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ABSTRACT 

 

Anodal cerebellar transcranial direct current stimulation (tDCS) is known to enhance 

motor learning and it is suggested to hold promise as a therapeutic intervention. 

However, the neural mechanisms underpinning the effects of cerebellar tDCS are 

unknown. In addition, it is unclear whether this effect is robust across varying task 

parameters as if cerebellar tDCS is to be used clinically it must have a consistent effect 

across a relatively wide range of behaviours. Therefore, I performed four studies to 

address these questions. In the first three studies, I investigated the neural changes 

associated with cerebellar tDCS using magnetic resonance spectroscopy (MRS) and 

resting state functional magnetic resonance imaging (fMRI). My goal was to understand 

how cerebellar tDCS affected the metabolites within the cerebellum and functional 

connectivity between the cerebellum and distant brain areas. In addition, I wanted to 

understand if individual differences in how cerebellar tDCS influenced visuomotor 

adaptation could be explained by the effect tDCS had on neurobiology. Therefore, 

healthy participants underwent 3 sessions in which they received concurrent anodal 

cerebellar tDCS during visuomotor adaptation, MRS and resting state fMRI. I found 

that in 21% of participants cerebellar tDCS caused enhanced visuomotor adaptation, a 

decrease in GABA and increase in functional connectivity between the cerebellum and 

parietal cortex. This work suggests an „all-or-nothing‟ type effect of cerebellar tDCS. In 

my final study, I examined the consistency of the cerebellar tDCS effect on visuomotor 

adaptation across a wide range of task parameters which were systematically varied. 

Each experiment examined whether cerebellar tDCS had a positive effect on adaptation 

when a unique feature of the task was altered. I found cerebellar tDCS to have an 

inconsistent effect on visuomotor adaptation. I conclude that such inconsistencies could 

be dependent on the amount of participants in each group that are receptive to cerebellar 

tDCS and suggest that at the very least it warrants substantially large sample size in 

cerebellar tDCS studies. 
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1 INTRODUCTION 

 

 

 

1.1 Overview 

 

The purpose of the present thesis is to investigate the effect of transcranial direct current 

stimulation (tDCS) on the cerebellum and cerebellar function in the healthy human 

brain. This investigation has been carried out by behavioural assessment, magnetic 

resonance spectroscopy (MRS), and functional magnetic resonance imaging (fMRI). 

This work has been performed to deliver novel information regarding not only the 

neurobiological basis of cerebellar tDCS, but also novel insights into cerebellar function 

and connectivity between the cerebellum and distant brain regions.    

I start this chapter with an overview of motor control and the role of the cerebellum in 

motor control. This is followed by a brief summary on where tDCS stands in research. 

Then, I describe the physiology of the cerebellum and cerebellar learning including the 

methods that have been utilised in this thesis. In chapter 2, I explain the MRS pulse 
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sequence that has been tailored for this piece of research and corresponding data 

analysis.  

In chapter 3, I explain how I have assessed individual's learning via a common 

visuomotor task. Then with MRS, the changes in gamma-aminobutyric acid (GABA) 

and other metabolites have been quantified within the right cerebellar cortex directly 

underneath the anodal electrode. I have also examined whether they have been able to 

predict individual differences in the effect cerebellar tDCS has on visuomotor 

adaptation.  

In chapter 4, I use the behavioural data from chapter 3 and performed resting state fMRI 

to examine how cerebellar tDCS alters connectivity between the cerebellum and other 

visuomotor-related networks. To understand the functional significance of these neural 

changes, I examined whether they could predict individual differences in the effect 

cerebellar tDCS had on visuomotor adaptation. 

In chapter 5, I examine the effect of cerebellar tDCS on visuomotor adaptation across a 

wide range of task parameters, which were systematically varied. In my final chapter, I 

discuss the results achieved in my thesis in relation to the current literature and their 

importance for future studies.  

 

 

1.2 Motor control 

 

Motor control is the study of how we make precise goal-oriented movement (Shadmehr 

et al., 2010, Sherrington, 1924). In order to move and interact with an ever-changing 

and unpredictable environment, it is essential for our motor system to be able to adapt in 

a fast and efficient manner. However, there are inherent delays in our motor and sensory 

systems that make such adaptability impossible if it were based on purely sensory-

feedback processes. Instead, it has been suggested that our brain forms an adaptive 

internal model of the body and environment which can be used to overcome these 
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inherent delays by making predictive changes in our movements (Kawato et al., 1987). 

These internal models are proposed to consist of both forward and inverse models: 

 

1.2.1 Forward model 

 

Forward models predict the sensory consequences of a motor command (Jordan and 

Rumelhart, 1992) and is proposed to be located in the cerebellum and used to overcome 

the delay associated with sensory feedback control (Miall and Wolpert, 1996, Wolpert 

et al., 1998). A forward model, as inputs, takes the current state of the body using 

proprioception (from sensory endings in joints, muscles and the skin) plus an efference 

copy of a motor command (signal from the brain to the muscle) and as an output, 

produces a prediction of the new state estimate of the body (Jordan & Rumelhart, 1992; 

Miall and Wolpert, 1996). After the body changes, a reafference (sensory consequences 

of self-movement) informs the brain of the sensory outcome of the motor commands. 

The inverse model transforms the error between the desired and actual output into the 

motor command in order to update and create a new motor command (Miall and 

Wolpert, 1996).  

Therefore, feedforward motor control transforms a set of motor commands into a 

prediction of their outcome in terms of the sensory reafference of the movement will 

generate. As such, it can rapidly predict whether a motor programme will achieve its 

goals before it is carried out, and adjust if it is unlikely to do so (Miall et al., 1993, 

Wolpert et al., 1998).  

 

1.2.2 Motor adaptation  

 

Feedforward movement control can be investigated through motor adaptation tasks. 

Motor adaptation is a specific form of motor learning (also called error-based learning) 
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which refers to error reduction occurring in response to a novel perturbation (Krakauer, 

2009, Shadmehr and Mussaivaldi, 1994). When we make a movement with a specific 

goal, i.e. reaching to a visual target, the brain compares the actual and predicted sensory 

outcome of the executed movement. A sensory prediction error can be induced by a 

systematic perturbation such as a visual displacement or force applied to the arm. This 

prediction error informs the brain of a movement error (Miall and Wolpert, 1996, 

Wolpert et al., 1998). To return to accurate performance, the brain gradually updates its 

prediction, and resulting motor commands, so that it accounts for the new dynamics of 

the environment (Yamamoto et al., 2006, Tseng et al., 2007).  

The two very well-studied paradigms of motor adaptation are visuomotor adaptation 

and force field adaptation. In visuomotor adaptation, the visual consequences of a motor 

command are distorted, while proprioceptive consequences remain intact. This can be 

achieved by wearing prism goggles or having participants move a cursor on the screen 

where cursor and hand movement are incongruent (Krakauer, 2009, Krakauer et al., 

1999). In force-field adaptation, neither proprioception nor vision consequences are 

perturbed, but the forces needed to overcome an external perturbation must be adapted 

(Shadmehr and Mussaivaldi, 1994).    

One of the common visuomotor adaptation tasks, which highlights the crucial role of 

sensory prediction errors, was introduced decades ago and used by, for example, 

Mazzoni and Krauker in 2006 (Mazzoni and Krakauer, 2006). In their task, participants 

controlled a cursor on the screen by moving their finger on the table without direct 

vision of their arm. Participants were instructed to make a fast „shooting‟ movement 

through the target such that online corrections were effectively prevented. Participants 

were reminded that spatial accuracy was the main goal of the task. The task started with 

a familiarisation period called baseline (Figure 1.1A), when cursor and hand are 

congruent, and then the experimenter applied a ϴ = 45° counter clockwise (CCW) 

rotation onto the cursor. Therefore the cursor and hand were not congruent anymore and 

the subject experienced a large error between what they predicted and what they 

observed (sensory feedback) (Figure 1.1B).  Then they had to generate a motor 

command that brought the cursor to the target again. Depending on the subjects‟ 
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learning, after about 80 trials, this error reduced until they could again hit the target 

accurately.   

 

 

 

 

Figure 1.1 A sample data from a visuomotor adaptation task. A target is shown in red 

and subject hits the target with a cursor on the screen. (A) Baseline: subject 

hit the target accurately. (B) Adapt: subject is introduced to a counter-clock 

wise visual rotation and made big errors initially. In order to hit the target 

accurately, they have to adapt or compensate for the visual rotation. 

 

 

 

 

1.2.3 Timescale of motor adaptation 

 

Explicit vs. implicit adaptation (fast vs. slow learning) 

The state of the body can be simultaneously sensed through both intrinsic coordination 

via proprioception and extrinsic coordination via vision (Rossetti et al., 1995). The 

initial idea that learning and memory have different time scales dates back to 1996, 

when Rubin and Wenzel modelled a double exponential function to their data (Rubin 



Chapter 1: Introduction 

  

 

Roya Jalali - July 2017   23 

 

and Wenzel, 1996) and it was also shown later for an adaptation motor task (Scheidt et 

al., 2000, Smith et al., 2006).  

It was shown by Smith et al. in 2006 that during force field adaptation task, at least two 

distinguished processes are involved: one process responds to the error strongly and fast 

but retains less and the other responds slowly but retains more (Smith et al., 2006). 

Later on, Taylor supported these findings with a visuomotor task and demonstrated that 

there are two distinct processes, which simultaneously occur during a sensorimotor 

learning task: explicit and implicit learning (Taylor et al., 2014). They tested the 

proportion of these two processes during both force field and visuomotor adaptation 

tasks. They explicitly asked participants about their aiming strategy during a visuomotor 

task and subtracted this from their actual performance in order to measure implicit 

learning. The timecourse of explicit and implicit learning was similar to the fast and 

slow processes suggested by Smith et al., (2006). Therefore, they suggested explicit and 

implicit learning approximately corresponds to the fast and slow process of learning and 

provided evidence that these two processes are temporally distinctive. Later on in 2015, 

McDougle and colleagues also confirmed this result by using a motor task and 

modelling. They argued that explicit learning was driven by target error (difference 

between the target and feedback location) and reflected the fast process of learning, 

while implicit learning of a forward model was driven by prediction error (difference 

between aiming and feedback location) and reflected the slow process of learning 

(McDougle et al., 2015). 

Hwang et al. in 2006 also studied the contribution of two distinct implicit and explicit 

components of learning in dynamic adaptation by manipulating the relative value of 

proprioceptive and visual information in a force-field task (Hwang et al., 2006). They 

found that both proprioception and vision form, in a different way, an internal model to 

update motor commands that can compensate for the perturbation; however, those who 

had only proprioceptive cues got more benefit than those with only visual cues. With 

visual cues, participants could verbally report the patterns of perturbation and thus 

showed awareness; proprioceptive cues, however, did not lead to awareness. Therefore, 

their results suggested that the implicit process is mainly developed via proprioception 



Investigating the neurobiological changes associated with cerebellar tDCS using MRI 

 

24   Roya Jalali- July 2017 

 

and that it strongly influences performance but not awareness; while the explicit process 

mainly influences the probability of awareness, yet has a smaller effect on performance.  

 

 

1.3 The cerebellum 

 

1.3.1 Role of the cerebellum in motor control 

 

The cerebellum is a key component of motor control through its interactions with the 

cerebral cortex and brainstem and can be damaged through different neurological 

diseases, stroke, or tumours. Consensus holds that the cerebellum is critical in 

behaviours requiring real time prediction (for review see (Manto et al., 2012)) and acts 

as a forward model during motor control (Miall and Wolpert, 1996).  

The cerebellum predicts the future state of the limbs by using a copy of the motor 

command (delay of 50 ms for neural processing). Such feedforward control enables the 

secondary (mid-movement) motor commands to be sent in a time frame not possible 

with feedback control (takes 200-300 ms), ensuring a smooth and accurate reaching 

movement (Shadmehr and Krakauer, 2008).   

Damage to the cerebellum can result in disruption of feedforward control. Cerebellar 

patients (e.g ataxia patients) have difficulty in coordination and overcome their 

problems by moving slowly so that their sensory feedback has enough time to catch up 

with their actual body state (Gazzaniga et al., 2014). It has been shown that patients 

who exhibit deficits during fast and complicated movements can overcome their 

deficiencies by breaking their movements into simple and slow steps (Holmes, 1939, 

Diedrichsen, 2014).  

Patients with cerebellar lesions also show a pronounced impairment in their ability to 

adapt to novel perturbations (Yamamoto et al., 2006, Criscimagna-Hemminger et al., 
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2010, Diedrichsen et al., 2005, Martin et al., 1996, Maschke et al., 2004, Rabe et al., 

2009, Smith and Shadmehr, 2005, Weiner et al., 1983, Donchin et al., 2012). For 

example, Martin et al. in 1996 compared the performance of two groups of healthy and 

cerebellar patients in throwing a ball at a visual target while wearing prism glasses. 

Healthy subjects initially threw the balls towards the prism-bent gaze; however, by 

repeating the task they learnt to overcome this displacement and adapted to hit the target 

again. In contrast, cerebellar patients were unable to adapt to this prismatic 

displacement (Martin et al., 1996).  

 

Patient studies has been shown that different cerebellar areas may be involved in 

different tasks, for example, patients with lesions in interior cerebellum showed 

deficiency in force-field and posterior lesion showed deficiency in visuomotor task. 

This suggest that  

 

The contribution of the cerebellum to abrupt and gradual perturbation paradigms is an 

area of continued interest within the motor adaptation literature. For example, 

Criscimagna-Hemminger et al., (2013) showed ataxia patients were unable to adapt to 

abrupt perturbations but preserved the capacity to adapt to gradual perturbations. 

Similarly, Schlerf et al., (2012) using transcranial magnetic stimulation (TMS) reported 

modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation 

(Schlerf et al., 2012). However, Gibo et al., in 2013 showed that cerebellar ataxia might 

use non-cerebellar strategic learning to successfully adapt (Gibo et al., 2013). In line 

with this argument, other recent work suggests that large abrupt visual rotations reduce 

cerebellar-dependent sensory-prediction error learning and enhance strategic learning, 

whilst smaller visual rotations bias learning towards sensory-prediction error learning 

(McDougle et al., 2015, Bond and Taylor, 2015, Taylor et al., 2014). These 

contradictory results suggest further investigation is required, and one alternative 

approach is using brain simulation to perturb cerebellar function, which is the subject of 

this thesis. 
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1.3.2 Physiology of the cerebellum 

 

The cerebellar cortex has regular cytoarchitecture in all regions, consisting of one 

output cell type, the inhibitory Purkinje cells and at least six types of interneurons- 

Molecular layer (basket cell and stellate cell), Golgi cells, Granule cells, Lugaro cells, 

and unipolar brush cells. The cerebellar cortex receives sensory feedback inputs from 

mossy fibres and climbing fibres. Mossy fibres are excitatory and transfer information 

from the neocortex, the brain stem, or from the spinal cord to Purkinje cells.  These 

axons synapse on granule cells or cerebellar nuclear cells (Azevedo et al., 2009). 

Climbing fibres are also excitatory, which transfer the sensory motor signal directly 

from the limb to the Purkinje cells through the olivo-cortico-nuclear pathway (Figure 

1.2).  

 

Figure 1.2  Microstructure layout of cerebellar cortex. The sign (+) shows excitatory 

and (-) inhibitory connections (figure adapted from Gazzaniga et al., 2014). 

 

Purkinje cells receive excitatory input via granule cells and project inhibition to the 

cerebral cells via the deep cerebellar nuclei. The dentate nucleus, the largest cerebellar 

nucleus, receives input from lateral hemisphere of the cerebellar cortex and sends the 
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output to contra-lateral premotor, prefrontal and parietal regions through the thalamus 

(Gazzaniga et al., 2014).  The excitatory cells are mainly driven by Glutamate (Glu) and 

inhibitory cells are driven by gamma-amino butyric acid (GABA).  

During motor learning, it is proposed that the mossy fibre-parallel fibre system transmit 

the current state of the body plus an efference copy of the motor command to Purkinje 

cells and cause simple spikes (SS). The error signals, which induce learning, are carried 

by climbing fibres to Purkinje cells (Marr, 1969, Albus, 1971). It is proposed that 

climbing fibres response during unexpected sensory events, with this causing a complex 

spike (CS) in the Purkinje cells (De Zeeuw et al., 1998) due to strong input. This 

excitatory input from climbing fibres reduces the parallel fibre input to the Purkinje 

cells and cause long term depression (LTD) - reduction in the efficacy of neuronal 

synapses and it is proposed to be involved in motor learning.  

 

1.4 Transcranial direct current stimulation (tDCS) 

 

Patient studies can provide us with a good insight regarding cerebellar function 

(Yamamoto et al., 2006, Criscimagna-Hemminger et al., 2010, Diedrichsen et al., 2005, 

Martin et al., 1996, Maschke et al., 2004, Rabe et al., 2009, Smith and Shadmehr, 2005, 

Weiner et al., 1983, Donchin et al., 2012); however, there is a scarcity of patients with 

isolated cerebellar lesions. In addition, testing patients leaves the possibility that some 

changes, or a lack of them, are due to long-term compensation by other brain areas 

(Diedrichsen, 2014). An alternative approach to investigate cerebellar function is to use 

non-invasive brain stimulation such as transcranial direct current stimulation (tDCS) in 

healthy participants.  



Investigating the neurobiological changes associated with cerebellar tDCS using MRI 

 

28   Roya Jalali- July 2017 

 

Anodal cerebellar tDCS has been reported to induce different levels of excitability that 

has been shown to improve cognitive functions such as alertness, mood, reaction to 

acoustic stimulus and motor activity, while cathode tDCS has the opposite, or no effect 

(Lippold and Redfearn, 1964, Hall et al., 1970). As for the cerebellum, transcranial 

magnetic stimulation (TMS) was used to demonstrate the effect of tDCS on cerebellar 

function. Ugawa in 1995 applied a single pulse TMS over the cerebellum, and it 

inhibited the motor evoked response from the next TMS delivered on the contralateral 

motor cortex (motor evoked response is peripheral muscle response to the electrical 

stimulation of the motor cortex). This inhibition is called cerebellar brain inhibition 

(CBI) and showed the cerebellum exerted an inhibitory tone over the M1.  

Later, in 2009, Galea and colleagues applied TMS on M1 before and after 25 minutes of 

cerebellar tDCS. They showed that cathodal tDCS decreased CBI (increasing MEP), 

while anodal had the opposite effect, relative to sham tDCS. Their findings also 

confirmed the inhibitory output of the cerebellum over M1. Two years later, they 

applied tDCS over the cerebellum during a visuomotor adaptation task and found that 

anodal cerebellar tDCS led to faster adaptation, relative to either primary motor cortex 

(M1) anodal tDCS or sham tDCS (Galea et al., 2011). This cerebellar tDCS effect on 

adaptation has been replicated in visuomotor adaptation (Block and Celnik, 2013, 

Cantarero et al., 2015, Hardwick and Celnik, 2014), force-field adaptation (Herzfeld et 

al., 2014), locomotor adaptation (Jayaram et al., 2012) and saccade adaptation 

(Panouilleres et al., 2015). As a result, it has been suggested that cerebellar tDCS is not 

only a useful tool to understand cerebellar function in humans but also as a possible 

clinical technique to restore cerebellar function in patients suffering cerebellar-based 

disorders (Grimaldi et al., 2014). However, in order for cerebellar tDCS to be applied in 

a clinical context, we must first understand the neurobiological changes associated with 

cerebellar tDCS. To address this question in more detail, magnetic resonance techniques 

can be used to measure cerebellar metabolites and its functional connectivity between 

the cerebellum and other brain areas, which is the focus of this thesis. 

 

 



Chapter 1: Introduction 

  

 

Roya Jalali - July 2017   29 

 

1.5 Neurotransmitters and Neuroplasticity; Magnetic resonance 

spectroscopy (MRS) 

 

Magnetic resonance spectroscopy (MRS) has been used for several decades in many 

basic physics, chemistry, and bioscience research areas and recently has drawn the 

attention of neuroscientist. MRS is similar to MRI and works based on nuclear magnetic 

resonance, but provides us with the molecular components of an object instead of an 

image. Using in-vivo MRS in the brain, dozens of metabolites can be measured 

including N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), lactate, myoinositol 

(MI), glutamate (Glu) / glutamine (Gln), lipids and gamma-amino butyric acid (GABA).  

Although the focus of this thesis is mostly on GABA, due to the cerebellar structure, I 

also provide a brief overview of other metabolites measured by MRS.  

NAA is one of the most concentrated metabolites in human brain. Although the role of 

NAA is not understood completely, based on MRS studies on different diseases, NAA 

is known to be a the most reliable marker for recognising the neuronal disease as its 

concentration changes in neurological disorders (Savic et al., 2000, Watanabe et al., 

2010, Edden et al., 2007). NAA can be used as a reference in MRS for measuring other 

low concentrated metabolites in healthy brain (Stagg et al., 2011). However, there is 

some evidence that NAA concentration modulates in response to tDCS (Hone-Blanchet 

et al., 2016), therefore using NAA as a reference in tDCS studies may not be the best 

option.  

Creatine (Cr) plays a significant role in storing, transporting, and regulating the cellular 

energy. Cr is mostly consumed through our diet and assumed to be constant within 

different brain areas. In MRS, Cr has been another alternative to be utilised as a 

reference for measuring lower concentrated metabolites. However, some studies have 

shown that Cr can be modulated by tDCS (Rae et al., 2013).  

Choline (Cho) has a varied and complex role in the human brain. For example, it can be 

used as a marker for cellular density and membrane turnover. The concentration of Cho 

is associated with the degree of membrane proliferation and is useful to detect 
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abnormalities such as cancer (Miller et al., 1996). Cho has a high concentration in the 

human brain and changes significantly due to some neurodegenerative disease and 

psychiatric conditions such as Alzheimer‟s disease (Nitsch et al., 1992) or multiple 

sclerosis (Bitsch et al., 1999), and also in response to electrical stimulation (Yoon et al., 

2016). 

Myo-Inositol (Ins) was initially considered as a marker for glial cell proliferation due to 

its higher concentration in glial cells than neurons (Brand et al., 1993); this, however, is 

recently in doubt. Ins concentration is thought to be changed in several 

neurodegenerative disorders and through electrical brain stimulation. (Xu et al., 2005, 

Bitsch et al., 1999, Castillo et al., 2000, Duarte et al., 2012) 

Glutamate (Glu) or glutamic acid, with the highest concentration in neurons is the main 

excitatory neurotransmitter in CNS and also is an important component in the 

biosynthesis of some other molecules such as NAA, glutathione and proteins (Hertz, 

2004). Glutamatergic pathways are not only involved in different processes and 

disorders, but also in learning and memory through long term potentiation (LTP) 

(Shepherd, 1994). Glu in the human brain can be modulated by tDCS depending on the 

polarity of tDCS (Stagg et al., 2009). 

GABA is the primary inhibitory neurotransmitter in the human brain (Roberts, 1956) 

and GABAergic interneurons play a major role in long-term depression and plasticity in 

the cerebellum (Hirano, 2013), which is the base of motor learning. GABA measure by 

MRS is proposed to be from extracellular pool (Stagg and Nitsche, 2011). Glutamate 

and GABA have a strong bio-chemically link due to their metabolism and inhibition-

excitation balance in a healthy brain (Sumner et al., 2010b). GABA has recently been 

quantified to assess the inter-individual differences in both cognitive and motor control 

functions. Levels of localised GABA have been related to the quality of performance in 

a range of motor tasks (Stagg et al., 2011, Kim et al., 2014, Sumner et al., 2010a).  

The link between metabolites and performance has been shown in a wide range of tasks. 

For example, it has been shown that a higher concentration of GABA in the frontal eye 

fields was associated with a greater ability to suppress the influence of a visual 
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distracter (Sumner et al., 2010a). Another study in the sensorimotor area showed a 

higher level of GABA was correlated with better performance in a tactile frequency 

discrimination task (Puts et al., 2011a). In contrast, in the visual cortex, it has been 

shown that the baseline level of GABA was inversely correlated with a change in 

visual-stimulus task-related blood-oxygen-level-dependant (BOLD) 

(Muthukumaraswamy et al., 2009). In 2011, Stagg and colleagues measured GABA in 

the primary motor cortex (M1) of healthy individuals and demonstrated that the amount 

of M1 tDCS-induced change in GABA was positively correlated with the change in 

reaction times due to learning in a sequence-learning task. These results were only 

specific to M1 and not the control region (visual cortex) (Stagg et al., 2011). Similarly, 

Kim et al. in 2014 showed anodal M1 tDCS, significantly decreased the level of GABA 

and the degree of tDCS-induced reduction in GABA could predict individual 

differences in learning and memory of a force-field motor task (Kim et al 2014). 

However, all these studies were carried out on different brain areas and not on the 

cerebellum. Therefore, in chapter 3, I expanded this measurement for the cerebellum 

and cerebellar tDCS. 

 

 

1.6 Functional anatomy and connectivity: Functional magnetic resonance 

imaging (fMRI) 

 

Anatomically, the cerebellar cortex can be divided into several regions according to its 

microscopic anatomy and lobule division. In the anterior- posterior direction, the 

cerebellum is divided into lobules I to X (Jansen, 1972) and each lobule is linked to 

different regions in the cerebral cortex through both inputs and outputs, making several 

closed neural circuits. Every individual neural pathway appears to be involved in 

distinct behavioural functions. For example, damage to the neuronal circuit linking the 

cerebellum with motor areas causes deficits in movement, while damage to the neuronal 
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circuit between the cerebellum and prefrontal cortex causes higher order deficiencies 

(cognitive function) (Middleton and Strick, 2000).  

Different imaging methods have been utilised to distilenct these neural pathways. One 

of the most common techniques is functional MRI (fMRI). fMRI is a non-invasive 

method of imaging that is based on a haemodynamic response to neural activity through 

oxygenated blood flow. Oxygen is the fuel for active neurons in the brain, and when 

different areas in the brain activate together, the BOLD signal synchronously fluctuates 

and shows a corresponding functional connectivity. These areas are directly or 

indirectly connected through axons. However, these connections are not a simple one-

to-one relationship. The activation of one area can arise from different conditions as 

shown in figure 1.3: a) direct influence, b) indirect influence via another region, c) 

shared influence of a common input region. Therefore, the results from functional 

connectivity have to be interpreted cautiously, because the activity of a region 2 might 

not be the consequence of direct efferent connection of region 1, yet reflect the effect of 

3 via 2, or both 1 and 2 might reflect of activity 3 simultaneously (Poldrack et al., 2011) 

. 

 

 

 

Figure 1.3  Three different ways in which correlated activity between two brain areas 1 

and 2. (a) direct influence, (b) indirect influence via another region, (c) 

shared influence of a common input region. modified from (Poldrack et al., 

2011). 

 

http://topics.sciencedirect.com/topics/page/Prefrontal_cortex
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The role of cerebellar circuitry in motor control, motor learning, and automation have 

been studied through different imaging techniques such as fMRI (for review see (Manto 

et al., 2012)). It is proposed that learning and retention of visual rotation (kinematic) 

and force-field (dynamic) perturbation both occur in the cerebellum, but they are 

processed separately and rely on different cerebellar structures (Rabe et al., 2009). The 

anterior lobe has shown activation in most kinds of movement; however, the amount of 

cerebellar activation and involvement of dentate nuclei depends on the difficulty of the 

task. For example, the dentate nucleus activates more when a tactile discrimination task 

becomes more demanding (Habas, 2010). By increasing the activation of the dentate 

nucleus, cerebellar activity reduces and it is proposed that plasticity transfers from the 

cerebellar cortex to the deep nuclei (Jenkins et al., 1994, Floyer-Lea and Matthews, 

2005). In the over-learning phase of motor learning, activation of the dentate nucleus 

diminished, and the cerebellar motor activation is partly replaced by activity within 

basal ganglia. Although lobule VII was also engaged during the late phase of the motor 

performance, it is thought that this activation might be associated with executive 

requirements rather than motor control per se (Manto et al., 2012).  

The interaction of the cerebellum with both cortical and sub-cortical brain areas has 

recently been investigated through resting state-fMRI (Krienen and Buckner, 2009, 

O'Reilly et al., 2010, Buckner et al., 2011, Bernard et al., 2012).  The cerebellar-cerebral 

motor network is functionally connected in order to optimise performance in many 

motor and cognitive functions such as kinematic, dynamic, and temporal planning and 

error-driven online correction (Manto et al., 2012). Based on resting state functional 

connectivity, two parts of the cerebellum are functionally connected with the 

sensorimotor parts of the cortex (Figure 1.4; shown in blue). Other regions of the 

cerebellum are more connected to non-motor cerebral areas, such as frontal lobes (in 

orange), which are associated with more cognitive functions of the brain (Buckner et al., 

2011). It has also been shown that sensory prediction errors happen in the cerebellum 

regardless of this error resulting from unexpected presence or unexpected absence of 

sensory information (Schlerf et al., 2012, Diedrichsen et al., 2005, Rabe et al., 2009). 

Lehericy in 2005 reported that the activation of lobules V and VI is positively correlated 
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with error in motor sequence learning, suggesting that the anterior cerebellum 

intervenes in error-driven motor adjustments and learning (Lehericy et al., 2005).  

 

 

Figure 1.4 The connectivity between the cerebrum (left) and the cerebellum. Colours 

show the areas that are functionally connected through correlated patterns of 

oxygen utilization. Almost two parts of the cerebellum (in blue) are 

functionally connected with the sensorimotor parts of the cortex. Other 

regions of the cerebellum are more connected to non-motor cerebral areas, 

such as frontal lobes (in orange), which are associated with more cognitive 

functions of the brain (adapted from (Buckner et al., 2011)). 

The combination of resting state fMRI with transcranial magnetic stimulation (TMS) 

has also provided an insight into the cerebellum. For example, targeting the lateral 

cerebellum affects the default mode network, while targeting the midline cerebellum 

(vermis) affects the dorsal attention network (parietal and dorsal), while neither of them 

affects the motor network (Halko et al., 2014). This highlights the importance of 

stimulation resolution in modulating different networks through one node. Although 

TMS and tDCS induce current in different ways, both can give an insight into cerebellar 

connectivities and function. Until now, the effect of tDCS on the cerebellum is largely 

unknown, which is the target of this thesis. 
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1.7 Conclusion 

 

As discussed in this literature review, the cerebellum plays a major role in motor 

learning and its function can be enhanced by anodal cerebellar tDCS. Although 

promising as a therapeutic intervention, the neural mechanisms underneath cerebellar 

tDCS have to be investigated. Therefore, in this work I addressed this question by 

measuring the neural changes associated with cerebellar tDCS using MRS and resting 

state fMRI. My goal was to understand how cerebellar tDCS affected the metabolites 

within the cerebellum and functional connectivity between the cerebellum and distant 

brain areas. In addition, I wanted to understand if individual differences in how 

cerebellar tDCS influenced visuomotor adaptation could be explained by the effect that 

cerebellar tDCS had on neurobiology. Finally, I examined the consistency of the 

cerebellar tDCS effect on visuomotor adaptation across a wide range of task parameters. 
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2 MAGNETIC RESONANCE 

SPECTROSCOPY (MRS) 

METHOD 

2.1 Introduction  

 

Magnetic resonance spectroscopy (MRS) has been used over several decades in many 

basic physics, chemistry, and bioscience research areas and recently has drawn the 

attention of neuroscientists. MRS is similar to MRI and works based on nuclear 

magnetic resonance, but provides us with the molecular components of an object instead 

of an image. Using in-vivo MRS in brain, dozens of metabolites can be measured 

including N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), lactate, myoinositol 

(MI), glutamate (Glu) / glutamine (Gln), lipids and gamma-amino butyric acid (GABA). 

Among these metabolites, detecting GABA is quite challenging due to its small 

concentration and its overlapped spectrum from molecules with the same resonance 

frequency and/or higher concentration metabolites such as Cr. In order to measure 

GABA in this study, despite utilising a well-developed technique (MEGA-PRESS), 

several scanner parameters had to be optimised for this study. Therefore, I start this 
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section with a brief summary of the theory of NMR and MRS (a more complete 

explanation about NMR, MRI, MRS theory can be found in text book (Harris, 1985, 

Haacke et al., 1999)), and then continue by discussing the brain phantom study that was 

carried out to detect and optimise scanner parameters prior to the in vivo MRS study.   

 

2.2 Physics of Nuclear Magnetic Resonance (NMR) 

 

NMR works based on the absorption and emission of radio frequency electromagnetic 

energy. Hydrogen atoms are the most abundant atoms in the human body. Therefore, 
1
H 

MRI is the most common technique utilised for different tissues. Quantum mechanics 

can be used to correctly describe the NMR phenomenon because each hydrogen atom 

nucleus has a quantum mechanical property called “spin” that is either in a “spin up” or 

a “spin down” state, associated with the nuclear spin is a quantizes magnetic dipole 

moment µ, which is a fundamental vector quantity. On the other hand, for describing a 

macroscopic sample of nuclei a classical mechanics NMR model is often useful, 

particularly to develop experimental ideas; In the absence of an external magnetic field, 

B0, the magnetic dipole moments associated with the nuclei in the macroscopic sample 

are randomly orientated and the magnetic dipole moments cancel each other out. When 

an external magnetic field B0 is applied, there is a precession of µ about the direction of 

B0, with two possible orientations that have discreet energy levels, called “Zeeman 

splitting” (Haacke et al., 1999). The lower energy level is associated with a component 

of µ parallel to B0 and the higher energy level occurs when the component of µ is anti-

parallel to B0. The difference in energy,   , between the two spin states is given by: 

       

Where   is Planck‟s constant. The resonance frequency    is expressed by the Larmor 

equation, given by: 

   (
 

  ⁄ )   
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Where,   is the gyromagnetic ratio and the value of 
 

  ⁄  is equal to 42.6 MHz/T for 

hydrogen nuclei, which means at 3T the Larmor frequency is approximately 128 MHz 

which is within the radio-frequency range. 

According to the Bloch equation (McRobbie et al., 2003), applying an oscillating 

magnetic field at the Larmor frequency pulse perpendicular to B0 for a specific amount 

of time, the net magnetization can be flipped into the transverse (x-y) plane. After 

ceasing RF pulse, the net magnetization will tend to relax back to the thermal 

equilibrium state. 

Spin-lattice relaxation (also called the longitudinal relaxation) is characterised by the 

spin-lattice relaxation time constant, T1, and it occurs because the nuclear spins 

exchange energy with the lattice. The longitudinal component of the net magnetization 

as a function of time (t) can be described by:  

  ( )    (   
 (

 

  
)
) 

 

Where is the net magnetic moment at thermal equilibrium, which is the summation 

of the magnetic moment of each nucleus,    given by: 

   ∑   
 

 

Depending on the rate of dissipation of the thermal energy to lattice, T1 can vary in 

different tissue.  

Due to inhomogeneity of magnetic field, different nuclei have different Larmor 

frequencies so they lose phase coherency with increasing time and the transverse 

component of the net magnetization decays to zero. This is characterised by the time 

constant, T2*.  T2* shows dephasing from both B0 inhomogeneity (T2') and spin-spin 

relaxation T2 and can be described by: 
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The effect of B0 inhomogeneity can be improved by shimming. T2, similar to T1 varies 

depending on the material and the structure of the tissue. The time between the 90 

degree RF excitation and the “spin-echo” signal from the sample after application of a 

180 degree refocusing RF pulse is known as echo-time (TE) and the time between two 

excitation RF pulses is called repetition Time (TR). 

According to Faraday‟s law of electromagnetic induction, change in the magnetic flux, 

can induce a current in the RF coils surrounding the participant. The NMR signal 

received by the RF coil includes all the information required to produce the image or 

spectrum. The NMR signal decays with time by the phenomenon called “Free Induction 

Decay (FID)”. FID happens due to different factors; inhomogeneity in magnetic fields, 

spin-lattice relaxation, and spin-spin relaxation. These are some of the main parameters 

that need to be optimised in developing an RF pulse sequence and are fundamental to 

NMR techniques such as MR spectroscopy and MR imaging. The next section explains 

the basics and application of MRS and its importance to this project. 

 

 

2.3 Basics of Magnetic Resonance Spectroscopy (MRS) 

 

Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique using the NMR 

phenomenon to detect and quantify the biochemical compounds in different living 

tissues and in our case, brain metabolites. Different nuclei can be studied using MRS 

such as 13C, 15N, 1H, and 31P, but from among them, 1H is the most common nucleus 

that is used in MRS because first, 1H is abundant in the human brain and in most 

metabolite structures. Second, it has a higher gyromagnetic ratio compared to other 

stable isotopes and therefore making MR experiments is more sensitive to it.  
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2.3.1 Chemical shifts  

 

Chemical shift and J-coupling are the basis for MRS and are dependant on the 

molecules' chemical composition (Proctor and Yu, 1950). When atoms are exposed to 

an external  magnetic field (B0), the atomic electrons produce a small magnetic field in 

opposition of B0. Therefore, nuclear spins depending on their bonds to other spins, 

which is called J-coupling, feel different effective magnetic field,     , and causes 

NMR signal frequncy shifts.      is expressed by: 

       (   ) 

 

Where   is called the shielding constant and is dependant on the position of each 

nucleus in the molecule. For example nuclei in high electron density region are more 

shielded from B0 than those which are in the lower electron density region (Figure 2.1).  

The Larmor frequency can then be expressed as:  

 

   (
 

  ⁄ )  (   ) 

 

The chemical shift, δ, is defined by:  

  
       

    
 

By assigning    relative to a reference frequency       , chemical shift is independent of 

   and because it is very small for protons; therefore it is conventionally expressed in 

parts per million. Protons with n equivalent nearest neighbours will split into n+1 peaks. 

Hydrogen nuclei that are closer to the electronegative atoms such as oxygen and 

nitrogen, are less shielded by the surrounding electron density, so they experience a 

greater magnetic field, hence have a higher resonance frequency (Graaf, 2007).   
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Figure 2.1 Positions and the number of peaks in each compound is unique depending on 

J-coupling and chemical shifts phenomenon. Electronegative molecules block 

electron density or magnetic induction effect [figure is adapted from PSIBS 

courses by Nigel Davies]. 

 

Each metabolite has a unique spectrum based on its molecular structure and therefore 

can be identified. The concentration of each metabolites can be estimated using the 

MRS spectrum acquisition.  

 

2.3.2 Single-voxel Spectroscopy 

 

The aim of MRS is to quantify metabolite concentrations within the voxel of interest 

(VOI). The NMR signal is acquired in the time domain and the free induction decay 

(FID)- the NMR signal generated by non-equilibrium nuclear spin magnetization 

precessing about the magnetic field- is dependant on the chemicals within the VOI. The 

time domain FID is Fourier transformed to produce a frequency domain spectrum, in 

which each peak signal occurs because of the nuclear spin resonance of a particular  

atom in the molecules; peak amplitude is proportional to the number of atoms in the 

sample with the same resonance frequency. Molecules containing nucleus of atoms with 

multiple resonance frequencies have more than one peak. Atomic nuclei in different 

metabolites with the same resonance frequencies can have peaks that overlap. 
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Therefore there can be difficulty in distinguishing between spectral peaks associated 

with different metabolites (Lei et al., 2003, Stagg et al., 2013). This problem can be 

overcome by increasing magnetic field strength. A stronger magnetic field such as 7T 

increases sensitivity to detect and distinguish between the spectral signals from different 

metabolites; but this is not the optimum solution due to limited access to these scanners 

in addition to several other higher field challenges. Improvement of pulse sequence is 

another efficient solution which will be explained later in this chapter. 

Water concentration (WS) is approximately ~ 50 Molar (M) and water occupies 

approximately ~ 83% of grey matter (GM) and ~70% of white matter (WM). Although 

water signals needs to be suppressed in order that smaller concentration metabolites can 

be detected, water concentration can be used as a reference for quantifying the 

concentration of other metabolites in healthy brain. Water has a different resonance 

frequency compared to other metabolites; therefore, by optimising the NMR pulse 

sequence, it can be suppressed. Differing pulse sequences have been developed to 

suppress water. VAriable pulse power and Optimized Relaxation delays (VAPOR) -- 

utilising several RF pulses and different timing interpulses -- is one of the most complex 

but effective techniques (Tkac et al., 1999b).  

One common pulse sequence used for MRS is Point-RESolved Spectroscopy (PRESS), 

which enables us to detect metabolites such as N-acetyl aspartate (NAA), Creatine (Cr), 

Choline (Cho), Myo Inositol (Ins) and GLX, which is a combination of glutamate (Glu) 

and Glutamine (Gln).  PRESS sequence is consisting of three slice selective pulses in 

orthogonal planes (90° pulse followed by two 180° pulses); signals originate from the 

intersection of the three planes. 

Metabolites with overlapped frequencies and lower concentrations such as Gamma 

aminobutyric acid (GABA) cannot be detected by the conventional PRESS sequence at 

3T and spectral editing needs to be performed. A selective editing pulse known as 

MErcher-GArwood (MEGA) PRESS enables us to detect GABA with 3T magnetic 

fields.   
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GABA with the structure (C4H9NO2) can be measured by H-MRS due to six nuclear 

NMR protons in three methylene groups (-CH2).; two triplet resonances for CH2 at 3.01 

part per million (ppm) and 2.28 ppm and a quintet peak from CH3 appears at 1.89 ppm. 

GABA concentration in the human cortex is approximately 1mM (~ 40,000 times less 

than water molecule) (Puts and Edden, 2012). After suppressing the water signal, 

GABA still cannot be detected because the GABA spectrum is obstructed with higher 

concentration metabolites such as NAA at 2 ppm, creatine at 3 ppm and glutamate and 

glutamine at 2.3 ppm (Figure 2.2). Therefore, GABA measurement is only possible by 

utilising either a stronger magnetic field (improve signal to noise and seperate the peaks 

in the spectrum) (Puts and Edden, 2012) or editing the pulse technique. 

 

 

Figure 2.2 GABA can be discerned in three different groups correspond to the three 

methylene groups; three peaks are separated due to shielding (shown in 

different colours) and all of the peaks are obstructed with higher 

concentration metabolites such as NAA at 2 ppm, Creatine at 3 ppm and 

Glutamate and Glutamine at 2.3 ppm [figure is adapted from PSIBS courses 

by Nigel Davies]. 
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MEGA-PRESS incorporates frequency selective refocusing pulses into a PRESS pulse 

sequence. Double banded Gaussian radio frequency pulses can be simultaneously 

applied for both water suppression and spectral editing. The water suppression band set 

to 4.68 ppm and editing pulse alternating between 1.9 ppm and 8.4 (or 1.5) ppm. First 

frequency applies on 1.9 ppm affects J-coupled hydrogen atoms with GABA at 3 ppm 

(edit On), but as the editing pulse is not sharp enough, it affects lysine - macro molecule 

at 1.7 ppm too. The second pulse can be applied to 8.4 ppm (edit Off), which is far from 

all metabolite resonate frequencies, Thus, by subtracting edit On and edit Off, we end 

up with GABA+MM (Figure 2.3).  

 

 

Figure 2.3 Detection of GABA with MEGA-PRESS. Editing pulse alternating between 

1.9 ppm and 8.4 ppm. First frequency applies on 1.9 ppm affects J-coupled 

hydrogen atoms with GABA at 3 ppm, but as the editing pulse is not sharp 

enough, it affects lysine - macro molecule (MM) at 1.7 ppm too. The second 

pulse can be applied to 8.4 ppm, which is far from all metabolite resonate 

frequencies, Thus, by subtracting edit On and edit Off, we end up with 

GABA+MM. 
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However, if we apply the second RF pulse on 1.5 ppm (instead of 8.4 ppm) we affect 

Lysine at 1.7 ppm once more, and GABA without MM can be determined following 

subtraction (Henry et al., 2001). 

Theoretically, hydrogen atoms of water molecules precess in 3T at a frequency of ~127 

MHz; therefore we expect to detect a single spectral line at this resonance frequency. 

However,  in practice, due to magnetic field imperfections, participant motion and other 

factors, the spectral line will broaden, which cause a less distinct spectrum peak. Line 

broadening occurs for all other metabolites, which makes quantification more difficult 

and lessens accuracy. Therefore, full width at half maximum (FWHM) is one of the 

most fundemental assessments of the quality of spectrum acquisition. (FWHM < 10 mm 

is ususally acceptable) 

The area under each peak is proportional to the concentration of a particular chemical 

compound. The peak area measurements can be calibrated using  signals with known 

metabolite concentrations. With additional acquisition of non-suppressed water signals, 

for example, water can be used as a reference for calibrating the peak intensity 

measurements from the spectrum.  

Metabolite concentrations should be in the range of milimolar to exceed signal noise 

level in order to be reliably quantified; The signal to noise ratio (SNR). SNR can be 

improved by repetition of the experiment (with the penalty of increasing the total 

scanning time) and determining the average. Signal grows linearly, but noise grows by 

the square root of the number of samlples. The number of repetitions (dynamic scans) is 

usually 128 or 256. Therefore, it is important to carefully optimise the MRS method, so 

that necessary metabolites can be measured without requiring very long acquisition 

sessions.  
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2.4 Materials and Methods 

 

2.4.1 Modifying RF pulse for cerebellar stimulation study: 

 

In order to measure GABA for this study, original MEGA-PRESS sequences that had 

been set on the scanner from a previous unrelated study needed to be modified (table 2.3 

for the details). First, the original pulse was optimised to collect signal from a relative 

large voxel 3x3x3 cm
3
. The voxel had to be fitted in the region of interest-posterior 

cerebellum- far enough from the cerebrospinal fluid (CSF) to avoid artefact or noisy 

spectra. However, the original voxel was too large for our region of interest. Second, for 

the tDCS study I ideally wanted to measure GABA without any macromolecule (MM) 

contamination because the effect of stimulation on different molecules is not completely 

understood; so removing Lysine as the overlapped MM with GABA could provide 

additional power to measure any small change in GABA.  

The advantages and disadvantages of each pulse sequence are described in table 2-1. 

 

Table 2-1 Pros and cons of each pulse sequence 

Pulse 
sequence Advantage Disadvantage 

 

Original 

 

Larger voxel and therefore higher 
SNR 

GABA contaminated by 
macromolecule  

Low resolution (where the GABA 
is coming from) 

Larger voxel and therefore worse 
shimming 

 

Modified 

GABA without MM contamination 

Voxel could be fit in our ROI  

Better shimming 

lower SNR 
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In order to modify the pulse sequence, several phantom studies were performed prior to 

in-vivo acquisition; by making the voxel smaller, less GABA could be collected and 

therefore signal to noise ratio (SNR) dropped significantly. MM suppression made this 

detection even more difficult as peaks were even smaller and the shape of GABA peak 

was not stable. To compensate for these changes, the effective number of signal 

averages (NSA) was increased (Effective NSA = dynamic scans x NSA).  

 

 

2.4.2 Phantom Study 

 

I performed several phantom studies in order to modify the RF pulse sequence for my 

study. All phantoms were made in 250 ml round bottom flasks.  

 Two phantoms included only GABA with 2 mM and 20 mM to detect the GABA 

signals. 

 Several brain phantoms included an equal amount of human brain metabolites 

(NAA, Cr, Cho, Glu, Gln, Lactate) with different amounts of GABA in each. GABA 

added to brain phantoms with the following concentrations: 2 mM, 4 mM, 20 mM, 

40 mM. Knowing all concentrations, we could quantify measured GABA in the 

MRS spectra.  

All metabolites were dissolved in distilled water and PH were adjusted according to the 

brain (PH = 7 ± 0.1) using phosphate buffer mono and dibasic; sodium azide was used 

as an anti –fungal agent. The concentrations of GABA in three phantoms are higher 

than what would be found in the brain in-vivo to produce larger signals so that scanning 

time could be reduced for the sequence testing and optimisation (table 2.2).  
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Table 2-2 Phantom – with brain metabolites concentrations    

Abbreviation Chemical name  Concentration (mM) 

GABA Gamma-aminobutyric acid 2, 4, 20, 40 

NAA N-acetyl-L-aspartic acid 13 

Cr Creatine  10 

Cho Choline Chloride 3 

Ins Myo-Inositol  8 

Glu L-glutamic acid 13 

Glutamin L-Glutamine 6 

Lac C3H5NaO3 5 
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The study of brain phantoms provided us with the confidence to: 

 

1. Detect GABA and validate it  

2. Optimise MEGA-PRESS sequence parameters  

3. Check reproducibility of the GABA signal detection, 

 

Phantoms were kept out of the refrigerator in the scanner room for 24 hours prior to 

scanning, in order to avoid spectrum shifting due to temperature. Scanning commenced 

15 min after final positioning of the phantoms to minimise fluid movements and 

inhomogeneity.  

This study began with MEGA-PRESS and then, by adding Henry method (Henry et al., 

2001), I could detect pure GABA in 3 ppm. The editing pulse optimised for our scanner 

was in a form of a Gaussian function and applied for 16.5 ms. The small SNR was 

roughly compensated for by adding additional dynamic scans. 

The details of the final modified/developed pulse sequence are provided in table 2.3.  
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Table 2-3 The details of both sequences are shown in table below for comparison 

 Original (St) Developed (Dp) 

Channel coil 8 32 

Voxel size (mm3) 30x30x30 20x20x20 

Second pulse sequence 8.5 1.5 

      NSA/value 8 1 

      Num of steps - 8 

Editing pulse MEGA MEGA 

     Pulse duration (s) 14 16.5 

    Water frequency (ppm) 4.68 4.68 

    pulse freq 1 (ppm) 7.46 1.5 

    pulse freq 2 (ppm) 1.9 1.9 

TR/TE  (Savic et al.) 1800/68 2000/68 

NSA 8 4 

Dynamic study individual individual 

    Dynamic scans 32  128  

   Start-up acquisition 0 1 

   dummy scans 0 4 

Shifted metabolites displayed non H2O 

PNS/level 60% 52% 

Scan duration 15 min 25 min 
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Some phantom studies were performed prior to applying in-vivo:  

Two phantoms containing GABA were scanned in order to simply detect peaks from 

GABA without contributing any other metabolites. The next step was to detect and 

measure GABA from a wide range of metabolites in the human brain (table 2.2). To do 

so, several brain phantoms containing all main human brain metabolites and different 

percentages of GABA concentration (2, 4, 20, 40 mM) were scanned and measured.  

 

2.4.3 In vivo GABA measurements 

 

After optimising the MEGA-PRESS sequence, five participants were scanned pre- 

during and post- tDCS with both protocols for comparison. Data was collected from the 

posterior cerebellum underneath the electrode (Figure 2.4).  

 

 

 

Figure 2.4 One subject in two measurements (a) 3x3x3 voxel size from original pulse 

sequence and (b) 2x2x2 voxel size from modified pulse sequence. Voxel was 

located in the posterior part of the right cerebellum underneath the anode. A 

cod liver oil tablet was placed on the top left edge of the electrode (yellow 

arrow). Data was collected pre- during and post- cerebellar tDCS. 
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2.4.4 Data Analysis   

 

Data was analysed by TARQUIN (Total Automatic Robust QUantitation In NMR) 

(Wilson et al., 2011). Raw data were Fourier-transformed to a spectrum 2048 data 

points (1024 for phantom), the signal was smoothed by a 3 Hz Lorentzian filter, phased 

and referenced to water signal at 4.7 ppm. A Lorentzian-Gaussian (Voigt) line shape 

model (Reynolds et al., 2006) fitted to the data.  

A basis set predefined in TARQUIN was initially constructed based on known peak 

positions. This basis set was fit to the average spectrum allowing peak amplitudes, 

widths, and frequencies to be optimized (Wilson et al., 2011). To detect GABA, all edit-

On and edit-Off spectra were averaged separately and then subtracted from each other. 

TARQUIN quantifies the metabolite concentration ratios by calculating the relative 

amplitudes of each spectrum based on prior knowledge of the approximate in-vivo 

metabolites, macromolecules, and lipids. The measured spectrum is compared with a 

linear combination of basis set. Most of the metabolites have several peaks with fixed 

relative intensity and frequencies. In other words, when a metabolite with three peaks 

changes (e.g GABA), all the relevant peaks change proportionally while their relative 

frequencies and intensities remain unchanged. This is the basis of measuring the 

concentration of metabolites even when they are overlapped. 
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2.5 Results 

 

In order to modify the pulse sequence from the original one, I changed some of the main 

parameters and verified the spectrum mostly based on the quality of spectrum.  

 

2.6 Phantom study 

2.6.1 Detect and validate: 

 

The first two scans were performed using phantoms including only GABA to reliably 

detect the signal. Then four brain phantoms with different concentrations of GABA 

were scanned to validate the sensitivity of our measurements by showing strong linear 

correlations (Pearson's r=0.99) between measured GABA signal amplitude and the 

actual concentration in the phantom (Figure 2.5). The pulse sequence utilised in these 

scans did not suppress MM. 
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Figure 2.5 Two phantoms contained only GABA without any other metabolites to detect 

GABA, four brain phantoms were made to validate their sensitivity. Linear 

correlation between GABA signal amplitude and phantom concentrations. 

The pulse sequence utilised in these scans did not suppress MM.  
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2.6.2 Effects of MM suppression RF pulse on GABA peak 

 

One phantom contained 20 mM GABA and was scanned with both sequences in order 

to assess whether applying the RF=1.5 ppm pulse affect GABA signal (in addition to 

Lysine). As shown in Figure 2.6, two spectrums are overlapped. The blue arrow is 

pointed to the spectrum which is acquired by the RF pulse with frequency 2 applied on 

8.46 (no MM suppression; GABA
+
) and is compared with the spectrum pointed by 

green in which the spectrum is acquired by when frequency 2 were applied on 1.5 ppm 

(MM suppression: GABA). GABA concentrations have been measured and compared: 

(GABA
+
:H2O= (0.84±0.02)×10

-3
; Figure 2.6A, GABA:H2O= (0.56±0.03)×10

-3
; Figure 

2.6B). This comparison indicated that the modified sequence was less efficient in 

detecting GABA.  

 

Figure 2.6 Phantom 20 mM (A) MM is not suppressed, (B) MM is suppressed. This 

shows that the shape of GABA peaks in 3ppm is affected by the applied RF 

pulse on the 1.5 ppm to suppress MM. 
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2.6.3 Coil 

 

The original sequence was initially set for 8-channel coil; while 32-channel coil had to 

be used. Therefore, 2mM phantom was scanned with both coils, but spectrums from two 

acquisitions were completely overlapped with similar concentration 1. GABA:H2O = 

(0.87±0.058)×10
-4

 & 2. GABA:H2O = (0.79±0.55)×10
-4

, which suggested that the coil 

did not have a considerable effect on acquisition (Figure 2.7).  

 

 

 

 

 

 

Figure 2.7 Comparison between 8-channel and 32-channel coil. Both average spectrums 

are completely overlapped. 
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2.6.4 Reproducibility 

 

The planned study required three subsequent scans to measure GABA pre- during and 

post- tDCS in a single voxel. Therefore, I investigated the stability of the scanner across 

three scans to clarify if the GABA measurement was temporally stable. To do so, I 

scanned the 40 mM phantoms 3 times using optimised sequence parameters (32 channel 

coil, voxel size = 2×2×2 cm
3
, frequency1= 1.9 ppm, frequency 2= 1.5 ppm). The results 

did not show any imperfections either qualitatively or quantitatively between three 

scans. All spectrums were aligned and the measured concentration from all three scans 

were similar: GABA:H2O= mean ± standard deviation = (1.35±0.15) ×10
-3

. Two 

sample spectrums with their measurements are shown in figure 2.8 A and B.   

 

 

 

 

Figure 2.8 Two sample spectrums for stability check. Phantom including 40 mM GABA 

was scanned twice with the modified pulse sequence and showed very similar 

concentrations: (A) GABA:H2O=(1.35 ± 0.1) x10
-3

, (B) GABA:H2O=(1.36 

±0.3) x10
-3
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2.6.5 Quality assurance: 

 

As quality assurance, 2mM phantom were scanned 7 times, but two of them showed 

some major artefacts (Figure 2.9). The sources of this artefact are regarded as the 

subtraction artefacts from the misalignment of the edit-on and edit-off spectra. In order 

to improve the editing efficiency of GABA, a post-processing correction step can be 

used to minimize the misalignment artefact (Evans et al., 2013). Therefore, the 

TARQUIN version was updated (only for in-vivo) for correcting this misalignment by 

aligning all the water peaks (Figure 2.10).  

 

 

 

Figure 2.9 Phantom 2 mM were scanned 7 times. (A) In two of 7 acquisitions, water 

signal did not suppressed completely because of scanner instability. Residual 

of water suppression has been denoted by blue arrow. 
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2.6.6 Data acquisition timing   

 

Finally, the 2mM phantom was scanned when the scanner had just warmed up at the 

beginning of the day and once at the end of the day after many heavy fMRI scans, after 

which the scanner might be more unstable. The spectrums from both acquisitions were 

compared and they were completely aligned. This finding suggested that data 

acquisition did not require any specific timing.   

 

 

2.7 In vivo 

2.7.1 Pilot study 

 

Five participants (mean age = 22 ± 3) were scanned pre- during and post- cerebellar 

tDCS (the detail of cerebellar tDCS attachment is discussed in chapter 3) with both RF 

pulse sequences to identify whether/how voxel size and MM suppression affect the 

detection of GABA change in response to tDCS. The concentration of GABA:H2O has 

been analysed and averaged across five participants and compared in Figure 2.11 for 

during/pre and in figure 2.12 for post/pre. As demonstrated, the pattern of GABA 

change in response to stimulation was similar in both protocols in terms of decrease or 

increase. However, the developed sequence showed a larger effect size than the standard 

sequence (Figure 2.11 and 2.12), which suggested that in large voxel we might have 

measured noise. Therefore, in order to detect subtle changes in GABA, the developed 

sequence seemed to work more sensitively to allow detection of changes in GABA due 

to cerebellar tDCS.   
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Figure 2.10 Spectrums have been drifted over time because of magnet imperfection. 
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Figure 2.11 GABA percentage changes comparison between two RF pulse sequences 

during tDCS compare to pre. The effect size is larger with the modified RF 

pulse sequence. Error bars are standard error of the means.   

 

 

Figure 2.12 GABA percentage changes comparison between two RF pulse sequences 

post cerebellar tDCS compare to pre. The effect size is larger with the 

modified RF pulse sequence. Error bars are standard error of the means.   
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2.7.2 MR compatible tDCS set up 

 

Dozens of scans were also carried out to optimise the MR-compatible tDCS in order to 

avoid artefact in MRS acquisition. The finalised set up is written as an instruction 

manual on the Birmingham university imaging centre (BUIC) website (Appendix I). 

(Link: https://www.buic.bham.ac.uk/wiki/index.php/Stimulus_Equipment) 

 

2.8 Conclusion 

 

In conclusion, I optimised the MRS pulse sequence so that I was able to detect and 

measure GABA confidently within the cerebellum. The pulse modification entailed 

several phantom studies that enabled me to make the voxel size small enough to fit in 

the right posterior cerebellum and to measure GABA without MM contamination. The 

modified sequence was tested in-vivo and displayed a more sensitive response to 

changes in GABA relative to the original RF pulse sequence. 
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3  NEURAL CHANGES 

ASSOCIATED WITH 

CEREBELLAR TDCS USING 

MRS 
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3.1 Introduction 

 

Numerous studies have shown the facilitatory effect of anodal cerebellar transcranial 

direct current stimulation (tDCS) on both motor and cognitive behavioural tasks (Galea 

et al., 2009, Grimaldi et al., 2014, Cantarero et al., 2015). For instance, Galea et al., 

(2011) applied anodal cerebellar tDCS during visuomotor adaptation. They found that 

anodal cerebellar tDCS led to faster adaptation, relative to either primary motor cortex 

(M1) anodal tDCS or sham tDCS. This effect on motor adaptation/learning has been 

replicated in visuomotor adaptation (Block and Celnik, 2013), force-field adaptation 

(Herzfeld et al.), locomotor adaptation (Jayaram et al., 2012). As a result, it has been 

suggested that cerebellar tDCS is not only a useful tool to understand cerebellar 

function but also as a possible clinical technique to restore cerebellar function in 

patients suffering cerebellar-based disorders (Grimaldi et al., 2014). However, there are 

also inconsistencies regarding the impact of cerebellar tDCS with several studies 

reporting cerebellar tDCS having no effect on motor learning (Conley et al., 2016, 

Minarik et al., 2016) or large variability between- and within-subjects across sessions 

(Dyke et al., 2016). Therefore, understanding the underlying causes of this variability is 

essential.   

Previous work has investigated the neural changes associated with primary motor cortex 

(M1) anodal tDCS using a range of MRI techniques (Stagg et al., 2011, Kim et al., 

2014, Antal et al., 2011, Hunter et al., 2015, Kunze et al., 2016). For example, magnetic 

resonance spectroscopy (MRS) revealed that M1 anodal tDCS caused a decrease in 

gamma-aminobutyric acid (GABA), with the magnitude of this decrease being 

correlated with improvements in both sequence learning (Stagg et al., 2011), force-field 

adaptation (Kim et al., 2014), and impairments in tactile discrimination (Puts et al., 

2011b). In addition, MRS has revealed detectable levels of GABA and glutamate (Glu) 

within the cerebellum (Waddell et al., 2011).  

In addition, it has previously been shown using transcranial magnetic stimulation 

(TMS) that anodal cerebellar tDCS was associated with an increase in excitability 

between the cerebellar cortex and primary motor cortex (Galea et al., 2009). As the 
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Purkinje cells, the only output cells of the cerebellar cortex, are GABAergic (Ruigrok 

and Voogd, 1995), it is possible that the beneficial effects of anodal tDCS on cerebellar 

function are a result of local decreases in GABA.  

To test this prediction, I measured the neural changes associated with concurrent 

cerebellar tDCS using MRS. With MRS, the changes in GABA and other metabolites 

were quantified within the right cerebellar cortex directly underneath the anodal 

electrode to examine whether tDCS induced change in any of the metabolites could 

predict individual differences in the effect that cerebellar tDCS had on visuomotor 

adaptation. 

 

3.2 Materials and methods 

3.2.1 Participants 

 

34 healthy young individuals participated in this study (mean age: 22 ± 2 years; 11 

male) and were divided into two groups of 17: anodal (23 ± 5 years; 8 male) and sham 

(19 ± 2 years; 3 male). All were naïve to the task, self-assessed as right handed, had 

normal/corrected vision, and reported to have no history of any neurological condition. 

The study was approved by the Ethical Review Committee at the University of 

Birmingham and was in accordance with the declaration of Helsinki. Written informed 

consent was obtained from all participants. Participants were recruited through online 

advertising and received monetary compensation. At the end of the behavioural session, 

participants were asked to report their attention, fatigue, and quality of sleep using a 

questionnaire with a scale from 1-7. They also reported whether they believed they had 

received active or placebo stimulation, and their hours of sleep during the previous 

night (table 3.1). After completing the behavioural task, those 17 participants from the 

anodal group underwent two sessions of MRS and resting state fMRI separated by one 

week (due to limitation of scanning hours, sham participants were not MRI scanned). 

Both MRI sessions performed during resting state because performing the visuomotor 
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learning task in the scanner was not possible. Participants in all three sessions were the 

same. The resting state fMRI data will be discussed in the next chapter.  

3.2.2 Transcranial direct current stimulation (tDCS) 

 

For the behavioural session, anodal tDCS (DC-Stimulator, NeuroConn, Germany) was 

delivered through a pair of rubber electrodes (4 x 4 cm
2
) within two 5 x 5 cm

2
 pads 

soaked in a saline solution. The anodal electrode was placed over the right cerebellar 

cortex, 3 cm lateral to the inion. The cathodal electrode (reference) was placed over the 

right buccinator muscle (Galea et al., 2011). At the onset of stimulation, current was 

increased in a ramp-like fashion over a period of 10 seconds. For the behavioural study, 

in the anodal group, a 2 mA current (current density J=0.08 A/cm2) was applied for up 

to 25 minutes. In the sham group, tDCS was ramped up over period of 10 seconds, 

remained on for 10 seconds before being switching off. Participants were blinded as to 

whether anodal or sham was applied (table 3.1). 

For the MR sessions, 1.8 mA anodal tDCS was delivered (J=0.07 mA/cm2) through a 

pair of rubber electrodes (5 x 5 cm2). The electrodes were attached to each participant‟s 

head using EEG paste and Coban self-adhesive tape (in the same position as 

behavioural session). Electrodes were connected to an MR-compatible tDCS machine 

(DC-Stimulator-MR, NeuroConn, Germany). Ideally 2 mA stimulation would have 

been used; however high impedance (>55 kΩ) using the MRI-compatible tDCS 

equipment meant this was not possible. To avoid MR image artefacts, the tDCS current 

was set to 0 mA for pre-and post-stimulation data acquisition. This was because the 

tDCS device employed two filters for the magnetic field that were only activated when 

stimulation was turned on even at 0 mA. tDCS was ramped up over 10 seconds, with 

the scan starting immediately after the current reached 1.8 mA and remained on for 25 

minutes and then was ramped down over 1 second. 
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3.2.3 Behavioural protocol 

 

Participants were seated behind a table, with their chin supported by a rest (figure 

3.1A), in front of a computer monitor (30-inch; 1280×1024 pixel resolution; 105 cm 

from chin rest). A Polhemus motion tracking sensor (Colchester, VT, USA) was 

attached to their right index finger and their arm was placed underneath a horizontally 

suspended wooden board, which prevented direct vision of the arm (Figure 3.1A). The 

visual display consisted of a 1cm-diameter starting box, a green cursor (0.25cm 

diameter) representing the position of the subject‟s index finger, and a circular white 

target (0.33cm diameter). Targets appeared in 1 of 8 positions (45˚ apart) arrayed 

radially at 8 cm from the central start position. Targets were selected pseudo-randomly 

so that every set of 8 consecutive trials (an “epoch”) included 1 movement towards each 

target position. Participants controlled the green cursor on the screen by moving their 

right index finger across the table top (Figure 3.1A). At the beginning of each trial, 

participants were asked to move their index finger to the start position and a target then 

appeared. Participants were instructed to make a fast „shooting‟ movement through the 

target such that online corrections were effectively prevented. At the moment the cursor 

passed through the invisible boundary circle (an invisible circle centred on the starting 

position with an 8 cm radius), the cursor was hidden and the intersection point was 

marked with a static yellow circle to denote the terminal (endpoint) error. In addition, a 

small square icon at the top of the screen changed colour based on movement speed. If 

the movement was completed within 100-300ms, then it remained white. If the 

movement was slower than 300ms, then the box turned red (too slow) and if the 

movement was faster than 100ms, then the box turned green (too fast). Importantly, the 

participants were reminded that spatial accuracy was the main goal of the task. After 

each trial, subjects moved back to the central start position, with the cursor only 

reappearing once they were within 2cm of its location. 

 

 



Investigating the neurobiological changes associated with cerebellar tDCS using MRI 

 

68   Roya Jalali- July 2017 

 

3.2.3.1 Visuomotor adaptation 

 

The aim of this experiment was to replicate the findings of Galea et al., (2011). 

Therefore, participants were exposed to 8 blocks of 96 trials (12 repetitions of the 8 

targets). The first 2 blocks acted as baseline and consisted of veridical feedback with 

(pre1) and without (pre2) online visual feedback (Figure 3.1B). During the no visual 

feedback trials, participants were instructed to continue to strike through the visible 

target, but received no visual feedback either during or at the end of their movement. 

Following this, participants were exposed to 3 blocks (adapt 1-3) of trials in which an 

abrupt 30° counter clockwise (CCW) visual rotation was applied. Finally, to assess 

retention, three blocks (post-1-3) were performed without visual feedback. tDCS was 

applied from the start of pre2 throughout the adaptation blocks and lasted for 

approximately 25 minutes (Figure 3.1B). 

 

 

 

 

Figure 3.1 Visuomotor adaptation task. (A) Experimental set up; participants sat behind 

a table facing a vertically- orientated screen placed 105 cm in front of them. 

(B) Task protocol:  Following 2 baseline blocks (each 96 trials: pre 1-2), an 

abrupt 30˚ VR was applied to the screen cursor and was maintained across 3 

blocks (adapt 1-3). Cerebellar tDCS (anodal/sham) was applied from pre 2 

until adapt 3 (pink). Following this, retention was examined by removing 

visual feedback (grey) for the final 3 blocks (post 1-3).    
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3.2.4 Magnetic resonance acquisition 

 

The anodal stimulation group also participated in two MRS sessions with the order of 

the sessions counterbalanced across subjects (all sessions were interleaved by one week 

apart). In both MR sessions, data were acquired pre-, during and post 25 minutes of 

cerebellar tDCS on a Philips Achieva 3T system (Philips Medical Systems, Best, The 

Netherlands) with a 32-channel radio frequency coil.  

 

3.2.4.1 MRS (MEGA-PRESS) acquisition 

 

The aim of this session was to measure tDCS-induced changes in GABA and Glutamate 

(Glu) concentrations within the cerebellum. Three orthogonal T2-weighted scans (34 

slices, 4 mm thickness, and 1 mm gap, voxel size= 0.8 x 1.1 mm2, 40 seconds duration) 

were collected to allow precise manual localisation of the 2 cm x 2 cm x 2 cm MRS 

single voxel on the posterior part of the cerebellum underneath the electrode.  A cod 

liver oil capsule was placed on the top right corner of the electrode. As this could be 

seen in the images, it was used as an additional marker to aid the localisation of the 

MRS voxel (Figure 3.4 A).  

A GABA signal was measured from the proton spin coherence resonance at 3.0 ppm, 

accomplished by J-difference editing after scanning using a MEscher-GArwood-Point 

RESolved Spectroscopy (MEGA-PRESS) (Mescher et al., 1998) sequence  with a pulse 

repetition time (TR) of 2000 ms, echo time (TE) of 68ms and total duration ~25 

minutes. We produced an average GABA spectrum from a total of 512 spectral 

acquisitions each with a bandwidth of 2150 Hz, sampled at 2048 data points, and with 

prior water suppression using variable power radio-frequency pulses with optimized 

relaxation delays (VAPOR) at 4.68 ppm (Tkac et al., 1999a).  

To achieve an edited GABA spectral signal without contamination from 

macromolecules (MM), the two frequency selective 180° RF pulses (Gaussian pulses 

with duration of 16.5 ms) in the MEGA-PRESS sequence were applied with the centre 
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of the frequency band interleaving between 1.9 ppm (edit-On) and 1.5 ppm (edit-Off) 

(Henry et al., 2001), across the 512 spectral acquisitions. The edit-Off spectra were 

subtracted from the edit-On spectra resulting in a spectrum with an unequivocal GABA 

signal (Figure 3.2).  The acquired edit-Off spectra were also separately analysed to 

obtain measurements in other metabolites including GLX (Glu + Glutamine (Gln)) and 

additional unsuppressed water scans were also acquired to allow corrected metabolite 

signal quantification.   

MRS data were collected pre-, during and post-tDCS, with three scans (lasting 25 mins 

each) performed sequentially within the same individually localised voxel (Figure 3.2).  

 

 

 

Figure 3.2 Graphical representation of MRS session using MEGA-PRESS pulse  

sequence. Data was acquired pre-, during, and post- tDCS.  

 

 

3.2.4.2  MRS (PRESS) acquisition 

 

I also acquired MRS scans using a Point RESolved Spectroscopy (PRESS) (Bottomley 

et al., 1983) sequence (TR/TE = 2000/32ms, 128 averages, 2048 data points  sampled 

over a spectral bandwidth of 2000 Hz, with water suppression using VAPOR.  The 

PRESS scan voxel size was 2 cm x 2 cm x 2 cm, which was localised in the posterior 

part of the cerebellum underneath the electrode.  The PRESS scans lasted 10 minutes 

and were acquired pre-, during and post- tDCS (Figure 3.3). This enabled quantification 

of signals from metabolites including N-acetyl aspartate (NAA), Creatine (Cr), Choline 



Chapter 3: Neural changes associated with cerebellar tDCS using MRS 

  

 

Roya Jalali - July 2017   71 

 

(Cho) and myoInositol (Ins). In this session, BOLD signal was also measured following 

each of these MRS scans (pre, during, post), but the details will be explained in the next 

chapter.  

 

 

Figure 3.3 Graphical representation of resting state fMRI & MRS session (using PRESS 

pulse sequence). Details of resting state fMRI are discussed in chapter 4. 

Data was acquired pre-, during, and post- cerebellar tDCS.  

 

 

3.2.5  Data analysis 

3.2.5.1 Visuomotor task 

 

Data and statistical analysis was performed using MATLAB (The Math Works, USA) 

and SPSS (IBM, USA). Index finger position (X & Y position) data was collected at 

120 Hz. For each trial, angular hand direction (°) was calculated as the difference 

between the angular hand position and angular target position at the point when the 

cursor intersected the 8 cm invisible circle centred on the starting position. During 

veridical feedback block (pre1, Figure 3.1B), the goal was for hand direction to be 0°. 

However, with the visuomotor transformation (adapt 1-3), hand direction had to 

compensate; that is, for the −30° (CCW) visuomotor rotation, a hand direction of +30° 

relative to the target was required. Positive values indicate a CW direction, whereas 

negative values indicate a CCW direction. In addition, reaction time (RT: difference 

between the target appearing and the participant moving out of the start position) and 

movement time (MT: difference between reaction time and movement end) were 
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calculated for each trial. We removed any trial in which hand direction, RT or MT 

exceeded 2.5 standard deviations above the group mean. This accounted for 1.22 % of 

trials. Epochs were created by binning 8 consecutive movements, 1 towards each target.  

The hand direction (°) of anodal and sham groups was compared for each block of 

baseline using separate 2-tailed independent t-tests. For adaptation and retention, 

separate repeated-measures ANOVAs compared groups (anodal/sham) across 

adaptation blocks (Adapt 1-3). Finally, for reaction time (RT) and movement time two 

separate repeated-measures ANOVAs compared groups (anodal/sham) across all 8 

blocks (Pre 1-2, Adapt 1-3, Post 1-3). The threshold for all statistical comparisons was 

P<0.05. Effect sizes are reported as partial eta squared for ANOVA and Cohen‟s d for t-

tests. All data presented as mean ± standard error of the mean, unless otherwise 

specified. 

 

 

3.2.5.2 MRS analysis 

 

Spectroscopy data was analysed using TARQUIN version 4.3.4 (Wilson et al., 2011). 

First, pre-processing was carried out including inspection and removal of corrupted 

spectra arising from motion or technical problems. Then, raw data were Fourier-

transformed to a spectrum of 2048 data points, the signal was smoothed by a 3 Hz 

Lorentzian filter, phased and referenced to water signal at 4.7 ppm. Random drift due to 

scanner instability or subject motion was corrected by aligning the water peak before 

fitting a Lorentzian-Gaussian (Voigt) line shape model. The amount of drift was plotted 

and used to assess the quality of acquisition. Scans with less than 10 Hz drift were taken 

to have acceptable spectra. However, high drift was not the only criterion used to 

remove data; all the spectra were visually inspected in all acquisitions and abnormal 

spectrums were excluded from the study. This accounted for 9% of the averaged 

spectra; three subjects were removed from analysis due to an unreliable spectrum in one 

of the three acquisitions (pre-, during, or post-tDCS).  
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A basis set predefined in TARQUIN was initially constructed based on known 

metabolite peak positions (Voigt function). This basis set was fit to the average 

spectrum allowing peak amplitudes, widths, and frequencies to be optimized (Wilson et 

al., 2011). The basis set was then updated with the newly determined frequencies and 

peak widths and this process of basis set refinement was repeated until fitting resulted in 

negligible adjustment to the basis set. To detect GABA, all edit-On and edit-Off spectra 

were averaged separately and then subtracted from each other (Figure 3.4B), but GLX 

(Glu+Gln) was measured from the average of edit off spectra and Glu extracted from 

GLX using the predefined basis set in TARQUIN. 

 

 

Figure 3.4 MRS voxel localisation. (A) A single 2x2x2 cm voxel size was located 

manually in the posterior part of the right cerebellum underneath the anodal 

electrode. A cod liver oil capsule (yellow arrow) was situated at the top left 

edge of the electrode to assist with voxel localisation. (B) Three sets of data 

were acquired: pre-, during and post- cerebellar tDCS. 

Pre

During

Post

23ppm

NAA
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Next, a T1-image of each participant was co-registered to their T2-image using 

Statistical Parametric Mapping (SPM) (Friston et al., 1989) and the quality of 

registration was checked by plotting joint histograms of co-registered T1 vs. T2 images, 

and by inspection of land marks (specifically on the cerebellum). Then segmentation of 

the T1 image was carried out using the FMRIB automated segmentation tool (FAST) 

(Zhang et al., 2001) to calculate the relative volume of each tissue type; grey matter , 

white matter (WM) and cerebral spinal fluid (CSF) within the voxel. The amplitude of 

GABA, GLX, and Glu were corrected for the proportion of GM volume in the voxel by 

multiplying by 
  

          
. Other metabolites such as total NAA (tNAA) and total Cr 

(tCr) were corrected for the proportion of both GM and WM volumes in the voxel by 

multiplying by 
     

          
 (Stagg et al., 2011, Kim et al., 2014). Finally, the 

percentage change ratios for all metabolites for pre- versus during-tDCS, and pre- 

versus post-tDCS scans were calculated by (100 x (during-pre)⁄pre) and (100 x (post-

pre)⁄pre) respectively (Stagg et al., 2011). 

To assess the modulation of metabolites in response to cerebellar tDCS, a one-way 

ANOVA was performed to compare concentration of each metabolite pre-, during, and 

post- tDCS. The threshold for all statistical comparisons was P<0.05. All data are 

presented as mean ± standard error of the mean, unless otherwise specified. 

 

 

3.3 Results 

3.3.1 Visuomotor task 

 

The performance of 17 anodal and 17 sham participants were compared across all 

blocks. Both groups behaved similarly during baseline with no significant differences in 

hand direction, relative to target, between groups during either pre1 (anodal: 1.20 ± 

0.22, sham 1.83 ± 0.32; t(32)= -1.4, p=0.1, d= 0.08; Figure 3.5) or pre2 (anodal: 2.24 ± 
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0.33, sham: 1.53 ± 0.34; t(32)= 0.9, p=0.4, d=0.2). For adaptation, we found no 

significant differences between the anodal and sham groups. Specifically, there was a 

significant main effect for blocks (F(2, 32)= 205.6, p< 0.005, ɳ2= 0.86), but no significant 

main effect for group (F(1, 32) = 2.3, p=0.14, ɳ2= 0.07) or block-group interaction (F(1,32) 

= 0.63, p=0.43, ɳ2= 0.02; Figure 3.5). Based on these results (total adaptation: anodal = 

20.84 SD = 2.3, sham =19.44 SD = 2.98), a power analysis revealed (d = 0.53, power 

=0.8) that group sizes of 45 participants would be required to observe a significant 

result. For retention, I found an unexpected difference between groups whereby the 

anodal group retained significantly more than the sham group. Specifically, there was a 

significant main effect for blocks (F(2, 32)= 114.9, p< 0.005, ɳ2=0.78) and group (F(1,32)= 

4.7, p= 0.037, ɳ2=0.13), but no significant block-group interaction (F(1, 32)= 0.6, p= 

0.44, ɳ2=0.02). For RT, there were no significant main effect for group (anodal: 0.43 ± 

0.04, sham: 0.39 ± 0.05; F(1, 32)= 2.02, p= 0.2, ɳ2= 0.06), blocks (F(2, 32)= 2.5, p=0.1, 

ɳ2= 0.07), or block-group interaction (F(1, 32)= 1.2, p= 0.3, ɳ2= 0.04 ). Similarly, for 

MT there were no significant main effect for group (anodal: 0.22 ± 0.08, sham: 0.24 ± 

0.08, F(1, 32)= 3.3, p= 0.08, ɳ2= 0.09) or block-group interaction (F(1, 32)= 0.4, p= 0.8, 

ɳ2= 0.01),  but a significant main effect for blocks (F(2, 32) = 9.9 , p < 0.005, ɳ2=0.24). 
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Figure 3.5 Influence of cerebellar tDCS on visuomotor adaptation. Epoch data (average 

across 8 trials) for angular hand direction (˚) for the 17 anodal (blue) and 17 

sham cerebellar tDCS groups. Positive values indicate CW hand direction. 

The inset bar graphs indicate mean hand direction for the anodal and sham 

groups during adaptation (adapt 1-3) and retention (post-1-3). Solid lines, 

mean; shaded areas/error bars, S.E.M. 

 

 

 

 

 



Chapter 3: Neural changes associated with cerebellar tDCS using MRS 

  

 

Roya Jalali - July 2017   77 

 

3.3.2 MRS: 

3.3.2.1 tDCS did not consistently modulate metabolites 

 

In the anodal group, I measured metabolites within the right posterior cerebellar cortex 

underneath the anodal electrode at three time-points: pre-, during and post-25 min of 

anodal cerebellar tDCS. First, I performed a one-way ANOVA to verify grey matter 

tissue fraction among individuals and found no significant difference between GM 

percentage across the three time-points (F(2,39) = 0.3, p = 0.7, ɳ2=0.01).  My results 

showed cerebellar tDCS did not have any consistent effect in modulating any of the 

examined metabolites, while large variability was observed across the participants (e.g. 

the change in GABA varied from ~90% increase to a 100% decrease; Figure 3.6A). 

Separate one-way ANOVAs did not reveal any statistically reliable changes across the 

group; GABA:H2O (F(2,36) = 0.34, p= 0.71, ɳ2= 0.02; Figure 3.6A), GLX:H2O (F(2, 45) = 

0.18, p= 0.83, ɳ2=0.08; Figure 3.6B), Glu:H2O (F(2,36) = 2.41, p= 0.10, ɳ2=0.11; Figure 

3.6C), NAA:H2O (F(2,45) = 1.89, p = 0.16, ɳ2=0.08), Cr:H2O (F(2, 36) = 0.55, p= 0.58, 

ɳ2=0.02), Cho:H2O (F(2, 45) = 0.26, p= 0.77, ɳ2=0.01), and Ins:H2O (F(2,45) = 0.24, p = 

0.79, ɳ2=0.01). 

 

Figure 3.6 Changes in GABA and GLX during and post cerebellar tDCS. Change (%) in 

(A) GABA:H2O; (B) GLX:H2O; (C) Glu:H2O during and post-cerebellar 

tDCS relative to baseline (pre-tDCS). The box-plot limits represent the 25th 

and 75th data percentiles and the middle line represents the median. The error 

bars represent the range of data. 
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3.3.2.2 tDCS-induced GABA:H2O and Glu:H2O change are inversely correlated with 

learning and retention 

 

Given the large between-subject differences in responses (Figure 3.6), I went on to 

examine whether individual changes in the metabolites could predict visuomotor 

adaptation. Therefore, Pearson‟s correlations were carried out between the tDCS-

induced alterations in metabolite concentrations and behavioural performance during 

visuomotor adaptation (adapt1-3). The results demonstrated an increasingly negative 

correlation across the three blocks, from a non-significant trend in adapt 1 (r = -0.41, p 

= 0.16) and adapt 2 (r = -0.43, p = 0.14) to a significant negative correlation in adapt 3 

(r = - 0.59, p = 0.04; Figure 3.7A). This correlation was specific to GABA and not any 

other metabolites (all p>0.05) (Figure 3.7B). These results suggest that participants 

whose GABA:H20 ratio decreased more than 50% from pre-tDCS to during-tDCS also 

showed greater visuomotor adaptation with cerebellar tDCS (Figure 3.7A). Finally, as it 

is assumed that the GABA peak is mostly derived from grey matter (Stagg et al., 2011), 

the fraction of grey matter in the MRS voxel was also assessed. A Pearson‟s correlation 

was performed between GM percentage and visuomotor adapt3; however, no significant 

correlation was found (r = 0.006, p = 0.98). 

Surprisingly, there was also a significant negative correlation between Glu:H2O 

(change from pre-tDCS to during tDCS) and behavioural performance at every block of 

retention:  retention 1 (r = -0.60, p = 0.04) , retention 2 (r = -0.77, p = 0.002),  retention 

3 (r = -0.72, p = 0.006), and total retention (post1-3; r = -0.74, p = 0.004; Figure 3.7C). 

As Glu was measured from GLX (Glutamate + Glutamine), the same correlation was 

also observed between GLX:H2O and total retention (r= -0.64, p=0.01). This correlation 

was specific to changes in GLX/Glu concentration from baseline to during tDCS. For 

example, changes in GLX/Glu from baseline to post-tDCS, and changes in all other 

metabolites, were not correlated with retention (all p > 0.05). 
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Figure 3.7 Correlations between MRS and visuomotor adaptation. (A) A negative 

correlation was observed between changes in GABA during cerebellar tDCS 

and behavioural performance during adaptation (adapt 3). This indicates a 

cerebellar tDCS decrease in GABA was associated with a greater amount of 

adaptation. The red line represents the sham group‟s mean performance 

during adapt 3 (shaded area = SD across group). (B) The significant 

correlation was specific to GABA and not observed with any other 

metabolite such as Cr:H2O. (C) A negative correlation was also observed 

between changes in Glu:H2O during cerebellar tDCS and total retention. This 

suggests a cerebellar tDCS dependent decrease in Glu was associated with a 

greater amount of retention.   
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3.3.3 Self-reported ratings of attention, fatigue, and sleep 

 

There were no significant differences between groups across all experiments for the 

self-reported ratings of attention, fatigue and quality of sleep (Table 3.1). 

 

 

 

 

Table 3-1 Self-reported rate of attention, fatigue, quality of sleep (1 is poorest and 7 is 

the maximal), perceived tDCS as active (1) or placebo (0) and sleep hours. 

All the values are averaged and compared using independent t-test across the 

whole experiments and presented as mean ± standard deviation. 

Visuomotor 

task attention Fatigue 

Sleeping 

hours 

Quality of 

sleep 

Active  or 

placebo  

Anodal 5.3 ± 1.1 3.7 ± 1.5 7.2 ± 1.2 5.1 ± 1.4 0.8 ± 0.3 

Sham 4.6 ± 1.1 3.7 ± 1.5 7.2 ± 1.6 4.7 ± 1.7 0.6 ± 0.5 

T-test 
t(27)= 1.6,  

p= 0.1    

t(27)= 0.03,  

p= 0.9    

t(27)=0.04,  

p= 0.9   

t(27)= 0.6,  

p= 0.5   

t(27) = 1.4,  

p= 0.2    
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3.4 Discussion 

 

This study revealed that the effects of cerebellar tDCS on visuomotor adaptation were 

correlated with a decrease in GABA, and individual differences in retention were 

correlated with a decrease in Glu.  

 

3.4.1 Cerebellar tDCS did not significantly enhance visuomotor adaptation 

 

Although participants showed a clear ability to adapt to the novel visuomotor rotation, 

the expected significant enhancement of adaptation by anodal cerebellar tDCS, that had 

been shown in various studies (Galea et al., 2011, Hardwick and Celnik, 2014, Block 

and Celnik, 2013), was not observed here. Despite our sample size being in the same 

range of previously published tDCS papers, a recent study indicates this could be 

significantly under powered (Minarik et al., 2016). Minarik et al (2016) showed that 

with a suggested tDCS effect size of 0.45, the likelihood of observing a significant 

result with 14 participants per group was approximately 20%. In fact, a power analysis 

based on our results revealed that I achieved an effect size of 0.53, suggesting group 

sizes of 45 participants would have been required to observe a significant difference 

between the anodal and sham tDCS groups. Nevertheless, my work indicates that there 

is substantial variation in the behavioural effect of cerebellar tDCS across participants. I 

therefore examined whether this could be explained by between-subject differences in 

the neural effect tDCS had on the cerebellum.  

 

3.4.2 Online cerebellar tDCS reduction in GABA was correlated with motor adaptation 

 

Similar to the behavioural results, there was no consistent group effect of tDCS on 

GABA or any other metabolite measured within the cerebellum either during or after 
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stimulation. This is in contrast to several previous studies that have shown tDCS to 

cause a significant decrease in GABA within M1 (Stagg, 2014, Stagg et al., 2014, Stagg 

et al., 2011, Kim et al., 2014, Bachtiar et al., 2015).  

However, our findings demonstrated a correlation between a tDCS-induced reduction in 

GABA and greater adaptation to a visuomotor rotation with cerebellar tDCS. As this 

correlation was specific to GABA, and not any other metabolites, it suggests a crucial 

role for GABA in the online effects of cerebellar tDCS. This finding is similar to the 

results observed in M1 where a reduction in GABA was correlated with improvements 

in sequence learning (Stagg et al., 2011) and force-field adaptation (Kim et al., 2014). 

The relationship between cell-type activity and MRS-detected changes within the 

cerebellum is currently unknown, and therefore it is difficult to determine the cellular 

origin of a decrease in GABA as several cerebellar cortical interneurons are known to 

be GABAergic (Purkinje cells, stellate and basket cells, and Golgi cells). However, it is 

possible that a decrease in GABA reflects a reduction in Purkinje cell activity akin to 

the long-term depression (LTD) observed with cerebellar learning. Interestingly, it has 

previously been shown that visuomotor adaptation was associated with a decrease in 

cerebellar-cortical excitability (Schlerf et al., 2012). This work supports the view that a 

tDCS-dependent decrease in GABA may enhance visuomotor adaptation through a 

reduction in Purkinje cell activity/output.       

 

3.4.3  Online cerebellar tDCS-induced reduction in GLX/Glu was correlated with motor 

retention 

 

Surprisingly, this study also showed that a tDCS-induced reduction in both Glu and 

GLX had a strong negative correlation with subsequent visuomotor retention. At 

present, it is difficult to explain this correlation between changes in Glu/GLX and 

retention. One possibility is that a decrease in Glu/GLX reflects a decrease in 

glutamatergic input into the cerebellar cortex (from mossy fibres and/or granule cells) 

and reduced activity of Purkinje cells. This would reduce cerebellar brain inhibition 
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(CBI) and enhance M1 function. It is known that excitation of M1 facilitates retention, 

potentially retaining or consolidating what has been learnt by the cerebellum (Galea et 

al., 2011, Sami et al., 2014). However, there are still many unanswered questions 

regarding these results. For instance, it is not known why the cerebellar tDCS-

dependent changes in GABA and Glu/GLX were not correlated across participants. In 

addition, I was unsure why cerebellar tDCS led to a significant increase in retention 

within this study whereas previous studies have not reported this effect (Hardwick and 

Celnik, 2014, Block and Celnik, 2013).  

 

 

3.5  Conclusion 

 

In conclusion, this study provided a novel insight into the neurophysiology 

underpinning cerebellar tDCS. I found that the positive effects of cerebellar tDCS on 

visuomotor adaptation were correlated with a decrease in cerebellum GABA levels and 

visuomotor retention were correlated with a decrease in cerebellum Glu levels, with 

these relationships being neuro-chemically specific. 
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4.1  Introduction 

 

As discussed in chapter 3, unlike cerebellar tDCS the neural changes associated with 

M1 anodal tDCS have been studied extensively using a range of MRI techniques (Stagg 

et al., 2011, Kim et al., 2014, Antal et al., 2011, Hunter et al., 2015, Kunze et al., 2016). 

For example, resting state functional magnetic resonance imaging (fMRI) has shown 

anodal M1 tDCS to cause an increase in functional connectivity within the motor 

network (Stagg et al., 2014). However, the M1 tDCS-dependent decreases in GABA 

and increases in functional connectivity were found not to be correlated across 

participants (Bachtiar et al., 2015), suggesting they may be driven by distinct underlying 

mechanisms.  

Numerous studies have used resting state fMRI to examine human cerebellar-cerebral 

pathways. For example, resting state fMRI has revealed that the cerebellar cortex 

contains zones that have distinct functional connections. Two parts of the cerebellum 

was found to be functionally connected to the sensorimotor parts of the cerebral cortex, 

whilst the other regions of the cerebellum are connected to non- motor areas of the 

cerebral cortex (Buckner et al., 2011). The posterior portion of the cerebellar cortex in 

particular was functionally connected to the frontal and parietal cortices (O'Reilly et al., 

2010).   

Anodal cerebellar tDCS has been associated with an increase in excitability between the 

cerebellar cortex and primary motor cortex, as assessed with TMS (Galea et al., 2009). 

As the Purkinje cells, the only output cells of the cerebellar cortex, are GABAergic 

(Ruigrok and Voogd, 1995) it is possible that the beneficial effects of anodal tDCS on 

cerebellar function are a result of local decreases in GABA and increases in 

connectivity between the cerebellum and distant brain regions.  
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To test this prediction, in addition to measuring GABA using MRS (in the previous 

chapter), I also measured the neural changes in functional connectivity associated with 

concurrent cerebellar tDCS using resting state fMRI.  

 

In the previous chapter, I found the tDCS-induced changes in GABA within the right 

cerebellar cortex were correlated with improvements in visuomotor adaptation. In this 

chapter, the changes in functional connectivity between the right cerebellar cortex and 

other visuomotor-related brain regions were measured using resting state fMRI to 

examine whether the neural changes could predict individual differences in the effect 

cerebellar tDCS had on visuomotor adaptation. 

 

4.2 Materials and Methods 

4.2.1  Participants 

 

From 17 healthy individuals who participated in the behavioural session (described in 

chapter 3), one withdrew from the study and 16 participated successfully, and 

underwent resting state fMRI (8 female, mean age = 26 ± 8 years). All were assessed to 

be eligible for MR scanning session. The study was approved by Ethical Review 

Committee of the University of Birmingham and was in accordance with the declaration 

of Helsinki. Written informed consent was obtained from all participants.  

 

 

4.2.2  Transcranial direct current stimulation (cerebellar tDCS) 

 

In this MR session, 1.8 mA anodal tDCS (DC-Stimulator, NeuroConn, Germany) was 

delivered (J=0.07 mA/cm2) through a pair of rubber electrodes (5 x 5 cm2). The 
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electrodes were attached to each participant‟s head using EEG paste and Coban self-

adhesive tape (in the same position as behavioural session). Electrodes were connected 

to an MR-compatible tDCS machine (DC-Stimulator-MR, NeuroConn, Germany). 

Ideally 2 mA stimulation would have been used (same as behavioural session); however 

high impedance (>55 kΩ) in the MRI-compatible tDCS equipment meant this was not 

possible. To avoid MR image artefacts, the tDCS current was set to 0 mA for pre-and 

post-stimulation data acquisition. This was because the tDCS device employed two 

filters for the magnetic field that were only activated when stimulation was turned on. 

TDCS was ramped up over 10 seconds, with the scan starting immediately after the 

current reached 1.8 mA and remained on for 25 minutes and then was ramped down 

over 1 second. 

 

4.2.3  Magnetic resonance acquisition 

 

The anodal group also participated in two MR sessions (MRS, fMRI) with the order of 

the sessions counterbalanced across subjects. In both MR sessions, data were acquired 

pre-, during and post- 25 minutes of cerebellar tDCS on a Philips Achieva 3T system 

(Philips Medical Systems, Best, The Netherlands) with a 32-channel radio frequency 

head receive-coil. 

 

4.2.3.1  Resting state functional connectivity 

 

The aim of this session was to measure tDCS-induced changes in resting state rs-

functional connectivity between the cerebellum and other visuomotor-related brain 

areas. Rs-fMRI data were acquired using a whole brain echo planar imaging (EPI) 

sequence using the following parameters; field-of-view (FOV) = 240 mm x 240 mm, in 

plane voxel resolution = 2.5 mm x 2.5 mm, slice thickness 3 mm, TR/TE = 2500/34ms, 

flip angle = 84˚, EPI factor = 51, slices = 41, number of dynamics = 250, total scan 
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duration approximately = 10 minutes; Figure 4.1). At the end, high resolution T1-

weighted acquired sagittal, 175 slices, voxel size 1 1 1 mm, TR/TE= 8.4/3.8 ms, 

NSA=1, total scan time 10.40 min.  

 

 

 

Figure 4.1 BOLD signal was acquired from the whole brain using Echo planar imaging 

(EPI) in ascending order. 

 

Participants were consistently given the same instruction before starting each scan to 

keep their eyes open, not to think about anything in particular, and stay as still as 

possible. tDCS current was set at 0 mA for the pre and post scan and 1.8 mA for the 

during stimulation scan (Figure 4.2). No control study was performed for fMRI and all 

received anodal stimulation with a within-participants design in which resting state 

fMRI was measured pre-, during, and post- tDCS. Participants remained in the scanner 

between the three scans; all participants were aware of stimulating ON and OFF. In 

addition to each of the EPI scan, I also acquired MRS scans using a Point RESolved 

Spectroscopy (PRESS), which was explained in the previous chapter. 
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Figure 4.2 Graphical representation of rs-fMRI & MRS session (PRESS)  

 

4.2.4  Data analysis 

 

All fMRI data was analysed using FMRIB Software Library v5.0 (FSL) (Jenkinson et 

al., 2012) and custom in-house MATLAB software. Data analysis was performed in 4 

main steps: 1) Anatomical pre-processing, 2) Functional pre-processing, 3) Functional 

connectivity, 4) Statistics.  

 

4.2.4.1  Anatomical pre-processing 

 

Pre-processing of anatomical image was performed in three main steps: 

a) Rotation of T1-structural image to the same orientation as functional data using 

fslswapdim. This tool is an advanced tool that re-orders the data storage to permit 

changes between axial, sagittal and coronal slicing.  

b) Brain extraction to remove the skull and extract the skull-stripped brain image using 

Brain Extraction Tool (BET) (Smith, 2002, M. Jenkinson, 2005). This tool takes the 

anatomical image as input and, based on the tissue segmentation, identifies the 

boundary between the brain and non-brain tissue. Results were observed to check if the 

skull-off output was precise and robustly worked for all the data (i.e. the skull removed 

completely without removing part of the brain). 
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c) Segmentation to grey matter, white matter (WM) and cerebrospinal fluid (CSF) 

using FMRIB's Automated Segmentation Tool (FAST). The output was three binary 

masks (Zhang et al., 2001). 

 

 

4.2.4.2  Functional pre-processing 

 

Functional pre-processing included  

a)    Motion correction (MC) was carried out by Motion Correction FMRIB's Linear 

Image Registration Tool MCFLIRT tool (Jenkinson et al., 2002). MCFLIRT reduces the 

misalignment and correct for bulk motion by lining up every functional image to the 

reference image (middle image) (Jenkinson et al., 2002). 

b)    Slice timing correction regulated all the slices based on image acquisition from 

bottom (cerebellum) to the top of the brain. The reason for this correction is due to the 

assumption we made that all the slices in each volume are acquired at the same time; 

however in reality there is small difference between all slice acquisitions (equal to RT). 

Therefore, by adding a statistical model including temporal derivatives acquired from  

the pulse sequence utilised in the study (here regular ascending), the impact of slice 

timing difference can be reduced (Smith, 2002). 

c)    Registration to the brain extracted anatomical image  

Each fMRI image was registered to the individual subject‟s brain-extracted T1-weighted 

anatomical image with 7 degrees of freedom (DOF); 2 degree of translation, 2 scale, 1 

skew, 1 rotation, and 1 DOF to compensate for global scale.  

d)   Spatial smoothing was performed with a Gaussian kernel of 5 mm full-width at 

half maximum (FWHM). Noise level or random variation in image intensity is usually 

between 0.5 to 1 % of the average intensity. Spatial smoothing was therefore performed 

to increase the SNR, with the penalty of reducing the spatial resolution. Twice the voxel 
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dimension is generally recommended to be a reasonable value for smoothing (Russel 

2011).  

e)   fMRI registration 

Then, all the registered fMRI images were registered to the standard MNI152-1mm 

template image using FMRIB's Linear Image Registration Tool (FLIRT) (Jenkinson et 

al., 2002). MNI152 is an average image acquired from the MRI data of 152 healthy 

subjects (mean age 25 years) (Ashburner et al., 1997). The registration was performed 

with 12 DOF (3 degree of rotation, 3 translation, 3 scale, and 3 skew). After all EPI 

images were registered, they were visually inspected to ensure the quality of 

registration; none of the subjects were removed.  

f)  High pass temporal filtering using a Gaussian-weighted filter equivalent to 0.015 

Hz was applied to remove low frequency artefacts typically caused by the scanner in the 

range of 0 and 0.015 Hz.  

g) Geometric unwarping of EPIs using FUGUE was performed to correct for 

inhomogeneity caused by air-issue interfaces (Jenkinson, 2003) 

h)   Low Pass filtering: functional data were band pass filtered: 0.015-0.08 Hz. Low 

pass filter using in-house MATLAB code removed unwanted high frequency from 

physiological fluctuations like breathing (~ 0.3 Hz) or heartbeat (~1.0 Hz).   

 

 

4.2.4.3  Functional connectivity 

 

Finally, the following signals were all regressed out of the voxel-wise data: the six 

realignment parameters of rotation and translation, white matter and cerebrospinal fluid 

(CSF) signal, and the global brain signal (Fox et al., 2009). We then defined 

visuomotor-related ROIs in MNI space from 5 different resting-state networks (Figure 

4.3) taken from a published atlas (Shirer et al., 2012). According to the study by Halko 
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et al. 2014, both left and right networks can be modulated in response to cerebellar 

stimulation:  

(a) Bilateral sensorimotor network: anterior cerebellum, thalamus, primary and 

supplementary motor cortex,  

(b) Bilateral basal ganglia network,  

(c) Left executive control network: left dorsolateral prefrontal cortex (l-DLPFC), left 

parietal cortex (lPC), and right posterior cerebellum (rCB), 

(d) Right executive control network: right dorsolateral prefrontal cortex (r-DLPFC), 

right parietal cortex (rPC), and left posterior cerebellum (lCB),  

(e) Bilateral visuospatial network: intraparietal sulcus, and frontal eye fields (FEF). 

A pre-defined ROI in the right posterior cerebellar cortex (rCB, taken from the left 

executive control network), underneath the anodal tDCS electrode, was chosen as the 

seed and registered to individual subject‟s fMRI data. I calculated correlations between 

the mean fMRI time series of the seed and the fMRI time series of all other voxels. 

Significant positively correlated voxels within my pre-defined sensorimotor network 

masks were counted and utilised later to correlate with the results from visuomotor 

adaptation task and MRS data (Figure 4.5)  
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Figure 4.3 Masks utilised for functional connectivity analysis. From top to bottom: 

Sensorimotor network, Basal ganglia network, left executive control network, 

right executive control network, visuo-spatial network. A seed ROI was 

selected on the right posterior cerebellum (rCB) underneath the anodal 

electrode (pointed with a yellow arrow) and the average time course of the 

seed ROI was computed. Figure is adapted from (Shirer et al., 2012). 

 

At the first level, statistical analysis was performed using FILM modelling (Woolrich et 

al., 2001) in FEAT (www.fsl.ox.ac.uk) to calculate individual whole-brain maps of both 

positive and negative functional connectivity with the cerebellar seed time series, 

separately for pre-, during and post-tDCS data. Subsequent higher level (mixed-effects 

FLAME 1+2) group average functional connectivity maps were then calculated. A 

multiple-comparisons correction was performed using cluster based thresholding 

(p<0.05). In order to assess group-level changes in functional connectivity as a result of 

http://www.sciencedirect.com/science/article/pii/S1053811916001956#bb0505
http://www.sciencedirect.com/science/article/pii/S1053811916001956#bb0505
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cerebellar tDCS (i.e., the difference between during- versus pre- or post- versus pre- 

tDCS) separate paired t tests were performed by setting up contrasts in FEAT.  

Finally, individual measures of functional connectivity and MRS (GABA, GLX) 

concentrations or visuomotor performance, were compared using partial correlations, 

controlling for within-network functional connectivity correlations. 

 

 

4.3 Results 

4.3.1 Resting state functional connectivity and tDCS 

 

I calculated correlations between the mean time series from the right cerebellar cortex 

seed region under the anodal tDCS electrode and all the pre-defined sensorimotor 

network masks. Paired t-tests were then carried out for each subject to compare the 

functional connectivity pre vs. during cerebellar tDCS and pre vs. post-cerebellar tDCS. 

The results demonstrated a significant decrease in functional connectivity between the 

right cerebellum (rCB) and right parietal cortex (rPC), and between the rCB and left 

frontal cortex (lFC) (Figure 4.4 A, B). In addition, there was a significant increase in 

connectivity between rCB and vermis, within the cerebellum itself (Figure 4.4 C) 
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Figure 4.4 Changes in functional connectivity due to cerebellar tDCS. Cerebellar tDCS 

significantly decreased functional connectivity between a seed in the right 

cerebellum and two clusters; (A) Cluster 1: Right parietal cortex including 

angular gyrus, lateral occipital, superior division (B) Cluster 2: Left inferior 

frontal gyrus. Cerebellar tDCS also caused an increase in functional 

connectivity between the right cerebellum and (C) Cluster 3: vermis VIII, 

Left VIII, Left IX. (D) Cluster 4: To verify if the reduction in connectivity to 

rPC was directly influenced by rCB, or indirectly via lFC, another seed was 

located on lFC. Increased activation was observed in right postcentral and 

precentral gyrus, but  not in Cluster 2. This suggests that the functional 

connectivity from the right cerebellum to rPC was not driven by an indirect 

pathway, rCB-lFC-rPC. 
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One would not expect right parietal cortex to be directly influenced by right cerebellum, 

as anatomical connections are crossed. To verify if the reduction in connectivity to rPC 

was directly influenced by rCB, or indirectly via lFC, I placed another seed on lFC and 

calculated maps of the voxel-wise group functional connectivity, using FEAT methods 

described previously. (Figure 4.4D). The connectivity between lPC and rPC increased 

during tDCS, but not in the same region of the previous cluster. In other words, this 

confirmed that cerebellar tDCS resulted in independent reductions of functional 

connectivity between rCB and both lFC and rPC. 

 

4.3.2 Relationship between functional connectivity-GABA & functional connectivity- 

motor learning 

 

Next, I wanted to examine whether the cerebellar tDCS induced changes in functional 

connectivity were correlated with performance during the visuomotor adaptation task 

across participants. Therefore, I calculated partial volume correlations between 

functional connectivity change and the performance in the late phase of adaptation, 

correcting for within networks correlations. There was only one significant positive 

correlation after this correction which was between performance in adapt 3 and the 

change in functional connectivity between rCB-left parietal cortex (lPC) (Pearson‟s r 

=+0.6, p= 0.03; Figure 4.5A). This suggests that those who performed better in the 

visuomotor adaptation task during cerebellar tDCS stimulation also showed stronger 

tDCS-induced changes in rCB-lPC functional synchronisation. Interestingly, no 

correlation was found between learning and either rCB-lFC (r=0.2, p=0.36) or rCB-rPC 

(r=0.4 , p=0.14), which were significantly altered by tDCS across all participants.  

Finally, I investigated the relationship between tDCS-induced changes in GABA within 

the rCB and the changes in functional connectivity of rCB- left parietal cortex in 14 

subjects (two subjects had to be removed from MRS due to unreliable spectrum). There 

was a strong trend towards a significant correlation between these two physiological 

changes (r=0.58, p=0.06; Figure 4.5B). However, this was driven by three participants 
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who exhibited a substantial decrease in GABA (>50%) and increase in functional 

connectivity between rCB-lFC (>100%) during cerebellar tDCS. These 3 participants 

(responders) also showed greater visuomotor adaptation compared to the rest of the 

anodal group (Figure 4.5C). 

 

 

 

 

 

Figure 4.5 Individual differences in participant‟s response to cerebellar tDCS. (A) A 

correlation was observed between cerebellar tDCS-induced changes in 

functional connectivity between rCB-lPC and performance during late 

adaptation. (B) A weak correlation was observed between cerebellar tDCS-

induced changes in GABA and the functional connectivity changes between 

rCB-lPC. However, both correlations were driven by three participants who 

showed a large decrease in GABA (>50%) and large increase in functional 

connectivity between rCB-lPC (>100%) (red circle). (C) These 3 participants 

(responders: light blue) also showed greater adaptation (adapt 3) compared to 

the rest of the anodal group (non-responders: dark blue). 
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4.4 Discussion 

 

The results from chapter 3 and 4 revealed that the effects of cerebellar tDCS on 

visuomotor adaptation were correlated with a decrease in GABA and increase in 

connectivity between the cerebellar cortex and parietal cortex. However, these changes 

were only observed in approximately 21% of the participants suggesting an „all-or-

nothing‟ type effect of cerebellar tDCS.  

 

4.4.1 Online cerebellar tDCS changes the functional connectivity between the 

cerebellum with frontal and parietal cortex 

 

Cerebellar tDCS caused a significant decrease in resting-state connectivity between the 

cerebellum, left frontal cortex and right parietal cortex; however, this change was not 

correlated with participant‟s visuomotor adaptation performance. Recently, it has been 

shown that transcranial magnetic stimulation (TMS) over the lateral or midline 

cerebellum separately modulates the default network and dorsal attention network, 

respectively (Halko et al., 2014). My results support this work and suggest cerebellar 

tDCS could lead to changes in multiple resting state networks. 

 

4.4.2  „All or nothing‟ type effect of cerebellar tDCS 

 

Interestingly, I found that the only connectivity change in functional connectivity, 

which was correlated with participant‟s visuomotor adaptation performance, was an 

increase in connectivity between the cerebellum and left parietal cortex. Although not 

significant, there was also a strong trend for this increase in connectivity to be 

correlated with the decrease in GABA caused by cerebellar tDCS. However, these 

relationships were primarily driven by 3 participants who displayed a strong response to 

cerebellar tDCS across the 3 sessions; enhanced visuomotor adaptation, large reduction 
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in GABA (greater than 50%) and a large increase in connectivity between the 

cerebellum and left parietal cortex (greater than 100%). A decrease in GABA within the 

cerebellar cortex could reflect a decrease in Purkinje cell activity. Hypothetically, this 

may lead to reduced inhibition of the deep cerebellar nuclei and an increase in 

connectivity between the cerebellum and left parietal cortex. In addition, this 

explanation may also fit with models of motor learning that posit communication 

between the cerebellum and parietal cortex being crucial for successful visuomotor 

adaptation (Shadmehr and Krakauer, 2008). According to this model, the cerebellum 

predicts the motor command, whilst the posterior parietal cortex compares this 

prediction with the actual sensory (visual) feedback. This indicates that cerebellar tDCS 

may have an all-or-nothing type effect on individual participants with 21% showing 

substantial online changes in GABA and resting connectivity. These results could 

provide some explanation regarding the inconsistency of cerebellar tDCS in behavioural 

tasks (Conley et al., 2016, Minarik et al., 2016, Dyke et al., 2016) as significant 

differences between anodal and sham groups would be heavily dependent on the 

proportion of „responders‟ within the anodal group. Being responder/ non-responder 

needs to be studied further, but it might be due to the genetics, the way how the 

cerebellar cortex is folded, direction of Purkinje cells, and skull thickness. 

 

 

4.5 Conclusion 

 

This study provides a novel insight into the neurophysiology underpinning cerebellar 

tDCS. These findings indicate an all-or-nothing type effect of cerebellar tDCS with a 

strong physiological and behavioural response being observed in 21% of participants. 

This provides a possible explanation why cerebellar tDCS is associated with between 

participant variability when applied to behavioural tasks.   
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5 NO CONSISTENT EFFECT OF 

CEREBELLAR TDCS ON 

VISUOMOTOR ADAPTATION 
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5.1  Introduction 

 

The main part of chapter 5 has been accepted by Journal of Neurophysiology as an 

original article.  

As explained in chapter 1, motor adaptation is a specific form of motor learning, which 

refers to the error reduction that occurs in response to a novel perturbation (Krakauer, 

2009, Shadmehr and Mussaivaldi, 1994). Specifically, when we make a movement with 

a defined goal, i.e. reaching to a visual target, the brain compares the actual and 

predicted sensory outcome of the executed movement. A sensory prediction error can be 

induced by a systematic perturbation such as a visual rotation or force-field. This 

perturbation induces prediction errors that inform the brain of an environmental change 

(Miall and Wolpert, 1996, Wolpert et al., 1998). To return to accurate performance, the 

brain gradually updates its prediction, and resulting motor commands, so that it 

accounts for the new dynamics of the environment (Yamamoto et al., 2006, Tseng et al., 

2007). 

Patients with cerebellar lesions show a pronounced impairment in their ability to adapt 

to novel perturbations (Yamamoto et al., 2006, Criscimagna-Hemminger et al., 2010, 

Diedrichsen et al., 2005, Martin et al., 1996, Maschke et al., 2004, Rabe et al., 2009, 

Smith and Shadmehr, 2005, Weiner et al., 1983, Donchin et al., 2012). Specifically, 

they are often unable to reduce the movement error induced by the visual rotation or 

force-field. This suggests that the cerebellum is crucial during the feedforward process 

required for successful motor adaptation. Although patient studies can provide us with a 

good insight regarding cerebellar function, there is a scarcity of patients with isolated 

cerebellar lesions. In addition, testing patients leaves the possibility that some changes, 

or the lack of them, are due to long-term compensation by other brain areas.  

An alternative approach to investigate cerebellar function is to use non-invasive brain 

stimulation such as transcranial direct current stimulation (tDCS) in healthy 

participants. As mentioned previously, Galea et al., (2011) applied tDCS over the 

cerebellum during adaptation to a visual rotation (visuomotor adaptation). It was found 
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that anodal cerebellar tDCS led to faster adaptation, relative to either primary motor 

cortex (M1) anodal tDCS or sham tDCS (Galea et al., 2011). Such positive effects of 

cerebellar tDCS on cerebellar function have been replicated in visuomotor adaptation 

(Galea et al., 2011, Cantarero et al., 2015, Hardwick and Celnik, 2014, Block and 

Celnik, 2013), force-field adaptation (Herzfeld et al., 2014), saccade adaptation 

(Panouilleres et al., 2015, Avila et al., 2015), motor skill learning (Cantarero et al., 

2015), and language prediction tasks (Miall et al., 2016). As a result, it has been 

suggested that cerebellar tDCS is a possible clinical technique to restore cerebellar 

function in patients suffering cerebellar-based disorders (Grimaldi et al., 2014). 

However, the number of studies reporting inconsistencies regarding the impact of 

cerebellar tDCS or having no effect on motor learning is increasing. These contradictory 

findings may call into question the validity of using cerebellar tDCS within a clinical 

context where a robust and consistent effect across behaviour is required (Mamlins et 

al., 2016, Steiner et al., 2016). 

Therefore, in this chapter, I examined the influence of anodal cerebellar tDCS on 

visuomotor adaptation across a range of different task parameters. Specifically, I 

examined whether cerebellar tDCS produced a reliable behavioural effect when 

manipulating task parameters such as screen orientation, tDCS machine type, tDCS 

timing, tool-use, tDCS montage, and the perturbation schedule. 

 

 

5.2 Materials and methods 

5.2.1 Participants 

 

218 healthy young individuals participated in this study (40 male, 25 ± 5 yrs). Each 

participated in one of nine experiments and received either anodal or sham cerebellar 

tDCS. All were blinded to the stimulation, naïve to the task, self-assessed as right 

handed, had normal/corrected vision, and reported to have no history of any 
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neurological condition. The study was approved by Ethical Review Committee of the 

University of Birmingham and was in accordance with the declaration of Helsinki. 

Written informed consent was obtained from all participants. Participants were recruited 

through online advertising and received monetary compensation upon completion of the 

study. At the end of the session, participants were asked to report their attention, 

fatigue, and quality of sleep using a questionnaire with a scale from 1-7, and also 

reported their perceived tDCS as active (1) or placebo (0), and their hours of sleep in the 

previous night (Table 5.1). These self-reports were collected from 192 participants, 

excluding one from experiments 1 and 2, thirteen (either anodal or sham) from 

experiment 7 and all 13 sham participants from experiment 9. 

 

5.2.2  Experimental Procedure 

 

Participants were seated, with their chin supported by a rest, in front of a computer 

monitor (30-inch; 1280×1024 pixel resolution; 105 cm from chin rest). A Polhemus 

motion tracking system (Colchester, VT, USA) was attached to their pronated right 

index finger and their arm was placed underneath a horizontally suspended wooden 

board, which prevented direct vision of the arm (Figure 5.1A). This was unlike the 

original Galea et al., (2011) study where participants used a digitised pen and wore 

goggles to prevent vision of their hand. The visual display consisted of a 1cm-diameter 

starting box, a green cursor (0.25cm diameter) representing the position of their index 

finger, and a circular white target (0.33cm diameter). For all experiments, targets 

appeared in 1 of 8 positions (45˚ apart) arrayed radially at 8 cm from the central start 

position. Targets were displayed pseudo-randomly so that every set of 8 consecutive 

trials (an “epoch”) included 1 movement towards each target position. Participants 

controlled the green cursor on the screen by moving their right index finger across the 

table (Figure 5.1A). At the beginning of each trial, participants were asked to move their 

index finger to the start position and a target then appeared.  Participants were instructed 

to make a fast „shooting‟ movement through the target such that online corrections were 
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effectively prevented. At the moment the cursor passed through the invisible boundary 

circle (an invisible circle centred on the starting position with an 8 cm radius), the 

cursor was hidden and the intersection point was marked with a yellow square to denote 

the terminal (endpoint) error. In addition, a small square icon at the top of the screen 

changed colour based on movement speed. If the movement was completed within 100-

300 msec, then it remained white. If the movement was slower than 300 msec, then the 

box turned red (too slow). Importantly, the participants were reminded that spatial 

accuracy was the main goal of the task. After each trial subjects moved back to the start, 

with the cursor only reappearing once they were within 2cm of the central start position. 

 

5.2.3  Transcranial direct current stimulation (tDCS) 

 

Anodal tDCS was delivered (NeuroConn, Germany; Figure 5.3A) through two 5 x 5 

cm
2
 electrodes soaked in a saline solution unless otherwise specified. The anodal 

electrode was placed over the right cerebellar cortex, 3 cm lateral to the inion. The 

cathodal electrode (reference) was placed over the right buccinator muscle (Galea et al., 

2011) unless otherwise specified. At the onset of stimulation, current was increased in a 

ramp-like fashion over 1 second. In the anodal groups, a 2 mA current (current density 

0.08 A/cm2) was applied for up to 25 minutes. As adaptation involved additional trials, 

cerebellar tDCS was applied for ~8 minutes longer than in the original study (Galea et 

al., 2011). In the sham groups, tDCS was applied for 10 seconds before being ramped 

down over 1 second turned off. Participants were blinded to whether anodal or sham 

was applied (Table 5.1).   

 

5.2.4 Experiment 1: Vertical screen 

 

The aim of experiment 1 was to replicate the findings of Galea et al., (2011). However, 

unlike the original Galea et al., (2011) study, participants did not use a digitising pen 
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and did not wear goggles to prevent vision of their hand. 28 participants (8 male, 21 ± 4 

yrs) were exposed to 8 blocks of 96 trials (12 repetitions of the 8 targets) during a 

reaching task in which the computer screen was placed in a vertical position (Figure 

5.1B). The first 2 blocks acted as baseline and consisted of veridical feedback with (pre 

1) and without (pre 2) online visual feedback. During no visual feedback trials, the 

target was visible, but once the subjects had moved out of the starting position the 

cursor indicating their hand position was hidden. In addition, subjects did not receive 

terminal feedback. Participants were instructed to continue to strike through the target. 

Following this, participants were exposed to 3 blocks (adapt 1-3) of trials in which an 

abrupt 30° counter clockwise (CCW) visual rotation (VR) was applied. Finally, to 

assess retention, three blocks (post 1-3) were performed without visual feedback. TDCS 

was applied from the start of pre 2 until the end of adapt 3 and lasted for approximately 

25 minutes (Figure 5.1B).   

 

 

Figure 5.1 Experiment 1: (A) Participants sat behind a table facing a vertically-

orientated screen 105 cm from their face with their chin supported on a chin 

rest and sensor was attached to their right index finger. The visual 

transformation between hand trajectory and cursor was similar to a computer 

mouse. (B) Abrupt counter-clockwise 30˚ counter-clockwise VR protocol:  

Following 2 baseline blocks (96 trials: pre 1-2), an abrupt 30˚ visual rotation 

(VR) was applied to the screen cursor and was maintained across 3 blocks 

(adapt 1-3). Cerebellar tDCS (anodal/sham) was applied from pre 2 until 

adapt 3 (pink area). Following this, retention was examined by removing 

visual feedback (grey) for the final 3 blocks (post 1-3).    
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5.2.5 Experiment 2: Horizontal screen 

 

A large proportion of motor learning studies are performed whilst the visual feedback is 

provided in the same plane as the movement (Shabbott and Sainburg, 2010). Therefore, 

experiment 2 investigated whether the positive influence of cerebellar tDCS on 

visuomotor adaptation was observed when the screen orientation was flipped to a 

horizontal position (Figure 5.2B). 20 participants (5 male, 22 ± 4 yrs) were split into 

two groups (anodal/sham; 10 in each group) and experienced an identical experimental 

protocol as in experiment 1 (Figure 5.1B), except now the participants pointed with 

their semi-pronated right index finger underneath a horizontally suspended mirror. The 

mirror prevented direct vision of the hand and arm, but showed a reflection of a 

computer monitor mounted above that appeared to be in the same plane as the finger 

(Figure 5.2B). Once again, participants controlled a cursor on the screen by moving 

their finger across the table.  

 

 

Figure 5.2 Experiment 2: (A) Vertical set up; participants sat behind a table facing a 

vertically-orientated screen 105 cm from their face with their chin supported 

on a chin rest and sensor was attached to their right index finger. The visual 

transformation between hand trajectory and cursor was similar to a computer 

mouse. (B) Horizontal screen set up; participants sat in front of a horizontally 

suspended mirror. The mirror prevented direct vision of the hand and arm, 

but showed a reflection of a computer monitor mounted above that appeared 

to be in the same plane as the hand. 

 



Chapter 5: No consistent effect of cerebellar tDCS on visuomotor adaptation 

  

 

Roya Jalali - July 2017   107 

 

5.2.6 Experiment 3: tDCS machine 

 

Several studies with significant effect of cerebellar tDCS on motor adaptation used 

Phoresor machine (Chattanooga, USA) (Galea et al., 2009, Galea et al., 2011, Herzfeld 

et al., 2014, Cantarero et al., 2015). Therefore, in experiment 3, I used the Phoresor 

machine. As a result, this was a closer replication of the experiment that used in Galea 

et al., (2011).  14 participants (1 male, 22 ± 5 yrs) experienced anodal cerebellar tDCS 

with an identical experiment protocol as experiment 1, and compared with the sham 

group of experiment 1 (Figure 5.3 B). 

 

 

 

Figure 5.3 Experiment 3: (A) NeuroConn tDCS device passed 0.08mA/cm2 through the 

skull. The stimulator did not start working until getting the skin low enough 

impedance (<55 kΩ). (B) Phoresor tDCS device was adjusted to pass 

0.08mA/cm2 through the skull, automatic ramping up and down.  

 

 

The current density was 0.08 mA/cm
2
 for both machines, However, NeuroConn did not 

start working until skin impedance is low enough (<55 kΩ), whereas the Phoresor 

always worked regardless of skin impedance level. Current in NeuroConn was adjusted 

to ramp up and down (e.g. 1 sec), but for Phoresor, it ramped up and down 

automatically in 30 sec.   
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5.2.7 Experiment 4: Tool use 

 

Several visuomotor studies have required participants to hold a digitising pen instead of 

a sensor attached to their finger (Figure 5.4A) (Galea et al., 2011, Schlerf et al., 2012). 

Therefore, in experiment 4, we changed the motion tracking arrangement so that the 

Polhemus sensor was attached to the bottom of a pen shaped tool (Figure 5.4B). As a 

result, this was a closer replication of the task design used in Galea et al., (2011) than 

experiment 1. However, unlike Galea et al., (2011) participants did not wear goggles 

that restricted vision of the hand. 27 subjects (2 male, 21 ± 4 yrs) were split into two 

groups (14 anodal/13 sham) and experienced an identical experimental protocol as 

experiment 1 (Figure 5.1B) except that now participants controlled the cursor on the 

screen by holding the „pen‟ and moving it across the surface of the table (Figures 5.1A 

& 5.4B). 

 

 

 

Figure 5.4 Experiment 4: (A) Finger; Initial experiment started with the Polhemus 

sensor attached to the right index finger. (B) Pen tool; Sensor was attached to 

a pen-shape tool. Participants were asked to hold the top part of the pen. 
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5.2.8 Experiment 5: Montage 

 

Modelling studies have suggested that altering the position of the reference (cathode) 

electrode leads to substantial changes in the neural effects of tDCS (Mehta et al., 2015). 

As several other studies have used a different reference electrode position for cerebellar 

tDCS (Benussi et al., 2015, Sebastian et al., 2016), I investigated whether the beneficial 

effects of anodal tDCS on visuomotor adaptation was maintained when using this 

alternative reference electrode position (placed on the right deltoid muscle ; Figure 

5.5B). Therefore, 14 participants (2 male, 19 ± 1 yrs) were tested with anodal tDCS and 

experienced an identical experimental protocol as experiment 1 (Figure 5.1B) to 

compare with the sham group in experiment 1.  

 

 

 

 

 

Figure 5.5 Experiment  5: (A) Unilateral hemispheric montage with reference on the 

face was mainly used to target the anterior and posterior of the cerebellum 

with the least drift to the neighbouring areas. Modified from Rampersad et al. 

(2014). (B) Unilateral hemispheric montage with reference on the unilateral 

shoulder was used to target the posterior of the cerebellum. Modified from: 

http://www.ehw.ieiit.cnr.it/?q=emfmed 

 

 

http://www.ehw.ieiit.cnr.it/?q=emfmed
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5.2.9 Experiment 6: Offline cerebellar tDCS 

 

Previous works have applied anodal cerebellar tDCS during rest and found both 

physiological and behavioural changes after the cessation of stimulation (Galea et al., 

2009, Pope and Miall, 2012). This indicates that anodal cerebellar tDCS applied during 

rest (offline tDCS) could have a beneficial effect on visuomotor adaptation tested after 

the cessation of stimulation. To examine this, 24 participants (7 male, 20 ± 4 yrs) were 

split into 2 groups (anodal/sham: 12 in each group) and experienced a 25 minute rest 

period between pre 2 and adapt 1 instead of during adapt (Figure 5.6A). During this 

time, offline anodal cerebellar tDCS was applied (Figure 5.6B) whilst participants sat 

quietly and kept their eyes open. In order to maintain a similar overall task length, 

retention (no visual feedback) was not assessed. All other task parameters (vertical 

screen, tDCS montage) were identical to experiment 1. 
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Figure 5.6 Experiment 6: (A) Online cerebellar tDCS protocol: In all experiments, 

cerebellar tDCS (anodal/sham) was applied during adapt, from pre 2 until 

adapt 3 (pink area). Following this, retention was examined by removing 

visual feedback (grey) for the final 3 blocks (post 1-3). (B) Offline cerebellar 

tDCS protocol: cerebellar tDCS (anodal/sham) was applied for 25 minutes 

during rest between pre2 and adapt 1. Due to the length of the experiment, 

retention (no visual feedback blocks) was not examined. 
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5.2.10 Experiment 7 & 8: Step and gradual perturbation schedules 

 

Visuomotor adaptation involves multiple learning mechanisms whose contribution to 

performance is determined by task parameters (McDougle et al., 2015). For instance, 

McDougle suggest that large abrupt visual rotations reduce cerebellar-dependent 

learning from sensory-prediction errors and enhance strategic learning (development of 

a cognitive plan). In contrast, smaller gradual visual rotations are thought to bias 

responses towards sensory-prediction error learning. If true, then cerebellar tDCS 

should have a particularly beneficial effect on adaptation when the 30˚ visual rotation is 

introduced either through a multiple small steps (visual rotation is introduced in 3 steps 

of 10˚; Experiment 7) or a gradual paradigm (visual rotation is introduced gradually by 

0.156˚ per trial; Experiment 8).   

For experiment 7, 36 participants (1 male, 20 ± 1 yrs) were split into 2 groups 

(anodal/sham; 18 in each group). Following 2 baseline blocks (64 trials) with (pre 1) 

and without (pre 2) visual feedback, 3 adaptation blocks (96 trials; adapt 1-3) exposed 

participants to a 10°, 20°, and 30° CCW visual rotation (Figure 5.7A). To examine the 

degree of cognitive strategy used by each participant, we included a task developed by 

Taylor et al., (2014). Specifically, following adapt block 3, participants were asked to 

verbally report the direction they were aiming towards (explicit). For these trials (16 in 

total), the target was presented at the centre of a semi-circular arc of numbers displayed 

at 5⁰ intervals. CW of the target were negative numbers from 1-19, and CCW of the 

target were positive numbers from 1-19. Participants were asked to report which 

number they were planning to move their finger towards (Bond and Taylor, 2015, 

Taylor et al., 2014). Once they had provided this verbal response, the numbers 

disappeared and the participants performed the reaching movement without visual 

feedback. If a participant was fully aware of the visual rotation, they would report 

reaching towards number -6 (30˚ CW). Whereas if they were unaware, participants 

would report aiming to 0 despite moving their finger 30° CW. Finally, a single block 

(192 trials) without visual feedback examined retention (post). 
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For experiment 8, 32 participants (4 male, 19 ± 1 yrs) were split into 2 groups 

(anodal/sham; 16 in each group). Following 2 baseline blocks (64 trials) with (pre 1) 

and without (pre 2) visual feedback, 1 long adaptation block (288 trials; adapt 1) 

involved the 30° CCW visual rotation being applied at rate of 0.156˚ per trial over 192 

trials (Figure 5.7B). The rotation was then maintained at 30° for a further 96 trials. 

Participant‟s level of cognitive strategy was again assessed (16 trials; explicit) after 

adaptation. Following this, one block of 192 trials without visual feedback examined 

retention (post).     

 

 

Figure 5.7 Experiment 7 & 8: (A) Step adaptation protocol: Following 2 baseline blocks 

(64 trials: pre 1-2), a 30˚ VR was applied to the cursor in steps of 10˚ per 

block (96 trials: adapt 1-3). A short block (16 trials; explicit) followed this in 

which participants verbally reported their planned aiming direction. This is 

thought to measure the participant‟s level of cognitive strategy (Taylor et al., 

2014). Finally retention was examined through 1 long block (192 trials) with 

no visual feedback. (B) Gradual adaptation protocol: A 30˚ VR was applied 

to the cursor gradually (0.156˚ per trial) across 192 trials. It was then 

maintained at 30˚ for 96 trials (Adapt). 
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5.2.11 Experiment 9 

 

Finally, I aimed to validate the results of experiment 1 by using the same task 

parameters in a new set of participants. Therefore, 26 participants (7 male, 21 ± 4yrs) 

were split into two groups (anodal/sham; 13 in each group) and exposed to the same 

protocol as utilised in experiment 1. 

  

 

5.2.12  Data analysis 

 

The 2-D index finger (X & Y) position data was collected at 120 Hz. For each trial, 

angular hand direction (°) was calculated as the difference between the angular hand 

position and angular target position at the point when the cursor intersected an 8-cm 

invisible circle centred on the starting position. During veridical feedback, the goal was 

for hand direction to be 0°. However, with a visuomotor rotation and hand direction had 

to compensate; that is, for a −30° (CCW) visuomotor rotation, a hand direction of +30° 

relative to the target was required. Positive values indicate a CW direction, whereas 

negative values indicate a CCW direction. In addition, reaction time (RT: difference 

between target appearing and the participant moving out of the start position) and 

movement time (MT: difference between reaction time and movement end) were 

calculated for each trial. We removed any trial in which hand direction, RT or MT 

exceeded 2.5 standard deviations above the group mean. This accounted for 7.68 ± 

3.54% of trials. One participant in experiment 4 was removed from the study as a result 

of failing to follow the task instructions.  

Epoch averages were created by binning 8 consecutive movements, 1 towards each 

target. For each participant, average hand direction was calculated for each target 

position for pre1 (vision baseline) and pre2 (no vision baseline). These values were then 

subtracted to trial-by-trial performance to that particular target in each visual feedback 
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condition (∆ hand direction). Specifically, pre1 was subtracted away from adaptation 

performance and pre2 was subtracted away from retention performance. For baseline, 

we averaged hand direction across all epochs of pre1 and pre2 and compared the anodal 

and sham groups‟ using 2-tailed independent sampled t-tests. For adaptation, I initially 

compared ∆ hand direction in the first trial of adapt 1 to ensure all participants 

experienced a similar initial error in response to the visuomotor rotation. I then 

calculated an average across all the epochs of adaptation excluding epoch 1. I believe 

this best represented the total amount of adaptation expressed by each participant. For 

retention, I averaged ∆ hand direction across all the epochs of retention. For each 

experiment, the anodal and sham groups were compared using 2-tailed independent 

sampled t-tests. The threshold for all statistical comparisons was P < 0.05. Effect sizes 

are reported as Cohen‟s d. All data presented represent mean ± standard error of the 

mean, unless otherwise specified. Data and statistical analysis was performed using 

MATLAB (The MathWorks, USA) and SPSS (IBM, USA). 

 

 

5.3 Results 

5.3.1 Experiment 1: vertical screen 

 

Despite a slightly different set up from Galea et al., (2011), I showed that anodal 

cerebellar tDCS led to a greater amount of adaptation relative to sham cerebellar tDCS 

(Figure 5.8). First, both groups behaved similarly during baseline with there being no 

significant differences between groups during pre1 or pre 2 (Table 5.2). In addition, 

when initially exposed to the 30° VR, both groups showed a similar level of 

performance during the first epoch of adapt 1 (Table 2). However, following this, the 

anodal group displayed a greater amount of adaptation to the VR compared to the sham 

group (t(26) = 2.9, p=0.007, d=1.17). Retention in the anodal group appeared to be 

greater than in the sham group; however this did not reach statistical significance (t(26) 
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=1.2, p=0.24, d=0.4). There were no significant differences between groups for either 

RT or MT during adaptation or retention (Table 5.3).  
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Figure 5.8 (A) Kinematic data for two sample participants in experiment 1 (blue = 

anodal; red = sham). Both participants performed similarly during pre1 (left). 

In addition, they showed similar initial error when exposed to the 30 degree 

CCW visual rotation (Middleton and Strick). However, by the end of 

adaptation the participant in the anodal group displayed a reduced amount of 

error in their movement trajectories (Sebastian et al.). (B)  Experiment 1: 

Vertical screen. Epoch (average across 8 trials) uncorrected angular hand 

direction (˚) data for the anodal (blue) and sham (red) cerebellar tDCS 

groups. Positive values indicate CW hand direction. Bar graphs inset indicate 

mean hand direction for the anodal and sham groups during adaptation (adapt 

1-3) and retention (post 1-3). This was determined for each participant by 

averaging consecutive epochs (see Methods). Independent t-tests compared 

these values between groups. Solid lines, mean; shaded areas/error bars, 

S.E.M. There was significant difference between the anodal and sham 

cerebellar tDCS groups (14 in each group) during adaptation (t(26)= 2.9, 

p=0.007, d=1.17). 

 

 

 

5.3.2 Experiment 2: Horizontal screen 

 

In experiment 2, an identical stimulation and testing protocol as experiment 1 was used; 

however now the visual feedback was in the same plane as the movement (horizontal 

screen). Surprisingly, anodal cerebellar tDCS was no longer associated with greater 

adaptation (Figure 5.9). First, we found no significant differences between groups for 

pre 1, pre 2 or the first trial of adapt 1 (Table 5.2). In addition, there were no significant 

differences between the anodal or sham groups during adaptation (t(18) =-0.005, p=0.9, 

d=0.002; Figure 5.9) or retention (t(18) =0.39, p=0.69, d=0.14). Finally, there were no 

significant differences between groups for either RT or MT during adaptation or 

retention (Table 5.3). 
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Figure 5.9   Experiment 2: Horizontal screen. Epoch (average across 8 trials) 
uncorrected angular hand direction (⁰) data for the anodal (blue) 
and sham (red) groups. Positive values indicate CW hand direction. 
Bar graphs inset indicate mean hand direction for the anodal and 
sham groups during adaptation (adapt 1-3) and retention (post 1-
3). This was determined for each participant by averaging 
consecutive epochs (see Methods). Independent t-tests compared 
these values between groups. Performance of both groups was 
identical. Solid lines, mean; shaded areas/error bars, S.E.M. There 
was no significant difference between the anodal and sham 
cerebellar tDCS groups (10 in each group) during adaptation 
(t(18)=-0.005, p=0.9, d=0.002). 
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5.3.3 Experiment 3: tDCS machine 

 

In experiment 3, an identical stimulation and testing protocol as experiment 1 was used; 

however, the anodal group were stimulated with a Phoresor machine. Their performance 

was compared with the 14 sham participants of experiment 1. First, I found no 

significant differences between groups for pre 1, pre 2 or the first trial of adapt 1 (Table 

5.2). In addition, there was no significant difference between anodal and sham during 

adaptaion (t(26)=0.09, p=0.93, d=0.22; Figure 5.10) or retention (t(26) =0.20, p=0.84, 

d=0.08). Finally, there were no significant differences between groups for either RT or 

MT during adaptation or retention (Table 5.3). 

 

Figure 5.10 Experiment 3: TDCS machine.  Epoch (average across 8 trials) uncorrected 

angular hand direction data for the anodal (blue) and sham (red) groups. 

Positive values indicate CW hand direction. Bar graphs inset indicate mean 

hand direction for the anodal and sham groups during adaptation (adapt 1-3) 

and retention (post 1-3). This was determined for each participant by 

averaging consecutive epochs (see Methods). Independent t-tests compared 

these values between groups. No significant difference was observed in any 

of the blocks (all p>0.05). Solid lines, mean; shaded areas/error bars, S.E.M. 

There was no significant difference between the anodal and sham cerebellar 

tDCS groups (14 anodal/13 sham) during adaptation (t(26)=0.09, p=0.93, 

d=0.22). 
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5.3.4 Experiment 4: Tool use 

 

In experiment 4, participants experienced an identical protocol as experiment 1; 

however, instead of performing the task with the sensor attached to their index finger, 

they held a digitising pen. This experimental manipulation led to the anodal and sham 

cerebellar tDCS groups behaving similarly across all experimental blocks (Figure 5.11). 

Specifically, there were no significant differences between groups during pre 1, pre 2 or 

the first trial of adapt 1 (Table 5.2). In addition, no significant differences were 

observed during adaptation (t(25)= -0.28, p=0.78, d=0.09; Figure 5.11) or retention (t(25)= 

-1.15, p=0.13, d=0.6). Finally, there were also no significant differences between groups 

for either RT or MT during adaptation or retention (Table 5.3). 

 

Figure 5.11 Experiment 4: tool. Epoch (average across 8 trials) uncorrected angular 

hand direction (⁰) data for the anodal (blue) and sham (red) groups. Positive 

values indicate CW hand direction. Bar graphs inset indicate mean hand 

direction for the anodal and sham groups during adaptation (adapt 1-3) and 

retention (post 1-3). This was determined for each participant by averaging 

consecutive epochs (see Methods). Independent t-tests compared these values 

between groups. Solid lines, mean; shaded areas/error bars, S.E.M. There was 

no significant difference between the anodal and sham cerebellar tDCS 

groups (14 anodal/13 sham) during adaptation (t(25)=- 0.28, p=0.78,  d=0.09). 
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5.3.5 Experiment 5: Montage 

 

Once again, participants experienced an identical protocol as experiment 1; however, 

this time cerebellar tDCS reference electrode was on their right shoulder. There were no 

significant differences between groups during pre 1, pre 2 or the first trial of adapt 1 

(Table 5.2). In addition, we found no significant differences between the anodal or sham 

groups during (t(25)= 0.80, p= 0.43, d=0.29; Figure 5.12) or retention (t(25)= -1.14, 

p=0.85, d= 0.45). Finally, there were also no significant differences between groups for 

either RT or MT during adaptation or retention (Table 5.1). 

 

Figure 5.12 Experiment 5: Cerebellar tDCS montage.  Epoch (average across 8 trials) 

uncorrected angular hand direction (⁰) data for the anodal (blue) and sham 

(red) groups. Positive values indicate CW hand direction. Bar graphs inset 

indicate mean hand direction for the anodal and sham groups during 

adaptation (adapt 1-3) and retention (post 1-3). This was determined for each 

participant by averaging consecutive epochs (see Methods). Independent t-

tests compared these values between groups. Solid lines, mean; shaded 

areas/error bars, S.E.M. There was no significant difference between the 

anodal and sham cerebellar tDCS groups (14 anodal/13 sham) during 

adaptation (t(25)=0.80, p=0.43, d=0.29). 
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5.3.6 Experiment 6: Offline cerebellar tDCS 

 

Next, experiment 6 examined whether cerebellar tDCS applied offline (during 25 mins 

of rest) had a beneficial effect on subsequent visuomotor adaptation. Contrary to my 

predictions, offline anodal cerebellar tDCS did not cause greater adaptation relative to 

offline sham cerebellar tDCS (Figure 5.13). Unfortunately, there was a significant 

difference between groups during pre 1, suggesting a small variation (approx. 1˚) in 

baseline performance between groups. However, after correcting the baseline, there was 

no significant difference between the anodal and sham cerebellar tDCS groups during 

adaptation when using either hand direction (t(21)=0.37, p=0.71, d=0.15). Lastly, there 

were no significant differences between groups for either RT or MT during adaptation 

or retention (Table 5.3). Because of the extended rest period prior to the adaptation 

phase (Figure 5.13), this experiment did not include a retention block. 

 

Figure 5.13 Experiment 6: offline cerebellar tDCS.  Epoch (average across 8 trials) 

uncorrected angular hand direction (⁰) data for the anodal (blue) and sham 

(red) groups. Positive values indicate CW hand direction. Bar graphs inset 

indicate mean hand direction for the anodal and sham groups during 

adaptation (adapt 1-3). This was determined for each participant by averaging 

consecutive epochs. Independent t-tests compared these values between 

groups. There was a clear difference between groups during pre 1. However, 
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there were no significant differences between groups during adaptation when 

using either hand direction or ∆ hand direction (each participant‟s average 

hand direction during pre 1 was subtracted from their subsequent 

performance). Solid lines, mean; shaded areas/error bars, S.E.M. There was 

no significant difference between the anodal and sham cerebellar tDCS 

groups (12 anodal/ 11 sham) during adaptation (t(21)=0.37, p=0.71, d=0.15). 

 

 

5.3.7 Experiment 7 & 8: Step and gradual perturbation schedules 

 

Finally, experiments 7 and 8 tested whether anodal cerebellar tDCS was more effective 

when the 30˚ visual rotation was introduced either with a stepped (visual rotation was 

introduced in three steps of 10˚; Experiment 7) or gradual paradigm (visual rotation was 

introduced gradually by 0.156˚ per trial; Experiment 8). However, once again, I found 

no significant effect of anodal cerebellar tDCS on adaptation (Figures 5.14 and 5.15). 

In experiment 7, there were no significant differences between the anodal and sham 

groups during pre 1, pre 2 or when initially exposed to the 10˚ VR (Table 5.2). In 

addition, no significant differences were observed across adaptation (t(34)=-0.35, p=0.72,  

d=0.1; Figure 5.14) or retention (t(34)=-0.9, p=0.37, d=0.3). To examine the degree of 

cognitive strategy used by each participant, after adapt 3 I asked participants to verbally 

report the direction they were aiming towards (Figure 5.14A, explicit). Despite 

displaying a hand direction of approximately 20-25˚ (Figure 5.14), both groups reported 

a similar aiming direction towards the target (Anodal explicit report: 1.7±2.1⁰, Sham: 

1.4±4.1⁰, independent t-test t(34)=0.47, p=0.64, d=0.09). This indicates that all 

participants had developed only a minimal cognitive aiming strategy. During this 

explicit block, although there was no significant difference between groups for   hand 

direction (t(34)=-1.8, p=0.07, d=0.61), there did appear to be a trend for the anodal group 

to display reduced hand direction relative to the sham group (Figure 5.14). In addition, 

there were no significant differences between groups for either RT or MT during 

adaptation or retention (Table 5.3).  
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Figure 5.14 Experiment 7: step perturbation schedule.  Epoch (average across 8 trials) 

uncorrected angular hand direction (⁰) data for the anodal (blue) and sham 

(red) groups. Positive values indicate CW hand direction. Bar graphs inset 

indicate mean hand direction for the anodal and sham groups during 

adaptation (adapt 1-3) and retention. This was determined for each 

participant by averaging consecutive epochs (see Methods). Independent t-

tests compared these values between groups. Performance of the anodal and 

sham groups was identical throughout the experiment. Solid lines, mean; 

shaded areas/error bars, S.E.M. There was no significant difference between 

the anodal and sham cerebellar tDCS groups (18 in each group) during 

adaptation   (t(34)=-0.35, p=0.72,  d=0.1). 

 

 

In experiment 8, there was a significant difference between groups during pre 1 (Table 

5.2), suggesting a small variation (1⁰) in baseline performance between groups. Again, 

to account for these differences, I subtracted each participant‟s average hand direction 

during pre1 from their subsequent performance, there was no significant difference 

between the anodal and sham cerebellar tDCS groups during adaptation (t(30)=0.1, 

p=0.9, d=0.004). Similarly to experiment 7, despite displaying a hand direction of 

approximately 20-25⁰ (Figure 5.15), both groups reported a similar aiming direction 
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towards the target (Anodal: 0.64±1.5⁰, Sham: 0.37±0.7⁰, independent t-test t(30)=0.67, 

p=0.51, d=0.23). This indicates that all participants had developed only a minimal 

cognitive aiming strategy. During this block, there was also no significant difference 

between groups for actual hand direction (t(30)=0.93, p=0.4, d=0.34). There were no 

significant differences between groups for either RT or MT during adaptation or 

retention (Table 5.3). 

 

 

Figure 5.15 Experiment 8: gradual perturbation schedule. Epoch (average across 8 

trials) uncorrected angular hand direction (⁰) data for the anodal (blue) and 

sham (red) groups. Positive values indicate CW hand direction. Bar graphs 

inset indicate mean hand direction for the anodal and sham groups during 

adaptation blocks and retention (post). This was determined for each 

participant by averaging consecutive epochs (see Methods). Independent t-

tests compared these values between groups. Performance of the anodal and 

sham groups was identical throughout the experiment. Solid lines, mean; 

shaded areas/error bars, S.E.M. There was no significant difference between 

the anodal and sham cerebellar tDCS groups (16 in each group) during 

adaptation (t(30)=0.1, p=0.94, d=0.004). 
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5.3.8 Experiment 9 

 

To validate my only positive result, I repeated experiment 1 with 2 new groups 

(anodal/sham) of naive participants. Unfortunately, I found no significant difference 

between the anodal and sham cerebellar tDCS groups. There were no significant 

differences between groups during pre 1, pre 2 or when initially exposed to the 30˚ VR 

(Table 5.2). In addition, there were no differences between groups across adaptation 

(t(24)=-2.5, p=0.8,  d=0.1; Figure 5.16) or retention (t(24)=0.23, p=0.8,  d=0.1). Finally, 

there were no significant differences between groups for either RT or MT during 

adaptation or retention (Table 5.3). 

 

Figure 5.16 Experiment 9: experiment 1 validation. Epoch (average across 8 trials) 

uncorrected angular hand direction (⁰) data for the anodal (blue) and sham 

(red) groups. Positive values indicate CW hand direction. Bar graphs inset 

indicate mean hand direction for the anodal and sham groups during 

adaptation blocks and retention (post). This was determined for each 

participant by averaging consecutive epochs (see Methods). Independent t-

tests compared these values between groups. Performance of the anodal and 

sham groups was identical throughout the experiment. Solid lines, mean; 

shaded areas/error bars, S.E.M. There was no significant difference between 

the anodal and sham cerebellar tDCS groups (13 in each group) during 

adaptation (t(24)=-2.5, p=0.8,  d=0.1). 
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Despite the differences between the current experimental set up and Galea et al., (2011), 

such as number of trials, duration of tDCS and use of tool, I pooled data across 

experiments 1 and 2 from Galea et al., (2011) and experiments 1, 4 and 9 from the 

current study. For each participant, I calculated an average ∆ hand direction across all 

adaptation epochs, excluding epoch 1 and performed an independent t-test between the 

pooled anodal (n=61) and sham (n=60) groups. This pooled data showed a significant 

difference between anodal (20.1± 2.9) and sham cerebellar tDCS (17.5± 4.1; t(119) =3.9, 

p=0.0005, d=0.7). Interestingly though, the effect size was substantially smaller than the 

positive results found in experiment 1.  

 

5.3.9 Self-reported ratings of attention, fatigue, and sleep 

 

There were no significant differences between groups across all experiments for the 

self-reported ratings of attention, fatigue, and quality of sleep (Table 5.1).  

 

 

5.4 Discussion 

 

Across all nine experiments, participants showed a clear ability to adapt to the novel 

visuomotor rotation. In experiment 1, I was able to show that anodal cerebellar tDCS 

apparently caused a greater amount of adaptation relative to sham tDCS; however, this 

did not hold when I repeated the same experiment with a new set up participant 

(experiment 9). Although similar, these experiments differed to the original Galea et al., 

(2011) study in which participants used a digitised pen and wore goggles to prevent 

vision of the hand. When manipulating experimental parameters such as screen 

orientation (experiment 2), different tDCS machine (experiment 3), use of a tool 
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(experiment 4), different cerebellar tDCS montage (experiment 5), tDCS timing 

(experiment 6) and the perturbation schedule (experiments 7 and 8), I found anodal 

cerebellar tDCS to have no reliable effect on visuomotor adaptation.  

5.4.1 tDCS did not enhance visuomotor adaptation when using a horizontal screen 

 

Although the facilitatory effect of cerebellar tDCS on motor learning has been shown 

across visuomotor adaptation (Galea et al., 2011), force-field adaptation (Herzfeld et al., 

2014), locomotor adaptation (Jayaram et al., 2012), saccade adaptation (Panouilleres et 

al., 2015, Avila et al., 2015), motor skill learning (Cantarero et al., 2015) and language 

prediction tasks (Miall et al., 2016), the sensitivity of this effect to specific task 

parameters had not been previously documented. As a large proportion of motor 

learning studies are performed whilst the visual feedback is provided in the same plane 

as the movement (Shabbott and Sainburg, 2010, Herzfeld et al., 2014), I was first 

motivated to examine whether the positive influence of tDCS on visuomotor adaptation 

can be observed when the screen orientation was flipped to a horizontal position. Thus 

experiment 1 and 2 addressed this issue by first replicating the screen display used in 

Galea et al. (2011), and then showing that tDCS was not associated with greater 

adaptation in the more typical in-plane feedback condition. The posterior part of the 

cerebellum is important for visuomotor adaptation (Rabe et al., 2009) and heavily 

connected with the posterior parietal cortex (O'Reilly et al., 2010), which is crucial for 

visuomotor control (Culham et al., 2006). As modelling studies suggest cerebellar tDCS 

mainly activates the posterior part of the cerebellum (Ferrucci et al., 2012, Parazzini et 

al., 2014, Rampersad et al., 2014), the increased visuomotor complexity and presumed 

greater reliance on the posterior cerebellum with a vertical screen orientation may 

optimise the effects of cerebellar tDCS on visuomotor adaptation. 
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5.4.2  Phoresor tDCS machine did not enhance visuomotor adaptation 

 

Although several studies have used the Phoresor machine and showed significant 

facilitatory effect of cerebellar tDCS on visuomotor task (Galea et al., 2009, Galea et 

al., 2011, Herzfeld et al., 2014, Cantarero et al., 2015), As the Phoresor machine worked 

in the presence of higher impedance than the Neuroconn machine, it is possible that less 

current was being passed into the brain. However, as we did not record the level of 

impedance within each participant this is pure speculation. 

 

5.4.3 tDCS did not improve visuomotor adaptation even when participants used a tool 

 

Next, I was unable to replicate the original Galea et al., (2011) study where participants 

held a tool/digitizing pen (Galea et al., 2011; Block et al., 2012). Although experiment 4 

was a closer replication of Galea et al., (2011) than experiment 1 and 9, participants still 

did not wear goggles to restrict vision of the hand. While not significant, Figure 5.11 

does suggest there was a trend towards the anodal tDCS group adapting by a greater 

amount.  

 

5.4.4  tDCS did not effective visuomotor adaptation when cerebellar tDCS reference 

electrode was on the shoulder 

 

I changed the position of the reference electrode from the face to the shoulder to 

examine if the associated field changes suggested by modelling studies show a 

beneficial effect of tDCS on visuo motor adaptation (Mehta et al., 2015). However, I 

failed to show this effect, which suggests that this montage may not alter the physiology 

of the cerebellum strongly enough to activate the posterior cerebellum.  
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5.4.5  tDCS after-effect did not affect visuomotor adaptation   

 

It has also been reported that anodal cerebellar tDCS applied during rest can lead to 

both physiological and behavioural changes over a period of 10-30 minutes after the 

cessation of stimulation (Galea et al., 2009, Pope and Miall, 2012). This indicates that 

the after-effect of cerebellar tDCS could have a beneficial effect on visuomotor 

adaptation. However, following 25 minutes of offline anodal cerebellar tDCS, I found 

no observable differences between the anodal and sham groups. One significant issue is 

that despite having neurophysiological evidence regarding the changes associated with 

offline cerebellar tDCS (Galea et al., 2009), no such published data exists for its online 

effects except my finding in the previous chapters which showed online tDCS had 

larger physiological change than post tDCS.  

 

5.4.6  tDCS did not enhance adaptation when the perturbation was applied gradually 

 

The contribution of the cerebellum to abrupt and gradual perturbation paradigms is an 

area of continued interest within the motor adaptation literature. For example, 

Criscimagna-Hemminger et al., (2013) showed cerebellar-lesion patients were unable to 

adapt to abrupt perturbations but preserved the capacity to adapt to gradual 

perturbations. Similarly, Schlerf et al., (2012) reported modulation of cerebellar 

excitability for abrupt, but not gradual, visuomotor adaptation (Schlerf et al., 2012). 

However, Gibo et al., 2013 showed that cerebellar-lesion patients may use non-

cerebellar strategic learning to successfully adapt (Gibo et al., 2013). In line with this 

argument, other recent work suggests that large abrupt visual rotations reduce 

cerebellar-dependent sensory-prediction error learning and enhance strategic learning, 

whilst smaller visual rotations bias learning towards sensory-prediction error learning 

(McDougle et al., 2015, Bond and Taylor, 2015, Taylor et al., 2014). This suggests that 

cerebellar tDCS may have been more effective with small or gradual perturbation 

schedules. However, I found that tDCS did not show any significant effect on 
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adaptation when the perturbation was applied in small steps (experiment 7) or gradually 

(experiment 8).   

 

5.4.7  The positive effect of cerebellar tDCS in experiment 1 was not replicated 

 

Finally, I wanted to see whether the positive effect of cerebellar tDCS on visuomotor 

adaptation observed in experiment 1 could be replicated in a new set of naïve 

participants. Unfortunately, this positive effect was not observed, with experiment 9 

showing no significant difference between the anodal and sham tDCS groups during 

adaptation. This suggests that the positive effects of cerebellar tDCS in experiment 1 

were either observed by chance or that the effect size of cerebellar tDCS is significantly 

smaller than one might imagine. Although my sample sizes (10-15 per group) were in 

the range of previously published tDCS papers (Galea et al., 2011, Cantarero et al., 

2015, Hardwick and Celnik, 2014, Block and Celnik, 2013), a recent study indicates 

this could be significantly under powered (Minarik et al., 2016). Minarik et al., (2016) 

showed that with a suggested tDCS effect size of 0.45, the likelihood of observing a 

significant result with 14 participants (per group) was approximately 20%. To examine 

this further, I pooled data across experiments 1 and 2 from Galea et al., (2011) and 

experiments 1, 3 and 7 from the current study. This pooled data showed a significant 

difference between anodal and sham cerebellar tDCS. However, the effect size was 

substantially smaller (0.7) than what was initially observed in experiment 1. At present 

it is difficult to determine a true effect size for not only cerebellar tDCS but tDCS in 

general due to the clear publication bias in the literature towards positive effects. 

Through informal discussion with many colleagues, it is clear that researchers are 

observing null effects with cerebellar tDCS, but have so far been slow to publish these 

results. Although this is beginning to change (Steiner et al., 2016, Mamlins et al., 2016, 

Westwood et al., 2016), I believe a more accurate representation of the effect size, and 

so the required participant numbers, of cerebellar tDCS will only be achieved if null 

results are published more often.  
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5.5 Conclusion  

 

In conclusion, I failed to find a consistent effect of cerebellar tDCS on visuomotor 

adaptation. Although initially replicating previous reports of cerebellar tDCS enhancing 

visuomotor adaptation, I found this not to be consistent across varying task parameters, 

nor reproducible in a new group of participants. I believe these results highlight the 

need for substantially larger group sizes for tDCS studies, and may call into question the 

validity of using cerebellar tDCS within a clinical context where a robust effect across 

behaviours would be required.  
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6 GENERAL DISCUSSION 

 

6.1 Introduction 

 

In this chapter, I would like to summarise the main findings of my work in addition to 

discuss its limitations and make some suggestions for future research directions. 

Cerebellar tDCS is known to enhance motor adaptation. Although promising, the neural 

mechanism underpinning the effects of cerebellar tDCS is unknown. Therefore, the 

objective of my research was to investigate the mechanisms underlying the effect of 

cerebellar tDCS on motor learning. In this thesis, I investigated the neurobiological 

changes associated with cerebellar tDCS through visuomotor adaptation, MRS and 

resting state fMRI in addition to assessing the consistency of cerebellar tDCS on 

visuomotor adaptation across a range of varying task parameters. The major finding of 

this work was that there appeared to be an „all-or-nothing‟ type effect of cerebellar 

tDCS whereby ~20% of participants showed a strong neurobiological response to 

cerebellar tDCS. The results imply that cerebellar tDCS only produced measurable 

neural changes in a subset of participants, providing a possible explanation why 
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cerebellar tDCS causes variable results across participants when used with behavioural 

tasks (Steiner et al., 2016, Mamlins et al., 2016, Westwood et al., 2016).   

 

 

6.2 Summary of results 

 

The three of four experimental chapters (chapter 2 explained the MRS techniques), all 

investigated different aspects of cerebellar tDCS. In chapter 3, I compared the level of 

adaptation and retention between two groups while they received either anodal or sham 

cerebellar tDCS. The anodal group then underwent two sessions of MRS (chapter 3) 

and fMRI (chapter 4) for further physiological assessment. Using MRS, I measured 

metabolites in a localised voxel within their right posterior cerebellum pre-, during and 

post– cerebellar tDCS. In contrast to the previous studies that have demonstrated tDCS 

to cause a significant decrease in GABA within M1 (Stagg, 2014, Stagg et al., 2014, 

Stagg et al., 2011, Kim et al., 2014, Bachtiar et al., 2015), I found cerebellar tDCS 

caused a large variability across the participants (~90% increase to a 100% decrease). 

However, similar to the results observed in M1 tDCS where a reduction in GABA was 

correlated with improvements in sequence learning (Stagg et al., 2011) and force-field 

adaptation (Kim et al., 2014), I found cerebellar tDCS-induced reduction in GABA was 

correlated with improvement in visuomotor adaptation. According to the previously 

shown finding that visuomotor adaptation was associated with a decrease in cerebellar-

cortical excitability (Schlerf et al., 2012), my finding supports the view that a tDCS-

dependent decrease in GABA may enhance visuomotor adaptation through a reduction 

in Purkinje cell activity and related to the long-term depression (LTD) observed with 

cerebellar learning. 

The next finding of this work was tDCS-induced reduction in both Glu/GLX was 

associated with better visuomotor retention. This result is difficult to explain because 

not only the mechanism of retention in the human cerebellum, but also the relationship 
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between cell-type activity and MRS-detected changes within the cerebellum is still 

unknown. One possibility is that a decrease in Glu/GLX reflects a decrease in 

glutamatergic input into the cerebellar cortex and reduced activity of Purkinje cells. 

This would reduce CBI and enhance M1 function. It is known that excitation of M1 

facilitates retention, potentially retaining or consolidating what has been learnt by the 

cerebellum (Galea et al., 2011, Sami et al., 2014). To explain this result, the MRS data 

should have ideally been collected while M1 is activated, which entailed performing the 

task. 

In chapter 4, I studied the effect of cerebellar tDCS on functional connectivity between 

the right cerebellum (rCB) and other component of the visuomotor related network and 

found a significant decrease in FC between the rCB and right parietal cortex (rPC) and 

between rCB and left frontal cortex (lFC). This change was not correlated with 

participant‟s visuomotor adaptation performance. However, this result supports the 

recently published work that has been shown that TMS over the lateral or midline 

cerebellum separately modulates multiple resting state networks; default mode network 

and dorsal attention network (Halko et al., 2014). As tDCS electrode cover both lateral 

and part of midline of the cerebellum, therefore it is not unexpected to affect multiple 

network simultaneously. There was also a significant increase in connectivity between 

rCB and Vermis, within the cerebellum itself, which could be related to the reduction of 

inhibitory output of GABAergic cerebellar cortex.  

In chapter 4, I also found an increase in functional connectivity between the cerebellum 

and left parietal cortex was correlated with greater participant‟s visuomotor adaptation. 

This finding fits the model suggested by Shadmehr and Krakauer in 2008, the 

cerebellum predicts the motor command, whilst the posterior parietal cortex compares 

this prediction with the actual sensory (visual) feedback. Therefore, this network is 

known to be crucial in successful visuomotor adaptation (Shadmehr and Krakauer, 

2008). Anatomically, this might be reflecting the effect of tDCS on decreasing 

GABAergic Purkinje cell activity within the cerebellar cortex and reduction of the deep 

cerebellar nuclei that may lead to an increase in connectivity between the cerebellum 

and left parietal cortex. By correlating the change in GABA and functional connectivity, 
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I found this relationship was essentially driven by 21% of participant which may 

suggest the small percentage of responsive people to stimulation.  

In addition to the physiological assessment, in chapter 5, I also investigated the 

consistency of the cerebellar tDCS effects on a visuomotor adaptation task across a 

wide range of task parameters, which were systematically varied. In this chapter, I 

initially showed anodal cerebellar tDCS caused a greater amount of adaptation relative 

to sham tDCS as previously reported (Galea et al., 2011). However, this did not hold 

when I repeated the same experiment with a new group of participants or after any 

unique feature of the task was altered such as position of the monitor, tDCS machine, 

offline tDCS, use of a tool, tDCS montage, and perturbation schedule. Therefore, I 

failed to find a consistent effect of cerebellar tDCS on visuomotor adaptation. This 

inconsistency in behavioural experiment supports both of my physiology finding and 

increasingly published data regarding the inconsistency of cerebellar tDCS in 

behavioural tasks (Conley et al., 2016, Minarik et al., 2016, Dyke et al., 2016) as 

significant differences between anodal and sham groups would be heavily dependent on 

the proportion of „responders‟ within the anodal group.  

In conclusion, this study provided a novel insight into the neurophysiology 

underpinning cerebellar tDCS, which indicates that cerebellar tDCS may have an all-or-

nothing type effect on individual participants with approximately 21% showing 

substantial online changes in GABA (decrease of between 50% -100%) and resting 

connectivity (increase of more than 100% between rCB-left parietal cortex) were 

responsive to cerebellar tDCS.  

 

 

6.3 Limitations of the research  

 

The main limitation of my work was the small sample sizes used. The results from 

chapter 3 and 4 both indicated that greater sample sizes were needed in order to confirm 
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whether 3 responders (21%) to cerebellar tDCS really reflected the sensitivity rate 

within the population as a whole. In addition, my visuomotor adaptation chapter suffers 

from the limitation of a between-subject design. Previous work has shown large inter-

individual variation in motor learning rates (Stark-Inbar et al., 2017), implementation of 

motor learning processes (Christou et al., 2016) and responsivity to stimulation 

(Wiethoff et al., 2014). These factors may have all negatively affected my ability to 

observe consistent between-subject tDCS differences in visuomotor. Although a within-

subject design would overcome many of these issues, this is also problematic as it 

introduces the substantial problem of carry-over effects being observed with visuomotor 

adaptation weeks after initial exposure (Krakauer, 2009).  

 

 

6.4  Future direction 

 

My results indicate that for cerebellar tDCS to become an effective tool, technical 

advances must be identified that improve the strength and consistency of its effect on 

functional tasks. For example, the common assumption is to that currents of 1-2mA are 

effective (Woods et al., 2016). However, previous work has used currents of up to 5mA 

on other brain areas (Furubayashi et al., 2008, Hammerer et al., 2016, Bonaiuto and 

Bestmann, 2015), suggesting greater current intensities are possible with cerebellar 

tDCS. Alternatively, there is exciting work suggesting high-definition tDCS combined 

with computational modelling of the brain‟s impedances can lead to more exact 

predictions regarding the behavioural results associated with tDCS. It is possible that 

using high-definition tDCS along with computational modelling to optimise electrode 

placement could enhance the magnitude and reliability of the tDCS effect on the 

cerebellum (Kuo et al., 2013). Finally, it would be very informative to investigate the 

neurobiological change underneath cerebellar tDCS while motor learning is happening 

instead of during rest.  
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