{Fi` : 1 6 ` < j} with size

|Fij | = min
{∣

∣

∣
Sij \

⋃

{Fi` : 1 6 ` < j}
∣

∣

∣
, b(q + 1)/kc

}

.
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Immediately after Client has claimed ei, Waiter offers all edges in
⋃{Fij : j ∈ [k]}. Recall

that, in any round of a Client–Waiter game, Waiter may offer less than q + 1 edges if he

desires. If no free edge contains a vertex from
⋃k

j=1 Vij , Waiter performs his response on

an edge that Client claimed earlier on in the game. If this is not possible, Waiter simply

offers min{q + 1, |E(HF )|} arbitrary free edges. It is clear that, by responding to each of

Client’s moves in this way, Waiter offers every edge of HP in the game.

Consider an arbitrary part Vj from P . Every time Client claims an edge containing

a vertex from Vj, Waiter offers at least b(q + 1)/kc free edges containing a vertex from

Vj in the next round, except for perhaps the last time he offers edges touching Vj when

there may be less than b(q + 1)/kc such edges available. Every time Waiter offers edges

touching Vj, Client may claim at most one of these. Hence, at the end of the game,

dHC
(Vj) 6

⌈

dHP (Vj) − 1

b(q + 1)/kc

⌉

+ 1 <
2kdHP (Vj)

q
+ 2,

for every j ∈ [n], by our choice of q, as stated. �

Lemma 4.2.9 For k > 2, let HP denote some k–uniform hypergraph with a partition

P = {V1, . . . , Vn} of its vertex set such that each part has the same size ` ∈ {1, 2} and

contains at most one vertex from any edge in E(HP). Consider a (1 : q) Client–Waiter

game on E(HP). If q > k∆P(HP), then Waiter can ensure that HC is a linear forest

with respect to partition P that contains no pair of complementary edges at the end of the

game.

Proof. Let us denote by ei the edge claimed by Client in round i and let Vi1 , . . . , Vik denote

the members of P within which ei has at least one vertex. Waiter’s strategy is as follows.

In the first round, Waiter chooses an arbitrary part V01 with non–empty intersection

with at least one free edge of HP . He then offers all free edges that intersect with V01 .

Note that this is possible since every part of P has non–empty intersection with at most
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∆P(HP) 6 k∆P(HP) edges in HP , which is at most q + 1 by our hypothesis. By doing

this, Waiter ensures that dHF
(V01) = 0 at the end of this first round. Therefore, since the

edge e1 claimed by Client in this first round has non–empty intersection with V01 , every

edge complementary to e1 is no longer free, and so cannot be claimed by Client, once

round 1 is over.

In round i, for every i > 2, Waiter offers all free edges with non–empty intersection

with the parts in P(ei−1). Again, this is possible since every part of P has non–empty

intersection with at most ∆P(HP) edges in HP and therefore, all k parts in P(ei−1)

intersect at most k∆P(HP) 6 q < q + 1 edges of HP in total. Offering all such edges that

are free therefore ensures that dHF
(V(i−1)j) = 0 for every part V(i−1)j ∈ P(ei−1) and hence,

no edge complementary to the edge ei claimed by Client in round i is free once round i is

complete. Additionally, this means that ei is the only edge claimed by Client after round

i− 1 that can intersect with a part in P(ei−1). If there are no free edges intersecting the

parts of P(ei−1) at the beginning of round i, Waiter proceeds as dictated for round 1.

Thus, at the end of the game HC is a linear forest with respect to partition P that

does not contain any pair of complementary edges. �

4.3 Main Proofs

In this section, we present the proofs of our results in Section 4.1.

4.3.1 The Non–r–Colourability Game (E(Kn),NC(2)
r )

The Waiter–Client Non–r–Colourability Game

Proof of Theorem 1.5.5. Let n be sufficiently large.

Client’s Strategy: Let q > (8e + α)n/(r log r) be an integer and let ν be the func-

tion appearing in the statement of Theorem 4.2.1. Fix an arbitrarily small constant

ε > 0 and let r0 be the smallest integer such that log log r0 > log 3 − log(1 − ε) and
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ν((1 − ε)r log r/3) 6 ε holds for every r > r0. Assume first that r > max{r0, 1000}.

Client’s strategy is based on Theorem 2.2.3. In order to present it we first consider

several sums.

First, let F1 = {E(C1) ∪ E(C2) : C1 and C2 are distinct cycles of Kn,

|C1|, |C2| ∈ {3, 4} and V (C1)∩V (C2) 6= ∅} and note that F1 = {E(G) : G ∈ F1,t for some

t ∈ {4, 5, 6, 7}}, where F1,t = {C1 ∪ C2 : C1 and C2 are distinct vertex intersecting

cycles of Kn, |V (C1)|, |V (C2)| ∈ {3, 4} and |V (C1 ∪ C2)| = t} for each t ∈ {4, 5, 6, 7}.

Then,

Φ(F1) =
∑

A∈F1

(q + 1)−|A| =
7
∑

t=4

∑

G∈F1,t

(q + 1)−|E(G)|

6 n4

(

r log r

(8e + α)n

)5

+ 3n5

(

r log r

(8e + α)n

)6

+ 2n6

(

r log r

(8e + α)n

)7

+ n7

(

r log r

(8e + α)n

)8

= o(1) . (4.3.1)

For F2 = {F : ∃S ⊆ V (Kn) such that S 6= ∅, F ⊆ EKn(S) and |F | = |S|r log r/16},

Φ(F2) =
∑

A∈F2

(q + 1)−|A|
6

n
∑

t=1

(

n

t

)(
(

t
2

)

tr log r/16

)

(q + 1)−tr log r/16

6

n
∑

t=1

[

en

t

(

8et

r log r
· r log r

(8e + α)n

)r log r/16
]t

6

n
∑

t=1

[

e

(

8e

8e + α

)r log r/16
]t

< 1/3 , (4.3.2)

where the third inequality holds since r is assumed to be sufficiently large and the last

inequality holds for an appropriately chosen α = α(r); it is not hard to see that α can be

chosen such that it tends to zero as r tends to infinity.

Finally, for F3 = {F ∪ F ′ : ∃S ⊆ V (Kn) such that S 6= ∅, F ⊆ EKn(S),
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F ′ ⊆ EKn(S, V (Kn) \ S), |F | = |S|r/6 and |F ′| = |S|r log r/8},

Φ(F3) =
∑

A∈F3

(q + 1)−|A|
6

n
∑

t=1

(

n

t

)(
(

t
2

)

tr/6

)(

t(n− t)

tr log r/8

)

(q + 1)−(tr/6+tr log r/8)

6

n
∑

t=1

[

en

t

(

3et

r
· r log r

(8e + α)n

)r/6(
8e(n− t)

r log r
· r log r

(8e + α)n

)r log r/8
]t

6

n
∑

t=1

[

e

(

3e

8e + α

)r/6(
8e

8e + α

)r log r/8

(log r)r/6

]t

< 1/3 , (4.3.3)

where the third inequality holds since r is assumed to be sufficiently large and the last

inequality holds for an appropriately chosen α = α(r); it is not hard to see that α can be

chosen such that it tends to zero as r tends to infinity.

Let F = F1 ∪ F2 ∪ F3. Combining (4.3.1), (4.3.2) and (4.3.3), it follows from

Theorem 2.2.3 that Client has a strategy to build a graph GC which satisfies the

following three properties:

(a) If C1 and C2 are cycles of length at most 4 in GC , then V (C1) ∩ V (C2) = ∅.

(b) eGC
(S) 6 |S|r log r/16 for every S ⊆ V (Kn).

(c) For every S ⊆ V (Kn), if eGC
(S) > |S|r/6, then eGC

(S, V (Kn) \ S) < |S|r log r/8.

It remains to prove that a graph which satisfies Properties (a), (b) and (c), has

chromatic number at most r. Let X = {u ∈ V (Kn) : dGC
(u) 6 (1 − ε)r log r/3}

and let Y = V (Kn) \ X. Let X1 ∪ X2 be a partition of X such that both GC [X1]

and GC [X2] have girth at least 5; such a partition exists by Property (a). Clearly

∆(GC [Xi]) 6 ∆(GC [X]) 6 (1 − ε)r log r/3 holds for i ∈ {1, 2} by the definition of X.
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Since r > r0, using Theorem 4.2.1 we infer that

χ(GC [Xi]) 6 (1 + ν((1 − ε)r log r/3)) · (1 − ε)r log r/3

log((1 − ε)r log k/3)

6 (1 + ε) · (1 − ε)r log r/3

log((1 − ε)r log r/3)
6 r/3 ,

holds for i ∈ {1, 2}. Hence, χ(GC [X]) 6 χ(GC [X1]) + χ(GC [X2]) 6 2r/3.

Suppose for a contradiction that χ(GC) > r + 1. Since

χ(GC) 6 χ(GC [X]) + χ(GC [Y ]) 6 2r/3 + χ(GC [Y ]),

it follows that χ(GC [Y ]) > r/3 + 1. Therefore, there exists a set Z ⊆ Y such that

δ(GC [Z]) > r/3, entailing eGC
(Z) > |Z|r/6. It follows by Property (b) that

eGC
(Z) 6 |Z|r log r/16. We then have eGC

(Z, V (Kn) \ Z) > |Z|r log r/8, by the defi-

nition of Y . However, this contradicts Property (c). We conclude that χ(GC) 6 r as

claimed.

Assume then that 2 6 r < max{r0, 1000}. For α = α(r) sufficiently large on this

range of r, q > (8e + α)/(r log r) > (2e)2/r+1
(

n
2

)

/n. Thus, by Lemma 4.2.7, Client has a

strategy to build a graph GC such that every subgraph of GC admits a vertex of degree

at most r − 1. Hence, χ(GC) 6 1 + maxG′⊆G δ(G′) 6 r.

Waiter’s Strategy: Next, assume that q 6 cn/(r log r), where c 6 log 2/4 − α. Since

cn

r log r
6

(dn/re
k

)

log 2

2
(

log 2 + log
(

n
dn/re

)

) ,

for sufficiently large n and by our choice of c, Corollary 4.2.6 gives Waiter a strategy to

ensure that χ(HC) > r at the end of the game. �
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The Client–Waiter Non–r–Colourability Game

Proof of Theorem 1.5.6. Let n be sufficiently large.

Waiter’s Strategy: Let q > (4 + α)n/(r log r) be an integer and let ν be the func-

tion appearing in the statement of Theorem 4.2.1. Fix an arbitrarily small constant

ε > 0 and let r0 be the smallest integer such that log log r0 > log 2 − log(1 − ε) and

ν((1 − ε)r log r/2) 6 ε holds for every r > r0. Assume first that r > r0. We present a

strategy for Waiter; it is divided into the following two stages:

Stage I: Waiter forces Client to build a graph H1 of maximum degree at most

(1−ε)r log r/2 and girth at least 5 such that dGF
(u) 6 (r log r)3 holds for every u ∈ V (Kn)

at the end of this stage.

Stage II: Waiter forces Client to build a linear forest H2 := GC \H1.

We will prove that Waiter can indeed follow the proposed strategy. First, we introduce

some notation and terminology. An edge e ∈ E(GF ) is called dangerous if adding it to

GC creates a cycle of length 3 or 4. Note that once an edge becomes dangerous, it remains

dangerous for as long as it is free. At any point during Stage I, we will denote the set of

dangerous edges by D i.e. once an edge becomes dangerous in Stage I, it is immediately

added to D.

With partition P = {{v} : v ∈ V (Kn)} and k = 2, Lemma 4.2.8 tells us that there

exists a strategy S for Waiter to ensure that dGC
(u) < 4(n − 1)/q + 2 for every vertex

u ∈ V (Kn) at the end of the game. In Stage I, Waiter follows S except, whenever S

instructs him to offer a dangerous edge, he only imagines that he does so. Therefore,

if the edges that S tells Waiter to offer in some round are all dangerous, Waiter just

imagines that it occurs and chooses an arbitrary edge within the instructed offering to

represent what Client would have claimed in that round. Note that, since Waiter can
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offer less than q + 1 edges per round in a Client–Waiter game, this is a valid strategy for

Waiter. Once all free edges are dangerous, Stage I ends and Waiter proceeds to Stage II.

Since Waiter never offers Client any dangerous edges in Stage I, it is evident that

Client’s graph will have girth at least 5 at the end of the stage. Also, despite only

carrying out the will of strategy S when instructed to offer non–dangerous edges, Waiter

proceeds with S as if he followed its instructions exactly. Therefore,

dH1(u) <
4(n− 1)

q
+ 2 6 (1 − ε)

r log r

2
,

still holds for each u ∈ V (Kn) at the end of Stage I, where the last inequality holds if α

is chosen to be sufficiently large compared to ε. Thus, ∆(H1) 6 (1 − ε)r log r/2 holds at

the end of Stage I.

At the end of Stage I, fix some vertex u ∈ V (Kn) and let v ∈ V (Kn) be such that

uv ∈ D. It follows that there exists a vertex z ∈ V (Kn) such that uz, zv ∈ E(H1) or

vertices x, y ∈ V (Kn) such that ux, xy, yv ∈ E(H1). That is, there is a path of length 2 or

3 between u and v in H1. Since the number of paths of length t in H1, starting at u, is at

most ∆(H1)
t, we conclude that |{e ∈ D : u ∈ e}| 6 (r log r/2)2 + (r log r/2)3 6 (r log r)3

holds for every u ∈ V (Kn) as claimed.

In Stage II, Waiter follows the strategy whose existence is given by Lemma 4.2.9 on

graph GF with partition P and integer k as defined previously. Since

k∆P(GF ) = 2∆(GF ) 6 2(r log r)3 6 q

at the beginning of this stage, Waiter therefore ensures that the graph H2 built by Client

in Stage II is a linear forest with respect to P .

It remains to prove that, by following the proposed strategy, Waiter forces Client’s
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graph to be r–colourable. It follows from Theorem 4.2.1 that

χ(H1) 6 (1+ν((1−ε)r log r/2))· (1 − ε)r log r/2

log((1 − ε)r log r/2)
6 (1+ε)· (1 − ε)r log r/2

log((1 − ε)r log r/2)
6 r/2,

where the second and third inequalities follow by our choice of r0. Moreover, it is evident

that χ(H2) 6 2. We conclude that χ(GC) = χ(H1 ∪H2) 6 χ(H1)χ(H2) 6 r.

Assume then that 3 6 r < r0. By following the strategy given by Lemma 4.2.8 and

using the same partition P as above, Waiter can ensure that

dGC
(u) <

4(n− 1)

q
+ 2 6

4

4 + α
r log r + 2 <

4

4 + α
e2/(1−ε) 2

1 − ε
+ 2 6 3 6 r,

for sufficiently large α = α(r). Thus, χ(GC) 6 1 + maxG′⊆G δ(G′) 6 r.

When r = 2, Waiter follows the strategy given by Lemma 4.2.9 to ensure that, at the

end of the game, GC is a linear forest with respect to partition P described previously.

This is possible since, for sufficiently large α, q > 2(n−1) = k∆P(Kn). Thus, χ(GC) 6 2.

Client’s Strategy: Next, assume that q 6 cn/(r log r), where c 6 log 2/2 − α. Since n

is sufficiently large and by our choice of c,

cn

r log r
6

(dn/re
2

)

log 2

log
(

n
dn/re

) .

Therefore, Corollary 4.2.6 provides a strategy for Client to ensure that χ(GC) > r at the

end of the game. �
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4.3.2 The Non–Bipartite Game (E(Kn),NC(2)
2 )

The Waiter–Client Non–Bipartite Game

Proof of Theorem 4.1.1. Let n be sufficiently large.

Waiter’s Strategy: Let ε >
√

3/n and q 6 (1/2 − ε)n. It suffices to show that Waiter

can force Client to build an odd cycle.

He first equipartitions V (Kn) into two parts A and B and forces Client to build a

path on at least εn vertices by offering only edges from EKn(A,B). His strategy for

this is very similar to the proof of Claim 3.2.1. Waiter first picks an arbitrary vertex

v1 ∈ A, sets P1 = v1 and offers q + 1 free edges of EKn(A,B) with v1 as an endpoint. By

claiming one of these edges, say v1v2, Client creates a path P2 = v1v2. Waiter continues

in a similar way, responding to the creation of path Pi = v1 . . . vi in Client’s graph, for

a positive integer i, by offering q + 1 arbitrary free edges of EKn(A,B) \ E(Pi) that all

contain vi as an endpoint. By claiming any one of these edges, Client extends Pi to a

path Pi+1 = v1v2 . . . vivi+1. Once Waiter can no longer offer in this way, we must have

(n− i)/2− 1 6 min{|A \ V (Pi)|, |B \ V (Pi)|} < q + 1 which entails i > n− 2(q + 2) > εn.

Let us call Client’s final path P and let V1 = A ∩ V (P ) and V2 = B ∩ V (P ).

Note that, once Client’s path is complete, all edges of EKn(V1)∪EKn(V2) are still free.

Also note that, since P is a connected bipartite graph, every edge in EKn(V1) ∪ EKn(V2)

closes an odd cycle. Since EKn(V1) ∪ EKn(V2) has size

(|V1|
2

)

+

(|V2|
2

)

>

(bεn/2c
2

)

+

(dεn/2e
2

)

> ε2n2/5 > q + 1,

for sufficiently large n, where the final inequality follows from our choice of ε and q,

Waiter can force Client to claim a member of EKn(V1) ∪ EKn(V2) in the round following

the completion of P by simply offering q+1 edges within this set. This move forces Client
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to close an odd cycle in GC and Waiter plays arbitrarily in subsequent rounds.

Client’s Strategy: Let q > n + α where α > (1 − tanh(2))n/ tanh(2). It suffices to

show that Client can avoid building an odd cycle for the duration of the game. So let

X = E(Kn) and F = {E(C) : C is an odd cycle in Kn}. Observe that

Φ(F) =
∑

A∈F
(q + 1)−|A| =

bn−1
2 c
∑

k=1

(

n

2k + 1

)

(2k)!

2
(q + 1)−(2k+1)

6

bn−1
2 c
∑

k=1

n2k+1

2(2k + 1)(q + 1)2k+1

<
1

2

bn−1
2 c
∑

k=1

1

2k + 1

(

n

q

)2k+1

<
1

2

∞
∑

k=0

1

2k + 1

(

n

n + α

)2k+1

=
1

2
tanh−1

(

n

n + α

)

6
1

2
tanh−1

(

n

n/ tanh(2)

)

= 1,

where the penultimate equality follows from the Taylor expansion
∑∞

k=0
x2k+1

2k+1
= tanh−1(x)

for |x| < 1. So by Theorem 2.2.3 from Chapter 1, Client has a strategy to avoid building

an odd cycle as required. �

The Client–Waiter Non–Bipartite Game

Proof of Theorem 4.1.2. Let n be sufficiently large.

Waiter’s Strategy: When q > dn/2e−1, Waiter simply follows the strategy described in

the proof of Theorem 1.5.2 to ensure that Client’s graph is acyclic and therefore bipartite.

Client’s Strategy: Suppose that q 6 (1/4 − o(1))n and let

F = {E(Ks) ∪ E(Kn−s) : Ks, Kn−s ⊆ Kn, V (Ks) ∩ V (Kn−s) = ∅}.

If Client fails to build an odd cycle by the end of the game, he must end with a bipartite

graph. Since the vertex classes of this graph must be independent sets in Client’s graph,

they must appear as disjoint cliques covering all vertices of Kn in Waiter’s graph. Hence,
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if Client can prevent Waiter from fully claiming any member of F , Client’s graph cannot

be bipartite at the end of the game. Observe that,

∑

A∈F

(

q

q + 1

)|A|
6
∑

A∈F
2−|A|/q =

bn/2c
∑

i=1

(

n

i

)

· 2−((n
2)−i(n−i))/q

6
n

2
·
(

n

n/2

)

· 2−((n
2)−n2/4)/((1/4−o(1))n)

6
n

2
· 2n · 2−(1+o(1))n < 1,

for sufficiently large n. Hence, by Theorem 2.2.6, Client can prevent Waiter from claiming

a member of F , thereby enabling Client to build an odd cycle. �

4.3.3 The Non–r–Colourability Game (E(K
(k)
n ),NC(k)

r )

The Waiter–Client Non–r–Colourability Game

Proof of Theorem 1.5.7. Fix k, r > 2 and let n be sufficiently large.

Waiter’s Strategy: Since

q 6

(dn/2e
k

)

log 2

2((1 + log 2)n + log 2)
6

(dn/2e
k

)

log 2

2(log 2 + log
(

n
dn/2e

)

)
,

Waiter’s strategy follows immediately from Corollary 4.2.6.

Client’s Strategy: Suppose that q > 2k/rek/r+1k
(

n
k

)

/n. Then, by choosing partition

P = {{v} : v ∈ V (K
(k)
n )} and ` = 1 in Lemma 4.2.7, Client can ensure that, for every

S ⊆ V (HC), there exists a vertex v ∈ S with dHC [S](v) 6 r − 1 at the end of the game.

Thus, χ(HC) 6 1 + maxH′⊆HC
δ(H′) 6 r. �

The Client–Waiter Non–r–Colourability Game

Proof of Theorem 1.5.8. Fix k, r > 2 and let n be sufficiently large.
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Client’s Strategy: Client’s strategy follows immediately from Corollary 4.2.6.

Waiter’s Strategy: Let k0 = min{k : (r − 1)rk−4/k > 2} and suppose that

q > k3r−k+5
(

n
k

)

/n. We first consider the case k > k0. By Lemma 4.2.3, it suffices

for Waiter to ensure that ∆(HC) 6 rk−3/k at the end of the game. Indeed, with partition

P = {{v} : v ∈ V (K
(k)
n )}, Lemma 4.2.8 tells us that Waiter can ensure that

dHC
(u) <

2k
(

n−1
k−1

)

q
+ 2 6

rk−3

k
,

for each u ∈ V (K
(k)
n ), where the final inequality follows from our choice of k and q.

Now consider the case 2 6 k < k0. When r > 3, Waiter plays as in the previous case,

but this time his strategy from Lemma 4.2.8 ensures that

dHC
(u) <

2k
(

n−1
k−1

)

q
+ 2 6

2rk−5

k
+ 1 <

4

r(r − 1)
+ 2 6 3 6 r,

for each u ∈ V (K
(k)
n ), where the second inequality follows from our choice of q, the third

inequality follows from our choice of k and the penultimate and final inequalities follow

from r > 3. Thus, ∆(HC) 6 r − 1 and we readily obtain that χ(HC) 6 r.

Now suppose that r = 2. Using the same partition P as above and noting that

q > k32−k+5

(

n

k

)

1

n
> k∆P(K(k)

n )

for our choice of q and k in this case, Lemma 4.2.9 gives Waiter a strategy to ensure that

HC is a linear forest with respect to P at the end of the game. In particular, δ(H′) 6 1

for each H′ ⊆ HC and thus, χ(HC) 6 1 + maxH′⊆H δ(H′) 6 2. �
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4.3.4 The k–SAT Game (C(k)
n ,FSAT )

For the sake of clarity, in both of the following proofs we analyse a game that is analogous

to the k–SAT game; namely (E(K
(k)
2n ),F ′

SAT ). In this, each vertex of V (K
(k)
2n ) is labeled

with a unique literal in ∪i∈[n]{xi,¬xi} over the set {xi : i ∈ [n]} of boolean variables and

PSAT = {Bi : i ∈ [n]} denotes a fixed partition of V (K
(k)
2n ), where Bi = {xi,¬xi} for each

i ∈ [n]. An edge containing a pair of vertices that lie within the same part Bi will be

referred to as a satisfied edge and any edge that is not satisfied will be called unsatisfied.

The winning sets are defined by

F ′
SAT = {F ⊆ E(K

(k)
2n ) : ∧{∨e : e ∈ F} is not satisfiable}.

We will use the following corollary of Lemma 4.2.5 in our proofs.

Corollary 4.3.1 In a (1 : q) game on E(K
(k)
2n ), a strategy to ensure that E(HC) /∈ F ′

SAT

at the end of the game exists for Waiter in the Waiter–Client version if q 6
(

n
k

)

/(2(n+1))

and for Client in the Client–Waiter version if q <
(

n
k

)

/n.

Proof. In the statement of Lemma 4.2.5, replace n with 2n, set r = 2 and let

S = {H ⊆ K
(k)
2n : H is an n–clique without a satisfied edge}.

Note that, therefore, |S| = 2n. Then, Lemma 4.2.5 tells us that there exist strategies SW

and SC , for Waiter in the (1 : q) Waiter–Client game when q 6
(

n
k

)

/(2(n + 1)) and for

Client in the (1 : q) Client–Waiter game when q <
(

n
k

)

/n respectively, to ensure that HC

contains an edge in every member of S at the end of the game. We will show this means

that E(HC) /∈ F ′
SAT .

We first claim that every {0, 1}–assignment to the boolean variables x1, . . . , xn defines

a 2–colouring of V (K
(k)
2n ) where each colour class contains a member of S. Indeed, by

78



definition of negation, if some boolean variable xi is assigned a value z ∈ {0, 1}, the value

of its negation ¬xi must be the sole member of {0, 1} \ {z}. Therefore, every {0, 1}–

assignment π to the boolean variables partitions the set ∪i∈[n]{xi,¬xi} of literals into two

parts, each of size n, where every pair of literals in the same part have the same value

under the given assignment π. Additionally, no part contains a variable and its negation.

Since each vertex of our board V (K
(k)
2n ) is labeled with a unique literal from ∪i∈[n]{xi,¬xi},

we can translate any {0, 1}–assignment π to a {0, 1}–colouring of the vertices in V (K
(k)
2n )

by giving each vertex v the colour that matches the value given by π to the literal that

labels v. The partition of the set of literals that is produced by π therefore translates in

this way to a 2–colouring in which each colour class has size n and no colour class contains

two vertices with labels xi and ¬xi for some i ∈ [n]. In particular, this means that no

colour class contains a satisfied edge and therefore, all n vertices in a single colour class

form an n–clique without a satisfied edge in V (K
(k)
2n ) i.e. a member of S.

Hence, if strategies SW and SC ensure that Client has an edge in every member of S by

the end of the game, the translation of any {0, 1}–assignment π of the boolean variables

to the vertices of Client’s hypergraph HC will produce a 2–colouring in which at least

one edge of Client’s is monochromatic in colour 0. This then translates to a 0–valued

k–clause in the boolean formula φ := ∧{∨e : e ∈ E(HC)}, which causes φ to evaluate to 0

under assignment π. Since this is true for all assignments π, the k–CNF boolean formula

corresponding to Client’s edges at the end of the game cannot be satisfiable. Hence, the

game ends with E(HC) /∈ F ′
SAT . �

The Waiter–Client k–SAT Game

Proof of Theorem 1.5.9. Fix k > 2 and let n be sufficiently large.

Waiter’s Strategy: Waiter’s strategy follows immediately from Corollary 4.3.1.

Client’s Strategy: Let q > 23k/2ek/2+1k
(

n
k

)

/n. Also, in the statement of Lemma 4.2.7,
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let r = ` = 2 and P = PSAT with HP denoting the subhypergraph of K
(k)
2n with vertex set

V (K
(k)
2n ) and edge–set consisting of all edges in E(K

(k)
2n ) that are unsatisfied. Note that,

since all edges of HP are unsatisfied, each part B ∈ PSAT contains at most one vertex

from any edge in E(HP) as required. Thus, due to our lower bound on q, Lemma 4.2.7

tells us that there exists a strategy SC for Client to ensure that, for every S ⊆ PSAT , there

exists some B ∈ S such that dHC [∪S](B) 6 1 when playing a (1 : q) Waiter–Client game

on E(HP). In particular, since an edge, once claimed, is no longer free for the remaining

duration of the game, this is true at any point in the game. We claim that Client can use

strategy SC to ensure that this result still holds when playing on E(K
(k)
2n ).

Indeed, Client achieves this by playing as follows. In every round where Waiter offers

entirely within E(HP), Client follows SC . In any other round, Client claims an arbitrary

satisfied edge. Recall that E(HP) consists entirely of the unsatisfied edges of K
(k)
2n and

thus, any offering that does not lie completely within E(HP) must contain a satisfied

edge.

Since Client follows SC whenever Waiter plays entirely within E(HP), and the edges of

E(HP) that Waiter claims in rounds where he offers some satisfied edges are still deemed

free from the perspective of SC , the goal of SC is still realised at the end of the game

i.e. for every S ⊆ PSAT , there exists some B ∈ S such that dHC [∪S](B) 6 1. As far as

SC is concerned, Waiter and Client simply stop playing the game on E(HP) sooner than

expected. Consequently, at the end of the game, there exists an ordering Bi1 , . . . , Bin

of the elements of PSAT such that, for each j ∈ [n], Client has at most one unsatisfied

edge contained in ∪{Bit : t 6 j} with a vertex vij ∈ Bij . Assigning the value, 0 or 1,

to the variable xij such that the literal labelling vij has value 1 for every j ∈ [n], and

assigning arbitrary values to any remaining variables, provides a satisfying assignment for

the formula corresponding to the edges in E(HC) ∩ E(HP) at the end of the game.
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Since a k–clause corresponding to a satisfied edge of K
(k)
2n is satisfiable under every

{0, 1}–assignment to the boolean variables xi, its conjunction with any k–CNF boolean

formula φ does not affect the satisfiability of φ. Hence, the boolean formula corresponding

to all edges in E(HC) at the end of the game is also satisfiable. �

The Client–Waiter k–SAT Game

Proof of Theorem 1.5.10. Fix k > 2 and let n be sufficiently large.

Client’s Strategy: Client’s strategy follows immediately from Corollary 4.3.1.

Waiter’s Strategy: Let q > 29k3
(

n
k

)

/n. Waiter’s strategy consists of two stages. In

Stage 1, Waiter only offers satisfied edges until no more are left, at which point Stage 2

begins. We denote Client’s hypergraph built during Stage 1 and Stage 2 by H1 and H2

respectively. Stage 2 depends on the following two cases.

We first consider the case k > 10. In the statement of Lemma 4.2.8, let ` = 2 and

P = PSAT with HP denoting the subhypergraph of K
(k)
2n with vertex set V (K

(k)
2n ) and

edge–set consisting of all edges in E(K
(k)
2n ) that are unsatisfied. Note that, since all edges

of HP are unsatisfied, each part B ∈ PSAT contains at most one vertex from any edge in

E(HP) as required. Additionally, since Waiter only offers satisfied edges in Stage 1, all

edges in E(HP) are free at the beginning of Stage 2. Lemma 4.2.8 tells us that Waiter

can ensure that

dH2(Bi) <
2k+1k

(

n−1
k−1

)

q
+ 2 6

2k−4

k
,

for each i ∈ [n], at the end of the game, where the final inequality follows from our choice

of k and q. Hence, Waiter can ensure that every Bi ∈ PSAT has non–empty intersection

with at most 2k−4/k edges in H2 at the end of the game. By Lemma 4.2.4, this means

that E(H2) ∈ F ′
SAT . Thus, in Stage 2, Waiter follows the strategy given by Lemma 4.2.8.
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Now consider the case 2 6 k 6 9. By using partition P , ` and HP as before, and

noting that q > 29k3
(

n
k

)

/n > k∆PSAT
(K

(k)
2n ) for our choice of q and k, Lemma 4.2.9 gives

Waiter a strategy to ensure that H2 is a linear forest with respect to PSAT that does not

contain any pair of complementary edges at the end of the game. Hence, there exists an

ordering e1, . . . , em of the edges in E(H2) such that PSAT (ei) ∩ PSAT (ej) 6= ∅ only when

j ∈ {i− 1, i, i + 1}.

A {0, 1}–assignment to the boolean variables x1, . . . , xn that satisfies

∧{∨e : e ∈ E(H2)} is as follows. First, assign every literal labelling a vertex in e1

value 1. Since H2 contains no complementary edges, PSAT (ei+1) \ PSAT (ei) 6= ∅ for every

1 6 i 6 m− 1. For every part V(i+1)j ∈ PSAT (ei+1) \ PSAT (ei), assign the literal labelling

the vertex in ei+1∩V(i+1)j value 1. Assign values from {0, 1} arbitrarily to those variables

xi for which Bi is untouched by H2. The only way that this assignment can produce

an edge of H2 whose vertices are only labelled by literals of value 0 is if this edge is

complementary to another edge of H2. Since this is not possible, we conclude that our

assignment satisfies ∧{∨e : e ∈ E(H2)} as claimed.

Since any k–clause corresponding to a satisfied edge of K
(k)
2n is satisfiable under every

{0, 1}–assignment to the boolean variables xi, the conjunction of the formula correspond-

ing to H1 with that corresponding to H2 is also satisfiable in both of our considered cases.

Hence, Waiter can ensure that E(HC) = E(H1)∪E(H2) /∈ FSAT at the end of the game.

�
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Chapter 5

Hamiltonicity Games on a Random

Graph

5.1 Results

As mentioned in Chapter 1, the bias of a positional game is not the only parameter we

can vary. We may also vary the board itself in a process known as thinning the board.

This leads us to consider games played on the edge–set of the binomial random graph

G(n, p). In particular, this chapter focuses on the (1 : q) Waiter–Client and Client–Waiter

Hamiltonicity games (E(G(n, p)),HAM), where

HAM = {E(G) : G ⊆ Kn is Hamiltonian}.

We determine the minimum density that a graph typically needs to ensure that a.a.s.

its edge–set is a board on which Waiter/Client wins the Waiter–Client/Client–Waiter

version of this game. More precisely, for every fixed positive integer q, we find sharp

thresholds for the graph properties Wq
HAM and Cq

HAM (see Section 1.5.5 in Chapter 1).

Theorem 1.5.11, restated below for convenience, shows that, for every fixed positive integer

q, a sharp threshold for Wq
HAM coincides with a sharp threshold for the appearance of a
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Hamilton cycle in G(n, p) [73, 24].

Theorem 1.5.11 ([68]) Let q be a positive integer. Then log n/n is a sharp threshold

for the property Wq
HAM.

Proof Overview.

Client’s Strategy: If p 6 (1−o(1)) log n/n, then G(n, p) a.a.s. has minimum

degree at most 1 (this is a standard result in random graphs, see e.g. [25])

and therefore does not contain a Hamilton cycle. Hence, no matter what

strategy Client follows, he will not have a Hamilton cycle at the end of the

game.

Waiter’s Strategy: When p > (1 + o(1)) log n/n, Waiter can a.a.s. force

Client to build a graph with minimum degree large enough so that GC is

a connected expander (see Section 5.2.1). Then, by offering only boosters

(see Section 5.2.1), Waiter forces Client to build a Hamilton cycle. �

In contrast to the Waiter–Client game, the sharp threshold for the property Cq
HAM

grows with q, and even for q = 1, is already larger than the threshold for the Hamiltonicity

of G(n, p). This is shown by Theorem 1.5.12, restated here for convenience.

Theorem 1.5.12 ([68]) Let q be a positive integer. Then (q + 1) log n/n is a sharp

threshold for the property Cq
HAM.

Proof Overview.

Client’s Strategy: When p > (q + 1 + o(1)) log n/n, Client builds a graph

that satisfies the conditions of Theorem 5.2.4 (see Section 5.2.1), using

tools from Chapter 2, to obtain a Hamiltonian graph.
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Waiter’s Strategy: When p 6 (q + 1 − o(1)) log n/n, Waiter identifies an

independent set Ik consisting of vertices of degree k in G(n, p), for some

positive integer k. He then plays the box game (see Section 5.2.3) on the

edges of G(n, p) that touch Ik to isolate a vertex in Client’s graph. This

therefore prevents Client from building a Hamilton cycle. �

We present our proofs of Theorems 1.5.11 and 1.5.12 in Section 5.3.

5.2 Useful Tools

5.2.1 Building a Hamilton Cycle

Given a connected, non–Hamiltonian graph, how do we add edges to create a Hamilton

cycle? A popular method of choice hinges on the so–called rotation–extension technique

which was first developed by Pósa in 1976 to aid his investigation into the Hamiltonicity

of the random graph [82]. This involves repeatedly deforming a given path in a graph,

with the use of extra edges, to either increase its length by appending a new vertex, or

close it to make a Hamilton cycle.

x0 x1 xi xi+1 xh

v

xi+1 xh x0 x1 xi v

Figure 5.1: Before and after the extension of path x0x1 . . . xh.

We proceed as follows. Suppose we have a connected, non–Hamiltonian n–vertex graph

G. We want to add edges from E(Kn) \ E(G) to E(G) to make a Hamiltonian graph.

First, we take a longest path P = x0x1 . . . xh in G. Let us assume that x0xh /∈ E(G); we
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will soon see that our choice of P and G guarantees this. Then we add the edge x0xh to G

to create a new graph G′ containing the cycle x0x1 . . . xhx0. If this cycle is Hamiltonian,

we are done. If not, then P was not a Hamiltonian path in G. Hence, there exists some

vertex v ∈ V (G)\V (P ) for which xiv ∈ E(G) for some i in the range 1 6 i 6 h−1, due to

the connectedness of G. Note that x0v, xhv /∈ E(G), otherwise P would not be a longest

path in G. Thus, P ′ = xi+1 . . . xhx0 . . . xiv is a longer path in G′ than P , which uses the

new edge x0xh that we added to G (see Figure 5.1). Observe then that x0xh /∈ E(G),

otherwise we could have created a longer path than P using this method without needing

to add any new edges to G, and this would contradict our choice of P . Continuing in this

way, we gradually absorb each vertex that lay outside our initial path P into the path

we’re working with. Eventually, we must end up with a Hamiltonian path, at which point

we add the edge connecting its endpoints and create a Hamilton cycle.

In each stage of this process, the edges we add to our graph are known as boosters.

Formally, these are defined as follows.

Definition 5.2.1 (Booster) A non–edge uv of a graph G, where u, v ∈ V (G), is called

a booster with respect to G if G∪{uv} is Hamiltonian or its longest path is strictly longer

than that of G. We denote the set of boosters with respect to G by BG.

What if we are trying to build a Hamiltonian graph inside a random graph G(n, p)?

In this case, we cannot add boosters unless they lie in the random graph. Or suppose

that we are playing the Hamiltonicity game against an adversary. Then we can only add

those boosters that have not already been taken by our opponent. What can we do if

we try to perform the above process and find that the booster we need to add to our

graph is not available for us to take? We try to rotate our path. Indeed, if we have

a path P = x0x1 . . . xh in our graph G such that xixh ∈ E(G) for some i in the range

0 6 i 6 h − 2, we can delete the edge xixi+1 from P and add the edge xixh instead to

create a new path P ′ = x0 . . . xixhxh−1 . . . xi+1 with the same length and vertex set as P ,
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but with a different endpoint xi+1. This is called an elementary rotation and it provides

us with a different booster than before. If this booster is also unavailable to us, we try to

rotate again until we find a booster that we can add to our graph. Note, however, that

in a sequence of rotations, the same booster may appear more than once. We would like

to know how many different boosters we can obtain through subsequent rotations of our

path.

This is where Pósa’s lemma can help us. It says that if our graph has a certain

expansion property, then rotating our path many times provides us with many different

boosters that we could potentially add to our graph if they are available to us. More

precisely, this is true if our graph is a (t, 2)–expander.

Definition 5.2.2 (Expander) Let G = (V,E) be a graph on n vertices and let t = t(n)

and k = k(n). The graph G is called a (t, k)–expander if |NG(U)| > k|U | for every set

U ⊆ V of size at most t.

Note that adding edges to an expander preserves its expansion properties. In other words,

the graph property of being an expander is monotone increasing. The following lemma

(see e.g. [51]), which is essentially due to Pósa [82], asserts that expanders have many

boosters.

Lemma 5.2.3 (Pósa’s Lemma) If G is a connected non–Hamiltonian (t, 2)–expander,

then |BG| > (t + 1)2/2.

Therefore, if we have a connected (k, 2)–expander, we need only check that the set of

boosters, whose size is guaranteed by Pósa’s lemma, and the set of edges available for us

to add to our graph have non–empty intersection. If they do, we know that we can add a

booster to our graph and continue with the rotation–extension technique. In fact, Pósa’s

lemma allows us to forgo the manual implementation of this technique altogether. If we

can show that a booster is available for us to add to our graph up to n times if necessary,
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then by the definition of a booster, we must end this process with a Hamiltonian graph.

This is the method that we will employ in our treatment of the (1 : q) Waiter–Client

Hamiltonicity game on E(G(n, p)) in Theorem 1.5.11.

For the Client–Waiter version in Theorem 1.5.12, we will use the following sufficient

condition for Hamiltonicity from [66]; this is based on expansion and high connectivity.

Theorem 5.2.4 ([66]) Let 12 6 d 6 e
3√logn and let G be a graph on n vertices which

satisfies the following two properties.

P1 For every S ⊆ V (G), if |S| 6 n log logn log d
d logn log log logn

, then |NG(S)| > d|S|.

P2 There exists an edge in G between any two disjoint subsets A,B ⊆ V (G) of size

|A|, |B| > n log logn log d
4130 logn log log logn

.

Then G is Hamiltonian for sufficiently large n.

5.2.2 Forcing Large Minimum Degree

A simple step in Waiter’s strategy to force Client to build a Hamilton cycle, is to force

him to quickly build a graph with large minimum degree. Our next result shows that this

is indeed possible.

Lemma 5.2.5 Let G be a graph on n vertices with minimum degree δ(G) > δ and let

q and γ 6

⌊

δ
2(q+1)

⌋

be positive integers. When playing a (1 : q) Waiter–Client game

on E(G), Waiter has a strategy to force Client to build a spanning subgraph of G with

minimum degree at least γ, by offering at most (q + 1)γn edges of G.

Proof. Let u1, . . . , un denote the vertices of G. We define a new graph G∗, where G∗ = G

if dG(ui) is even for every 1 6 i 6 n, and otherwise G∗ is the graph obtained from G

by adding a new vertex v∗ and connecting it to every vertex of odd degree in G. Since

all degrees of G∗ are even, it admits an Eulerian orientation
−→
G∗. For every 1 6 i 6 n,
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let E(ui) = {uiuj ∈ E(G) : uiuj is directed from ui to uj in
−→
G∗}. It is evident that

E(ui) > bδ/2c > (q + 1)γ for every 1 6 i 6 n and that the sets E(u1), . . . , E(un) are

pairwise disjoint.

For every 1 6 i 6 n and every 1 6 j 6 γ, in the ((i− 1)γ + j)th round of the game,

Waiter offers Client q+ 1 arbitrary free edges of E(ui). It is evident that, after offering at

most (q + 1)γ edges of E(ui) for every 1 6 i 6 n, the minimum degree of Client’s graph

is at least γ. �

5.2.3 Box Games

Waiter’s strategy to prevent Client from building a Hamilton cycle in the Client–Waiter

game hinges on isolating one of Client’s vertices. A very useful tool that one can use to

aid Waiter in this is the analysis of a box game.

Box games describe positional games whose winning sets belong to a family

F = {A1, . . . , An} of pairwise disjoint subsets (boxes) of the board. In the special case

where t − 1 6 |A1| 6 . . . 6 |An| = t for some positive integer t, we say that the box

game is canonical of type t. We may also describe the family F whose members satisfy

this criteria as being canonical. Box games were first introduced by Chvátal and Erdős in

their seminal paper [29] where the canonical Maker–Breaker box game was studied. The

non–canonical Maker–Breaker box game was subsequently fully analysed by Hamidoune

and Las Vergnas in [58]. Generally speaking, these papers show that Breaker should al-

ways claim in the smallest boxes and, to counteract this, Maker should try and balance

the number of free elements amongst the boxes not yet touched by Breaker. Although

little in the literature is devoted explicitly to box games between other players, strategies

similar to those of Maker and Breaker in the box game do feature. For example, in [60],

Hefetz, Krivelevich, Stojaković and Szabó used a strategy similar to Maker’s box game

strategy to enable Avoider to avoid having positive minimum degree in his graph. We
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will also use a similar approach for the following box game between Waiter and Client.

For Waiter’s strategy in the Client–Waiter Hamiltonicity game, we are interested in

a box game where Waiter aims to fully claim some box in F . Since both Waiter–Client

and Client–Waiter games are only concerned with Client’s claiming of a winning set,

we must express our desired box game as the (1 : q) Client–Waiter transversal game

(
⋃n

i=1 Ai,F∗). In particular, since Waiter’s strategy in the Hamiltonicity game will involve

Waiter isolating a vertex from a set of independent vertices of the same degree in G(n, p),

we need only consider the case where F is canonical (see Remark 5.2.8 for comments on

the non-canonical version).

It will be helpful to have the following perspective as our box game progresses. Suppose

that, at some point during the box game on F , Client claims an element of Ai for some

1 6 i 6 n. Since Waiter can no longer claim all elements of Ai, neither player has

any incentive to claim more elements from this set. Therefore, we can pretend that Ai

was removed from F . If on the other hand, Waiter claims an element a ∈ Ai, then

we can pretend that instead of trying to fully claim Ai, his goal is now to fully claim

Ai \ {a}. Hence, we can view the family F , on which the game is played, as changing

throughout the game as follows. Assume that Fi denotes the (multi) family representing

the game immediately before the ith round; in particular F1 = F . Let Wi denote the

set of elements Waiter offers Client in the ith round, let ci ∈ Wi denote the element

claimed by Client and let j denote the unique integer for which ci ∈ Aj. Then we define

Fi+1 = {A \Wi : A ∈ Fi and A 6= Aj}. Using this point of view, we see that Waiter wins

the (1 : q) Client–Waiter transversal game (
⋃n

i=1 Ai,F∗) if and only if ∅ ∈ Fi for some

positive integer i.

Proposition 5.2.6 Let q and t be positive integers and let F be a canonical family of type

t. If |F| > 2(q+1)t+1/qt, then Waiter has a winning strategy for the (1 : q) Client–Waiter

box game on F .

90



Remark 5.2.7 In light of Theorem 2.2.6, Proposition 5.2.6 is not far from being best

possible.

Proof of Proposition 5.2.6. Waiter plays so as to keep the families Fi canonical; this

is achieved as follows. For every positive integer i, let ti = max{|A| : A ∈ Fi}, let

Li = {A ∈ Fi : |A| = ti} and let `i = |Li|. In the ith round, Waiter offers Client an

arbitrary set Wi ⊆
⋃

A∈Li
A of size min{q+ 1, `i} such that |A∩Wi| 6 1 for every A ∈ Li.

We claim that this is a winning strategy for Waiter.

For every 0 6 j 6 t, let ij denote the smallest integer such that Fij is canonical of type

j (to make this well–defined, we view the empty family as being canonical of every type).

In particular, it = 1 and, in order to prove our claim, it suffices to show that |Fi0 | > 1.

We will in fact prove a more general claim, namely, that

|Fij | >
(

q

q + 1

)t−j

|F| − (q + 1)

(

1 −
(

q

q + 1

)t−j
)

, (5.2.1)

holds for every 0 6 j 6 t. This is indeed a more general result as, in particular, it follows

from (5.2.1) that

|Fi0 | >
(

q

q + 1

)t

· 2(q + 1)t+1

qt
− (q + 1) +

qt

(q + 1)t−1
= (q + 1)

(

(

q

q + 1

)t

+ 1

)

> 1,

where the first inequality follows from our assumption that |F| > 2(q + 1)t+1/qt.

We prove (5.2.1) by reverse induction on j. The base case j = t holds trivially. Assume

that (5.2.1) holds for some 1 6 j 6 t; we prove it holds for j − 1 as well. It follows by

Waiter’s strategy that ij−1 6 ij + d|Fij |/(q + 1)e. Since, moreover, Client claims exactly
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one offered element per round, we conclude that

|Fij−1
| > |Fij | −

⌈ |Fij |
q + 1

⌉

>
q

q + 1
|Fij | − 1

>
q

q + 1

[

(

q

q + 1

)t−j

|F| − (q + 1)

(

1 −
(

q

q + 1

)t−j
)]

− 1

=

(

q

q + 1

)t−j+1

|F| − (q + 1)

(

1 −
(

q

q + 1

)t−j+1
)

.

�

Remark 5.2.8 Waiter’s strategy for fully claiming a box in a canonical family can also

be used to help Waiter do the same in a non–canonical family F . Indeed, he does this by

playing a sequence of mini canonical box games in the following way. He first identifies

a maximal canonical subfamily F ′ ⊆ F of type t = max{|A| : A ∈ F}. For each A ∈ F ′,

Waiter then chooses an arbitrary subset D(A) ⊆ A of size |A| − t′, where t′ = max{|A| :

A ∈ F \ F ′}, and plays the canonical box game on {D(A) : A ∈ F ′}, using the strategy

given in the proof of Proposition 5.2.6 to fully claim as many boxes in {D(A) : A ∈ F ′}

as he can. After this, Waiter removes any box with an element belonging to Client from

F and, from each box that remains, he removes any elements that are no longer free. A

new mini canonical box game is then created and played in the same way with this updated

family F . Performing this process repeatedly eventually enables Waiter to fully claim a

box from the original non–canonical family, provided that this family is sufficiently large.

An analysis similar to that in the proof of Proposition 5.2.6 can be performed to quantify

how large this family must be for Waiter’s strategy to succeed. However, since this is quite

technical and unnecessary for our purposes in the Client–Waiter Hamiltonicity game, we

do not present the analysis here.
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5.2.4 Concentration Inequalities

Throughout this chapter, we will use the following well–known concentration inequalities

(see e.g. [9]).

Theorem 5.2.9 (Markov) If X is a non–negative random variable and a > 0, then

P[X > a] 6
E[X]

a
.

Theorem 5.2.10 (Chernoff) If X ∼ Bin(n, p), then

(i) P[X < (1 − a)np] < exp
(

−a2np
2

)

for every a > 0.

(ii) P[X > (1 + a)np] < exp
(

−a2np
3

)

for every 0 < a < 1.

Theorem 5.2.11 (Chebyshev) If X is a random variable with E[X] < ∞ and

Var[X] < ∞, then for any k > 0,

P[|X − E[X]| > k] 6
Var[X]

k2
.

5.2.5 Properties of Random Graphs

In this section we will prove several technical results about the binomial random graph

G(n, p) for various edge probabilities p. These results will be useful in the proofs of

Theorems 1.5.11 and 1.5.12.

Lemma 5.2.12 Let G ∼ G(n, p), where p = c log n/n for some constant c > 0 and let

t = t(n) be such that limn→∞ t log n = ∞. Then a.a.s. we have eG(A) 6 2ct|A| log n for

every A ⊆ V (G) of size 1 6 |A| 6 tn.

93



Proof.

P [∃A ⊆ V (G) such that 1 6 |A| 6 tn and eG(A) > 2ct|A| log n]

6

tn
∑

a=1

(

n

a

)(
(

a
2

)

2cta log n

)

p2cta logn 6

tn
∑

a=1

(en

a

)a
(

e
(

a
2

)

p

2cta log n

)2cta logn

6

tn
∑

a=1

[

en

a
·
( ea

4tn

)2ct logn
]a

=
tn
∑

a=1

[

exp
{

1 + log
(n

a

)

+ 2ct log n
(

1 − log
(n

a

)

− log(4t)
)}]a

= o(1). �

Lemma 5.2.13 Let G ∼ G(n, p) and let k = k(n) be an integer satisfying kp > 100 log(n/k).

Then a.a.s. eG(X, Y ) > k2p/2 holds for any pair of disjoint sets X, Y ⊆ V (G) of size

|X| = |Y | = k.

Proof. Let X, Y ⊆ V (G) be arbitrary disjoint sets of size |X| = |Y | = k. Then

eG(X, Y ) ∼ Bin(k2, p) and thus

P
[

eG(X, Y ) < k2p/2
]

= P [eG(X, Y ) < E[eG(X, Y )]/2] < e−k2p/8,

where the last inequality holds by Theorem 5.2.10(i).

A union bound over all choices of X and Y of size k then gives

P
[

∃X, Y ⊆ V (G) such that |X| = |Y | = k, X ∩ Y = ∅, and eG(X, Y ) < k2p/2
]

6

(

n

k

)2

· e−k2p/8
6

[

(en

k

)2

· e−kp/8

]k

= [exp{2 + 2 log(n/k) − kp/8}]k = o(1),

where the last equality holds by our assumption on k. �

Lemma 5.2.14 Let c > 0 be a constant and let G ∼ G(n, p), where p = c/n. Then, a.a.s.

e(G) 6 cn.
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Proof. Clearly e(G) ∼ Bin(
(

n
2

)

, p) and therefore E[e(G)] =
(

n
2

)

p = c(n− 1)/2. Hence,

P[e(G) > cn] 6 P

[

e(G) > 1.5

(

n

2

)

p

]

< exp

{

−
(

n
2

)

p

12

}

6 exp {−cn/25} = o(1),

where the second inequality holds by Theorem 5.2.10(ii). �

An important part of proving Client’s side in Theorem 1.5.12, is to show that a.a.s.

the sum
∑

v∈V (G)

(

q
q+1

)dG(v)

is very small, where G ∼ G(n, p). The following lemma will

play a key role in this endeavour.

Lemma 5.2.15 Let q be a positive integer and let G ∼ G(n, p). For every 0 6 i 6 n− 1,

let Xi = |{u ∈ V (G) : dG(u) = i}| and let µi = E[Xi]. Then,

n−1
∑

i=0

(

q

q + 1

)i

µi = n

(

1 − p

q + 1

)n−1

.

Proof. Let G̃ ∼ G
(

n, p
q+1

)

and let Y denote the number of isolated vertices in G̃. Then,

E[Y ] = n

(

1 − p

q + 1

)n−1

. (5.2.2)

An alternative way of generating G̃ is by first generating G ∼ G(n, p) and then deleting

each edge of G with probability q
q+1

, independently of all other edges. It is then apparent

that, for any v ∈ V (G) with dG(v) = i, we have

P[dG̃(v) = 0] =

(

q

q + 1

)i

.

Hence,

E[Y ] =
n−1
∑

i=0

(

q

q + 1

)i

µi. (5.2.3)
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Combining (5.2.2) and (5.2.3) we conclude that

n−1
∑

i=0

(

q

q + 1

)i

µi = n

(

1 − p

q + 1

)n−1

,

as stated. �

Lemma 5.2.16 Let ε > 0 be a constant, let q be a positive integer and let G ∼ G(n, p),

where p = (q + 1− ε) log n/n. For every 0 6 i 6 n− 1, let Xi = |{u ∈ V (G) : dG(u) = i}|

and let µi = E[Xi]. If 0 6 k 6 9(q + 1 − ε) log n is an integer such that µk → ∞, then

a.a.s. Xk > µk/2.

Proof. Since

P[Xk < µk/2] 6 P[|Xk − µk| > µk/2] 6
4Var[Xk]

µ2
k

,

where the last inequality holds by Chebyshev’s inequality (Theorem 5.2.11), it suffices to

show that Var[Xk]/µ2
k = o(1).

Let v1, . . . , vn denote the vertices of G. For every 1 6 i 6 n, let Yi be the indicator

random variable taking the value 1 if dG(vi) = k and 0 otherwise. Then

E[Yi] = P[Yi = 1] =

(

n− 1

k

)

pk(1 − p)n−1−k.

Moreover, Xk =
∑n

i=1 Yi and thus

µk =
n
∑

i=1

E[Yi] = n

(

n− 1

k

)

pk(1 − p)n−1−k.

For every 1 6 i 6 n we have Var[Yi] = E[Y 2
i ] − (E[Yi])

2 = E[Yi] − (E[Yi])
2 6 E[Yi],

where the second equality holds since Y 2
i = Yi. Hence,

n
∑

i=1

Var[Yi] 6
n
∑

i=1

E[Yi] = µk.
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Fix some 1 6 i 6= j 6 n. Then

E[YiYj] = P[YiYj = 1] = P[(Yi = 1) ∧ (Yj = 1)]

= p

[(

n− 2

k − 1

)

pk−1(1 − p)n−1−k

]2

+ (1 − p)

[(

n− 2

k

)

pk(1 − p)n−2−k

]2

.

Therefore,

Cov[Yi, Yj] = E[YiYj] − E[Yi]E[Yj]

= p

[(

n− 2

k − 1

)

pk−1(1 − p)n−1−k

]2

+ (1 − p)

[(

n− 2

k

)

pk(1 − p)n−2−k

]2

−
[(

n− 1

k

)

pk(1 − p)n−1−k

]2

=

[(

n− 1

k

)

pk(1 − p)n−1−k

]2
[

(

k

n− 1

)2
1

p
+

(

1 − k

n− 1

)2
1

1 − p
− 1

]

.

Hence,

1

µ2
k

∑

16i 6=j6n

Cov[Yi, Yj] =
n(n− 1)

µ2
k

[(

n− 1

k

)

pk(1 − p)n−1−k

]2

·
[

(

k

n− 1

)2
1

p
+

(

1 − k

n− 1

)2
1

1 − p
− 1

]

=
n− 1

n

[

(

k

n− 1

)2
1

p
+

(

1 − k

n− 1

)2
1

1 − p
− 1

]

6

(

k

n− 1

)2
1

p
+

p

1 − p

6

(

9(q + 1 − ε) log n

n− 1

)2
n

(q + 1 − ε) log n
+

(q + 1 − ε) log n

n− (q + 1 − ε) log n

6
82(q + 1) log n

n− 1
+

2(q + 1) log n

n
= o(1). (5.2.4)
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Moreover, by our assumption on k we have

1

µk

= o(1). (5.2.5)

We conclude that

Var[Xk]

µ2
k

=
1

µ2
k

(

n
∑

i=1

Var[Yi] +
∑

16i 6=j6n

Cov[Yi, Yj]

)

6
1

µk

+
1

µ2
k

∑

16i 6=j6n

Cov[Yi, Yj] = o(1),

where the last equality holds by (5.2.4) and (5.2.5). �

Lemma 5.2.17 Let G ∼ G(n, p), where p = c log n/n for some constant c > 2
9 log 3

. For

every 0 6 i 6 n− 1, let Xi = |{u ∈ V (G) : dG(u) = i}| and let µi = E[Xi]. Then

n−1
∑

i=9c logn

µi = o(1).

Proof. We first observe that the function f(i) = (enp/i)i is decreasing for i > 9c log n.

Indeed,

f(i)

f(i + 1)
=

(

1 +
1

i

)i

· i + 1

enp
>

i + 1

enp
>

9c log n

ec log n
=

9

e
> 1 . (5.2.6)

Then

n−1
∑

i=9c logn

µi = n

n−1
∑

i=9c logn

(

n− 1

i

)

pi(1 − p)n−1−i
6 n

n−1
∑

i=9c logn

(enp

i

)i

6 n2
(e

9

)9c logn

6 exp {2 log n− 9c log n · log 3} = o(1),

where the second inequality holds by (5.2.6) and the last equality follows from our choice

of c. �

Corollary 5.2.18 Let G ∼ G(n, p), where p = c log n/n for some constant c > 2
9 log 3

.

Then, a.a.s. ∆(G) 6 9c log n.
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Proof. For every 0 6 i 6 n − 1, let Xi = |{u ∈ V (G) : dG(u) = i}| and let µi = E[Xi].

Then

P[∆(G) > 9c log n] = P[∃i such that 9c log n 6 i 6 n−1 and Xi > 0] 6
n−1
∑

i=9c logn

µi = o(1),

where the first inequality follows from Theorem 5.2.9 and a union bound, and the last

equality follows from Lemma 5.2.17. �

Lemma 5.2.19 Let ε > 0 be a constant and let G ∼ G(n, p), where p > (1 + ε) log n/n.

Then there exists a constant γ = γ(ε) > 0 such that a.a.s. δ(G) > γ log n.

Proof. By monotonicity, we can assume that p = (1 + ε) log n/n. Let 0 < γ < 1 be a con-

stant satisfying γ log(e(1+ε)/γ) < ε/3; such a constant exists since limγ→0 γ log(1/γ) = 0.

We first observe that the function f(i) = (enp/i)i is increasing for 1 6 i 6 γ log n. Indeed,

f(i)

f(i + 1)
=

(

1 +
1

i

)i

· i + 1

enp
6

i + 1

np
6

γ log n + 1

(1 + ε) log n
< γ < 1 , (5.2.7)

where the last inequality holds by our choice of γ.

Let X be the random variable that counts the number of vertices of degree at most

γ log n in G. Then,

E[X] = n

γ logn
∑

i=0

(

n− 1

i

)

pi(1 − p)n−1−i
6 n

γ logn
∑

i=0

(

n

i

)

pi exp{−p(n− 1 − i)}

6 n exp{−p(n− 1)} + n exp{−p(n− 2γ log n)}
γ logn
∑

i=1

(enp

i

)i

6 n exp {− (1 + ε/2) log n} + n exp {− (1 + ε/2) log n} · γ log n

(

e(1 + ε) log n

γ log n

)γ logn

6 n−ε/2

(

1 + exp

{

log γ + log log n + γ log n log

(

e(1 + ε)

γ

)})

= o(1),

where the third inequality holds by (5.2.7) and the last equality follows from our choice
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of γ. Using Theorem 5.2.9 we conclude that

P[δ(G) 6 γ log n] = P[X > 0] 6 E[X] = o(1).

Hence, a.a.s. δ(G) > γ log n. �

Lemma 5.2.20 Let r > 0 be a constant and let G ∼ G(n, p), where p = c log n/n for

some constant c > 2
9 log 3

. Then a.a.s.

(

dG(v)

r log n

)

6 nr(1+log(9c)+log(1/r))

holds for any vertex v ∈ V (G).

Proof. Since, by Corollary 5.2.18, a.a.s. ∆(G) 6 9c log n, it follows that a.a.s.

(

dG(v)

r log n

)

6

(

e · dG(v)

r log n

)r logn

6

(

e · 9c

r

)r logn

= exp {r log n (1 + log(9c) + log (1/r))}

= nr(1+log(9c)+log(1/r)) . �

Lemma 5.2.21 Let ε > 0 be a constant, let q be a positive integer and let G ∼ G(n, p),

where p = (q + 1 + ε) log n/n. Then a.a.s.

∑

v∈V (G)

(

q

q + 1

)dG(v)

6 n−ε/(4(q+1)).

Proof. For every 0 6 i 6 n − 1, let Xi = |{u ∈ V (G) : dG(u) = i}| and let µi = E[Xi].

Setting

X =
n−1
∑

i=0

(

q

q + 1

)i

Xi =
∑

v∈V (G)

(

q

q + 1

)dG(v)

,
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it suffices to prove that a.a.s. X 6 n−ε/(4(q+1)). Indeed, we have

E[X] =
n−1
∑

i=0

(

q

q + 1

)i

µi = n

(

1 − p

q + 1

)n−1

6 n exp

{

−(q + 1 + ε) log n

(q + 1)n
· (n− 1)

}

6 n exp

{

−
(

1 +
ε

2(q + 1)

)

log n

}

= n−ε/(2(q+1)),

where the second equality follows from Lemma 5.2.15. Therefore,

P
[

X > n−ε/(4(q+1))
]

6 nε/(4(q+1)) · E[X] 6 nε/(4(q+1))−ε/(2(q+1)) = n−ε/(4(q+1)),

where the first inequality follows from Theorem 5.2.9. �

Lemma 5.2.22 Let ε > 0 be a constant, let q be a positive integer and let G ∼ G(n, p),

where p = (q + 1 + ε) log n/n. Then there exists a constant r > 0 such that the following

holds. For every v ∈ V (G), let E(v) = {e ∈ E(G) : v ∈ e} and let F1 =
⋃

v∈V (G) A(v),

where A(v) = {A(v) ⊆ E(v) : |A(v)| = dG(v) − r log n}. Then

∑

A∈F1

(

q

q + 1

)|A|
= o(1).

Proof. By Lemma 5.2.19 there exists a constant γ > 0 such that δ(G) > γ log n. Let

0 < r < γ be a constant satisfying

r

(

1 + log(9(q + 1 + ε)) + log (1/r) + log

(

q + 1

q

))

<
ε

4(q + 1)
.

Such a constant r exists since limr→0 r log(1/r) = 0.
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Using this r in the definition of F1, we obtain

∑

A∈F1

(

q

q + 1

)|A|
=
∑

v∈V (G)

(

dG(v)

r log n

)(

q

q + 1

)dG(v)−r logn

6

(

q + 1

q

)r logn

· nr(1+log(9(q+1+ε))+log(1/r)) ·
∑

v∈V (G)

(

q

q + 1

)dG(v)

6 exp

{

r log n · log

(

q + 1

q

)}

· nr(1+log(9(q+1+ε))+log(1/r))−ε/(4(q+1))

= nr(1+log(9(q+1+ε))+log(1/r)+log( q+1
q ))−ε/(4(q+1)) = o(1),

where the first inequality follows from Lemma 5.2.20, the second inequality follows from

Lemma 5.2.21 and the last equality follows from our choice of r. �

Lemma 5.2.23 Let ε > 0 be a constant, let q be a positive integer and let G ∼ G(n, p),

where p = (q + 1 + ε) log n/n. Then there exists a constant λ > 0 for which

∑

A∈F2

(

q

q + 1

)|A|
= o(1),

where F2 =
{

EG(X, Y ) : X, Y ⊆ V (G), |X| = |Y | = λn log logn
logn

and X ∩ Y = ∅
}

.

Proof. Let λ > 100 be a constant satisfying λ log
(

q+1
q

)

> 2. Then

∑

A∈F2

(

q

q + 1

)|A|
6

(

n
λn log logn

logn

)2(
q

q + 1

)

λ2n(log logn)2

logn

6

[

(

e log n

λ log log n

)2(
q

q + 1

)λ log logn
]

λn log logn
logn

6

[

exp

{

2 log log n− λ log log n log

(

q + 1

q

)}]
λn log logn

logn

= o(1),

where the first inequality follows since q > 1 and by Lemma 5.2.13 which is applicable

since λ > 100, and the last equality follows since λ log
(

q+1
q

)

> 2 by assumption. �
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5.2.6 Expanders in Random Graphs

Here we present two results concerning expanders in G(n, p). The first result asserts that

typically, for subgraphs of a random graph, large minimum degree is enough to ensure

expansion.

Lemma 5.2.24 Let G ∼ G(n, p), where p = c log n/n for some constant c > 0, and

let α = α(n) and k = k(n) be such that limn→∞ αk log n = ∞. Then a.a.s. every

spanning subgraph G′ ⊆ G with minimum degree δ(G′) > r log n for some constant

r > 4cα(k + 1)2 > 0 is an (αn, k)–expander.

Proof. Suppose for a contradiction that there exists a set A ⊆ V (G) of size

1 6 |A| 6 αn and a spanning subgraph G′ ⊆ G, with minimum degree δ(G′) > r log n as

in the statement of the lemma, such that |NG′(A)| < k|A|. Then,

|A ∪NG′(A)| < (k + 1)|A| 6 (k + 1)αn.

It thus follows by Lemma 5.2.12 that a.a.s.

eG′(A ∪NG′(A)) 6 2c(k + 1)α|A ∪NG′(A)| log n < 2c(k + 1)2α|A| log n 6 r|A| log n/2.

(5.2.8)

On the other hand, since δ(G′) > r log n, we have

eG′(A ∪NG′(A)) > r|A| log n/2

which clearly contradicts (5.2.8). We conclude that G′ is indeed an (αn, k)–expander. �

Using Pósa’s lemma (Lemma 5.2.3), the following result shows that a sparse graph

within G(n, p), with good expansion, has many boosters in the random graph.
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Lemma 5.2.25 Let ε, s1 < 1 and s2 < 1/100 be positive constants and let G ∼ G(n, p),

where p = (1 + ε) log n/n. If s1(1 − log s1) < 1/400, then a.a.s. every connected non–

Hamiltonian (n/5, 2)–expander Γ ⊆ G with at most s1n log n edges has at least s2n log n

boosters in G.

Proof. For a connected non–Hamiltonian (n/5, 2)–expander Γ ⊆ G with at most s1n log n

edges, let XΓ = |BΓ∩E(G)|. Then XΓ ∼ Bin(|BΓ |, p) and, by Lemma 5.2.3, |BΓ | > n2/50.

Therefore,

P[XΓ < s2n log n] < exp

{

−
(

1 − 50s2
1 + ε

)2

n2p/100

}

6 exp {−n log n/400} ,

where the first inequality follows from Theorem 5.2.10(i) with a = 1 − 50s2/(1 + ε) and

the last inequality holds since s2 6 1/100 and ε > 0.

Taking a union bound over all spanning subgraphs of G which are connected non–

Hamiltonian (n/5, 2)–expanders with at most s1n log n edges, we conclude that the

probability that there exists such a subgraph with less than s2n log n boosters in G is

at most

s1n logn
∑

m=1

(
(

n
2

)

m

)

pm · exp {−n log n/400} 6 exp {−n log n/400} ·
s1n logn
∑

m=1

(

en log n

m

)m

6 exp {−n log n/400} · s1n log n ·
(

e

s1

)s1n logn

6 exp {2 log n + s1n log n(1 − log s1) − n log n/400} = o(1),

where the first inequality holds since ε < 1, the second inequality holds since

f(m) = (en log n/m)m is increasing for 1 6 m 6 s1n log n as can be shown by a

calculation similar to (5.2.7), and the last equality holds since s1(1 − log s1) < 1/400

by assumption. �

104



5.3 Main Proofs

Here we present the proofs of our results in Section 5.1.

The Waiter–Client Hamiltonicity Game

Proof of Theorem 1.5.11. Fix some constant ε > 0 and let n be sufficiently large.

Client’s Strategy: For p = (1−ε) log n/n, it is well–known (see, e.g., [25, 69]) that a.a.s.

G ∼ G(n, p) has an isolated vertex and therefore is not Hamiltonian. Hence, a.a.s. Client

wins the (1 : q) Waiter–Client Hamiltonicity game on E(G) regardless of his strategy.

Waiter’s Strategy: Assume then that G ∼ G(n, p), where p = (1 + ε) log n/n for some

constant ε > 0. We present a strategy for Waiter to win the (1 : q) Waiter–Client

Hamiltonicity game on E(G) and then prove that a.a.s. he can play according to this

strategy. Waiter’s strategy consists of the following four stages.

Preparation Stage: Waiter splits G into two spanning subgraphs, the main graph

GM and a reservoir graph R, by placing each edge of G in R independently with

probability p = c/ log n, for some positive constant c (defined later), and then setting

E(GM) = E(G) \ E(R).

Stage I: By only offering edges from GM and using Lemmas 5.2.5 and 5.2.24, Waiter

forces Client to build a (c1n, 2)–expander G1 with at most c2n log n edges for some positive

constants c1 and c2 (defined later).

Stage II: By only offering the edges of R and following the strategy given by Theorem

2.2.7, Waiter forces Client to build a graph G2 such that G1∪G2 is an (n/5, 2)–expander.

Stage III: For as long as GC is not Hamiltonian, in each round Waiter offers Client

q + 1 free boosters with respect to GC . Once GC becomes Hamiltonian, Waiter plays

arbitrarily for the remainder of the game.
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It is evident from the description of Stage III of the proposed strategy that, if Waiter

is able to play according to this strategy, then he wins the game. Moreover, it is clear

that Waiter can follow the Preparation Stage of the strategy. It thus remains to prove

that he can follow Stages I–III as well. We consider each stage in turn.

Stage I: We first observe that

p(1 − p) = (1 + ε)(log n− c)/n > (1 + ε/2) log n/n,

and that GM ∼ G(n, p(1 − p)). It then follows from Lemma 5.2.19 that a.a.s.

δ(GM) > γ log n for some constant γ > 0. Let 0 < c2 < 1/(600(q + 1)) be a constant

satisfying bγ log n/(2(q + 1))c > c2 log n and 3c2(1 − log(3c2)) < 1/400. By Lemma 5.2.5,

Waiter has a strategy to force Client to build a spanning subgraph G1 of GM with

minimum degree δ(G1) > c2 log n, by offering at most (q + 1)c2n log n edges of GM ; in

particular, e(G1) 6 c2n log n. Finally, it follows by Lemma 5.2.24 that G1 is a (c1n, 2)–

expander, for a sufficiently small constant c1 > 0.

Stage II: Let F = {ER(X, Y ) : X, Y ⊆ V (G), |X| = |Y | = c1n and X ∩ Y = ∅}. Since

R ∼ G(n, pp) and pp = (1 + ε)c/n, we have

∑

A∈F
2−|A|/(2q−1)

6

(

n

c1n

)2

2−0.5c21c(1+ε)n/(2q−1)
6

(

e

c1

)2c1n

2−c21cn/(4q)

= exp

{

2c1n (1 − log c1) −
c21cn log 2

4q

}

= o(1),

where the first inequality follows from Lemma 5.2.13 which is applicable for a

sufficiently large constant c, and the last equality holds for sufficiently large c. Hence, by

Theorem 2.2.7, and since all edges of R are free at the beginning of Stage II, Waiter has

a strategy to force Client to claim an edge of R between every pair of disjoint sets of

vertices of G, each of size c1n.
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Let G2 denote the graph built by Client in Stage II. We claim that G1 ∪ G2 is an

(n/5, 2)–expander. Since G1 is a (c1n, 2)–expander and expansion is a monotone increasing

property, it suffices to demonstrate expansion for sets A ⊆ V (G) of size c1n 6 |A| 6 n/5.

Suppose for a contradiction that A ⊆ V (G) is a set of size c1n 6 |A| 6 n/5 and yet

|NG1∪G2(A)| < 2|A|. Then |V (G) \ (A ∪NG1∪G2(A))| > n− 3|A| > 2n/5 > c1n and there

are no edges of G1 ∪ G2 between A and V (G) \ (A ∪ NG1∪G2(A)). This contradicts the

way G2 was constructed. We conclude that G1∪G2 is indeed an (n/5, 2)–expander at the

end of Stage II.

Stage III: Observe that, at the end of Stage II, Client’s graph GC is connected. Indeed,

since G1 ∪ G2 is an (n/5, 2)–expander, each of its connected components must have size

at least 3n/5 and thus there can be only one such component. It follows that, at the

beginning of Stage III, Client’s graph is a connected (n/5, 2)–expander. Since connectivity

and expansion are monotone increasing properties, this remains true for the remainder of

the game. We will show that this allows Waiter to offer Client q+ 1 free boosters in every

round of Stage III until GC becomes Hamiltonian.

It is evident from Definition 5.2.1 that one needs to sequentially add at most n

boosters to an n–vertex graph to make it Hamiltonian. Hence, in order to prove that

Waiter can follow Stage III of the proposed strategy, it suffices to show that, for every

1 6 i 6 n, if GC is not Hamiltonian at the beginning of the ith round of Stage III, then

|BGC
∩ E(GF )| > q + 1 holds at this point. By the description of Stage I we have

e(G1) 6 c2n log n and by the description of Stage II we have

e(G2) 6 e(R) 6 (1 + ε)cn,

where the last inequality holds a.a.s. by Lemma 5.2.14. Hence, a.a.s.

e(G1 ∪G2) 6 2c2n log n.

107



Fix an integer 1 6 i 6 n and suppose that GC is not Hamiltonian at the begin-

ning of the ith round of Stage III. Then GC is a connected, non–Hamiltonian (n/5, 2)–

expander with at most 2c2n log n + (i − 1) 6 3c2n log n edges. Since, moreover, c2

was chosen such that 3c2(1 − log(3c2)) < 1/400, it follows by Lemma 5.2.25 that

|BGC
∩ E(G)| > n log n/200. We conclude that

|BGC
∩E(GF )| > |BGC

∩E(G)|−(e(GC)+e(GW )) > n log n/200−3c2(q+1)n log n > q+1,

where the last inequality holds since c2 < 1/(600(q + 1)) by assumption. �

The Client–Waiter Hamiltonicity Game

Proof of Theorem 1.5.12. Fix some constant ε > 0 and let n be sufficiently large.

Client’s Strategy: Assume first that G ∼ G(n, p), where p = (q + 1 + ε) log n/n. We

will present a strategy for Client for the (1 : q) Client–Waiter Hamiltonicity game on

E(G); it is based on the sufficient condition for Hamiltonicity from Theorem 5.2.4. Let

r and F1 be as in Lemma 5.2.22 and let λ and F2 be as in Lemma 5.2.23. Note that
∑

A∈F1

(

q
q+1

)|A|
= o(1) holds by Lemma 5.2.22 and that

∑

A∈F2

(

q
q+1

)|A|
= o(1) holds by

Lemma 5.2.23. Let F = F1 ∪ F2. Then

∑

A∈F

(

q

q + 1

)|A|
=
∑

A∈F1

(

q

q + 1

)|A|
+
∑

A∈F2

(

q

q + 1

)|A|
= o(1).

It thus follows by Theorem 2.2.6 that Client has a winning strategy for the (1 : q) Client–

Waiter game (E(G),F∗).

We claim that if Client follows this strategy, then his graph at the end of the game

satisfies properties P1 and P2 from Theorem 5.2.4, with d = (log n)1/3, and is therefore

Hamiltonian. Indeed, it follows from the definition of F1 that, at the end of the game, the

108



minimum degree in Client’s graph will be at least r log n. Using Lemma 5.2.24, it is then

easy to verify that Client’s graph is an (n/ log n, (log n)1/3)–expander and thus satisfies

property P1. Moreover, a straightforward calculation shows that, by the definition of F2,

at the end of the game, Client’s graph will satisfy property P2 as well.

Waiter’s Strategy: Next, assume that G ∼ G(n, p), where p = (q + 1 − ε) log n/n. We

will present a strategy for Waiter to isolate a vertex in Client’s graph.

Let k be a positive integer and let Ik be an independent set in G such that

|Ik| > 2(q + 1)k+1/qk and dG(u) = k for every u ∈ Ik. For every u ∈ Ik, let

E(u) = {e ∈ E(G) : u ∈ e} and let X =
⋃

u∈Ik E(u). Waiter isolates a vertex of Ik

in Client’s graph by following the strategy for the (1 : q) box game on {E(u) : u ∈ Ik}

which is described in the proof of Proposition 5.2.6.

Since |Ik| > 2(q + 1)k+1/qk, it follows by Proposition 5.2.6 that Waiter can indeed

isolate a vertex in Client’s graph. Hence, it remains to prove that Waiter can play

according to the proposed strategy. In order to do so, it suffices to show that a.a.s. a

positive integer k and an independent set Ik as above exist.

For every 0 6 i 6 n− 1, let Xi = |{u ∈ V (G) : dG(u) = i}| and let µi = E[Xi]. Then

n−1
∑

i=0

(

q

q + 1

)i

µi = n

(

1 − p

q + 1

)n−1

(5.3.1)

> n exp

{

−n− 1

n

(

(q + 1 − ε) log n

q + 1
+

(q + 1 − ε)2 log2 n

n(q + 1)2

)}

> n exp

{

−
(

1 − ε

2(q + 1)

)

log n

}

> nδ, (5.3.2)

where the first equality holds by Lemma 5.2.15, the first inequality follows from the fact

that e−(x+x2) 6 1 − x holds for sufficiently small x > 0 by the Taylor expansion of e−y,
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and the last inequality holds for a sufficiently small constant δ > 0. Since, moreover,

n−1
∑

i=9(q+1−ε) logn

(

q

q + 1

)i

µi = o(1),

holds by Lemma 5.2.17, it follows from (5.3.1) that

9(q+1−ε) logn
∑

i=0

(

q

q + 1

)i

µi > nδ/2.

Hence, there exists an integer 0 6 k 6 9(q + 1 − ε) log n such that

(

q

q + 1

)k

µk >
nδ

18(q + 1) log n
.

In particular, µk → ∞ as n → ∞ holds for this value of k and thus, by Lemma 5.2.16,

a.a.s Xk > µk/2. It follows that a.a.s.

qk

2(q + 1)k+1
·Xk >

qk

2(q + 1)k+1
· µk

2
>

nδ

72(q + 1)2 log n
. (5.3.3)

Let Sk = {u ∈ V (G) : dG(u) = k} and let Ik ⊆ Sk be an independent set of maximum

size. It is easy to see that

|Ik| >
|Sk|
k + 1

=
Xk

k + 1
>

nδ

72(k + 1)(q + 1)2 log n
· 2(q + 1)k+1

qk
>

2(q + 1)k+1

qk
,

where the second inequality holds by (5.3.3) and the last inequality holds for sufficiently

large n since k 6 9(q + 1 − ε) log n. �
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Chapter 6

Conclusion and Open Problems

6.1 Conclusion

This thesis focuses on two types of biased positional games: Waiter–Client and Client–

Waiter games played on graphs, hypergraphs and clauses of boolean variables, with various

properties such as graph colourability and satisfiability of a boolean formula defining the

winning sets. By developing winning strategies for Waiter and Client, we determine the

winner of each game we study across almost all values of Waiter’s bias when Client’s bias

is fixed at 1. More precisely, we give an approximate value for the threshold bias of these

games, whose close proximity to the threshold bias predicted by the typical outcome of

a game played by random players adds the games we study to those that exhibit the

probabilistic intuition. We also characterise those probabilities for which Waiter and

Client can a.a.s. build a Hamilton cycle in the binomial random graph when playing

a fixed bias Waiter–Client and Client–Waiter game respectively. In short, we concern

ourselves with discovering which player wins when Waiter and Client play a selection of

positional games optimally.

Given that each game we consider is played on a finite board, with each board element

allowed to be claimed at most once by any player throughout the game, one may wonder
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why we invest our efforts developing explicit winning strategies for Waiter and Client

when a computer could simply perform an exhaustive search of all possible sequences of

moves to determine the optimal winner. In fact, classical game theory deems positional

games like those we study here trivially solved for precisely this reason. However, although

theoretically a computer could find a solution for us, in reality the amount of time required

to achieve this is often too great. A good example of this is the generalised 3–dimensional

version of Tic–Tac–Toe played on an n × n × n board. Even when n is as small as 5,

we require around 3125 steps to explore all possible game routes. In comparison, the

estimated age of the universe is less than 354 seconds old. In light of this, an exhaustive

search method is particularly impractical for the games addressed in this thesis since,

although finite, each board considered can be as large as you like. In fact, the larger the

board, the more accurate our results are.

It is tempting to believe that a smarter search process, one that exploits patterns

in the game say, can be utilised to make this method a more feasible option (existing

techniques for exhaustive search are discussed in [79]). However, despite the simplistic

setting of a positional game, patterns in the game play are not obviously present and this

unpredictability makes their analysis difficult. This is evident from the lack of knowledge

we have regarding the outcome of generalised d–dimensional Tic–Tac–Toe on an nd board.

We only have solutions for the case d = 3, n = 3, 4; n = 3 is trivially a win for the first

player and the proof that this is also true for the case n = 4, developed by Patashnik [80]

in 1980, is much more difficult and computer aided.

How do we overcome this combinatorial chaos? One may suggest that an analysis

of the random game could help. However, since we are interested in explicit winning

strategies that guarantee a win for the player that obeys them, simulating the random

game alone is not enough. Positional game theory bridges the gap through potential–type

arguments to prove results like the Erdős–Selfridge theorem discussed in Chapter 2. There,
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we saw how these are used to convert a probabilistic analysis of the random game into

deterministic optimal winning strategies. In fact, this approach can also be used to de–

randomise randomised algorithms in a similar way. These potential arguments enable us

to develop explicit winning strategies in Maker–Breaker, Avoider–Enforcer, Waiter–Client

and Client–Waiter games without the use of a computer or exhaustive search through the

game tree. For the latter two games, we have witnessed the power of such arguments

throughout this thesis. Despite strong games like Tic–Tac–Toe being notoriously more

difficult to analyse than the aforementioned weak games, strategies for the latter can

sometimes be adapted to work for strong games too. For example, this is true for the

Maker–Breaker perfect matching [46], Hamiltonicity [46], and k–connectivity games [47].

The probabilistic intuition also has the potential to use what happens in the random

game to determine who wins the optimal game, provided we arrive at some characteri-

sation of the positional games that exhibit it. Unlike the potential–type arguments, this

heuristic cannot provide explicit winning strategies along with the knowledge of which

player wins. However, one may be encouraged to use Monte–Carlo methods to investi-

gate possible strategies if one knows the game exhibits the probabilistic intuition. These

methods involve players choosing their next elements to claim based on the percentage of

times such a choice leads to a win amongst many simulated random games that start from

the current point of play. It makes sense for us to have more confidence in these Monte–

Carlo methods if we know the player with a winning strategy is the player who wins a

random game most of the time. These methods have certainly found success in finding

strategies for the game Go. Initially, the computer fared poorly when playing against

a human opponent. However, when computers started using variations of Monte–Carlo

methods, they were able to challenge much higher level Go players. A huge breakthrough

in this area arose in 2016 when the Google DeepMind program AlphaGo beat the number

one world Go champion Lee Sodel without handicap, winning four out of the five matches
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played, by combining Monte–Carlo tree search with deep neural networks. A greater un-

derstanding of which games exhibit the probabilistic intuition and why may enable us to

develop more of an intuition about the success of these Monte–Carlo methods. For more

in depth conversation regarding the probabilistic intuition, its connection to Monte–Carlo

methods, and combinatorial chaos, the interested reader is invited to read [13] and [64],

whose material inspired much of this discussion.

The most common approach towards gaining more understanding about this heuristic

is to continue locating the threshold bias of unexplored games, using the aforementioned

potential methods to create winning strategies, and compare their values with what is

predicted by the probabilistic intuition. The many examples of Waiter–Client games that

exhibit strong probabilistic intuition, together with the fact that games with Waiter and

Client are currently less well studied than Maker–Breaker and Avoider–Enforcer games,

motivated us to do this for the games in this thesis.

For any given game, the relationship between the inverse of the threshold bias, the

probability threshold of a winning set appearing in the random graph and the probability

threshold for the appearance of a graph on which a specific player has a winning strategy

is also of interest. We know of Maker–Breaker games for which these three parameters are

equal. For example, this is true for the Maker–Breaker games mentioned previously, whose

strategies can be adapted to work for strong games. Our study of the Hamiltonicity game

on the random graph may help to understand this relationship further in the Waiter–

Client and Client–Waiter settings.

6.2 Open Problems

6.2.1 Complete–Minor and Planarity Games

In Chapter 3, we found that the asymptotic threshold bias of the Waiter–Client Kt–minor

game (E(Kn),Mt), for every t in the range 4 6 t = O(
√
n), is (1 + o(1))n. By devoting
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further attention to the case where t is large, we additionally found that the threshold

bias can be pushed below n for such t. We also found that the Client–Waiter version

has asymptotic threshold bias (1/2 + o(1))n. As discussed in Chapter 1, these results

evidence an exhibition of the probabilistic intuition by both games. Most notably, the

threshold bias of the Waiter–Client version is asymptotically equivalent to that predicted

by the heuristic and therefore exhibits strong probabilistic intuition. Due to Kuratowski’s

Theorem, the Waiter–Client and Client–Waiter non–planarity games (E(Kn),NP) inherit

the same asymptotic threshold biases as their complete–minor counterparts and therefore

also exhibit the probabilistic intuition. These findings give rise to the following two open

problems.

The Contraction Clique Number

For a graph G, ccl(G) denotes its contraction clique number ; the largest t such that G

contains a Kt–minor. Much is known about this graph invariant in the context of the

binomial random graph G(n, p) for a wide range of probabilities p. In the sub–critical

regime (when p 6 (1 − ε)/n for any ε > 0) G(n, p) a.a.s. contains at most one cycle

(see e.g. [25, 69]) and hence ccl(G(n, p)) 6 3 = O(1). In the super–critical regime

(when p > (1 + ε)/n for any ε > 0) Fountoulakis, Kühn and Osthus [48] found that

ccl(G(n, p)) = Θ(
√
n). Additionally, in the same paper, they also studied ccl(G(n, p)) in

the critical window i.e. when p = (1 + λn−1/3)/n for some λ ∈ R. Indeed, by building

on research by  Luczak in [88] and [89], they found that a.a.s. ccl(G(n, p)) = Θ(λ3/2) for

such p with 1 � λ � n1/3.

Since Client’s graph GC at the end of a (1 : q) game on E(Kn) has the same number

of edges as those expected to appear in the random graph G(n, 1/(q+ 1)), we can transfer

these notions of the sub–critical regime, the super–critical regime and the critical window

to the game setting. More precisely, we can say that the sub–critical regime describes the

range (1 + ε)n 6 q 6
(

n
2

)

− 1 and the super–critical regime describes 1 6 q 6 (1 − ε)n,
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for some ε > 0. In the same way, the critical window consists of those bias values q for

which q = (1 − λn−1/3)n for some λ ∈ R. We showed in Theorem 1.5.1 of Chapter 3

that Client’s graph GC at the end of the (1 : q) Waiter–Client Kt–minor game, in which

both players play optimally, a.a.s. satisfies ccl(GC) = Θ(ccl(G(n, 1/(q + 1)))) in both the

sub–critical and super–critical regimes. It would be interesting to see if this is also true

in the critical window. For this range of q, Theorem 1.5.1 provides the non–trivial lower

bound ccl(GC) > cλ2n−1/6, for some constant c > 0 when 1 � λ � n1/3 (note that, since

cλ2n−1/6 � 1 when 1 � λ � n1/12, the aforementioned lower bound is trivially true for

this range of λ). However, as λ2n−1/6 � λ3/2 when 1 � λ � n1/3, we have some way to

go before we can show that ccl(GC) = Θ(ccl(G(n, 1/(q + 1)))) in the critical window.

Building a Larger Complete–Minor

Since we’ve seen that Waiter can force a complete–minor of order Θ(
√
n) to be built in

GC when playing the Waiter–Client Kt–minor game, we would also like to see if Client

can do the same in the Client–Waiter version. Even when q = (1/2 − ε)n, for some

arbitrarily small but fixed ε > 0, Theorem 1.5.2 only provides a strategy for Client to

build a complete–minor of order Θ(nγ), where γ = γ(ε) > 0 is a small constant.

6.2.2 Colourability and k–SAT Games

In Chapter 4, we showed that the threshold bias for both the Waiter–Client and Client–

Waiter versions of the non–r–colourability game (E(Kn),NC(2)
r ) has order Θ(n/(r log r)).

We also gave tighter bounds on the threshold bias for the case r = 2. Following this,

we generalised our proofs to the hypergraph setting to show that the Waiter–Client and

Client–Waiter non–r–colourability games (E(K
(k)
n ),NC(k)

r ) have threshold bias 1
n

(

n
k

)

rOk(k)

and 1
n

(

n
k

)

r−k(1+ok(1)) respectively. The case r = 2 in these hypergraph games additionally

gave rise to proving that the threshold bias of the Waiter–Client and Client–Waiter k–

SAT games (C(k)
n ,FSAT ) is 1

n

(

n
k

)

up to a factor that is exponential and polynomial in k
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respectively. As discussed in Chapter 1, our findings show that all of these games exhibit

the probabilistic intuition.

Tighter Bounds on the Threshold Bias

Although our bounds on the threshold bias for the Waiter–Client and Client–Waiter

colourability and k–SAT games are accurate enough to show that these games exhibit

the probabilistic intuition, they are not as tight in comparison to the asymptotic thresh-

old biases found for the corresponding Kt–minor and non–planarity games. Therefore,

we would like to see these bounds improved, especially in the Waiter–Client versions of

(E(K
(k)
n ),NC(k)

r ) and (Ck
n,FSAT ) where the multiplicative gap is exponential in k. In

particular, we conjecture that all of the games discussed in Chapter 4 exhibit strong

probabilistic intuition, as witnessed to be true for the Waiter–Client games discussed in

Chapter 3.

Conjecture 6.2.1 Let the threshold bias for the (1 : q) Waiter–Client and Client–Waiter

non–r–colourability games (E(Kn),NC(2)
r ) be denoted by bWC

NC(2)
r

and bCW

NC(2)
r

respectively and

let

h(x) := lim
n→∞

n

x · 2r log r
.

Then h
(

bWC

NC(2)
r

)

= h
(

bCW

NC(2)
r

)

= 1.

Conjecture 6.2.2 Let the threshold bias for the (1 : q) Waiter–Client and Client–Waiter

non–r–colourability games (E(K
(k)
n ),NC(k)

r ) be denoted by bWC

NC(k)
r

and bCW

NC(k)
r

respectively

and let

f(x) := lim
k→∞

{

lim
n→∞

1

n

(

n

k

)

1

x · rk−1 log r

}

.

Then f
(

bWC

NC(k)
r

)

= f
(

bCW

NC(k)
r

)

= 1.

Conjecture 6.2.3 Let the threshold bias for the (1 : q) Waiter–Client and Client–Waiter
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k–SAT games (C(k)
n ,FSAT ) be denoted by bWC

FSAT
and bCW

FSAT
respectively and let

g(x) := lim
k→∞

{

lim
n→∞

1

n

(

n

k

)

1

x log 2

}

.

Then g
(

bWC
FSAT

)

= g
(

bCW
FSAT

)

= 1.

Despite Theorems 4.1.1 and 4.1.2 improving our bounds on the threshold bias for the

Waiter–Client and Client–Waiter non–r–colourability games (E(Kn),NC(2)
r ) in the case

r = 2, there is still room for further improvement here. It was conjectured in [18] that

Client can avoid building any cycle if q > (1 + o(1))n. Thus, we believe our upper bound

on the threshold bias given in Theorem 4.1.1 should match this. For the Client–Waiter

version, we believe that the lower bound on the threshold bias given in Theorem 4.1.2

can be improved to match the upper bound, and therefore believe that its asymptotic

threshold bias should be (1/2 + o(1))n.

6.2.3 Hamiltonicity Games on the Random Graph

In Chapter 5, we determined sharp thresholds for the (1 : q) Waiter–Client and Client–

Waiter Hamiltonicity games (E(G(n, p)),HAM), for every fixed positive integer q. For

the Waiter–Client version, it is log n/n; in particular it does not depend on q and is

asymptotically the same as the sharp threshold for the appearance of a Hamilton cycle

in G(n, p). On the other hand, the sharp threshold for the Client–Waiter Hamiltonicity

game on G(n, p) is (q + 1) log n/n and thus does grow with q.

Non–Constant q

It is natural to study the behaviour of these thresholds for non–constant values of q

as well. As discussed in Chapter 1, this was done by Ferber, Glebov, Krivelevich and

Naor in [45] for (1 : q) Maker–Breaker and Avoider–Enforcer Hamiltonicity games on

G(n, p). However, since a player with a strategy to avoid a winning set, when playing on
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E(Kn), may use this same strategy to avoid when playing on a sparser board, we are only

interested in finding probability thresholds for Wq
HAM and Cq

HAM when the winner of the

(1 : q) game on Kn is the player wishing to build a Hamilton cycle in GC i.e. Waiter in

the Waiter–Client game and Client in the Client–Waiter game. It was proved in [18] by

Bednarska–Bzdȩga, Hefetz, Krivelevich and  Luczak that the largest q for which Waiter has

a winning strategy in the (1 : q) Waiter–Client Hamiltonicity game (E(Kn),HAM) is of

linear order. Moreover, using a similar argument to the one employed in [77], Bednarska–

Bzdȩga, Hefetz and  Luczak [19] showed that the largest q for which Client has a winning

strategy in the Client–Waiter version is (1 − o(1))n/ log n. Thus, it would be interesting

to determine threshold probabilities for Wq
H for every q = O(n) and for Cq

H for every

q 6 (1 − o(1)) log n/n.

The Threshold Bias as a Function of Probability p

Another open problem related to the Hamiltonicity game on G(n, p) is to understand how

the threshold biases bWC
HAM and bCW

HAM, for the Waiter–Client and Client–Waiter games

respectively, vary as a function of probability p. From the aforementioned results

concerning play on Kn, we know that bWC
HAM = Θ(n) and bCW

HAM = (1 − o(1))n/ log n

when p = 1. Additionally, since we found that log n/n and (q + 1) log n/n are sharp

thresholds for Wq
HAM and Cq

HAM respectively when q is constant, bWC
HAM(p) = 1 for every

p 6 (1 − ε) log n/n, where ε > 0, and bCW
HAM(p) = 1 for every p = O(log n/n). However,

the behaviour of these threshold biases remains unknown for other values of p.
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Appendix A

Notation at a Glance

V (G) vertex set of graph/hypergraph G

E(G) edge set of graph/hypergraph G

v(G) number of vertices in V (G)

e(G) number of edges in E(G)

EG(A) set of edges of graph G with both endpoints in set A

eG(A) number of edges in EG(A)

EG(A,B) set of edges of graph G with one endpoint in A and one endpoint in B

eG(A,B) number of edges in EG(A,B)

G[S] subgraph/subhypergraph of graph/hypergraph G induced on set S

NG(A) outer neighbourhood of set A in graph G

dG(u) degree of vertex u in graph G

∆(G) maximum degree of graph/hypergraph G

δ(G) minimum degree of graph/hypergraph G

α(G) independence number of graph/hypergraph G

Kn complete graph on n vertices

ω(G) clique number of graph/hypergraph G

χ(G) chromatic number of graph G

EW set of all edges currently owned by Waiter

EC set of all edges currently owned by Client

EF set of all edges currently free

GW graph with edge set EW and vertex set equal to the board

GC graph with edge set EC and vertex set equal to the board
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GF graph with edge set EF and vertex set equal to the board

EH(S) set of edges of hypergraph H with exactly one endpoint in set S

dH(S) number of edges in EH(S) (degree of set S in H)

dH(v) dH({v}) for vertex v ∈ V (H)

χ(H) weak chromatic number of hypergraph H
K

(k)
n complete k–uniform hypergraph on n vertices

HC hypergraph with edge set EC and vertex set equal to the board

HF hypergraph with edge set EF and vertex set equal to the board

G(n, p) binomial random graph on n vertices with edge probability p

Mt set of edge–sets of all Kt–minors contained in Kn

NP set of edge–sets of all non–planar subgraphs of Kn

NC(k)
r set of edge–sets of all non–r–colourable subgraphs of K

(k)
n

FSAT set of sets of clauses whose conjunction is a non–satisfiable k–CNF boolean
formulae on n boolean variables

C(k)
n set of all k–clauses on n boolean variables
∧S conjunction of all k–clauses in set S

HAM set of edge–sets of all Hamiltonian subgraphs of Kn

Wq
HAM set of all subgraphs of Kn on which Waiter wins the (1 : q) Waiter–Client

Hamiltonicity game

Cq
HAM set of all subgraphs of Kn on which Client wins the (1 : q) Client–Waiter

Hamiltonicity game

P(e) set of all parts of partition P that contain a vertex of edge e

∆P(H) maximum number of edges in hypergraph H that contain a vertex of a
single part in partition P of V (H)

a.a.s. asymptotically almost surely; with probability tending to 1 as n tends to
infinity

log loge or ln
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Appendix B

Counterexamples for Bias

Monotonicity

The following example shows that Waiter–Client games are not bias monotone in Client’s
bias.

v1 v2

v4 v3

Figure B.1: Setting of the Waiter–Client game (X,F) in Example B.0.4.

Example B.0.4 Consider a Waiter–Client game (X,F) with board X = {v1, v2, v3, v4}
and set F = {{v1, v2}, {v2, v3}, {v3, v4}, {v1, v4}} of winning sets (see Fig. B.1). A
winning strategy for Waiter in the (1 : 1) game is as follows. Waiter offers elements
v1, v3 in the first round. He then offers the remaining elements v2, v4 in the second, and
final, round. It is clear that Client cannot avoid fully claiming a winning set when Waiter
plays in this way.

However, Client wins the (2 : 1) game (X,F). Indeed, no matter which three free
elements Waiter offers in the first round, there must exist two elements that do not form
a winning set. Client claims these two elements. Then, in the second, and final, round,
only one free element remains for Waiter to offer which Client rejects. Thus, Client avoids
fully claiming a winning set by playing in this way.

Since Waiter wins the (1 : 1) game whilst Client wins the (2 : 1) game, increasing
Client’s bias does not help Waiter. Its increase does not help Client either. This is
illustrated by the fact that Waiter wins the (3 : 1) game. Indeed, since every set of three
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elements of X contain a winning set, Waiter need only offer all elements of X in the first
round of this game to win.

The following example shows that Client–Waiter games are not bias monotone in
Waiter’s bias.

v2 v3

v1 v5v4

v6

Figure B.2: Setting of the Client–Waiter game (X,F) in Example B.0.5.

Example B.0.5 Consider a Client–Waiter game (X,F) with board X = {vi : i ∈ [6]}
and set F = {{v1, v2}, {v2, v3}, {v4, v5}, {v5, v6}} of wining sets (see Fig. B.2). For any
i > 1, in round i of this game, we denote the set of elements offered by Waiter by Zi.

The following is a winning strategy for Client in the (1 : 1) game.
If {v2, v5} ∩ Z1 6= ∅: Client claims an arbitrary element x ∈ {v2, v5} ∩ Z1. Since

|Z1| = 2, there exists a winning set A ∈ F such that A ∩ Z1 = {x}. As all winning sets
consist of two elements, there exists y ∈ A \ Z1 that is free immediately after round 1.
Client then plays arbitrarily until Waiter offers y, at which point Client claims y to fully
claim A ∈ F .

If {v2, v5} ∩ Z1 = ∅: Then there exists A ∈ F such that A∩Z1 = {x} for some x ∈ X
which Client claims in round 1, leaving some free element y ∈ A \ Z1. Client plays
arbitrarily until Waiter offers y, at which point Client claims y to fully claim A ∈ F .

However, Waiter wins the (1 : 2) if he plays such that Z1 = {v1, v2, v3} and
Z2 = {v4, v5, v6}. It is clear that, if Waiter does so, Client cannot fully claim a
winning set. Thus, increasing Waiter’s bias harms Client, since he wins the (1 : 1)
game but loses the (1 : 2) game. In fact, increasing Waiter’s bias does not help Waiter
either since Client wins the (1 : 3) game. His strategy is as follows.

Since |Z1| = 4 in the (1 : 3) game, there exists a winning set A ∈ F such that
A ∩ Z1 = {x} for some x ∈ X. Client claims x in the first round, leaving a free element
y ∈ A\Z1. Client then plays arbitrarily until Waiter offers y, at which point Client claims
y to fully claim A ∈ F .
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