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Abstract

Analysing the instability in the multivariate correlation structure, the present

thesis starts from assessing in-sample and out-of-sample performances of mul-

tivariate GARCH models with or without a structural break. The result em-

phasizes the importance of correlation change point detection for model fittings.

We then propose semi–parametric CUSUM tests to detect a change point in

the covariance structures of non–linear multivariate models with dynamically

evolving volatilities and correlations. The asymptotic distributions of the pro-

posed statistics are derived under mild conditions. We discuss the applicability

of our method to the most often used models, including constant conditional

correlation, dynamic conditional correlation (DCC), BEKK, factor, asymmetric

DCC/BEKK processes. Our simulations show that, even though the nearly unit

root property distorts the size and power of tests, the standardization of the

data with conditional standard deviations in multivariate volatility models can

correct such distortions. Lastly, concerning classical trimmed issue in change

point test, we extend the semi-parametric CUSUM to weighted CUSUM tests,

which enhances the power across either ends of a sample. The asymptotic limit

of weighted CUSUM tests are also derived. A Monte Carlo simulation study sug-

gests that weighted CUSUM tests exhibit better performances than unweighted

ones in finite samples. Regarding empirical applications, we show the absorption

ratio is a leading indicator of the financial fragility, and we study global financial

contagion effect, also we investigate unexpected events in the U.S. equity market.
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Preface

Data science has become increasingly crucial to many subjects across both natural and

social science since the availability of data is explosive in both dimension and frequency.

Concomitantly, advanced technology brings us to an age of boosted computational ability,

thereby leading to low costs in analysing multivariate data. Being different from univariate

data, multivariate analysis can be complicated because of their cross-relationships, especially

in the second moment. Modelling a stationary variance covariance has been developed

for decades and has reached a relatively efficient and accurate level. However, keeping

stationarity in the second moment in the long run is somewhat impractical in such an

unstable global economic environment. Therefore, studying instability in the second moment

is vital to multivariate data analysis. The present thesis devotes itself to contribute on this

topic, providing a survey study and developing multivariate volatility change-point tests with

several financial applications.

The pioneering work to model the second moment in univariate financial data was completed

by Engle (1982), who proposed the ARCH (Autoregressive Conditional Heteroskedasticity)

model to explain the effect of volatility clustering in financial data. The conditional variance

in the ARCH model quickly became the prevailing method to measure risk in finance. But

empirically, the ARCH model suffers from a severe trade-off between over-fitting and the

nature of a long memory process. This limitation is overcome by the GARCH (Generalized

Autoregressive Conditional Heteroskedasticity) model proposed by Bollerslev (1986), and
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later extended to different versions to form a GARCH family.

Nevertheless, univariate GARCH models were empirically inadequate since the multiple risk

factor model became essential to asset pricing. In the 1980s, the well-known CAPM model

was argued by adding other risk factors such as size (Banz, 1981), leverage effect (Bhandari,

1988) and time-varying covariance (Bollerslev et al., 1988). The multivariate GARCH model

then started its lengthy and extensive developments. The detailed literature will be reviewed

in Chapter 1.

Then, modelling the second moment of a set of variables in equity markets, bond markets or

currency markets usually suggests investment and policy implications. For example, Karolyi

(1995) constructed a bivariate system between the United States and Canada based on

the framework of the multivariate GARCH-in-mean model and found significant volatility

spillover effects in the two countries. Also, the dependency in the second moment can be

used to measure systemic risk (Billio et al., 2012). Especially after the Great Recession in

2008, it raised plenty of researches on inspecting the contagion effect and systematic risk. For

instance, Gatfaoui (2013) applied the BEKK model to measure systemic risk and spillover

effect among the U.S., French and U.K.

In reality, considering the efficiency of modelling a multivariate random vector, economic or

financial relationships can never be stable either in the first moment or the second moment,

due to shocks (burst of a bubble, policy change and other innovations) or the financial

contagion effect in the market. As a result, instability in the second moment influences

on the behaviour of multivariate GARCH models, and providing poor modelling. Thus,

detecting instability in the second moment is an imperative task in theoretical and empirical

multivariate data analysis. With regard to the literature in the detection of structural

break/change point, it has cumulated a large amount to test the instability of mean and

variance for univariate case, while the study in the multivariate random vector is still at a
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primitive stage. Existing literature in this area mainly considers instability in the covariance

structure, while the instability in co-volatilities can be a result of either volatility changes

or correlation changes. Considering the correlation structure plays an intuitively important

role in economics and finance, it is motivated and necessary to fulfil this marginal gap. More

related literature is discussed in Chapters 3 and 4.

The present thesis is structured as below. Chapter 1 compares representative multivariate

GARCH models for their in-sample and out-of-sample performances. By manipulating the

correlation structure, a Monte Carlo simulation study assesses the performances of multi-

variate GARCH models in cases with or without a single structural break in finite samples.

Chapter 2 provides an empirical application. By predicting the market conditional covariance

matrices, a concentration index - absorption ratio is extracted from the predicted covariance

matrix. The analysis shows that absorption ratio can be used as a leading indicator for the

financial fragility, providing pre-measurement of systemic risk in the U.S. equity market.

Also, the second chapter tries to detect change points in absorption ratio process as a proxy

of the instability in the covariance structure.

Chapters 3 and 4 develop change-point tests for testing the instability in the correlation

structure. The third chapter generalises the CUSUM tests (Aue et al. 2009) to semi-

parametric CUSUM tests to detect change points in multivariate observations with both

dynamic evolving variance and correlation structures. The application section provides a

study of the global financial contagion effect. Lastly, concerning the trimming issue of

change-point tests argued by Andrews (1993), Chapter 4 extends semi-parametric CUSUM

tests to semi-parametric weighted CUSUM tests. An application of detecting unexpected

events in the U.S. equity market is discussed.

This thesis contributes to the literature in statistics and finance fields: a comparison of rep-

resentative multivariate GARCH models; change-point detection in time-varying correlation
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structures; weighted approximation of correlation change-point tests in dynamic correlation

structures; finding a leading indicator for systemic risk in equity markets; identifying cross-

market financial contagion effects with unknown break dates; detecting systemic events in

equity markets.
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Chapter 1

A Comparison of In-sample and Out-of-sample

Performance of Multivariate GARCH Models
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1.1 Introduction

Selecting an appropriate multivariate GARCH model for empirical applications is always a

hard task as plenty of them are available for the purpose of modelling historical covariance

relationships or forecasting covariance structure. In this paper, we briefly categorise M-

GARCH models into two streams according to their model specifications. The first type is

directly derived by generalising from the univariate GARCH, which is intuitive, but suffers

from problems of positive definite matrix and heavy parameterisation. Another type is

relatively parsimonious, which is obtained by linearly or nonlinearly combining dynamic

components from the second moment. Survey papers were completed by Bauwens et al.

(2006), Engle (2009) and Silvennoinen and Teräsvirta (2009), and for statistical inference,

we refer to Francq and Zakoian (2010).

Plenty of covariance models make the pool of candidates, empirical researchers care more

about which M-GARCH model is the most appropriate for their particular studies. Among

the survey, Engle (2009) provided comparisons between the most popular models on in-

sample performance. Laurent et al. (2012) compared the performance of M-GARCH models

in the term of their forecasting ability. To extend their contributions, this paper compares

in-sample performances of some representative M-GARCH models using series with different

correlation structures and may also display a structural break. Also, we particularly assess

the forecasting ability of these M-GARCH models in terms of predicting the evolution of the

correlation structure.

The candidate models considered begin from those in the early work by Bollerslev et al.

(1988), who represented conditional cross-volatilities by using a stacking operator on a matrix

version of the GARCH model, obtaining the VEC-GARCH model. However, this model

is not well specified in theory as it is difficult to keep the covariance matrix as positive

definite. Also, the number of parameters in the VEC model increases exponentially along
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with increasing dimensionality. To overcome the issue of heavy parameterisation, Ding and

Engle (2001) assumed that there exists diagonal coefficient matrices and extended the VEC

to the Diagonal VEC (Diag/DVEC) model, although such specification does not help much

in a large system. As regard to the issue of ensuring a positive definite covariance matrix,

an important milestone is the construction of the BEKK model (Engle and Kroner, 1995),

which provides a positive definite covariance matrix under weak conditions. Compared to

previous methods, the BEKK model also benefits from slight lighter parametrisation.

Even then, considering the cost and the relatively inefficient computational ability of that

era, all models in this first category can hardly be applied to a system with more than four

variables without encountering computational problems. Thus, inspired by the idea of the

factor model, Engle et al. (1990) applied a common dynamic structure into a conditional

covariance matrix and proposed the linear factor GARCH model, where the Factor GARCH

is a special case of the BEKK model (cf. Francq and Zakoian, 2010). The dynamics in

covariance structure can be caught by a small number of common factors, resulting in a

useful model in a larger framework. Developments of Factor GARCH models are discussed

by Bollerslev and Engle (1993) and Vrontos et al. (2003).

Tse and Tsui (2002) pointed out that the parameters in generalised covariance models are

difficult to interpret, and the total number of parameters is still large. The second cate-

gory tries to improve this drawback. To model covariance structure, we can model variance

and correlation separately, leading to a more intuitive interpretation, as the conditional

covariance matrix can be decomposed into a conditional diagonal variance matrix and a

conditional correlation matrix. Such a framework was initially proposed by Bollerslev et al.

(1990), who introduced the constant conditional correlation (CCC) model, by assuming that

the dynamics of a covariance matrix are entirely contributed by conditional variance while

the correlation term remains constant over time. This model’s merit is its simple construc-
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tion, and it provides an innovative view for later developments, although the assumption of

constant conditional correlations is apparently unrealistic in the real world. As an extension,

the assumptions in the Orthogonal GARCH (O-GARCH) (Alexander, 2001) are slightly re-

alistic, allowing the CCC structure to only exist in a nonsingular linear combination of the

variables rather than raw data naturally. The main idea of the O-GARCH is that it applies

principal component analysis extracting orthogonal factors from the covariance matrix, and

simplifies modelling to factor terms. For more details, we can refer to Van der Weide (2002),

who proposed Generalized Orthogonal GARCH (GO-GARCH model).

Later, in order to assume more realistic assumptions on the dynamics of the correlation

structure, Tse and Tsui (2002) and Engle (2002) proposed the dynamic conditional corre-

lation (DCC) (also see Kroner and Ng (1998)). The model relaxes the assumption of the

CCC model and allows a time-varying conditional correlation structure. Comparing these

two versions, Tse and Tsui (2002) estimated conditional correlations as a weighted sum of

lagged correlations and innovations, while Engle (2002) introduced a standardisation mecha-

nism and let the correlations follow a quasi conditional correlation process. Benefitting from

its flexibility and intuition, Engle’s DCC model has become more popular.

Nonetheless, the DCC model is valid under some strict assumptions, giving rise to more

developments of further DCC-type models in later years. Here we list four developments:

1) To relax the requirement that conditional correlations follow same dynamics which is too

strict in empirical studies, Billio and Pelizzon (2003, 2006) proposed to the Flexible DCC

model, and even rich dynamics were captured by the Rotated DCC model (Noureldin et al.

2014); 2) To avoid that estimators of the DCC model are inconsistent in large dimensional

data, Aielli (2006, 2013) proposed the Consistent DCC model; 3) As the DCC model does

not account for the leverage effect, Cappiello et al. (2006) generalise to the Asymmetric

DCC model; 4) Lastly, Pesaran and Pesaran (2007) proposed the Student-T DCC model.
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With regard to the estimation method, the first generation ARCH and GARCH models were

estimated using Maximum Likelihood Estimation (MLE) under the assumption of a Gaussian

distributed error terms. Later, to accommodate fat-tail distributed data, the estimation

method is generalised to MLE with a student-T distributed residuals (Engle and Bollerslev

(1986), Bollerslev (1987) and Nelson and Foster (1995)). This in turn has led to a consistency

issue of estimation and developed into the Quasi-Maximum Likelihood Estimation (QMLE).

The QMLE provides consistent estimators under mild assumptions. Berkes et al. (2004)

suggested a consistent non-Gaussian QMLE with a relatively strong condition on residual.

More recently, Fan et al. (2014) proposed a two-step non-Gaussian QMLE and QMLE with

heavy-tailed likelihoods which are proved to be more efficient with simulated and empirical

data.

Aiming to compare several classical M-GARCH models, we have conducted a Monte Carlo

simulation study in this paper. Our findings indicates that DCC-type models outperform to

others with their in-sample performances, while as expected, a structural break distorts the

model fitting in-sample. In terms of predictive ability, models with heavy parameterisation

show inferior forecasting performances. Benefitting from parsimoniously specified conditional

correlation, the DCC model shows better ability in predicting covariance (though the EWMA

is the most efficient one).

In the next section, we review the model specifications of some popular multivariate GARCH

models. Section 1.3 describes a Monte Carlo Simulation study to assess models discussed in

Section 1.2. Section 1.4 discusses simulation results and ends with a conclusion.

1.2 M-GARCH Model Specifications

Let us assume a d × 1 stochastic vector yt = (yt(1), yt(2), . . . , yt(d))>, for E(y)t = 0, and

stationary in its second moment, then yt can be expressed commonly as,
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yt = Σ
1
2
t et (1.2.1)

where Σt is the conditional covariance matrix, and et presents an innovation vector dis-

tributed according to Gaussian, i.e. et ∼ N(0, I), where I is an identity matrix. Denoting

the information set up to time t − 1 as Ft−1, the conditional variance and covariance of yt

equals to,

V ar(yt|Ft−1) = V art−1(et) = Σ
1
2
t V art−1(et)(Σ

1
2
t )> = Σt (1.2.2)

M-GARCH models are designed to precisely trace, estimate, and forecast volatilities and

cross-volatilities Σt. In this section, we review nine representative models for modelling the

variances Σt, including generalizing multivariate GARCH models —exponential weighted

moving average, VEC, Diagonal VEC, BEKK and Diagonal BEKK model; linear and non-

linear M-GARCH models —constant conditional correlation, orthogonal-GARCH, dynamic

conditional correlation, asymmetric dynamic conditional correlation and rotated dynamic

conditional correlation model.

1.2.1 Generalized M-GARCH Models

Following the specification of univariate GARCH models, where the conditional variance is

expressed as a function of lagged squared innovations and previous conditional variance, M-

GARCH models generalize univiariate GARCH to multivariate cases through vectorization.

1.2.1.1 Exponential Weighted Moving Average

The idea of the exponential weighted moving average is always simple to implement. Rather

than an equally-weighted moving average, the EWMA model puts more weights on recent

historical data, which is more sensible as the effect of innovations would decay exponentially
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over time horizon (J.P. Morgan1996). The following presents the EWMA(d0, λ0) recursive

equation, denoting d0 for window length and λ0 for exponential decay factor.

Σt = λ0Σt−1 +
1− λ0

1− λd0
0

yt−1y
>
t−1 −

1− λ0

1− λd0
0

λd0−1
0 yt−d0−1y

>
t−d0−1 (1.2.3)

The EWMA model can be simplified as,

Σt = λ0Σt−1 + (1− λ0)yt−1y
>
t−1 (1.2.4)

For the sake of avoiding the similarity in unconditional variance, Riskmetrics (1996) suggests

the window length d0 between 50 and 250 periods. In the term of exponential decay factor,

substantial empirical results suggest a value for the parameter λ0 = 0.94 for daily frequency,

and λ0 = 0.97 for monthly frequency. Because this model is simple and almost computation

free, it is the most widely used M-GARCH model in the financial sector. But in theory, the

EWMA model suffers from drawbacks: 1. it is hard to maintain the unit weights summation

for infinite d0; 2. it is not suitable to fully describe the mean reversion mechanism in second

moment; 3. it only guarantees a positive semi-definite conditional covariance matrix, where

conditional covariance matrix should be guaranteed as positive definite matrix.

1.2.1.2 VEC (Bollerslev et al., 1988)

Using a stack operator, the VEC model directly vectorizes univariate GARCH model to the

multivariate case,

vech(Σt) = C +

q∑
i=1

Aivech(yt−iy
′
t−i) +

p∑
j=1

Bjvech(Σt−j) (1.2.5)

where vech(.) is the lower triangular stacking operator so that a d× d matrix is stacked into

a d×(d+1)
2
× 1 vector. As the covariance matrix is symmetric in nature, considering the lower
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triangular elements is enough to analyse Σt. The intercept vector C is formed as d×(d+1)
2
×1,

the coefficient matrices Ai and Bj are d×(d+1)
2
× d×(d+1)

2
matrices. Argument σi∗j∗,t located

at ith row jth column of Σt represents the conditional covariance between process i∗ and j∗,

and it is estimated by the univariate GARCH model,

σi∗j∗,t = γi∗,j∗ +

q∑
l=1

αlyt−l(i
∗)yt−l(j

∗) +

p∑
k=1

βkσi∗j∗,t−l (1.2.6)

where γi∗,j∗ , αl and βk are corresponding parameters in coefficient matrices C, Ai and Bj.

In total, there are (p+ q)(d(d+1)
2

)2 + d(d+1)
2

parameters in the VEC model, for example, in the

case of a binary VEC (1,1) model, the total number of parameters is 2×(2×(2+1)
2

)2+ 2×(2+1)
2

=

21. Hence, although the VEC model is flexible and easy to understand, it suffers from the

limitation of heavy computational cost as the number of parameters increases tremendously

along with the dimensionality of the model. Moreover, it is hard not to violate non-negativity

constraints and thus obtaining a positive definite covariance matrix in VEC model. The VEC

model is estimated by the QMLE, given the conditional log-likelihood function as,

Lt(θ) = −d
2
log2π − 1

2
log|Σt(θ)| −

1

2
yt(θ

′)Σ−1
t (θ)yt(θ)

where θ represents relevant set of parameters in the model.

1.2.1.3 Diagonal VEC (Ding and Engle, 2001)

One improvement of the VEC model is the diagonal VEC. This is obtained by imposing an

assumption that parameter matrices Ai and Bi in Equation (1.2.5) are diagonal matrices.

Thus, diagonal transformation is not going to affect the consistency of results, but it reduces

the number of parameters substantially. Assuming that the coefficient matrices Ai and

Bj are diagonal matrices, the number of parameters in the DVEC(1,1) model decreases to
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(p+q+1)N(N+1)
2

. More importantly, it guarantees a positive-definite covariance matrix under

some assumptions. Ding and Engle (2001) specified the DVEC (1,1) model as

Σt = CC> + AA> ◦ yt−1y
>
t−1 + BB> ◦Σt−1 (1.2.7)

where ◦ is the Hadamard product. The element in ith row and jth column of Σt is estimated

by a unvariate GARCH,

σt(i, j) = wi,j + αi,jyt−1(i)yt−1(j) + βi,jσt−1(i, j) (1.2.8)

where wi,j = (CC>)i,j, αi,j = (AA>)i,j, βi,j = (BB>)i,j. As long as the coefficient matrices

A and B are positive definite, the positive definiteness of the covariance matrix can be easily

guaranteed by basic lemmas of Hadamard product. Still, DVEC model endures onerous

parameters when it comes to a large system. The estimation method is same with the VEC

model.

1.2.1.4 BEKK (Engle and Kroner, 1995)

Since a positive definite matrix always can be Cholesky decomposed, Engle and Kroner

(Baba, Engle, Kraft and Kroner) proposed the classical BEKK model which is formed as,

Σt = CC> +

q∑
j=1

A>k yt−ky
>
t−kAk +

p∑
j=1

B>j Σt−jBj (1.2.9)

where C is a d × d triangle positive definite matrix, Ak and Bj are d × d triangle semi-

positive definite matrices. Thus, Σt is strict positive definite. In addition, the eigenvalues

of matrix A
⊗

A + B
⊗

B, where
⊗

is the Kronecker Product, should be inside of unit

circle to maintain covariance stationary for BEKK (Silvennoinen and Teräsvirta, 2009). The

BEKK model benefits by its compact parametrization and its delivering consistently positive
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definite variances.

Also, the coefficient matrices A and B can be parametrized to other forms. For example,

the diagonal BEKK provides relative parsimonious parametrization. Coefficients matrices

are redesigned as diagonal matrices, i.e. A and B become to A = diag(a11, a22, . . . , akk) and

B = diag(b11, b22, . . . , bkk). Hence, adopting Hadamard product, the diagonal BEKK (1,1)

expresses,

Σt = CC> + AA> ◦ yt−1y
>
t−1 + BB> ◦Σt−1 (1.2.10)

The number of parameters equals to (p+q)Kd+d(d+1)
2

. It is noticeable that the DBEKK model

is a DVEC model with special restrictions. Essentially, any BEKK model can imply a unique

VEC model, yet this does not correct conversely (Silvennoinen and Teräsvirta, 2009).

1.2.2 Linear and Non-Linear Combined Models

Enlightened by the well-known correlation equation,

ρxy =
cov(xy)√

var(x)
√
var(y)

(1.2.11)

the conditional covariance matrix can be decomposed into conditional covariance and vari-

ance,

Σt = DtRtDt (1.2.12)

where Dt = diag(σ
1
2
11,t, σ

1
2
22,t, . . . , σ

1
2
dd,t) is the a d×d diagonal matrix composed by conditional

standard deviation of yt estimated by univariate GARCH models. Rt is a d× d correlation

matrix with unit diagonal elements, and off-diagonal elements ranged between −1 and +1.

The specification and estimation of Rt are discussed in diverse forms.
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1.2.2.1 Constant Conditional Correlation (Bollerslev, 1990)

As a first theoretical construction, the constant conditional correlation model assumes that

conditional correlation is time-invariant,

Σt = DtRDt (1.2.13)

Bollerslev (1990) used the GARCH (1,1) model to estimate Dt. Thus, the mth diagonal

element in Dt is estimated through,

σt(m) = wm +

q∑
i=1

αm,iy
2
t−i(m) +

p∑
j=1

βm,jσ
2
t−j(m) (1.2.14)

The conditional covariance matrix will be positive definite as long as both Dt and R are

positive definite. This model is much lighter in computation, since it is not necessary to

estimate parameters for cross coordinates, and the number of parameter only comes from

conditional variance estimation. To estimate the CCC model, one first estimates Dt by

QMLE, that is maximising the following,

L(θ) = −Td
2

(1 + log(2π)− log(T ))−
T∑
t=1

log|Dt| −
T

2
log|

T∑
t=1

y∗t (y
∗
t )
>|

where y∗t = yt · D−1
t . Then, the constant conditional correlation term R is estimated by

computing the unconditional correlation matrix. The CCC model opens up a shortcut which

bypasses using a large number of parameters to estimate the conditional covariance directly.

Nevertheless, although it works efficiently in empirical large data set, in the real world, the

correlation relationship between two series is hardly found to be stable either in short run

or long run, thereby requiring further extensions under more realistic conditions.
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1.2.2.2 Orthogonal GARCH (Alexander, 2001)

One of extension models is the orthogonal GARCH model. It admits that the second moment

of real financial data is structured as the CCC, but with some transformations. One popular

transformation indicates that rather than the d-dimensional multivariate vector itself, its

principal components follow a CCC structure (Alexander, 2001). The OGARCH model is

more flexible than CCC model, and it also reduces further the dimensionality by using less

factors.

The transformation on yt gives,

Λt = V art−1(P × yt) = DtRDt (1.2.15)

where Λt is the conditional covariance matrix of P × yt, which follows the CCC structure.

Then, the conditional covariance matrix of yt can be derived by,

Σt = P−1DtRDt(P
−1)> (1.2.16)

Furthermore, the conditional correlation of yt shows,

Corr(yt) = diag(P−1DtRDt(P
−1)>)−

1
2 · P−1DtRDt(P

−1)> · diag(P−1DtRDt(P
−1)>)−

1
2

(1.2.17)

This specification allows time-varying conditional correlation. But it is still necessary to

discuss the definition of matrix P . Alexander (2001) specified the inverse matrix of P is a

matrix of eigenvalues extracted from the unconditional covariance matrix of yt. Hence, P ·yt

is principal components for yt.
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1.2.2.3 Dynamic Conditional Correlation (Engle, 2002)

Even though the O-GARCH model considers a time-varying correlation structure through

the principal component transformation of the CCC model, it does not solve time-invariant

correlation problem of the CCC model intrinsically. Engle (2002) proposed a dynamic condi-

tional correlation model by allowing dynamic evolution of the conditional correlations (also

cf. Tse and Tsui, 2002). The conditional covariance given by:

Σt = Dt ·Rt ·Dt (1.2.18)

where conditional correlation Rt is a stochastic process. In order to specify and estimate

Σt, Engle (2002) developed a three steps approach: 1. DE-GARCHING; 2. Estimating

the Quasi-Correlations; 3. Rescaling the correlations. In the first step, we use univariate

GARCH models, e.g. GARCH (1,1), to estimate the conditional variance of yt(m),

σt(m) = ωm + αmyt−1(m)2 + βiσt−1(m) (1.2.19)

where σ
1
2
t (m) is the mth diagonal element of Dt. Also, in order to analyse the correlation

term Rt, the DE-GARCHING process eliminates the effect of conditional variance through,

y∗t (i) = yt(i)/σ̂
1
2
t (i) (1.2.20)

y∗t = (y∗t (1), y∗t (2), . . . , y∗t (d))> denotes the devolatized vector.

The second step designs a quasi conditional correlation process Qt, where Qt can be specified

differently, such as the exponential smoothing form,

Qt = (1− λ)y∗t−1(y∗t−1)> + λQt−1 (1.2.21)
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where λ is defined in Section 1.2.1.1. The scalar DCC model is specified as,

Qt = Ω +
N∑
i=1

θ1,i(y
∗
t−i(y

∗
t−i)

>) +
M∑
j=1

θ2,j(Qt−j) (1.2.22)

where Ω is positive definite, coefficients θ1,i and θ2,j ≥ 0. Where the initial value of Qt is

the unconditional correlation R̄, R̄ = 1
T

∑T
t=1 y∗t (y

∗
t )
>. Therefore, Qt is a positive definite

matrix. Qt can also be specified in a matrix representation,

Qt = Ω +
N∑
i=1

Ai ◦ (y∗t−i(y
∗
t−i)

>) +
M∑
j=1

Bj ◦ (Qt−j) (1.2.23)

where Ω is a positive definite matrix, and Ai, Bj are non-negative definite matrices.

However, due to the fact that it is hard to keep the diagonal elements of Qt as equal to 1

although the average value of them is one, a rescaling is necessary.

Rt = diag(Qt)
− 1

2 ·Qt · diag(Qt)
− 1

2 (1.2.24)

Engle (2002) suggested using the QMLE to estimate models in step 1 and 2, maximising the

following:

L(θ) = −1

2

T∑
t=1

(d · log(2π) + 2log(|Dt|) + log(|Rt|) + (y∗)>t R−1
t y∗t )

1.2.2.4 Asymmetric DCC (Cappiello et al., 2006)

Since there is significant evidence of leverage effects (negative shocks earn more weights)

in financial data, the DCC model was extended to Asymmetric DCC (ADCC) model by

Cappiello et al. (2006), by allowing an asymmetric indicator function into the dynamics of the

conditional variance and quasi conditional correlations. In the first step, the original GARCH

(1,1) is replaced by any univariate asymmetric models, commonly, the GJR-GARCH model
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(Glosten et al., 1993), and the conditional variance of the mth process is estimated by,

σt(m) = wm +

q∑
i=1

αm,iy
2
t−i(m) +

q∑
k=1

γm,ky
2
t−k(m)Iyt−k<0 +

p∑
j=1

βm,jσ
2
t−j(m) (1.2.25)

where Iyt−i < 0 with i ≥ 1 is an identity term which equals to 1 if yt−i was negative, otherwise

equals to 0.

y∗t (m) = yt(m)/σ̂t(m)
1
2

Then, considering an asymmetric indicator into quasi conditional correlation process,

Qt = Ω +
N∑
i=1

θ1,iy
∗
t−i(y

∗
t−i)

> +
O∑
k=1

θ2,kηt−kη
>
t−k +

M∑
j=1

θ3,jQt−j (1.2.26)

where ηt = min[y∗t , 0], and Ω is a positive definite matrix. The third rescaling step is the

same as the DCC model. The positive definite covariance is easily guaranteed as long as the

coefficients θi, i = 1, 2, 3 are non-negative. The estimation method is the QMLE as described

in the DCC model.

1.2.2.5 Rotated DCC (Noureldin et al., 2014)

To improve the flexibility of the DCC model, Noureldin et al (2014) proposed a rotated

specification of the DCC model. The idea of the RDCC model is to model the dynamics

of the conditional variance and correlations non-simultaneously, thus driving more realistic

dynamics. They define the unconditional covariance of yt as Λ, and Λ can be decomposed

as,

V ar(yt) = Λ = PcΛcP
>
c (1.2.27)

where Pc is the eigenvectors and Λc is a diagonal matrix, the elements of which are the

eigenvalues of the covariance matrix. The RDCC model also follows the similar three steps
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estimation. In the first step, DE-GARCHING is completed by adopting rotated ỹt,

ỹt = Λ−
1
2 · yt = PcΛ

− 1
2

c P>c yt (1.2.28)

In the second step, keeping the mean-reverting correlation targeting as the unconditional

correlation, the quasi conditional correlation is modelled in matrix representation,

Q̃t = Ω +
N∑
i=1

Aiỹt−iỹ
>
t−iA

>
i +

M∑
j=1

BjQ̃t−jB
>
j (1.2.29)

Where Ω is a positive definite matrix. The initial value of Q̃t is the unconditional covariance

matrix of ỹt. Coefficient matrices Ai and Bi are semi-positive definite diagonal matrices. A

scalar RDCC model also exists.

Q̃t = Ω +
N∑
i=1

θ1,iỹt−iỹ
>
t−i +

M∑
j=1

θ2,jQ̃t−j (1.2.30)

The assumptions on Ω, θ1,i and θ2,j are same with defined in (1.2.22).

Similarly, the asymmetric RDCC model gives,

Q̃t = Ω +
N∑
i=1

θ1,iỹt−iỹ
>
t−i +

O∑
k=1

θ2,kη̃t−kη̃
>
t−k +

M∑
j=1

θ3,jQ̃t−j (1.2.31)

where η̃t = min[ỹt, 0], Ω is a positive definite matrix, scalar coefficients θ1,i, θ2,k and θ3,j

are non-negative parameters. Eventually, in the third step, the conditional correlation Rt is

rescaled by,

Rt = diag(Q̃t)
− 1

2 Q̃tdiag(Q̃t)
− 1

2 (1.2.32)
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1.2.3 Conditional Correlation Model with Structural Breaks

Since Chow (1960) discussed the issue of structural breaks in linear regression models, the ef-

fect of structural breaks on modeling economic or financial data always needs to be addressed.

Engle (2009) allowed that a structural break may occur in quasi conditional correlation pro-

cess. Assuming that a known break occurs at 1 < t∗ < T , and defining t = t∗

T
with 0 < t < 1,

we then can estimate quasi conditional correlation process with dummies at the break point

t. The DCCSB (1,1) model has a quasi conditional correlation process,

Qt = Ω1 + Ω2 ·DMt + (θ1,1 + θ1,2 ·DMt)y
∗
t−1(y∗t−1)> + (θ2,1 + θ2,2 ·DMt)Qt−1 (1.2.33)

where parameters DMt is a dummy variable which equals to 0 before t∗, and DMt = 1 after

t∗. Thus, Ω2, θ1,2 and θ2,2 are additional intercept and coefficients after break happened,

either be positive or negative values.

Likewise, in order to test what is the effect in global equity markets after introducing the

Euro, Cappiello et al. (2006) introduced a ADCC with structural break model. The quasi

conditional correlation process in ADCCSB (1,1,1) model is given by:

Qt = Ω1 + Ω2 ·DMt + (θ1,1 + θ1,2 ·DMt)y
∗
t−1(y∗t−1)> + (θ2,1 + θ2,2 ·DMt)ηt−1η

>
t−1

+(θ3,1 + θ3,2 ·DMt)Qt−1

(1.2.34)

The structural break dummy also can be introduced into the ARDCC model, such that the

quasi conditional correlation follows,

Q̃t = Ω1 + Ω2 ·DMt + (θ1,1 + θ1,2 ·DMt)ỹt−1ỹ
>
t−1 + (θ2,1 + θ2,2 ·DMt)η̃t−1η̃

>
t−1

+(θ3,1 + θ3,2 ·DMt)Q̃t−1

(1.2.35)
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All models are estimated by the QMLE method.

1.3 The Model Selection Criteria

In order to compare the performance of M-GARCH models, this section introduces several

model selection methods to evaluate the in-sample and out-of-sample performance of rival

models. We firstly consider the efficiency of the model, as a model can be of heavy computa-

tional burden if it was excessively parametrised. Table 1.3.1 lists the number of parameters

estimated in each M-GARCH model. It is clear that for a bivariate model, the full matrix

representation of VEC and BEKK models are heavily parametrised, and the number be-

comes lower by using the corresponding diagonal matrix representation. In linear/nonlinear

correlation models, although the number of parameters is still large, most of parameters are

estimated for conditional variance in univariate case. Beside, a structural break dummy can

double the number of parameters in one model.

To estimate these models, we use the MFE toolbox (Sheppard, 2012) in Matlab. In each

model, we apply the BFGS method to obtain the quasi-maximum likelihood estimates.

Since all models are estimated by the same method, we can compare their in-sample perfor-

mances through evaluating their log-likelihood (LL) values. The best model is given by the

model with the highest LL value. If two models M1 and M2 gave similar LL values, it is

better to apply the log-likelihood ratio test to test the hypothesis,

H0 : M1 >M2

H1 : reject H0

(1.3.1)

using the chi-square statistics,

χ2
df = −2 · ln(

L(M1)

L(M2)
) (1.3.2)
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where L(Mi) is the LL value of model i, df is the degree of freedom defining as the difference

of the number of parameter from two models. The critical values can be found in the χ2

statistics table.

Table 1.3.1: The Number of Parameters in M-GARCH Models

Model Number of Parameters (Bivariate model)

EWMA(0.96) 0

VEC(1,1) 21

DVEC(1,1) 9

BEKK(1,1) 11

DBEKK(1,1) 7

CCC(1,1) 7

OGARCH(1,1) 6

DCC(1,1) 11

ADCC(1,1,1) 14

RDCC(1,1) 9

ARDCC(1,1,1) 11

ADCCSB(1,1,1) 28

ARDCCSB(1,1,1) 22

Nonetheless, higher LL statistics are always obtained in over-fitted models. Hence, the

information criteria is an alternative method to compensate the LL statistics by penalising

overfitting. Popular information criteria are the Akaike information criterion (Akaike, 1987)

and the Bayesian information criterion (Schwarz, 1978). There are two version of the AIC:

AIC and AICc (Hurvich and Tsai, 1995),

AIC = −2LL+ 2K (1.3.3)
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AICc = −2LL+ 2K +
2K(K + 1)

T −K − 1
(1.3.4)

where K and T are the number of parameters and the sample size, respectively. The AICc is

more appropriate in small samples because the last term in (1.3.4) only exists for a smaller

K/T . Compared with AIC, the BIC puts more penalty on the number of estimated param-

eters (Burnham and Anderson, 2004), and it is specified,

BIC = −2LL+K · log(T ) (1.3.5)

As a loss function, opposite to the selection law by LL statistics, the best model is given by

the one with the smallest AIC or BIC information criteria.

Regarding the out-of-sample performance, we apply mean absolute forecasting error and

mean square forecasting error. Since the present chapter studies the prediction ability of the

correlation structure in M-GARCH models, the prediction error only depends on predicted

ρ̂ and actual correlation ρ.

MAFE =
1

T̂

T̂∑
i=1

|ρ̂i − ρi| (1.3.6)

MSFE =
1

T̂

T̂∑
i=1

(ρ̂i − ρi)2 (1.3.7)

where T̂ is the number of observations from the out-of-sample. The MAFE is a linear score

and the MSFE is a quadratic score. One model has better prediction ability if it delivered

smaller MAFE and MSFE values.

1.4 A Monte Carlo Simulation Study

In order to assess the performance of M-GARCH models in in-sample and out-of-sample, we

design a Monte Carlo simulation study considering different types of generated data sets. We
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aim to generate data to approximate real financial data. Changing the value of parameters

in the data generating process, we have conducted five experiments. For simplicity, we use

bivariate models such that yt = (y1,t, y2,t)
>.

yt = Σ
1
2
t et (1.4.1)

where Σt is a generated covariance sequence which governs the covariance structure of yt,

and Σ
1
2
t is in the Cholesky form. The innovation term et = (e1,t, e2,t)

>. Considering the fact

of fat-tailed distributed financial data, we generate et by a student-T distributed random

vector with degree of freedom 4.

To form Σt, we define σij,t as the coordinate in Σt, tracking the conditional covariance

between processes ei,t and ej,t.

Thus, σij,t is the conditional variance with i = j, and σii,t is generated through the GARCH

(1,1) model,

σ11,t = ω1 + α1e
2
1,t−1 + β1σ11,t−1 (1.4.2)

σ22,t = ω2 + α2e
2
2,t−1 + β2σ22,t−1 (1.4.3)

Or, to generate data with financial leverage effect, we also generate conditional variance

through the GJR (1,1,1) model (Glosten et al., 1993),

σ11,t = ω1 + α1e
2
1,t−1 + γ1It−1e

2
1,t−1 + β1σ11,t−1 (1.4.4)

σ22,t = ω2 + α2e
2
2,t−1 + γ2It−1e

2
1,t−1 + β2σ22,t−1 (1.4.5)

where I is an asymmetric indicator that It−1 = 1 if et−1 < 0, otherwise It−1 = 0. The initial

value sets as 1.

Meanwhile, the conditional covariance element σij,t with i 6= j can be obtained by formulat-
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ing,

σij,t = σ
1
2
ii,tρij,tσ

1
2
jj,t (1.4.6)

where σii,t is generated from (1.4.2), (1.4.3), (1.4.4) and (1.4.5). We then discuss the speci-

fication of conditional correlation ρij,t.

1.4.0.1 Conditional Correlation without a Structural Break

We first consider ρij,t is evolving without a structural break. The dynamics of ρij,t are formed

in scenarios including constant, ’sine’, fast ’sine’, ramp and a mean reversion process over

−1 to +1.

• 1. Constant: ρij,t = 0.7

• 2. Sine: ρij,t = 0.4 + 0.2sin( 2πt
100

)

• 3. Fast Sine: ρij,t = 0.4 + 0.2sin(2πt
20

)

• 4. Ramp: ρij,t = mod( t
100

)

• 5. Mean reversion to zero: ρij,t = I · t
100

, where I = ±1

Visually displays in Figure 1.4.1, with T = 1000.
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Figure 1.4.1: Conditional Correlations without Structural Breaks

1.4.0.2 Conditional Correlation with a Structural break

Since real financial data are sensitive to market news and prone to structural breaks, we then

consider correlation structure with a mean break occurred at the centre of sample, t = 0.5.

The conditional correlation ρij,t are then generated as,
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• 1. Constant:

ρt =

0.3 t ≤ T
2

0.7 t > T
2

 (1.4.7)

• 2. Sine:

ρt = α + 0.2sin(
2πt

100
) (1.4.8)

where,

α =

(
0.4, t < T

2

0.7, t > T
2

)
(1.4.9)

• 3. Fast Sine:

ρt = α + 0.2sin(
2πt

20
) (1.4.10)

where,

α =

(
0.4, t < T

2

0.7, t > T
2

)
(1.4.11)

• 4. Ramp:

ρt = mod(
t

50
) (1.4.12)

where t = t1 or t2, 1 < t1 <
T
2
, T

2
< t2 < T .

• 5. Mean reverting to zero:

ρt = I · t
50

(1.4.13)

where t = t1 or t2, 1 < t1 <
T
2
, T

2
< t2 < T ; and I = ±1

Type 1-5 are visually displayed in Figure 1.4.2, with T = 1000
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Figure 1.4.2: Conditional Correlations with a Structural Break

The simulation is replicated 1000 times, and in each replication we generate 1000 observations

such as T = 1000, roughly 4 years of daily data in an equity market. The data generating

process - DGP firstly burns 200 observation for warming up. As discussed in Section 3, we

compare the M-GARCH models through using Log-likelihood, AIC and BIC information

criteria for in-sample performance.

To compare the prediction ability of M-GARCH models, we use 700 observations as the
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training sample to estimate the model, then we use estimators to forecast the remaining

300 observations iteratively with one-step forward. We use MAFE and MSFE statistics to

evaluate their forecasting performances.

1.4.1 Experiment.1

In the first experiment, to generate conditional variance of y1,t, we set ω1 = 0.05, α1 = 0.1

(low ARCH effect) and β1 = 0.85 (high GARCH/persistence level) in (1.4.2). In (1.4.3), let

ω1 = 0.05, α2 = 0.4 (moderate valued ARCH) and β2 = 0.4 (moderate valued GARCH) for

y2,t.

We apply nine M-GARCH models, including EWMA, VEC, DVEC, BEKK, DBEKK, CCC,

O-GARCH, DCC and RDCC. The results of in-sample performances are displayed in Table

1.4.1.

According to Table 1.4.1, unsurprisingly, the simple EWMA model shows the poorest re-

sult over nine models followed by the covariance models (VECH, VECH-DIAG, BEKK and

BEKK-DIAG). The linear correlation models (O-GARCH and CCC) and nonlinear correla-

tion models display superior performances. Among conditional correlation models, the DCC

and RDCC models are located at the top of the pyramid. After adjusted for the number

of parameters, the RDCC model slightly outperforms to the DCC model in the context of

Sine/Fast-Sine correlations.
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Table 1.4.1: In-sample Statistics Table for Exp.1

‘Constant, Sine, Fast-Sine, Ramp and MR’ represent DGP with constant, sine, fast-sine,

ramp and mean reverting conditional correlations. ‘SUM’ records the sum of statistics

across five types of conditional correlations. The statistics in bold highlight winners.

EWMA VEC DVEC BEKK DBEKK CCC OGARCH DCC RDCC

Constant

LL -2790.4 -2742.6 -2751.0 -2742.4 -2685.7 -2659.8 -2751.4 -2642.7 -2653.3

AIC 5582.8 5527.2 5520.0 5506.8 5385.4 5333.6 5514.8 5307.4 5324.6

BIC 5587.7 5630.1 5564.1 5560.7 5419.7 5367.9 5544.2 5361.3 5368.7

Sine

LL -3009.4 -2937.1 -2944.9 -2937.9 -2903.6 -2887.5 -2943.4 -2878.0 -2882.8

AIC 6020.8 5916.2 5907.8 5897.8 5821.2 5789.0 5898.8 5778.0 5783.6

BIC 6025.7 6019.1 5951.9 5951.7 5855.5 5823.3 5928.2 5831.9 5827.7

Fast-Sine

LL -3011.5 -2946.2 -2944.5 -2935.6 -2906.6 -2890.5 -2951.4 -2878.0 -2880.4

AIC 6025 5934.4 5907.0 5893.2 5827.2 5795.0 5914.8 5796.4 5778.8

BIC 6029.9 6037.3 5951.1 5947.1 5861.5 5829.3 5944.2 5850.3 5822.9

Ramp

LL -2967.5 -2866.1 -2851.0 -2845.3 -2805.4 -2837.1 -2861.4 -2798.0 -2793.1

AIC 5781 5774.2 5720.0 5712.6 5624.8 5688.2 5734.8 5618 5604.2

BIC 5785.9 5877.1 5764.1 5766.5 5659.1 5722.5 5764.2 5671.9 5648.3

MR

LL -3043.2 -2994.6 -2991.1 -2984.4 -2957.1 -2970.8 -2979.8 -2942.5 -2947.8

AIC 6088.4 6031.2 6000.2 5990.8 5928.2 5955.6 5971.6 5907.0 5913.6

BIC 6093.3 6134.1 6044.3 6044.7 5962.5 5989.9 6001.0 5960.9 5957.7

SUM

LL -14744.0 -14486.6 -14482.5 -14445.6 -14258.4 -14245.7 -14487.4 -14148.4 -14157.4

AIC 29498 29183.2 29055.0 29001.2 28586.8 28561.4 29034.8 28406.8 28404.8

BIC 29522.5 29697.7 29275.5 29270.7 28758.3 28732.9 29181.8 28676.3 28625.3

Generally, the in-sample performance can be strengthened by designing an extensively pa-

rameterised model; however, this would cause the problem of overfitting and then provide

poor predictions. Hence, a good forecasting model requires both simplicity and accuracy.

Table 1.4.2 displays MAFE and MSFE statistics for Experiment 1. The nonlinear corre-

lation model outperforms to the generalised covariance and linear correlation models. The

DCC model shows its superior forecasting ability over all models. Also notably, the sim-

plest EWMA model gives relatively better prediction in generalised covariance models. The
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BEKK model, as a largely parameterised model, shows the worst forecasting performance.

Table 1.4.2: Out-of-sample Statistics Table for Exp.1

‘Constant, Sine, Fast-Sine, Ramp and MR’ represent DGP with constant, sine, fast-sine,

ramp and mean reverting conditional correlations. ‘SUM’ records the sum of statistics

across five types of conditional correlations. The statistics in bold highlight winners.

EWMA VEC DVEC BEKK DBEKK CCC OGARCH DCC RDCC

Constant
MSFE 0.0133 0.0184 0.0153 0.0538 0.0175 0.0034 0.0317 0.0050 0.0056

MAFE 0.0874 0.0929 0.0909 0.1489 0.0945 0.0433 0.1287 0.0519 0.0596

Sine
MSFE 0.0329 0.0396 0.0439 0.0658 0.0375 0.0247 0.0530 0.0266 0.0275

MAFE 0.1478 0.1556 0.1662 0.1938 0.1561 0.1351 0.1840 0.1360 0.1403

Fast-Sine
MSFE 0.0377 0.0445 0.0445 0.0665 0.0399 0.0255 0.0544 0.0283 0.0294

MAFE 0.1591 0.1673 0.1676 0.1952 0.1616 0.1363 0.1868 0.1410 0.1486

Ramp
MSFE 0.0854 0.0748 0.0716 0.0998 0.0797 0.0905 0.0950 0.0796 0.0837

MAFE 0.2375 0.2196 0.2123 0.2508 0.2301 0.2575 0.2499 0.2239 0.2363

MR
MSFE 0.0567 0.0669 0.0695 0.1039 0.0754 0.0950 0.0954 0.0568 0.0659

MAFE 0.2014 0.2091 0.2136 0.2593 0.2265 0.2617 0.2590 0.1961 0.2015

SUM
MSFE 0.2260 0.2442 0.2448 0.3898 0.2500 0.2391 0.3295 0.1963 0.2121

MAFE 0.8332 0.8445 0.8506 1.0480 0.8688 0.8339 1.0084 0.7489 0.7863

1.4.2 Experiment.2

The DGP in experiment 2 generates two series with low ARCH and high GARCH effects in

conditional variances. Let ω1 = 0.05, α1 = 0.1 and β1 = 0.8 in (1.4.2); ω2 = 0.05, α2 = 0.1

and β2 = 0.8 in (1.4.3).

Table 1.4.3 exhibits results of the in-sample performance. The results are consistent with

discussion in experiment 1; the RDCC model interprets better in-sample performance in

most of cases, followed by the DCC model. Linear/nonlinear models overall show better

performances than generalised covariance models. Besides, to compare the model fitness in

different correlation structures, we found that the time-variant correlation structures rise
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some difficulties to model fitness, evidenced by ‘constant’ correlation gain larger LL, smaller

AIC and BIC scores. The rich dynamics in conditional correlation certainly results a more

complex modelling issue, but it is more close to the real case.

The out-of-sample performance comparisons are documented in Table 1.4.4. In most of cases,

the CCC model outperforms to others, also the DVEC and the DCC models show good

forecasting abilities, which produce half of forecasting error than the EWMA model. The

model with poor predicting performances are the EWMA and the BEKK model, the EWMA

preforms badly because the model is not well specified according to the data, and the BEKK

deserves such results because it suffers from the problem of overfitting. Among good models,

the CCC model is the best choice when the correlation structures are generated as ‘constant’,

‘sine’ and ‘fast sine’ types. Since the conditional correlation process either be a constant or

be a regular smooth-variant process, the CCC model benefited with its parsimonious beats

other models, even the DCC model. In cases that conditional correlations are generated as

the ‘Ramp’ and ‘MR’ types, the DVEC and DCC model provide more accurate predictions.

The ‘SUM’ sector show that in general, the DCC model obtains the least MAFE and the

DVEC model obtains the least MSFE score. Therefore, the CCC model is a better choice

when the correlation patterns are less volatile, but since it is a rare case in real world, we

might still consider the DCC or the DVEC model to predict the correlation structures.
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Table 1.4.3: In-sample Statistics Table for Exp.2

‘Constant, Sine, Fast-Sine, Ramp and MR’ represent DGP with constant, sine, fast-sine,

ramp and mean reverting conditional correlations. ‘SUM’ records the sum of statistics

across five types of conditional correlations. The statistics in bold highlight winners.

EWMA VEC DVEC BEKK DBEKK CCC OGARCH DCC RDCC

Constant

LL -3791.0 -3754.1 -3766.0 -3761.6 -3740.4 -3736.6 -3769.5 -3719.4 -3724.7

AIC 7584.0 7550.2 7550.0 7545.2 7494.8 7487.2 7551.0 7460.8 7467.4

BIC 7588.9 7653.1 7594.1 7599.1 7529.1 7521.5 7580.4 7514.7 7511.5

Sine

LL -4023.5 -3983.0 -3981.2 -3980.8 -3972.4 -3970.3 -3984.9 -3970.9 -3961.8

AIC 8049.0 8008.0 7980.4 7983.6 7958.8 7954.6 7981.8 7963.8 7985.7

BIC 8053.9 8110.9 8024.5 8037.5 7993.1 7988.9 8011.2 8017.7 5827.7

Fast-Sine

LL -4035.6 -3989.6 -3989.1 -3989.0 -3975.7 -3971.5 -3983.0 -3972.6 -3966.2

AIC 8073.2 8021.2 7996.2 8000.0 7965.4 7957.0 7978.0 7967.2 7950.4

BIC 8078.1 8124.1 8040.3 8053.9 7999.7 7991.3 8007.4 8021.1 7994.5

Ramp

LL -3961.2 -3895.8 -3906.3 -3894.6 -3893.1 -3908.5 -3912.4 -3874.2 -3870.2

AIC 7804.4 7833.6 7830.6 7811.2 7800.2 7831.0 7836.8 7770.4 7758.4

BIC 7809.3 7936.5 7874.7 7865.1 7834.5 7865.3 7866.2 7824.3 7802.5

MR

LL -4102.2 -4039.8 -4039.4 -4028.7 -4031.5 -4052.3 -4054.9 -4029.2 -4031.1

AIC 8206.4 8121.6 8096.8 8079.4 8077.0 8118.6 8121.8 8080.4 8080.2

BIC 8211.3 8224.5 8140.9 8133.3 8111.3 8152.9 8151.2 8134.3 8124.3

SUM

LL -19853.5 -19662.3 -19682.0 -19654.7 -19613.1 -19639.2 -19704.7 -19566.3 -19554.0

AIC 39717 39534.6 39454.0 39419.4 39296.2 39348.4 39469.4 39242.6 39198.0

BIC 39741.5 40049.1 39674.5 39688.9 39467.7 39519.9 39616.4 39512.1 39418.5
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Table 1.4.4: Out-of-sample Statistics Table for Exp.2

‘Constant, Sine, Fast-Sine, Ramp and MR’ represent DGP with constant, sine, fast-sine,

ramp and mean reverting conditional correlations. ‘SUM’ records the sum of statistics

across five types of conditional correlations. The statistics in bold highlight winners.

EWMA VEC DVEC BEKK DBEKK CCC OGARCH DCC RDCC

Constant
MSFE 0.0104 0.0086 0.0059 0.0677 0.0107 0.0037 0.0089 0.0043 0.0047

MAFE 0.0763 0.0720 0.0581 0.1611 0.0776 0.0477 0.0727 0.0489 0.0504

Sine
MSFE 0.0351 0.0259 0.0281 0.0760 0.0329 0.0249 0.0333 0.0272 0.0289

MAFE 0.1536 0.1306 0.1369 0.2035 0.1486 0.1351 0.1498 0.1358 0.1401

Fast-Sine
MSFE 0.0375 0.0330 0.0308 0.0740 0.0350 0.0243 0.0344 0.0297 0.0293

MAFE 0.1581 0.1485 0.1459 0.2040 0.1531 0.1347 0.1522 0.1431 0.1403

Ramp
MSFE 0.0933 0.0683 0.0716 0.1147 0.0806 0.0902 0.0936 0.0726 0.0816

MAFE 0.2475 0.2105 0.2153 0.2658 0.2264 0.2570 0.2525 0.2135 0.2339

MR
MSFE 0.0577 0.0605 0.0538 0.1240 0.0745 0.0901 0.0993 0.0601 0.0745

MAFE 0.1992 0.2003 0.1892 0.2787 0.2225 0.2553 0.2664 0.2023 0.2255

SUM
MSFE 0.2340 0.1963 0.1902 0.4564 0.2337 0.2332 0.2695 0.1939 0.2190

MAFE 0.8347 0.7619 0.7454 1.1131 0.8282 0.8298 0.8936 0.7436 0.7902

1.4.3 Experiment.3

Experiment 3 generates data with moderate ARCH and GARCH effect in conditional vari-

ances. Let ω1 = 0.05, α1 = 0.4 and β1 = 0.5 in (1.4.2), ω2 = 0.05, α2 = 0.4 and β2 = 0.5

in (1.4.3). Results in Table 1.4.5 is also consistent with those of experiment 1 and 2. The

RDCC model fits the data better in cases of ‘Constant’, ’Sine’ and ‘Fast-Sine’ typed con-

ditional correlations. And the best one turns to the DCC model when the data follows the

‘Ramp’ and ‘MR’ typed conditional correlation structures. Also considering the computa-

tional efficiency and relative accuracy, it is worth to notice that the CCC model produces

competitive LL, AIC and BIC as well. Beyond our expectation, the well-specified BEKK

model does not show good fitness, this might be due to the conditional correlation processes
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do not follow a recursive dynamic process.

The results in Table 1.4.6 expresses the linear/nonlinear models can predict better, where

the DCC model consistently outperforms to others by obtaining less forecasting errors. This

result is consistent with results in experiment 1. The BEKK model gets the highest forecast-

ing errors, followed by the DBEKK and the VEC model, as discussed above, these models

are heavily parametrised and deserved poor forecasting abilities, even the most naive and

efficient model - EWMA model perform better than them.

Table 1.4.5: In-sample Statistics Table for Exp.3

‘Constant, Sine, Fast-Sine, Ramp and MR’ represent DGP with constant, sine, fast-sine,

ramp and mean reverting conditional correlations. ‘SUM’ records the sum of statistics

across five types of conditional correlations. The statistics in bold highlight winners.

EWMA VEC DVEC BEKK DBEKK CCC OGARCH DCC RDCC

Constant

LL -2445.4 -2428.1 -2437.8 -2418.9 -2400.6 -2326.5 -2421.0 -2311.2 -2305.7

AIC 4892.8 4898.2 4893.6 4859.8 4815.2 4667.0 4854.0 4644.4 4629.4

BIC 4897.7 5001.1 4937.7 4913.7 4849.5 4701.3 4883.4 4698.3 4673.5

Sine

LL -2621.7 -2613.1 -2623.8 -2599.9 -2588.8 -2546.8 -2602.0 -2549.6 -2546.0

AIC 5245.4 5268.2 5265.6 5221.8 5191.6 5107.6 5216.0 5121.2 5110.0

BIC 5250.3 5371.1 5309.7 5275.7 5225.9 5141.9 5245.4 5175.1 5154.1

Fast-Sine

LL -2629.9 -2620.9 -2607.2 -2597.3 -2601.3 -2552.1 -2594.2 -2553.3 -2546.0

AIC 5261.8 5283.8 5232.4 5216.6 5216.6 5118.2 5200.4 5128.6 5110.0

BIC 5266.7 5386.7 5276.5 5270.5 5250.9 5152.5 5229.8 5182.5 5154.1

Ramp

LL -2528.2 -2526.1 -2518.0 -2518.4 -2496.3 -2495.7 -2529.5 -2460.5 -2470.7

AIC 5058.4 5094.2 5054.0 5058.8 5006.6 5005.4 5071.0 4943 4959.4

BIC 5063.3 5197.1 5098.1 5112.7 5040.9 5039.7 5100.4 4996.9 5003.5

MR

LL -2668.2 -2655.4 -2662.7 -2648.5 -2640.6 -2614.5 -2635.8 -2591.3 -2606.7

AIC 5338.4 5352.8 5343.4 5319.0 5295.2 5243.0 5283.6 5204.6 5231.4

BIC 5343.3 5455.7 5387.5 5372.9 5329.5 5277.3 5313.0 5258.5 5275.5

SUM

LL -12893.4 -12843.6 -12849.5 -12783.0 -12727.6 -12535.6 -12782.5 -12465.9 -12476.1

AIC 25796.8 25897.2 25789.0 25676.0 25525.2 25141.2 25625.0 25041.8 25040.2

BIC 25821.3 26411.7 26009.5 25945.5 25696.7 25312.7 25772.0 25311.3 25260.7
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Table 1.4.6: Out-of-sample Statistics Table for Exp.3

‘Constant, Sine, Fast-Sine, Ramp and MR’ represent DGP with constant, sine, fast-sine,

ramp and mean reverting conditional correlations. ‘SUM’ records the sum of statistics

across five types of conditional correlations. The statistics in bold highlight winners.

EWMA VEC DVEC BEKK DBEKK CCC OGARCH DCC RDCC

Constant
MSFE 0.0158 0.0352 0.0250 0.0516 0.0311 0.0044 0.0373 0.0051 0.0062

MAFE 0.0950 0.1351 0.1145 0.1540 0.1245 0.0490 0.1447 0.0514 0.0534

Sine
MSFE 0.0371 0.0557 0.0536 0.0734 0.0522 0.0290 0.0499 0.0281 0.0312

MAFE 0.1564 0.1847 0.1803 0.2084 0.1793 0.1436 0.1807 0.1392 0.1524

Fast-Sine
MSFE 0.0409 0.0618 0.0619 0.0747 0.0550 0.0254 0.0487 0.0278 0.0304

MAFE 0.1641 0.1953 0.1948 0.2108 0.1847 0.1364 0.1780 0.1397 0.1458

Ramp
MSFE 0.0923 0.0780 0.0832 0.1005 0.0877 0.0891 0.1062 0.0761 0.0802

MAFE 0.2045 0.2287 0.2152 0.2618 0.2255 0.2581 0.2760 0.1942 0.2202

MR
MSFE 0.0594 0.0814 0.0723 0.1085 0.0777 0.0914 0.1084 0.0569 0.0616

MAFE 0.2045 0.2287 0.2152 0.2618 0.2255 0.2581 0.2760 0.1942 0.2094

SUM
MSFE 0.2455 0.3121 0.2960 0.4087 0.3037 0.2393 0.3505 0.1940 0.2096

MAFE 0.8245 0.9725 0.9200 1.0968 0.9395 0.8452 1.0554 0.7187 0.7812

1.4.4 Experiment.4

Experiments 1-3 not consider the leverage effect in volatilities. We then specify conditional

variances formed as a GJR(1,1,1) model. Let ω1 = 0.05, α1 = 0.1, γ1 = 0.05 and β1 = 0.8

(low ARCH but high GARCH) in (1.4.4); and let ω2 = 0.05, α2 = 0.1, γ2 = 0.05 and β2 = 0.8

in (1.4.5). To account for a leverage effect, also combined with results from experiment 1-

3, here we only compare nonlinear correlation models, including DCC, ADCC, RDCC and

ARDCC.

Table 1.4.7 exhibits in-sample results. First of all, as expected, by introducing an asym-

metric term, the ADCC and ARDCC models are superior to the DCC and RDCC models,

respectively, indicating that asymmetric models are supposed to be selected as long as the
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data shows the leverage effect. Secondly, LL statistics show that ADCC and ARDCC models

are more or less same. But after adjusting the number of parameters, both the AIC and

BIC criteria pointed out that the ARDCC model is slightly better than the ADCC model.

Table 1.4.8 presents out-of-sample performances. The DCC model still provides the least

error in forecasting. One explanation is that the prediction ability is contributed by two

aspects: the explanatory ability and the level of parameterisation. Once the overload of

the second aspect was greater than the first aspect, the predictability of the model would

get worse. Thus, although ADCC models interpret data better in-sample, the parsimonious

DCC model brings more precise predictors.
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Table 1.4.7: In-sample Statistics Table for Exp.4

‘Constant, Sine, Fast-Sine, Ramp and MR’ represent DGP with constant, sine, fast-sine,

ramp and mean reverting conditional correlations. ‘SUM’ records the sum of statistics

across five types of conditional correlations. The statistics in bold highlight winners.

DCC ADCC RDCC ARDCC

Constant

LL -2441.5 -2430.8 -2453.1 -2427.7

AIC 4905.0 4889.6 4924.2 4877.4

BIC 4958.9 4958.2 4968.3 4931.3

Sine

LL -2681.6 -2656.7 -2673.8 -2658.4

AIC 5385.2 5341.4 5365.6 5338.8

BIC 5439.1 5410.0 5409.7 5392.7

Fast-Sine

LL -2677.8 -2666.9 -2681.0 -2662.4

AIC 5377.6 5361.8 5380.0 5346.8

BIC 5431.5 5430.4 5424.1 5400.7

Ramp

LL -2593.8 -2581.6 -2598.8 -2574.3

AIC 5209.6 5191.2 5215.6 5170.6

BIC 5263.5 5259.8 5259.7 5224.5

MR

LL -2743.8 -2717.6 -2730.5 -2724.5

AIC 5509.6 5463.2 5479.0 5471.0

BIC 5563.5 5531.8 5523.1 5524.9

SUM

LL -13138.5 -13053.6 -13137.2 -13047.3

AIC 26387.0 26247.2 26364.4 26204.6

BIC 26656.5 26590.2 26584.9 26474.1
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Table 1.4.8: Out-of-sample Statistics Table for Exp.4

‘Constant, Sine, Fast-Sine, Ramp and MR’ represent DGP with constant, sine, fast-sine,

ramp and mean reverting conditional correlations. ‘SUM’ records the sum of statistics

across five types of conditional correlations. The statistics in bold highlight winners.

CCC DCC ADCC RDCC ARDCC

Constant
MSFE 0.0053 0.0054 0.0045 0.0059 0.0053

MAFE 0.0548 0.0534 0.0493 0.0553 0.0536

Sine
MSFE 0.0255 0.0256 0.0305 0.0263 0.0323

MAFE 0.1373 0.1330 0.1429 0.1399 0.1475

Fast-Sine
MSFE 0.0264 0.0287 0.0309 0.0292 0.0317

MAFE 0.1383 0.1412 0.1455 0.1426 0.1489

Ramp
MSFE 0.0915 0.0724 0.0744 0.0818 0.0836

MAFE 0.2584 0.2137 0.2139 0.2404 0.2444

MR
MSFE 0.0950 0.0582 0.0642 0.0711 0.0770

MAFE 0.2636 0.1983 0.2066 0.2281 0.2335

SUM
MSFE 0.2437 0.1903 0.2045 0.2143 0.2299

MAFE 0.8524 0.7396 0.7582 0.8063 0.8279

1.4.5 Experiment.5

For a deeper look into the effect of conditional correlations, one noticeable characteristics

in the above four experiments is that M-GARCH models perform better in data with con-

stant correlations. It reveals that time-varying correlations weaken the goodness-of-fit of

M-GARCH models, and things can go even worse if there occurs a structural break in the

correlation structure. Segmenting the correlation process into sub-samples according to the

break location is a possible solution to increase model fitting in-sample, i.e. considering

‘local conditional correlation’ or ‘change-point in correlation structure’.
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In experiment 5, we allow a mean change in conditional correlation (Recall Section 1.4.0.2).

The conditional variances are still generated by the GJR(1,1,1) model. Let ω1 = 0.05,

α1 = 0.1, γ1 = 0.05 and β1 = 0.8 in (1.4.4); and ω2 = 0.05, α2 = 0.1, γ2 = 0.05 and β2 = 0.8

in (1.4.5).

It is difficult to compare out-of-sample performance in Experiment 5 because it requires an

online sequential change-point detection in conditional correlation structures. Hence, we

do not discuss M-GARCH models’ predictability with structural breaks; we only discuss

for in-sample performances. Experiment 4 suggests that asymmetric models can interpret

the leverage effect better in in-samples. Thus, in Experiment 5, we only compare nonlinear

asymmetric correlation models containing the following: ADCC, ADCC with structural

break dummy (ADCCSB), ARDCC and Asymmetric RDCC with structural break dummy

(ARDCCSB).

Table 1.4.9 demonstrates results of the in-sample performance. The ADCCSB model and the

ARDCCSB show roughly equivalent performances; however, they significantly outperform

corresponding models without structural break dummy. Consistent with previous experi-

ments, the RDCC-type model provides better fitting than the DCC-type model.

Therefore, our results reveal that detecting change-point in conditional correlation structure

is crucial to model the covariance of real financial data. Besides, for empirical study with

real financial data, detecting structural break in a certain data set also helps to discover

intuitive economic or financial meaning before and after the break location.
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Table 1.4.9: In-sample Statistics Table for Exp.5

‘Constant, Sine, Fast-Sine, Ramp and MR’ represent DGP with constant, sine, fast-sine,

ramp and mean reverting conditional correlations. ‘SUM’ records the sum of statistics

across five types of conditional correlations. The statistics in bold highlight winners.

ADCC ADCCSB ARDCC ARDCCSB

Constant

LL -2429.4 -2417.5 -2441.6 -2414.6

AIC 4886.8 4863.0 4905.2 4851.2

BIC 4955.4 4931.6 4959.1 4905.1

Sine

LL -2665.3 -2638.8 -2658.4 -2640.7

AIC 5358.6 5305.6 5338.8 5303.4

BIC 5427.2 5374.2 5392.7 5357.3

Fast-Sine

LL -2663.4 -2649.0 -2668.7 -2645.0

AIC 5354.8 5326.0 5359.4 5312

BIC 5423.4 5394.6 5413.3 5365.9

Ramp

LL -2577.1 -2561.5 -2580.4 -2556.5

AIC 5182.2 5151.0 5182.8 5135.0

BIC 5250.8 5219.6 5236.7 5188.9

MR

LL -2728.9 -2698.3 -2715.7 -2709.5

AIC 5485.8 5424.6 5453.4 5441.0

BIC 5554.4 5493.2 5507.3 5494.9

SUM

LL -13064.1 -12965.1 -13064.8 -12966.3

AIC 26268.2 26070.2 26239.6 26042.6

BIC 26611.2 26413.2 26509.1 26312.1
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1.5 Summary

This chapter reviewed classical M-GARCH models including generalized covariance models,

linear and nonlinear correlation models. Aiming to compare their performances from aspects

of in-sample fitting and out-of-sample forecasting, we designed a Monte Carlo simulation

study to assess these models through fitting criteria and forecasting errors.

Generating data with different types of conditional correlations, the simulation results found

that the nonlinear correlation models are better than other two clusters in both of in-sample

and out-of-sample. Particularly, without considering the financial leverage effect and struc-

tural change, the RDCC model is superior than others in in-sample, and the DCC model

shows the best predictability. Once the leverage effect is considered in DGP, asymmetric

models help to identify the leverage effect in in-sample, although the symmetric DCC model

still gives the most precise predictors. Lastly, detecting structural break and using break

dummies to segment correlations improve the fitting of M-GARCH models in in-samples.

The issue of structural break in out-of-sample performance requires a sequential change point

detection method, and we leave it for later chapters.
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Chapter 2

The Absorption Ratio: a Leading Indicator of

the Financial Fragility
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2.1 Introduction

Systemic risk is the risk harming the stability of the entire financial system, which is easily

to be triggered because of the financial fragility. Compared to risk associated with one of the

industries or sectors, systemic risk has a much larger influence, such as the explosion of the

Great Recession in 2008. However, there is not a unique framework to study systemic risk,

and it is controversial to have a standard method to measure systemic risk. Early studies on

systemic risk come mainly from banking sectors because most systemic risk stems from bank

runs and quickly spread panic to the whole system. Thus, the strong interlinkages in financial

systems could be a sign of financial fragility and then be an intensifier for systemic risk.

Following this idea, some literature tried to use the correlation level of the financial market

to measure systemic risk, and the results showed that studying the dynamic correlation

structure makes a lot of sense in this topic (Kirtzman et al. 2012 and Billio et al. 2012).

However, during recent years, rarely papers discussed the role of dynamic correlation struc-

ture in the field of preventing systemic risk. This chapter tries to contribute on this gap and

aims to investigate whether studying the dynamic correlation structure of a financial system

can provide any sort of pre-warning mechanism to financial fragility, and even systemic risk.

Also, this chapter provides an application to empirically forecast correlation structure by

using the class of models discussed in the first chapter.

We follow the method proposed by Kirtzman et al. (2012), using absorption ratio to express

the concentrated level in the correlation structure. By analysing the relationship between

the absorption ratio and market returns, we found that absorption ratio can be applied as

an early warning indicator for the financial fragility. Hence, the predicted absorption ratio

can provide potential indications to policy makers and investors.

This chapter is structured as below. In the next section, we review relevant literature about

measuring systemic risk. Section 2.3 discusses two data sets in U.S. equity markets. Then,
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we investigate whether the absorption ratio of conditional correlations can be used as an early

warning indicator in Section 2.4. Section 2.5 provides two methods to forecast absorption

ratio for warning financial fragility, and a summary concludes.

2.2 Literature Review

The financial fragility is always connected with the systemic risk, while the concept of sys-

temic risk is hard to define. It is a result experienced from historical data, but it is hard to

capture or monitor for both policymakers and investors. Existing literature provides many

different methods to measure systemic risk. De Bandt and Hartmann (2000) provided a

survey literature on systemic risk, and in most of the literature reviewed, the systemic risk is

mainly captured by the financial contagion effect (Forbes and Rigobon, 2002). The financial

contagion is such an effect that the distress from a financial sector rapidly propagates to the

whole system via some amplification mechanisms. Using the concept of financial contagion,

systemic risk was then measured by the spillover effect from financial instability to the real

economy (Group of ten, 2001).

Although these methods offered an explanatory investigation of systemic risk, they drew

relatively less attention to recent years, particularly after the Great Recession in 2008. The

huge market loss during the crisis led people to consider more about modelling risk and

expected loss in the financial sector. Hence, Billio et al. (2012) defined the systemic risk

as any situation that results in a market loss through weakening financial stability and

reducing public confidence. Also, a recent survey (Bisias et al. 2012) documented all types

of methodologies, and indicated that the level of risk concentration is an useful indicator for

the systemic risk.

To measure the level of risk concentration between financial institutions or portfolios, there

are three widely used methods in recent literature. Adrian and Brunnermeier (2011) pro-
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posed the concept of conditional value-at-risk (CoVaR) which provides the VaR of one fi-

nancial entity conditional on other financial entities that are under financial distress. Later,

Girardi and Ergün (2013) improved the CoVaR by considering a more specific case of finan-

cial distress, estimated by multivariate GARCH models. The second method is proposed by

Acharya et al. (2011), who proposed systemic expected shortfall to measure the expected

loss of a single financial entity conditional on the entire distress environment in such a fi-

nancial sector. The third method is mainly applied in studying banking systems. Huang et

al. (2012) used distressed insurance loss to measure the systemic risk. The idea is that the

systemic risk can be measured through knowing how much insurance premium is required

for covering the expected loss during a financial distress period. The first two methods dis-

cuss how systemic risk from one financial institution or the entire financial sector marginally

affects another financial institution, and they provide a way to explore systemic risk and its

influence. The last method explains systemic risk through the cover of insurance, which is

suitable for the banking system, but not instinctively to measure systemic risk for portfolios.

The above streams discussed mainly measures the expected loss of financial institutions

during financial distresses, but does not measure the level of systemic risk itself. Billio et

al. (2012) argued that an essence of these methods is that they calculate the expected loss

for all financial institutions simultaneously during a crisis; however, this has rarely occurred

since the rapid development of financial systems. Moreover, since the conditional VaR and

expected shortfall are highly related to market volatility, low market volatility during boom

and oscillation periods would reduce the effectiveness of these methods. Hence, it is essential

to consider the evolution of correlation for early warning the financial fragility, and eventually

to systemic risk.

Inspired by the well-known fact that the correlation increases during financial crises, the IMF

(2009) reported that conditional correlations can effectively monitor financial stress. Beside
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market volatility, the covariance structure shows a more intuitive way for the systemic risk.

Because principal component analysis provides sufficiently precise pictures of covariance

matrix, Pukthuanthong and Roll (2009) simultaneously regressed country returns at time

t on principal components extracted from the conditional covariance at t − 1 and used the

average value of the R2 from this regression to measure the integration level of international

financial markets.

Similarly, Billio et al. (2012) applied the PCA to examine the integration level among

financial institutions and further to indicate the extent of systemic risk. Through monitoring

a single principal component, they found that during financial crises, the component explains

a greater proportion of total variance because industries are more unified than during normal

periods. As an extension, Kirtzman et al. (2011) applied the PCA to a rolling sample and

defined the concept of absorption ratio which uses a finite number of components to explain

the proportion from the total variation in the system. Later, Melkuev (2014) introduced

the absorption ratio into even broader markets, including equity, bond, CDS and currency

markets, and then, in order to provide more econometric sense of absorption ratio, he used

Granger causality test to show that the absorption ratio is a leading indicator for the market

return.

Bisias et al. (2012) defined ‘early warning’ models as those that can provide forecast power

for systemic monitoring. Modelling the serial correlation of objective processes can provide

predictions, such as forecasting the systemic risk in the hedge fund industry (Getmansky et

al. 2004). Alessi and Detken (2009) used a signalling approach to predict some low-frequency

financial variables as early warning indicators. However, since Melkuev (2014) showed that

conditional covariance is informative in constructing an early warning indicator, the existed

literature barely provide a leading indicator for financial fragility through forecasting the

concentration level of market correlation. The present chapter will fill this gap. It is com-
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monly accepted that there is a trade-off between model parametrisation and the accuracy of

the forecast. Considering both forecasting efficiency and accuracy, relatively parsimonious

models are recommended. The existed simulation study found that the DCC model beats

other multivariate GARCH models in out-of-sample performance (Laurent et al., 2012),

although the equally weighted moving average model gives a more efficient prediction.

Then, in order to discuss the usage of early warning indicators, several kinds of backing tests

are available, for example, the Granger causality test (Billio et al. 2012), among others. More

recently, due to the fact that systemic risks are easier to observe, Giglio et al. (2015) pointed

out that the quantile regression is an appropriate tool for examining the impact of systemic

risk on the tails. Quantile regression provides a flexible method to investigate the impact

of one distribution on another distribution, from quantile to quantile. Nonetheless, even

though quantile regression can simplify the interlinkage between systemic risk and market

states to a pure statistical issue, it bears the limitation of not being easily interpretable.

Distinguishing market states should give a better understanding about how the pre-warning

indicator and systemic risk evolve. Billio et al. (2012) used the proportion explained by

the components to identify a two-state market. Also, Melkuev (2014) applied a monitoring

change-point method on the indicator of integration level to classify the market states. To

detect the mean change of a single process, Csörgő and Horváth (1997) provided various

types of methods. More recently, Aue et al. (2009) derived an asymptotic framework of

cumulative sum statistics to detect changes in the covariance structure. However, as this

could deviate from the topic studied here, we may leave it for later works.

In this chapter, we study the correlation concentration level in the U.S. equity market, and

use quantile regression and change point detection methods to examine whether the corre-

lation concentration level can be used as a pre-warning indicator, lastly provide a method

to forecast correlation concentration level.
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2.3 The Data in U.S. Equity Markets

To study the early warning role of correlation concentration level to the systemic risk, we

study the events of ‘dot-com’ bubble and the great recession in the U.S. market. In 1990s,

the U.S. equity market took roughly 5-10 years to form ‘dot-com’ bubbles, and commonly

consider that the burst of bubble occurred during 1999-2001. Hence, in order to minimize

the clash effect from the Asian crisis around 1997, we collect the data set from 01-Jan-1998

to 31-Dec-2001. With regard to the great recession, treating September 2008 as the centre

of crisis, we collect the data set between 01-Sep-2006 and 31-Aug-2010.

To measure the market correlation concentration level, it would be better if all market infor-

mation are included, but it is not feasible to collect every share in the U.S. market because

it is unrealistic to analyse the conditional covariance structure of an over ten thousands di-

mensional data set. As an alternative solution, we collect S&P 500 sector indices as proxies

for entire market shares. For each sector, the index is computed as weighted portfolio of rep-

resentative shares in such a sector. There are ten sectors in total, containing Energy (EN),

Financial (FI), Consumer Discretionary (CD), Consumer Staples (CS), Health Care (HC),

Information Technology (IT), Industrial (IN), Material (MA), Utilities (UT) and Technology

Service (TS).

We then collect the S&P 500 index to be the market index. The raw data are the daily

closing price data adjusted for splits, dividends and distributions, and then the log return is

utilized to induce stationarity.

rt = log(pt/pt−1)

where rt and pt denote the log return and adjusted price series, respectively. The data are

collected from the Datastream. Table 2.3.1 documents the statistics summary of the log-

returns. The Augmented Dickey-fuller test and the KPSS test reveal that all log-returns are
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stationary. Also, the statistics show that the systemic risk during 2006-2010 is more severe

than the period during the ‘dot-com’ bubble, because of more negative signed values in mean

and higher values in kurtosis during the great recession.

Table 2.3.1: The Statistics Summary

The table reports the statistics summary of log-return of indices, where ‘MKT’ implies the market index,

and others are S&P sector indices as denoted above. The mean value with the unit of 1.0 · e−3.
Dot-Com Bubble (1998-2001)

MKT rEN rFI rCD rCS rHC rIT rIN rMA rUT rTS

Mean 0.0701 0.0507 0.0891 0.1400 -0.0012 0.1644 0.1356 0.1011 -0.0257 -0.0074 -0.0381

Std 0.0055 0.0068 0.0077 0.0068 0.0053 0.0065 0.0113 0.0062 0.0068 0.0054 0.0072

Skewness -0.1522 0.2410 0.1679 -0.2616 -0.2026 -0.1041 0.2154 -0.2940 0.2563 -0.3390 -0.0320

Kurtosis 5.2201 3.8019 4.6214 7.3814 9.2442 5.8764 5.3791 6.7662 5.2257 4.9046 4.7915

ADF Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject

KPSS Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject

The Great Recession (2006-2010)

MKT rEN rFI rCD rCS rHC rIT rIN rMA rUT rTS

Mean -0.0928 -0.0449 -0.3753 -0.0409 0.0162 -0.0667 0.0047 -0.0827 -0.0219 -0.0506 -0.0903

Std 0.0073 0.0101 0.0140 0.0082 0.0048 0.0056 0.0076 0.0078 0.0094 0.0066 0.0075

Skewness -0.2029 -0.3248 -0.0141 0.0616 0.1916 0.1108 0.0325 -0.3209 -0.3529 0.4667 0.3848

Kurtosis 10.4470 12.6354 10.0639 8.3257 13.3060 14.5545 8.6724 7.1882 8.0930 13.0086 11.6099

ADF Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject Reject

KPSS Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject Not Reject

Besides, in order to account for the market return, we also consider other macroeconomic

variables in daily frequency. We first collect the federal funds rate, IRt, as the interest

rate in the U.S. market. The second variable is the S&P 500 volatility index, V olt, which

is expected to capture the risk attitude of the market. We take the log difference of the

V olt for the stationarity. The third variable is collected from the FRED database: the TED

spread, Tedt, defined as the spread between 3-month Treasury Bill and 3-month LIBOR

based on U.S. dollars, which is considered as a market liquidity factor. All macroeconomic

variables are ranged between 01-Jan-1998 and 31-Dec-2001 for the dot-com bubble sample,

and between 01-Sep-2006 and 31-Aug-2010 for the great recession sample. With regarding

to the stationarity of these macroeconomic variables, both of KPSS and ADF tests indicate
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that the IRt and Tedt are non-stationary, the V olt is rather stationary. Therefore, we shall

apply the first order differences, ∆IRt and ∆Tedt, and the level V olt in later analysis.

2.4 An Early Warning Indicator - The Absorption Ratio

In this section, in order to investigate whether the correlation concentration level can be

seen as an early warning indicator for financial fragility and systemic risk, we introduce the

absorption ratio. In the context of our data set, the market correlation concentration level

or the market integration level can be traced through computing the absorption ratio from

the system of S&P 500 sectors indices.

2.4.1 The Absorption Ratio

Let us consider a d-dimensional random vector Yt = [y1,t, y2,t, . . . , yd,t]. Assuming that yi,t

and yj,t for i 6= j are linear independent, and Yt has mean µ and covariance Σ ∈ Rd.

In order to study the covariance structure of Y, by eigen-decomposing, we let,

Σ =
∑d

i=1 λiνiν
>
i

= ΓΛΓ>
(2.4.1)

where νi is the ith egienvector, and ν>i νi = 1 under the standardized scale, and λi is the

ith eigenvalue, Λ is a diagonal matrix composed by λi, 1 ≤ i ≤ d. The eigen-decomposition

can be achieved by principal component analysis, which provides a linear transformation of

Y → PC, where PC is a vector of principal components PCi. The principal components

are orthogonal and their variances are decreasing gradually, meaning that the corresponding

eigenvalues λi extracted are decreasing (λ1 > λ2 > · · · > λd).

This is achieved through the mapping of PC = ν ′Y, and Λ provides the variance for each
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principal components, that is,

V ar[PCi] = Cov[ν>i Y,ν>i Y]

= ν>i Cov[Y,Y]νi

= ν>i Σνi

= ν>i νiλi

= λi

so that the λi measures the variance of ith principal component and νi shows the direction

of λi.

Given that the principal components are orthogonal, the total variation of Y can be expressed

as,

Ψ =
d∑
i=1

λi (2.4.2)

and the variation proportion explained by ith principal components is,

ψi =
λi
Ψ

Hence, we can define the variation accounted by the first k components ARk as the absorption

ratio with first k principal components,

ARk =
k∑
i=1

ψi, k ≤ d (2.4.3)

In our case, the d-dimensional random vector is rt = [rCD,t, rIT,t, rCS,t, rEN,t, rFI,t, rHC,t,

rIN,t, rMA,t, rTE,t, rUT,t]
> and d = 10.

To interpret the absorption ratio ARk, according to Equation 2.4.3, we know that ARk ac-

counts for the concentration level of cumulative eigenvalues, which explains the co-movement

of variations in the random vector rt. Therefore, during a vulnerable period, highly corre-
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lated variables or integrated systems are supposed to have high values of ARk with a finite

number of k ≤ d.

We apply the absorption ratio to track the movement of concentration level of the market

correlation structure. Thus, conditional on historical filtration Ft−1, the conditional ab-

sorption ratio E(ARk,t|Ft−1) can be calculated from the estimator of covariance matrix Σ̂t

conditional on filtration Ft−1.

We then adopt M-GARCH models to estimate consistently the coefficients of the conditional

covariance matrix, using as initial values those of the unconditional covariance matrix Σ, so

that the estimator of the conditional correlation Σ̂t can be obtained iteratively.

Considering the fact that the EWMA is widely applied in industry and the DCC is a standard

method to model conditional correlations, we are going to apply these two models (which

have been discussed in Chapter 1) to estimate the conditional correlations, also because

of their superior performance out-of-sample. Figure 2.4.1 and 2.4.2 plot the absorption

ratios extracted from ten sector indices for k = 1, 2, 3, 4. Compared to the absorption ratio

modelled by the EWMA model, the DCC model provides a less noisy ratio, but also less

sensitive to market fragility. Regarding absorption ratios with different values of k, although

higher k are expected to explain a large proportion of the total variation, and lower k acts

more sensitive than higher k, absorption ratios show roughly same dynamic patterns for all

k.

During the period of the dot-com bubble, we can see that the absorption ratio starts from

a relatively high level, and rebounds a bit around end of 1998, which indicates the systemic

risk in the market is quite high. This feature could be a result of the Asian Crisis and

its posterior effect. We also observe that the dot-com bubble burst in the end of 2000.

Investigating the second data set, we find absorption ratios climbed to relatively high levels

in three sub-periods: April 2007 for the subprime mortgage crisis, September 2008 for the
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bankruptcy of Lehman Brother, and the beginning of 2010 for the worries about European

debt crisis. Therefore, the analysis indicates that the high level of absorption ratio implies

financial fragility and is followed by the explosive of the systemic risk.

Figure 2.4.1: The Absorption Ratio during the Dot-com Bubble

These two figures plot the absorption ratio ARk for k = 1, 2, 3, 4 during the dot-com bubble, The left

sub-figure shows ARk extracted from conditional correlation matrix modelled by EWMA model, and the

right sub-figure shows ARk modelled by DCC model.

Figure 2.4.2: The Absorption Ratio during the Great Recession

These two figures plot the absorption ratio ARk for k = 1, 2, 3, 4 during the great recession, The left

sub-figure shows ARk extracted from conditional correlation matrix modelled by EWMA model, and the

right sub-figure shows ARk modelled by DCC model.
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2.4.2 A Quantile Regression Analysis

Since we have discussed potential linkages between the absorption ratio and the financial

fragility, it is necessary to study how the absorption ratio statistically influences market

returns. Considering that the absorption ratio is non-stationary, we take the first order

difference which ∆ARt interpret the daily growth of market connectedness. A simple linear

regression model might be used, to this end, possibly including other control variables avoid

missing variables and to strengthen the explanatory power of the model. Beside using the

absorption ratio as explanatory variables, we control the market interest rate IRt, market

risk attitude factor - V olt and liquidity factor Tedt. The stationary and ADF tests suggest

that IRt and Tedt are non-stationary, thus the daily growth of federal funds rate ∆IRt and

growth of Ted ∆Tedt spread would be used in regressions. In order to have a more detailed

picture on the distribution, we apply the Quantile Regression (QR hereafter) methods. The

QR provides an approach to regress τ percentages from the distribution of the market return

on the absorption ratio and other control variables, we denote τ as the quantile index for

0 ≤ τ ≤ 1, as shown in Equation (2.4.4).

Figure 2.4.3 plots the fitted distribution of market returns in two different periods. The

plotted distributions also display that the great recession suffer from more severe systemic

risk than the dot-com bubble, because the kurtosis in the right sub-figure is much higher so

that with fatter-tails compared with the left sub-figure.
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Figure 2.4.3: The Fitted Distributions of Market Returns

Because we are aiming to test the pre-warming mechanism of absorption ratio, we then

use the growth of absorption ratio as the explanatory variable and use quantile regression

coefficient β̂τ to interpret the quantile behavior of market returns. Thus, the QR model is

formulated as,

rt = β0 + β1,τ∆IRt + β2,τV olt + β3,τ∆Tedt + β4,τ∆AR4,t + et (2.4.4)

where rt is the log market return, and βτ is an unknown parameter associated with the τ th

quantile. We choose k = 4 for absorption ratio because it contains more information about

the correlation comovement. Similarly with ordinary least squares method, the quantile

regression minimises
T∑
t=1

τ |et|+
T∑
t=1

(1− τ) |et|

to estimate the quantile coefficient βτ , where the front part τ |et| and the rear part (1−τ) |et|

are giving asymmetric penalties for under and over predictions, respectively.

Following Fitzenberger et al. (2013), the log return r has a probability distribution function

F (q) such that,

F (q) = Prob(r ≤ q)
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The τ quantile of rt can be defined as the inverse function of F (·)

Qr(τ) = inf{q : F (q) ≥ τ}

For any sample of r = {r1, r2, . . . , rn}, the τ sample quantile ξτ (analogue of Q(τ)), can be

found through,

min
ξ∈R

∑
i

= 1nρτ (yi − ξ(τ))

where ρτ (z) = z(τ − I), and I is an indicator function equals to one in the case of z < 0.

Hence, the estimators of the coefficients of quantile regression are:

µ̂ = argminµ∈R
∑

(rt − µ)2

β̂τ = argminβ∈R
∑

ρτ (rt −X>t β)2

where X = [1,∆IRt, V olt,∆Tedt,∆ARk,t]
> and β = [β0, β1,τ , β2,τ , β3,τ , β4,τ ]

>. We use

‘quantreg’ package in R (Koenker, 2013) to estimate the quantile coefficients. Table 2.4.1

and Table 2.4.2 document the results of quantile regression base on two data sets.

We first investigate the Dot-com Bubble period. According to Table 2.4.1, the simple or-

dinary least square estimation shows that regardless using the EWMA or DCC method

to compute the absorption ratio, control variables volatility index and the growth of term

spread are significant but the growth of federal funds rate and absorption ratio do not signifi-

cantly explain the market return. The results in quantile regression become more interesting.

Through the quantile τ = 0.05 to τ = 0.2, the growth of absorption ratios significantly show

negative effect on market return, by that means, the more growth on absorption ratio, the

less market return could be, which verifies that the high strength of market connections could

be a factor of bearish market return. This result is robust by using either the EWMA or
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DCC models. However, along with the quantile τ increasing, the absorption ratio becomes

insignificant and the sign changes to positive. Also in lower quantiles, the growth of federal

funds rate and term spread positively account for the market rate, and the volatility index

show highly positive effects on the market return.

Figure 2.4.1 plots the quantile regression estimations through τ = 0.01 to τ = 0.99 and show

the similar results. The sub-plots with quantile variables ∆AR ewma and ∆AR dcc exhibit

that the absorption ratio has significant negative effect to the market return if the quantile

τ is small enough.

Table 2.4.1: Estimated Regression Coefficients (The Dot-com Bubble)

This table displays the OLS and the quantile regression estimation results for the sample of the Dot-com

Bubble. ∗ ∗ ∗, ∗∗ and ∗ indicate the significant level at 99%, 95% and 90% significance levels, respectively.

EWMA DCC

Intercept ∆IRt V olt ∆Tedt ∆ARt(k = 4) Intercept ∆IRt V olt ∆Tedt ∆ARt(k = 4)

OLS
0.0001 -0.0015 0.9721 ∗ ∗∗ −0.0046∗ 0.0006 0.0001 -0.0015 0.9736 ∗ ∗∗ −0.0044∗ 0.0378

(0.0001) (0.0025) (0.0349) (0.0023) (0.0119) (0.0001) (0.0025) (0.0349) (0.0023) (0.0304)

Quantile: 0.05
−0.0064 ∗ ∗∗ 0.0078 ∗ ∗ 0.9046 ∗ ∗∗ −0.0102∗ −0.04853 ∗ ∗∗ −0.0065 ∗ ∗∗ 0.0086 ∗ ∗ 0.8655 ∗ ∗∗ −0.0107 ∗ ∗ −0.1608 ∗ ∗∗

(0.0003) (0.0026) (0.0856) (0.0058) (0.0177) (0.0003) (0.0039) (0.0722) (0.0054) (0.0450)

Quantile: 0.10
−0.0053 ∗ ∗∗ 0.0095 ∗ ∗ 0.9234 ∗ ∗∗ −0.0089 ∗ ∗ −0.0669 ∗ ∗∗ −0.0052 ∗ ∗∗ 0.0097 ∗ ∗ 0.9251 ∗ ∗∗ −0.0076∗ −0.1371 ∗ ∗

(0.0002) (0.0046) (0.0558) (0.0026) (0.0189) (0.0002) (0.0048) (0.0596) (0.0041) (0.0632)

Quantile: 0.20
−0.0032 ∗ ∗∗ 0.0090 ∗ ∗ 0.9989 ∗ ∗∗ -0.0042 −0.0275∗ −0.0032 ∗ ∗∗ 0.0086 ∗ ∗∗ 0.9981 -0.0054 -0.0656

(0.0002) (0.0011) (0.0434) (0.0031) (0.0150) (0.0002) (0.0009) (0.0539) (0.0034) (0.0588)

Quantile: 0.30
−0.0017 ∗ ∗∗ 0.0115 ∗ ∗ 1.0081 ∗ ∗∗ -0.0037 -0.0001 −0.0017 ∗ ∗∗ 0.0115 ∗ ∗∗ 1.0076 ∗ ∗∗ -0.0038 -0.0348

(0.0001) (0.0029) (0.0486) (0.0032) (0.0173) (0.0002) (0.0026) (0.0464) (0.0031) 0.0492

Quantile: 0.40
−0.0006 ∗ ∗∗ 0.0070 ∗ ∗ 1.0338 ∗ ∗∗ -0.0037 -0.0028 −0.0006 ∗ ∗∗ 0.0071 ∗ ∗ 1.0342 ∗ ∗∗ -0.0034 -0.0108

(0.0001) (0.0012) (0.0345) 0.0024 (0.0119) (0.0001) (0.0034) (0.0381) (0.0026) (0.0249)

Quantile: 0.50
0.0001 0.0046 ∗ ∗∗ 1.0239 ∗ ∗∗ -0.0030 0.0042 0.0001 0.0046 ∗ ∗∗ 1.0206 ∗ ∗∗ -0.0029 0.0316

(0.0001) (0.0015) (0.0299) (0.0020) (0.0111) (0.0001) (0.0017) (0.0298) (0.0021) (0.0414)
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Figure 2.4.4: The Quantile Regression Coefficients during the Dot-com Bubble

These two figures plots quantile regression coefficients for τ ∈ [0.01, 0.99], the upper sub-figure is obtained

from the EWMA absorption ratio, and the lower sub-figure plots results obtained from the DCC

absorption ratio. The red solid line is the OLS coefficient and its 95% confidence interval is showed as red

dot line. The black dot line is the quantile coefficients, and grey belt is its confidence intervals.
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Table 2.4.2: Estimated Regression Coefficients (The Great Recession)

This table displays the OLS and the quantile regression estimation results for the sample of the Great

Recession. ∗ ∗ ∗, ∗∗ and ∗ indicate the significant level at 99%, 95% and 90% significance levels, respectively.

EWMA DCC

Intercept ∆IRt V olt ∆Tedt ∆ARt(k = 4) Intercept ∆IRt V olt ∆Tedt ∆ARt(k = 4)

OLS
-0.0001 −0.0004 ∗ ∗∗ 1.300 ∗ ∗∗ 0.0001 -0.0028 -0.0001 −0.0004 ∗ ∗∗ 1.300 ∗ ∗∗ 0.0001 -0.0042

(0.0001) (0.0015) (0.0153) (0.0008) (0.0049) (0.0001) (0.0002) (0.0153) (0.0008) (0.0093)

Quantile: 0.05
−0.0042 ∗ ∗∗ -0.0055 1.2545 ∗ ∗∗ 0.0004 −0.0021∗ −0.0043 ∗ ∗∗ -0.0056 1.2551 ∗ ∗∗ 0.0003 -0.0031

(0.0002) (0.0144) (0.0289) (0.0014) (0.0012) (0.0003) (0.0196) (0.0371) (0.0009) (0.0024)

Quantile: 0.10
−0.0027 ∗ ∗∗ -0.0009 1.2940 ∗ ∗∗ 0.0009 -0.0116 −0.0027 ∗ ∗∗ -0.0014 1.2954 ∗ ∗∗ 0.0011 -0.0101

(0.0002) (0.0032) (0.0278) (0.0017) (0.0105) (0.0002) (0.0032) (0.0321) (0.0015) (0.0181)

Quantile: 0.20
−0.0016 ∗ ∗∗ -0.0025 1.2981 ∗ ∗∗ 0.0001 -0.0007 −0.0016 ∗ ∗∗ -0.0024 1.2987 ∗ ∗∗ 0.0001 -0.0016

(0.0001) (0.0041) (0.0187) (0.0011) (0.0071) (0.0001) (0.0043) (0.0115) (0.0010) (0.0129)

Quantile: 0.30
−0.0008 ∗ ∗∗ -0.0041 1.2781 ∗ ∗∗ -0.0006 -0.0037 −0.0008 ∗ ∗∗ -0.0041 1.2781 ∗ ∗∗ -0.0007 -0.0042

(0.0001) (0.0027) (0.0122) (0.0009) (0.0042) (0.0001) (0.0027) (0.0141) (0.0009) (0.0102)

Quantile: 0.40
−0.0003 ∗ ∗∗ -0.0031 1.2783 ∗ ∗∗ 0.0000 -0.0028 −0.0004 ∗ ∗∗ -0.0032 1.2748 ∗ ∗∗ 0.0001 0.0037

(0.0001) (0.0025) (0.0113) (0.0006) (0.0042) (0.0001) (0.0025) (0.0123) (0.0007) (0.0082)

Quantile: 0.50
0.0001 -0.0052 1.2706 ∗ ∗∗ -0.0004 0.0001 -0.0001 -0.0052 1.2692 ∗ ∗∗ -0.0004 0.0023

(0.0001) (0.0025) (0.0085) (0.0005) (0.0001) (0.0001) (0.0023) (0.0053) (0.0001) (0.0058)

We then study the case of the Great Recession. The OLS estimation in Table 2.4.2 reports

that the variables of volatility index and the growth of federal funds rate significantly explain

the market return in the second sample. However, the patterns are quite different with

the dot-com bubble, where the volatility index become dramatically significant, and other

control variables and the growth of absorption ratio nearly insignificantly account to the

market return.
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Figure 2.4.5: The Quantile Regression Coefficients during the Great Recession

These two figures plots quantile regression coefficients for τ ∈ [0.01, 0.99], the upper sub-figure is obtained

from the EWMA absorption ratio, and the lower sub-figure plots results obtained from the DCC

absorption ratio. The red solid line is the OLS coefficient and its 95% confidence interval is showed as red

dot line. The black dot line is the quantile coefficients, and grey belt is its confidence interval.

Although the sign of the coefficients are negative for τ = 0.05−0.3, the growth of absorption

ratio based on the EWMA model only significantly interprets the market return at τ = 0.05
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quantile at 10% significance level. Compared with the bubble period, the absorption ratio

became less significant, and this is probably because the systemic risk during the Great

Recession is more severe so that the control variable - the volatility index explains most of

variations of the market return. The explanatory ability of the growth of absorption ratio

on the market return can be seen as an compensation in down-side market. Similarly with

the previous case, along with the quantile τ increasing, the explanatory ability of absorption

ratio is decreasing and becoming insignificant. Nevertheless, it is sensible that the absorption

ratio displays reasonable negative signs in left tailed quantile regressions (τ = 0.05 − 0.3) -

the higher absorption ratio during down-side market, the lower value of the market return.

Another fact is compared with the absorption ratio computed through the EWMA model,

the one from the DCC model seems to be more conservative, which is consistent with previous

discussions.

Figure 2.4.5 also considers the right tail of the distribution, i.e. τ > 0.5, but explanatory

ability of the absorption ratio on up-ward market is not crucial to study the systemic risk.

The rest of features in sub-figures are consistent with Table 2.4.2.

Therefore, as a naturally second moment risk factor, the absorption ratio plays compensative

role of volatility during the exposure of systemic risk. It is fair to say that the results from the

quantile regression model reveal more detailed inter-linkages between the absorption ratio

and the down-side market return. Considering severe systemic risks always starts from a

bearish market indication, we suggest that the financial fragility indicator, absorption ratio,

might be useful for pre-warning systemic risk.

2.4.3 A Change Point Analysis

The absorption ratio is an indicator of the financial fragility, as it can reflect the movement

of market return in the bear market. Thus, detecting changes in the mean of the absorption
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ratio would give a sense of changing of market states. If changes in absorption ratio are

consistently found prior to changes happening in the market state, then it can empirically

used as an early warning indicator for systemic risk. Following Billio et al. (2012) who use

the proportion explained by principal components to identify market status as downward

and upward, we apply a more statistical test to detect the mean change of the absorption

ratio.

We apply a non-parametric CUSUM test, which is designed for independent identically

distributed processes (Csörgő and Horváth, 1997), and further extended to mixing processes

by Ling (2007). The CUSUM test constructs a statistics ΛT to distinguish the following null

hypothesis

H0: µ1 = µ2 = · · · = µT

against the alternative

H1: µ1 = µ2 = · · · = µt∗ 6= µt∗+1 = · · · = µT

where t∗ is an unknown change point for 1 < t∗ < T . µt is the conditional mean of any

stationary process, and T is the sample size.

To detect break point t∗ in any random variable yt, we need to demean variable yt, denoting

as ỹt = yt − 1
T

∑T
1 yt. Then, we have statistics Mn(t) as

Mn(k) = n−
1
2 (S((T + 1) k

T
)− k

T
S(T )) 0 < k < T

Mn(k) = 0 k = 0

 (2.4.5)

where S(k) =
∑k

t=1 ỹt. The limit distribution is given by,

ΛT = Sup1<t<T
1

σ
|Mn(t)| D→ Sup1<t<T |B(t)| (2.4.6)
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where B(t) is the standard Brownian Bridge. The asymptotic critical values can be found

from the distribution of Brownian Bridge, refer to Csörgő and Horváth (1997).

As it is designed to test stability versus a single change, we apply the CUSUM test to

absorption ratio processes ARk,t for detecting the biggest change point in its mean. The idea

is that because the data set spans over the whole crisis period, we see the biggest change in

absorption ratio as a start date of systemic risk exposure, and thereby the detection should

give implications for policy makers and investors. Thus, we specifically test the hypotheses

that,

H0: AR1,1 = AR1,2 = · · · = AR1,T

against the alternative

H1: AR1,1 = AR1,2 = · · · = AR1,t∗ 6= AR1,t∗+1 = · · · = AR1,T

Here, we choose k = 1 because lower k generates a more sensitive absorption ratio, Table

2.4.3 reports the break point in absorption ratio AR1,t. As we studied above, for each

financial crisis, we apply two types of multivariate covariance models –EWMA and DCC

for absorption ratios. The statistics ΛT rejects the null hypothesis in every processes, and

CUSUM statistics Mn(t) are plotted in Figure 2.4.6. The dates with maximum statistics

can be referred as break dates in absorption ratio during the dot-com bubble and the great

recession.

Regarding to the dot-com bubble, both the EWMA and DCC absorption ratios experience

a mean change on 05-December-2000. This date suggests that the U.S. equity market was

highly concentrated, and a small shock in any sector could contaminate to the whole financial

system. While during the great recession, the CUSUM test detects inconsistent change

locations in EWMA and DCC absorption ratios. The detected change point in the EWMA

absorption ratio is on 01-April-2008, which is prior to the break out of the recession in

61



September, but the counterpart for DCC absorption ratio is on 31-October-2008. This

is probably because the absorption ratio in the DCC model are less sensitive to market

information, so that the mean change is more likely to be detected after a sizeable structural

change in the process. And this also causes the fact that supreme of cumulative sum statistics

Λ in the DCC absorption ratio is larger than Λ in the EWMA absorption ratio.

Therefore, as an early warning indicator, the EWMA absorption ratio may indicate more

implications for policy making and real trading.

Table 2.4.3: The Change Point Detections on AR1,t

The Dot-com Bubble The Great Recession

EWMA DCC EWMA DCC

Change Date 05/Dec/2000 05/Dec/2000 01/Apr/2008 31/Oct/2008

ΛT 7.80∗∗∗ 18.20∗∗∗ 12.80∗∗∗ 13.55∗∗∗

Figure 2.4.6: The CUSUM statistics Mn(t)

The blue line is the Mn(t) statistics, and the red line is the critical value under 95% significance level.
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2.5 Forecasting Absorption Ratio

As discussed in the last section, the absorption ratio can be applied as an early warning

indicator of systemic risk, therefore it becomes important to predict absorption ratios for

early warning the systemic risk in financial markets. This section provides methods to

forecast the absorption ratio. Recall that the absorption ratio ARt is extracted from the

conditional covariance matrix Σ̂t, we then use M-GARCH models to forecast conditional

covariance Σ̂t+1, and compute the predicted absorption ratio ÂRt+1.

ÂRt+1 = f(Σ̂t+1)

where f(·) is a function described as (2.4.3) in section 2.4.

Among various types of M-GARCH models, we select two typical models considering the

efficiency and accuracy: the EWMA and DCC model. Chapter 1 concluded that the DCC

model produces less forecast error than the EWMA, but EWMA is the most efficient method

to forecast Σ̂t+1. Concerning the accuracy of forecasting, we apply iterated one step a head

forecast method with fixed rolling window.

2.5.1 Forecasting Models

2.5.1.1 The EWMA Model

The first forecasting model is Exponential Weighted Moving Averaging model (Riskmetrics,

1996). The EWMA model is efficient in computation because it is not necessary to estimate

parameters, and the only parameter in the model is a fixed value λ0 = 0.94 for daily data,

which is derived from numerous empirical works (Riskmetrics, 1996). The model shows as,

Σ̂t+1 =

p∑
l=0

λ0Σ̂t−l +

q∑
l=0

(1− λ0)rt−lr
>
t−l (2.5.1)
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where p and q is the lag length of the GARCH and ARCH effect. We set the initial value

of Σ̂t as the unconditional covariance Σ̄t = 1
T

∑T
t=1 rtr

>
t . Thus, the out-of-sample can be

predicted based on conditional covariance Σ̂t−l, where Σ̂t−l can be obtained from in-sample

data.

2.5.1.2 The Dynamic Conditional Correlation Model

The second forecasting model is Dynamic Conditional Correlation model (Engle, 2002).

Since the conditional covariance matrix can be decomposed to diagonal conditional standard

deviation matrix Dt and conditional correlation matrix Rt, shown as,

Σt = Dt ·Rt ·Dt

Thus, the innovation term in conditional correlation Rt would be de-volatized process ε̂t

obtained from Equation 2.5.2.

r̂∗t (i) = rt(i)/

√
Σ̂i,i,t (2.5.2)

where Σi,i,t is the ith diagonal element of Dt ·Dt, indicating the conditional variance of rt(i)

(rt(i) ∈ rt). We can use GARCH (p,q) model to estimate,

Σi,i,t = wi +

q∑
l=1

ai,lr
2
t−l +

p∑
l=1

bi,lΣi,i,t−l

The GARCH (p,q) model can be estimated by the Maximum Likelihood. Then, we set the

initial value of Σi,i,t as unconditional variance Σ̄i,i,t = 1
T1

∑T1

t=1 r
2
i,t, where T1 is the in-sample

length. Combined with estimated coefficients, we then estimate the conditional variance

Σ̂i,i,t.

For the conditional correlation process, assuming there exists a quasi conditional correlation
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process Qt.

Qt = R̄ +

q∑
l=1

αl(r̂
∗
t−l(r̂

∗
t−l)

> − R̄) +

p∑
l=1

βl(Qt−l − R̄)

where unconditional correlation matrix R̄ = 1
T1

∑T1

t=1 r̂∗t (r̂
∗
t )
>. The conditional correlation of

entries i and j are ρi,j,t =
Qi,j,t√

Qi,i,t

√
Qj,j,t

. Hence, the conditional correlation matrix Rt is,

Rt = diag(Qt)
− 1

2 ·Qt · diag(Qt)
− 1

2

Engle (2002) showed that the QMLE consistently estimate the parameters in the DCC

model. With estimated parameters, using the unconditional correlation matrix R̄t as the

initial value of Qt, we obtain estimated conditional correlation Q̂t.

Using the estimation from the in-sample, we then iteratively forecast one-step ahead predic-

tors on R̂t+1, and Dt+1 is predicted through following Equations:

Q̂t+1 = R̄ +

q∑
l=0

α̂l(r̂
∗
t−l(r̂

∗
t−l)

> − R̄) +

p∑
l=0

βl(Q̂t−l − R̄) (2.5.3)

Rt+1 = diag(Qt+1)−
1
2 ·Qt+1 · diag(Qt+1)−

1
2 (2.5.4)

Σ̂i,i,t+1 = ŵi +

q∑
l=0

âi,lr
2
t−l(i) +

p∑
l=0

b̂i,lΣ̂i,i,t−l (2.5.5)

where Σ̂i,i,t+1 is the ith diagonal element in Dt+1. Therefore, the we can forecast conditional

covariance matrix Σ̂t+1 as,

Σ̂t+1 = D̂t+1 · R̂t+1 · D̂t+1 (2.5.6)

The DCC forecasting model is supposed to be more precise than the EWMA, but it has

higher computational costs.
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2.5.2 The Prediction Results

In order to predict the absorption ratio during the ‘dot-com’ bubble and the great recession,

we split samples into in-sample and out-of-sample. We roll the fixed in-sample window with

new observations at t, and iterated forecast t+ 1. Each data set contains 1042 observations,

we set 522 observations (roughly two years) as in-sample length, and treat the rest 520

observations as out-of-sample. Specifically, in the first data set, we estimate models based

on data from 01-January-1998 to 03-January-2000, and forecast the covariance matrix and

the absorption ratio between 04-January-2000 and 31-December-2001; in the second data

set, the models are estimated through the sample from 01-September-2006 to 02-September-

2008, and forecast the absorption ratio between 03-September-2008 and 31-August-2010.

The predicted absorption ratios are plotted in Figure 2.5.1 and 2.5.2. From figures, we notice

that the features of absorption ratios are consistent with the discussion on Figure 2.4.1 and

2.4.2. If there was a sharp boost in absorption ratio, we identify it gives an early warning

to the systemic risk.

Figure 2.5.1: The Predicted Absorption Ratio for the Dot-com Bubble
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Figure 2.5.2: The Predicted Absorption Ratio for the Great Recession

Table 2.5.1 reports the forecast errors between the EWMA and DCC models. Not surpris-

ingly, the DCC model provides relatively more accurate forecasting in terms of mean square

forecast error (MSFE) and mean absolute forecast error (MAFE). Meanwhile, the EWMA

model produces acceptable forecasts as well. Combined with its superiorities in interpreting

down-side market returns and forecasting efficiency, we would suggest to apply the EWMA

model to predict absorption ratio for financial fragility, to give more implications in prevent-

ing the systemic risk.

Table 2.5.1: The Forecast Error

The Dot-com Bubble The Great Recession

EWMA DCC EWMA DCC

MSFE 0.19 0.16 0.58 0.52

MAFE 0.37 0.36 0.75 0.71

2.6 Summary

This chapter provided an application of analysing the financial fragility in the U.S. equity

market. We empirically showed the correlation concentration level can be used as an early
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warning indicator of the financial fragility, even for systemic risk, through analysing the

absorption ratio by the quantile regression and the change point analysis (also supported

by existed literature Kirtzman et al. (2011) and Billio et al. (2012)). Based on predicted

conditional covariance, we computed the predicted absorption ratio, to indicate further im-

plementations to policy makers and investors. Detecting the instability in the absorption

ratio is a rough proxy for detecting the instability in the covariance structure. More methods

about testing for the instability in the covariance structure will be developed in next two

chapters.
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Chapter 3

Change Point Detection in The Conditional

Correlation Structure of Multivariate Volatility

Models
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3.1 Introduction

Multivariate models, whether for fitting first moment or second moments, are being more

and more widely used in financial applications. As a remarkable application, testing for

contagion in global financial markets has been widely re-visited after the recent great re-

cession (See Chiang et al. 2007; Celık 2012; Wang and Nguyen Thi 2013; amongst others).

Forbes and Rigobon (2002) defined a contagion effect as the correlation structure of several

markets experiences an increase after a certain date. To identify contagion effect, major-

ity of literature consider some financial events as change dates for correlation structure,

but this assumption contains biases because the occurrence of change may happen earlier

within some sensitive financial indicators or with delay in some macroeconomic indicators.

Therefore, to be precise, it is motivated to consider an endogenous date for the change in

correlation structures.

A part of previous literature on correlation breaks concentrated on using parametric methods

to detect changes on the coefficients of multivariate volatility models (Andreou and Ghy-

sels, 2003; Qu and Perron, 2007). This stream of tests has reasonable statistical properties

but suffers from the usual difficulties associated with parametric model selection and the

heavy computational cost in large dimensional systems. Later, Aue et al. (2009) proposed

a non-parametric CUSUM test for detecting instabilities of volatilities and cross-volatilities

of multivariate time series models. They provided an asymptotic CUSUM test for the null

of no change also derived its asymptotic distribution, and applied it to several multivari-

ate frameworks such as, multivariate ARMA process and constant conditional correlation

GARCH. Their test was modified by Wied et al. (2012) and their test is based on sample

correlations.

Although the tests of Aue et al. (2009) and Wied et al. (2012) are of merits from aspects

of easy computation and good statistical properties, it is developed under the assumption
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that the correlation structure remains a constant term. However, in the financial world,

conditional correlation structures are seldom constant (Tse and Tsui, 2002; Engle, 2002),

which can be captured through standardizing the observations by conditional variances. This

paper aims to contribute to the literature on proposing a modification of the non-parametric

CUSUM technique of Aue et al. (2009), to detect unknown change points of the dynamic

evolving conditional correlations within multivariate volatility models.

In more detail, we propose a two steps semi-parametric test. The first step is to estimate

the covariance structure through Multivariate GARCH models (including BEKK, Factor,

CCC, DCC and ADCC), thereby obtaining conditional correlations and volatilities. Then,

the second step is apply CUSUM test to detect correlation changes in the context of mul-

tivariate models with dynamically evolving conditional correlations. In order to discuss the

performance of the test under mixing property correlation structure, a Monte Carlo simula-

tion study is taken on data generating process with different extents of dependence. Results

present that strong mixing data would deteriorate the performance of CUSUM tests, but this

limitation can be controlled in an acceptable level by using M-GARCH models to estimate

conditional correlations.

We then use the semi-parametric CUSUM test to detect the correlation breaks in large

financial system for identifying the contagion effect. Investigating the dynamic correlations

among Latin American, Central East European and East Asian emerging markets with U.S.

markets, we find that the contagion effect existed in these three regions during the Great

Recession. However, the contamination from United States to East Asian markets is not as

strong as to other two regions.

The paper is structured as below. In the next section, we review literature on the aspects

of M-GARCH models, relevant existing change point tests and their developments. Section

3.3 discussed the theory of semi-parametric CUSUM test. In section 3.4, we assess the
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performance of the test with a Monte Carlo simulation study. Section 3.5 provides an

empirical application in the context of tests for financial contagion, a summary concludes.

3.2 Literature Review

The dynamics of volatilities and cross volatilities of multivariate processes play a crucial role

in the understanding of the relationship between economic and especially financial observa-

tions. Hence the literature on multivariate volatilities, especially on GARCH-type models

is rich. For reviews we refer to Bauwens et al. (2006), Engle (2009), Silvennoinen and

Teräsvirta (2009) and Francq and Zakoian (2010). It has been established from an empirical

as well as theoretical point of view that non-linear multivariate processes, especially with

non-constant conditional, usually outperform linear time series models. Thus generalizations

of the conditional correlation model of Bollerslev (1990), including the DCC model (Engle,

2002), and their extensions (cf. Cappiello et al. (2006), Noureldin et al. (2014)), are used

to produce accurate forecasts both in-sample and out-of-sample.

However, all these popular models, like every empirical model in econometrics, must also

account for changes in their parameters, which might arise as a result of sudden shocks oc-

curring in the economy, market crashes, financial crises or intervention of the policy markers.

One of the first and most influential work on change point detection is due to Page (1955),

who proposed a cumulative sum method (CUSUM). Since then, the literature has developed

both parametric and non-parametric tests, the classical results have been extended to time

series (cf. Bai and Perron (1998), Bai and Perron (2003), Qu and Perron (2007), Aue et al.

(2006) and Aue et al. (2009)). Due to their optimality properties, likelihood-based para-

metric tests have been widely used. Due to their simplicity and robustness, non-parametric,

especially CUSUM-based approaches have become popular. Csörgő and Horváth (1997)

study their asymptotic properties focusing on independent observations. De Pooter and Van
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Dijk (2004) used CUSUM test to detect change in the variance of a heteroscedastic process,

and their results showed a deterioration in the type I. Also, they pointed out that the size

and power became good again when they conducted same test on the standardized residuals

of a GARCH model. Aue and Horváth (2013) and Horváth and Rice (2014) reviewed sev-

eral methods on how to derive asymptotic properties of popular methods when dependence

between the observations cannot be neglected.

It is therefore clear why this theoretical issue has become an important concern for applied

economists, and the extension of change point tests to a more flexible environment has

become a critical research topic for theorists. Hence the literature on this topic has been

developing in the last two decades. For example, Horváth and Kokoszka (1997) provided the

asymptotic behavior of change point tests for Gaussian long-range dependent data. Antoch

et al. (1997) studied the behavior of partial sum change point statistics when data follows

an autoregressive order 1 process, establishing its asymptotic theory. Similarly, the change

point tests of Quandt (1958, 1960) which was designed for i.i.d processes, was studied by

Yao and Davis (1986) and further extended to detect change points in near-epoch dependent

sequences by Ling et al. (2007). Inclan and Tiao (1994) were the first to attempt to detect

changes in the variance of i.i.d processes using a cumulative sums of squares test. Then, the

literature developed further with the contribution of Kim (2000), who showed the consistency

of CUSUM tests when applied to a GARCH (1,1) process; and further, Lee et al. (2003)

applied the test of Inclan and Tiao (1994) to detect variance change of non-stationary AR(q)

process with strongly mixing innovations. Through these developments, most of the change

point tests have become applicable to a wider variety of economic or financial processes.

However, in the context of financial data, second moments are usually modeled by ARCH

or GARCH models. Kokoszka and Leipus (2000) examined change point tests in processes

with dependent volatility. Their findings showed the CUSUM test is valid when applied
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to short memory ARCH model making feasible to detect changes within certain types of

ARCH models in financial data (cf. also Andreou and Ghysels (2002) and Fryzlewicz and

Rao (2011)). Andreou and Ghysels (2002) applied the test of Kokoszka and Leipus (2000) to

detect multiple changes in the volatility of high frequency stock and foreign exchange data,

where the conditional variance is captured by a GARCH model. They found, consistent

with results reported by Kokoszka and Leipus (2000) and De Pooter and Van Dijk (2004),

that if the data are highly persistent or have long memory, the existence of change points

is overestimated and the tests became completely unreliable, especially in case of nearly

nonstationary processes.

Change points detection in the second moments is not limited to univariate cases, but it

can be extended to the covariance and correlation structure of multivariate models. Early

studies on change points detection in the covariance structure were focussed on using model

selection criteria and standard stability tests on the parameters of M-GARCH models. For

example, Yao (1988), Lavielle and Teyssiere (2006) proposed penalized contrast function to

detect multiple changes in covariance structure simultaneously. The procedures however are

only designed to be applied to i.i.d and weakly dependent constant conditional correlation

(CCC) processes. However, even though these methods can detect change points within the

framework of CCC models, it is arguable that allowing for dynamic conditional correlations

(DCC) would be more realistic as shown in Tse and Tsui (2002) and Engle (2002). In

order to detect conditional correlation change in foreign exchange market, Andreou and

Ghysels (2002) modeled multivariate data by DCC model and then detected parameter

changes through the test of Bai and Perron (1998). Among the theoretical studies, Aue

et al. (2006) provided a strong approximation for the CUSUM statistics in the context of

GARCH processes. Aue et al. (2009) constructed a CUSUM statistics for detecting changes

in the covariance structure of multivariate sequences and derived their asymptotics. Their
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method was transferred to study the stability of the correlation matrix by Wied et al. (2012).

As mentioned above, assuming constant conditional correlations is often unrealistic, as

highly-persistent conditional correlation exists as the norm especially in financial data.

Hence, the emergence of the need of detecting changes in dynamically evolving persistent

conditional correlation structures. In this paper, deriving the appropriate conditions, we

show that the asymptotic theory of CUSUM tests is still valid for the cases where the condi-

tional correlation structure is allowed to be (strongly) persistent (albeit not integrated) and

modeled as constant conditional correlation (CCC), dynamic conditional correlation (DCC),

BEKK, factor, asymmetric DCC and BEKK processes. Finally we apply the procedure to

detect the occurrence of financial contagion as defined in Forbes and Rigobon (2002).

3.3 The CUSUM test

Drawing from the previous work of Aue et al. (2009) and Wied et al. (2012), we test

the stability of covariance structure of a d-dimensional random vector (yt : t ∈ Z), with

E[|yt|2] = µ and E[|yt|2] <∞, where | · | denotes the Euclidean norm in Rd. In this section,

we modify the test of Aue et al. (2009) and extend it to the cases where the observations

evolve according to the specifications of BEKK, Factor, CCC, DCC and ADCC GARCH

models.

3.3.1 Test the stability of time-varying correlation structures

The CUSUM statistics are designed to examine the stability of volatilities and cross-volatilities,

but studying just pure correlation relationships sometimes is an issue to assets or other fi-

nancial variables. Indeed, changes in the correlation structure may be caused by changes

in volatility or covariance. To detect changes in the correlation structure, this paper uses
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de-volatilized data to remove the influence from volatilities. Let y1, y2, . . . , yn denote the

observations satisfying

E[yt] = 0

and yt = [yt(1), yt(2), . . . , yt(d)]>. The conditional variance of yt(j) given the past is denoted

by τ 2
t (j), i.e. τ 2

t (j) = E(y2
t (j)|Ft−1), where the σ-algebra F is generated by {ys, s ≤ t− 1}.

The de-volatilized observations are denoted by

y∗t (j) =
yt(j)

τt(j)
, 1 ≤ t ≤ n, 1 ≤ j ≤ d

Our paper follows the methodology of the most often used multivariate volatility model

yt = Σ
1
2
t et (3.3.1)

where

Assumption 3.3.1. {et,−∞ < t <∞} are independent and identically distributed random

vector in Rd, Ee0 = 0 and Ee0e
>
0 = Id.

where Id is the d× d identity matrix.

Assumption 3.3.2. Σt ∈ Ft−1 and {Σt,−∞ < t <∞} is a stationary and ergodic sequence.

Hence the conditional covariance matrix of yt with respect to its past is E(ytyt>|Ft−1) = Σt.

To avoid degenerate cases we assume that,

Assumption 3.3.3. There is a positive definite matrix Σ0 such that Σt−Σ0 is non-negative

definite for all t.

If Σt = {σt(k, j), 1 ≤ k, j ≤ d}, then τt(j) = σ
1
2
t (j, j). It follows from Assumption 3.3.3 that

there is a positive constant τ0 such that τt(j) ≥ τ0 for all n and 1 ≤ j ≤ d. It is an immediate
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consequence of Assumptions 3.3.1 and 3.3.2 that yt is composed by stationary and ergodic

sequences. The next condition is on the dependence structure of the observations:

Assumption 3.3.4. E ‖y0‖r with some r > 2 and {yt,−∞ < t <∞} is β-mixing with rate

t(−δ−r)/(r−2) with some δ > 0

We note that Assumption 3.3.4 can be replaced with the condition that Σt is β-mixing.

Let

ρt(i, j) = Ey∗t (i)y
∗
t (j), 1 ≤ t ≤ T, 1 ≤ i, j ≤ d

be the covariance of the devolatized observations y∗t (i). In this paper, we wish to test the

null hypothesis that

H0: ρ1(i, j) = ρ2(i, j) = · · · = ρT (i, j) for all 1 ≤ i, j ≤ d

against the alternative

HA: there are 1 < t∗ < T and 1 ≤ i, j ≤ d such that

ρ1(i, j) = ρ2(i, j) = · · · = ρt∗(i, j) 6= ρt∗+1(i, j) = · · · = ρT (i, j)

under the null hypothesis the covariance matrix of the vector [y∗t (1), y∗t (2), . . . , y∗t (d)]> does

not depend on the time t while under the alternative at least one of the elements of the

covariance matrix changes at the unknown time t∗.

Our procedure is based on two functionals of the CUSUM of the vectors

r = vech(y∗t (i)y
∗
t (j)), 1 ≤ i, j ≤ d

Define the partial sum process

s(t) =
t∑

s=1

rs
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Assuming that H0 holds, i.e. the data are stationary we define the long run covariance

matrix

D =
∞∑

s=−∞

Es0s
>
s

The normalization in our procedures requires

Assumption 3.3.5. D is a nonsingular matrix.

Following Aue et al. (2009) (cf. Wied et al, 2012) we define two statistics

M
(1)
T =

1

T
max
1≤t≤T

(s(t)− t

T
s(T ))>D−1(s(t)− t

T
s(T ))

M
(2)
T =

1

T 2

T∑
t=1

(s(t)− t

T
s(T ))>D−1(s(t)− t

T
s(T ))

Theorem 3.3.1. If H0 and Assumptions 3.3.1-3.3.5 hold, then

M
(1)
T

D→M (1) (3.3.2)

M
(2)
T

D→M (2) (3.3.3)

where

M (1) = sup
0≤u≤1

∑d̄
i=1B

2
i (u) and M (2) =

∑d̄
i=1

∫ 1

0
B2
i (u)du with d̄ = d(d+1)

2

and B1, B2, . . . , Bd̄ denote independent Brownian bridges.

The limiting random variables M (1) and M (2) already appeared in Aue et al. (2009), where

selected critical values and approximations for moderate and large values of d̄ can also be

found.

The conditional covariance matrices Σt can be written as functionals of the random vectors

ys, s ≤ t − 1. However, since we can observe only y1, y2, . . . , yT , first we replace τt(i)
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with τ̄t(i), where τ̄t(i) is a function of y1, y2, . . . , yt−1 only. Also, we consider parametric

models in the present paper, so τt(i) as well as τ̄t(i) depend on unknown parameters which

will be denoted by θ ∈ Rp. We require that τ̄t(i;θ) and τt(i;θ) are close if t is large. This

requirement is standard in the estimation of GARCH and similar volatility processes (cf.

Francq and Zakoian, 2010):

Assumption 3.3.6. There is a ball Θ0 ⊂ RP with centre θ0 such that max
1≤i≤d

supθ∈Θ0 |τt(i)− τ̄t(i)|

= O(a(t)) a.s. and ta(t)→ 0 as t→∞.

We estimate θ with θ̂T which is consistent with rate T−1/2:

Assumption 3.3.7.
∥∥∥θ̂T − θ0

∥∥∥ = OP (T−1/2), where θ0 denotes the value of the parameter

under H0.

The random functions τt(i) = τt(i;θ), 1 ≤ i ≤ p, are smooth functions of θ in a neighborhood

of θ0:

Assumption 3.3.8. There is a ball Θ0 ⊂ RP with center θ0 such that

∥∥τt(i;θ)− τt(i;θ0)− g>t (i)(θ − θ0)
∥∥ ≤ ḡt ‖θ − θ0‖2

for all θ ∈ Θ0, where {gt(i), 1 ≤ i ≤ p, ḡt,−∞ < t < ∞} is a stationary and ergodic

sequence with E ‖g0(i)‖2 <∞ and E |ḡ0|2 <∞.

The quasi maximum likelihood method is the most often used technique to estimate param-

eters of a nonlinear time series model. In the examples we discuss in this paper, the QMLE

satisfies Assumption 3.3.6 - 3.3.8.

Now the de-volatized variables

ŷt(i) =
yt(i)

τ̄t(i; θ̂T )
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can be computed from the sample. The long run covariance matrix D is estimated from the

sample by D̂T which satisfies

Assumption 3.3.9.
∥∥∥D̂T −D

∥∥∥ = oP (1).

We discuss the estimation of D in the next subsection. Similarly to M
(1)
T and M

(2)
T we define

M̂
(1)
T =

1

T
max
1≤t≤T

(ŝ(t)− t

T
ŝ(T ))>D̂−1(ŝ(t)− t

T
ŝ(T ))

M̂
(2)
T =

1

T 2

T∑
t=1

(ŝ(t)− t

T
ŝ(T ))>D̂−1(ŝ(t)− t

T
ŝ(T ))

where

ŝ(t) =
∑t

s=1 r̂s, with r̂s = vech(ŷs(i)ŷs(j), 1 ≤ i, j ≤ d).

Theorem 3.3.2. If H0 and Assumptions 3.3.1-3.3.9 hold, then

M̂
(1)
T

D→M (1) (3.3.4)

and

M̂
(2)
T

D→M (2) (3.3.5)

where M (1) and M (2) are defined in Theorem 3.3.1.

3.3.2 Examples for time dependent conditional volatilities

In this section, we consider some often used models where Assumption 3.3.1-3.3.8 are satis-

fied. There are two main methods to establish stationarity and geometric mixing properties

of nonlinear time series models. Markov chain theory combined with algebraic geometry can
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be used to establish the existence and basic properties of the underlying model. The impor-

tant technical tools are summarized in the reference book of Meyn and Tweedie (1993). This

approach was used successfully in Carrasco and Chen (2002) for univariate models and later

extended by Boussama et al. (2011) to the multivariate case. Diaconis and Freeman (1999)

showed that random recursions satisfying “contraction in average” have a unique stationary

solution and the method of the proof gives geometric ergodicity. Applications of the method

of Diaconis and Freeman (1999) to nonlinear time series are detailed in Douc et al. (2014).

For further multivariate GARCH type models, we refer to the survey paper of Bauwens et

al. (2006), Silvennoinen and Teräsvirta (2009), Francq and Zakoian (2010).

Example 3.3.1. (CCC(p,q) model)

Bollerslev (1990) and Jeantheau (1998) specified the constant conditional correlation model

by the following equations:

Σt = DtRDt (3.3.6)

Dt = diag(h
1
2
t (1), h

1
2
t (2), . . . , h

1
2
t (d)), ht = (ht(1), ht(2), . . . , ht(d))> (3.3.7)

and

ht = c +

q∑
l=1

Al(yt−l ◦ yt−l) +

p∑
j=1

Bjht−j (3.3.8)

where ◦ denotes the Hadamard product of vectors (coordinatewise multiplication), R is a

correlation matrix, C is a vector of positive coordinates, Al, 1 ≤ l ≤ q, Bj, 1 ≤ j ≤ p

are matrices with nonnegative elements. Sufficient conditions for the existence of a unique

stationary solution and existence of moments are given in Aue et al. (2009), and their method

can also be used to prove Assumption 3.3.4. For further discussion we refer to Francq and

Zakoian (2010). Francq and Zakoian (2010) also give a detailed account of the estimation

of the parameters of an CCC(p,q) sequence by quasi maximum likelihood and Assumption
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3.3.6-3.3.8 are established. In addition to the QMLE, the variance targeting estimator also

satisfies our assumptions (cf. Francq et al. 2016). Francq and Zakoian (2014) proposes a

new method to estimate parameters utilizing the covariance structure of the observations.

Their proofs show that Assumptions 3.3.6-3.3.8 hold.

Example 3.3.2. (DCC model)

Dynamic conditional correlation GARCH models are an extension of Example 3.3.1, ob-

tained by introducing a dynamic for the conditional correlation by replacing R with random

matrices Rt, measurable with respect to the σ-algebra generated by {ys, s ≤ t − 1} i.e.

Equation 3.3.6 is replaced with

Σt = DtRtDt (3.3.9)

while recursions 3.3.7 and 3.3.8 still hold. Tse and Tsui (2002) suggested,

Rt = θ1C + θ2Ψt−1 + θ3Rt−1

where C is a positive definite matrix, and the weights θ1 > 0, θi ≥ 0 i = 2, 3 satisfy

θ1 + θ2 + θ3 = 1, Ψ is the empirical correlation matrix from innovation terms, and Rt is the

empirical covariance matrix of yt−1, yt−2, . . . , yt−K . Engle (2002) advocated

Rt = (diag(Qt))
− 1

2 Qt(diag(Qt))
− 1

2

where Qt is a covariance matrix measurable with respect to {ys, s < t}. A scalar parame-

terization is

Qt = θ1C + θ2yt−1y
>
t−1 + θ3Qt−1 (3.3.10)

where C is a positive definite matrix and θ1, θ2 and θ3 are weights as above. One can use a

matrix representation as well, replacing 3.3.9 with
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Qt = C + A ◦ yt−1y
>
t−1 + B ◦Qt−1 (3.3.11)

where A and B are non-negative definite matrices. For further results we refer to Francq

and Zakoian (2010).

Example 3.3.3. (BEKK(p,q) model)

Baba, Engle, Kraft and Kroner (cf. Engle and Kroner, 1995) introduced the model where

the conditional covariance matrix satisfies,

Σt = C +

q∑
j=1

k0∑
k=1

Aj,kyj,ty
>
j,tA

>
j,k +

p∑
j=1

k0∑
k=1

Bj,kΣj,tB
>
j,k (3.3.12)

where k0 is an integer, C, Aj,k, 1 ≤ j ≤ q, 1 ≤ k ≤ k0, and Bj,k, 1 ≤ j ≤ p, 1 ≤ k ≤ k0

are d× d matrices. The expected covariance C is positive definite. Boussama et al. (2011)

finds conditions which implies that the BEKK model has a unique stationary solution, and

it is geometrically β-mixing. Comte and Lieberman (2003) studied the properties of QMLE

while Pedersen and Rahbek (2014) discussed the variance targeting method. For a detailed

discussion of the BEKK model, we refer to Francq and Zakoian (2010).

Example 3.3.4. (Factor Model)

Engle, Ng and Rothschild (1990) defined the conditional covariance matrix Σt by,

Σt = C +

p∑
j=1

λj,tβjβ
>
j and λt(j) = ωj + αjyt−1(j)2 + βjλt−1(j)

where C is a positive definite matrix, ωj > 0, αj ≥ 0, βj ≥ 0, 1 ≤ j ≤ p, and β1,β2, . . .βp

are linear independent. Francq and Zakoian (2010) points out that the factors model can

be written in a BEKK form, so clearly Assumptions (3.3.1 - (3.3.4) are satisfied under mild

conditions.
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Example 3.3.5. (Asymmetric Models)

The models in Examples 3.3.1 - 3.3.4 are symmetric, i.e. we have the same dynamic for

the conditional covariances for negative and positive coordinates of the observations. There

are several extensions to accommodate the asymmetric nature of financial data. The lever-

age effect in financial data indicates that negative innovations make an additional impact

on the dynamic evolution of correlation. Let y−t = (yt(1)I{yt(1) < 0}, yt(2)I{yt(2) <

0}, . . . , yt(d)I{yt(d) < 0})>, where I is an indicator which equals to 1 if yt(i) < 0, oth-

erwise equals to 0. Cappiello et al. (2006) introduced an asymmetric version of the DCC

model in Example 3.1.4. They replaced Equation 3.3.9 by adding an asymmetric indicator.

Qt = θ1C + θ2yt−1y
>
t−1 + θ3y

−
t−1(y−t−1)> + θ4Qt−1 (3.3.13)

where C is positive definite, θ1 > 0, θi ≥ 0, i = 2, 3, 4 with restriction of θ1 +θ2 +θ3 +θ4 = 1.

The asymmetric version of (3.3.11) is given by

Qt = C + A ◦ yt−1y
>
t−1 + D ◦ y−t−1(y−t−1)> + B ◦Qt−1

where C is a positive definite matrix, A, B and D are non-negative matrices.

In the asymmetric version of the BEKK model in Example 3.3.3, the conditional covariance

matrix satisfies the recursion

Σt = C +

q∑
j=1

k0∑
k=1

Aj,kyj,t(yj,tAj,k)
> +

q∑
j=1

k0∑
k=1

A−j,ky
−
j,t(y

−
j,tA

−
j,k)
> +

p∑
j=1

k0∑
k=1

Bj,kΣj,tB
>
j,k

where k0 is an integer, C, Aj,k, A−j,k, 1 ≤ j ≤ q, 1 ≤ k ≤ k0, and Bj,k, 1 ≤ j ≤ p, 1 ≤ k ≤ k0

are d × d matrices, and C is positive definite. Silvennoinen and Teräsvirta (2009) gave a

review of the properties of the asymmetric BEKK model.

84



3.3.3 Estimation of the long run covariance matrix D

We use the kernel estimators

D̂T =
T∑

l=−T

K(
l

h
)γ̂l (3.3.14)

where

γ̂l =


1
T

∑T−l
t=1 (r̂t − r̄T )(r̂t+l − r̄T )> if 0 ≤ l < T

1
T

∑T
t=−T+1(r̂t − r̄T )(r̂t+l − r̄T )> if − T ≤ l < 0

where

r̄T =
1

T

T∑
s=1

r̂s

There are several choices for the the choice of the kernel K, including Bartlett, truncated,

Parzen, Tukey-Hanning and quadratic spectral kernels (cf. Andrews (1991) for a review of

the properties of kernel functions). The window (smoothing parameter) satisfies h = h(T ),

h/T →∞ and h/T → 0. It can be shown that under Assumption 3.3.1 - 3.3.8, the estimator

D̂ is consistent in case of Bartlett, truncated, Parzen, Tukey-Hanning and quadratic spectral

kernels. For the choice of h we refer to Andrews (1991).

3.4 The Monte Carlo simulations

To assess the performance of semi-parametric CUSUM tests in the models of Examples 3.3.1

- 3.3.5, in this section we conducts a Monte Carlo simulation study to measure the rejection

rate under the null and alternative hypothesis in case of finite sample sizes. For simplicity, we

consider bivariate observations yt = (yt(1), yt(2))>. In the data generating process DGP we

specify et as a bivariate standard normal vector and Σ
1/2
t of (3.3.1) is in Cholesky form. For

each model, we set the initial value Σ0 to be the 2× 2 identity matrix and simple iterations

give Σt for the specified parameter values. Under the alternative a single change occurs at
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time t∗ = T/2. The Bartlett kernel

KB(x) = (1− |x|)I {|x| ≤ x}

and the Newey-West optimal window (smoothing parameter) are used in the definition of D̂T .

The observations are first demeaned, i.e. the sample mean is removed from the observations.

We provide numerical results for both M̂
(1)
T and M̂

(2)
T . Assuming that a change occurred, we

estimate the time of change with argmax {ŝ(t)− (t/T )ŝ(T ), 1 ≤ t ≤ T}.

In each experiment, we set number of observations T = 100 for a small sample and T = 1000

for a large sample, and each simulation is replicated 5000 times. The warming up parameter

is 0.2, which implies that the test will burn 200 observations if sample size is 1000.

3.4.1 CCC Model

Let p = q = 1 in Example 3.3.1. The constant correlation matrix is given by

R =

1 δ

δ 1


with c = (0.01, 0.01)>,

A1 =

a 0

0 a

 and B1 =

b 0

0 b

 (3.4.1)

with a = 0.01 and b = 0.7 in our simulation study. The choice of A1 and B1 is motivated by

the empirical observation that financial data show low ARCH but high GARCH (persistence)

effect. The matrices A1 and B1 determine the dynamics of the process, but their values are

not crucial after devolatizing was done. Under the null hypothesis δ = 0 and the critical

values for M̂
(1)
T and M̂

(2)
T are reported for sample sizes T = 100 and 1000 together with the

asymptotic critical values. Table 3.4.1 shows that the asymptotic critical values overestimate
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the true onces and it is very mild M̂
(2)
T . Table 3.4.2 shows the empirical rejections under the

alternative for δ changing from 0 to δ = 0.2, 0.4, 0.6 and 0.8. at t∗ = T/2 (δ = 0 corresponds

to the empirical rejection under the null hypothesis). The power os increasing with δ for

both test, M̂
(2)
T showing somewhat larger power for T = 100 and M̂

(1)
T for T = 1000. The

estimator for t∗/T the fraction of the time of change is accurate and it is getting better for

larger δ and larger sample sizes in Table 3.4.3.

Table 3.4.1: Critical Values for the statistics M̂
(1)
T , M̂

(2)
T statistics (d=2) and the asymptotic

critical values computed from the distribution of M (1) and M (2) (d=2)

CCC BEKK Factor DCC ADCC Asymptotic

T 100 1000 100 1000 100 1000 100 1000 100 1000 ∞

M̂
(1)
t

90% 2.40 2.42 2.61 2.50 2.61 2.53 2.40 2.42 2.39 2.43 2.63

95% 2.81 2.85 3.15 2.87 3.14 2.90 2.81 2.85 2.78 2.84 3.06

99% 3.99 3.72 4.43 3.67 4.42 3.81 3.99 3.72 4.01 3.64 3.95

M̂
(2)
t

90% 0.78 0.79 0.87 0.78 0.90 0.83 0.78 0.79 0.79 0.80 0.83

95% 0.95 0.95 1.05 0.94 1.09 0.98 0.95 0.95 0.95 0.95 0.97

99% 1.40 1.34 1.52 1.29 1.51 1.37 1.40 1.34 1.37 1.28 1.30
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Table 3.4.2: Empirical rejection rates for M̂
(1)
T and M̂

(2)
T in the CCC model of Example 3.3.1

M̂
(1)
T (T=100) M̂

(2)
T (T=100)

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.10 0.19 0.44 0.82 0.99 0.12 0.21 0.46 0.83 0.99

95% 0.06 0.12 0.32 0.73 0.98 0.06 0.12 0.33 0.71 0.97

99% 0.01 0.03 0.12 0.41 0.86 0.01 0.03 0.13 0.42 0.84

M̂
(1)
T (T=1000) M̂

(2)
T (T=1000)

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.11 0.80 1.00 1.00 1.00 0.11 0.79 1.00 1.00 1.00

95% 0.06 0.71 1.00 1.00 1.00 0.05 0.69 1.00 1.00 1.00

99% 0.01 0.43 1.00 1.00 1.00 0.01 0.39 1.00 1.00 1.00

Table 3.4.3: Estimated of the time of change as a percentage of the observation period in

the CCC model of Example 3.3.1 when t∗ = T/2

T=100 T=1000

δ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Mean 0.52 0.50 0.49 0.48 0.50 0.50 0.50 0.50

Median 0.52 0.50 0.49 0.49 0.50 0.50 0.49 0.50

SD 0.18 0.14 0.09 0.06 0.09 0.03 0.01 0.01

3.4.2 DCC Model

Let p = q = 1. We use (3.3.9), where C is given by,

C =

1 δ

δ 1

 (3.4.2)
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where δ = 0 under the no change null hypothesis and it changes from 0 to δ = 0.2, 0.4, 0.6

and 0.8 at t∗ = T/2. θ1 = 1 − δ2 − δ3, θ2 = 0.01 or 0.02 (low and high ARCH effect in

quasi conditional correlation process), and θ3 = 0.1 or 0.9 (low and high persistence). To

generate conditional variance matrix Dt, the matrices A1 and B1 are defined in (3.4.1) with

a = 0.01 and b = 0.7, and c = (0.01, 0.01)> is same as in Section 3.4.1. The outcome of the

Monte Carlo experiment is similar to the results we obtained for the CCC model in Section

3.4.1. Table 3.4.1 compares the finite sample critical values to the asymptotic ones. The

asymptotic critical values somewhat larger than the finite sample values but still acceptable

according to the columns in Table 3.4.4 when δ = 0. Table 3.4.4 and 3.4.5 show the power

and the estimation of the location of the time of change.
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Table 3.4.4: Empirical rejection rates for M̂
(1)
T and M̂

(2)
T in the DCC model of Example 3.3.2

δ is the change magnitude, which is the argument in constant coefficient matrix C. Parameters a is the

argument in ARCH coefficient matrix A, and b is the argument in GARCH coefficient matrix B. The

rejection rate is computed under three significance level, 90%, 95% and 99%.

T=100

a = 0.01 & b = 0.1 a = 0.01 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.11 0.19 0.43 0.80 0.99 0.12 0.92 0.97 1.00 1.00 0.14 0.21 0.39 0.72 0.95 0.15 0.92 0.96 1.00 1.00

95% 0.06 0.12 0.32 0.71 0.97 0.06 0.84 0.94 0.99 1.00 0.08 0.13 0.30 0.61 0.90 0.08 0.85 0.92 0.98 1.00

99% 0.01 0.03 0.12 0.42 0.84 0.01 0.58 0.77 0.96 1.00 0.02 0.05 0.11 0.32 0.69 0.02 0.60 0.75 0.93 1.00

a = 0.02 & b = 0.1 a = 0.02 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.10 0.19 0.43 0.80 0.99 0.11 0.92 0.97 1.00 1.00 0.14 0.22 0.38 0.67 0.91 0.16 0.93 0.96 0.99 1.00

95% 0.05 0.12 0.31 0.70 0.97 0.05 0.84 0.94 0.99 1.00 0.08 0.14 0.28 0.56 0.85 0.09 0.86 0.91 0.98 1.00

99% 0.01 0.03 0.12 0.41 0.84 0.01 0.58 0.77 0.96 1.00 0.02 0.05 0.11 0.28 0.60 0.02 0.61 0.74 0.90 0.99

T=1000

a = 0.01 & b = 0.1 a = 0.01 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.10 0.82 1.00 1.00 1.00 0.10 1.00 1.00 1.00 1.00 0.14 0.74 1.00 1.00 1.00 0.14 0.99 1.00 1.00 1.00

95% 0.05 0.70 1.00 1.00 1.00 0.05 0.99 1.00 1.00 1.00 0.07 0.63 1.00 1.00 1.00 0.07 0.99 1.00 1.00 1.00

99% 0.01 0.48 1.00 1.00 1.00 0.01 0.97 1.00 1.00 1.00 0.02 0.41 0.99 1.00 1.00 0.01 0.95 1.00 1.00 1.00

a = 0.02 & b = 0.1 a = 0.02 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.10 0.81 1.00 1.00 1.00 0.10 1.00 1.00 1.00 1.00 0.17 0.69 1.00 1.00 1.00 0.17 0.99 1.00 1.00 1.00

95% 0.04 0.69 1.00 1.00 1.00 0.04 0.99 1.00 1.00 1.00 0.09 0.58 1.00 1.00 1.00 0.09 0.98 1.00 1.00 1.00

99% 0.01 0.47 1.00 1.00 1.00 0.01 0.97 1.00 1.00 1.00 0.02 0.37 0.98 1.00 1.00 0.02 0.94 1.00 1.00 1.00
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Table 3.4.5: Estimate of the time of change as a percentage of the observation period in the

DCC model of Example 3.3.2 when t∗ = T/2

This table shows statistics - mean, median and standard deviation of detected locations. Estimated change

times are computed in percentage.

T=100 T=1000

a = 0.01 & b = 0.1 a = 0.02 & b = 0.1 a = 0.01 & b = 0.1 a = 0.02 & b = 0.1

δ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Mean 0.53 0.51 0.48 0.48 0.53 0.51 0.49 0.48 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Median 0.52 0.50 0.50 0.48 0.52 0.50 0.50 0.48 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.18 0.15 0.09 0.06 0.18 0.15 0.10 0.06 0.09 0.03 0.01 0.01 0.09 0.03 0.01 0.01

a = 0.01 & b = 0.9 a = 0.02 & b = 0.9 a = 0.01 & b = 0.9 a = 0.02 & b = 0.9

δ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Mean 0.53 0.51 0.49 0.48 0.53 0.52 0.50 0.48 0.50 0.49 0.50 0.50 0.50 0.50 0.50 0.50

Median 0.51 0.50 0.48 0.48 0.51 0.50 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.18 0.16 0.11 0.07 0.19 0.16 0.12 0.08 0.10 0.04 0.02 0.01 0.11 0.04 0.02 0.01

3.4.3 BEKK Model

We use Example 3.3.3 with p = q = 1 and k0 = 1. We specify C by (4.4.4) and let

A1,1 =

a 0

0 a

 B1,1 =

b 0

0 b


The choice of a = 0.01 represents low ARCH, while a = 0.02 stands for high ARCH effect.

Similarly, b will be 0.1 (low persistence) or 0.9 (high persistence).

Table 3.4.1 illustrates that the convergence to the limit is slower in the BEKK model than

in the other models. However, the BEKK model requires the estimation of larger number

of parameters. To achieve good accuracy, one needs larger sample sizes. The power of the

tests in the BEKK model is exhibited in Table 3.4.6 and the result of the estimation of t∗/T
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is sumarized in Table 3.4.7.

Table 3.4.6: Empirical rejection rates for M̂
(1)
T and M̂

(2)
T in the BEKK model of Example

3.3.3

δ is the change magnitude, which is the argument in constant coefficient matrix C. Parameters a is the

argument in ARCH coefficient matrix A, and b is the argument in GARCH coefficient matrix B. The

rejection rate is computed under three significance level, 90%, 95% and 99%.

T=100

a = 0.01 & b = 0.1 a = 0.01 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.09 0.15 0.39 0.79 0.99 0.10 0.86 0.96 1.00 1.00 0.10 0.16 0.40 0.77 0.99 0.10 0.87 0.96 1.00 1.00

95% 0.04 0.08 0.26 0.65 0.96 0.05 0.77 0.91 0.99 1.00 0.05 0.09 0.27 0.63 0.96 0.05 0.77 0.92 0.99 1.00

99% 0.01 0.02 0.08 0.33 0.79 0.01 0.51 0.78 0.97 1.00 0.01 0.01 0.10 0.33 0.78 0.01 0.50 0.79 0.96 1.00

a = 0.02 & b = 0.1 a = 0.02 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.09 0.15 0.39 0.79 0.99 0.09 0.86 0.96 1.00 1.00 0.10 0.16 0.40 0.77 0.99 0.10 0.87 0.96 1.00 1.00

95% 0.04 0.08 0.26 0.65 0.96 0.04 0.77 0.91 0.99 1.00 0.04 0.09 0.27 0.63 0.96 0.05 0.77 0.95 0.99 1.00

99% 0.01 0.02 0.08 0.33 0.78 0.01 0.50 0.78 0.97 1.00 0.01 0.02 0.10 0.33 0.78 0.01 0.50 0.79 0.96 1.00

T=1000

a = 0.01 & b = 0.1 a = 0.01 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.09 0.78 1.00 1.00 1.00 0.10 1.00 1.00 1.00 1.00 0.09 0.78 1.00 1.00 1.00 0.11 1.00 1.00 1.00 1.00

95% 0.04 0.71 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00 0.05 0.69 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00

99% 0.01 0.51 1.00 1.00 1.00 0.01 0.98 1.00 1.00 1.00 0.01 0.49 1.00 1.00 1.00 0.01 0.97 1.00 1.00 1.00

a = 0.02 & b = 0.1 a = 0.02 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.10 0.78 1.00 1.00 1.00 0.11 1.00 1.00 1.00 1.00 0.08 0.78 1.00 1.00 1.00 0.10 1.00 1.00 1.00 1.00

95% 0.05 0.71 1.00 1.00 1.00 0.05 1.00 1.00 1.00 1.00 0.04 0.71 1.00 1.00 1.00 0.04 1.00 1.00 1.00 1.00

99% 0.01 0.51 1.00 1.00 1.00 0.01 0.98 1.00 1.00 1.00 0.01 0.51 1.00 1.00 1.00 0.01 0.98 1.00 1.00 1.00
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Table 3.4.7: Estimation of the time of change as a percentage of the observation period in

the BEKK model of Example 3.3.3 when t∗ = T/2

This table shows statistics - mean, median and standard deviation of detected locations. Estimated change

times are computed in percentage.

T=100 T=1000

a = 0.01 & b = 0.1 a = 0.02 & b = 0.1 a = 0.01 & b = 0.1 a = 0.02 & b = 0.1

δ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Mean 0.53 0.51 0.49 0.48 0.53 0.52 0.49 0.48 0.50 0.50 0.50 0.50 0.50 0.49 0.50 0.50

Median 0.52 0.50 0.49 0.49 0.52 0.50 0.49 0.49 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.17 0.13 0.09 0.06 0.17 0.14 0.09 0.06 0.09 0.03 0.01 0.01 0.09 0.03 0.01 0.01

a = 0.01 & b = 0.9 a = 0.02 & b = 0.9 a = 0.01 & b = 0.9 a = 0.02 & b = 0.9

δ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Mean 0.53 0.51 0.49 0.48 0.53 0.51 0.49 0.48 0.50 0.49 0.50 0.50 0.50 0.50 0.49 0.50

Median 0.52 0.50 0.49 0.49 0.52 0.50 0.49 0.49 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.18 0.14 0.10 0.06 0.18 0.14 0.10 0.06 0.09 0.03 0.01 0.01 0.09 0.03 0.02 0.01

3.4.4 Factor Model

Let p = 2 in Example 3.3.4. We use C of (4.4.4) with the same choices of δ as in Section

3.4.3. Let ω = 0.01, α1 = α2 = 0.01, β1 = β2 = 0.1, β1 = (0.1, 0.1)> (low ARCH effect

and persistence); α1 = α2 = 0.01, β1 = β2 = 0.9, β1 = (0.9, 0.9)> (low ARCH effect and

high persistence); α1 = α2 = 0.02, β1 = β2 = 0.1, β1 = (0.1, 0.1)> (high ARCH effect and

low persistence); and α1 = α2 = 0.02, β1 = β2 = 0.9, β1 = (0.9, 0.9)> (high ARCH effect

and persistence), factors’ conditional variances are generated recursively from λ0 = 1. The

results are in Tables 3.4.8 and 3.4.9 and they are similar but somewhat better than in the

BEKK case. This is not surprising since the factor model can be written in BEKK form.
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Table 3.4.8: Empirical rejection rates for M̂
(1)
T and M̂

(2)
T in the factor model of Example

3.3.4

δ is the change magnitude, which is the argument in constant coefficient matrix C. Parameters a is the

argument in ARCH coefficient matrix A, and b is the argument in GARCH coefficient matrix B. The

rejection rate is computed under three significance level, 90%, 95% and 99%.

T=100

a = 0.01 & b = 0.1 a = 0.01 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.10 0.16 0.43 0.78 0.99 0.09 0.86 0.96 1.00 1.00 0.09 0.17 0.38 0.75 0.98 0.09 0.87 0.96 1.00 1.00

95% 0.05 0.09 0.30 0.66 0.96 0.05 0.76 0.91 0.99 1.00 0.04 0.09 0.25 0.61 0.95 0.05 0.77 0.91 0.99 1.00

99% 0.01 0.03 0.11 0.35 0.80 0.02 0.52 0.78 0.96 1.00 0.01 0.02 0.09 0.33 0.75 0.01 0.55 0.77 0.96 1.00

a = 0.02 & b = 0.1 a = 0.02 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.09 0.16 0.43 0.78 0.99 0.09 0.86 0.96 1.00 1.00 0.09 0.17 0.37 0.74 0.98 0.09 0.87 0.95 0.99 1.00

95% 0.05 0.09 0.30 0.66 0.96 0.05 0.76 0.91 0.99 1.00 0.05 0.09 0.25 0.59 0.94 0.05 0.77 0.91 0.99 1.00

99% 0.01 0.03 0.11 0.35 0.80 0.02 0.52 0.78 0.96 1.00 0.01 0.02 0.08 0.3172 0.72 0.01 0.54 0.77 0.96 1.00

T=1000

a = 0.01 & b = 0.1 a = 0.01 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.10 0.79 1.00 1.00 1.00 0.10 1.00 1.00 1.00 1.00 0.09 0.76 1.00 1.00 1.00 0.10 1.00 1.00 1.00 1.00

95% 0.06 0.70 1.00 1.00 1.00 0.05 0.99 1.00 1.00 1.00 0.05 0.68 1.00 1.00 1.00 0.05 0.99 1.00 1.00 1.00

99% 0.01 0.49 1.00 1.00 1.00 0.01 0.98 1.00 1.00 1.00 0.01 0.46 1.00 1.00 1.00 0.01 0.97 1.00 1.00 1.00

a = 0.02 & b = 0.1 a = 0.02 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.10 0.73 1.00 1.00 1.00 0.10 0.99 1.00 1.00 1.00 0.11 0.73 1.00 1.00 1.00 0.11 0.99 1.00 1.00 1.00

95% 0.05 0.63 1.00 1.00 1.00 0.05 0.99 1.00 1.00 1.00 0.06 0.63 1.00 1.00 1.00 0.05 0.99 1.00 1.00 1.00

99% 0.01 0.40 1.00 1.00 1.00 0.01 0.96 1.00 1.00 1.00 0.01 0.40 1.00 1.00 1.00 0.01 0.96 1.00 1.00 1.00
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Table 3.4.9: Estimation of the time of change as a percentage of the observation period in

the factor model of Example 3.3.4 when t∗ = T/2

This table shows statistics - mean, median and standard deviation of detected locations. Estimated change

times are computed in percentage.

T=100 T=1000

a = 0.01 & b = 0.1 a = 0.02 & b = 0.1 a = 0.01 & b = 0.1 a = 0.02 & b = 0.1

δ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Mean 0.52 0.50 0.49 0.48 0.51 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.49 0.50 0.50 0.50

Median 0.51 0.49 0.49 0.49 0.50 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.18 0.14 0.10 0.06 0.18 0.14 0.09 0.06 0.08 0.03 0.01 0.01 0.09 0.03 0.01 0.01

a = 0.01 & b = 0.9 a = 0.02 & b = 0.9 a = 0.01 & b = 0.9 a = 0.02 & b = 0.9

δ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Mean 0.52 0.49 0.48 0.48 0.52 0.49 0.48 0.48 0.50 0.50 0.50 0.50 0.49 0.50 0.50 0.50

Median 0.52 0.49 0.49 0.49 0.51 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.18 0.15 0.10 0.06 0.18 0.15 0.10 0.06 0.09 0.03 0.01 0.06 0.10 0.04 0.01 0.01

3.4.5 ADCC Model

We use the asymmetric DCC model of (3.3.13) with p = q = 1, θ1 = 1− θ2− θ3− θ4, θ2 = a,

θ3 = a/2, θ4 = b and C is from 4.4.4. We consider four types of a and b for quasi conditional

correlation process: a = 0.01, b = 0.1 (low ARCH and persistence); a = 0.01, b = 0.9 (low

ARCH and high persistence); a = 0.02, b = 0.1 (high ARCH and low persistence); a = 0.02,

b = 0.9 (high ARCH and persistence). The matrices c, A1 and B1, determining conditional

variances, are same with used in Section 3.4.1 and 3.4.2, where c = (0.01, 0.01)>, a = 0.01

and b = 0.7. The results are exhibited in Tables 3.4.10 and 3.4.11 and similar to the outcome

of the Monte Carlo experiment for the DCC model in Section 3.4.2.
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Table 3.4.10: Empirical rejection rates for M̂
(1)
T and M̂

(2)
T in the asymmetric DCC model of

Example 3.3.5

δ is the change magnitude, which is the argument in constant coefficient matrix C. Parameters a is the

argument in ARCH coefficient matrix A, and b is the argument in GARCH coefficient matrix B. The

rejection rate is computed under three significance level, 90%, 95% and 99%.

T=100

a = 0.01 & b = 0.1 a = 0.01 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.11 0.19 0.45 0.82 0.99 0.12 0.90 0.97 1.00 1.00 0.14 0.20 0.40 0.73 0.95 0.14 0.92 0.96 1.00 1.00

95% 0.06 0.12 0.32 0.74 0.97 0.06 0.83 0.94 1.00 1.00 0.08 0.14 0.30 0.63 0.92 0.07 0.84 0.92 0.99 1.00

99% 0.01 0.03 0.11 0.42 0.85 0.01 0.56 0.80 0.97 1.00 0.02 0.04 0.11 0.33 0.69 0.02 0.59 0.77 0.94 0.99

a = 0.02 & b = 0.1 a = 0.02 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.13 0.19 0.44 0.82 0.99 0.13 0.91 0.97 1.00 1.00 0.14 0.21 0.38 0.68 0.92 0.16 0.92 0.96 0.99 1.00

95% 0.07 0.12 0.32 0.73 0.97 0.07 0.83 0.93 1.00 1.00 0.09 0.14 0.28 0.57 0.85 0.09 0.84 0.91 0.97 1.00

99% 0.01 0.03 0.11 0.42 0.84 0.02 0.56 0.80 0.97 1.00 0.02 0.04 0.09 0.29 0.61 0.03 0.59 0.75 0.91 0.99

T=1000

a = 0.01 & b = 0.1 a = 0.01 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.10 0.81 1.00 1.00 1.00 0.10 1.00 1.00 1.00 1.00 0.14 0.72 1.00 1.00 1.00 0.13 1.00 1.00 1.00 1.00

95% 0.05 0.71 1.00 1.00 1.00 0.05 0.99 1.00 1.00 1.00 0.07 0.61 1.00 1.00 1.00 0.06 0.99 1.00 1.00 1.00

99% 0.02 0.50 1.00 1.00 1.00 0.01 0.98 1.00 1.00 1.00 0.02 0.43 0.99 1.00 1.00 0.01 0.96 1.00 1.00 1.00

a = 0.02 & b = 0.1 a = 0.02 & b = 0.9

M̂
(1)
T M̂

(2)
T M̂

(1)
T M̂

(2)
T

δ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

90% 0.11 0.80 1.00 1.00 1.00 0.11 1.00 1.00 1.00 1.00 0.16 0.67 1.00 1.00 1.00 0.16 1.00 1.00 1.00 1.00

95% 0.06 0.69 1.00 1.00 1.00 0.06 0.99 1.00 1.00 1.00 0.09 0.56 1.00 1.00 1.00 0.08 0.99 1.00 1.00 1.00

99% 0.02 0.49 1.00 1.00 1.00 0.02 0.97 1.00 1.00 1.00 0.03 0.38 0.98 1.00 1.00 0.03 0.94 1.00 1.00 1.00
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Table 3.4.11: Estimation of the time of change as a percentage of the observation period in

the asymmetric DCC model of Example 3.3.5 when t∗ = T/2

This table shows statistics - mean, median and standard deviation of detected locations. Estimated change

times are computed in percentage.

T=100 T=1000

a = 0.01 & b = 0.1 a = 0.02 & b = 0.1 a = 0.01 & b = 0.1 a = 0.02 & b = 0.1

δ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Mean 0.53 0.50 0.48 0.48 0.53 0.50 0.48 0.48 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Median 0.52 0.50 0.50 0.48 0.52 0.50 0.50 0.48 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.18 0.14 0.09 0.06 0.18 0.14 0.09 0.06 0.09 0.03 0.01 0.01 0.09 0.03 0.01 0.01

a = 0.01 & b = 0.9 a = 0.02 & b = 0.9 a = 0.01 & b = 0.9 a = 0.02 & b = 0.9

δ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Mean 0.53 0.51 0.49 0.48 0.53 0.51 0.49 0.48 0.50 0.50 0.50 0.50 0.51 0.50 0.50 0.50

Median 0.51 0.50 0.48 0.48 0.51 0.50 0.48 0.48 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.19 0.16 0.11 0.07 0.19 0.16 0.12 0.08 0.11 0.04 0.02 0.01 0.11 0.05 0.02 0.01

3.5 Empirical Application: Testing for financial contagion

Forbes and Rigobon (2002) defined that financial contagion effect occurs if the inter-linkages

across markets experienced a significant increase after some market events. To investigate

the contagion, it is crucial to assess the dynamic evolution on conditional correlations dur-

ing the period interest. As a standard and successful model for conditional correlations, the

M-GARCH family naturally becomes a tool to explain contagions. If the contagion effect ex-

isted, a significant increase should be found in the conditional correlations after break dates.

The actual change date is hidden and needs to be detected through statistical methods.

In the recent literature one could find analysis and detection of contagion by change point

methods. Dimitriou et al. (2013) used a Markov regime switching model to find endogenous

date, and analyzed the contagion effect among big five emerging markets. Dungey et al.
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(2015) used a structural GARCH model with embedded smooth transition functions to

identify the accurate start and finish date of the financial crisis, thereby finding contagions

during the crises. Meanwhile, Blatt et al. (2015) applied a parameters change point detection

technique (Qu and Perron, 2007) for multivariate system to derive a sequential procedure

to find endogenous dates of changes. Our paper contributes this literature with an efficient

method of testing and detection using the semi-parametric tests M̂T (1) and M̂
(2)
T to find

contagions and estimate their times during the great recession between 2006 and 2010 in

global financial markets.

We collect stock market price indexes from emerging markets in three regions: six Latin

American markets including Argentina (Argentina MERVAL index), Brazil (Brazil BOVESPA

index), Chile (Chile Santiago SE General index), Mexico (Mexico IPC index), Colombia

(Colombia IGBC index), Peru (BVL General index); seven Central East European (CEE

hereafter) markets including Czech (Prague SEPX index), Estonia (OMX Tallin index),

Hungary (Budapest index), Poland (Warsaw General index), Romania (Romania BET in-

dex), Slovakia (Slovakia SAX 16 index), Slovenia (Slovenian blue chip index); ten East Asian

markets including HongKong (Hang Seng index), Indonesia (IDX composite index), Japan

(Nikkei 225 index), South Korea (Korea SE composite index), Malaysia (Malaysia KLCI

index), Philippines (Philippine SE index), Singapore (Straits Times index), Taiwan (Taiwan

SE weighted index), Thailand (Bangkok S.E.T index), China Mainland(Shanghai S.E. A

share index); and the United States (S&P 500 index). The US, as the eye of storm, ex-

perienced several financial events, such as sub-prime crisis and the great recession and her

relation to the emerging markets changed during the observation period. The data are taken

from the Datastream database, and ranged from 1 September, 2006 to 1 September, 2010.

For each price index, we calculate its log return process to achieve mean stationarity. We

then split the return data into three sub-sets: Latin, CEE and East Asian markets, and in

98



each sub-sets, we consider U.S. market as the source of the global financial contagion effect.

In order to find change points in correlation structures of these three data sets, we compute

the M̂T (1) and M̂T (2) based on the different multivariate volatility models of Examples 3.3.1

- 3.3.5. The critical values used in the analysis are taken from Aue et al. (2009). We find

three change points in each sub-set by the binary segmentation method. We use M̂T (2) to

test the significance of the change points we detected, i.e. we test if on the interval [t̂1, t̂i+1)

a change point is located with t̂0, t̂4 = T and t̂i, i = 1, 2, 3 are determined by the binary

segmentation. The detection results are documented in Table 3.5.1.

Remarkably, all tests report roughly consistent changing locations for these three regions.

The results show that the first change is dated around August 2007 (ceasing activities in the

US mortgage debt market), the second changes happens mainly close to September 2008 (the

bankruptcy of Lehman Brothers), and the third change occurred after April 2009 (bailout

decision made by G20 summit). Basically, these three dates would split the whole sample

into four periods: boom, bubble, bust and recovery. More specifically, we can see that Latin

American markets react relatively faster than others, particularly in case of the last change.

This indicates that the markets in the American region are more closely integrated, and any

good news from U.S. financial system produce optimistic expectation for Latin American.

With regard to the CEE markets, their reaction dates close to the events mentioned above,

but the second change is prior to the events. This reveals that the capital flow from the

US has a relatively sensitive impact on this region. Lastly, compared with the two regions

mentioned above, the East Asian markets tend to have relatively higher resistance to the

US market crash. This remark is supported by results from the estimated correlations in

Table 3.5.2. The higher resistance might due to the fact that emerging markets in this region

are more correlated with the large markets in this region, such as Japan, Hong Kong and

Mainland China.
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Table 3.5.1: The estimated change points in the global regions (∗,∗∗ and ∗ ∗ ∗ indicate

significance at 90%, 95% and 99% levels, respectively)

CCC DCC BEKK Factor ADCC

Latin American Markets

1st

Change

30/Oct/2007

(12.71∗∗∗)

30/Oct/2007

(6.94∗∗∗)

30/Jul/2007

(9.16∗∗∗)

27/Jul/2007

(16.15∗∗∗)

26/Oct/2007

(7.13∗∗∗)

2nd

Change

15/Sep/2008

(10.26∗∗∗)

15/Sep/2008

(10.26∗∗∗)

15/Sep/2008

(9.31∗∗∗)

05/Sep/2008

(16.27∗∗∗)

15/Sep/2008

(10.55∗∗∗)

3rd

Change

22/May/2009

(6.66∗∗∗)

22/May/2009

(6.66∗∗∗)

18/Mar/2009

(7.07∗∗∗)

20/Mar/2009

(9.41∗∗∗)

20/May/2009

(6.69∗∗∗)

Central East European Markets

1st

Change

22/Jun/2007

(10.04∗∗∗)

24/Jun/2007

(10.04∗∗∗)

10/Jul/2007

(14.54∗∗∗)

24/Jul/2007

(17.94∗∗∗)

06/Jul/2007

(10.68∗∗∗)

2nd

Change

04/Jul/2008

(10.81∗∗∗)

04/Jul/2008

(10.81∗∗∗)

26/Jun/2008

(11.84∗∗∗)

26/Aug/2008

(16.32∗∗∗)

02/Jun/2008

(10.99∗∗∗)

3rd

Change

02/Jun/2009

(8.70∗∗∗)

02/Jun/2009

(8.70∗∗∗)

01/Jun/2009

(12.53∗∗∗)

01/Jun/2009

(22.95∗∗∗)

02/Nov/2009

(7.46∗∗∗)

East Asian Markets

1st

Change

12/Feb/2008

(16.31∗∗∗)

12/Feb/2008

(16.31∗∗∗)

13/Mar/2008

(51.40∗∗∗)

18/Jan/2008

(27.32∗∗∗)

19/Feb/2008

(16.64∗∗∗)

2nd

Change

16/Oct/2008

(13.80∗∗∗)

16/Oct/2008

(25.17∗∗∗)

17/Sep/2008

(20.56∗∗∗)

12/Sep/2008

(30.95∗∗∗)

12/Sep/2008

(20.67∗∗∗)

3rd

Change

09/Oct/2009

(12.05∗∗∗)

09/Oct/2009

(12.18∗∗∗)

05/Oct/2009

(14.59∗∗∗)

10/Apr/2009

(27.34∗∗∗)

08/Oct/2009

(13.32∗∗∗)
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Table 3.5.2: The regional correlation levels and correlation levels with the U.S. market

between 2006 and 2010

This table reports the estimated correlation concentration level, and the level of estimated regional

correlation with U.S. market, denoting as δ̄ and δUS , respectively.

Latin American Emerging Markets

CCC DCC BEKK Factor ADCC

δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US

Phase 1 0.48 0.54 0.48 0.54 0.29 0.26 0.46 0.53 0.44 0.53

Phase 2 0.44 0.43 0.44 0.43 0.30 0.25 0.53 0.46 0.48 0.46

Phase 3 0.64 0.65 0.64 0.65 0.33 0.37 0.64 0.62 0.64 0.65

Phase 4 0.57 0.63 0.58 0.64 0.35 0.34 0.61 0.68 0.57 0.64

Central East European Emerging Markets

CCC DCC BEKK Factor ADCC

δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US

Phase 1 0.17 0.16 0.17 0.16 0.13 0.07 0.22 0.19 0.17 0.16

Phase 2 0.21 0.13 0.21 0.13 0.16 0.08 0.24 0.17 0.20 0.13

Phase 3 0.31 0.24 0.31 0.24 0.19 0.11 0.38 0.28 0.30 0.25

Phase 4 0.30 0.28 0.30 0.29 0.16 0.08 0.33 0.29 0.30 0.28

East Asian Emerging Markets

CCC DCC BEKK Factor ADCC

δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US δ̄ δ̄US

Phase 1 0.39 0.09 0.40 0.09 0.20 0.01 0.43 0.08 0.40 0.08

Phase 2 0.40 0.08 0.40 0.08 0.19 0.04 0.40 0.07 0.35 0.07

Phase 3 0.44 0.20 0.44 0.20 0.18 0.07 0.52 0.22 0.46 0.19

Phase 4 0.41 0.18 0.41 0.18 0.20 0.06 0.44 0.16 0.41 0.18
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Once the change points are detected, we then use the models in Examples 3.3.1 - 3.3.5 to

estimate the relevant parameters in each phase. If there existed an increase on the correlation

level between U.S. and emerging markets, we identify it as a contagion effect from U.S. to

emerging markets. We use the (empirical) correlation matrix to measure correlation levels.

The regional correlation level, also known as the regional integration level, is measured by

averaging off diagonal elements of the (empirical) correlation matrix and it is denoted by δ̄.

The regional correlation level with U.S. market, denoted as δ̄US, is measured by averaging

elements related to U.S. in the (empirical) correlation matrix. Table 3.5.2 reports the results,

showing that the contagion effect significantly exists among these three regions, especially

after the second change date in 2008.

The estimators are consistent for most volatility models, except for the BEKK model which

gives lower correlation. Nevertheless, all estimates indicate same features. Firstly, in case of

regional integration level, the Latin American and East Asian regions are more concentrated

than the CEE area, with δ̄ around 0.4 before the crisis in first two regions, while this value

equals 0.2 in CEE markets. This result may be due to that the market liberalization in

Central East European emerging markets is not as high as the other two regions, and the

CEE markets are more influenced by other developed market in this region, for example, by

Germany.

Secondly, regarding the regional linkage with U.S. market, the Latin American region has

closest relation to the U.S. market, since before the crisis, δ̄US is around 0.5 for the Latin

American, followed by CEE area with δ̄US = 0.15, and East Asian area shows the lowest

correlation with the U.S. market, barely reaching 0.1. Apparently, the U.S. market has

weaker influence on the East Asian region. This remark remains true after the crisis.

Thirdly, the evolution of the correlation in the three regions experiences similar patterns: the

regional integration level keeps increasing before a decrease in the last phase; the regional
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linkages with U.S. climb to a peak after September 2008 in all three regions, and then

decrease slightly in the last phase for Latin American and East Asian region, except in the

CEE markets where the correlation keeps rising. These results show that contagion effects

are significant in all data sets, particularly the transmission from U.S. market, and its impact

to the Latin American and the CEE regions are more severe than in the East Asian region.

To dynamically investigate the contagion effect, we estimate conditional correlation in each

region with the U.S. market in all five volatility models discussed in this paper. Since

the simulation results show that the BEKK and the DCC model gave good finite sample

performances when our semi-parametric CUSUM tests are used, we exhibit the conditional

correlations obtained from the BEKK and the DCC models, as an example, in Figure 3.5.1

and 3.5.2. Our analysis is based on the scalar DCC model of (1.2.22). In each region, the

estimators for the times of the changes split the conditional correlations into four phases,

visually presenting the results.
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Figure 3.5.1: The BEKK Conditional Correlations in Three Regions
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Figure 3.5.2: The DCC Conditional Correlations in Three Regions
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3.6 Summary

This paper extends the CUSUM change point tests on covariance structure proposed by

Aue et al. (2009) to more flexible environments. The CUSUM test can be properly applied

to detect changes in dynamically evolving correlation structures modeled by multivariate

variance models. Thus, the CUSUM test can detect correlation changes in a system of

de-volatized processes estimated by several Multivariate GARCH mdoels. Benefited from

asymptotic theory derived by Aue et al. (2009), the limit of CUSUM tests is valid with

most of stationary multivariate processes, we discussed examples containing CCC, BEKK,

Factor-GARCH, DCC and ADCC models.

Our simulations showed that de-volatizing process by M-GARCH models results good be-

havior on CUSUM tests. The M̂
(2)
T test show better power than M̂

(1)
T test. In the term of

a middle change, the power of tests is positively correlated with the magnitude of change.

Even though, the fact of strong mixing property deteriorates the size and power of CUSUM

tests, the simulation found that the BEKK model can relatively overcome the distortion.

While as the most fashionable model in financial application, the sustaining tolerance ability

of the DCC typed CUSUM tests are relatively lower.

Finally, we analyzed global financial contagion effect with endogenous change locations, we

apply the CUSUM tests on stock indexes modeled with BEKK, Factor, DCC and ADCC

models. The findings show that contagion effect significantly existed during the great reces-

sion in Latin American, Central East European and East Asian markets.
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Chapter 4

Weighted CUSUM Tests for the Dynamic

Correlation Structures
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4.1 Introduction

Modelling the multivariate covariance structure has been widely studied in the literature,

and studying covariance breaks also showed its importances in many financial applications

such as investigating financial contagion, measuring systemic risk and managing assets port-

folios. Although the family of multivariate volatility models has developed rapidly during

last decades fitting all sort of characteristics present in financial data (most contributions

are due to R. Engle and T. Bollerslev among others), there is still little research on how

in-sample fitting is deteriorated by the occurrence of breaks in the covariance/correlation

structure. Hence, testing instability in the covariance/correlation structure has become a

more interesting topic in recent years. Related contributions on testing covariance stabil-

ity have been made by Andreou and Ghysels (2003) and Qu and Perron (2007) who have

proposed parametric tests whilst Aue et al. (2009) have been proposing non-parametric

tests.

In particular, non-parametric CUSUM tests, benefit from the efficiency in computation,

developed further since Aue et al. (2009) derived the asymptotic theory of CUSUM test

in the context of covariance. Wied et al. (2012) extended the CUSUM tests to sample

correlations with mixing or near-epoch dependence. In Chapter 3 we proposed a semi-

parametric CUSUM tests for data allowing dynamically evolving correlation structures.

Nevertheless, self-normalised change-point tests naturally suffer from a common limitation,

that is as Andrews (1993) pointed out, that the supremum statistics are always applied to a

trimmed proportion of the data, and for this reason, the tests lose power if a break occurred

close to either ends of the sample (T − t∗ → T and t∗ → T , T is the sample size and

1 < t∗ < T is the break location).

In order to overcome this limitation, a recent work by Kao et al. (2016), assessed the

eigensystem to examine instabilities in the eigenvectors and eigenvalues. Using the strong
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Invariance Principal Components for a CUSUM statistics, their tests provide better power

to detect early and later change-points in the covariance structure. In this chapter, following

Chapter 3, we propose a weighted approximation of the semi-parametric CUSUM statistics

to detect changes in the tails of covariance/correlation structures.

To empirically apply these tests in the field of economics or finance, the CUSUM tests

provide good detection power if we have a basic conjecture about market status, because

we can always collect data over the suspected period so as to place potential changes in

the centre of sample. However, we still take a risk of biases in our conjecture, i.e. the

tests may omit changes in either ends of the sample. Also, it is not allowed to roll sample

observations under certain scenarios. For instance, the CUSUM tests are unreliable to detect

the most recent market changes because future data are unavailable; or for event studies,

it is common to have a fixed investigation window. Therefore, studying the instability of

covariance/correlation structure over the whole sample period is crucial to empirical studies.

Section 4.2 reviews related literature. Section 4.3 introduces two types of potential weight

functions, and outlines the weighted CUSUM tests by deriving the asymptotic distributions.

In section 4.4, we conduct a simulation study and compare semi-parametric CUSUM with

weighted CUSUM tests. Section 4.5 provides an application on detecting systemic events in

the U.S. equity market, a summary concludes.

4.2 Literature Review

The instability in the covariance/correlation structure has drawn increasing attention since

Aue et al. (2009) proposed a well-constructed CUSUM test to detect unknown changes in

the covariance structure. The recent survey paper by Aue et al. (2013) and Horváth and

Rice (2014) reviewed the development of literature, also Horváth and Rice (2014) considered

an averaged CUSUM statistics as a generalization. As mentioned in its discussion (Trapani,
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2014), the self-normalised CUSUM retains its power in the trimmed sample [t1, t2] (where

t1 and t2 are trimming points between observations [1, T ]) and the test loses power beyond

this interval. This problem was initially raised by Andrews (1993), who introduced the weak

invariance principle for this issue, and then examined by Andrews (2003). Actually, most

self-normalised change-point tests suffer from the trimmed-sample issue, including Wald,

Likelihood-ratio or the CUSUM tests (see Perron, 2006).

Because the trimmed-sample issue is originally caused by unbalanced weights in statistics,

weight functions can help to overcome such limitation. Szyszkowicz (1994) studied three

types of weight functions and derived the asymptotic behavior of these weighted empirical

processes. We refer to Csörgő and Horváth (1997) for the basic assumptions and properties

of an appropriate weight function, as they already demonstrated that the appropriate weight

function should pass what is known as the integral test. The integral test guarantees that

the weight function selected is finite, thereby resulting in the convergence of the statistics of

change-point test. One weight function [t(1− t)]α, for 0 < t < 1 and 0 < α < 1/2, is widely

used in applications.

Later literature has concentrated on developing the weighted approximation of change-point

tests. However, theoretically, the weighted approximation for a change-point test is not

simply weighting everything on its limit, it changes the converge rate in some cases. Horváth

and Rice (2014) discussed the weighted approximation for both self-normalised CUSUM

statistics and selected self-normalised CUSUM statistics. They asserted that it is easy to

find the limit of the weighted self-normalised CUSUM, while the limit of maximally selected

self-normalised CUSUM is hard to define, as the convergence rate can be very slow. By this,

they mean that it is necessary to have a very large sample to approximate the distribution

of selected self-normalised CUSUM statistics.

To find the limit with slow convergence rate, Darling and Erdös (1957) proved a limit theorem
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through a technique called Darling and Erdös law. For the details of Darling and Erdös law,

we refer to Csörgő and Horváth (1997). Another contribution on the slow convergence is

made by Berkes et al. (2004), and they showed the permutation re-sampling provides better

convergence rate than the Darling and Erdös law.

With theoretical supports, the weighted approximation is valid for many change-point tests,

although with slow rate of convergence. For instance, Hidalgo and Seo (2013) extended

the likelihood ratio test proposed by Horváth (1993) to detect changes in the slopes of a

regression model without the restriction of “middle” change. Horváth et al. (2016) applied

Darling and Erdös law to find the convergence rate of a weighted test detecting regression

coefficient multiple changes. To detect changes in the second moment, Gombay et al. (1996)

derived the weighted approximation of weighted maximum likelihood test to detect variance

change. More recently, Aue et al. (2006) applied weighted CUSUM statistics to detect

untrimmed change locations in augmented GARCH processes. Berkes et al. (2009) provided

the weighted approximation for the weighted CUSUM test to detect autocorrelation changes

in linear processes. For detecting covariance changes, Kao et al (2016) used weak invariance

principles to strong invariance principles, and derived the limit of a statistics formed by

eigenvectors extracted from covariance matrix, and then used weighted CUSUM tests to

detect changes in each of the eigenvectors.

This Chapter aims to extend the semi-parametric CUSUM tests (Chapter 3) to detect corre-

lation changes close to either ends, through the weighted approximation method summarized

in Csörgő and Horváth (1997). We applied weight functions mentioned in Szyszkowicz (1994)

to the semi-parametric CUSUM test, and then detect changes in the dynamic evolving cor-

relation structure.

Note that, there always exists a trade-off by adding weight function to a change-point test,

because a weight function tends to give excessive weight to either ends but to relatively
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neglect the centre. As a possible solution, Orasch and Pouliot (2004) split the sample into

“centre” and “ends”, and then applied weighted and un-weighted CUSUM tests to detect

mean changes in split sub-samples separately. The trimming parameter can be obtained by

solving the inequation between weighted and unweighted functions. However, for reasons

concerning the property of continuity and the issue of obtaining unique critical values, we do

not combine different typed CUSUM tests in one sample. Our contribution concentrates on

proposing weighted CUSUM tests to detect unknown correlation changes with asymptotic

unit power across the whole sample. We also discuss the limiting distribution of weighted

CUSUM tests and tabulate the relative critical values.

4.3 The Semi-parametric Weighted CUSUM Test

In this section, we describe the proposed semi-parametric weighted CUSUM tests. Following

the existing literature (Aue et al. 2009; Wied et al. 2012), this chapter tests the stability

of dynamic evolving correlation structure of a d-dimensional random vector y1, y2, . . . , yT ,

where yt = (yt(1), yt(2), . . . , yt(d))> 1 ≤ t ≤ T . yt satisfies

E[yt] = 0

and

E[|yt|2] <∞

where | · | denotes the Euclidean norm in Rd.

It is customary to use multivariate volatility models to express the vector yt such that:

yt = Σ
1
2
t et (4.3.1)
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Assumption 4.3.1. The innovation et is independent and identically distributed, and con-

ditional covariance Σt is stationary, ergodic and β-mixing.

To study the dynamics of the correlation structure, it is necessary to obtain de-volatized

data ŷt by filtering realized conditional variances τ̂t(j) for all 1 < j < d.

Assumption 4.3.2. The estimator τ̂t(j) is a consistent estimator of τt(j) obtained by con-

sidering dependence between all coordinates.

Assumption 4.3.2 is a fairly standard one and can be fulfilled by consistently estimating the

relevant coefficients with multivariate GARCH models (See Francq and Zakoian, 2010). This

is proved in A.1. We used the dynamic conditional model correlations (DCC) (see Engle,

2002) in the empirical sections. Then, we use the obtained estimator of the variance to get

the de-volatized data ŷ∗t (j) as:

ŷ∗t (j) =
yt(j)

τ̂t(j)
, 1 ≤ t ≤ T, 1 ≤ j ≤ d (4.3.2)

The conditional covariance matrix Σ∗t of y∗t = (y∗t (1), y∗t (2), . . . , y∗t (d))> in this way reduces

to the conditional correlation matrix, composed by off-diagonal pair-wise conditional cor-

relation terms, denoted as ρt(i, j) for entries i and j. Our test aims is to distinguish the

dynamics of ρt(i, j) under the null hypothesis of no change in the correlation structure from

the alternative, such as in:

H0: ρ1(i, j) = ρ2(i, j) = · · · = ρT (i, j) for all 1 ≤ i, j ≤ d

versus

HA: there are 1 < t∗ < T and 1 ≤ i, j ≤ d such that

ρ1(i, j) = ρ2(i, j) = · · · = ρt∗(i, j) 6= ρt∗+1(i, j) = · · · = ρT (i, j)

with the change-point t∗ allowing for t∗ → 0 or T − t∗ → 0.
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4.3.1 The Weighting Functions

For the purpose of detecting correlation changes which occurred in the beginning or end of

sample (0, t1] ∪ [t2, 1) for t1, t2 ∈ (0, 1), we require to put more weights to either ends. The

CUSUM test naturally allocates more weights to the centre of sample, as its distribution

asymptotically converges to the sum of squared Brownian Bridges (cf. Equation 2.7 and 2.8

in Aue et al. 2009). Consequently, the CUSUM statistics converge only in the interval of

(t1, t2), especially for those maximally selected self-normalised CUSUM tests.

To visually see this argument, Figure 4.3.1 plots the simulated limit of self-normalised

CUSUM statistics calculated on the correlations of a bivariate model (dimension d = 2),

sup
0≤t≤1

d̄∑
i=1

B2
i (t)

where t is the fraction index on interval [0, 1], and t = t
T

in sample cases. Bi for 1 ≤ i ≤ d̄

denotes independent Brownian Bridge, and d̄ = d×(d−1)
2

.

We simulate the bivariate model of T = 1000 observations, with 5000 replications. As

shown, the limit starts from zero and ends at zero, and either the supreme or the maximum

is always allocated in the center area of the graph. For finite samples if the actual break

t∗ satisfies conditions of t∗ → T or (T − t∗) → T , the CUSUM tests will fail to detect any

break. Therefore, we aim to give more weight in the sample ends, hunting for suitable weight

functions q(t) for weighting the CUSUM statistics.
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Figure 4.3.1: The Simulated Sum of Squared Brownian Bridges

Issues about weighted approximations have been discussed by Szyszkowicz (1994), Gombay

et al. (1997) and Csörgő and Horváth (1997), and they assumed

Assumption 4.3.3. A weight function used should be increasing in the neighbourhood of

t = 0, and decreasing in the neighbourhood of t = 1

We use the following two weight functions:

q1(t, α) = (t(1− t))α, 0 ≤ t ≤ 1 (4.3.3)

q2(t, α) = (t(1− t)loglog
1

t(1− t)
)α, 0 ≤ t ≤ 1 (4.3.4)

where α is a self-selected parameter.

Assumption 4.3.4. According to the integral test (Csörgő and Horváth, 1997), weight func-

tions q(α, t) satisfy that inf
0≤t≤1−c

q(t, α) > 0 and sup
0≤t≤1−c

q(t, α) <∞ for all 0 < c < α.
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Hence, such a weight function q(t, α) would not distort the convergence of the CUSUM

statistics. Assumption 4.3.4 emphasizes whether a weight function can satisfy the integral

test, which requires that the weight function should be finite. To be more specific, for a

weight function such that in 4.3.3, the integral test requires that for some c > 0:

I0,1(q1(t, α), c) =

∫ 1

0

1

t(1− t)
e−

c·q21(t,α)

t(1−t) dt <∞

and for the weight function 4.3.4, it requires that for some c > 0:

I0,1(q2(t, α), c) =

∫ 1

0

1

t(1− t)loglog 1
t·(1−t)

e
− c·q2(t,α)

t(1−t)loglog 1
t·(1−t) dt <∞

Gombay et al. (1997) suggested and proved that the self-selected parameter α should be

chosen from the interval (0, 1/2). We therefore choose three values of α = 1/11, 3/11 and

5/11. Figure 3.2 plots weight functions 4.3.3 and 4.3.4 with different α.

Figure 4.3.2: The plot of weight functions

From Figure 4.3.2, we see that compared with weight function q2(t, α), q1(t, α) attributes

more weights to either ends. Thus, weight function q1(t, α) is expected to outperform q2(t, α)

in detecting changes in either ends, while as a trade-off, it may lose some power in the centre

part. Besides, in each sub-plot, we can see that the higher value of α, the less weights are

obtained in ends, and more weights are distributed in centre area.
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Because the weight function is used to standardize the weight of CUSUM statistics, we

should consider standardizing the CUSUM statistics by the chosen weight function. The

standardized statistics would thus take a shape looking like the reciprocal of the weight

functions in Figure 4.3.2. Thus, applying higher value of α is expected to have higher power

in ends of the sample, but consequently deteriorate the size as a sacrifice.

4.3.2 The Weighted CUSUM Tests

We apply weight functions into CUSUM statistics for detecting covariance changes in interval

(0, 1). To test the null hypothesis, we use two types of weighted CUSUM tests,

W
(1)
T = max

0<t<1

1

T · qi(t, α)
(s(bT · tc)− bT · tc

T
s(T ))>D−1(s(bT · tc)− bT · tc

T
s(T ))

W
(2)
T =

1

T 2 · qi(t, α)

T∑
k=1

(s(bT · tc)− bT · tc
T

s(T ))>D−1(s(bT · tc)− bT · tc
T

s(T ))

where

s(k) =
∑bT ·tc

s=1 rs, with rs = vech(ỹs(i)ỹs(j), 1 ≤ i, j ≤ d).

and ỹs(i) are de-meaned observations of ys(i), as from Equation 4.3.2. The Weight function

is selected from the following,

q1(t, α) = ( bT ·tc
T
· (1− bT ·tc

T
))α.

and q2(t, α) = ( bT ·tc
T
· (1− bT ·tc

T
) · loglog 1

bT ·tc
T
·(1− bT ·tc

T
)
)α

Following the last sub-section, we choose α strictly less than 1/2 to guarantee the conver-

gence of weighted CUSUM statistics. Nonetheless, the asymptotic distribution of weighted

CUSUM tests is different from that of classical CUSUM tests.
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Given the linearity of self-normalised weighted CUSUM statistics, the asymptotic distribu-

tion of W
(2)
T can be easily derived from Equation 2.8 in Aue et al. (2009). However, for

the reason that the maximally selected self-normalised weighted CUSUM statistics are con-

verging at a slower rate (Horváth and Rice, 2014), the asymptotics of W
(1)
T becomes more

complicated.

We first discuss the limit of W
(2)
T . As explained above, the weighted self-normalised CUSUM

statistics is simply derived from unweighted limit using following theorem:

Theorem 4.3.1. Assuming a weight functions q(·) < ∞ for some c, with α < 1/2, the

weighted limit distribution of the CUSUM test W
(2)
T converges to the following:

W
(2)
T

D→ W (2) =
d̄∑
j=1

∫ 1

0

Bj(t)
2

q2
i (t)

dt (4.3.5)

with i = 1, 2. The proof is provided in appendix A.2.

We then discuss the limit of W
(1)
T . According to Equation A.2.2 in the proof of Theorem

4.3.1, the continuous mapping theorem, it is not hard to see that,

W
(1)
T = sup

t1≤t≤t2

d̄∑
j=1

B2
j (t)

q2
i (t)

(4.3.6)

with i = 1, 2, while since W
(1)
T only can be found in [t1, t2], and W

(1)
T is not continuous at

[0, 1], sup
t1≤t≤t2

W
(1)
T would be unbounded under the H0, so that it is still necessary to trim the

sample for detection. One solution is to normalise W
(1)
T through suitable normalising terms,

as suggested by the Darling and Erdös law (Darling and Erdös, 1956). The normalising

constants are,

aT = (2logX)
1
2 , bT = 2logX +

1

2
loglogX − logΓ

(
1

2

)
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where Γ(·) is a gamma function, and we set X = logT

aT = (2loglogT )
1
2 , bT = 2loglogT +

1

2
logloglogT − logΓ

(
1

2

)
(4.3.7)

Theorem 4.3.2. Assuming a weight functions q(·) <∞ for some c. The Darling and Erdös

theorem implies that,

P{aT · [ sup
0<t<1

W
(1)
T ] ≤ K + bT} → e−2e−K (4.3.8)

for K ∈ R.

The proof of Theorem 4.3.2 can be found from Appendix A.2. However, the statistics in

Theorem 4.3.3 converges to the Extreme Value distribution, and the convergence rate is very

slow. Hence, to distinguish the null from the alternative, this limit is only approximated in

very large samples.

To test the null hypothesis, we need to apply it to a de-volatized process. Recall that

de-volatizing process (4.3.2), together with assumption 4.3.2 maintains the consistency of

de-volatized process ŷ∗t (j).

The consistency of long run covariance estimator needs,

Assumption 4.3.5.
∥∥∥D̂T −D

∥∥∥ = oP (1)

The consistency of D̂T has been discussed in literature, the present chapter uses the Bartlett

kernel function K(·) and the Newey-West optimal bandwidth h.

D̂T =
T∑

l=−T

K(
l

h
)γ̂l (4.3.9)

where

γ̂l =


1
T

∑T−l
t=1 (r̂t − r̄T )(r̂t+l − r̄T )> if 0 ≤ l < T

1
T

∑T
t=−T+1(r̂t − r̄T )(r̂t+l − r̄T )> if − T ≤ l < 0
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where r̄T = 1
T

∑T
s=1 r̂s

Then, we use Ŵ
(1)
T and Ŵ

(2)
T to detect a single change in the correlations.

Ŵ
(1)
T = max

0<t≤1

1

T · qi(t, α)
(ŝ(bT · tc)− bT · tc

T
ŝ(T ))>D̂−1(ŝ(bT · tc)− bT · tc

T
ŝ(T ))

Ŵ
(2)
T =

1

T 2 · qi(t, α)

T∑
k=1

(ŝ(bT · tc)− bT · tc
T

ŝ(T ))>D̂−1(ŝ(bT · tc)− bT · tc
T

ŝ(T ))

where

ŝ(k) =
∑bT ·tc

s=1 r̂s, with r̂s = vech(ỹ∗s(i)ỹ
∗
s(j), 1 ≤ i, j ≤ d).

and ỹ∗s(i) is the de-meaned data of ŷ∗s(i).

Theorem 4.3.3. Satisfying assumptions 4.3.1 to 4.3.5, the limits of Ŵ
(1)
T and Ŵ

(2)
T give as,

P{aT · [ sup
0<t<1

Ŵ
(1)
T ] ≤ K + bT} → e−2e−K (4.3.10)

Ŵ
(2)
T

D→ W
(2)
T

Relevant proofs can be referred to A.1.

4.4 The Empirical Simulation

This section conducts empirical Monte Carlo simulation study under the null and alternative

hypothesis. We first compute critical values for Ŵ
(1)
T and Ŵ

(2)
T with finite samples, as well

as asymptotic critical values. Beside the bivariate observations, we also consider higher

dimensions up to 10. We then plot the empirical processes under the null hypothesis for the

comparison. The empirical rejection rates are provided in the last subsections.
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4.4.1 Computation of Critical Values

We first compute the critical values in asymptotic and finite empirical samples. Asymptotic

critical values for Ŵ
(2)
T are obtained by simulating (4.3.5). Section 4.4.2 demonstrates the

empirical process used under the null hypothesis. Table 4.4.1 tabulates critical values of Ŵ
(2)
T

with q1(·) and q2(·) at 90%, 95% and 99% significance levels, where the value of parameter

α spans from 1/11, 3/11 to 5/11. The dimensionality of yt is 2. Table 4.4.2 however reports

asymptotic critical values in higher dimensions. The statistics with weight function q2(t, α)

exhibits larger critical values. Note that the higher value of self-selected parameter α, the

larger value of critical values.

Table 4.4.1: Critical Values for Ŵ
(2)
T (d=2)

The replication run 5000 times, critical values in finite samples are obtained from empirical critical values,

while the infinite case is obtained from asymptotic critical values with observation 10000.

q1(t, α) q2(t, α)

α T=100 T=200 T=500 T=1000 T =∞ T=100 T=200 T=500 T=1000 T =∞

90% 1.13 1.11 1.05 1.07 1.14 1.30 1.28 1.21 1.24 1.33

α = 1
11 95% 1.36 1.31 1.25 1.27 1.34 1.58 1.51 1.44 1.48 1.60

99% 2.02 1.92 1.70 1.80 1.88 2.34 2.20 1.99 2.10 2.22

90% 2.09 2.07 1.95 1.98 2.08 3.13 3.12 2.96 3.04 3.22

α = 3
11 95% 2.49 2.48 2.30 2.34 2.45 3.78 3.79 3.51 3.58 3.85

99% 3.87 3.51 3.06 3.16 3.33 5.64 5.30 4.72 4.84 5.02

90% 4.10 3.94 3.76 3.76 3.99 7.61 7.51 7.19 7.27 7.76

α = 5
11 95% 4.98 4.68 4.42 4.39 4.64 9.57 8.92 8.58 8.67 9.28

99% 7.52 6.70 6.01 6.12 6.05 13.86 12.87 11.97 12.08 12.80
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Table 4.4.2: Critical Values for Ŵ
(2)
T with d = 3− 10 (T =∞)

q1(t, α)

d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10

90% 1.69 2.63 3.80 5.12 6.66 8.30 10.24 12.32

α = 1/11 95% 1.91 2.92 4.13 5.54 7.07 8.76 10.76 12.83

99% 2.37 3.51 4.77 6.22 7.85 9.71 11.83 13.88

90% 2.31 3.62 5.15 6.96 8.99 11.28 13.85 16.77

α = 3/11 95% 2.63 3.99 5.55 7.44 9.54 11.89 14.61 17.55

99% 3.36 4.75 6.43 8.44 10.62 13.20 15.80 19.11

90% 3.18 4.90 6.98 9.49 12.31 15.41 19.02 22.94

α = 5/11 95% 3.62 5.40 7.53 10.10 12.99 16.16 19.83 23.82

99% 4.46 6.43 8.63 11.44 14.36 17.71 21.60 25.58

q2(t, α)

d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10

90% 2.32 3.59 5.09 6.92 8.93 11.23 13.69 16.46

α = 1/11 95% 2.64 3.94 5.52 7.38 9.48 11.87 14.45 17.26

99% 3.41 4.68 6.39 8.48 10.66 12.99 15.86 18.67

90% 5.58 8.80 12.49 16.77 21.74 27.09 33.76 40.27

α = 3/11 95% 6.46 9.62 13.66 17.84 23.12 28.54 35.30 41.99

99% 8.17 11.42 15.80 19.99 25.79 31.28 38.30 45.43

90% 13.84 21.32 30.32 40.78 52.83 66.30 81.95 98.65

α = 5/11 95% 15.76 23.38 32.65 43.67 56.12 70.18 85.73 103.51

99% 19.44 27.16 37.68 49.52 62.29 77.59 93.82 111.28
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Table 4.4.3: Critical Values for Ŵ
(1)
T (d=2)

The replication run 5000 times, critical values in finite samples are obtained from empirical critical values,

while the infinite case is obtained from asymptotic critical values with observation 10000.

q1(t, α) q2(t, α)

α T=100 T=200 T=500 T=1000 T =∞ T=100 T=200 T=500 T=1000 T =∞

90% 3.30 3.21 3.13 3.19 3.39 3.82 3.81 3.69 3.79 4.10

α = 1
11 95% 3.93 3.75 3.58 3.76 3.95 4.57 4.43 4.26 4.50 4.69

99% 5.63 5.28 4.81 4.93 5.21 6.55 6.20 5.74 5.90 6.40

90% 6.23 6.09 5.65 5.66 6.10 9.22 9.17 9.00 9.28 9.86

α = 3
11 95% 7.92 7.24 6.53 6.56 7.05 11.23 10.89 10.50 10.66 11.40

99% 13.06 10.19 8.64 8.61 8.80 16.39 15.54 13.90 14.15 15.10

90% 15.98 15.87 14.42 14.15 11.80 23.50 23.12 22.38 22.57 24.00

α = 5
11 95% 22.74 21.94 18.96 18.27 13.10 29.18 27.79 26.35 26.21 28.20

99% 47.87 48.17 38.90 38.85 16.50 45.44 42.14 35.04 36.99 36.10

Regarding maximally selected statistics Ŵ
(1)
T , we can obtain the asymptotic critical values

through simulating (4.3.10) directly. However, as it follows an extreme value distribution,

and its critical value is a function of sample size T and significance level p, the convergence

rate is very low and rejection rate under the alternative should be hampered. Therefore,

following Csörgö and Horváth (1997), we use the sup
0<t<1

Ŵ
(1)
T as an approximation for (4.3.10),

and compute the critical values through simulating

sup
t1≤t≤t2

d̄∑
i=1

B2
(i)(t)

q(t)
(4.4.1)

and tabulate the results as in Table 4.4.3. Table 4.4.4 reports asymptotic critical values in

higher dimensions.
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Table 4.4.4: Critical Values for W
(1)
T with d = 3− 10 (T =∞)

q1(t, α)

d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10

90% 5.12 7.02 9.39 11.89 14.82 17.94 21.53 25.34

α = 1/11 95% 5.78 7.82 10.30 12.74 15.74 19.23 22.88 26.76

99% 7.15 9.32 12.13 14.70 17.89 21.61 25.58 29.64

90% 8.82 12.12 15.92 20.34 25.34 30.42 36.35 42.43

α = 3/11 95% 9.87 13.29 17.32 22.00 27.26 32.39 38.37 44.62

99% 12.36 15.82 20.10 25.07 30.61 35.70 42.62 48.67

90% 16.96 22.59 29.02 36.20 44.88 53.97 64.28 75.16

α = 5/11 95% 18.65 24.67 31.11 38.75 47.99 56.90 67.40 78.56

99% 22.27 28.45 35.58 43.93 53.48 63.10 73.12 86.28

q2(t, α)

d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10

90% 6.17 8.48 11.27 14.33 17.94 21.82 26.96 30.72

α = 1/11 95% 6.96 9.43 12.40 15.49 19.31 23.30 27.52 32.38

99% 8.62 11.46 14.60 17.94 21.77 26.48 31.10 35.50

90% 14.93 20.46 27.64 35.26 43.94 53.26 64.35 75.90

α = 3/11 95% 16.92 22.95 30.05 38.11 47.33 56.90 68.50 79.85

99% 21.49 27.88 35.59 44.09 52.98 63.71 76.38 88.17

90% 36.67 50.87 67.64 86.15 108.31 132.52 158.54 188.65

α = 5/11 95% 41.74 56.90 74.07 93.37 116.50 142.07 167.98 198.97

99% 52.05 69.84 88.43 107.17 131.62 162.33 189.47 219.63
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4.4.2 The Empirical Process

We generate bivariate observations yt = [yt(1), yt(2)]> with (4.3.1), where et is a two dimen-

sional standard normal random vector et = [et(1), et(2)]>, and Σ
1
2
t is in a Cholesky form. The

dynamics of second moments in yt is described by conditional covariance matrix Σt, which

can be generated by most of stationary multivariate volatility models, mainly Multivariate

GARCH models.

We generate Σt through the dynamic conditional correlation (DCC) model.

Σt = DtRtDt (4.4.2)

where Dt and Rt describe conditional volatilities and correlations, respectively. Dt is a

diagonal matrix composed by conditional standard deviations Dt = diag[
√
ht(1),

√
ht(2)],

where ht(i) are recursively generated by GARCH (1,1) processes with initial value h0(i) = 1,

ht(i) = β0 + β1 · y2
t (i) + β2 · ht−1(i)

To be more closer to real financial data, we globally set β0 = 0.1, β1 = 0.01 and β2 = 0.7,

thereby giving low ARCH effect but high persistence in conditional volatilities. The value on

βi i = 1, 2, 3 play less importance as yt will be standardized by realized conditional variances.

Rt is a symmetric matrix with unit diagonal elements, and it is generated by the process

(cf. Engle, 2002).

Rt = (diag(Qt))
− 1

2 Qt(diag(Qt))
− 1

2

and the quasi conditional correlation matrix Qt is recursively generated by

Qt = θ1C + θ2yt−1y
T
t−1 + θ3Qt−1 (4.4.3)
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We set the initial value as identity matrix Q0 =

1 0

0 1

.

where C is positive definite, and weight coefficients satisfy θ1 > 0, θ2, θ3 ≥ 0, with restriction

θ1 = 1− θ2 − θ3.

Figure 4.4.1: The Asymptotic and Empirical Process of Ŵ
(2)
T with weight function q1(t, α)

and q2(t, α) for α = 1/11, 3/11 and 5/11.

To verify weighted CUSUM statistics Ŵ
(1)
T and Ŵ

(2)
T on empirical process under the null

hypothesis, we first generate observations by (4.4.3) with

C =

1 δ

δ 1

 (4.4.4)
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δ is the correlation term which will be defined later, and θ2 = 0.01, θ3 = 0.1.

Figure 4.4.2: The Asymptotic and Empirical Process of Ŵ
(1)
T with weight function q1(t, α)

and q2(t, α) for α = 1/11, 3/11 and 5/11.

Empirically giving different sample sizes T = 100, 200, 500 and 1000, we first subtract the

sample-mean from generated process, and then estimate the conditional covariance matrices

through the DCC model, so that diagonal elements from estimated conditional covariance

matrix can be used to devolatize the demeaned data. We numerically compute Ŵ
(1)
T and

Ŵ
(2)
T based on devolatized processes ŷ∗t . Asymptotic statistics are obtained by simulating

(4.3.5) and (4.4.1) with sample size 10000. Both are replicated 10000 times. The warming-up

parameter in DGP is 0.2. Then we plot probability density function (PDF) and cumulative
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distribution function (CDF) for both asymptotic and empirical sequences.

Figure 4.4.1 shows distribution convergence on Ŵ
(2)
T with α = 1/11, 3/11 and 5/11. Gener-

ally, empirical distributions fit the theory well. For using weight function q1(t, α), we find

that a closer value of α to 1/2 shows better convergence, i.e. the case α = 5/11. The con-

vergence pattern for using weight function q2(t, α) is roughly consistent with weight function

q1(t, α), the case of α = 5/11 produces better fitting on distribution convergence, and rather

slight divergences exist in cases α = 1/11 and α = 3/11.

Figure 4.4.2 displays the distribution plots for Ŵ
(1)
T . Unlike Ŵ

(2)
T , the fitting of Ŵ

(1)
T is not as

precise, a part from a particular case is fitting right tail of q1(t, α) distribution in case of α =

5/11. Not surprisingly, due to the slow convergence rate, the empirical process of maximally

selected self-normalised weighted CUSUM slightly deviates from the asymptotic distribution

in finite samples. Nonetheless, we can see that generally the empirical distributions converge

to the theoretical ones. The size and power of these two tests will be assessed and discussed

in next section using a simulation study.

4.4.3 The Rejection Rate

Treating semi-parametric CUSUM test (Chapter 3) as a bench-mark test (M̂
(1)
T and M̂

(2)
T ),

we then assess the performance of weighted CUSUM tests by measuring rejection rates under

the null and alternative hypotheses. The simulation is composed by five experiments, and

each experiment uses the DGP in Section 4.4.2. - the constant term C is specified in (4.4.4),

where δ = 0 under the null of no change. Under the alternative hypothesis, we assume that

a single change occurred at t∗ = bt∗ · T c, and δ equals to 0 before t∗, and alter to different

change magnitudes 0.2, 0.4, 0.6 and 0.8 after t∗.

We consider two scenarios of dependence in conditional correlations: weak dependent pro-

cesses (low ARCH θ2 = 0.005 and low GARCH θ3 = 0.1) and strong dependent processes
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(high ARCH θ2 = 0.01 and high GARCH θ3 = 0.9). Observations are generated in a small

sample T = 100, and a large sample T = 500. Every simulation replicates 5000 times. For

binary observations, numerical CUSUM-typed statistics can reject H0 if they are greater

than critical values in Table 4.4.1 and 4.4.3 (critical values for semi-parametric CUSUM

tests are those in Table 3.4.1 in Chapter 3).

4.4.3.1 Experiment I (t∗ = 0.1)

We first set the change-point location t∗ at the beginning of sample, t∗ = 0.1. Table 4.4.5

reports rejection rates of CUSUM-typed tests. Table 4.4.6 documents the estimated change

ν̂T .

Results can be summarized to following points. Firstly, rejection rates are increasing along

with change magnitude δ increasing, and ν̂T also approaches t∗ gradually. Secondly, all tests

are fairly correctly sized, and the Ŵ
(1)
T statistic produce slightly lower rejection rates than

the counterpart in Ŵ
(2)
T under HA. Thirdly, comparing the CUSUM tests, weighted CUSUM

tests outperform to unweighted CUSUM tests, particularly when using the weight function

q1(t, α). Selecting a higher value of α, the power of Ŵ
(1)
T and Ŵ

(2)
T become higher. Lastly,

although the strong dependence distorts the performance of CUSUM-type tests, the size and

power of tests are still reliable, in both of small and large samples.

The accuracy of the estimated locations is consistent with the result of the rejection rate.

The mean, medium and standard deviation of estimated time ν̂T show reasonable patterns.

Weighted CUSUM tests with higher α converge to t∗ = 0.1 more rapidly, although the

standard deviation of ν̂T is becoming larger. The strong dependence also slightly deteriorates

the precise estimated change-point location, however this issue disappears in large enough

samples. For example the weighted CUSUM tests with the weight function q1(t, 5/11), the

mean of ν̂T approaches 0.1 for δ = 0.8 in small samples and for δ = 0.6 in the large samples.
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Table 4.4.5: Empirical rejection rates for CUSUM-typed tests (t∗ = 0.1)
T=100

M̂
(1)
T Ŵ

(1)
T M̂

(2)
T Ŵ

(2)
T

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

) Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0

90% 0.11 0.10 0.09 0.10 0.10 0.09 0.08 0.12 0.10 0.09 0.09 0.10 0.09 0.09

95% 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.06 0.05 0.04 0.04 0.05 0.04 0.04

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.12 0.12 0.15 0.26 0.11 0.11 0.12 0.14 0.13 0.13 0.15 0.12 0.11 0.11

95% 0.06 0.06 0.08 0.13 0.05 0.06 0.07 0.07 0.07 0.06 0.07 0.06 0.05 0.06

99% 0.01 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01

0.4

90% 0.18 0.19 0.27 0.36 0.17 0.17 0.19 0.22 0.21 0.23 0.26 0.20 0.19 0.19

95% 0.09 0.11 0.17 0.21 0.09 0.10 0.12 0.14 0.13 0.13 0.15 0.12 0.11 0.11

99% 0.03 0.02 0.04 0.06 0.02 0.02 0.04 0.04 0.03 0.04 0.05 0.03 0.03 0.03

0.6

90% 0.36 0.39 0.51 0.58 0.35 0.36 0.38 0.43 0.42 0.45 0.49 0.40 0.40 0.40

95% 0.25 0.29 0.37 0.39 0.24 0.25 0.27 0.33 0.32 0.32 0.36 0.31 0.28 0.29

99% 0.10 0.11 0.13 0.16 0.08 0.10 0.12 0.13 0.12 0.14 0.16 0.10 0.11 0.12

0.8

90% 0.63 0.67 0.78 0.82 0.61 0.62 0.63 0.72 0.70 0.73 0.76 0.69 0.68 0.68

95% 0.50 0.56 0.66 0.65 0.50 0.52 0.51 0.60 0.60 0.61 0.64 0.58 0.56 0.56

99% 0.31 0.34 0.35 0.32 0.29 0.29 0.29 0.36 0.35 0.37 0.41 0.33 0.34 0.34

[θ2 = 0.01, θ3 = 0.9]

0

90% 0.14 0.12 0.11 0.11 0.12 0.11 0.10 0.14 0.12 0.11 0.11 0.12 0.11 0.10

95% 0.06 0.06 0.05 0.05 0.06 0.06 0.05 0.07 0.07 0.06 0.05 0.06 0.05 0.05

99% 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.15 0.14 0.17 0.26 0.13 0.12 0.13 0.17 0.15 0.15 0.17 0.14 0.13 0.13

95% 0.07 0.07 0.09 0.12 0.06 0.07 0.07 0.09 0.08 0.07 0.08 0.07 0.06 0.06

99% 0.02 0.01 0.01 0.03 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.4

90% 0.20 0.21 0.26 0.34 0.19 0.18 0.19 0.24 0.22 0.23 0.25 0.21 0.21 0.20

95% 0.10 0.11 0.16 0.19 0.09 0.10 0.11 0.15 0.14 0.13 0.15 0.13 0.12 0.12

99% 0.03 0.03 0.03 0.05 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.03

0.6

90% 0.34 0.36 0.45 0.52 0.33 0.33 0.34 0.41 0.40 0.42 0.45 0.38 0.38 0.37

95% 0.22 0.25 0.31 0.32 0.21 0.23 0.24 0.30 0.30 0.29 0.32 0.28 0.26 0.26

99% 0.08 0.08 0.10 0.12 0.07 0.07 0.09 0.11 0.10 0.11 0.13 0.09 0.10 0.10

0.8

90% 0.57 0.59 0.66 0.71 0.55 0.54 0.54 0.65 0.64 0.66 0.69 0.63 0.61 0.61

95% 0.44 0.47 0.54 0.52 0.43 0.42 0.42 0.53 0.53 0.52 0.56 0.51 0.49 0.49

99% 0.24 0.24 0.23 0.22 0.21 0.21 0.21 0.29 0.27 0.31 0.32 0.25 0.27 0.27

T=500

M̂
(1)
T Ŵ

(1)
T M̂

(2)
T Ŵ

(2)
T

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

) Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0

90% 0.10 0.09 0.09 0.11 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09

95% 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.04

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.13 0.14 0.15 0.16 0.13 0.13 0.12 0.16 0.15 0.16 0.18 0.15 0.15 0.15

95% 0.06 0.07 0.09 0.06 0.07 0.06 0.06 0.09 0.09 0.09 0.09 0.09 0.09 0.08

99% 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.02

0.4

90% 0.35 0.40 0.51 0.49 0.35 0.35 0.33 0.41 0.41 0.45 0.50 0.40 0.41 0.41

95% 0.23 0.28 0.40 0.25 0.23 0.22 0.21 0.31 0.32 0.35 0.38 0.30 0.30 0.30

99% 0.08 0.11 0.18 0.02 0.08 0.08 0.06 0.13 0.12 0.14 0.16 0.11 0.11 0.12

0.6

90% 0.88 0.91 0.96 0.95 0.88 0.89 0.88 0.89 0.89 0.91 0.93 0.88 0.89 0.89

95% 0.78 0.85 0.93 0.86 0.79 0.79 0.79 0.82 0.83 0.86 0.89 0.81 0.82 0.82

99% 0.57 0.68 0.81 0.32 0.58 0.59 0.52 0.61 0.60 0.67 0.72 0.56 0.57 0.59

0.8

90% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

99% 0.99 0.99 1.00 0.97 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.99 0.99

[θ2 = 0.01, θ3 = 0.9]

0

90% 0.12 0.13 0.12 0.12 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

95% 0.06 0.07 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.16 0.17 0.18 0.17 0.16 0.16 0.15 0.18 0.17 0.18 0.20 0.17 0.17 0.17

95% 0.08 0.09 0.11 0.06 0.09 0.08 0.08 0.11 0.11 0.11 0.11 0.11 0.10 0.10

99% 0.02 0.02 0.03 0.01 0.02 0.02 0.01 0.03 0.02 0.03 0.02 0.02 0.02 0.02

0.4

90% 0.33 0.36 0.45 0.40 0.33 0.33 0.31 0.38 0.38 0.40 0.44 0.37 0.37 0.37

95% 0.21 0.25 0.33 0.19 0.22 0.21 0.20 0.27 0.28 0.30 0.33 0.27 0.26 0.26

99% 0.08 0.10 0.14 0.01 0.08 0.08 0.05 0.12 0.10 0.12 0.13 0.10 0.10 0.10

0.6

90% 0.75 0.80 0.87 0.86 0.75 0.76 0.74 0.76 0.77 0.81 0.85 0.76 0.76 0.76

95% 0.63 0.71 0.81 0.68 0.64 0.63 0.62 0.67 0.69 0.73 0.77 0.67 0.67 0.67

99% 0.39 0.48 0.62 0.15 0.40 0.40 0.34 0.42 0.42 0.48 0.53 0.39 0.40 0.41

0.8

90% 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99

95% 0.98 0.99 1.00 0.98 0.98 0.98 0.98 0.97 0.98 0.99 0.99 0.97 0.97 0.97

99% 0.93 0.96 0.98 0.81 0.93 0.93 0.92 0.92 0.92 0.95 0.96 0.91 0.91 0.92
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Table 4.4.6: Estimated of the time of change as a percentage of the observation (t∗ = 0.1)
T=100

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0.2

Mean 0.52 0.51 0.46 0.37 0.52 0.50 0.47

Med 0.53 0.53 0.48 0.10 0.53 0.52 0.50

SD 0.22 0.25 0.34 0.40 0.23 0.25 0.29

0.4

Mean 0.45 0.43 0.36 0.29 0.45 0.43 0.39

Med 0.47 0.43 0.22 0.07 0.47 0.45 0.41

SD 0.25 0.28 0.34 0.37 0.25 0.27 0.30

0.6

Mean 0.35 0.31 0.24 0.19 0.34 0.31 0.28

Med 0.29 0.20 0.10 0.06 0.28 0.23 0.11

SD 0.25 0.27 0.29 0.31 0.25 0.27 0.28

0.8

Mean 0.22 0.19 0.13 0.10 0.21 0.19 0.16

Med 0.12 0.10 0.08 0.06 0.10 0.10 0.08

SD 0.19 0.20 0.19 0.19 0.20 0.21 0.21

[θ2 = 0.01, θ3 = 0.9]

0.2

Mean 0.53 0.52 0.48 0.38 0.52 0.51 0.48

Med 0.54 0.54 0.50 0.12 0.54 0.53 0.51

SD 0.21 0.24 0.33 0.40 0.22 0.24 0.29

0.4

Mean 0.47 0.45 0.39 0.31 0.46 0.44 0.42

Med 0.49 0.47 0.32 0.08 0.48 0.47 0.45

SD 0.24 0.27 0.33 0.37 0.24 0.27 0.30

0.6

Mean 0.39 0.36 0.29 0.23 0.38 0.36 0.33

Med 0.36 0.30 0.11 0.06 0.36 0.35 0.29

SD 0.24 0.27 0.31 0.33 0.25 0.26 0.29

0.8

Mean 0.29 0.26 0.19 0.14 0.28 0.26 0.24

Med 0.21 0.15 0.10 0.06 0.20 0.16 0.10

SD 0.22 0.23 0.24 0.25 0.22 0.23 0.25

T=500

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0.2

Mean 0.47 0.47 0.46 0.48 0.47 0.48 0.49

Med 0.48 0.46 0.45 0.42 0.48 0.48 0.49

SD 0.20 0.22 0.28 0.39 0.20 0.20 0.23

0.4

Mean 0.35 0.32 0.26 0.25 0.34 0.34 0.34

Med 0.31 0.26 0.14 0.10 0.31 0.32 0.32

SD 0.21 0.22 0.25 0.32 0.21 0.21 0.24

0.6

Mean 0.19 0.16 0.12 0.11 0.18 0.18 0.17

Med 0.13 0.11 0.10 0.09 0.12 0.11 0.10

SD 0.13 0.11 0.09 0.15 0.13 0.14 0.15

0.8

Mean 0.12 0.10 0.10 0.09 0.11 0.10 0.10

Med 0.10 0.10 0.10 0.10 0.10 0.10 0.10

SD 0.04 0.03 0.02 0.04 0.04 0.04 0.04

[θ2 = 0.01, θ3 = 0.9]

0.2

Mean 0.48 0.48 0.48 0.51 0.49 0.49 0.50

Med 0.49 0.48 0.48 0.53 0.49 0.49 0.50

SD 0.20 0.22 0.28 0.38 0.20 0.20 0.22

0.4

Mean 0.38 0.36 0.33 0.31 0.38 0.38 0.39

Med 0.36 0.32 0.21 0.11 0.36 0.37 0.38

SD 0.21 0.23 0.27 0.35 0.21 0.22 0.24

0.6

Mean 0.25 0.21 0.16 0.14 0.24 0.23 0.23

Med 0.18 0.13 0.10 0.10 0.17 0.15 0.12

SD 0.17 0.16 0.16 0.20 0.17 0.17 0.20

0.8

Mean 0.15 0.13 0.10 0.09 0.14 0.13 0.12

Med 0.11 0.10 0.10 0.09 0.10 0.10 0.10

SD 0.09 0.07 0.05 0.07 0.09 0.09 0.09
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4.4.3.2 Experiment II (t∗ = 0.3)

Let the change-point location t∗ occurs at the front middle of sample, t∗ = 0.3. Table 4.4.7

and 4.4.8 record rejection rates and estimated change locations ν̂t.

The results show similar patterns with experiment I, all tests are correctly sized, and the

rejection rates are increasing along with the change point magnitude δ and the sample size

T increasing. However, different from experiment I, the power of unweighted CUSUM tests

converges to unit faster than weighted CUSUM tests. This is because the fraction change

time t = 0.3 lies within the trimmed point [t1, t2], causing the trimming issue to be less

relevant. Thus, the technique of adding weight functions becomes less crucial to detect

a middle change. To be specific in the small samples, with low dependent observations,

unweighted CUSUM, weighted CUSUM with q1(t, 1
11

) and weighted CUSUM with q2(t, α)

show relatively higher power. These results are deteriorated in the case of high dependence,

and the power reaches to roughly 0.6 when a big magnitude change occurred. In large

samples, regardless of whether in the low dependent or high dependent cases, the power of

all tests converge to unit with change magnitude equalling to 0.6. The unweighted test,

weighted test with q1(t, 1
11

) and q2(t, α) are more reliable in smaller sized changes.

Within the weighted CUSUM tests, those using the weight function q2(t, α) perform roughly

same as the unweighted one, and tests with the weight function q1(t, α) converge to unit

power more slowly. Particularly, because higher valued α put more weights in ends, tests

with lower valued α show slower convergence rate. Nonetheless, this is no longer a problem

when it comes to a large sample even with a moderate magnitude of the change. Besides,

considering the estimated change time, the test with the weight function q1(t, 5/11) pro-

vides more accurate estimation of change-point locations. Other patterns are same as those

described in experiment I.
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Table 4.4.7: Empirical rejection rates of CUSUM-typed tests (t∗ = 0.3)
T=100

M̂
(1)
T Ŵ

(1)
T M̂

(2)
T Ŵ

(2)
T

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

) Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0

90% 0.11 0.10 0.09 0.10 0.10 0.09 0.08 0.12 0.10 0.09 0.09 0.10 0.09 0.09

95% 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.06 0.05 0.04 0.04 0.05 0.04 0.04

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.18 0.17 0.16 0.15 0.17 0.15 0.14 0.20 0.18 0.17 0.17 0.18 0.17 0.16

95% 0.10 0.09 0.08 0.07 0.09 0.09 0.08 0.12 0.10 0.08 0.08 0.10 0.09 0.08

99% 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02

0.4

90% 0.38 0.36 0.32 0.25 0.36 0.34 0.30 0.41 0.38 0.36 0.35 0.38 0.36 0.35

95% 0.26 0.24 0.19 0.09 0.24 0.22 0.18 0.29 0.27 0.24 0.22 0.27 0.25 0.24

99% 0.10 0.07 0.02 0.01 0.08 0.06 0.04 0.11 0.09 0.08 0.07 0.08 0.09 0.08

0.6

90% 0.73 0.71 0.66 0.50 0.71 0.68 0.63 0.76 0.73 0.71 0.69 0.73 0.71 0.70

95% 0.61 0.59 0.49 0.23 0.59 0.55 0.47 0.64 0.61 0.57 0.54 0.61 0.58 0.57

99% 0.34 0.28 0.10 0.02 0.29 0.24 0.17 0.36 0.32 0.29 0.25 0.31 0.32 0.30

0.8

90% 0.97 0.97 0.95 0.87 0.97 0.96 0.94 0.98 0.98 0.97 0.96 0.98 0.97 0.97

95% 0.94 0.93 0.89 0.58 0.93 0.92 0.87 0.96 0.95 0.92 0.90 0.95 0.93 0.93

99% 0.78 0.72 0.41 0.09 0.73 0.67 0.55 0.79 0.75 0.72 0.65 0.74 0.75 0.73

[θ2 = 0.01, θ3 = 0.9]

0

90% 0.14 0.12 0.11 0.11 0.12 0.11 0.10 0.14 0.12 0.11 0.11 0.12 0.11 0.10

95% 0.06 0.06 0.05 0.05 0.06 0.06 0.05 0.07 0.07 0.06 0.05 0.06 0.05 0.05

99% 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.20 0.18 0.17 0.16 0.18 0.17 0.15 0.21 0.19 0.18 0.18 0.19 0.18 0.18

95% 0.11 0.11 0.08 0.07 0.10 0.10 0.08 0.13 0.11 0.10 0.09 0.11 0.10 0.10

99% 0.03 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02

0.4

90% 0.36 0.33 0.29 0.23 0.33 0.31 0.28 0.39 0.35 0.34 0.33 0.36 0.34 0.33

95% 0.24 0.22 0.17 0.09 0.22 0.20 0.18 0.27 0.26 0.22 0.21 0.25 0.23 0.23

99% 0.09 0.07 0.02 0.01 0.07 0.06 0.04 0.10 0.08 0.07 0.06 0.08 0.09 0.08

0.6

90% 0.64 0.62 0.55 0.41 0.62 0.59 0.55 0.67 0.64 0.62 0.61 0.64 0.63 0.61

95% 0.50 0.48 0.40 0.17 0.48 0.46 0.40 0.55 0.52 0.48 0.45 0.52 0.49 0.48

99% 0.26 0.21 0.06 0.02 0.22 0.19 0.14 0.29 0.25 0.23 0.19 0.25 0.25 0.24

0.8

90% 0.91 0.90 0.86 0.71 0.90 0.89 0.85 0.93 0.92 0.91 0.90 0.92 0.92 0.91

95% 0.83 0.82 0.73 0.39 0.82 0.79 0.74 0.88 0.86 0.82 0.79 0.85 0.83 0.82

99% 0.59 0.53 0.24 0.05 0.54 0.48 0.38 0.64 0.60 0.56 0.49 0.59 0.60 0.58

T=500

M̂
(1)
T Ŵ

(1)
T M̂

(2)
T Ŵ

(2)
T

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

) Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0

90% 0.09 0.09 0.08 0.10 0.09 0.09 0.09 0.10 0.09 0.09 0.08 0.09 0.09 0.09

95% 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.42 0.43 0.40 0.22 0.43 0.42 0.39 0.43 0.42 0.42 0.42 0.42 0.42 0.41

95% 0.29 0.30 0.29 0.08 0.29 0.28 0.25 0.32 0.31 0.30 0.29 0.32 0.31 0.31

99% 0.12 0.13 0.11 0.01 0.12 0.12 0.08 0.14 0.13 0.13 0.11 0.13 0.12 0.13

0.4

90% 0.96 0.96 0.95 0.85 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94

95% 0.92 0.93 0.92 0.62 0.92 0.91 0.89 0.92 0.91 0.91 0.90 0.91 0.91 0.91

99% 0.79 0.81 0.78 0.04 0.79 0.78 0.71 0.78 0.76 0.76 0.73 0.76 0.75 0.76

0.6

90% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

99% 1.00 1.00 1.00 0.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.8

90% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

99% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[θ2 = 0.01, θ3 = 0.9]

0

90% 0.14 0.14 0.14 0.12 0.14 0.15 0.13 0.13 0.12 0.12 0.12 0.12 0.13 0.12

95% 0.07 0.08 0.07 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07

99% 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.38 0.38 0.36 0.22 0.38 0.37 0.33 0.38 0.36 0.36 0.37 0.37 0.37 0.36

95% 0.26 0.27 0.27 0.08 0.26 0.25 0.22 0.28 0.28 0.27 0.26 0.27 0.27 0.27

99% 0.11 0.11 0.09 0.00 0.10 0.10 0.07 0.11 0.10 0.10 0.09 0.10 0.10 0.10

0.4

90% 0.91 0.91 0.90 0.74 0.90 0.90 0.88 0.89 0.89 0.89 0.89 0.89 0.89 0.89

95% 0.84 0.85 0.85 0.47 0.85 0.83 0.80 0.83 0.83 0.83 0.82 0.83 0.83 0.82

99% 0.66 0.67 0.64 0.02 0.66 0.65 0.57 0.66 0.62 0.63 0.60 0.62 0.62 0.63

0.6

90% 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

99% 0.99 0.99 0.99 0.46 0.99 0.99 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98

0.8

90% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

99% 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 4.4.8: Estimated of the time of change as a percentage of the observation (t∗ = 0.3)
T=100

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0.2

Mean 0.51 0.52 0.53 0.50 0.51 0.51 0.52

Med 0.50 0.51 0.53 0.49 0.50 0.50 0.51

SD 0.20 0.22 0.29 0.37 0.20 0.21 0.23

0.4

Mean 0.43 0.43 0.43 0.40 0.43 0.44 0.44

Med 0.38 0.37 0.34 0.30 0.39 0.40 0.41

SD 0.18 0.20 0.26 0.33 0.18 0.19 0.21

0.6

Mean 0.35 0.34 0.34 0.32 0.35 0.36 0.36

Med 0.31 0.30 0.30 0.28 0.31 0.32 0.33

SD 0.12 0.14 0.19 0.26 0.13 0.13 0.15

0.8

Mean 0.30 0.30 0.29 0.27 0.31 0.31 0.32

Med 0.30 0.30 0.28 0.27 0.30 0.30 0.30

SD 0.07 0.07 0.11 0.17 0.07 0.08 0.09

[θ2 = 0.01, θ3 = 0.9]

0.2

Mean 0.52 0.53 0.54 0.51 0.52 0.52 0.52

Med 0.51 0.52 0.55 0.51 0.51 0.51 0.52

SD 0.20 0.22 0.28 0.37 0.20 0.21 0.23

0.4

Mean 0.46 0.46 0.46 0.43 0.46 0.46 0.47

Med 0.42 0.42 0.39 0.33 0.43 0.44 0.45

SD 0.19 0.20 0.26 0.34 0.19 0.19 0.21

0.6

Mean 0.39 0.38 0.38 0.37 0.39 0.40 0.40

Med 0.34 0.33 0.31 0.30 0.35 0.36 0.38

SD 0.15 0.16 0.21 0.29 0.15 0.15 0.17

0.8

Mean 0.34 0.33 0.32 0.30 0.34 0.35 0.36

Med 0.31 0.31 0.30 0.28 0.32 0.32 0.34

SD 0.10 0.11 0.15 0.22 0.10 0.11 0.12

T=500

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0.2

Mean 0.43 0.42 0.43 0.47 0.43 0.43 0.45

Med 0.39 0.38 0.36 0.35 0.39 0.40 0.42

SD 0.16 0.17 0.22 0.32 0.16 0.16 0.18

0.4

Mean 0.33 0.33 0.31 0.32 0.34 0.34 0.35

Med 0.31 0.30 0.30 0.30 0.31 0.32 0.32

SD 0.07 0.07 0.08 0.17 0.08 0.08 0.09

0.6

Mean 0.30 0.30 0.30 0.29 0.31 0.31 0.32

Med 0.30 0.30 0.30 0.29 0.30 0.30 0.30

SD 0.03 0.02 0.02 0.07 0.03 0.03 0.04

0.8

Mean 0.30 0.30 0.29 0.29 0.30 0.30 0.30

Med 0.30 0.30 0.30 0.30 0.30 0.30 0.30

SD 0.01 0.01 0.01 0.02 0.01 0.01 0.01

[θ2 = 0.01, θ3 = 0.9]

0.2

Mean 0.44 0.44 0.45 0.50 0.45 0.45 0.46

Med 0.40 0.40 0.38 0.38 0.41 0.42 0.43

SD 0.18 0.19 0.23 0.33 0.17 0.17 0.19

0.4

Mean 0.35 0.34 0.33 0.34 0.35 0.36 0.36

Med 0.31 0.31 0.30 0.30 0.32 0.32 0.33

SD 0.10 0.10 0.12 0.20 0.10 0.10 0.11

0.6

Mean 0.31 0.31 0.30 0.30 0.31 0.32 0.33

Med 0.30 0.30 0.30 0.30 0.30 0.30 0.31

SD 0.04 0.04 0.04 0.08 0.04 0.05 0.05

0.8

Mean 0.30 0.30 0.29 0.29 0.30 0.30 0.31

Med 0.30 0.30 0.30 0.30 0.30 0.30 0.30

SD 0.02 0.01 0.02 0.04 0.02 0.02 0.02
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4.4.3.3 Experiment III (t∗ = 0.5)

In this experiment, the change-point location t∗ is set at the exactly centre of sample, t∗ = 0.5.

Table 4.4.9 and 4.4.10 show rejection rates and estimated change-point locations.

Unweighted CUSUM tests outperform all others, and earn the fastest unit power conver-

gence. Compared with experiment II, the fraction change-point t is even far away from

trimmed point [t1, t2], and weighted CUSUM tests are supposed to show their side effect -

insufficient weights in the centre. However, this side effect is still in a controllable level.

Weighted CUSUM tests, even using the weight function q1(t, 5/11), present good power in

large samples, or in the small sample with a sizeable change. All tests show precise ν̂, but

when using the test with q1(t, 5/11), the estimated ν̂ has higher standard deviations. Other

patterns of estimated change points are consistent with those described in experiment I and

II.

According to Table 4.4.9, in the small samples, the power of the unweighted CUSUM test

M̂
(1)
T reach to 0.85 and 0.62 at 99% significance level with weak dependent and strong depen-

dent observations subject to a largest change, respectively. As a maximally selected CUSUM

statistics, M̂
(1)
T show slightly higher rejection rate than self-normalized CUSUM statistics

M̂
(2)
T with weak dependent observations, which reaches to 0.82 at 99% significance level.

As mentioned above, the weight function q2(t, α) deliver similar performance as unweighted

CUSUM tests. Furthermore, the power of weighted CUSUM test with q1(t, 1
11

) reaches to

0.77 and 0.52 with weak and strong dependent observations, respectively for Ŵ
(1)
T , and 0.77

and 0.56 for Ŵ
(2)
T . In the large samples, both two unweighted CUSUM tests obtain unit

power with moderate valued changes, and all tests obtain unit power with sizeable changes.
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Table 4.4.9: Empirical rejection rates of CUSUM-typed tests (t∗ = 0.5)
T=100

M̂
(1)
T Ŵ

(1)
T M̂

(2)
T Ŵ

(2)
T

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

) Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0

90% 0.11 0.10 0.09 0.10 0.10 0.09 0.08 0.12 0.10 0.09 0.09 0.10 0.09 0.09

95% 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.06 0.05 0.04 0.04 0.05 0.04 0.04

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.19 0.17 0.14 0.13 0.18 0.17 0.15 0.20 0.17 0.16 0.15 0.17 0.16 0.15

95% 0.11 0.10 0.07 0.05 0.10 0.10 0.09 0.11 0.10 0.08 0.08 0.10 0.09 0.08

99% 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.03 0.02 0.02 0.01 0.02 0.02 0.02

0.4

90% 0.47 0.44 0.35 0.19 0.46 0.44 0.41 0.48 0.44 0.41 0.38 0.45 0.43 0.42

95% 0.34 0.31 0.20 0.07 0.33 0.32 0.26 0.35 0.32 0.27 0.24 0.32 0.30 0.29

99% 0.13 0.10 0.02 0.01 0.11 0.10 0.07 0.14 0.11 0.09 0.07 0.11 0.12 0.11

0.6

90% 0.84 0.80 0.71 0.42 0.82 0.81 0.78 0.83 0.80 0.77 0.73 0.81 0.80 0.79

95% 0.72 0.68 0.51 0.14 0.71 0.70 0.65 0.72 0.69 0.61 0.56 0.69 0.66 0.66

99% 0.43 0.33 0.09 0.02 0.39 0.35 0.28 0.42 0.37 0.32 0.24 0.37 0.37 0.37

0.8

90% 0.99 0.99 0.97 0.82 0.99 0.99 0.99 0.99 0.98 0.98 0.97 0.98 0.98 0.98

95% 0.97 0.96 0.91 0.42 0.97 0.97 0.96 0.97 0.96 0.94 0.90 0.97 0.96 0.95

99% 0.85 0.77 0.33 0.02 0.82 0.80 0.71 0.82 0.77 0.72 0.61 0.78 0.79 0.78

[θ2 = 0.01, θ3 = 0.9]

0

90% 0.14 0.12 0.11 0.11 0.12 0.11 0.10 0.14 0.12 0.11 0.11 0.12 0.11 0.10

95% 0.06 0.06 0.05 0.05 0.06 0.06 0.05 0.07 0.07 0.06 0.05 0.06 0.05 0.05

99% 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.20 0.18 0.15 0.13 0.19 0.18 0.16 0.21 0.18 0.17 0.16 0.18 0.17 0.16

95% 0.12 0.11 0.08 0.06 0.11 0.10 0.09 0.12 0.11 0.09 0.08 0.11 0.10 0.09

99% 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.03

0.4

90% 0.41 0.38 0.30 0.18 0.39 0.37 0.35 0.42 0.39 0.35 0.33 0.39 0.38 0.36

95% 0.29 0.26 0.17 0.06 0.28 0.26 0.22 0.30 0.27 0.23 0.20 0.27 0.25 0.24

99% 0.10 0.07 0.01 0.01 0.09 0.07 0.06 0.11 0.09 0.07 0.06 0.09 0.09 0.09

0.6

90% 0.70 0.66 0.56 0.32 0.68 0.67 0.63 0.71 0.68 0.64 0.60 0.69 0.66 0.65

95% 0.57 0.53 0.38 0.11 0.55 0.54 0.48 0.58 0.55 0.48 0.43 0.55 0.52 0.51

99% 0.30 0.22 0.05 0.02 0.26 0.23 0.17 0.30 0.26 0.23 0.17 0.26 0.27 0.26

0.8

90% 0.93 0.92 0.85 0.59 0.93 0.92 0.91 0.94 0.92 0.90 0.87 0.93 0.92 0.91

95% 0.87 0.84 0.71 0.25 0.86 0.85 0.80 0.87 0.85 0.80 0.75 0.85 0.83 0.82

99% 0.62 0.52 0.17 0.01 0.57 0.54 0.45 0.62 0.56 0.50 0.42 0.56 0.57 0.56

T=500

M̂
(1)
T Ŵ

(1)
T M̂

(2)
T Ŵ

(2)
T

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

) Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0

90% 0.09 0.09 0.08 0.10 0.09 0.09 0.09 0.10 0.09 0.09 0.08 0.09 0.09 0.09

95% 0.03 0.04 0.04 0.04 0.04 0.03 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.04

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.55 0.54 0.48 0.26 0.55 0.56 0.54 0.53 0.51 0.50 0.49 0.52 0.52 0.52

95% 0.41 0.41 0.37 0.08 0.42 0.42 0.40 0.41 0.40 0.39 0.36 0.41 0.41 0.40

99% 0.21 0.21 0.16 0.01 0.22 0.22 0.18 0.21 0.18 0.18 0.16 0.18 0.18 0.20

0.4

90% 0.99 0.99 0.98 0.90 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.99

95% 0.98 0.98 0.97 0.68 0.98 0.98 0.97 0.97 0.97 0.96 0.95 0.97 0.97 0.97

99% 0.92 0.92 0.89 0.03 0.92 0.93 0.91 0.90 0.87 0.86 0.83 0.88 0.88 0.89

0.6

90% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

99% 1.00 1.00 1.00 0.74 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.8

90% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

99% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[θ2 = 0.01, θ3 = 0.9]

0

90% 0.12 0.13 0.12 0.12 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

95% 0.06 0.07 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.47 0.47 0.43 0.24 0.48 0.48 0.46 0.47 0.45 0.44 0.43 0.46 0.46 0.46

95% 0.34 0.35 0.31 0.08 0.35 0.35 0.33 0.34 0.33 0.32 0.31 0.34 0.34 0.33

99% 0.16 0.17 0.14 0.01 0.17 0.18 0.15 0.17 0.15 0.15 0.13 0.15 0.15 0.16

0.4

90% 0.97 0.96 0.94 0.80 0.97 0.97 0.96 0.95 0.95 0.95 0.94 0.95 0.95 0.95

95% 0.92 0.92 0.90 0.51 0.92 0.93 0.92 0.92 0.91 0.90 0.88 0.92 0.92 0.91

99% 0.81 0.81 0.75 0.02 0.81 0.82 0.79 0.78 0.75 0.74 0.71 0.75 0.75 0.77

0.6

90% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

99% 1.00 1.00 1.00 0.42 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

0.8

90% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

99% 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 4.4.10: Estimated of the time of change as a percentage of the observation (t∗ = 0.5)
T=100

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0.2

Mean 0.53 0.54 0.56 0.56 0.53 0.54 0.55

Med 0.52 0.53 0.56 0.59 0.52 0.52 0.53

SD 0.18 0.20 0.26 0.34 0.18 0.19 0.21

0.4

Mean 0.50 0.50 0.52 0.52 0.50 0.51 0.51

Med 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.14 0.16 0.21 0.29 0.14 0.14 0.15

0.6

Mean 0.48 0.48 0.49 0.49 0.49 0.49 0.49

Med 0.48 0.48 0.48 0.48 0.48 0.49 0.50

SD 0.09 0.10 0.14 0.23 0.09 0.09 0.10

0.8

Mean 0.48 0.48 0.48 0.48 0.48 0.48 0.48

Med 0.48 0.48 0.48 0.48 0.48 0.48 0.48

SD 0.06 0.07 0.10 0.17 0.06 0.05 0.06

[θ2 = 0.01, θ3 = 0.9]

0.2

Mean 0.53 0.54 0.57 0.56 0.54 0.54 0.55

Med 0.53 0.54 0.57 0.60 0.53 0.53 0.53

SD 0.18 0.20 0.26 0.34 0.18 0.19 0.21

0.4

Mean 0.52 0.52 0.54 0.54 0.52 0.52 0.53

Med 0.51 0.51 0.52 0.52 0.51 0.51 0.51

SD 0.15 0.17 0.22 0.30 0.15 0.16 0.17

0.6

Mean 0.51 0.51 0.52 0.52 0.51 0.51 0.51

Med 0.50 0.50 0.50 0.51 0.50 0.50 0.50

SD 0.12 0.13 0.17 0.25 0.12 0.12 0.12

0.8

Mean 0.50 0.50 0.50 0.51 0.50 0.50 0.50

Med 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.09 0.10 0.13 0.20 0.08 0.08 0.08

T=500

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0.2

Mean 0.50 0.50 0.51 0.54 0.50 0.50 0.51

Med 0.50 0.50 0.50 0.51 0.50 0.50 0.50

SD 0.12 0.13 0.18 0.28 0.12 0.12 0.13

0.4

Mean 0.49 0.49 0.49 0.50 0.49 0.49 0.49

Med 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.05 0.05 0.06 0.13 0.05 0.04 0.04

0.6

Mean 0.49 0.49 0.49 0.49 0.49 0.49 0.49

Med 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.02 0.02 0.03 0.05 0.02 0.02 0.02

0.8

Mean 0.49 0.49 0.49 0.49 0.49 0.49 0.49

Med 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.01 0.01 0.01 0.02 0.01 0.01 0.01

[θ2 = 0.01, θ3 = 0.9]

0.2

Mean 0.51 0.50 0.52 0.57 0.50 0.50 0.51

Med 0.50 0.50 0.50 0.53 0.50 0.50 0.50

SD 0.14 0.15 0.19 0.29 0.13 0.13 0.15

0.4

Mean 0.49 0.49 0.49 0.51 0.49 0.50 0.50

Med 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.06 0.07 0.09 0.17 0.06 0.06 0.06

0.6

Mean 0.49 0.49 0.49 0.49 0.49 0.49 0.49

Med 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.03 0.03 0.03 0.07 0.03 0.03 0.02

0.8

Mean 0.49 0.49 0.49 0.49 0.49 0.49 0.49

Med 0.50 0.50 0.50 0.50 0.50 0.50 0.50

SD 0.02 0.02 0.02 0.03 0.02 0.01 0.01
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4.4.3.4 Experiment IV (t∗ = 0.7)

Now consider the case where the change-point location t∗ occurs at the rear middle of sample,

t∗ = 0.7. Table 4.4.11 and 4.4.12 show rejection rates and estimated change-point locations.

Due to that the fraction change-point t is located within the trimmed point, [t1, t2], results

are similar with those presented for experiment II. Weighted CUSUM tests using the weight

function q2(t, α) provides similar results with unweighted CUSUM tests. Weight functions

slightly weaken the power of tests, but such effect is overcome in large samples or in small

samples with larger changes. With regard to estimated change-point locations, the test

with the weight function q1(t, 5/11) provides more accurate estimated change-point time ν̂T .

Other patterns of the rejection rates and the estimated change point locations are consistent

with those demonstrated in experiment II.

Discussing the results from Table 4.4.11 in some details, in the smaller samples, in the case

of a larger change, the unweighted CUSUM tests M̂
(1)
T and M̂

(2)
T have power 0.5 and 0.48 at

99% significance level with weak dependent series, respectively. Once it comes to the series

with strong dependence, the power reduce to 0.22 and 0.24, respectively. Other weighted

CUSUM tests performed even worse than the unweighted ones, for instance, the powers of

Ŵ
(1)
T and Ŵ

(2)
T with q1(t, 1

11
) reach to 0.41 and 0.42 with weakly dependent data, and 0.17

and 0.19 with strongly dependent data. In the larger samples, all tests obtain unit power

with a large change, and the unweighted test and weighted test with q1(t, 1
11

) and q2(t, α)

exhibit relatively fast convergence.
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Table 4.4.11: Empirical rejection rates for CUSUM-typed tests (t∗ = 0.7)
T=100

M̂
(1)
T Ŵ

(1)
T M̂

(2)
T Ŵ

(2)
T

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

) Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0

90% 0.11 0.10 0.09 0.10 0.10 0.09 0.08 0.12 0.10 0.09 0.09 0.10 0.09 0.09

95% 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.04 0.05 0.04 0.04

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.17 0.15 0.13 0.11 0.15 0.14 0.12 0.16 0.14 0.13 0.13 0.14 0.13 0.13

95% 0.09 0.08 0.06 0.05 0.08 0.08 0.06 0.09 0.08 0.06 0.06 0.08 0.07 0.07

99% 0.03 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02

0.4

90% 0.35 0.33 0.26 0.15 0.33 0.31 0.27 0.36 0.32 0.30 0.28 0.33 0.31 0.30

95% 0.24 0.22 0.14 0.06 0.22 0.20 0.16 0.24 0.22 0.18 0.17 0.22 0.19 0.18

99% 0.07 0.05 0.02 0.01 0.05 0.05 0.03 0.07 0.06 0.05 0.04 0.06 0.06 0.06

0.6

90% 0.64 0.61 0.51 0.29 0.61 0.58 0.52 0.64 0.60 0.57 0.54 0.60 0.58 0.57

95% 0.49 0.46 0.33 0.09 0.46 0.44 0.37 0.49 0.47 0.40 0.36 0.46 0.42 0.41

99% 0.22 0.16 0.04 0.01 0.18 0.15 0.09 0.23 0.19 0.16 0.12 0.18 0.19 0.18

0.8

90% 0.92 0.90 0.83 0.56 0.90 0.88 0.84 0.89 0.87 0.85 0.83 0.87 0.86 0.84

95% 0.82 0.79 0.65 0.20 0.79 0.76 0.69 0.79 0.76 0.70 0.66 0.76 0.73 0.71

99% 0.50 0.41 0.11 0.02 0.44 0.38 0.28 0.48 0.42 0.37 0.29 0.41 0.42 0.40

[θ2 = 0.01, θ3 = 0.9]

0

90% 0.14 0.13 0.11 0.11 0.13 0.12 0.11 0.14 0.12 0.11 0.11 0.12 0.11 0.11

95% 0.07 0.07 0.05 0.05 0.07 0.06 0.05 0.08 0.07 0.05 0.05 0.07 0.06 0.06

99% 0.02 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.16 0.15 0.12 0.11 0.14 0.13 0.11 0.17 0.14 0.13 0.12 0.14 0.13 0.13

95% 0.09 0.07 0.05 0.05 0.07 0.07 0.06 0.09 0.07 0.06 0.05 0.07 0.06 0.06

99% 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

0.4

90% 0.27 0.25 0.21 0.15 0.26 0.24 0.21 0.28 0.25 0.23 0.22 0.25 0.23 0.22

95% 0.17 0.16 0.12 0.06 0.16 0.15 0.12 0.18 0.16 0.14 0.13 0.17 0.15 0.14

99% 0.05 0.04 0.01 0.01 0.04 0.04 0.02 0.05 0.04 0.03 0.03 0.04 0.04 0.04

0.6

90% 0.42 0.39 0.31 0.19 0.40 0.36 0.32 0.43 0.39 0.36 0.35 0.39 0.37 0.36

95% 0.28 0.27 0.19 0.07 0.27 0.25 0.21 0.31 0.28 0.24 0.21 0.28 0.25 0.24

99% 0.11 0.08 0.02 0.01 0.09 0.07 0.05 0.11 0.09 0.08 0.06 0.09 0.09 0.09

0.8

90% 0.65 0.62 0.53 0.31 0.62 0.58 0.53 0.65 0.62 0.59 0.56 0.62 0.59 0.57

95% 0.49 0.47 0.34 0.12 0.47 0.44 0.37 0.51 0.48 0.43 0.40 0.48 0.44 0.43

99% 0.22 0.17 0.05 0.02 0.18 0.15 0.11 0.24 0.21 0.19 0.15 0.20 0.21 0.20

T=500

M̂
(1)
T Ŵ

(1)
T M̂

(2)
T Ŵ

(2)
T

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

) Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0

90% 0.10 0.09 0.09 0.11 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09

95% 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.04

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.40 0.40 0.37 0.21 0.40 0.39 0.36 0.39 0.37 0.37 0.37 0.37 0.37 0.37

95% 0.26 0.28 0.25 0.07 0.27 0.26 0.23 0.27 0.27 0.26 0.25 0.27 0.26 0.26

99% 0.10 0.11 0.09 0.01 0.10 0.09 0.07 0.11 0.09 0.10 0.09 0.09 0.09 0.10

0.4

90% 0.95 0.95 0.94 0.78 0.95 0.94 0.93 0.93 0.93 0.93 0.92 0.93 0.93 0.92

95% 0.90 0.90 0.89 0.44 0.90 0.89 0.85 0.88 0.87 0.86 0.85 0.87 0.87 0.86

99% 0.72 0.74 0.69 0.01 0.72 0.71 0.62 0.69 0.65 0.66 0.62 0.64 0.64 0.65

0.6

90% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

99% 1.00 1.00 1.00 0.27 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00

0.8

90% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

99% 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[θ2 = 0.01, θ3 = 0.9]

0

90% 0.12 0.13 0.12 0.12 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

95% 0.06 0.07 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.37 0.37 0.35 0.21 0.37 0.37 0.35 0.36 0.35 0.35 0.35 0.35 0.35 0.35

95% 0.24 0.26 0.25 0.07 0.25 0.24 0.21 0.25 0.25 0.25 0.24 0.25 0.25 0.25

99% 0.09 0.10 0.09 0.01 0.09 0.09 0.07 0.11 0.09 0.10 0.09 0.09 0.09 0.10

0.4

90% 0.88 0.88 0.87 0.66 0.88 0.88 0.85 0.86 0.85 0.85 0.85 0.85 0.85 0.85

95% 0.79 0.80 0.79 0.33 0.79 0.78 0.75 0.77 0.77 0.76 0.75 0.77 0.77 0.76

99% 0.58 0.60 0.55 0.01 0.58 0.58 0.48 0.56 0.53 0.54 0.51 0.53 0.52 0.53

0.6

90% 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 0.91 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 0.99 0.99

99% 0.98 0.99 0.98 0.13 0.98 0.98 0.96 0.97 0.96 0.96 0.95 0.96 0.96 0.96

0.8

90% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

95% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

99% 1.00 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 4.4.12: Estimated of the time of change as a percentage of the observation (t∗ = 0.7)
T=100

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0.2

Mean 0.56 0.57 0.59 0.59 0.56 0.57 0.57

Med 0.58 0.60 0.65 0.70 0.58 0.58 0.57

SD 0.19 0.21 0.26 0.33 0.19 0.20 0.21

0.4

Mean 0.58 0.59 0.61 0.60 0.58 0.58 0.59

Med 0.63 0.64 0.67 0.70 0.62 0.62 0.61

SD 0.16 0.18 0.22 0.29 0.16 0.17 0.18

0.6

Mean 0.61 0.62 0.63 0.63 0.61 0.61 0.61

Med 0.66 0.66 0.68 0.70 0.65 0.64 0.63

SD 0.13 0.13 0.16 0.24 0.12 0.12 0.13

0.8

Mean 0.63 0.64 0.65 0.67 0.63 0.63 0.62

Med 0.67 0.67 0.68 0.70 0.66 0.66 0.65

SD 0.10 0.10 0.12 0.17 0.10 0.10 0.10

[θ2 = 0.01, θ3 = 0.9]

0.2

Mean 0.56 0.56 0.59 0.57 0.56 0.56 0.56

Med 0.57 0.59 0.63 0.67 0.57 0.57 0.56

SD 0.19 0.20 0.26 0.33 0.19 0.19 0.21

0.4

Mean 0.57 0.58 0.59 0.60 0.57 0.57 0.57

Med 0.59 0.61 0.64 0.68 0.59 0.59 0.58

SD 0.18 0.19 0.24 0.31 0.18 0.18 0.19

0.6

Mean 0.61 0.62 0.64 0.64 0.61 0.61 0.60

Med 0.65 0.66 0.68 0.70 0.64 0.63 0.62

SD 0.15 0.16 0.20 0.27 0.15 0.15 0.16

0.8

Mean 0.63 0.64 0.66 0.66 0.62 0.62 0.62

Med 0.67 0.67 0.70 0.71 0.66 0.65 0.64

SD 0.13 0.14 0.17 0.24 0.13 0.13 0.14

T=500

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0.2

Mean 0.58 0.59 0.61 0.64 0.58 0.58 0.59

Med 0.62 0.63 0.66 0.70 0.62 0.61 0.60

SD 0.15 0.16 0.20 0.29 0.15 0.15 0.16

0.4

Mean 0.65 0.65 0.66 0.69 0.64 0.64 0.63

Med 0.68 0.68 0.69 0.70 0.67 0.67 0.66

SD 0.08 0.08 0.09 0.15 0.08 0.08 0.09

0.6

Mean 0.67 0.67 0.68 0.69 0.67 0.66 0.65

Med 0.69 0.69 0.69 0.70 0.69 0.68 0.68

SD 0.05 0.05 0.04 0.06 0.05 0.05 0.06

0.8

Mean 0.68 0.68 0.69 0.70 0.68 0.67 0.67

Med 0.69 0.69 0.70 0.70 0.69 0.69 0.68

SD 0.03 0.03 0.02 0.03 0.03 0.04 0.04

[θ2 = 0.01, θ3 = 0.9]

0.2

Mean 0.57 0.57 0.59 0.63 0.57 0.56 0.57

Med 0.61 0.61 0.65 0.69 0.60 0.59 0.58

SD 0.16 0.17 0.21 0.30 0.16 0.16 0.17

0.4

Mean 0.63 0.64 0.65 0.68 0.63 0.63 0.62

Med 0.67 0.68 0.68 0.70 0.67 0.66 0.65

SD 0.10 0.10 0.12 0.18 0.10 0.10 0.10

0.6

Mean 0.66 0.67 0.68 0.69 0.66 0.65 0.65

Med 0.68 0.69 0.69 0.70 0.68 0.68 0.67

SD 0.06 0.06 0.06 0.08 0.06 0.06 0.07

0.8

Mean 0.68 0.68 0.69 0.69 0.67 0.67 0.66

Med 0.69 0.69 0.70 0.70 0.69 0.69 0.68

SD 0.04 0.03 0.03 0.04 0.04 0.04 0.05
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4.4.3.5 Experiment V (t∗ = 0.9)

Lastly, let a change occurred at the end of sample, t∗ = 0.9. Rejection rates and estimated

change-point locations are tabulated in Table 4.4.13 and 4.4.14, respectively.

Results show similar patterns with those in experiment I. One noticeable point is that

compared with detecting an early change (t = 0.1), weighted CUSUM tests show relatively

slower convergence to unit power. This might be due to the fact that there are not enough

observations for CUSUM statistics after the change-point t∗. Besides, the fraction change-

point lie outside of the trimmed interval [t1, t2]. Thus, weighted CUSUM tests outperform to

unweighted CUSUM tests. Among all tests, weighted CUSUM tests with the weight function

q1(t, 5
11

) show the fastest convergence rate and provide best detections. Table 4.4.14 displays

same pattern with Table 4.4.6 in experiment I.

To be specific in Table 4.4.13, in the small samples, the weighted CUSUM tests Ŵ
(1)
T and

Ŵ
(2)
T with q1(t, 3

11
) get power 0.44 and 0.40 with weak dependent observations at 90% sig-

nificance level, respectively, and these results become to 0.23 and 0.21 subject to strong

dependent observations. In the large samples with weak dependent observations, the power

of weighted CUSUM tests Ŵ
(1)
T and Ŵ

(2)
T with q1(t, 3

11
) reach to 0.98 and 0.87 at 90% sig-

nificance level, respectively, and these results become to 0.85 and 0.74 subject to strong

dependent observations, respectively.
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Table 4.4.13: Empirical rejection rates for CUSUM-typed tests (t∗ = 0.9)
T=100

M̂
(1)
T Ŵ

(1)
T M̂

(2)
T Ŵ

(2)
T

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

) Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0

90% 0.11 0.10 0.09 0.10 0.10 0.09 0.08 0.12 0.10 0.09 0.09 0.10 0.09 0.09

95% 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.06 0.05 0.04 0.04 0.05 0.04 0.04

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.19 0.19 0.20 0.18 0.17 0.16 0.14 0.20 0.18 0.18 0.18 0.18 0.17 0.16

95% 0.11 0.10 0.11 0.08 0.10 0.09 0.07 0.11 0.10 0.09 0.09 0.09 0.08 0.08

99% 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02

0.4

90% 0.21 0.22 0.24 0.21 0.19 0.18 0.14 0.23 0.21 0.20 0.21 0.20 0.19 0.18

95% 0.11 0.11 0.13 0.09 0.10 0.10 0.08 0.14 0.13 0.11 0.11 0.12 0.10 0.10

99% 0.03 0.03 0.02 0.02 0.03 0.02 0.02 0.04 0.03 0.03 0.03 0.03 0.03 0.03

0.6

90% 0.28 0.29 0.32 0.31 0.26 0.24 0.21 0.30 0.28 0.28 0.28 0.27 0.26 0.24

95% 0.17 0.19 0.20 0.13 0.16 0.15 0.12 0.20 0.18 0.17 0.17 0.18 0.15 0.15

99% 0.05 0.05 0.04 0.02 0.04 0.04 0.03 0.06 0.06 0.06 0.05 0.05 0.05 0.05

0.8

90% 0.38 0.41 0.44 0.40 0.36 0.34 0.31 0.43 0.40 0.40 0.41 0.39 0.37 0.37

95% 0.25 0.27 0.29 0.19 0.24 0.22 0.18 0.29 0.28 0.26 0.26 0.26 0.24 0.23

99% 0.08 0.08 0.06 0.04 0.06 0.06 0.04 0.10 0.08 0.08 0.08 0.07 0.08 0.07

[θ2 = 0.01, θ3 = 0.9]

0

90% 0.14 0.12 0.11 0.11 0.12 0.11 0.10 0.14 0.12 0.11 0.11 0.12 0.11 0.10

95% 0.06 0.06 0.05 0.05 0.06 0.06 0.05 0.07 0.07 0.06 0.05 0.06 0.05 0.05

99% 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.20 0.20 0.20 0.18 0.19 0.17 0.15 0.21 0.20 0.19 0.18 0.19 0.18 0.17

95% 0.11 0.11 0.11 0.08 0.10 0.10 0.08 0.12 0.11 0.09 0.09 0.10 0.09 0.09

99% 0.03 0.02 0.02 0.01 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02

0.4

90% 0.19 0.19 0.20 0.17 0.17 0.15 0.13 0.22 0.19 0.19 0.18 0.19 0.18 0.17

95% 0.09 0.10 0.10 0.07 0.09 0.08 0.07 0.12 0.10 0.09 0.09 0.10 0.09 0.08

99% 0.03 0.02 0.02 0.01 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02

0.6

90% 0.20 0.20 0.21 0.19 0.18 0.17 0.15 0.22 0.19 0.19 0.19 0.19 0.17 0.16

95% 0.11 0.11 0.12 0.08 0.10 0.09 0.08 0.12 0.11 0.10 0.10 0.11 0.09 0.09

99% 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.04 0.03 0.03 0.03 0.03 0.03 0.03

0.8

90% 0.22 0.22 0.23 0.21 0.20 0.18 0.16 0.23 0.21 0.21 0.21 0.21 0.19 0.18

95% 0.13 0.13 0.14 0.09 0.12 0.11 0.09 0.14 0.13 0.11 0.11 0.13 0.11 0.10

99% 0.04 0.04 0.03 0.02 0.03 0.03 0.02 0.04 0.03 0.03 0.03 0.03 0.03 0.03

T=500

M̂
(1)
T Ŵ

(1)
T M̂

(2)
T Ŵ

(2)
T

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

) Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0

90% 0.10 0.09 0.09 0.11 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09

95% 0.04 0.04 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.04

99% 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.13 0.14 0.15 0.13 0.13 0.14 0.13 0.15 0.15 0.15 0.16 0.15 0.15 0.15

95% 0.07 0.08 0.09 0.05 0.07 0.06 0.06 0.09 0.09 0.09 0.09 0.09 0.09 0.08

99% 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.01 0.02

0.4

90% 0.28 0.30 0.35 0.29 0.28 0.28 0.25 0.32 0.31 0.33 0.36 0.31 0.31 0.31

95% 0.17 0.21 0.25 0.12 0.18 0.17 0.15 0.22 0.22 0.24 0.25 0.22 0.22 0.21

99% 0.05 0.06 0.09 0.01 0.05 0.05 0.03 0.08 0.07 0.09 0.09 0.06 0.06 0.07

0.6

90% 0.56 0.62 0.73 0.64 0.56 0.56 0.52 0.59 0.59 0.64 0.69 0.57 0.58 0.57

95% 0.39 0.47 0.61 0.32 0.40 0.38 0.35 0.45 0.46 0.50 0.54 0.45 0.45 0.44

99% 0.16 0.20 0.31 0.03 0.16 0.16 0.12 0.22 0.21 0.25 0.26 0.19 0.19 0.20

0.8

90% 0.86 0.91 0.98 0.96 0.86 0.87 0.84 0.82 0.83 0.87 0.91 0.81 0.81 0.81

95% 0.71 0.82 0.94 0.73 0.72 0.71 0.67 0.70 0.73 0.78 0.83 0.69 0.70 0.69

99% 0.41 0.52 0.70 0.10 0.41 0.40 0.33 0.45 0.44 0.51 0.55 0.41 0.41 0.43

[θ2 = 0.01, θ3 = 0.9]

0

90% 0.12 0.12 0.12 0.11 0.13 0.13 0.11 0.13 0.12 0.12 0.12 0.12 0.12 0.12

95% 0.06 0.06 0.06 0.04 0.06 0.06 0.06 0.07 0.07 0.06 0.06 0.07 0.07 0.06

99% 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01

0.2

90% 0.16 0.17 0.16 0.13 0.16 0.16 0.15 0.16 0.15 0.16 0.17 0.15 0.16 0.15

95% 0.07 0.09 0.09 0.05 0.08 0.07 0.07 0.10 0.10 0.10 0.10 0.10 0.10 0.10

99% 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.03 0.02 0.02 0.02 0.02 0.02 0.02

0.4

90% 0.26 0.28 0.32 0.25 0.26 0.26 0.24 0.29 0.29 0.30 0.33 0.28 0.28 0.28

95% 0.15 0.18 0.22 0.11 0.16 0.14 0.13 0.19 0.20 0.21 0.23 0.19 0.19 0.19

99% 0.04 0.06 0.07 0.01 0.04 0.04 0.04 0.07 0.06 0.07 0.07 0.05 0.05 0.06

0.6

90% 0.44 0.48 0.57 0.47 0.44 0.44 0.40 0.47 0.47 0.51 0.56 0.46 0.46 0.47

95% 0.27 0.34 0.44 0.23 0.28 0.27 0.25 0.35 0.36 0.39 0.42 0.35 0.35 0.34

99% 0.11 0.14 0.20 0.02 0.11 0.11 0.08 0.16 0.15 0.17 0.18 0.14 0.14 0.14

0.8

90% 0.67 0.75 0.85 0.78 0.67 0.68 0.64 0.69 0.70 0.74 0.79 0.68 0.68 0.68

95% 0.52 0.60 0.76 0.50 0.53 0.52 0.50 0.57 0.59 0.64 0.68 0.57 0.57 0.56

99% 0.27 0.34 0.47 0.04 0.27 0.27 0.21 0.34 0.33 0.37 0.41 0.31 0.31 0.32
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Table 4.4.14: Estimated of the time of change as a percentage of the observation (t∗ = 0.9)
T=100

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0.2

Mean 0.63 0.65 0.70 0.72 0.63 0.64 0.65

Med 0.65 0.70 0.81 0.88 0.65 0.65 0.65

SD 0.21 0.23 0.25 0.30 0.21 0.22 0.23

0.4

Mean 0.64 0.66 0.71 0.73 0.64 0.65 0.65

Med 0.67 0.71 0.83 0.90 0.67 0.66 0.66

SD 0.22 0.23 0.26 0.30 0.22 0.22 0.23

0.6

Mean 0.66 0.69 0.74 0.76 0.67 0.67 0.68

Med 0.71 0.76 0.86 0.90 0.71 0.71 0.71

SD 0.21 0.22 0.23 0.28 0.21 0.21 0.22

0.8

Mean 0.69 0.72 0.78 0.80 0.70 0.70 0.71

Med 0.74 0.80 0.88 0.90 0.75 0.75 0.76

SD 0.20 0.20 0.21 0.24 0.20 0.20 0.21

[θ2 = 0.01, θ3 = 0.9]

0.2

Mean 0.62 0.65 0.69 0.71 0.62 0.63 0.64

Med 0.64 0.68 0.80 0.88 0.63 0.63 0.63

SD 0.21 0.22 0.25 0.31 0.21 0.22 0.23

0.4

Mean 0.62 0.64 0.69 0.71 0.62 0.63 0.63

Med 0.64 0.68 0.79 0.88 0.64 0.63 0.63

SD 0.21 0.23 0.26 0.31 0.22 0.22 0.23

0.6

Mean 0.62 0.64 0.69 0.73 0.62 0.63 0.64

Med 0.64 0.68 0.80 0.88 0.64 0.63 0.63

SD 0.21 0.23 0.26 0.30 0.22 0.22 0.23

0.8

Mean 0.62 0.65 0.69 0.71 0.63 0.63 0.64

Med 0.65 0.69 0.80 0.88 0.64 0.63 0.63

SD 0.21 0.22 0.26 0.31 0.21 0.21 0.23

T=500

Coefficients δ Unweighted q1(t, 1
11

) q1(t, 3
11

) q1(t, 5
11

) q2(t, 1
11

) q2(t, 3
11

) q2(t, 5
11

)

[θ2 = 0.005, θ3 = 0.1]

0.2

Mean 0.55 0.56 0.60 0.64 0.55 0.55 0.56

Med 0.55 0.57 0.63 0.81 0.55 0.55 0.55

SD 0.19 0.21 0.26 0.35 0.19 0.20 0.22

0.4

Mean 0.63 0.65 0.71 0.76 0.63 0.63 0.64

Med 0.65 0.69 0.81 0.89 0.64 0.63 0.63

SD 0.20 0.21 0.23 0.28 0.20 0.20 0.21

0.6

Mean 0.71 0.75 0.81 0.86 0.71 0.72 0.72

Med 0.75 0.81 0.88 0.90 0.75 0.75 0.77

SD 0.17 0.17 0.15 0.16 0.17 0.18 0.18

0.8

Mean 0.78 0.81 0.86 0.89 0.78 0.78 0.79

Med 0.83 0.86 0.89 0.90 0.84 0.85 0.87

SD 0.14 0.12 0.09 0.07 0.14 0.14 0.15

[θ2 = 0.01, θ3 = 0.9]

0.2

Mean 0.54 0.54 0.59 0.63 0.54 0.54 0.56

Med 0.53 0.54 0.61 0.77 0.53 0.53 0.54

SD 0.19 0.21 0.26 0.35 0.19 0.19 0.21

0.4

Mean 0.60 0.62 0.67 0.73 0.60 0.60 0.61

Med 0.62 0.65 0.75 0.88 0.61 0.61 0.61

SD 0.20 0.22 0.25 0.30 0.20 0.20 0.21

0.6

Mean 0.67 0.70 0.77 0.82 0.67 0.68 0.68

Med 0.71 0.75 0.86 0.90 0.70 0.70 0.70

SD 0.19 0.19 0.20 0.22 0.19 0.19 0.20

0.8

Mean 0.73 0.76 0.83 0.88 0.73 0.74 0.74

Med 0.79 0.83 0.89 0.90 0.79 0.80 0.82

SD 0.17 0.16 0.14 0.13 0.17 0.17 0.18
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4.5 An Application: Detecting Unexpected Events in the U.S. Equity

Market

In this section, we apply the change-point tests to detect the most harmful systemic events in

the U.S. equity market during last three individual year. Systemic events, normally referring

to events causing instabilities of entire financial system, draw controversial discussion in

literature as there is no standard method to measure systemic risk.

A survey paper on systemic risk has been completed by Bisias et al. (2012), one impor-

tant method to measure the level of systemic risk is using conditional correlation, and this

becomes more popular since IMF (2009) reported that the evolution of correlation can be

used to monitor market stress. Empirically, Billio et al. (2012) adopted Granger causality

network model to several financial markets, and specified that the high concentrated level

of conditional correlations always takes higher risks of a market drop (Also see Kritzman et

al., 2011).

Thus, for the purpose of knowing market systemic events, it is important to detect the

instability of correlation structure of entire market. However, it may be argued that the

instability of correlation can also be a result of decreasing of correlations. While, according

to knowledges from behavioral finance, bull news have diverse reactions in sectors, but bear

news are more likely to impact all sectors immediately. Hence, a sudden structural change

usually is an increment in market correlation structure.

To model the correlation structure of the U.S. stock market, it is unrealistic to collect all

equity shares, as by doing so it would result in an over ten thousands dimensional system.

Therefore, we use ten Standard & Poor (S&P) 500 sector indexes as proxies for entire equity

shares, including Energy (EN), Financial (FI), Consumer Discretionary (CD), Consumer

Staples (CS), Health Care (HC), Information Technology (IT), Industrial (IN), Material
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(MA), Utilities (UT) and Technology Service (TS) sectors. The adjusted closed price data is

collected for each index, ranged over 01-January-2014 to 31-December-2016. We then split

it into three sub-samples for trading year 2014, 2015 and 2016, respectively, such that each

sub-sample contains 261 observations. To ensure stationarity, we compute log return series

for each sector index. The data source is Datastream.

We apply the semi-parametric CUSUM and weighted CUSUM with weight function [t · (1−

t)]5/11 to detect correlation changes. In both tests, we estimate the conditional covariance

through the DCC model, and then devolatize sector indexes. The long run covariance is

estimated by adopting Bartlett kernel and the Newey-West optimal bandwidth.

Figure 4.5.1 plots semi-parametric CUSUM and weighted CUSUM statistics in the year of

2014, 2015 and 2016. The maximally selected CUSUM and Ŵ
(1)
T statistics can be found at

the peak point. As a 10 dimensional multivariate data set, we use asymptotic critical values

at 95% significance level documented in Table 4.4.4, and Table 2 in Aue et al. (2009) for

CUSUM test. In left sub-figures, CUSUM statistics reject the null hypothesis in year of

2014, 2015 and 2016, and detected dates mainly allocated around the period between June

and August. Right sub-figures display weighted CUSUM statistics. The Ŵ
(1)
T test rejects

the null hypothesis in year of 2014 and 2016. While during 2015, the test rejects the null

at 90% but cannot reject at 95% significance level. Different with the CUSUM test, there is

no particular restriction on the range of detected dates, and weighted CUSUM statistics are

nearly equal weighted in the sample.
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Figure 4.5.1: The statistics of semi-parametric CUSUM and weighted CUSUM tests

Left three sub-figures plot CUSUM statistics, and right three sub-figures plot weighted CUSUM statistics.

The red line is the critical values at 95% significance level when d = 10. We refer CUSUM critical values

from Aue et al. (2009), and weighed CUSUM critical values from Table 4.4.4

Table 4.5.1 lists market events occurred on detected change days. During 2014, the CUSUM

test suggests the biggest correlation change date is 4th June, but there was no specific market

event occurred, and the market status during the first half of 2014 actually bulled. The

change date detected by weighted CUSUM test is 13th October, which gives more sense, as

the U.S. market experienced an one-day plunge event: Dow Jones Industrial Average (DJIA),

S&P 500 and tech-laden Nasdaq Composite (TNC) indexes dropped extensively within one

trading day. The real situation was worse than just one-day plunge, market records show
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downward market during October wiped out all gains from early months in this bull year.

This is due to the market fear of Ebola, as well as sour news from European economies.

In year of 2015, CUSUM and weighted CUSUM tests indicate similar correlation change

date, around the middle of August. This period can be seen as a start of 2015-16 stock

market selloff. The first drop of this selloff was 18th August, and became to a flash crash

in 24th August, then followed with several one-day plunges until 2016. This is due to fears

about Chinese stock market turbulence, and continued with more fears about U.K. European

Union membership referendum in 2016.

It is quite surprising that the CUSUM test did not detect 23rd June - the date of U.K.

referendum as the correlation structural break date in 2016, despite the fact that CUSUM

statistics on 23rd June displays very high as well in Figure 4.5.1, this is probably because

compared with the impact on stock markets, the result of referendum instantly shocked

global foreign exchange markets. The actual detected date is 26th July, when the U.S.

market experienced another one-day plunge. This drop is because the supply of crude oil

exceeds its demand, and oil traders are not insensitive to rebalance market timely. On the

other hand, the weighted CUSUM test indicates that the biggest break occurred during the

45th presidential election, this is probably because of a jump in the second moment caused

by an extensive short-term reversion. Figure 4.5.2 displays such a pattern.

Based on discussions above, all detected events in the U.S. market experience down side or

high volatile market statuses. These events are commonly caused by unanticipated market

fears about economy environment, which give rise to temporary market oscillations or sys-

temic effect. Because the CUSUM-typed tests are designed to detect non-smoothing changes,

and mainly detect short-term jumps in correlation structure, a further analysis on posterior

event is necessary, i.e. to investigate whether the change leads to a structural break or just

a transient change.
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Table 4.5.1: Change Dates vs Market Events

Semi-parametric CUSUM and semi-parametric weighted CUSUM tets

01-Jan-2014 to 31-Dec-2014

Date Event

CUSUM 4-Jun-2014 None

Weighted CUSUM 13-Oct-2014

One-day Plunge (Fear of Ebola):

The Dow Jones Industrial Average declined 0.7%;

The Standard & Poor 500 decreased 1.2%;

The tech-laden Nasdaq Composite Index declined more than 2%.

01-Jan-2015 to 31-Dec-2015

Date Event

CUSUM 13-Aug-2015 The Start of 2015-2016 stock market selloff

Weighted CUSUM 16-Aug-2015 The Start of 2015-2016 stock market selloff

01-Jan-2016 to 31-Dec-2016

Date Event

CUSUM 26-Jul-2016

One-day Plunge (Crude Oil Depreciation):

The Dow Jones Industrial Average declined 0.4%;

The Standard & Poor 500 decreased 0.3%;

The tech-laden Nasdaq Composite Index declined 0.1%.

Weighted CUSUM 8-Nov-2016

45th United States presidential election:

Global market dropped sharply;

the U.S. market experienced a big reversal.

Figure 4.5.2: The Impact of Presidential Election on Stocks

Source: http://money.cnn.com/2016/11/09/investing/dow-jones-trump-wins-election/
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4.6 Summary

Concerning the common trimmed issue in testing instability of correlation structure, the

present chapter extends semi-parametric CUSUM tests to semi-parametric weighted CUSUM

tests. We apply two types of weight functions: q1(α, t) = [t · (1 − t)]α, 0 ≤ t ≤ 1 and

q2(α, t) = [t · (1− t) · loglog 1
t·(1−t) ]

α, with 0 ≤ t ≤ 1 and 0 < α < 1/2. The limits of weighted

CUSUM tests are derived under the null and alternative hypothesis. The empirical Monte

Carlo simulation study emphasizes that semi-parametric weighted CUSUM tests perform

better than semi-parametric CUSUM tests in either ends. To detect a centred correlation

change, weighted tests show good power as well, although the power of unweighted tests

converge to unit relatively faster. In the end, we provide an application of detecting systemic

events in the U.S. market cross over the year of 2014, 2015 and 2016, and the weighted

CUSUM test (using q1(t, 5/11)) exhibits more sensible results: the most harmful systemic

events in the year of 2014, 2015 and 2016 are the Fear of Ebola, the 2015-2016 stock market

selloff and the 45th United States presidential election, respectively.

149



Chapter 5

Conclusion
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Multivariate models are widely used in financial applications. The development of technol-

ogy and the increased computational ability, together with the availability of data at higher

frequencies, have made more feasible the modelling and the estimation of systems of larger

dimensions. However, the efficiency of estimations is still a challenged problem as structural

breaks often occur in real world. Detecting a structural break or change point in the first

moment has been widely studied, while the instability in the second moment is still a pre-

liminary period. The milestone in this area is completed by Aue et al. (2009), who derived

the asymptotic theory to detect covariance changes in multivariate vectors.

Considering changes in covariance structure can be originated by either variance changes or

correlation changes, also correlation structure provides crucial implementations in finance,

the present thesis marginally contributed literature about detecting changes in the correla-

tion structure. The thesis started to discuss this issue from a native question: ‘Whether a

change point in the correlation structure deteriorates the efficiency of multivariate covariance

models?’, then showed an empirical evidence that how important of analysing correlation

structure in finance, lastly proposed change point detection methods in the correlation struc-

ture.

Specially, in the first chapter, we compared in-sample and out-of-sample performances of

most commonly used multivariate GARCH models, extending existed works completed by

Engle (2009) and Laurent et al. (2012). The simulation results indicated the optimal model

in in-sample and out-of-sample, respectively; also even though the answer is clear, we found

that correlation change deteriorates models’ in-sample performances. In order to show the

importance of analysing correlation structure to finance, Chapter 2 conducted an empirical

work. Followed Billio et al. (2012), we showed that the absorption ratio, a concentration

ratio extracted from conditional correlation matrices, can be used as a leading indicator of

the financial fragility.
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Chapter 3 and 4 completed the most of contribution of this thesis. In the third chapter,

we extended CUSUM tests (Aue et al. 2009) into time-varying correlation context, and

proposed semi-parametric CUSUM tests to detect change points in correlation structure,

and derived their asymptotic distributions. The simulation results implied semi-parametric

CUSUM tests can overcome the distortion caused by the nearly unit-root property. The

fourth chapter adjusted the limitation of semi-parametric CUSUM test in either sample

ends, by selecting suitable weighting functions for semi-parametric CUSUM statistics. The

weighted semi-parametric CUSUM tests showed more comprehensive and robust detection

abilities in finite samples.

Practically, these tests statistically segment real data according to the evolution of corre-

lation structure, thereby providing more efficient estimations and reliable interpretation in

in-sample. The third and fourth chapters provided relevant applications. One is to identify

the financial contagion effect in global equity markets during the great recession. Another

is to detect unexpected events in the U.S. equity market. More applications are worth to

explore in the financial market.

This thesis mainly concentrates on the issue of instability in the historical correlation struc-

ture, but correlation change points in the out-of-sample is also important, even provides

more implementation views in applications. It sounds unlikely to predict change point in

out-of-sample, however, we can sequentially detect a correlation change point by absorbing

new observations. The difficulty in this topic is how to design statistics in a fast convergence

rate within very finite observations. Sequentially detecting change point in the correlation

structure can be a topic for post-doctoral researches.
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Appendix A

A.1 PROOFS OF THEOREM 3.3.1 - 3.3.2

We start with the weak convergence of the process s(t), 0 ≤ t ≤ T .

Lemma A.1.1. If H0 and Assumption 3.3.1-3.3.5 are satisfied, then we have

T−1/2(s(Tu)− Es(Tu))
Dd̄[0,1]→ WD(u)

where WD(u), 0 ≤ u ≤ 1 is a Brownian motion in Rd̄ with covariance matrix D, i.e. W(u)

is Gaussian with EW(u) = 0 and EWD(u)W>
D(ν) = min(u, ν)D.

Proof. It follows from Assumption 3.3.1-3.3.4 that y∗t (i)y
∗
t (j) is also stationary and β-mixing

with the same rate as of yt. Also, since Assumption 3.3.3 implies that τt(i) ≥ τ0 we get that

E |y∗t (i)y∗t (j)|
r/2 ≤ 1

τ 2
0

(E |y∗t (i)|
r E |y∗t (j)|

r)1/2 <∞

via the Cauchy-Schwartz inequality and the moment condition in Assumption 3.3.4. Hence,

the result of Ibragimov (1962) (cf. also Rio, 2000) implies the lemma.

Proof of Theorem 3.3.2. Lemma A.1 implies that

T−1/2(s(Tu)− 〈Tu〉
T

s(T ))
Dd̄[0,1]→ WD(u)− uWD(1) (A.1.1)
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Checking the covariance structure, one can easily verify that

{
D−1/2(WD(u)− uWD(1)), 0 ≤ u ≤ 1

} D
= {(B1(u), B2(u), . . . , Bd̄(u)), 0 ≤ u ≤ 1} (A.1.2)

where B1, B2, . . . , Bd̄ are independent Brownian Bridges. Hence Theorem 3.3.1 follows from

(A.1.1) and (A.1.2) via the continuous mapping theorem.

Proof of Theorem 3.3.2 It follows from the definition of ŷt(i) that

ŷt(i)ŷt(j)− y∗t (i)y∗t (j) = at,1(i, j) + · · ·+ at,8(i, j)

where

at,1(i, j) = yt(i)yt(j)(
1

τ̄t(i; θ̂T )
− 1

τt(i; θ̂T )
)(

1

τ̄t(j; θ̂T )
− 1

τt(j; θ̂T )
),

at,2(i, j) = yt(i)yt(j)(
1

τ̄t(i; θ̂T )
− 1

τt(i; θ̂T )
)(

1

τt(j; θ̂T )
− 1

τt(j; θ̂0)
),

at,3(i, j) = yt(i)(
1

τ̄t(i; θ̂T )
− 1

τt(i; θ̂T )
)
yt(j)

τt(i)
,

at,4(i, j) = yt(i)yt(j)(
1

τt(i; θ̂T )
− 1

τt(i;θ0)
)(

1

τ̄t(j; θ̂T )
− 1

τt(j; θ̂T )
),

at,5(i, j) = yt(i)yt(j)(
1

τt(i; θ̂T )
− 1

τt(i;θ0)
)(

1

τt(j; θ̂T )
− 1

τt(j;θ0)
),

at,6(i, j) =
yt(i)

τt(i)
yt(j)(

1

τ̄t(j; θ̂T )
− 1

τt(j; θ̂T )
),

at,7(i, j) = yt(i)(
1

τt(i; θ̂T )
− 1

τt(i;θ0)
)
yt(j)

τt(j)
,

and

at,8(i, j) =
yt(i)

τt(i)
yt(j)(

1

τt(j; θ̂T )
− 1

τt(j;θ0)
).

Since τ̄t(i; θ̂T )τ0 > 0, by Assumptions 3.3.6 and 3.3.7 we have on account of the mean value
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theorem that

T−1/2max
1≤t≤T

t∑
s=1

|as,1| = OP (1)T−1/2

T∑
t=1

|yt(i)yt(j)| a2(t)

We can assume without loss of generality that at is non-increasing as t → ∞. Using again

Assumption 3.3.6 we can find a sequence aT such that T−1/2aT → 0 and T 1/2a(aT )→ 0 and

therefore

T−1/2
∑T

t=1 |yt(i)yt(j)| a2(t) ≤ T−1/2
∑aT

t=1 |yt(i)yt(j)| a2(t) +
∑T

t=aT+1 |yt(i)yt(j)| a2(t)

OP (T−1/2aT + T 1/2a2(aT ))

oP (1)

(A.1.3)

where we used the ergodic theorem that

1

L

L∑
t=1

|yt(i)yt(j)| → E |y0(i)y0(j)| a.s. (L→∞)

Since by Assumption 3.3.4, E |y0(i)y0(j)| ≤ (Ey2
0(i)Ey2

0(j))1/2 < ∞. Putting together As-

sumption 3.3.6-3.3.8, we conclude via two term Taylor expansion and the mean value theorem

that

T−1/2max
1≤t≤T

t∑
s=1

|as,2| = OP (T−1/2)
T∑
t=1

|yt(i)yt(j)| at(t)
[
‖gt(j)‖

∥∥∥θ̂T − θ∥∥∥+ ḡt

∥∥∥θ̂T − θ0

∥∥∥2
]

Following the proof of (A.1.3), one can show that

T−1/2
∑T

t=1 |yt(i)yt(j)| a(t) ‖gt(j)‖
∥∥∥θ̂T − θ0

∥∥∥2

= OP (1) 1
T

∑T
t=1 |yt(i)yt(j)| a(t) ‖gt(j)‖

= oP (1)
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Since,

E |yt(i)yt(j)| ‖gt(j)‖ ≤ (E |yt(i)yt(j)|2E ‖gt(j)‖2)1/2 ≤ (E |y4
t (i)y

4
t (j)|)1/4(E ‖gt(j)‖2)1/2

<∞

the same arguments give

T−1/2
∑T

t=1 |yt(i)yt(j)| a(t)ḡt

∥∥∥θ̂T − θ0

∥∥∥2

= OP (1) 1
T 3/2

∑T
t=1 |yt(i)yt(j)| a(t)ḡt

= OP (1)( 1
T 1/2 max

1≤t≤T
ḡt)

1
T

∑T
t=1 |yt(i)yt(j)| a(t)

= oP (1)

Similarly,

T−1/2max
1≤t≤T

t∑
s=1

|as,3| = OP (1)T−1/2

T∑
t=1

|yt(i)yt(j)| a(t) = oP (1)

By symmetry,

T−1/2max
1≤t≤T

t∑
s=1

|as,l| = oP (1), l = 4, 5, 6

Assumption 3.3.8 implies that

T−1/2max
1≤t≤T

∣∣∣∑t
s=1 as,7 −

∑t
s=1

yt(i)

τ2
t (i)

yt(i)
τt(j)

gs(i)
>(θ0 − θ̂T )

∣∣∣
= OP (1)T−1/2

∑T
s=1 |yt(i)yt(j)| ḡt

∥∥∥θ0 − θ̂T
∥∥∥>

= OP (1)(T−1/2max
1≤t≤T

ḡt)
1
T

∑T
s=1 |yt(i)yt(j)|

= oP (1)

Using again the ergodic theorem and Assumption 3.3.4, we conclude

T−1/2max
1≤t≤T

∣∣∣(∑t
s=1

yt(i)

τ2
t (i)

yt(j)
τt(j)

gs(i)− t
T

∑t
s=1

yt(i)

τ2
t (i)

yt(j)
τt(j)

gs(i))
>(θ0 − θ̂T )

∣∣∣
= OP (1) 1

T
max
1≤t≤T

∥∥∥∑t
s=1

yt(i)

τ2
t (i)

yt(j)
τt(j)

gs(i)− t
T

∑t
s=1

yt(i)

τ2
t (i)

yt(j)
τt(j)

gs(i)
∥∥∥

= oP (1)
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Since E |y0(i)y0| ‖gs(i)‖ <∞, Hence, we obtain that

T−1/2max
1≤t≤T

∣∣∣∣∣
t∑

s=1

as,7 −
t

T

T∑
s=1

as,7

∣∣∣∣∣
and by the same arguments

T−1/2max
1≤t≤T

∣∣∣∣∣
t∑

s=1

as,8 −
t

T

T∑
s=1

as,8

∣∣∣∣∣
We prove that

T−1/2max
1≤t≤T

|(
t∑

s=1

ŷs(i)ŷs(j)−
t

T

T∑
s=1

ŷs(i)ŷs(j))

−(
t∑

s=1

y∗s(i)y
∗
s(j)−

t

T

T∑
s=1

y∗s(i)y
∗
s(j))| = oP (1)

and therefore the result follows from Theorem 3.3.1.
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A.2 PROOFS OF THEOREM 4.3.1 - 4.3.3

A.2.1 Proofs of Theorem 4.3.1 and 4.3.2

According to Aue et al. (2009), we can refer to the proof of

1√
T

bT ·tc∑
j=1

(vech[yjy
T
j − E[yjy

T
j ])

D→ WΣ(t) (T →∞) (A.2.1)

where WΣ(t) : t ∈ [0, 1] is a d-dimensional Brownian motion.

Now, we consider to apply weight functions into the sum of yt. Since weight functions q1(t, α)

and q2(t, α) with 0 < α < 1/2 are still converge, by adding one of weighting functions q(t).

Recall weight functions in Equations 4.3.3 and 4.3.4.

If q(t) < ∞ for some positive c, the weighted version of 1√
T

∑bT ·tc
j=1 yj should converge to a

d-dimensional weighted Brownian motion.

1√
T · q(t)

bT ·tc∑
j=1

yj
Dd[0,1]→ WΓ(t)

q(t)
(T →∞)

Similarly, the weighted version of covariance function would converge to a d-dimensional

weighted Brownian motion as well.

1√
T · q(t)

bT ·tc∑
j=1

(vech[yjy
>
j − E[yjy

>
j ])

D→ WΣ(t)

q(t)
(T →∞) (A.2.2)

Then, we can discuss the convergence of weighted CUSUM statistics. Because the long-run

covariance absolutely converges (also discussed in Aue et al. 2009), the weighted CUSUM

statistics Ŵ
(2)
T converges if following CUSUM statistics converged.

1√
T · q(t)

bT ·tc∑
j=1

(vech[yjy
T
j ]− E[vech[yjy

T
j ])

D→ WΣ(t)

q(t)
(T →∞)
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then, it yields,

1√
T · q(t)

(

bT ·tc∑
j=1

vech[yjy
T
j ]− t

T∑
j

[vech[yjy
T
j ])

D→ (
WΣ(t)

q(t)
− t ·W (1)

q(t)
) (T →∞) (A.2.3)

Furthermore, since Csörgő and Horváth (1981) showed that (W (t)− t(W (1))) and B(t) are

same distributed, the weighted CUSUM statistics have following limit.

1√
T · q(t)

(

bT ·tc∑
j=1

vech[yjy
T
j ]− t

T∑
j

vech[yjy
T
j ])

D→ BΣ(t)

q(t)
(T →∞) (A.2.4)

Combined with the long run covariance’s convergence, we obtain the asymptotic limits shown

as Equations A.2.4. Therefore, Theorem 4.3.1 is proved.

Proof of Theorem 4.3.2 We refer Csörgö and Horváth (1997) to prove Theorem 4.3.2. Denot-

ing ŝ(bT · tc)− tŝ(T ) as S, we have W
(1)
T = max

0≤t≤1

1
T ·q(t)S

>D−1S. Concerning the consistency

of long run covariance estimator, for estimator D̂ satisfies the condition that,

sup
0≤t≤1

∥∥∥D̂−D
∥∥∥ = oP [(loglogT )−

1
2 ]

with restrictions on m for
√
loglogT
m

→ 0 and m · logT
√

loglogT
T
→ 0, there also exists

Ŵ
(1)
T = max

0≤t≤1

1

T · q(t)
S>D̂−1S.

According to the Darling and Erdös law (Csörgö and Horváth, 1997), defining that

M(t) =
∑ B2

(i)(t)

q(t)
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then it gives,

P{aT · sup
1
T
<t<1− 1

T

M(t) ≤ K + bT} → e−2e−K (A.2.5)

where aT and bT is defined in (4.3.7). Then, as we know that,

(2loglogT )−
1
2 sup

1
T
≤t≤1− 1

T

M(t)
P→ 1 (A.2.6)

If there exists a truncated point u(T ) = exp((logT )∆)/T with some 0 < ∆ < 1. Then the

limit in beginning and end of sample can be extended to,

(2loglogT )−
1
2 sup

1
T
≤t≤u(T )

M(t)
P→ δ

1
2 (A.2.7)

and

(2loglogT )−
1
2 sup

1−u(T )≤t≤1− 1
T

M(t)
P→ δ

1
2 (A.2.8)

Because yt can be approximated by zero mean i.i.d Gaussian sequence, it is easily to have

sup
1
T
≤t≤1− 1

T

∣∣∣W (1)
T (t)−M(t)

∣∣∣ = oP ((loglogT )
1
2 )

By applying iterated logarithm, we then have corresponding limits for W
(1)
T ,

(2loglogT )−
1
2 sup

1
T
≤t≤1− 1

T

W
(1)
T (t)

P→ τ (A.2.9)

(2loglogT )−
1
2 sup

1
T
≤t≤u(T )

W
(1)
T (t)

P→ δ
1
2 τ (A.2.10)

and

(2loglogT )−
1
2 sup

1−u(T )≤t≤1− 1
T

W
(1)
T (t)

P→ δ
1
2 τ (A.2.11)

Next, we define ξ(T ) and η(T ) as the location of maximum M(t) and W
(1)
T (t) on [ 1

T
, 1− 1

T
].
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Equation A.2.6 - A.2.11 indicate that,

sup
0≤t≤1

M(t) = M(ξ(T ))

and

sup
0≤t≤1

W
(1)
T (t) = W

(1)
T (η(T ))

Thus, there exists,

P [u(δ) ≤ ξ(T ), η(T ) ≤ 1− u(δ)] = 1 (A.2.12)

thus, for T →∞ and δ → 0

1

τ
sup

u(T )≤t≤1−u(T )

W
(1)
T (t)− sup

u(T )≤t≤1−u(T )

M(t) = oP ((loglogT )
1
2 ) (A.2.13)

(A.2.12) and (A.2.13) further imply that

1

τ
sup

1
T
≤t≤1− 1

T

W
(1)
T (t)− sup

1
T
≤t≤1− 1

T

M(t) = oP ((loglogT )
1
2 ) (A.2.14)

Also because that

sup
0<t≤ 1

T

W
(1)
T = oP ((loglogT )

1
2 )

and

sup
1− 1

T
≤t<1

W
(1)
T = oP ((loglogT )

1
2 )

we eventually have,

1

τ
sup
t<1

W
(1)
T (t)− sup

1
T
≤t≤1− 1

T

M(t) = oP ((loglogT )
1
2 ) (A.2.15)

combined with Darling and Erdös theorem, refer to Equation A.2.5, Theorem 4.3.2 is proved.
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dependence. Annals of Probability 42 (2014), 794–819

[27] Berkes I and Philipp W.: Approximation thorems for independent and weakly depen-

dent random vectors. The Annals of Probability (1979), 29–54
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