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ABSTRACT

Firstly, we employ a three-state hidden semi-Markov model (HSMM) to explain the

time-varying distribution of the Chinese stock market returns. Our results indicate that

the time-varying distribution depends on the hidden states, represented by three market

conditions, namely the bear, sidewalk, and bull markets.

Secondly, we further employ the three-state HSMM to the daily returns of the Chinese

stock market and seven developed markets. Through the comparison, three unique

characteristics of the Chinese stock market are found, namely “Crazy Bull”, “Frequent

and Quick Bear”, and “No Buffer Zone”.

Thirdly, we propose a new diffusion process referred to as the “camel process” to model

the cumulative return of a financial asset. Its steady state probability density function

could be unimodal or bimodal, depending on the sign of the market condition parameter.

The price reversal is realised through the non-linear drift term.

Lastly, we take the tools in functional data analysis to understand the term structure

of Chinese commodity futures and forecast their log returns at both short and long

horizons. The FANOVA has been applied to examine the calendar effect of the term

structure. An h-step functional autoregressive model is employed to forecast the log

return of the term structure.
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Introduction

In the introduction, we provide the background information about the Chinese stock mar-

ket, review the relevant finance theories, and present the research questions, motivations,

and contributions.

1



2 INTRODUCTION

In this collection of four loosely related essays, several advanced quantitative methods,

namely hidden semi-Markov model, diffusion process, and functional data analysis, have

been applied to understand and model the asset returns in the Chinese financial market.

Before the discussion on the technical detail of the statistical methods used in each chap-

ter, it is useful to provide general information about Chinese stock market. We present

basic statistics of the Chinese stock market, such as market capitalization, trading value,

and number of listed companies, along with the discussion of main stock market indices

in China. Compared with developed markets, the Chinese stock market has a number

of unique features, such as limited openness, heavy regulation, and individual investors

dominating structure. Those unique features are closely related to the quantitative

results from the statistical methods.

Additionally, it is worthwhile to review the relevant finance theories, including the effi-

cient market hypothesis (EMH), technical analysis, and behavioural finance. Although

this thesis does not focus on testing EMH, but the results from the statistical methods

can provide some evidence of inefficiency in the Chinese financial market. In Chapter

1, we model the CSI 300 returns by a three-state HSMM and design a simple trading

strategy to exploit the arbitrage opportunity in the inefficient market. Our findings

contribute to the literature of technical analysis that are on the disapproval side of

the EMH. Behavioural finance provides us a solid foundation to explain some results

in Chapter 1 and Chapter 2. For example, the disposition effect is the reason of our

finding “bull mixed with bear” during 2007. With the consideration of the price reversal

and the market conditions, Chapter 3 propose a new diffusion process referred to as the

“camel process” in order to model the cumulative return of a financial asset. In Chapter

4, we show the predicability of functional autoregressive models on the term structure of

commodity futures in China, which provide the evidence of inefficiency in the Chinese

commodity futures market as well.
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The Institutional Background

Overview on the Chinese Stock Market

In mainland China, there are two main stock exchanges, namely the Shanghai Stock

Exchange (SSE) and the Shenzhen Stock Exchange (SZSE). Table 1 lists the largest ten

stock exchanges in the world, ranked by market capitalization in April 2017. SSE and

SZSE are ranked at the 4th place and the 8th place, respectively. Although SSE is larger

than SZSE in terms of market capitalization, SZSE has more trading value and more

number of listed companies.

Table 1: Statistics of Stock Exchanges (April 2017)

Market Cap.

(USD millions)

Trading Value

(USD millions)

NO. of Listed Companies

Total Domestic Foreign

1. NYSE 20,134,573.8 1,174,981.3 2,294 1,806 488
2. Nasdaq - US 8,626,325.5 838,643.7 2,895 2,511 384
3. Japan Exchange Group Inc. 5,263,274.0 437,602.4 3,562 3,556 6
4. Shanghai Stock Exchange 4,354,737.9 617,076.6 1,264 1,264 0
5. LSE Group 3,926,537.1 167,447.9 2,492 2,046 446
6. Euronext 3,902,057.1 148,905.5 1,279 1,106 173
7. Hong Kong Exchanges and Clearing 3,557,033.5 114,339.9 2,020 1,915 105
8. Shenzhen Stock Exchange 3,294,346.1 716,443.3 1,959 1,959 0
9. TMX Group 2,056,681.6 96,303.0 3,426 3,378 48
10. BSE India Limited 1,946,001.7 11,411.5 5,823 5,822 1

Source: World Federation of Exchanges members, affiliates, correspondents and non-members.

In the two exchanges, the common shares are classified as A-shares and B-shares. A-

shares are denominated by local currency RMB and traded in RMB only by domestic

institutional and individual investors. B-shares is also denominated by RMB but traded

in foreign currencies (USD in SSE and Hong Kong dollar in SZSE) by licensed foreign

and domestic investors. It should be highlighted that A-shares take up the majority

(nearly 96%) of the whole market.

During the last two decade, China has developed multi-tier stock market, consisting

of main board, SME board, and ChiNext board. The main board in SSE and SZSE

lists companies with large capital size and stable profit. Established in May 2004, SME

board is primarily targeted to list small and medium size companies with stable revenue.

The main sector of companies listed in SME board is the manufacturing, accounting for

75% of the SME board. Launched in October 2009, ChiNext is positioned to serve
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innovative and fast-growing enterprises, especially high-tech firms. ChiNext aims to

encourage innovation and creativity. The financial requirements of listing in ChiNext

are less stringent than those of the main and SME boards. SZSE asserts that ChiNext is

not a “mini-board” and it is open to all enterprises size as long as they meet the listing

criteria.

There are several major Chinese stock market indices often used by academic research.

The SSE Composite Index is a capitalization-weighted index, which represents the over-

all market movement of all A-shares and B-shares companies listed on SSE. The SZSE

Component Index is a capitalization-weighted index, consisting of the 500 top com-

panies listed in SZSE A-shares. The CSI 300 (a.k.a SHZE 300) index is a free-float

capitalization-weighted index based on 300 A-shares stocks listed on both SSE and

SZSE. There are several SSE size indices, SSE 50, SSE 180, and SSE 380, respectively

representing the top 50, 180, 380 companies listed on SSE A-shares by free-float capi-

talization weight.

Among those market indices, the CSI 300 index is widely accepted as an overall repre-

sentation for the general movements of the China A-share markets (Yang et al., 2012;

Hou & Li, 2014). The index was jointly launched by the SSE and SZSE on April 8th

2005. The index is complied and published by the China Securities Index Company

Ltd. It is comprised of 300 large-capitalization and actively traded stocks, which covers

roughly 70% of total market capitalization of the two stock markets (Yang et al., 2012).

More importantly, the first Chinese stock market index futures contract is based on the

CSI 300 index, launched on April 16th 2010. Hence, we will use the CSI 300 index for the

overall perfomrance representation of the Chinese stock market throughout this thesis.

Features of the Chinese Stock Market

Compared with developed markets, there are several unique features of the Chinese stock

market. Firstly, the Chinese stock market is relatively isolated from the international

financial markets because of very limited openness to the international investors. There

are no foreign companies listed on SSE and SZSE (see Table1). The only channel for
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foreign investors is the qualified foreign institutional investors (QFII). However, the ap-

plication for the QFII license is strictly examined by the the China Securities Regulatory

Commission (CSRC). For the foreign investors with the QFII license, there are still a

number of restrictions on their investment behaviour in the Chinese stock market.

Secondly, the Chinese stock market is heavily regulated and intervened by the govern-

ment. For the purpose of stabilising market, SSE and SZSE apply the rule of price

limits that the daily change of individual stock price cannot go beyond more than 10%.

In addition to the price limits, CSRC imposed the “Circuit Breaker” 1 on January 1st

2016. In China, the “Circuit Breaker” is based on the abnormal movement of the CSI

300 index. Specifically, the trading of stocks and relevant derivatives will be suspended

for 15 minutes if the market index rises/drops 5%, and the trading will be stopped for

the rest of day if the market index rises/drops 7%. After the launch of the “Circuit

Breaker”, it was activated twice in the first week. Nevertheless, the Chinese government

decided to stop the “Circuit Breaker” on January 8th 2016, because of the complaint

from the investors.

Thirdly, there is a lack of risk management tools in the Chinese stock market. As

a matter of fact, short-selling stocks in China is still limited and investors can only

buy stocks. Index futures were supposed to be a suitable tool to hedge downside risk.

However, the Chinese regulator imposed various restrictions on trading index futures.

In August 2015, more restrictions were imposed because the CSRC suspected that some

investors participated in “malicious” short-selling index futures. Many private funds

and security firms were under investigation for betting on a market drop. The trading

volume of index futures shrank more than 90%, from roughly 3 million to 50 thousand

per day. At the moment, utilizing index futures to manage risk is still subject to a

number of restrictions (e.g. no more than 10 contracts are allowed to open). Due to

those restrictions on domestic index future markets, investors are not able to freely trade

index futures. Many investors choose to trade Chinese index future products in foreign

1Note that “Circuit Breaker” is different from trading halt which occurs when a stock exchange stops
trading on a specific stock for a certain time period. When “Circuit Breaker” is activated, the trading
of all stocks on the exchange will be affected.
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markets, like the FTSE China A50 index futures on the Singapore Exchange and E-mini

FTSE China 50 index futures on the Chicago Mercantile Exchange.

Fourthly, the majority of investors are individual investors without professional invest-

ment knowledge, who are focusing on short-term speculation rather than long-term in-

vestment. In China, individual investors account for 82.24% of total trading volume in

2013 (Han & Li, 2017), whereas institutional investors dominate in developed markets.

As indicated by Table 2, there are in total 49 million individual investors in China, while

the number of institutional investors is only 71 thousand. Another distinctive feature

suggested by Table 2 is that the majority of individual investors has small amount of

market value. Specifically, 93.61% individual investors hold less than 0.5 million mar-

ket value A-shares stocks. The market value of A-shares stocks held by institutional

investors is more diversified, with 32.66% larger than 10 million. According to the 2015

annual report of China Securities Depository and Clearing Corporation, 48 % investors

are less than 40 years old (see Table 3), and less than 20 % of the individual investors

have undergraduate degree or above.

Table 2: Market Value Distribution of A-Shares Investors (December 2016)

Market Value
(10000 RMB)

Individuals Institutions Total

No. of
Investors Ratio

No. of
Investors Ratio

No. of
Investors Ratio

< 1 12,017,997 24.37% 4,536 6.30% 12,022,533 24.35%
1-10 23,627,616 47.92% 8,288 11.51% 23,635,904 47.87%
10-50 10,513,794 21.32% 10,978 15.25% 10,524,772 21.31%
50-100 1,791,721 3.63% 6,055 8.41% 1,797,776 3.64%
100-500 1,195,312 2.42% 13,360 18.56% 1,208,672 2.45%
500-1000 97,822 0.20% 5,257 7.30% 103,079 0.21%
1000 + 63,640 0.13% 23,508 32.66% 87,148 0.18%

Total 49,307,902 100.00% 71,982 100.00% 49,379,884 100.00%

Source: Wind.

Lastly, the Chinese stock market is very liquid with high turnover velocity. The turnover

velocity in the Chinese stock market is much higher than the turnover velocity in devel-

oped markets. In April 2017, the turnover velocity of SZSE and SSE are 260.97% and

170.04%, ranked in the 2nd and 4th places among all stock exchanges in the world 2. The

possible reason of high turnover velocity is that a large proportion of trading activities

2Data source: World Federation of Exchanges members, affiliates, correspondents and non-members.
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Table 3: Investors Age Distribution

Age No. of Investors Ratio

<20 479,900 0.49%
20 - 30 19,751,000 19.99%
30 - 40 27,334,100 27.66%
40 - 50 24,701,700 25.00%
50 - 60 15,345,500 15.53%
60 + 11,209,400 11.34%
Total 98,821,600 100.00%

Source: 2015 annual report of China Securities Depos-
itory and Clearing Corporation.

are speculative rather considered as investments. Many individual investors are heavily

influenced by market rumours. Individual investors like to follow the news and purchase

stocks in a herding manner (Tan et al., 2008).

Two Notable Historical Events

Split-Share Structure Reform

Before the reform, one of distinct feature in the Chinese stock market was the existence

of the non-tradable shares, which were mainly held by the government and its affiliates.

The percentage of non-tradable shares in the total shareholdings was approximately

two-thirds. At that time, the investors with tradable shares had very limited power in

the company governance. The split-share structure induced a number of problems, such

as inefficient corporate governance, agency problem, suppression of free trading (Yeh

et al., 2009).

On April 29th 2005, the Chinese government imposed a split-share structure reform,

which aimed to convert all non-tradable shares to tradable shares. The implementation

of the reform took about roughly two years. Initially, the China Securities Regulatory

Commission (CSRC) conducted a pilot program on the conversion of four companies

in April 2005, followed by another 42 companies in June 2005. In August 2005, the

reform was opened to all listed companies. By the end of 2017, more than 97% of

listed companies in China has implemented the reform (Nartea et al., 2013). Liao et al.

(2014) point out that the reform was a milestone event of China’s financial liberalization,
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which significantly reduced agency problems and improved the corporate governance of

the listed companies. Due to the conversion from non-tradable shares to tradable shares,

the reform had provided substantial liquidity to the market.

Other Source Financing

It has been observed that other source financing activities are very active during 2015.

Other source financing refers to borrow funds from trust companies, fund-matching com-

panies, etc. Unlike margin loan and margin financing, the regulation on other source

financing is much less strict, which would be essential cause for the high leverage. For

example, umbrella trusts are not required to register with the China Securities Depos-

itory and Clearing Corporation. Umbrella trusts contain two sorts of tranches. Banks

purchase the senior tranches, which guarantee fixed returns. Subordinate tranches are

sold to private clients, like wealthy individuals, private companies, and fund-matching

companies, and provide uncertain returns depending on the performance of the wealth

management product. In other words, subordinate tranches would get the rest of invest-

ment profits. Jiang (2014) claimed that the Minsheng Bank, China Everbright Bank,

and China Merchants Bank were heavily involved in the business of umbrella trusts.

There is no accurate data about the size of umbrella trusts but some estimations indi-

cate that they accounted for roughly 200 billion RMB by the end of 2014 (Hsu, 2015).

In favour of high interest rates, fund-matching companies lend funds to investors by

providing margin loans without sufficient consideration of risk. Yap (2015) pointed out

that fund-matching companies channelled 500 billion RMB (June 30, 2015) from open-

ing multiple and subdivided securities accounts with brokerages. These fund-matching

companies were subject to a lack of regulation until CSRC imposed restrictions on them

in July 2015.
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Theoretical Background

The Efficient Market Hypothesis and Anomalies

One of most relevant finance theory is the efficient market hypothesis (EMH). The

widely accepted definition of the EMH is proposed by Fama (1970). He defines the EMH

as that “A market in which prices always ‘fully reflect’ available information is called

‘efficient’ ”. He further distinguishes three different forms of the EMH, namely weak

form, semi-strong form, and strong form, depending on the information set of historical

prices only, public available information, any relevant information, respectively.

In the 1970s, the EMH was generally accepted by the academic researches in financial

economics (Shiller, 2003). One straightforward implication of the EMH is that the

future stock price is unpredictable. Fama (1965) concludes that the stock price follows a

random walk with empirical evidence from the thirty stocks of the Dow-Jones Industrial

Average. He verifies the random walk model by separately testing two sub-hypotheses

that the successive price changes are independent and the price changes follow some

probability distribution. Samuelson (1965) uses a concept of the martingale to prove

that anticipated prices fluctuate randomly. The random walk model and the martingale

hypothesis severely challenge the proponents of the technical analysis, which will be

discussed in depth later.

After the prevalence of the EMH, many researchers in finance and statistics, however,

started to doubt the EMH and believe that the stock prices are at least partially predi-

cable (Malkiel, 2003). From the time-series perspective, Campbell et al. (1997) and Lo

& MacKinlay (2002) find the short-term momentum that the stocks with short-term (i.e.

daily, weakly, and monthly) above-average returns tend to have a high probability of

further above-average returns in the subsequent period, which is the evidence rejecting

the EMH in the sense that the stock price is not purely random walk. But only 12

percent of the variation in the daily stock market index can be predicted by using the

information of the past daily returns (Beechey et al., 2000). At longer horizons (three to

fives years), many studies have shown evidence of mean reversion in stock returns (e.g.

Fama & French, 1988; Poterba & Summers, 1988). Fama & French (1988) claim that
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20 to 40 percent of the variation in the long horizon returns can be predicted by using

the information of the past returns.

There are some other anomalies from the cross-sectional perspective, such as the size

effect, the value effect, etc. Fama & French (1993) identify that the small-capitalization

company stocks tend to have larger returns than those of large-capitalization company

stocks and that stocks of companies with high book-to-market ratio (i.e. high value)

tend to have larger returns than ones with low book-to-market ratio. They further

conclude that the size and the value together can provide explanatory power for stock

returns.

A number of researches have found the calender effects of stock returns, such as month-

of-the-year and day-of-the-week effects, which uncover the empirical evidence that the

average stock returns in a certain calender month or weekday appear to be significantly

different from the other months or weekdays. For example, Haugen & Lakonishok (1988)

find the relatively higher returns in January (the January effect), and French (1980)

documents the significantly higher returns on Monday (the weekend effect). However,

Malkiel (2003) claims that these calender effects are comparatively small to the trans-

actions costs when someone actually exploit them in practice.

Due to the joint hypothesis problem indicated by Campbell et al. (1997), the market

efficiency is empirically rejected could be because the market is truly inefficient or be-

cause the wrong market equilibrium is assumed. In this sense, the EMH is not testable.

Throughout this thesis, we focus on the statistical methods in terms of measuring effi-

ciency rather than testing the EMH.

Technical Analysis

Technical analysis, also known as “charting”, is to predict the future price movement

by identifying the presence of geometric shapes in historical price charts, sometimes

also with information of volume and open interest. Under the EMH, the current price

has already reflected all past available information, which naturally has the implication
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that technical analysis should provide no useful information for forecasting future price

movement (Fama, 1965).

Nevertheless, technical analysis has been widely used by traders in practice. For example,

more than 90 percent of foreign exchange traders in the London market performed one

to four weeks ahead forecasting by technical analysis in 1990s (Allen & Taylor, 1990).

It has been a long-standing debate on the usefulness of technical analysis in academia.

One difficulty of technical analysis is that the geometric shapes are sometimes difficult

to be mathematically define.

The empirical studies show the mixed results whether technical analysis can generate

excess returns. On the approval side, a number of studies have found the evidence of

excess returns generated by technical analysis (e.g. Pruitt & White, 1988; Brock et al.,

1992; Neely et al., 1997; Coutts & Cheung, 2000; Leigh et al., 2002; Okunev & White,

2003). In particular, Lo et al. (2000) employ kernel smoothing technique to automatically

recognise ten sophisticated technical charts, such as Head-and-Shoulders, Broadening,

and Triangle, and further find several technical indicators do have predictive power.

However, some studies suspected the validity of technical analysis because of the data

mining problem (e.g. Brock et al., 1992).

On the disapproval side, many researchers show that technical analysis does not out-

perform simple buy-and-hold strategy (e.g. Curcio et al., 1997; Hamm & Wade Brorsen,

2000; Lucke, 2003). Other studies find that the profits from the technical analysis de-

clines over time (e.g. Guillaume, 2012). In particular, Coutts (2010) re-examines the

trading rules in Coutts & Cheung (2000) with a more updated sample period and con-

cludes that those trading rules become defunct.

Behavioural Finance

In the 1990s, the theories of behavioural finance were developed to explain why and

how financial markets might be inefficient. Shiller (2003) defines behavioural finance

as “finance from a broader social science perspective including psychology and sociol-

ogy”. The key assumption in behavioural finance is that not all investors are rational,
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and those irrational investors (often known as noise traders) make the asset prices de-

viate from their fundamental values. The irrational behaviour comes from a number of

human psychological activities, including overconfidence, myopic loss aversion, represen-

tativeness, conservatism, belief perseverance, anchoring, and availability biases. Those

psychological activities impede investors to form the correct expectation on the asset

prices and to further conduct irrational investment decisions.

Two phenomena often discussed by behavioural finance are overreaction and underre-

action, which refer to that the investors react disproportionately to new information.

DeBondt & Thaler (1985) find that most investors usually overreact to unexpected and

dramatic news, suggesting the weak from market inefficiencies. De Bondt & Thaler

(1987) further find additional evidence to support the overreaction hypothesis, which

contradicts two alternative hypotheses based on the size of company and risk difference.

It is not always overreaction, but sometimes be slow or underreaction. Hong & Stein

(1999) construct a model with two groups of boundedly rational agents “newwatchers”

and “momentum traders” and show the underreaction at short horizons and overreaction

at long horizons. Fama (1998) claims that overreaction to information is as frequent as

underreaction. Veronesi (1999) uses a dynamic, rational expectations equilibrium model

of asset prices to demonstrate that stock prices underreact to good news in bad times

and overreact to bad news in good times. Farag (2014) use the system GMM to find

strong evidence of price reversal after the overreaction in the Egyptian stock market.

The disposition effect is the phenomena that investors tend to sell assets that have

gained profit (“winners”) and hold assets that have lost value (“losers”). Weber &

Camerer (1998) conduct experiments and find that the experimental subjects did tend

to sell winners and keep losers, which can be explained by the multiple reference points

affecting framing and guide choices. Barber & Odean (1999) study the disposition

effect and concludes that overconfidence is the possible reason. Barberis & Xiong (2009)

investigate the driving reason for the disposition effect and conclude that the model with

preferences defined over annual gains and losses fails to predict the disposition effect but

the model with preferences defined over realized gains and losses predicts the disposition

effect more reliably.
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Behavioural finance is applied to explain the excess returns of some trading strate-

gies. Lakonishok et al. (1994) investigate the reason for the higher returns of the value

strategies and find that these strategies exploit the suboptimal behaviour of the typi-

cal investor. Chan et al. (1996) explain the profitability of the momentum strategies

as that the market responds gradually to new information, i.e. there is underreaction.

Lee & Swaminathan (2000) discover an important link between momentum and value

strategies is the past trading volume, and their findings helps to intermediate-horizon

underreaction and long-horizon overreaction effects. Apart from explanation using be-

havioural finance, Frazzini (2006) designs a even-driven trading strategy based on the

disposition effect and this trading strategy generates monthly alphas of over 200 basis

points.

Research Questions, Motivations, and Contributions

In this collection of four loosely related essays, namely several quantitative methods,

hidden semi-Markov model, diffusion process, and functional data analysis, have been

applied to understand and model the asset returns in the Chinese financial market.

HSMM is a generalisation of the HMM by explicitly specifying the sojourn time dis-

tribution (Yu, 2010). Bulla & Bulla (2006) examine the reproduction of the stylized

facts of the asset returns by the US industry stock indices and show that HSMM is

superior to HMM because the stylized facts of the daily returns were entirely repro-

duced. Due to the merits of HSMM in the literature, we employ a three-state HSMM

to decode the Chinese stock market returns in Chapter 1. Firstly, it is appropriate to

employ a three-state HSMM to explain the time-varying distribution of Chinese stock

market returns. Secondly, the hidden states in the HSMM correspond to the market

conditions, namely the bear, sidewalk, and bull market. Unlike the definition of market

conditions in the literature (Fabozzi & Francis, 1977; Chauvet & Potter, 2000; Edwards

& Caglayan, 2001; Lunde & Timmermann, 2004; Gonzalez et al., 2006; Cheng et al.,

2013), we provide a systematic way to find the timing of three-category classification,

namely the bull, sidewalk, and bear market, for the daily data. Thirdly, we show the
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inefficiency of the market by design a trading strategy based on the expanding window

decoding. The trading strategy generates risk-adjusted return with a Sharpe ratio of

1.14 in the testing sample.

The by-product of Chapter 1 is our statistical definition of market conditions, i.e. bear,

sidewalk, and bull markets, which correspond to the three states in the HSMM. As

discussed above, the regulation and the investor structure of the Chinese stock market

are different from the developed markets. It is natural to question the difference in

terms of market conditions between the Chinese stock market and developed market. In

Chapter 2, we employ the three-state HSMM to the daily returns of the Chinese stock

market and the other seven developed markets. Using the Viterbi algorithm to globally

decode the most likely sequence of the market conditions, we systematically find the

precise timing of bear, sidewalk, and bull markets for all eight markets. Through the

comparison of the estimation and decoding results, many unique characteristics of the

market conditions in China are found, such as “Crazy Bull”, “Frequent and Quick Bear”,

and “No Buffer Zone”. In China, the bull market is more volatile than in developed

markets, the bear market occurs more frequently than in developed markets, and the

sidewalk market has not functioned as a buffer zone since 2005. Lastly, possible causes of

the unique characteristics are discussed and implications for policy-making are suggested.

As indicated in the first two chapters, the asset returns behaves differently in different

market conditions. Additionally, the overreaction has been widely studied in behavioural

finance. To the best of our knowledge, there is no diffusion process considering both

market condition and overreaction. In Chapter 3, we propose a new diffusion process

referred to as the “camel process” in order to model the cumulative return of a financial

asset. The process considers the market condition and the price reversal. This new

process includes three parameters, the market condition parameter α, the overreaction

correction parameter β, and the volatility parameter γ. Its steady state probability

density function could be unimodal or bimodal, depending on the sign of the market

condition parameter. The price reversal is realised through the non-linear drift term

which incorporates the cube term of the instantaneous cumulative return. The time-

dependent solution of its Fokker-Planck equation cannot be obtained analytically, but
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can be numerically solved using the finite difference method. The properties of the camel

process are confirmed by our empirical estimation results of ten market indexes in two

different periods. The nature of the research in Chapter 3 is more theoretical rather

than empirical.

In the last chapter, we shift from the stock market to the commodity futures market

because the stringent constraints on short selling stocks make it very difficult to manage

the downside risk and investing in commodity futures is an effect way to diversify against

falling stock prices (Edwards & Caglayan, 2001; Jensen et al., 2002; Wang & Yu, 2004;

Erb & Harvey, 2006). We should not restrict ourselves only in the stock market, and

it is worthwhile and meaningful to investigate the commodity futures market in China.

Chapter 4 takes the tools in functional data analysis to understand the term structure of

Chinese commodity futures and forecast their log returns at both short and long horizons.

A functional ANOVA (FANOVA) has been applied in order to examine the calendar

effect of the term structure. We use an h-step Functional Autoregressive model to

forecast the log return of the term structure. Compared with the naive predictor, the in-

sample and out-of-sample forecasting performance indicates that additional forecasting

power is gained by using the functional autoregressive structure. Although the log return

at short horizons is not predictable, the forecasts appear to be more accurate at long

horizons due to the stronger temporal dependence. The predictive factor method has

a better in-sample fitting, but it cannot outperform the estimated kernel method for

out-of-sample testing, except in the case of 1-quarter-ahead forecasting.





Chapter 1

Decoding Chinese Stock Market Returns:

Three-State Hidden Semi-Markov Model, Market

Conditions, and Market Inefficiency

In this chapter, we employ a three-state hidden semi-Markov model (HSMM) to explain

the time-varying distribution of the Chinese stock market returns since 2005. Our re-

sults indicate that the time-varying distribution depends on the hidden states, which are

represented by three market conditions, namely the bear, sidewalk, and bull markets. In

order to show the inefficiency of the market, we design a simple trading strategy based

on expanding window decoding that generates risk-adjusted return with a Sharpe ratio of

1.14.

17
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1.1 Introduction

The term “decoding”, originally from the field of speech recognition, is the procedure of

deciphering observations into the underlying pattern that drives the mechanism. In this

chapter, we aim to decode the Chinese stock market returns through a new developed

statistical model, namely hidden semi-Markov Model (HSMM). More specifically, we are

going to answer three questions: 1) can we use the HSMM to explain the time-varying

distribution of the Chinese stock market returns? 2) what is the economic interpretation

of the hidden states in the HSMM? 3) can we design a profitable trading strategy based

on the HSMM to show the inefficiency of the market?

The motivation for the first question is based on our observation of the market index.

The literature on the Chinese stock market focuses on financial integration, speculative

trading, government interventions, information asymmetry, and the relation with bank

credit (e.g. Girardin & Liu, 2007; Mei et al., 2009; Los & Yu, 2008; Chan et al., 2008;

Girardin & Liu, 2005). Less attention has been paid to the time-varying features of

the Chinese stock market after 2005. We have observed that the Chinese stock market

behaves quite differently across different periods since 2005. Between 2005 and 2009,

the Chinese stock market index (CSI 300) increased approximately six times from 1003

(April 8th 2006) to 5877 (October 16th 2007), and then dropped to 1627.759 (April 11th

2008). Between 2010 and 2014, the CSI 300 had much less volatility and fluctuated

between 2000 and 3500. From 2015 onwards, the market became highly volatile again

(see Figure 1.1). In this chapter, we will show that a three-state HSMM can be employed

to explain the time-varying distribution of the Chinese stock market returns.

The motivation for the second question is followed the answer of the first question. It

is naturally to raise the question about the economic interpretation of the hidden states

of the HSMM. Based on the estimation results by the expectation-maximization (EM)

algorithm, the hidden states behind the return data can interpreted as the three market

conditions, namely the bear, sidewalk, and bull markets. The underlying sequence of

hidden states is globally decoded by the Viterbi algorithm. The evolution of the market

conditions of the Chinese stock market over the last decade is then reviewed.
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Figure 1.1: CSI 300 and its Returns
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The motivation for the third question is arisen from the efficient market hypothesis

(EMH). Under the EMH, the prices always ‘fully reflect’ available information and follow

a random walk. Our three-state HSMM shows some merits of fitting the empirical data

in terms of the stylized facts of asset returns, which are not considered by the random

walk. Although testing the EMH is not the focus of this chapter, it is worthwhile to

use our three-state HSMM to provide some evidence for the inefficiency of the Chinese

stock market. Following the literature of technical analysis, we design a simple trading

strategy based on expanding window decoding, which generates risk-adjusted return with

a Sharpe ratio of 1.14. With the profitable trading strategy, we broaden the readership

of this research to both academic researchers and practitioners.

We contribute to the literature along three main dimensions. Firstly, we make use of a

new statistical model, HSMM, to explain the time-varying distribution of the Chinese

stock market returns. To the best of our knowledge, this model has never been used in

any emerging market. Secondly, we provide the economic interpretation of the hidden

states. To the best of our knowledge, this is the first research to associate market

conditions to the hidden states in the HSMM. The by-product is that we provide a

new systematic way to find the timing of different market conditions, which will be
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used in Chapter 2. Thirdly, we contribute to the literature of technical trading rules by

proposing a new profitable trading strategy based on our model.

The remainder of the chapter is structured as follows. Section 1.2 reviews the literature

of relevant studies. Section 1.3 describes our data and its descriptive statistics. Section

1.6 briefly introduces the HSMM, estimation method, decoding techniques and our model

set-up. In Section 1.7, the estimation results and the decoding results are presented and

their economic meanings are discussed, followed by the model evaluation and comparison

in Section 1.8. Section 1.9 presents a simple trading strategy with a Sharpe ratio of 1.14.

Section 1.10 summarises the chapter.

1.2 Literature Review

Stylized Facts of Asset Returns

The stylized facts of asset returns in the developed markets are well documented in the

literature (Granger & Ding, 1995; Pagan, 1996; Cont, 2001). They can be classified

into two categories, namely distributional properties and temporal properties. Distri-

butional properties relate to the non-Gaussianity of the distribution of asset returns,

whilst temporal properties refer to the time dependence of asset returns and of the

squared/absolute asset returns.

In the early studies exploring distributional properties, normal distributions with sta-

tionary parameters were often selected in order to model daily asset returns. However,

Mandelbrot (1997) doubted the Gaussian hypothesis of asset returns and stated that sta-

ble Paretian distributions with characteristic exponents of less than 2 are better suited to

fit the empirical distribution of assets (Mandelbrots hypothesis). Fama (1965) undertook

extensive testing on empirical data and found that extreme tail values are more frequent

than the Gaussian hypothesis (a.k.a. leptokurtosis), which supports the Mandelbrots

hypothesis. In order to explain the notion of leptokurtosis, Fama tried two modified ver-

sions of the Gaussian model: a Gaussian mixture model and a non-stationary Gaussian

model. However, his empirical evidence supports neither of them. Praetz (1972) and
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Blattberg & Gonedes (1974) employed t-distributions with small degrees of freedom in

order to capture the fat-tail of the empirical distribution of asset returns. Granger &

Ding (1995) suggested that the appropriate distribution is the double exponential dis-

tribution with zero mean and unit variance. Mittnik & Rachev (1993) inspected various

stable distributions for asset returns and found that the Weibull distribution gave the

best fit for the S&P 500 daily returns between 1982 and 1986.

In terms of temporal properties, the ARCH-family models are often used for volatility

clustering. The original ARCH model was introduced by Engle (1982) in order to model

non-constant variances. Bollerslev (1986) generalised the ARCH model by allowing

past conditional variances to affect current conditional variances. Afterwards, variants

of the GARCH were developed, including EGARCH, GJR, GARCH-M, and so forth.

Bollerslev et al. (1992) comprehensively reviewed many types of GARCH models. As for

the continuous-time set-up, stochastic volatility models were introduced by Taylor (1986)

in an attempt to overcome the main drawback of the Black-Scholes model characterised

by a constant volatility. Stochastic volatility models facilitate analysis of a variety of

option pricing problems. A review of the stochastic volatility models was conducted by

Jäckel (2004).

Hidden (Semi-)Markov Models

The HMM is suitable to capture both distributional and temporal properties of the

stylized facts of asset returns. The state process of the model evolves as a Markov

chain, providing the channel of time dependency. Its distribution is a mixture of several

distributions, enabling it to explain the fat tails. Rydén et al. (1998) adopted an HMM

with component distributions as normal distributions (zero mean but different variance)

in order to reproduce most of the stylized facts of the daily returns. However, the HMM

fails to reproduce the slow decay in the autocorrelation function (ACF) of the squared

returns. For the Chinese stock market, Girardin & Liu (2003) use a switch-in-the-mean-

and-variance model (MSMH(3)-AR(5)) in order to examine the market conditions on the

Shanghai A-share market from 1994 to 2002. They found three regimes: a speculative

market, a bull market and a bear market.
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There are two ways to improve the HMM. The first way is to change the component dis-

tribution into other types of distribution. Rogers & Zhang (2011) proposed a two-state

HMM with non-Gaussian component distributions. They examined various component

distributions. By using the Kolmogorov-Smirnov test, the symmetric hyperbolic distri-

bution is found to be the most appropriate component distribution. With the inclusion

of a regularisation term, they can reproduce the slow decay of the ACF in the abso-

lute returns. Their model setting mainly focused on statistical properties and lacked

meaning for the field of economics. The second way is to generalise the sojourn time

distribution of the HMM. Bulla & Bulla (2006) modelled daily returns of US indus-

try stock indices with the HSMM, which is a generalisation of the HMM by explicitly

specifying the sojourn time distribution. They utilised both normal distributions and

Student’s t-distributions as the component distributions. The stylized facts of the daily

returns were entirely reproduced by the HSMM. Their research focused on analysing the

variances but ignored the means of the component distributions. We believe that the

means of the component distributions are also worth investigating because they lead to

different market conditions.

Definition of Market Conditions

In practice, investors tend to determine market conditions arbitrarily and different con-

clusions might be drawn for the same market in the same period. In the existing aca-

demic literature, the definition of market conditions varies considerably. In one of the

early study, Fabozzi & Francis (1977) propose three ways to define market conditions.

In the first classification of Bull and Bear Markets, the rule places most months when

the market rises in the bull market (BB), but months when the market rose near the

bearish months were treated as part of the bear market. In the second classification

of Up and Down Markets (UD), months in which return was non-negative are defined

as Up months and months in which return was negative are defined as Down months.

In the third classification of Substantial Up and Down Months (SUD), there are three

categories: months when the market moved Up-substantially, months when the market
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moved Down-substantially, and months when the market moved neither Up-substantially

nor Down-substantially. The threshold of substantial move was arbitrarily defined.

In the modern study, a loose definition by Chauvet & Potter (2000) proposed that market

prices generally increase (decrease) in a bull (bear) market. Edwards & Caglayan (2001)

use a simple classification that bull market months are defined as those in which the

S&P index rises by 1% or more and bear market months are defined as those in which

the S&P index falls by 1% or more. Lunde & Timmermann (2004) claim that a bull

(bear) market starts when the market price increases (decreases) a certain percentage,

say 20%, from the previous local bottom (peak). Gonzalez et al. (2006) utilized two

formal turning point methods to detect the timing of bull and bear markets. Cheng

et al. (2013) define bull (bear) markets as the periods with at least three consecutive

months of positive (negative) returns.

Market Efficiency and Technical Trading Rules

Under the EMH, the current price has already reflected all past available information,

which naturally has the implication that technical trading rules cannot generate excess

returns than a buy-and-hold trading strategy Fama (1965).

The empirical studies show the mixed results. Park & Irwin (2007) have conducted

a survey about the profits of technical analysis. In general, technical trading rules

are profitable for the stock market indices in emerging markets even after transaction

costs(Ratner & Leal, 1999; Ito, 1999; Coutts & Cheung, 2000; Gunasekarage & Power,

2001). However, the profits of technical trading rules are negligible after transaction

costs or have declined as time goes by (Hudson et al., 1996; Mills et al., 1997; Ito, 1999;

Day & Wang, 2002).
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1.3 Data

1.3.1 Data Information

The raw data is the closing price of the CSI 300, which is a free-floating weighted stock

market index of 300 A-share stocks listed on both the Shanghai Stock Exchange and

the Shenzhen Stock Exchange. The sample period is from April 8th 2005 (the launch

date of the CSI 300) to May 13th 2016. The number of observations accounts for 2697

in total. Our data was downloaded from Wind. The daily return is defined as 100 times

the first-order difference of the natural logarithm of the price series.

rt = 100× (log(Pt)− log(Pt−1)) (1.1)

where Pt is the closing price of the CSI 300.

1.3.2 Rationale for the CSI 300

There are several major Chinese stock market indices often used by academic research.

The SSE Composite Index is a capitalization-weighted index, which represents the overall

market movement of all A-shares and B-shares listed on SSE. The SZSE Component

Index is a capitalization-weighted index, consisting of the 500 top companies listed in

SZSE A-shares. The CSI 300 (a.k.a SHZE 300) index is a free-float capitalization-

weighted index based on 300 A-shares stocks listed on both SSE and SZSE. There are

several SSE size indices, SSE 50, SSE 180, and SSE 380, representing the top 50, 180,

380 companies listed on SSE A-shares by free-float capitalization weight.

Among those market indices, the CSI 300 index is widely accepted as an overall represen-

tation for the general movements of the China A-share markets (Yang et al., 2012; Hou

& Li, 2014). The index is jointly launched by the SSE and SZSE on April 8th 2005, and

complied and published by the China Securities Index Company Ltd. It is comprised of

300 large-capitalization and actively traded in both SSE and SZSE, which covers roughly

70% of total market capitalization of the two stock markets (Yang et al., 2012). More

importantly, the first Chinese stock market index futures contract is based on the CSI
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Table 1.1: Descriptive Statistics

CSI 300
SSE

Composite
SZSE

Component SSE 50 SSE 180 SSE 380

Mean 0.042 0.030 0.039 0.034 0.039 0.067
Std. Err. 1.898 1.785 2.014 1.908 1.900 2.110
Skewness -0.516 -0.561 -0.488 -0.317 -0.487 -0.799
Kurtosis 6.089 6.655 5.490 6.291 6.216 5.903

Correlation
Matrix

CSI 300 1.000 0.980 0.959 0.962 0.995 0.905
SSE Composite 0.980 1.000 0.931 0.950 0.980 0.897
SZSE Component 0.959 0.931 1.000 0.877 0.932 0.912
SSE 50 0.962 0.950 0.877 1.000 0.982 0.775
SSE 180 0.995 0.980 0.932 0.982 1.000 0.873
SSE 380 0.905 0.897 0.912 0.775 0.873 1.000

300 index, launched on April 16th 2010. Table 1.1 presents the first four moments of the

daily returns of the six major stock market indices in China. As can be observed, the

moments of all six major market indices are similar and they are highly correlated. All

market indices lead to similar results. Hence, we will only use the CSI 300 index for the

overall perfomrance representation of the Chinese stock market throughout this thesis.

1.4 Descriptive Statistics

As for the CSI 300, the mean is roughly 0.042 and the standard deviation is 1.898. The

third moment, skewness, shows that the daily return is negatively skewed. The fourth

moment, kurtosis, is larger than the double of the normality benchmark. This implies

that the daily returns of the CSI 300 have the leptokurtosis and the fat tails. The third

and fourth moments indicate that the distribution of the daily returns deviates from the

normal distribution. The non-Gaussianity can be confirmed by the Kolmogorov-Smirnov

test with statistics of 0.953 and a P-value of approximately zero.

In order to inspect non-Gaussianity, we fit a normal distribution to the empirical dis-

tribution and compare it to the empirical kernel density in Figure 1.2(a). As it may be

observed, the empirical kernel density has the leptokurtosis in the middle and the fat

tails at the two sides. The empirical density is highly inconsistent with the fitted normal

density. For the purpose of visualising the magnitude of the fat tails, Figure 1.2(b) shows
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the QQ plot of the empirical distribution to a theoretical normal distribution. While

the empirical quantiles fit the normal quantiles in the middle part, they diverge at the

two tails. The QQ plot confirms the heavy tail of the daily returns of the CSI 300.

1.5 Distributional and Temporal Properties

1.5.1 Distributional Properties

In order to study the distributional properties, we fit various parametric distributions

to our empirical data, the daily returns of the CSI 300. Most parametric distributional

types studied in the literature are considered here. Four evaluation tools (log likelihood,

AIC, BIC, and the Kolmogorov-Smirnov test) are reported in Table 1.2 for all the fitted

parametric distributions.

The normal distribution has the lowest log likelihood, and the highest AIC and BIC,

which confirmed the non-Gaussianity shown in Section 1.4. A Student’s t-distribution

with a degree of freedom 2.145 gives a better fitting than a normal distribution as it

can capture the fat-tail to some extent. However, the t-distribution is also rejected by

the Kolmogorov-Smirnov Test. The double Weibull, which gave a good fit for S&P 500

(Mittnik & Rachev, 1993), is inferior to the t-distribution for the Chinese stock index

returns. A double exponential distribution seems to be the best fitted distribution within

the non-mixture distribution category. The Kolmogorov-Smirnov test cannot reject a
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double exponential distribution with a P-value of 79.83%. A symmetric hyperbolic

distribution is rejected by the Kolmogorov-Smirnov test at the 5% significance level.

If mixture distributions are considered, the Gaussian mixture distribution with two

components (Gaussian mixture (2)) is better than the double exponential distribution

with a higher log likelihood, lower AIC and BIC, and a Kolmogorov-Smirnov test P-

value of 86.20%. With an additional component, a Gaussian mixture distribution with

three components (Gaussian mixture (3)) produces a higher log likelihood. It may be

argued that the increase in likelihood comes from over-fitting by introducing more pa-

rameters. However, the AIC and BIC of Gaussian mixture (3) are lower than those of

Gaussian mixture (2). Since the AIC and BIC penalise the additional number of pa-

rameters, this suggests that Gaussian mixture (3) is superior to Gaussian mixture (2)

for Chinese stock index returns. Furthermore, a Kolmogorov-Smirnov test cannot reject

Gaussian mixture (3) at the 5% level.

The study of the fitting of various parametric distributions suggests that Gaussian mixture (3)

is a good candidate to capture the distributional properties of Chinese stock index re-

turns, which provides an intuitive foundation for using the three-state HSMM in this

paper.

1.5.2 Temporal Properties

“Long-memory”

As can be seen in Figure 1.4(a), the autocorrelation functions are insignificant 1 for most

lags with a small number of exceptions. Thus, daily returns are uncorrelated. Figure

1.4(b) and Figure 1.4(c) show that the autocorrelation functions of both squared returns

and absolute returns are significant for all lags and decay slowly. This slowly decaying

autocorrelation is referred to as the “long-memory” in the literature. Both squared

returns and absolute returns are two types of volatility measure. The reason behind

the “long-memory” could be volatility clustering, which results from the fact that the

1The 95% confidence band for the autocorrelation function is calculated by ±1.96/
√
N , where N is

the sample size.
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volatility of the past returns will affect the volatility of future returns for a considerably

long period of time.

The temporal property of “long-memory” implies that there is some time dependence for

the squared/absolute returns. This time dependence is very persistent for the volatility

of returns. The GARCH-family models and the stochastic volatility models are usually

used to capture volatility clustering. A Markov chain or semi-Markov chain is also

capable of modelling volatility clustering in a discrete way. The advantage of a Markov

chain or semi-Markov chain is that they can be associated with various distributions.

Hence, the study of temporal properties gives us another incentive to use our three-state

HSMM.

Taylor Effect

Taylor (1986) found that the autocorrelations of the power of absolute returns are the

highest when the power coefficient is one. In a mathematical definition, this is repre-

sented as:

corr (|rt| , |rt+k|) > corr
(
|rt|θ , |rt+k|θ

)
for any θ 6= 1 (1.2)

Figure 1.2 illustrates the Taylor effect for the daily returns of the CSI 300. One horizontal

dimension is the lag number and the other is the power coefficient θ. The vertical

dimension is the autocorrelation function values. The surface has the highest value in

the middle where θ = 1 for all lags. The surface is declining when θ deviates from 1

and reaches its lowest values at the sides of the space. |rt|θ is a volatility measure with

different scales. The Taylor effect implies that the volatility measured by |rt| has the

strongest time dependence.
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Figure 1.3: ACF of Original Returns, Squared Returns, and Absolute Returns
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Figure 1.2: Taylor Effect
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In summary, the combination of a Gaussian mixture model and the “long-memory” time

dependence can correspond to HMM/HSMM where the distributional dimension is a

Gaussian mixture distribution and the time dependence is captured by a hidden Markov

chain/hidden semi-Markov chain. The distributional properties and the temporal prop-

erties of our empirical data provide the intuitive support to adopt the HMM/HSMM for

Chinese stock index returns. The HSMM is finally chosen because it is a generalisation

of the HMM and Rydén et al. (1998) found that the HMM could not reproduce the

stylized fact of the “long-memory”.

1.6 Methodology

1.6.1 Hidden Semi-Markov Model

One limitation of the HMM is that its sojourn time 2 has to follow a geometric distri-

bution (Yu, 2010; Bulla & Bulla, 2006). The HSMM generalises the HSMM by allowing

the sojourn time distribution to follow other distributions. In other words, the sojourn

time d of a given state is explicitly specified for the HSMM. Similarly to the HMM, the

HSMM also entails two processes, an unobservable state process ST1 = sT1 and an ob-

servation process XT
1 = xT1 , where sT1 is the notation for the realised states s1, s2, ..., sT

and xT1 is the notation for observations x1, x2, ..., xT . The hidden state process ST1 is

2The sojourn time is also known as the dwell time, occupancy time, or duration time.
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an unobservable semi-Markov chain with m states. The observation process XT
1 is asso-

ciated with the hidden state process through component distributions 3. Equation 1.3

shows the component distribution for state i at time t.

Pi(xt) = P(xt|st = i) where i ∈ {1, 2, ...,m} (1.3)

Equation 1.4 defines the state transition probability from state i to state j.

γij = P(st+1 = j|st = i) where i 6= j, i, j ∈ {1, 2, ...,m} (1.4)

Unlike the HMM, the transition probability from one state to the same state in the

HSMM is zero, i.e. γij = 0. The sojourn time in the HSMM is controlled by the sojourn

time distribution defined in Equation 1.5.

di(u) = P(st+u+1 6= i, st+ut+1 = i|st+1 = i, st 6= i) (1.5)

where the variable u is the length of the sojourn time which can follow nonparametric

or parametric distributions. The sojourn time distribution for each state i can follow

different types of distribution or the same type of distribution but with different values

of the parameters.

The transition probability matrix (TPM) has entries for the transition probabilities γij

at row i and column j. The diagonal elements in the TPM of the HSMM are zeros.

Γ =



0 γ12 · · · γ1m

γ21 0 · · · γ2m

...
...

. . .
...

γm1 γm2 · · · 0


(1.6)

We estimate the model using the EM algorithm (see 1.A). The most likely sequence of

the states is globally decoded by the Viterbi algorithm (see 1.B.1). Additionally, we use

local decoding to compute the conditional probabilities for each state at time t given the

3The component distribution is also known as emission distribution, conditional distribution, or
marginal distribution.
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observation (see 1.B.2). Our implementation is based on the R package ‘hsmm’ (Bulla

& Bulla, 2013).

The number of states in our HSMM is set to three. The Gaussian mixture (3) gives a

better fit than Gaussian mixture (2) based on the likelihood and the information crite-

ria. The normal distribution is chosen to be the component distribution for our HSMM.

Other distributions could be considered, but the empirical results of the Chinese stock

index returns show that the HSMM with normal components is sufficient to explain

our data. Moreover, it is convenient to conduct various tests on a normal distribution,

like the z-test in order to examine the significance of the mean. Additionally, the nor-

mal component distribution enables us to give a straightforward interpretation for the

HSMM.

As for the sojourn time distribution, the logarithmic distribution is selected because

it can produce stable estimation results while the EM algorithm may not converge

under many other sojourn time distributions. The logarithmic distribution has only

one parameter and can avoid overfitting by introducing more parameters. The negative

Binomial distribution used by Bulla & Bulla (2006) is also a suitable candidate but it

produces similar results as the logarithmic distribution. Other sojourn time distributions

could be used, but the logarithmic distribution is sufficient for our data.

1.6.2 Definition of Market Conditions

It is inevitable to propose our own definition of market conditions for three reasons.

Firstly, there is no generally accepted definition of the market conditions. Secondly,

most definitions of the market conditions are based on the monthly data. Lastly and

mostly importantly, the current definition are mainly for two-category classification, i.e.

the bull or bear market (or up or down market). The only three-category classification

is the SUD in Fabozzi & Francis (1977), but their threshold of substantial move was

arbitrarily defined. We define the bear, sidewalk, and bull market conditions from the

perspective of the distributional features.



34 Chapter 1 Decoding Chinese Stock Market Returns

Definition 1.1. A Bear Market

• The mean of the distribution of the daily returns conditional on a bear market is signifi-

cantly less than 0.

• The frequency of the positive returns is expected to be larger than that of the negative

returns.

• Because of the above statistical properties, the price in a bear market is generally decreas-

ing.

Definition 1.2. A Sidewalk Market

• The mean of the distribution of the daily returns conditional on a sidewalk market should

be insignificantly different from 0.

• It is expected to observe a roughly equal number of positive and negative returns.

• Because of the above statistical properties, the price in a sidewalk market stays in a band

and shows a mean-reversion pattern.

Definition 1.3. A Bull Market

• The mean of the distribution of the daily returns conditional on a bull market should be

significantly larger than 0.

• The frequency of the positive returns is expected to be larger than that of the negative

returns.

• Because of the above statistical properties, the price in a bull market is generally increasing.

In straight-forward notation, the mean in each market is as follows:

µ(St) = µ1 < 0, if St = 1 (bear market)

µ(St) = µ2 ≈ 0, if St = 2 (sidewalk market)

µ(St) = µ3 < 0, if St = 3 (bull market)
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The variance of each market can be denoted as

σ2(St) = σ2
1, if St = 1 (bear market)

σ2(St) = σ2
2, if St = 2 (sidewalk market)

σ2(St) = σ2
3, if St = 3 (bull market)

where we expect that the bear market should have highest variance (i.e. σ2
1 > σ2

2, and

σ2
1 > σ2

3) because it is normally the most volatile market.

1.7 Empirical Results

1.7.1 Estimation Results

Through the EM algorithm, the parameters of the HSMM are estimated, including the

parameters of the component distributions, transition probability matrix, and sojourn

time distribution. Table 1.3 presents the estimated parameters of the component dis-

tributions. Based on the estimated mean and standard deviation, it is able to compute

one-sample z-statistics in order to test the significance of the mean. The formula to

compute the z-statistics is as follows.

zi =
x̄i

σi/
√
ni

for i ∈ {1, 2, 3} (1.7)

where x̄i is the mean of state i, σi is the standard deviation of state i, and ni is the sample

size of state i. The one-sample z-test suggests that the mean of state 1 is significantly

below 0 at the 1% significance level; the mean of state 3 is significantly above 0 at the

1% significance level; whilst the mean of state 2 is insignificant from 0.

The results indicate that the time-varying distribution of the returns depends on the

hidden states, which can be interpreted as the market conditions. Specifically, state 1

corresponds to the bear market, state 2 corresponds to the sidewalk market, and state

3 corresponds to the bull market.
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Table 1.3: Component Distribution Parameters

State 1 State 2 State 3

Mean -0.510 -0.020 0.622
Std. Dev. 3.113 1.156 1.440

Sample Size 572 1430 695
z-statistics 3.918∗∗∗ -0.654 11.387∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1.4 presents the empirical frequency of the positive and negative returns for the

fitted component distributions and confirms our interpretation of the three underlying

states of the HSMM. As can be seen, the frequency of the positive return of state 3 is

67.19%, while the frequency of the negative return is 32.81%. There are negative returns

in the bull market as well, but positive returns are more frequent. This statistical

evidence empowers the price in the bull market to increase. Hence, state 3 can be

regarded as a bull market according to its statistical features. Using the same logic,

state 1 has a significant negative mean and corresponds to the bear market where the

price shows a downward trend because the negative returns (52.97%) occur more often

than the positive returns (47.03%). As for state 2, the frequency of the positive and

negative returns is nearly the same at around 50%. State 2 corresponds to the sidewalk

market where the price displays a mean-reversion pattern.

Table 1.4: Frequency of Positive and Negative Returns

State 1 State 2 State 3

Positive Return Freq. 47.03% 50.49% 67.19%
Negative Return Freq. 52.97% 49.51% 32.81%

Based on the estimated parameters in the component distribution, Figure 1.4 displays

the histogram of the daily returns of the CSI 300, the empirical density, and three fitted

component distribution densities. By separating the empirical distribution into three

component distributions, the HSMM is able to explain the leptokurtosis and fat tail

effects. The over-peak in the middle part of the empirical distribution mainly results

from the sidewalk market, whereas the bear market plays a vital role in the fat tails.

The standard deviation of the bear market is 3.113, which is much higher than for the
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other two markets. Hence, the bear market is the most volatile market, followed by the

bull market. Conversely, the sidewalk market is the most stable market.

Figure 1.4: Empirical and Component Density
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The existing literature often ignores the analysis of the mean of component distribution.

However, the component mean is important for price behaviour. Although the mean

of state 3 (0.622) is very small, it is still significantly larger than zero. This small but

significant positive mean ensures that positive returns occur more frequently than the

negative returns, which is the key feature of the bull market. The same logic can be

applied to state 1. The insignificant mean of state 2 ensures that its distribution is

almost symmetrical around 0 and the frequency of positive returns and negative returns

is nearly the same.

Table 1.5 presents the number of days, the number of times, and average sojourn time

for different market conditions. Our results show that the bull market has a slightly

longer sojourn time than the bear market. Additionally, the average sojourn time for

the sidewalk market is the longest with 204.29 days, which is much longer than in the

case the other two types of markets.

Table 1.5: Sojourn Information

State 1 (Bear) State 2 (Sidewalk) State 3 (Bull)

Number of Days 572 1430 695
Number of Times 22 7 25
Average Sojourn 26.00 204.29 27.80
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Table 1.6 gives the estimated transition probability matrix (TPM) of the HSMM for

the CSI 300 returns. The sojourn time of the HSMM is controlled by the sojourn time

distribution rather than by the diagonal entries in the TPM. Hence, the diagonal entries

are all zeros for the HSMM. There are a few interesting economic implications that can

be drawn from the TPM.

Table 1.6: Transition Probability Matrix

From\ To State 1 (Bear) State 2 (Sidewalk) State 3 (Bull)

State 1 (Bear) 0 0.02% 99.98%
State 2 (Sidewalk) 49.56% 0 50.44%
State 3 (Bull) 74.08% 25.92% 0

• After a bear market, it is highly likely (99.98%) that a bull market will follow. This

situation often occurs at the end of a crisis when the market starts to recover.

• A bear market and a bull market have equal possibility (around 50%) to occur after

a sidewalk market. In other words, it is unclear whether a bull or bear market will

follow after the price fluctuates within a certain range for a long period.

• At the end of a bull market, the market has a high probability (74.08%) to be bear

and a low probability (25.92%) to be sidewalk. These circumstances usually ensue

after a bubble burst, such as the financial crisis in 2008.

1.7.2 Decoding Results

The global decoding is conducted by the Viterbi algorithm. Figure 1.5 shows the global

decoding states with reference to the CSI 300 original series, while Figure 1.6 is correlated

with the daily returns of the CSI 300. The purple background represents the bull market,

the red background denotes the bear market, and the green background stands for the

sidewalk market. We review the evolution of the transition between the different market

conditions for the Chinese stock market in our sample period.

• At the beginning of our sample period (April 8th 2005), the Chinese stock market

was in a sidewalk market and lasted for about one year until April 27th 2006.
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After a short period of bull (April 28th 2006 to July 14th 2006), the market became

sidewalk again and lasted for approximately 4 months (July 17th 2006 to November

13th 2006).

• At the end of 2006, the CSI 300 started to climb and reached its historically high

peak at 5877.20 on October 10th 2007. One possible reason of the boom in 2007 is

the split-share structure reform, which aimed to convert all non-tradable shares to

tradable shares. The implementation of the reform took about roughly two years

from 2005 to 2007. Due to the conversion from non-tradable shares to tradable

shares, the reform had provided substantial liquidity to the market, and it is highly

likely to be one of reason for the very promising market during that period.

• Interestingly, it is common to believe that the year 2007 is a “pure” bull market,

but our decoding results show that this period was not purely bull, but was in

fact mixed with some periods of the bear market. The mixture of the bull and

bear market can be explained by the disposition effect in the behavioural finance,

which is the phenomena that investors tend to sell assets that have gained profit

and hold assets that have lost value. In other words, investors used to cash in to

achieve capital gain following increase in stock prices and this will lead to price

reversals.

• After the financial crisis (March 12th 2007), the market went into a “pure” bear

market and the CSI 300 dropped from its peak to the bottom of 1627.76 on Novem-

ber 4th 2008, which is the largest drop in the history of the Chinese stock market.

After the market collapsed, it started to be bull and recover.

• Afterwards, the Chinese stock market experienced some periods of bear, sidewalk,

and bull alternatively. It went into a remarkably long period of sidewalk from

November 19th 2011 to November 20th 2014. During that period, the CSI 300

stayed in the range of 2000 to 3500 and displayed a mean-reversion pattern.

• From December 11th 2014, the Chinese stock market became bull and rocketed

from 3183.01 to 5335.12 on June 12th 2015, which represented an astonishing

increase of 67.61%. From the technical analysis perspective, there was a breakout
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through the resistance line at the end of 2014, after several years of sidewalk

market. From the fundamental analysis perspective, one of the reason for this

boom was the substantial liquidity provided from the other source financing. After

this bull market, the Chinese stock market abruptly transited into a bear market.

The CSI 300 shrank to 3025.70 on August 26th 2015, which was a dramatic 43.29%

decrease. The reason of this dramatical drop in the market was highly likely to be

related to the regulations and restrictions on other source financing imposed by

CRSC in July 2015. The detail of the other source financing will be discussed in

Chapter 2.

• From September 18th 2015 to December 25th 2015, the Chinese stock market was

a bull market over the course of three months. Afterwards, a short bear market

and a short bull market occurred, followed by a sidewalk market.

The local decoding (Figure 1.7) offers a more detailed probability of each state along

with time in the sample period. The local decoding results confirm our understanding

on the transition of the market conditions of the Chinese stock market. Before 2007,

state 2 remained at a high level of probability. During 2007 and 2008, state 1 and state

3 alternatively reached high probabilities. After the financial crisis, state 1 remained at

a high probability for about one year, while the other two remained low. From 2011

to 2014, the probability of state 2 was almost 100% with a few exceptions. After 2015,

the probability of state 3 reached a relatively high level again and was followed by a

comparatively high level of state 1. State 2 has had the highest probability recently.

The local decoding results are consistent with the global decoding results.
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Figure 1.5: CSI 300 and Market Conditions (Global Decoding)
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Figure 1.6: Daily Returns of CSI300 and Market Conditions (Global Decoding)
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Figure 1.7: Local Decoding
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1.8 Model Evaluation and Comparison

In this section, we compare the empirical performance of our three-state HSMM with

a stochastic volatility (SV) model and a tGARCH(1,1) model in terms of three stylized

facts, namely the fat tails, the “long-memory”, and the Taylor effect.

It is worthwhile to mention the advantages and disadvantages of the HSMM and the

other alternative models. Although GARCH models are now widely used and simple

to estimate, there are three main disadvantages of these models pointed out by Nelson

(1991). Firstly, GARCH models rule out the possible situation of the negative corre-

lation between current returns and future returns volatility. Secondly, The parameter

restrictions of GARCH models can often be violated by empirical data. Thirdly, it is

difficult in GARCH models to interpret whether the shocks to conditional variance is

persist or not. As for our choice of the specific GARCH model, Hansen & Lunde (2005)

find no evidence that the GARCH(1,1) is inferior to other sophisticated ARCH-family

models by using DM-$exchange rate and daily IBM returns data. Additionally, the only

complication of tGARCH(1,1) from GARCH(1,1) is that the conditional distribution is

set to be the Student’s t-distribution in order to capture the fat-tail.

Allowing the volatility to be an unobserved continuous-time random process, SV models

overcome the disadvantages of GARCH models and fit more naturally to the modern

finance theories (Platanioti et al., 2005). Taylor (1994) show that SV models have simple

continuous-time analogues for option pricing. Yu (2002) show that the SV model is su-

perior to the GARCH models according to three different asymmetric loss functions and

Root Mean Square Error for the forecasting of the volatility of the New Zealand market

index. Although the evidence of superiority of SV models over GARCH models, their

empirical application has been limited because it is difficult to estimate the parameters

for SV model because the likelihood functions is hard to evaluate (Broto & Ruiz, 2004).

The most prominent advantage of the HSMM is that we can systemically find the hidden

states and infer the most likely sequence of the the hidden states. The main limitation

of the HSMM is that the empirical results can be largely changed by the model set-

ting, such as the number of states, the component distribution, and the sojourn time
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distribution. Finding the appropriate model settings can involve many times of trial

and error. Additionally, using the Viterbi algorithm to conduct the global decoding is a

computational expensive procedure. To the best of our knowledge, there is no study on

the empirical performance comparison between SV models and HSMM.

Our comparison focuses on the aspects of reproducing stylized facts of asset returns.

The economic significance of the three stylized facts is as follows. Fat tails are related

to the Value-at-Risk, which plays a vital important role in financial risk management.

If the model cannot capture the correct left tail risk, the Value-at-Risk could be under-

estimated. In this circumstance, the investors may encounter an extra loss they do not

expect. It is found that the return itself is not autocorrelated but that the squared return

and the absolute return are autocorrelated and their ACF are slowly decaying. Note

that the squared return and the absolute return are both volatility measures. Hence,

the stylized fact of the “long-memory” is associated with volatility clustering, i.e. a

large volatility tends to be followed by a large volatility and a small volatility tends to

be followed by a small volatility. A good model should capture the persistence of the

volatility in asset returns. The Taylor effect is a famous statistical observation. Taylor

(1986) has initially found that the absolute return with power one has the highest au-

tocorrelation. The following literatures treat the reproduction of the Taylor effect as an

important benchmark (e.g. Rydén et al., 1998; Bulla & Bulla, 2006; Rogers & Zhang,

2011). If the model fails to reproduce the Taylor effect, then the data generation process

in the model could not fully represent the empirical asset return.

Additionally, we also compare our model with a two-state HSMM, a three-state HMM,

and a two-state HMM with respect to log likelihood, AIC, and BIC. This is for the

model selection purpose and confirms our choice of a three-state HSMM.
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1.8.1 Comparison with Other Volatility Models

Following Jacquier et al. (1994) and Kim et al. (1998), the stochastic volatility model is

specified as

yt = eht/2εt (1.8)

ht = µ+ φ(ht−1 − µ) + σηt (1.9)

where yt is the demeaned log return, ht is the latent time-varying log volatility process,

µ is the mean level of the log volatility, φ is the persistence coefficient for the volatility

process, σ is the volatility of the log volatility, and εt and ηt are uncorrelated standard

normal white noise shocks.

We use the MCMC method developed by Kastner & Frühwirth-Schnatter (2014) to

estimate the stochastic volatility model. As for the mean level µ ∈ R, we choose the

usual normal prior µ ∼ N (log(var(yt)), 1). The persistence parameter φ ∈ (−1, 1) is

equipped with the Beta prior (φ + 1)/2 ∼ B(20, 1). In terms of the volatility of the

log volatility σ ∈ R+, we choose σ2 ∈ 0.1 × χ2
1. For the MCMC setting, the thinning

parameter is set to be 10, the burn-in parameter is 5000, and the number of draw is

55000. Table 1.7 presents the posterior draws of the parameters. The posterior mean is

employed for the point estimation of the parameters.

The second benchmark model we consider is the tGARCH(1,1), which has the form

rt = µ+ σtεt, εt ∼ t(ν) (1.10)

σ2
t = ω + α1y

2
t−1 + β1σ

2
t−1 (1.11)

where ω > 0, α1 > 0, β1 > 0, and α1 + β1 < 1. rt is the log return calculated in

Equation 2.1. The conditional distribution is set to be the Student’s t-distribution with

the degree of freedom ν. We use the quasi-maximum likelihood method (Bollerslev &

Wooldridge, 1992) to estimate the tGARCH(1,1) model, and the estimation results are

reported in Table 1.8.
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Table 1.7: Estimation for the SV Model

Mean Std. Error 5% 50% 95%

µ 0.933 0.198 0.622 0.932 1.255
φ 0.985 0.005 0.976 0.985 0.992
σ 0.141 0.017 0.115 0.140 0.171

eµ/2 1.602 0.160 1.365 1.594 1.873
σ2 0.020 0.005 0.013 0.019 0.029

Table 1.8: Estimation for the tGARCH(1,1)

Estimate Std. Error t-stat P-value

µ 0.083 0.027 3.043 0.002
ω 0.026 0.010 2.719 0.007
α1 0.056 0.009 6.368 0.000
β1 0.939 0.009 102.187 0.000
ν 5.280 0.567 9.318 0.000

Fat Tail Reduction

Figure 1.8 shows the QQ plots of the log returns in the overall sample and three market

conditions with respect to the theoretical normal distribution. The overall sample has

tremendously fat tails since the QQ line deviates heavily from the diagonal line. After

the separation of the whole sample into 3 states by our HSMM, the bear market and

the bull market have close to normal distributions with slight tails, while the sidewalk

market has modest tails. The QQ plots suggest that the distributions of the three market

conditions are close to normal distributions. The reduction of fat tails can be confirmed

by the kurtosis. The kurtosis of log returns is 6.089 in the overall sample, 3.002 in State

1 (Bear), 3.865 in State 2 (Sidewalk), and 3.283 in State 3 (Bull). The kurtosis of the

three market conditions is close to 3. Hence, the assumption of the normal component

distribution is suitable for our data. This confirms that the distributional property of

the Chinese stock market returns could be a mixture of Gaussian distributions.

Figure 1.9 depicts the standardized residuals from three models and their QQ plot with

respect to the theoretical normal distribution. The standardized residual of HSMM

is defined as (rt − x̄i)/σi, i = 1, 2, 3, the standardized residual of the SV model is εt

in Equation 1.8, and the standardized residual of tGARCH is εt in Equation 1.10.

Both the HSMM and the SV model can significantly reduce the fat tail, while the
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Figure 1.8: QQ Plots of the Log Returns
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GARCH(1,1) still presents fat tails in its standardized residuals. The right tail of the

standardized residuals in the SV model is slightly smaller than that in the HSMM. We

further compare the kurtosis of the standardized residuals in the three models. The

kurtosis of the standardized residuals is 3.560 in the HSMM, 3.285 in the SV model, and

4.678 in the tGARCH. In terms of fat tail reduction, the HSMM slightly underperforms

the SV model, but they both outperform the tGARCH.
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Figure 1.9: Standardized Residuals and their QQ Plots
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“Long-memory”

Rydén et al. (1998) could not reproduce the slow decay of the ACF of the squared or

absolute returns by the HMM. It is interesting to examine the “long-memory” property

of our model and two benchmark models. We simulate data from those three models

based on the estimated parameters from our empirical CSI 300 log return data. The

number of the Monte Carlo simulation accounts for 5000 repetitions. Figure 1.10 shows

the empirical ACF and the model ACF for squared and absolute returns. The grey bars

represent the empirical ACF while the red line is the model ACF.

Generally, all three models can reproduce the “long-memory” property because they

all have slow decaying ACF. There are some differences between the ACF of the three

models. Firstly, the model ACF of the HSMM is close to the empirical ACF before Lag

10, but it is slightly underestimated for large lags. Secondly, tGARCH has best fitting

for the empirical ACF of the squared return, while the model ACF of the HSMM is

underestimated and that of the SV model is overestimated. Thirdly, the SV model gives

the best fitting for the empirical ACF of the absolute return, while the model ACF of

the HSMM is still underestimated and that of the tGARCH is overestimated.

Our simulation results of the tGARCH are consistent with Ding et al. (1993). Their

Monte Carlo simulation study also shows that ARCH type models can facilitate the

“long-memory” property for both squared returns and absolute returns. Ding & Granger

(1996) also derived the theoretical ACF for various GARCH(1,1) models and found them

to be exponential decreasing.

Taylor Effect

The autocorrelation functions of different power values θ (i.e. corr
(
|rt|θ , |rt−k|θ

)
) for

the three models are also simulated by the same Monte Carlo procedure with 5000

repetitions. Figure 1.11 displays the Taylor effect of all three models. The surface of

the simulated Taylor effect is much smoother than that of the empirical Taylor effect in

Figure 1.2.
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Figure 1.10: Empirical ACF and Model ACF
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Generally, all three models can reproduce the stylized fact of the Taylor effect, i.e. the

autocorrelation function with power value θ = 1 is the highest among the other power

values. As can be seen in the 3-D plot, the surface decreases slowly when θ deviates from

1 and reaches the lowest values at two sides. Nevertheless, the shape of autocorrelation

functions surface is different for the three models. The surface of the HSMM has a

more evident curvature before Lag 10 and becomes much flatter with larger lags. The

surface of the SV model and the tGARCH has a consistent curvature in terms of the lag

numbers. The tGARCH has a more blended surface than the SV model.

1.8.2 Comparison with the Hidden Markov Models

Our three-state HSMM is compared with the two-state HSMM used by Bulla & Bulla

(2006), the three-state HMM adopted by Rydén et al. (1998), and the two-state HMM

employed by Rydén et al. (1998) in terms of log likelihood, AIC, and BIC. Table 1.9

summarises the performance of all of the models for the return data of the CSI 300.

Our three-state HSMM has the highest log likelihood among the other models. This

indicates that our model fits the empirical return of the CSI 300 better than the other
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Figure 1.11: Taylor Effect from Simulation
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models. However, it is not fair to evaluate model performance purely on the log likelihood

because different models may have different numbers of parameters. Introducing more

parameters usually increases the log likelihood but may result in overfitting.

The Akaike information criterion (AIC) and the Bayesian information criterion (BIC)

are fair model comparison tools. The AIC penalises the number of parameters and

the BIC takes into consideration both the number of parameters as well as the sample
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size. A better model has a smaller AIC/BIC. The three-state HSMM has the smallest

AIC and BIC. This implies that the HSMM does not over-fit the data and additional

parameters are sensibly introduced to model the data.

Table 1.9: Model Comparison with Hidden Markov Models

3-State HSMM 2-State HSMM 3-State HMM 2-State HMM

Iteration No. 130 18 234 45
Log Likelihood -5178.911 -5213.159 -5186.953 -5229.820
AIC 10385.820 10440.320 10401.910 10473.640
BIC 10468.420 10481.620 10484.500 10514.940

1.9 Trading Strategy

Under the EMH, the current prices always ‘fully reflect’ available information and follow

a random walk., which naturally has the implication that technical trading rules cannot

generate excess returns than a buy-and-hold trading strategy Fama (1965). Our three-

state HSMM shows some merits of fitting the empirical data in terms of the stylized

facts of asset returns, which are not considered by the random walk. Although testing

the EMH is not the focus of this chapter, it is worthwhile to use our three-state HSMM

to provide some evidence of the inefficiency of the Chinese financial market.

We design a simple trading strategy 4 based on our three-state HSMM. In order to test

the profit of the trading strategy, we split the data into two parts, a training sample

(April 8th 2005 to December 31st 2013) and a testing sample (January 1st 2014 to May

13th 2016). The three-state HSMM is estimated by the data in the training sample.

In order not to use future information, we use the expanding window to recursively

decode the most likely sequence of states. Specifically, we fix the start date of the

window to April 8th 2005 and move the end date of the window to each date in the

testing sample. The performance of the trading strategy is only evaluated for the testing

sample.

For each expanding window, we conduct global decoding for the data and take the last

decoded state in the window. The trading rule is as follows:

4This is only a numerical demonstration of the trading strategy. Investors cannot directly trade the
CSI 300 in China, but the index ETF can be its proxy.
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• If the last decoded state is the bear market −→ Short and hold in the next trading day

• If the last decoded state is the sidewalk market −→ No position in the next trading day

• If the last decoded state is the bull market −→ Long and hold in the next trading day

Figure 1.12 shows the cumulative return of the trading strategy in the upper panel,

drawdown in the middle panel and trading signal in the lower panel. This trading

strategy is profitable with an annualised return of 37.59% and a Sharpe ratio of 1.14

5. The maximum drawdown occurred at -21.34% in January 2015. There are three

remarkable periods. The trading strategy does not have any position (trading signal:

0) before December 2014; it takes a long position (trading signal: 1) in April 2014; and

it takes a short position (trading signal: -1) from June 2015 to October 2015 and from

January 2016 to March 2016. The majority of the profit in the trading strategy comes

from the short position. During the same trading period, the buy-and-hold trading

strategy has an annual return of 13.36% and a Sharpe ratio of 0.28. Nevertheless, it

should be highlighted that the maximum drawdown of the buy-and-hold trading strategy

is -62.92%. Our simple trading strategy is superior to the buy-and-hold strategy in terms

of higher risk-adjusted return.

For the robustness test, we follow Gencay (1998) to examine the trading performance

in different out-of-sample periods. We conduct three other data split schemes and this

trading strategy still shows high profit. The robustness test results are shown in 1.C. The

robust performance of our simple trading strategy is consistent with the previous studies

shown that technical trading strategies are profitable for the stock market indices in

emerging markets (Ratner & Leal, 1999; Ito, 1999; Coutts & Cheung, 2000; Gunasekarage

& Power, 2001).

1.10 Conclusion

With the aim to decode the Chinese stock market returns, three research sub-questions

have been answered. Firstly, it is appropriate to employ a three-state HSMM to explain

5The risk free rate in China is assumed to be a constant of 4.35% according to http://www.

global-rates.com/interest-rates/central-banks/central-bank-china/pbc-interest-rate.aspx.

http://www.global-rates.com/interest-rates/central-banks/central-bank-china/pbc-interest-rate.aspx
http://www.global-rates.com/interest-rates/central-banks/central-bank-china/pbc-interest-rate.aspx
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Figure 1.12: Performance of the Simple Trading Strategy

(Training Sample: Apr.2005 - Dec.2013; Testing Sample: Jan.2014 - May.2016)
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the time-varying distribution of Chinese stock market returns. Secondly, the hidden

states in the HSMM correspond to the market conditions, namely the bear, sidewalk,

and bull market. Thirdly, we show the inefficiency of the market by design a trading

strategy based on the expanding window decoding. The trading strategy generates risk-

adjusted return with a Sharpe ratio of 1.14 in the testing sample.

Additionally, we reviewed the evolution of the market conditions in the Chinese stock

market over the last decade. The most prominent periods are the bear market (Jan-

uary 16th 2008 to January 14th 2009), the long sidewalk market (November 19th 2011

to November 20th 2014), and a recent bull market (December 11th 2014 to May 27th

2015). In the model evaluation, our three-state HSMM along with a SV model and a

tGARCH(1,1) can reproduce the stylized facts of the “long-memory” and the Taylor

effect, but tGARCH(1,1) fails to reduce the fat tails.

One limitation of the HSMM is that the empirical results can be largely changed by the

model setting. Finding the appropriate model settings can involve many times of trial
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and error. Future research may wish to explore the links between market conditions and

macroeconomic variables.



Appendix

1.A EM Algorithm

In this appendix, we provide technical details of the EM algorithm for the right-censored

HSMM. We adopt the right-censored HSMM because the assumption of the classical

HSMM that the last observation always coincides with the exit from a state seems to

be unrealistic for financial time series data (Bulla & Bulla, 2006). The right-censored

setting releases the assumption that the last observation is always to be the end of a

state. In other words, the last visited state will last for some time even after the last

observation. There is no immediate jump to other states after the last observation. In

the right-censored setting, the sojourn time in the last visited state is modelled by the

survivor function, which shown in Equation 1.12.

Di(u) =
∑
ν>u

di(u) (1.12)

Guédon (2003) provided the complete-data likelihood for the right-censored HSMM. The

complete-data likelihood function contains the observation XT
1 and the state sequence

ST1 , where u − 1 is the period that the last visited state will continue after the last

observation. The last visited state will jump into other states at time T + u. The

complete-data likelihood for the right-censored HSMM is shown in Equation 1.13.

Lc(X
T
1 , s

T+u
1 |θ) = P(XT

1 = xT1 ,S
T
1 = sT1 ,S

T+u−1
T+1 = sT , ST+u 6= sT |θ) (1.13)
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The final likelihood function is obtained by summing all possible state sequences and all

possible prolongation lengths of the last state, as indicated in Equation 1.14.

L(θ) =
∑

t=S1,...,ST

∑
uT+

Lc(X
T
1 , s

T+u
1 |θ) (1.14)

where
∑

t=S1,...,ST
represents the summation of all possible state sequences, and

∑
uT+

represents the summation over all possible additional sojourn time after time T .

It is difficult to compute the likelihood function in Equation 1.13 because the under-

lying state sequence is unknown. It needs to consider all possibilities of the state se-

quence in order to compute the full likelihood, which is not realistic. The expectation-

maximization (EM) algorithm provides a suitable procedure to deal with the missing

data problem. The EM algorithm (Baum et al., 1970) is an iterative procedure to

increase the likelihood until it reaches the convergence criteria. The EM algorithm iter-

atively conducts the E-step and M-step. Given an initial guess of the parameter vector

θ , the E-step firstly computes the Q-function, which is the conditional expectation for

the complete-data likelihood.

• E-step

Q(θ,θ(t−1)) = E
{
Lc(X

T
1 , s

T+u
1 |θ)|XT

1 = xT1 ,θ
(t−1)

}
(1.15)

Based on the Q-function in Equation (12), the M-step aims to maximise the Q-

function with respect to parameter θ.

• M-step

θ(t) = arg max
θ

Q(θ,θ(t−1)) (1.16)

The parameter vector θ that maximises the Q-function in the M-step of the previous

iteration will be used in the E-step of the next iteration. Along with every iteration,

the likelihood is non-decreasing. The algorithm will stop once the convergence criterion

is satisfied. Normally, the convergence criterion is the successive change of likelihood is

less than a very small number. The EM algorithm is not guaranteed to reach the global

maxima and it might be trapped in local maxima. Hence, it is necessary to try different
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initial values of parameter vector θ in order to check that the maximum reached is the

global maximum rather than the local maximum.

In this chapter, we focused on the economic interpretation of the HSMM rather than on

the mathematical derivation. We direct the reader to the thesis of Bulla (2006) for the

mathematical details of the EM algorithm of the HSMM. In his thesis, he decomposes the

Q-function of the HSMM into four components, which correspond to the initial proba-

bilities, transition probabilities, sojourn time, and component distributions. The E-step

is implemented by the forward-backward algorithm. His decomposition framework fa-

cilities the M-step in which the four components can be maximised individually. Bulla

shows the close-form solutions for some common distributions for the sojourn time and

component distributions, but the numerical solver could be applied if a closed solution

does not exist.

Unlike the maximum likelihood method whereby the standard errors can be directly

calculated by the Fisher information matrix (FIM), one drawback of the EM algorithm is

that the FIM is not a by-product of the algorithm. It is highly unlikely to obtain the FIM

by evaluating analytically the second-order derivatives of the marginal log-likelihood of

the HSMM. Recent numerical methods are developed to get an approximation of the

FIM (see Louis, 1982; Meng & Rubin, 1991; Jamshidian & Jennrich, 2000). However, all

these methods have limitations (Meng, 2016). There is no generally accepted method

to get diagnosis for the estimation of the HSMM by the EM algorithm. Hence, we do

not provide the diagnosis of the estimated parameters in this chapter.

1.B Decoding Technique

It is interesting to decode the most likely states in the Markov chain. There are two

decoding techniques for the HSMM, global decoding and local decoding. Global decoding

aims to determine the most likely sequence of the states given the observations, while

the local decoding computes the conditional probability of each state at times given the

observations. Normally, they produce similar but not identical decoding results.
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1.B.1 Global Decoding

The purpose of global decoding is to find the most likely sequence of states conditional on

the observations. Mathematically speaking, global decoding intends to find a sequence

of states with the highest likelihood given the observations, which is shown in Equation

1.17.

ŜT1 = arg max
ST1

P
(
ST1 |XT

1

)
(1.17)

The exhaustive attack method has the computational complexity level at O(mT ). This

brute force method is not feasible for long sequence data. The Viterbi algorithm (Viterbi,

1967) was developed by utilising the Markov property of the HMM and HSMM. This is

an efficient dynamic programming algorithm and its complexity level is O(m× T ). The

Viterbi algorithm works in the following way.

arg max
ST1

P
(
ST1 |XT

1

)
= arg max

ST1

P
(
ST1 ,X

T
1

)
(1.18)

Define

µt(St) = max
St−1

1

P(St1,X
t
1) (1.19)

The recursion expression for maxP(St1,X
t
1) can be derived.

max
St−1

1

P(St1,X
t
1) = max

St−1
1

P(Xt|St)P(St|St−1)P(St−1
1 ,Xt−1

1 )

= max
St−1

{
P(Xt|St)P(St|St−1) max

St−2
1

P(St−1
1 ,Xt−1

1 )

}

= max
St−1

P(Xt|St)P(St|St−1)µt−1(St−1)

(1.20)

The recursion equation for µt(St) is as follows

µt(St) = max
St−1

P(Xt|St)P(St|St−1)µt−1(St−1) for t = 2, ..., T (1.21)

Equation 1.21 is able to compute the most likely trajectory for each state up to time

t. At time T , the state with the highest P(ST1 ,X
T
1 ) is picked up and the corresponding

trajectory is the solution for the Viterbi algorithm.
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1.B.2 Local Decoding

The purpose of local decoding is to compute the conditional probabilities for each state

at time t given the observation.

Ŝt = arg max
St

P
(
St = i|XT

1 = xT1
)

for i = 1, ...,m (1.22)

The conditional probability in Equation 1.22 can be decomposed into three terms.

P
(
St = i|XT

1 = xT1
)

= P
(
St+1 6= i, St = i|XT

1 = xT1
)

+ P
(
St+1 = i|XT

1 = xT1
)

− P
(
St+1 = i, St 6= i|XT

1 = xT1
) (1.23)

Define ξt(i) = P(St = i|XT
1 = xT1 ). It is able to obtain the recursion equation for the

conditional probability.

ξt(i) = P
(
St+1 6= i, St = i|XT

1 = xT1
)

+ ξt+1(i)− P
(
St+1 = i, St 6= i|XT

1 = xT1
)

(1.24)

With Equation 1.24, ξt(i) can be computed based on the ξt+1(i) and it is able to calculate

the conditional probabilities at all time in a backward way (see details in Guédon (2003)).

1.C Robustness Test of the Trading Strategy

We implemented three other data split schemes in order to test the profit of our trading

strategy. The first scheme is cutting the sample at the end of 2009 (i.e. trading sample:

Apr.2005 - Dec.2009, testing sample: Jan.2010 - May.2016); the second scheme is at

the end of 2012 (i.e. trading sample: Apr.2005 - Dec.2012, testing sample: Jan.2013 -

May.2016); and the third scheme is at the end of 2014 (i.e. trading sample: Apr.2005

- Dec.2014, testing sample: Jan.2015 - May.2016). For each scheme, the HSMM is

estimated by using the training data, and then the trading strategy is tested for the

period of the testing sample. The trading strategy still shows high profit for all three
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schemes (see Figure 1.C.1 to Figure 1.C.3). The profit of the trading strategy is believed

to be robust.

Figure 1.C.1: Performance of the Simple Trading Strategy - Period 1

(Training Sample: Apr.2005 - Dec.2009; Testing Sample: Jan.2010 - May.2016)
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Figure 1.C.2: Performance of the Simple Trading Strategy - Period 2

(Training Sample: Apr.2005 - Dec.2012; Testing Sample: Jan.2013 - May.2016)
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Figure 1.C.3: Performance of the Simple Trading Strategy - Period 3

(Training Sample: Apr.2005 - Dec.2014; Testing Sample: Jan.2015 - May.2016)

2015/02 2015/05 2015/08 2015/12 2016/03
0

0.2

0.4

0.6

0.8

1

1.2
Cumulative Return

2015/02 2015/05 2015/08 2015/12 2016/03
-0.25

-0.2

-0.15

-0.1

-0.05

0
Drawdown

2015/02 2015/05 2015/08 2015/12 2016/03
-1

-0.5

0

0.5

1
Trading Signal

Annualised Return: 89.06%; Sharpe Ratio: 2.26; Max Drawdown: -24.43%





Chapter 2

Understanding the Chinese Stock Market:

International Comparison and Policy Implications

The definition of bear, sidewalk, and bull markets is ambiguous in existing literature.

This makes it difficult for practitioners to distinguish between different market condi-

tions. In this chapter, we employ a statistical definition of bear, sidewalk, and bull

markets, which correspond to the three states in our hidden semi-Markov model. We

employ this analysis to the daily returns of the Chinese stock market and the other seven

developed markets investigated. Using the Viterbi algorithm to globally decode the most

likely sequence of the market conditions, we systematically find the precise timing of bear,

sidewalk, and bull markets for all eight markets. Through the comparison of the estima-

tion and decoding results, many unique characteristics of the Chinese stock market are

found, such as “Crazy Bull”, “Frequent and Quick Bear”, and “No Buffer Zone”. In

China, the bull market is more volatile than in developed markets, the bear market occurs

more frequently than in developed markets, and the sidewalk market has not functioned

as a buffer zone since 2005. Lastly, the possible causes of the unique characteristics are

discussed and implications for policy-making are suggested.
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2.1 Introduction

In the last two decades, China has made significant progress on the development of the

stock market. A number of important steps have been carried out, such as the enactment

of Qualified Foreign Institutional Investors (QFII) programme in 2002, the split-share

structure reform in 2005, and the Qualified Domestic Institutional Investors (QDII)

programme in 2006. However, the current rules and structures of the Chinese stock

market are still considerably different from those of developed stock markets. Firstly,

the Chinese stock market is relatively isolated from the international financial markets

because of very limited openness to the international investors. Secondly, the Chinese

stock market is heavily regulated and intervened by the government. Thirdly, the Chi-

nese stock market is still under development and lacks financial derivatives to manage

risk. Lastly, the majority of investors are individual investors without professional in-

vestment knowledge, who are focusing on short-term speculation, rather than long-term

investment. Lastly, the Chinese stock market is very liquid with high turnover velocity.

It is natural to raise the question how these different rules and structures reflect on the

market behaviour. Many studies have investigated the Chinese stock market. Herd-

ing behaviour, overreaction, and speculation in the Chinese stock market are well-

documented (Tan et al., 2008; Mei et al., 2009; Ni et al., 2015). However, less attention

has been to paid from the perspective of the market condition. To the best of our knowl-

edge, very limited study has identified the difference of the market conditions between

the Chinese stock market and developed markets, especially after 2005. In this chap-

ter, we are interested in investigating the unique characteristics of market conditions in

China with particular comparison to developed markets. Additionally, we discuss the

possible causes of the unique characteristics of market conditions in China and propose

several policy suggestions to help the development of the Chinese stock market.

The definition of bear, sidewalk, and bull markets is very vague in the existing literature,

making it difficult for practitioners to distinguish between stock markets in different

market conditions. We employ a statistical definition of bear, sidewalk, and bull markets,

which corresponds to the states in our three-state hidden semi-Markov model (HSMM) in
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Chapter 1. We employ this analysis to the daily return of the Chinese stock market and

the other seven developed markets analysed. Using the Viterbi algorithm (Viterbi, 1967)

to globally decode the most likely sequence of the market conditions, we systematically

find the precise timing of bear, sidewalk, and bull markets for all eight markets. Through

the comparison of the estimation and decoding results, several unique characteristics of

the Chinese stock market are found, such as “Crazy Bull”, “Frequent and Quick Bear”,

and “No Buffer Zone”. “Crazy Bull” refers to the observation that the bull market has a

considerably high variance. “Frequent and Quick Bear” is the observation that the bear

market has short sojourn time and occurs very frequently. “No Buffer Zone” represents

the observation that the bull market is typically mixed with the bear market and there

is no sidewalk market between them.

Our findings are meaningful for investors and policy makers on two levels. Firstly, at the

micro-level, investors have more in-depth understanding of the Chinese stock market,

which has several prominent differences from developed markets. In China, the bull

market is more volatile, the bear market happens more frequently, and the sidewalk

market does not function as a buffer zone. All of these characteristics suggest that

investors need to carefully manage the risk of their investment and avoid speculation.

Secondly, at the macro-level, it is vital for the government to educate individual investors

and develop institutional investors, to provide more accessible risk management tools,

and to strengthen regulation on excess leverage from other source financing.

2.2 Literature Review

Many studies have investigated the Chinese stock market. Herding behaviour, overreac-

tion, and speculation in the Chinese stock market are well-documented. Tan et al. (2008)

studied heading behaviour in the Chinese stock market, both A-share and B-share. They

found that herding happens in both upside and downside market conditions. Particu-

larly, herding behaviour is stronger in upside market conditions in A-share. Investor

sentiment and its nonlinear effect on stock returns in China was studied by Ni et al.

(2015) through the panel quantile regression model. The nonlinear effect of investor
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sentiment turns out to be asymmetric and reversal, which proves the occurrence of

overreaction in the Chinese stock market. Additionally, it was observed that Chinese

investors are affected by cognitive bias and speculation tendencies.

The market condition has been studied by Markov-switching techniques. Schaller &

Norden (1997) considered a two-regime model which allows the mean and/or the vari-

ance of returns to vary in different regimes for the US stock market. Nielsen et al.

(2001) found that a third regime, the speculative market, exists in some European mar-

kets. Girardin & Liu (2003) adopted a switch-in-the-mean plus switch-in-the-variance

(MSMH(3)-AR(5)) model for weekly capital gains on the Shanghai A-share market dur-

ing the period between 1995 and 2002. They also found that there are three market

conditions: a speculative market, a bull market and a bear market. They claimed that

the bull market is always a buffer zone in the transition between the other two market

conditions. It should be noted that the buffer zone defined in the context of Girardin &

Liu (2003) is the bull market, while the sidewalk market is regarded as the buffer zone

in this chapter.

The hidden Markov model (HMM) and hidden semi-Markov model (HSMM) used in

financial studies focus on the reproduction of stylized facts of daily returns. Rydén

et al. (1998) firstly adopted a two-state HMM with normal distributions (zero mean

but different variance) as the component distribution (a.k.a. marginal distribution) to

reproduce most of the stylized facts of daily returns, except for the slow decay in the

autocorrelation function of squared returns. Bulla & Bulla (2006) used a two-state

HSMM, which is a generalization of HMM, to model daily returns of 18 US sector

indexes. The stylized facts of daily returns are reproduced by HSMM, including the

long-memory in the autocorrelation function of squared returns. In Chapter 1, we used

a three-state HSMM on the daily returns of CSI 300 and showed that the stylized facts of

daily return in China also can be reproduced. The empirical results suggest that three-

state HSMM is appropriate for the CSI 300, and it is better than two-state HSMM,

three-state hidden Markov model, and two-state hidden Markov model model. In this

Chapter, we employ the same three-state HSMM as in Chapter 1 to systematically find

the precise timing of bear, sidewalk, and bull markets.
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This chapter firstly propose the statistical definitions of bear, sidewalk, and bull markets.

In the empirical results part, the unique characteristics of the Chinese stock market are

identified through the comparison of estimation and decoding results with developed

markets. Finally, the possible causes of the unique characteristics are discussed and

several policy implications are suggested.

2.3 Definition of Bear, Sidewalk, and Bull

In practice, investors tend to determine market conditions arbitrarily and different con-

clusions might be drawn for the same market in the same period. In the existing aca-

demic literature, the definition of market conditions varies considerably. In one of the

early study, Fabozzi & Francis (1977) propose three ways to define market conditions.

In the first classification of Bull and Bear Markets, the rule places most months when

the market rises in the bull market (BB), but months when the market rose near the

bearish months were treated as part of the bear market. In the second classification

of Up and Down Markets (UD), months in which return was non-negative are defined

as Up months and months in which return was negative are defined as Down months.

In the third classification of Substantial Up and Down Months (SUD), there are three

categories: months when the market moved Up-substantially, months when the market

moved Down-substantially, and months when the market moved neither Up-substantially

nor Down-substantially. The threshold of substantial move was arbitrarily defined.

In the modern study, a loose definition by Chauvet & Potter (2000) proposed that market

prices generally increase (decrease) in a bull (bear) market. Edwards & Caglayan (2001)

use a simple classification that bull market months are defined as those in which the

S&P index rises by 1% or more and bear market months are defined as those in which

the S&P index falls by 1% or more. Lunde & Timmermann (2004) claim that a bull

(bear) market starts when the market price increases (decreases) a certain percentage,

say 20%, from the previous local bottom (peak). Gonzalez et al. (2006) utilized two

formal turning point methods to detect the timing of bull and bear markets. Cheng
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et al. (2013) define bull (bear) markets as the periods with at least three consecutive

months of positive (negative) returns.

It is inevitable to propose our own definition of market conditions for three reasons.

Firstly, there is no generally accepted definition of the market conditions. Secondly,

most definitions of the market conditions are based on the monthly data. Lastly and

mostly importantly, the current definition are mainly for two-category classification, i.e.

the bull or bear market (or up or down market). The only three-category classification

is the SUD in Fabozzi & Francis (1977), but their threshold of substantial move was

arbitrarily defined. We define the bear, sidewalk, and bull market conditions from the

perspective of the distributional features.

Definition 2.1. A Bear Market

• The mean of the distribution of the daily returns conditional on a bear market is signifi-

cantly less than 0.

• The frequency of the positive returns is expected to be larger than that of the negative

returns.

• Because of the above statistical properties, the price in a bear market is generally decreasing.

Definition 2.2. A Sidewalk Market

• The mean of the distribution of the daily returns conditional on a sidewalk market should

be insignificantly different from 0.

• It is expected to observe a roughly equal number of positive and negative returns.

• Because of the above statistical properties, the price in a sidewalk market stays in a band

and shows a mean-reversion pattern.

Definition 2.3. A Bull Market

• The mean of the distribution of the daily returns conditional on a bull market should be

significantly larger than 0.

• The frequency of the positive returns is expected to be larger than that of the negative

returns.

• Because of the above statistical properties, the price in a bull market is generally increasing.
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In straight-forward notation, the mean in each market is as follows:

µ(St) = µ1 < 0, if St = 1 (bear market)

µ(St) = µ2 ≈ 0, if St = 2 (sidewalk market)

µ(St) = µ3 < 0, if St = 3 (bull market)

The variance of each market can be denoted as

σ2(St) = σ2
1, if St = 1 (bear market)

σ2(St) = σ2
2, if St = 2 (sidewalk market)

σ2(St) = σ2
3, if St = 3 (bull market)

where we expect that the bear market should have highest variance (i.e. σ2
1 > σ2

2, and

σ2
1 > σ2

3) because it is normally the most volatile market.

2.4 Empirical Results

2.4.1 Data Description

We apply the three-state HSMM to analyse the daily returns of stock indexes in eight

countries, including the CSI 300 (China), S&P 500 (United States), FTSE 100 (United

Kingdom), CAC 40 (France), DAX (Germany), Nikkei 225 (Japan), STI (Singapore),

and ASX 200 (Australia). The sample period is from April 8th 2005 to February 26th

2016 1, slightly more than a decade. The reason for using this sample period is that

the start date is when the CSI 300 was first launched. Additionally, As the split-

share structure reform occurred in 2005, the behavior of Chinese stock market has a

structural change. Interested readers can refer to Girardin & Liu (2003) the research

for the Chinese stock market during 1997 to 2002. There are 2645 observations for each

index. The source of our data is Wind.

1Note that the sample period is slightly shorter than the sample period used in Chapter 1.
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The daily return is defined as 100 times the first-order difference of the natural logarithm

of the price series.

rit = 100× (log(P it )− log(P it−1)) (2.1)

where P it is the closing price of the market index i at time t.

2.4.2 Component Distribution - Evidence of “Crazy Bull”

It is natural to interpret the three states in our HSMM as bear, sidewalk, and bull

according to our definition based on statistical features of return distributions. The

estimated parameters of the component distribution in HSMM for all countries are

presented in Table 2.1. The means of State 1 in all countries are less than zero and

their variances are the highest among the three states. The statistical features of State

1 are consistent with a bear market. It can be observed that the means in State 2 are

all close to zero and slightly less to zero. The variance in State 2 is much lower than in

State 1. The statistical features of State 2 meet our expectation of a sidewalk market,

in which the return distribution should have a mean close to zero, enabling the price in

the sidewalk market to fluctuate within a band. State 3 for all countries have positive

means with the smallest variance among all of the states, except for the CSI 300. The

return distribution with positive mean and small variance allows the price in the bull

market to increase steadily, which is an intrinsic feature of a bull market.

The first unique characteristic of the Crazy Bull is the abnormally high variance in

the Chinese bull market compared with other countries. The Chinese bull market has

a variance of 2.058, almost three times higher than for other countries. Japan has

the second most unstable bull market with a variance of 0.693. The bull market in

the United States and the United Kingdom are relatively more stable, as indicated by

the small variances of 0.244 and 0.297, respectively. It is reasonable to expect that

the variance is higher in the bear market for all eight countries since the abrupt price

fall during the market crash make the volatility increase. The bear markets in all eight

countries show similarly high variances. The bear market in our sample period happened

after 2008 triggered by financial crisis. The variance in the Chinese bear market (9.719)
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is modest, between the highest variance in Japan (16.169) and the lowest in Australia

(6.680). It seems that the volatility of the Chinese bear is normal. There is no significant

difference between the sidewalk markets of the eight countries. Interestingly, the means

in the sidewalk markets are close to 0 but consistently slightly less than 0. In Table

2.2, one-sample z-statistics show that none of the eight countries has a mean in State 2

which is significantly different from 0.

Table 2.1: Component Distribution

State 1 (Bear) State 2 (Sidewalk) State 3 (Bull)
Mean Variance Mean Variance Mean Variance

CSI 300 -0.513 (9.719) -0.020 (1.343) 0.614 (2.058)
S&P 500 -0.140 (8.726) -0.042 (1.375) 0.115 (0.244)
FTSE 100 -0.245 (9.346) -0.018 (1.427) 0.082 (0.297)
CAC 40 -0.330 (11.611) -0.051 (2.219) 0.123 (0.526)
DAX -0.316 (10.180) -0.018 (1.920) 0.187 (0.393)
Nikkei 225 -0.382 (16.169) -0.056 (2.311) 0.156 (0.693)
STI -0.084 (8.831) -0.053 (1.644) 0.061 (0.348)
ASX 200 -0.304 (6.680) -0.040 (1.449) 0.098 (0.412)

Table 2.2: One-Sample z-test

z-statistics of mean in State 2

CSI 300 -0.653
S&P 500 -1.251
FTSE 100 -0.595
CAC 40 -1.316

DAX -0.533
Nikkei 225 -1.464

STI -1.270
ASX 200 -1.185

2.4.3 Sojourn Time - Evidence of “Frequent and Quick Bear”

Based on the global decoding results, Table 2.3 reports the number of days, number of

times, and average sojourn for the three market conditions in all eight countries during

our sample period. Compared with developed markets, the Chinese stock market shows

“Quick Bull”, “Frequent and Quick Bear”, and “Long Sidewalk”.

It should be highlighted that the average sojourn time of the bull market in China (27.72)

is the shortest, while for developed markets this is more than 40 trading days. During
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our sample period, the Chinese market was in the bull market for 693 trading days, but

entered and exited the bull market 25 times. We observe that the United States is also

in the bull market a large number of times (27). However, the total number of days the

United States is in the bull market (1133) is nearly double that of China, which results

in a relatively longer average sojourn in the bull market (41.96).

China, along with the United Kingdom and Japan, are found to have a short average

sojourn in the bear market, whilst the other five countries have more than 30 trading

days. It should be pointed out that China was in the bear market 22 times, while all of

the other countries were around five times in the bear market in our sample period. We

can argue that the “Quick Bear” happens in the United Kingdom and Japan but not

frequently, while China has a “Frequent and Quick Bear”.

The average sojourn of the sidewalk market in China is 230.17, more than twice that of

other countries. Additionally, China was only in the sidewalk market six times in the

sample period. Every time China entered the sidewalk market, the long-term trend in

the stock market cannot be established unless the long sojourn in the sidewalk market

has elapsed. The most obvious sidewalk period in China is from 2011 to 2014, where

the CSI 300 stayed roughly between 2000 and 3000. During that period, whenever the

CSI 300 was near the ceiling or floor, it would eventually return to the band again.

2.4.4 Transition Probability Matrix - Evidence of “No Buffer Zone”

We found a very unique characteristic, “No Buffer Zone”, of the Chinese stock market

from the estimated transition probability matrix in Table 2.4. The direct transition

probability from the bear market to bull market (or the opposite direction) is close to

0% in all developed markets. It is clearly shown that all developed markets always have

the sidewalk market as a buffer zone between the bull and bear market. Nevertheless, the

transition probability matrix in China is very special with a particularly high transition

probability from the bear market to the bull market (nearly 100%) and a relatively

high transition probability from the bull market to the bear market (77.05%). The

buffer zone effect was not found to exist in China over the sample period. The direct

transition between the bull market and the bear market is typical. It was found that the
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Table 2.3: Days, Times, and Average Sojourn

State 1 State 2 State 3
(Bear) (Sidewalk) (Bull)

CSI 300
Number of Days 570 1381 693

Number of Times 22 6 25
Average Sojourn 25.91 230.17 27.72

S&P 500
Number of Days 269 1242 1133

Number of Times 3 30 27
Average Sojourn 89.67 41.40 41.96

FTSE 100
Number of Days 166 1486 992

Number of Times 7 21 14
Average Sojourn 23.71 70.76 70.86

CAC 40
Number of Days 174 1483 987

Number of Times 5 18 13
Average Sojourn 34.80 82.39 75.92

DAX
Number of Days 217 1612 815

Number of Times 3 21 18
Average Sojourn 72.33 76.76 45.28

Nikkei 225
Number of Days 104 1607 933

Number of Times 5 16 10
Average Sojourn 20.80 100.44 93.30

STI
Number of Days 213 938 1493

Number of Times 4 16 12
Average Sojourn 53.25 58.63 124.42

ASX 200

Number of Days 188 1251 1205
Number of Times 4 16 11
Average Sojourn 47.00 78.19 109.55

bull market and the bear market are mixed together many times in the Chinese stock

market. The second difference between the TPM of China and other countries is that

in China the transition probability from sidewalk market to the other two markets is

roughly 50%, while other developed markets tend to have a much larger probability to

be a bull maker after exiting the sidewalk market. The developed market normally has

less than 20% probability of exiting the sidewalk market to the bear market. Though

this might be due to the short sample period of our data, this is what actually happened

in the last decade, including the four stages of the economic and business cycle, namely

economic prosperity before 2007, the financial crisis in 2008, financial depression since

2009, and economic rebound after 2010.
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Table 2.4: Transition Probability Matrix

From \ To
State 1 State 2 State 3
(Bear) (Sidewalk) (Bull)

CSI 300
State 1 (Bear) 0.00% 0.04% 99.96%
State 2 (Sidewalk) 48.45% 0.00% 51.55%
State 3 (Bull) 77.05% 22.95% 0.00%

S&P 500
State 1 (Bear) 0.00% 99.90% 0.10%
State 2 (Sidewalk) 5.18% 0.00% 94.82%
State 3 (Bull) 0.00% 100.00% 0.00%

FTSE 100
State 1 (Bear) 0.00% 100.00% 0.00%
State 2 (Sidewalk) 14.61% 0.00% 85.39%
State 3 (Bull) 0.00% 100.00% 0.00%

CAC 40
State 1 (Bear) 0.00% 100.00% 0.00%
State 2 (Sidewalk) 13.10% 0.00% 86.90%
State 3 (Bull) 0.00% 100.00% 0.00%

DAX
State 1 (Bear) 0.00% 99.93% 0.07%
State 2 (Sidewalk) 7.81% 0.00% 92.19%
State 3 (Bull) 0.00% 100.00% 0.00%

Nikkei 225
State 1 (Bear) 0.00% 100.00% 0.00%
State 2 (Sidewalk) 20.33% 0.00% 79.67%
State 3 (Bull) 0.00% 100.00% 0.00%

STI
State 1 (Bear) 0.00% 100.00% 0.00%
State 2 (Sidewalk) 17.89% 0.00% 82.11%
State 3 (Bull) 0.00% 100.00% 0.00%

ASX 200

State 1 (Bear) 0.00% 100.00% 0.00%
State 2 (Sidewalk) 16.88% 0.00% 83.12%
State 3 (Bull) 0.00% 100.00% 0.00%

2.5 Discussion and Policy Implications

By comparing with international markets, we found many unique characteristics of the

Chinese stock market. The most prominent three characteristics are “Crazy Bull”,

“Frequent and Quick Bear”, and “No Buffer Zone”. All of these characteristics indicate

that the Chinese stock market is much more volatile than other developed markets.

These three characteristics are of great importance for policy makers. In order to build

a more reliable and stable stock market, we would like to discuss the possible causes of

the unique characteristics and policy implications from our findings.
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2.5.1 “Crazy Bull” - Rational Security Analysis and Adjust Investor

Structure

Compared with other developed markets, the Chinese stock market has considerably

high variance in the bull market, which could be induced by the herding behaviour of

individual investors. Kim & Wei (2002) provide evidence that individual investors are

more likely to engage in herding. Kumar & Lee (2006) use more than 1.85 million

individual investor transaction at a major US discount brokerage house to show that

individual investors buy or sell stocks in concert during 1991-1996. Moreover, they

can be easily influenced by news and market sentiment. Barber & Odean (2008) test

and confirm that individual investors are net buyers of stocks in the news with public

attention.

In order to mitigating the herding behaviour, Lao & Singh (2011) suggest that large

financial institutions can bring more rational security analysis to the general public,

which can decrease the level of speculative investments activity by the individual in-

vestors. Most individual investors have little knowledge of stock markets and focus on

speculation of short-term price changes, rather than the fundamental value of listed

companies. It is imperative to guide individual investors to focus on the fundamental

values of firms and encourage individual investors to make rational investments.

In China, individual investors account for 82.24% of total trading volume in 2013 (Han

& Li, 2017), whereas institutional investors dominate in developed markets. Boehmer

& Kelley (2009) show that stock with greater institutional ownership are priced more

efficiently. The Chinese government needs to adjust investor structure and promote

the development of institutional investors, like asset management firms, private funds,

and mutual funds. Institutional investors have expert knowledge and skills to manage

professional investments that seek long-term returns under the proper risk management.

2.5.2 “Frequent and Quick Bear” - Risk Management Tools

In China, the bear market is quick and occurs more frequently than in developed markets.

As a matter of fact, short-selling is limited in the Chinese stock market. Most investors
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can only buy stocks in China. Mei et al. (2009) point out that the mispricing can hardly

be arbitrage away at both the market level and the individual stock level in a market

with the stringent constraints on short selling. It is very difficult to hedge downside risk

during the bear market.

Index futures Contracts are appropriate tools to hedge downside risk during a bear

market. Lien & Tse (2000) utilize the futures contracts to develop a hedge strategy

that minimizes the lower partial moments. Lien & Tse (2002) review the theoretical

background and the econometric implementation of various futures hedging. Chen et al.

(2003) investigate different theoretical methods to the optimal futures hedge ratios.

Although the China Financial Futures Exchange launched the first index futures con-

tracts, the CSI 300 index futures, on April 16th 2010, the trading of index futures

are under strict restrictions. Firstly, there are high barriers for individual investors to

participant because of the high deposit requirement and the minimum account size re-

quirement. Secondly, the margin requirements are 15% to 18%, which is much higher

than the margin requirement of index futures in developed countries. Thirdly, QFIIs

were not eligible to trade the index futures.

In July 2015, more restrictions on index future trading have hampered the development

of financial markets. The most strict rule was that the number of opening contracts

can not more than 10 per day. This rule made investors to use the index futures to

manage risk. In order to develop the Chinese stock market, it is crucial to remove the

restrictions on the trading of domestic index future products for investors to hedge the

downside risk during the frequent bear market. In this way, the Chinese stock market

can stay on the promised path of reform to become more market-oriented rather than

policy-oriented.

2.5.3 “No Buffer Zone” - Restriction on Leverage

The most notable characteristic of the Chinese stock market is that the bull market

is typically mixed with the bear market and that there is no sidewalk market between

them. In developed markets, the sidewalk market always functions as the “buffer zone”
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between the bear market and the bull market. The “No Buffer Zone” phenomenon can

be explained by the overreaction effect in behavioural finance. DeBondt & Thaler (1985)

find that most investors usually overreact to unexpected and dramatic news, suggesting

the weak from market inefficiencies. Wang et al. (2004) study the overreaction effect in

China during the period between 1994 to 2000 and find that the overreaction effect is

most pronounced in A-share market.

More importantly, Hsu (2015) point out that the excess leverage from other source

financing exaggerated the effect of the overreaction in China. In 2015, the Chinese stock

market encountered a bull market followed by a bear market, which increased volatility to

a historically high level. It is highly likely that the abnormally high volatility was caused

by excess leverage, specifically through other source financing, like umbrella trusts and

fund-matching companies (Hsu, 2015). By margin loan and margin financing, brokerages

can increase funding by up to twice the margin (i.e. ratio at 1:2). Through umbrella

trusts, one could leverage up to five times the margin (i.e. ratio at 1:5).

The excess leverage of other source financing exaggerates the downside risk of the Chinese

stock market, which caused the contagion of the market crisis. It is inevitable that

detailed regulation needs to be imposed on umbrella trusts and fund-matching companies

(Tian, 2015). There should be strict rules in the banking sector to provide funding for

umbrella trusts (Jiang, 2014). Leverage should be capped at a much lower level. The

monitoring of fund-matching companies needs to be significantly reinforced. Finally,

information on other source financing should be more transparent to the public.

2.6 Conclusion

The definition of bear, sidewalk, and bull markets is ambiguous in existing literature.

This makes it difficult for practitioners to distinguish between different market condi-

tions. In this chapter, we employ a statistical definition of bear, sidewalk, and bull mar-

kets, which correspond to the three states in our hidden semi-Markov model. Through

the comparison with seven developed markets, we found three unique characteristics of
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the Chinese stock market, namely “Crazy Bull”, “Frequent and Quick Bear”, and “No

Buffer Zone”.

“Crazy Bull” refers to the fact that the variance of the bull market in the Chinese stock

market is noticeably higher than for developed markets. “Frequent and Quick Bear”

is implied by the fact that the bull market occurs frequently in China and the sojourn

time of the Chinese bull market is short. “No Buffer Zone” is the most prominent

characteristic. It is observed that the sidewalk in developed markets always functions as

a buffer zone between the bear and bull markets, while this case never occurs in China.

The possible causes of those three characteristics were discussed. Based on the discus-

sion, it is very important to adjust the investor structure, to provide risk management

tools, and to strengthen supervision on the excess leverage from other source financing.



Chapter 3

Asset Return & Camel Process:

Beauty and the Beast

In this chapter, we propose a new diffusion process referred to as the “camel process”

in order to model the cumulative return of a financial asset. The process considers the

market condition and the price reversal. This new process includes three parameters, the

market condition parameter α, the price reversal parameter β, the volatility parameter

γ. Its steady state probability density function could be unimodal or bimodal, depending

on the sign of the market condition parameter. The price reversal is realised through the

non-linear drift term which incorporates the cube term of the instantaneous cumulative

return. The time-dependent solution of its Fokker-Planck equation cannot be obtained

analytically, but can be numerically solved using the finite difference method. The proper-

ties of the camel process are confirmed by our empirical estimation results of ten market

indexes in two different periods.

79



80 Chapter 3 Asset Return & Camel Process

3.1 Introduction

Diffusion processes have been widely used in the asset pricing. One of most popular

parametric diffusion process is the geometric Brownian motion in the Black-Scholes

model (see Black & Scholes, 1973; Merton, 1973). The geometric Brownian motion

has the assumption of independent multiplicative increments, which is often violated

by the empirical observation of the asset returns, i.e. stylized facts of asset returns.

Many other parametric diffusion processes have been developed to improve the Black-

Scholes by explaining the stylized facts (e.g. Mandelbrot, 1997; Jäckel, 2004; Bingham

& Kiesel, 2001; Eberlein & Keller, 1995; Merton, 1976). To the best of our knowledge,

there is no parametric diffusion process considering the market condition and the price

reversal, although they have been widely studied in the literature of technical analysis

and behavioural finance. Our new proposed “camel process” contributes to the fill this

literature gap.

Financial economists often argue that asset price may behaves differently in different

market conditions. Levy (1974) suggest to estimate separate beta coefficients for bull

and bear market. Not all study are in favour of different behaviours in different mar-

ket conditions. Fabozzi & Francis (1977) conclude the coefficients of the sing-index

market model are not significantly different in three types of market condition defi-

nition, Bull and Bear, Up and Down, Substantial Up and Down. However, Kim &

Zumwalt (1979) extend the design of Fabozzi & Francis (1977) and show the evidence

that more stock exhibited significantly difference between Up-market and Dow-market

betas. Chen (1982) uses the time-varying beta approach to avoid the multicollinearity

problem in Kim & Zumwalt (1979) and re-examine the difference in Up-market and

Dow-market betas. The results obtained from time-varying beta approach is consistent

with Kim & Zumwalt (1979) and support that betas tend to be different in Up-market

and Down-market. Using three-state hidden semi-Markov Model, Chapter 1 has shown

that asset returns follow different distributions in different market conditions. To the

best of our knowledge again, there is no diffusion process in the finance study considering

the market condition.



Chapter 3 Asset Return & Camel Process 81

Additionally, the violation of EMH can often be explained by behavioural finance. One

of the important explanation is the overreaction hypothesis 1 that investors tend to

overreact to new information, such as positive and negative shocks. The overreaction

can be observed at the individual stock level (Keynes, 1964; Williams, 1938; Arrow,

1982) as well as the market level (DeBondt & Thaler, 1985; De Bondt & Thaler, 1987).

Additionally, the overreaction can occur at the short-term (Zarowin, 1989; Atkins &

Dyl, 1990; Cox & Peterson, 1994) as well as the long-term (DeBondt & Thaler, 1985;

Loughran & Ritter, 1996; Campbell & Limmack, 1997). Price reversal is the phenomenon

after the overreaction because stock prices tend to converge back to the fundamental

values. The price reversal has been widely empirically studied in different markets

(Bremer & Sweeney, 1991; Liang & Mullineaux, 1994; Farag, 2014). To the best of our

knowledge, no diffusion process in the finance study has considered the price reversal.

In this chapter, we propose a new diffusion process referred to as the “camel process”

in order to model the cumulative return of a financial asset. The camel process has

two contributions. First, it is capable of modelling the cumulative return in two market

conditions, either sidewalk or trending2. Second, the process consider the price reversal

after the long-term overreaction behaviour in the financial market. The form of the

camel process is parsimonious with three parameters, the market condition parameter

α, the price reversal parameter β, and the volatility parameter γ. The market condition

can be identified by the sign of α. The magnitude of price reversal is measured by β. γ

controls the level of volatility.

The beauty of the camel process is that it considers the market condition and the price

reversal. The beast is that the time-dependent solution cannot be obtained analytically,

but can be numerically solved by means of a finite difference method. The name of the

“camel process” is inspired by its property indicating that the steady state probability

density function (PDF) could be unimodal or bimodal, depending on the sign of the

1It is not always overreaction, but sometimes be slow or underreaction. Hong & Stein (1999) construct
a model with two groups of boundedly rational agents “newwatchers” and “momentum traders” and
show the underreaction at short horizons and overreaction at long horizons. Fama (1998) claims that
overreaction to information is as frequent as underreaction. Veronesi (1999) uses a dynamic, rational
expectations equilibrium model of asset prices to demonstrate that stock prices underreact to good news
in bad times and overreact to bad news in good times.

2A trending market includes both the bull market and the bear market.
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market condition parameter. The price reversal is realised through the non-linear drift

term which incorporates the cube term of the instantaneous cumulative return.

3.2 Literature Review

In this section, we summarize alternative models to the Black-Scholes model. The

existing literature attempted to improve the Black-Scholes by explaining the stylized

facts of asset returns. It is well documented that empirical daily returns have stylized

facts which are the heavy-tails, the “long-memory”, the volatility clustering, the Taylor

effect, and so forth. (see Granger & Ding, 1995; Pagan, 1996; Cont, 2001). Those

stylized facts indicate that the independent normality assumption in the Black-Scholes

model is unrealistic. In order to explain the stylized facts, many research studies have

been devoted to modifying the Geometric Brownian motion used in the derivation of

the Black-Scholes model.

The first type of alternative models is represented by the fractional Brownian motions.

Mandelbrot (1997) argues that successive price changes are not independent, and em-

ploys the fractional Brownian motion to capture the dependent increments. In the

finance study, a model should be self-consistent and show no arbitrage opportunity

(Kou, 2007). Nevertheless, Rogers (1997) proves that the fractional Brownian motion is

not semi-martingale and shows the construction of arbitrage in the fractional Brownian

motion.

The stochastic volatility and GARCH models are developed to capture the stylized

fact of volatility clustering. Jäckel (2004) reviews various stochastic volatility models

with a focus on the dynamic replication of exotic derivatives and their implementation.

Bollerslev et al. (1992) provides a comprehensive review on the ARCH-family models. In

addition to the price process, these models introduce another process for the evolution

of volatility so that the time dependence of volatility could be captured.

Bingham & Kiesel (2001) asserts that the hyperbolic model is a good choice if someone

wants a model that is more complex than the benchmark Black-Scholes model, but less
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complicated than the stochastic volatility models. Hyperbolic diffusion models are de-

signed due to the empirical evidence that the hyperbolic distributions could be fitted to

daily returns with high accuracy (Eberlein & Keller, 1995). These models use hyper-

bolic distributions rather than normal distributions. Bibby & Sørensen (1996) models

the logarithm of the stock price by an ergodic process using the hyperbolic invariance

measure, but their simulation shows that there is no significant difference between the

option price inferred by the hyperbolic diffusion model and by the Black-Scholes model.

Merton (1976) derives an option pricing formula based on the assumption that the

underlying stock returns are generated by the combination of continuous and jump pro-

cesses. The abnormally large empirical returns can be explained by the jump-diffusion

model, which can also replicate the heavy tails of the daily return distribution. Kou

(2002) proposes a double exponential jump-diffusion model which gives analytical so-

lutions for path-dependent options. Cont & Tankov (2004) reviews the models based

on the jump processes. There are some other alternative models, namely the “implied

binomial tress” (Dupire et al., 1994), time changed Lévy process (Carr et al., 2003), and

the affine jump-diffusion models (Duffie et al., 2000).

The reminder of the chapter is structured as follows. Section 3.3 defines the camel

process and discusses its properties. Section 3.4 presents empirical estimation results of

ten market indexes in two different periods. Section 3.5 summarises the chapter.

3.3 The SDE and its properties

The “camel process” captures the dynamically non-linear interaction between the in-

crement of the cumulative return and the instantaneous cumulative return with the

consideration of the market condition and the price reversal. The non-linear relation-

ship is achieved by the inclusion of the cube term of the instantaneous cumulative return,

which facilitates the modelling of price reversal after the overreaction behaviour. The

sign of drift term is determined by the market condition, whether the cumulative return

deviating from zero in the trending market condition or moving towards zero in the

sidewalk market condition. The camel process is defined as:
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Definition 3.1. The camel process solves the stochastic differential equation (SDE)

dXt = (αXt − βX3
t ) dt+ γ dWt , X0 = 0 (3.1)

where α, β, and γ are three parameters with α ∈ R, β ∈ R≥0, and γ ∈ R+.

Parameter α is referred to as the market condition parameter. If α > 0, the market is in

a trending market condition. Otherwise, it is in a sidewalk market condition. Parameter

β controls the price reversal after the overreaction behaviour in the market. If there is

no overreaction, β is essentially zero. Parameter γ measures the volatility of the process.

In the camel process, the volatility is constant. In terms of the parameter space, α can

be any real number, β is a non-negative real number, and γ can only be a positive real

number. Since the underlying process modelled is the cumulative return, the process

always starts at zero.

We investigate the cumulative return rather than the price or the log price for two rea-

sons. First, the overreaction can be easily measured by the cumulative return. Second,

the cumulative return facilitates the comparison of investments in different financial

assets.

The cumulative return investigated by us is defined as

Xt =
t∑
i=1

ri (3.2)

where ri is the log return 3 of the price process {Pt, t ≥ 0} of the asset

ri = log(Pt)− log(Pt−1) (3.3)

3.3.1 Steady State PDF

It is difficult to analytically obtain the solution of the camel process due to its high order

non-linear term. We here use the Fokker-Planck equation to conduct a partial analytic

3Like most researches, we prefer the log return rather than the arithmetic return Yi = (Pt −
Pt−1)/Pt−1. The reason is that the cumulative return over an n period is the sum of the log return
(shown in Equation 3.2), while the arithmetic return does not have this property.
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analysis. For a SDE, the Fokker-Planck equation is a partial differential equation (PDE)

which describes the evolution of its probability density p(Xt, t), namely the probability

of the realisations being near Xt at time t. The Fokker-Planck equation constructs a

useful relationship between the solution of a SDE and its PDF as a function of time.

Applying the general Fokker-Planck equation to Equation 3.1 produces the PDF p(Xt, t)

for the camel process.

∂p(Xt, t)

∂t
= − ∂

∂Xt

[
(αXt − βX3

t )p(Xt, t)
]

+
∂2

∂X2
t

[
1

2
γ2p(Xt, t)

]
(3.4)

The steady state solution of the Fokker-Planck equation is the PDF evolving for a fairly

long time so that it converges to a stable function which no longer changes as a function

of time t. The steady state PDF p(X) of the camel process satisfies the time-independent

Fokker-Planck equation by setting ∂p(Xt,t)
∂t = 0.

0 = − ∂

∂X

[
(αX − βX3)p(X)

]
+

∂2

∂X2

[
1

2
γ2p(X)

]
(3.5)

Analytically solving 4 Equation 3.5 gives the solution of the steady state PDF of the

camel process

p(X) = A exp

(
αX2 − βX4/2

γ2

)
(3.6)

where A is the integration constant.

We demonstrate that the steady-state PDF of the camel process could be unimodal or

bimodal, depending on the sign of the market condition parameter α. Figure 3.1 displays

the steady state PDF of the camel process for two combinations of the parameter values.

When α is less than zero, the steady state PDF is unimodal, which resembles a one-

humped camel. If α is larger than zero, the steady state PDF is bimodal, looking like

a two-humped camel.5 The name of the “camel process” was inspired by the feature

implying that its steady-state PDF could be unimodal or bimodal, which reminds people

of two types of camels.

4Details of the mathematical derivation are presented in 3.A.
5The case that α is equal to zero is shown in 3.B.
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Parameter α is referred to as the market condition parameter since its sign determines

whether the steady state PDF is unimodal or bimodal. The unimodal situation corre-

sponds to the sidewalk market condition. In this situation, the underlying process (the

cumulative return) has a tendency to zero because the SDE drift term has an opposite

sign to its instantaneous cumulative return. Hence, the price series shows a mean-

reverting pattern and the steady state PDF is centralised around zero. The bimodal

situation corresponds to the trending market condition in which the price tends to move

upside or downside. In a trending market, a positive α generally implies that the SDE

drift term has the same sign as the instantaneous cumulative return within the rational

region. The cumulative return moves away from the start point, zero. In the steady

state, the two modes of the PDF deviate from zero. The camel process is arbitrage-free

and self-consistent. Either in a unimodal or a bimodal situation, the moving direction

of the cumulative return is unknown.

Figure 3.1: Market Condition Parameter α
Unimodal vs. Bimodal
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In order to capture the price reversal, we use a non-linear drift term which incorporates

the cube of the instantaneous cumulative return. Through this non-linear drift term, the

underlying process cannot go to infinity. The price reversal will occur if the cumulative

return goes beyond the rational level (i.e. fundamental value). Overreaction behaviour

means that the price largely deviates from its rational level. The cumulative return

would go back into its rational range if it is in the overreaction area, which will be

discussed later. In the “camel process”, there is an implicit assumption that the price

reversal can only occur in the trending market condition. There is no price reversal

in the sidewalk market condition because the drift term always has the opposite sign
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as the instantaneous cumulative return in the sidewalk market condition, which will be

discussed in detail later.

Parameter β is the parameter which controls the price reversal. Figure 3.2 displays the

steady state PDF of both the sidewalk and trending market condition. There is no big

effect of the price reversal parameter β on the steady state PDF when the market is in

sidewalk. However, the effect of β is vital if the market is in the trending state. A larger

value of β forces the mode of the steady state PDF more close to zero. In contrast, the

mode of the steady state PDF can move further away if β is small.

The price reversal is realised through the non-linear drift term αXt − βX3
t . Figure 3.3

shows the shape of the non-linear drift term under both market conditions. In a sidewalk

market condition, the drift term always has the opposite sign as the instantaneous

cumulative return. Hence, the cumulative return moves towards to zero and shows the

mean-reverting pattern. Under this situation, the price reversal normally rarely occurs.

However, the price reversal plays a vital role in the trending market condition. As you

can see in the lower panel of Figure 3.3, there is a middle region that the drift term has

the same sign as the instantaneous cumulative return. There are other two side regions

indicating that the sign is opposite. The two side regions are deemed as the overreaction

area. If the cumulative return goes into the overreaction area, the drift term would force

it to move back the rational region, which is the one in the middle.

The range of the rational region is controlled by parameter β. If the value of β is large,

then the magnitude of the price reversal is stronger and the rational region is narrower.

Conversely, a smaller β means that the market can tolerate overreaction to a larger

extent. Thus, the range of the rational region is wider.

Parameter γ is known as the volatility parameter. It controls the volatility magnitude

of dWt. Figure 3.4 illustrates that the steady state PDF is more diversified with a larger

value of γ. By contrast, a smaller value of γ results in a more centralised steady state

PDF. Importantly, the mode of the steady state PDF remains the same irrespective of

the change of the value of γ under both unimodal or bimodal situations. The mode

of the steady state PDF only depends on the market condition parameter α and the

overreaction parameter β.
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Figure 3.2: Volatility Parameter β
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Figure 3.3: Drift Term
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Figure 3.4: Volatility Parameter γ

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
α=-0.05; β=0.2; γ=0.05
α=-0.05; β=0.2; γ=0.10

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
α=0.05; β=0.2; γ=0.05
α=0.05; β=0.2; γ=0.10

3.3.2 Time Dependent PDF

Without the assumption ∂p(Xt,t)
∂t = 0, the solution of Equation 3.4 is the time dependent

PDF p(Xt, t) of the camel process, which is evolving as a function of time t and converges

to its steady state PDF p(X). The analytical solution of the Fokker-Planck equation

can only be obtained in limited special cases, and mostly in the steady state (Pichler

et al., 2013).

During the past five decades, a number of numerical methods have been developed to ob-

tain the approximated solution of the Fokker-Planck equation. These numerical methods

include the weighted residual method, the eigenfunction expansion, the finite differences,

and the finite elements. Roberts (1986) use the finite difference method to solve the

Fokker-Planck equation for the one-dimensional 6 time dependent PDF. Higham (2004)

employ the finite difference method to numerically solve the Black-Scholes PDE with the

focus on European calls and puts options.Gaviraghi et al. (2016) and Gaviraghi (2017)

provide the theoretical and numberical analysis for the Fokker-Planck models which are

6In our case, there is only one spatial variable Xt besides the time variable t.
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related to jump-diffusion processes. Although there are more accurate higher order fi-

nite difference schemes (see Wojtkiewicz et al., 1997), one dimensional finite difference

method is enough for our problem. Our examples show that the numerically solved time

dependent PDF converges to a steady state PDF accurately.

In order to use the finite difference method to numerically solve the Fokker-Planck

equation, we need to clarify the initial condition, the boundary condition, and the nor-

malisation condition. The initial condition p(X0, 0) is given by the Dirac delta function

p(X0, 0) = δ(X0 − 0) (3.7)

where X0 is zero since the underlying process is the cumulative return.

The boundary condition is imposed by a zero-flux condition at infinity of Xt

p(Xt, t)→ 0 as Xt → ±∞ (3.8)

Additionally, the normalisation condition for the time dependent PDF is given by

∫
p(Xt, t) dXt = 1 (3.9)

Here, we derive the explicit scheme of the Finite Difference method. Applying the chain

rule on Equation 3.4, we can obtain

∂p(Xt, t)

∂t
= (−α+ 3βX2

t )p(Xt, t) + (−αXt + βX3
t )
∂p(Xt, t)

∂Xt
+

1

2
γ2∂

2p(Xt, t)

∂X2
t

(3.10)

In order to keep the notation cleaner, we suppress the time subscript of Xt as X, and

suppress the argument Xt and t of the time dependent PDF p(Xt, t) and use the notation

p.

∂p

∂t
= (−α+ 3βX2)p+ (−αX + βX3)

∂p

∂X
+

1

2
γ2 ∂

2p

∂X2
(3.11)
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In terms of central finite differences, the above PDF becomes

pm+1
i − pmi

∆t
= (−α+ 3βX2)pmi + (−αX + βX3)

pmi+1 − pmi−1

2∆X
+

1

2
γ2 p

m
i+1 − 2pmi + pmi−1

∆X2

(3.12)

where m is the integer index of the mesh on time and i is the integer index of the mesh

on space.

The explicit scheme is obtained for the time dependent PDF

pm+1
i = pmi +∆t

{
(−α+ 3βX2)pmi + (−αX + βX3)

pmi+1 − pmi−1

2∆X
+

1

2
γ2 p

m
i+1 − 2pmi + pmi−1

∆X2

}
(3.13)

Using this scheme, the values pm+1
i can be calculated directly from values pmi . Under

the initial condition, boundary condition, and the normalisation condition, the time

dependent PDF can be solved directly.

Figure 3.5 displays two examples of the numerical solution of the time dependent PDF

starting at time 1 7. The upper panel is the case of the sidewalk market condition in

which α is negative. The lower panel is the case of the trending market condition in

which α is positive. In the sidewalk market condition, the time dependent PDF is always

unimodal. Whereas in the trending market condition, the time dependent PDF at the

early stage is unimodal because it evolves from the initial condition which is a Dirac

delta function. After some periods, the time dependent PDF appears to be bimodal and

the density around the two modes is getting increasingly higher as a function of time.

Figure 3.6 shows some slices of the time dependent PDF and compares them with the

steady state PDF. In the upper panel (sidewalk market condition), the time dependent

PDF converges to the steady state PDF in a rapid manner. The difference is subtle

between the time dependent PDF at t = 20 and the steady state. After 50 periods,

the time dependent PDF almost overlaps with the steady state PDF. However, the

convergence rate in the lower panel (trending market condition) is slower. At t = 20,

the time dependent PDF is still unimodal. After 40 periods, we can observe that the

7The PDF at time 0 is omitted here because that is the initial condition, which is a Dirac delta
function.
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Figure 3.5: Time Dependent PDF
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time dependent PDF is bimodal and evolves towards the steady state PDF. At t = 100,

it is not obvious to distinguish the time dependent PDF and the steady state PDF.

3.4 Empirical Study

3.4.1 Data

The maximum likelihood method is employed in order to estimate the camel process for

ten stock market indexes, S&P 500, FTSE 100, CAC 40, DAX, Nikkei 225, STI, ASX
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Figure 3.6: Time Dependent PDF Slices vs. Steady State PDF
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200, CSI 300 (a.k.a. SHSE 300), HSI, and TAIEX. We downloaded the daily closing

prices from Yahoo Finance and computed the cumulative returns by Equation 3.2. We

are particularly interested in two specific periods, August 1st 2008 to March 31st 2009

and May 1st 2014 to April 30th 2016. The first period is after the financial crisis in

2008 and all markets experienced a declining trend. Thus, we expect to see that the

estimated market condition parameters α̂ are all positive for different markets. The

second period is the recent year and different markets may behave differently. We can

use the estimated parameters to investigate their market conditions and the magnitude

of the price reversal for the two periods.
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3.4.2 Maximum Likelihood Estimator

The log likelihood function for the camel process given a specific dataset is

L (Θ) =
T∑
t=1

log p̃(Xt, t|Θ) (3.14)

where Θ = {α, β, γ}, Xt is the observation at time t, and p̃(Xt, t|Θ) is the numerical

solver of Equation 3.10. The maximum likelihood method estimates the parameters by

maximising the log likelihood function.

Θ̂ = arg max
Θ

T∑
t=1

log p̃(Xt, t|Θ) (3.15)

where Θ̂ needs to be in the parameter space that α ∈ R, β ∈ R≥0, and γ ∈ R+.

3.4.3 Estimation Result

Table 3.1: Estimation Result
Aug. 2008 ∼ Apr. 2009 May. 2015 ∼ Apr. 2016

α̂ β̂ γ̂ likelihood α̂ β̂ γ̂ likelihood

S&P500 0.498 4.217 0.256 98.513 -0.106 0.000 0.025 536.050
FTSE100 0.057 0.680 0.039 193.790 0.010 0.515 0.011 480.400
CAC40 0.070 0.551 0.056 138.760 -0.020 0.666 0.024 436.110
DAX 0.237 1.790 0.113 110.950 0.009 0.568 0.011 439.200
Nikkei225 0.084 0.374 0.034 165.020 -0.039 1.418 0.036 394.420
STI 0.063 2.592 0.349 22.264 0.021 0.351 0.019 357.100
ASX200 0.046 0.407 0.027 223.150 0.020 0.883 0.008 529.300
CSI300 0.092 0.657 0.059 131.820 0.208 1.748 0.109 182.570
HSI 0.085 0.308 0.056 137.570 0.069 0.845 0.041 269.690
TAIEX 0.246 1.624 0.093 123.190 0.016 0.521 0.012 420.130

Table 3.1 presents the estimated parameters for ten indexes during two periods. In the

first period (Aug. 2008 to Apr. 2009), the estimated market condition parameters α̂

are all positive, indicating that they were all in a trending market condition. This is

consistent with the reality that all ten markets had a downside trend after the financial

crisis. S&P 500, STI and DAX have relatively large values of β̂, implying that those

three markets had a strong price reversal for the market crash after the financial crisis.
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In the second period (May. 2015 to Apr. 2016), S&P, CAC 40 and Nikkei 225 were in

a sidewalk condition, while other markets were in a trending condition. CSI 300 has

the highest value of the estimated market condition parameter α̂ (0.208), suggesting

that the Chinese market experienced a relatively large trend. Our estimation result is

consistent with reality. Figure 3.1 compares the cumulative return of S&P 500 and CSI

300. It is clear that S&P 500 was in a sidewalk market condition in which its cumulative

return was fluctuating around zero, while CSI 300 experienced a significant trend and

its cumulative return largely deviated from zero.

Figure 3.1: Cumulative Return of S&P 500 and CSI 300 (May 2015 to Apr. 2016)
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3.5 Conclusion

In this chapter, we propose a new stochastic process for modelling the cumulative return

of a financial asset, which is referred to as the “camel process”. The process considers

the market condition and the price reversal. This new process has three parameters,

the market condition parameter α, the price reversal parameter β, and the volatility

parameter γ. Its steady state probability density function (PDF) could be unimodal or

bimodal, depending on the sign of the market condition parameter. The price reversal

is realised through the non-linear drift term which incorporates the cube term of the

instantaneous cumulative return. The time-dependent solution of its Fokker-Planck

equation cannot be obtained analytically, but can be numerically solved by means of

the finite difference method. The properties of the camel process are confirmed by our

empirical estimation results of ten market indexes in two different periods. A limitation
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of this chapter is that the parameters of the camel process are possibly time-varying. In

other words, the parameters may not be stable during the two periods in the empirical

analysis. Future research may wish to develop the change point detection for the camel

process.



Appendix

3.A Steady State Solution of the Fokker-Planck Equation

Theorem 3.2 (Fokker-Planck equation). Consider the Ito process Xt with drift µ(Xt)

and volatility σ(Xt), and hence satisfying the SDE dXt = µ(xt)dt + σ(xt)dWt. The

probability density function (PDF) of the ensemble of realisations p(Xt, t) satisfies the

Fokker-Planck equation 8.

∂p(Xt, t)

∂t
= − ∂

∂Xt
[µ(Xt)p(Xt, t)] +

∂2

∂X2
t

[
1

2
σ(Xt)

2p(Xt, t)

]

The camel process solves the SDE

dXt = (αXt − βX3
t )dt+ γdWt, X0 = 0 (3.16)

where α ∈ R, β ∈ R≥0, and γ ∈ R+. The drift term is αXt − βX3
t and the volatility

term is γ.

The Fokker-Planck equation for the camel process is

∂p(Xt, t)

∂t
= − ∂

∂Xt

[
(αXt − βX3

t )p(Xt, t)
]

+
∂2

∂X2
t

[
1

2
γ2p(Xt, t)

]
(3.17)

8The Fokker-Planck equation is also known as the Kolmogorov forward equation.
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By setting ∂p(Xt,t)
∂t = 0, we can obtain the steady state PDF p(X) which satisfies the

time-independent Fokker-Planck equation

0 = − ∂

∂X

[
(αX − βX3)p(X)

]
+

∂2

∂X2

[
1

2
γ2p(X)

]
(3.18)

One integral with respect to X

∫
0 dX =

∫
− ∂

∂X

[
(αX − βX3)p(X)

]
+

∂2

∂X2

[
1

2
γ2p(X)

]
dX

0 = −(αX − βX3)p(X) +
∂

∂X

[
1

2
γ2p(X)

]
+ constant

constant = −(αX − βX3)p(X) +
∂

∂X

[
1

2
γ2p(X)

]

This constant must be zero, as p(X) and its derivatives have to vanish for a large enough

X.

0 = −(αX − βX3)p(X) +
∂

∂X

[
1

2
γ2p(X)

]
0 = −(αX − βX3)p(X) +

1

2
γ2 dp(X)

dX
1

2
γ2 dp(X)

dX
= (αX − βX3)p(X)

1

p(X)
dp(X) =

2(αX − βX3)

γ2
dX

Integral on both hand sides

∫
1

p(X)
dp(X) =

∫
2(αX − βX3)

γ2
dX

log p(X) =

∫
2αX

γ2
− 2βX3

γ2
dX

=

∫
2αX

γ2
dX −

∫
2βX3

γ2
dX

=
αX2

γ2
− βX4/2

γ2
+ constant

=
αX2 − βX4/2

γ2
+ constant
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Taking the exponential on both hand sides produces the solution

p(X) = A exp

(
αX2 − βX4/2

γ2

)
(3.19)

where A is the integration constant. In order to determine the integration constant A,

we can use the property of the PDF indicating that the area underneath must be one.

1 =

∫ ∞
0

A exp

(
αX2 − βX4/2

γ2

)
dX

1 = A

∫ ∞
0

exp

(
αX2 − βX4/2

γ2

)
dX

A =

(∫ ∞
0

exp

(
αX2 − βX4/2

γ2

)
dX

)−1

Applying series expansion and integrating with respect to individual items

A =


1

2

∞∑
m=0

(
α

γ2

)m
m!

Γ

(
2m+ 1

4

)
(
β

2γ2

)2m+ 1

4



−1

(3.20)

where Γ(·) is the gamma function.

3.B Steady State PDF when α is zero

Figure 3.B.1: when α is zero, the Steady State PDF has a flat area near zero in the x-axis.
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Chapter 4

Forecasting the Log Return of Term Structure for

Chinese Commodity Futures:

an h-step Functional Autoregressive Model

This chapter takes the tools in functional data analysis to understand the term struc-

ture of Chinese commodity futures and forecast their log returns at both short and long

horizons. A functional ANOVA (FANOVA) has been applied in order to examine the

calendar effect of the term structure. We use an h-step Functional Autoregressive model

to forecast the log return of the term structure. Compared with the naive predictor, the

in-sample and out-of-sample forecasting performance indicates that additional forecast-

ing power is gained by using the functional autoregressive structure. Although the log

return at short horizons is not predictable, the forecasts appear to be more accurate at

long horizons due to the stronger temporal dependence. The predictive factor method

has a better in-sample fitting, but it cannot outperform the estimated kernel method for

out-of-sample testing, except in the case of 1-quarter-ahead forecasting.

101
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4.1 Introduction

As a matter of fact, investors cannot short sell stocks in the Chinese stock market. The

stringent constraints on short selling stocks make it very difficult to manage the downside

risk. Although the index futures contracts were launched by the China Financial Futures

Exchange in 2010, there are many restrictions on the trading of index futures at the

moment. Investors in China are seeking opportunities to broaden the scope of their

portfolio to diversify risk. Many studies have shown that investing in commodity futures

is an effect way to diversify against falling stock prices (e.g. Edwards & Caglayan, 2001;

Jensen et al., 2002; Wang & Yu, 2004; Erb & Harvey, 2006). Gorton & Rouwenhorst

(2006) show that the commodity futures returns are negatively correlated with equity

returns. Ten years later, Bhardwaj et al. (2015) find that their conclusions largely hold

up out-of-sample, and conclude that the negative correlation between commodity futures

returns and equity returns is robust. It is worthwhile and meaningful to investigate the

commodity futures market in China.

The existing literature mainly focuses on forecasting the term structure of government

bond yields. Only a limited number of studies have been devoted to forecasting the term

structure of commodity futures. It is even more difficult to find studies on forecasting

the term structure of commodity futures in developing countries. This chapter fills the

literature gap in the forecasting research on the log return of the term structure for

commodity futures, with a particular interest in Chinese markets, since China has the

largest trading volume of commodity futures in the world.

In 2015, the total trading volume and the trading value of Chinese commodity futures

accounted for 3.237 billion contracts and RMB 136.47 trillion, respectively (Shanghai

Institute of Futures and Derivatives, 2016). Table 4.1 lists the top 10 global futures and

options exchange in 2015 by the trading volume of the commodity futures and options.

Three Chinese commodity futures exchanges, namely the Dalian Commodity Exchange,

Zhengzhou Commodity Exchange, and Shanghai Futures Exchange, were ranked among

the top 3 largest exchanges. Hence, China plays a vital role in the global futures market,

especially for commodity futures.
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Table 4.1: Top 10 Global Futures and Options Exchange in 2015

by Trading Volume of Commodity Futures and Options

2015 2014

Exchange

2015 2014

Ranking Ranking (10,000 Contracts) (10,000 Contracts)

1 5 Dalian Commodity Exchange 111632 76964

2 3 Zhengzhou Commodity Exchange 107034 67634

3 1 Shanghai Futures Exchange 105049 84229

4 2 CME Group 90675 77796

5 4 ICE 70067 64899

6 7 Multi Commodity Exchange 21635 13375

7 6 HKEX 16960 17716

8 10 Moscow Exchange 12328 2022

9 8 National Commodity and Derivatives Exchange 2955 3014

10 9 Tokyo Commodity Exchange 2440 2186

Source: The 2016 Development Report on China’s Futures Markets, Futures Industry Association (FIA), China Futures Association

Note: The trading volumes of the DCE as compiled by the FIA are not consistent with those by the China Futures Association. This table

uses the data from the latter organisation. CME group: Chicago Mercantile Exchange & Chicago Board of Trade. ICE: Intercontinental

Exchange. HKEX: Hong Kong Stock Exchange.

Traditional methods focus on foresting term structure. Nelson & Siegel (1987) develop a

parsimonious model that uses exponential components to fit the common shapes of the

yield curves, namely monotonic, humped, and S-shaped. The three factors in the Nelson-

Siegel model can be interpreted as level, slope, and curvature. Diebold & Li (2006)

further develop the Nelson-Siegel model into a three-dimensional parameter model that

evolves dynamically. The time-varying parameters have autoregressive structures. Their

forecasting is based on the prediction of factors and has an accurate performance at long

horizons.

Recent developments in the theory of functional data analysis facilitate the modelling of

the term structure. Functional data analysis is a statistical discipline aiming to analyse

data represented by curves. When such functional data are collected sequentially and

there is dependence between the observations, then this is referred to as functional time

series data (Hörmann & Kokoszka, 2010). The collection of term structure and its log

return in a period is constituted by functional time series observations.

It is natural to treat term structure and its log return as curves and use a functional

data setting rather than a large dimensional VAR model. Bardsley et al. (2017) believe

that the term structure of bonds are fundamentally continuous time functions, although
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the data are observed only at discrete times. It should be highlighted that the term

structure of commodity futures Pn(t) and its log return are also always existing for all

t, even if we have observations only for some t, i.e. there is a price of a commodity

with delivery t times later after the contract is signed on day n. Pn(t) is a continuous

function in nature.

Bosq (2000) developed the theory of general functional linear processes, including the

functional autoregressive processes, in the Hilbert and Banach spaces. Ramsay & Sil-

verman (2006), Hörmann & Kokoszka (2010), and Horváth & Kokoszka (2012) provide

recent theoretical developments in terms of functional linear processes. The conventional

method to estimate the functional autoregressive model is the estimated kernel method

using functional principal components. Kargin & Onatski (2008) develop a more refined

approach by using predictive factors which focus on the directions more relevant to the

predictions. They provide an example using their approach in order to predict the term

structure of the Eurodollar futures rates. Didericksen et al. (2012) study the finite sam-

ple performance of both the estimated kernel method and the predictive factor method,

and their simulation shows that the predictive factor method does not dominate the

estimated kernel method.

In the illustrative example of Kargin & Onatski (2008), they firstly demean the data,

make the prediction for the demeaned data, and then add the mean back for the real

prediction. We believe that it is more natural to forecast the log return of the term

structure by means of the functional AR(1) model. There are two advantages of working

with the log return of the term structure, rather than with the term structure. First,

the log return has zero mean, which can be fed into the functional AR(1) model directly.

Second, the log return of the term structure is usually stationary, which meets the

conditions of the functional AR(1) model. Since we are working with the log return of

the term structure, it is inappropriate to compare our method with traditional methods

(e.g. Diebold & Li, 2006). Following Didericksen et al. (2012), we use a naive predictor

as our benchmark model.
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The remainder of the chapter is as follows. Section 4.2 describes our data and provides

the functional descriptive statistics. Section 4.3 applies the functional ANOVA in or-

der to examine the calendar effect. Section 4.4 briefly introduces the two prediction

approaches, namely the estimated kernel method and the predictive factor method. In

Section 4.5, the forecasting performance is presented with in-depth discussions. Section

4.6 summarises the chapter.

4.2 Data and Functional Descriptive Statistics

Based on two criteria, we select 18 commodity futures traded in China. First, we

exclude illiquid commodity futures, such as Wire Rod (symbol: WR), Wheat (symbol:

WH), and Early Rice (symbol: RI). Secondly, we exclude commodity futures with too

many missing data. Glass (symbol: FG), Methanol (symbol: MA), and Polypropylene

(symbol: PP) are not considered because of too many missing data. Table 4.1 shows

comprehensive information about the selected commodity futures. Note that the number

of observations for the curve is not exactly the same. For instance, there are 8 points in

the term structure of A, 12 points in that of AG, and 5 points in that of C. It should

be highlighted that this is the reason why a standard multivariate technique cannot be

used.

We use the daily settlement price for the commodity futures that we downloaded from

Wind. Note that different commodity futures have different periods of data. The in-

sample period for training data is from the first date to the middle point of the entire

period, and the out-of-sample period for testing data is from one trading day after the

in-sample period to the end of the entire period. The number of observations in the

in-sample period and the out-of-sample period is approximately the same.
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4.2.1 Term Structure

On each trading day, the term structure is assembled by the price of the contract serials

with the most recent expired contract in the beginning, and the contract expired at the

longest maturity in the end. The rolling of the commodity futures is right after the last

trading day of the month. For example, the term structure of AG on 2016-01-04 was

the sequence of the AG futures contract expired in January 2016, February 2016, up to

December 2016. On 2016-01-18, the term structure of AG became the contract serials

expired in February 2016, March 2016, up to January 2017. We will use the functional

ANOVA in order to examine the calendar effect of the term structure.

4.2.2 Log Return of the Term Structure

Instead of forecasting the term structure, we choose to forecast the log return of the

term structure at various horizons (i.e. different h-steps), which is defined in Equation

4.1.

Xn(t) = [log(Pn(t))− log(Pn−h(t))] ∗ 100, where h ∈ {1, 5, 20, 60} (4.1)

where t is the time to maturity, and Pn(t) is the term structure at date n.

There are two advantages of working with the log return of the term structure, rather

than with the term structure. First, the log return has zero mean, which can be fed into

the functional AR(1) model directly. There is no need to demean the data. Second, the

functional observations need to be stationary in order to be modelled by the functional

AR(1) model. Analogical to the scalar case, the asset price is typically deemed as a

non-stationary process, while the log return of the asset price tends to be stationary.

Intuitively, the term structure is highly likely to be non-stationary, while the log return

would be stationary. We confirm the stationarity of the log returns by checking the

existence condition ‖Ψ̂h‖2 < 1. Other recent developed tests, such as the functional

stationarity test (Horváth et al., 2014; Aue & Van Delft, 2017), can be used as well.
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Regarding forecasting horizons, we select four h-steps, including 1, 5, 20, 60. When

h = 1, Xn(t) is the daily log return of the term structure, and X̂n+1(t) is the 1-day-

ahead forecast. When h = 5, Xn(t) is the weekly log return of the term structure, and

X̂n+5(t) is the 1-week-ahead forecast. When h = 20, Xn(t) is the monthly log return of

the term structure, and X̂n+20(t) is the 1-month-ahead forecast. When h = 60, Xn(t)

is the quarterly log return of the term structure, and X̂n+1(t) is the 1-quarter-ahead

forecast. Longer forecasting horizons could be considered, but due to the availability

of data, we cap the forecasting horizon at 60 trading days. Figure 4.1 shows the term

structure for Steel Rebar (symbol: RB). Figure 4.2 presents the log return of the term

structure at four horizons.

Figure 4.1: Term Structure (RB)
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Figure 4.2: Log Return of the Term Structure (RB)
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4.2.3 Functional Descriptive Statistics

Following Ramsay & Silverman (2006, Chapter 2), we provide basic functional descrip-

tive statistics, including the functional mean, functional standard deviation, and func-

tional correlation, for both the term structure and the log return of the term structure.

Functional Mean & Functional Standard Deviation

Figure 4.3 shows the sample functional mean and the sample standard deviation of the

term structure for 18 commodity futures. Unlike the upside sloping term structure of

the government bond yields studied in (Diebold & Li, 2006), the mean curves of the

commodity futures term structure are relatively flat. The possible explanation could be

that the longest maturity is only 12 months ahead, which is much shorter than that of

the term structure of bond yields (120 months). The term structure of all 18 commodity

futures has a large standard deviation in our sample period. For the term structure, it

is not obvious to observe how the standard deviation varies with the time to maturity.

Figure 4.4 shows the sample functional mean and the sample standard deviation of the

log returns of the term structure. The functional means of the log return are very close

to a zero function. This fact enables us to use the functional AR(1) model for the log

return directly without the demean procedure. The functional standard deviation of the

log return increases with h. AL has the smallest magnitude of the functional standard

deviation. The commodity futures in the sector of ferrous chain (e.g. HC, I, and J) tend

to have a large functional standard deviation.

There are three patterns of the relationship between the functional standard deviation

and the time to maturity. The first pattern is that the standard deviation is negatively

related to the time to maturity. In other words, the standard deviation is larger when

the time to maturity is short. Most commodity futures belong to the first pattern. The

second pattern is the positive relationship between the standard deviation and the time

to maturity. The example is CU, in which the standard deviation increases after six

months of the time to maturity. The third pattern is that the standard deviation is flat,

not related to the time to maturity. AG, AL, and ZN are classified into this pattern.
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Figure 4.3: Functional Mean and Functional Standard Deviation (Term Structure)

Covariance and Correlation Functions

Figure 4.5 displays the correlation function of the term structure for all 18 commodity

futures. All of them show a very high correlation between different time to maturity.

Some commodity futures have smooth correlation functions, such as AG, AL, and RB,

while some have rigid surfaces, such as L and P. Interestingly, the correlation function

of CU and ZN have a sudden drop near 0.9.

Figure 4.6 displays the correlation function of the log return of the term structure for all

18 commodity futures. Compared with the correlation function of the term structure,

the correlation function of the log return is significantly lower. With the increase of

h, the correlation becomes stronger. Similar to the correlation function of the term

structure, some have smooth surfaces, and others have rigid surfaces. A sudden drop in

the correlation functions of CU and ZN can also be observed.
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Figure 4.4: Functional Mean and Functional Standard Deviation (Log Return of the
Term Structure)

(a) Daily Log Return (b) Weekly Log Return

(c) Monthly Log Return (d) Quarterly Log Return
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Figure 4.5: Correlation Functions (Term Structure)
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4.3 FANOVA

We employ the one-way functional ANOVA (FANOVA) developed by Horváth & Rice

(2015) to examine the season of the year effect (SoY), month of the year effect (MoY),

week of the month effect (WoM), and day of the week effect (DoW). It is inappropriate

to apply the FANOVA on the log return of the term structure because they all tend to

have mean zero functions.

The test has the null hypothesis H0 that the mean curves of multiple functional popu-

lations are the same vs. the alternative HA that H0 does not hold.

H0 : µ1(·) = µ2(·) = ... = µk(·)

HA : H0 does not hold
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Figure 4.6: Correlation Functions (Log Return of the Term Structure)
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The core idea of the test is to calculate the empirical score vectors by using the eigen-

functions associated with the d largest eigenvalues of D̂N,p or D̂N defined as

λ̃ϕ̃i(t) =

∫
D̃N (t, s)ϕ̃i(s)ds (4.2)

Then the statistics T̃N
1 can be calculated.

T̃N =
k∑
i=1

Ni

(
ξ̃i· − ξ̃··

)T
Σ̃−1
i

(
ξ̃i· − ξ̃··

)
(4.3)

where

Σ̃i =

{∫ ∫
D̃Ni,i(t, s)ϕ̃l(t)ϕ̃j(s)dtdt, 1 ≤ j, l ≤ d

}
(4.4)

ξ̃·· =

(
k∑
i=1

NiΣ̃i
−1

)−1 k∑
i=1

NiΣ̃i
−1
ξ̃i· (4.5)

ξ̃i· =
1

Ni

Ni∑
i=1

Ni∑
i=1

ξ̃ij (4.6)

ξ̃ij = (〈Xi,j , ϕ̃1〉, 〈Xi,j , ϕ̃2〉, ..., 〈Xi,j , ϕ̃d〉)T (4.7)

The test statistics T̃N has the following limit distribution under the null hypothesis.

T̃N
D−→ χ2(d(k − 1))

where χ2(d(k− 1)) denotes a χ2 random variable with d(k− 1) degrees of freedom. k is

the number of functional populations, and d is the number of the basis for the projection.

The number d is determined by the rule that approximately ν% of the sample variance

is explained by the first d principal components. We choose ν% = 95% in this study.

Following Horváth & Rice (2015), we also use the flat top kernel to estimate the long-run

1There is another version of the statistics T̂N . Interested readers can refer to Horváth & Rice (2015).
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covariance kernel, which is shown in Equation 4.8. nan

K(x) =


1, if 0 ≤ t < 1

1.1− |t|, if 0.1 ≤ t < 1.1

0, if |t| ≥ 1.1

(4.8)

with the bandwidth parameter equal to N1/4.

Our data sample can be divided into different population groups according to four cal-

endar criteria, which are the season of the year (SoY) 2, month of the year (MoY), week

of the month (WoM), and day of the week (DoW). The FANOVA is applied to test

whether the mean curves in different populations are the same. If the test is rejected,

then there could be a market anomaly of the calendar effect.

Since the term structure from different years but the same season/month could have

different means just according to the difference in those years, it is necessary to firstly

demean the data in each year before the functional AVONA is applied to test the SoY/-

MoY. Similarly, the data is demeaned in each month for testing the WoM and the data

is demeaned in each week for testing the DoW.

Table 4.1 reports the test statistics and their p-values. Concerning the SoY and MoY,

the test of most commodity futures is strongly rejected. There are significant SoY and

MoY for most commodity futures. We use JM as a representative example. Figure 4.1

shows the mean curves (demeaned for each year) of the JM term structure for each season

and each month. It is apparent that the mean curve of JM in winter is downside sloping,

while others are upside sloping. The mean curves of JM in different months show the

same pattern with downside sloping curves in November, December, and January. The

calendar effect of JM could be explained by the energy consumption in China. JM is

one of the main sources of heat in northern China. The demand of JM is typically high

in winter. It becomes straightforward that the price of JM in winter is higher, which

causes the downside sloping term structure of JM in winter.

2The four seasons in China are defined as follows. Spring: February, March, April; Summer: May,
June, July; Fall: August, September, October; Winter: November, December, January.
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It is reasonable to observe no SoY in HC and ZN. HC is the raw material for the

production of automobiles, vessels, and so forth. The main usage of ZN is in order to

produce anti-corrosion zinc coating, zinc-base alloy, and zinc oxide, which is commonly

utilised in the later stage of the production processes for automobiles, vessels, and light

industries. There is no obvious SoY for those industries.

It is expected to observe the SoY in agricultural commodity futures. Interestingly, the

FANOVA shows no SoY for SR, while the MoY is very significant for SR. Figure 4.2

shows the mean curves (demeaned for each year) of the SR term structure. The SR

term structure in winter seems to be higher than in other seasons, but the FANOVA

shows that the difference is not significant. The reason can be explained as follows. It

can be observed in Figure 4.3(b) that the SR has a relatively lower term structure in

January and comparatively a higher term structure in November and December. Since

the spring in China consists of January, November, and December, the mean curve of

SR in spring is mixed by relatively high and low curves, which forces it to be closer to

the global mean and further makes the SoY of SR insignificant.

Regarding the WoM, there is very strong evidence for RB, strong evidence for AL, I, PP,

ZN, and weak evidence for CS and JM. Figure 4.4(a) displays the mean curves (demeaned

for each month). Note that the last trading day for the contract of RB expired in the

current month is the 15th calendar day in a month. Before the last trading day, the

mean curves of Week 1 and 2 are both upside sloping. After the last trading day, the

mean curves of Week 3 and 4 are both downside sloping.

In terms of the DoW, the test shows that Al and SR are rejected at the 1% significance

level; CF, CS, J, P, and RB are rejected at the 5% significance level; and OI, PP, and

ZN are rejected at the 10 % significance level. Taking RB as an example, Figure 4.4(b)

depicts the mean curves of the RB term structure (demeaned for each week). The

differences among the first four weekdays are not obvious, but the term structure in

Friday is clearly relatively lower than the others. This anomaly of lower term structure

on Friday can be explained by the investment behaviour. The commodity future of

RB in China is a highly volatile investment asset. Some investors in China avoid to

take risks during the weekend. They choose to clear their holding positions on Friday



Chapter 4 Forecasting the Log Return of Term Structure 117

and establish the position again on next Monday. Therefore the RB term structure is

abnormally lower than the other weekdays.

Table 4.1: FANOVA Results

SoY P-value MoY P-value WoM P-value DoW P-value

A 59.213∗∗∗ (0.00) 95.399∗∗∗ (0.00) 9.127 (0.87) 24.937 (0.41)

AG 13.252∗∗∗ (0.00) 53.755∗∗∗ (0.00) 5.179 (0.16) 5.254 (0.26)

AL 13.087∗∗∗ (0.00) 39.187∗∗∗ (0.00) 14.077∗∗ (0.03) 29.589∗∗∗ (0.00)

C 88.965∗∗∗ (0.00) 194.717∗∗∗ (0.00) 17.386 (0.30) 20.072 (0.45)

CF 8.150∗∗ (0.04) 13.994 (0.23) 6.934 (0.64) 22.134∗∗ (0.04)

CS 137.703∗∗∗ (0.00) 399.862∗∗∗ (0.00) 23.769∗ (0.07) 33.036∗∗ (0.03)

CU 8.918∗∗ (0.03) 23.675∗∗ (0.01) 13.402 (0.15) 11.589 (0.48)

HC 0.861 (0.83) 9.435 (0.58) 15.916 (0.60) 36.878 (0.25)

I 15.971∗∗∗ (0.00) 32.730∗∗∗ (0.00) 18.431∗∗ (0.03) 19.184 (0.74)

J 72.615∗∗∗ (0.00) 216.472∗∗∗ (0.00) 24.016 (0.46) 55.637∗∗ (0.02)

JM 11.319∗∗ (0.01) 23.421∗∗ (0.02) 23.742∗ (0.07) 30.254 (0.35)

L 28.755∗∗∗ (0.00) 88.203∗∗∗ (0.00) 31.407 (0.25) 31.538 (0.68)

OI 26.519∗∗∗ (0.00) 46.965∗∗∗ (0.00) 10.419 (0.32) 26.101∗ (0.05)

P 33.163∗∗∗ (0.00) 75.643∗∗∗ (0.00) 28.270 (0.25) 58.122∗∗ (0.01)

PP 27.572∗∗∗ (0.00) 51.428∗∗∗ (0.00) 31.794∗∗ (0.02) 45.835∗ (0.05)

RB 50.549∗∗∗ (0.00) 110.470∗∗∗ (0.00) 23.117∗∗∗ (0.00) 27.393∗∗ (0.01)

SR 4.438 (0.22) 27.823∗∗∗ (0.00) 6.237 (0.72) 35.512∗∗∗ (0.00)

ZN 2.939 (0.40) 9.349 (0.59) 13.320∗∗ (0.04) 19.471∗ (0.08)

Note: SoY: Season of the Year; MoY: Month of the Year; WoM: Week of the Month; DoW: Day of the Week
For testing the SoY and MoY, the data is demeaned for each year. For testing the WoM, the data is demeaned for

each month. For testing the DoW, the data is demeaned for each week.
***p < 0.01, **p < 0.05, *p < 0.1
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Figure 4.1: Mean Curves for JM (Demeaned for each year)
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Figure 4.2: Mean Curves for SR (Demeaned for each year)
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Figure 4.3: Mean Curves for RB (Demeaned for each month/week)
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4.4 h-step Functional Autoregressive Model

Bosq (2000) developed the theory of general functional linear processes, including the

functional autoregressive process, in the Hilbert and Banach spaces. Ramsay & Silver-

man (2006), Hörmann & Kokoszka (2010), and Horváth & Kokoszka (2012) provide re-

cent theoretical developments in functional linear processes. All functions in the Hilbert

space L2 are real square integrable functions on the interval [0, 1] with inner product

〈f, g〉 =
∫
f(t)g(t)dt. Recall the definition of the functional AR(1) model.

Xn(t) = Ψ(Xn−1(t)) + εn (4.9)

where {Xn(t),−∞ < n <∞} is a sequence of mean zero functional observations in the

Hilbert space L2, {εn,−∞ < n <∞} is a sequence of the i.i.d. mean zero functional

errors also in L2, satisfying E‖εn‖2 < ∞, and Ψ ∈ L is a linear operator mapping a

curve into another curve. Here we propose an h-step functional AR(1) model defined in

a similar way.

Xn(t) = Ψh(Xn−h(t)) + εn (4.10)

where h is the forecasting horizon, and Ψh ∈ L is also a linear operator. The operator

Ψh is defined as

Ψh(X(t)) =

∫
ψh(t, s)X(s)dt (4.11)

where ψ(t, s) is a bivariate kernel.

There are two versions of the existence condition for the functional AR(1) model. The

weak version is proved by Horváth & Kokoszka (2012), and the strong version is provided

by Didericksen et al. (2012). If condition C0 or C1 holds, then there is a unique strictly

stationary causal solution to Equation 4.9.

C0 (weak version): There exists an integer j0 such that ‖Ψj0
h ‖ < 1.

C1 (strong version): ‖Ψh‖ < 1, where ‖Ψh‖2 =
∫ ∫

ψh(t, s)2dtds.

Note that condition C0 is more general than condition C1. Practically, the condition

C1 is more convenient to use.
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In this chapter, we employ two prediction methods for the functional AR(1) model under

finite sample. The first method is the estimated kernel, which uses only a few of the

most important empirical functional principle components (EFPC) to estimate kernel

ψ(t, s). The second method is the predictive factor, developed by Kargin & Onatski

(2008). The key idea of the second method is to replace the EFPCs by directions which

are the most relevant for predictions.

4.4.1 Estimated Kernel

Analogical to the scalar AR(1) model, the most intuitive estimator for Ψh would be

Ψ̂h = ĈhĈ
−1, where the functional covariance C and lag-h autocovariance Ch operator

are defined by

C(x) = E [〈Xn, x〉Xn] , x ∈ L2 (4.12)

Ch(x) = E [〈Xn, x〉Xn+h] , x ∈ L2 (4.13)

The empirical covariance and empirical lag-h autocovariance operator can be estimated

by

Ĉ(x) =
1

N

N∑
j=1

〈Xi, x〉Xj+1 (4.14)

Ĉh(x) =
1

N − h

N−h∑
k=1

〈Xi, x〉Xk+h (4.15)

Horváth & Kokoszka (2012) show that the inverse of the covariance operator C is not

bounded. In order to avoid working with the reciprocals of very small eigenvalues, it is

sensible to use only the first p most important EFPC. Practically, the number of p can

be determined by several methods, including the cumulative variance method, cross-

validation, and information criteria. Denote the EFPC of the functional observations

Xn as, ν̂j , j = 1, 2, 3..., p, the inverse of covariance operator using the first p EFPCs can

be defined as

Γ̂p(x) =

p∑
j=1

λ̂−1
j 〈x, ν̂j〉 ν̂j (4.16)
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Then we can obtain the estimator for Ψh,p

Ψ̂h,p = ĈhΓ̂p(x) (4.17)

= Ĉh

 p∑
j=1

λ̂−1
j 〈x, ν̂j〉 ν̂j

 (4.18)

=
1

N − h

N−h∑
k=1

〈
Xk,

p∑
j=1

λ̂−1
j 〈x, ν̂j〉 ν̂j

〉
Xk+h (4.19)

=
1

N − h

N−h∑
k=1

p∑
j=1

λ̂−1
j 〈x, ν̂j〉 〈Xk, ν̂j〉Xk+h (4.20)

If a smoothing procedure is applied on Xk+h ≈
∑p

i=1 〈Xk+h, ν̂i〉 ν̂i, the estimator further

becomes

Ψ̂h,p =
1

N − h

N−h∑
k=1

p∑
j=1

p∑
i=1

λ̂−1
j 〈x, ν̂j〉 〈Xk, ν̂j〉 〈Xk+h, ν̂i〉 ν̂i (4.21)

The estimated kernel for the estimator in Equation 4.21 is

ψ̂h,p(t, s) =
1

N − h

N−h∑
k=1

p∑
j=1

p∑
i=1

λ̂−1
j 〈Xk, ν̂j〉 〈Xk+h, ν̂i〉 ν̂j(s)ν̂i(t) (4.22)

Using the estimated kernel, we can make h-step predictions as

X̂n+h(t) =

∫
ψ̂h,pXn(s)ds (4.23)

=

p∑
j=1

(
p∑
i=1

ψ̂h,p 〈Xn, ν̂i〉

)
ν̂j(t) (4.24)

4.4.2 Predictive Factors

Kargin & Onatski (2008) develop the predictive factor decomposition for the estima-

tion of the functional autoregression operator, which is a dimension-reduction technique

aiming to minimise the prediction error. This method is different from the estimated ker-

nel method, which is based on the functional principle analysis, because it is designed

to identify the directions (linear combinations of components) that are most relevant

for prediction rather than describing variance. Here we briefly explain the regularised

version of the method for the h-step prediction.
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The method aims to find an operator A which can minimise the prediction error

min
{
E‖Xn+h −A(Xn)‖2; A ∈ Rk

}
(4.25)

where Rk is the set of all rank k operators mapping L2 into a subspace of dimension k.

In order to solve this problem, Kargin & Onatski (2008) employ the polar decomposition

of ΨC1/2

ΨC1/2 = UΦ1/2, Φ = C1/2ΨTΨC1/2 (4.26)

Then the optimisation problem becomes

E‖Xn+h −Ψh,k(Xn)‖2 (4.27)

where Ψh,k is defined as

Ψh,k(y) =
k∑
i=1

σ−1
i

〈
y,ΨTΨC1/2(xi)

〉
U(xi) (4.28)

where σ2
1 > ... > σ2

k > 0 are the largest k eigenvalues of Φ. The operation in Equation

4.28 is equivalent to

Ψh,k(y) =

k∑
i=1

〈y, bi〉Ch(bi), bi = C−1/2(xi) (4.29)

where the processes {〈y, bi〉 , i = 1, ..., k)} are named as the predictive factors, and the

functions {Ch(bi), i = 1, ..., k)} are named as the corresponding predictive loadings, which

are the most relevant “directions” in L2 for prediction.

Since C−1/2 is also not a bounded estimator, Kargin & Onatski (2008) proposed the

following regularised version for consistent estimation.

Φ̂α,h = Ĉ−1/2
α ĈTh ĈhĈ

−1/2
α , Ĉα = Ĉ + αI (4.30)
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where α ∈ R+ is a regularisation parameter and I is the identity operator. Then the

h-step prediction can be made by

X̂n+h(t) = Ψ̂α,h,k(Xn(t))

=

k∑
i=1

〈
Xn(t), b̂α,i

〉
Ĉh(b̂α,i), b̂α,i = Ĉ−1/2

α (x̂α,i)
(4.31)

where σ2
α,1 > ... > σ2

α,k are the largest k eigenvalues of Φ̂α,h, and x̂α,1, ..., x̂α,k are the

corresponding eigenfunctions.

In practice, we need to select the value of the regularisation parameter α. In this study,

we use a numerical optimiser to choose α which minimises the total prediction error in

the in-sample period data.

4.4.3 Forecast Performance Evaluation

For the sake of measuring the overall forecasting performance in a period, we propose

to use the functional RMSE (FRMSE)

FRMSE =

√√√√ 1

N

N∑
i=1

(∫ 1

0

(
Xi(t)− X̂i(t)

)2
dt

)
(4.32)

In order to compare forecasting performance among different commodities, we developed

the functional R2. Since the functional AR(1) sequence has a zero mean, we define the

functional total sum of squares (FTSS) for a functional observation as

FTSS =
N∑
i=1

(∫ 1

0
Xi(t)

2dt

)
(4.33)

The functional residual sum of squares (FRSS) is defined as

FRSS =
N∑
i=1

(∫ 1

0

(
Xi(t)− X̂i(t)

)2
dt

)
(4.34)
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The functional R2 (FR2) is defined as

FR2 =
FTSS − FRSS

FTSS
(4.35)

4.5 Forecasting Performance

Traditional methods (e.g. Diebold & Li, 2006) focus on foresting the term structure. Our

functional AR(1) model is more suitable to forecast the log return of the term struc-

ture. It is not appropriate to compare our method with traditional methods. Following

Didericksen et al. (2012), we use a naive prediction (NP) method as the benchmark

model. The naive predictor set X̂n+h(t) = Xn(t), which does not consider the temporal

dependence. Compared with the naive predictor, we can see the additional forecasting

power gained by using the functional autoregressive structure of the data.

Prior to forecasting, we need to choose the number of EFPCs (p) for the estimated kernel

method, and the number of predictive factors (k) for the predictive factor method. In

order not to use future information, the parameter optimisation is conducted only by

the in-sample period data. We have experimented with the cross-validation procedure,

but the optimised p and k tend to be the maximum number of EFPCs or predictive

factors. Section 4.4.1 has shown the potential danger of working with the reciprocals of

very small eigenvalues. We decide to report the results of {p, k} = 3, 4, 5.

Regarding the values of the regularisation parameter α for the predictive factor method,

we employ a numerical optimiser3 in order to find the optimised value of α that minimises

the forecasting FRMSE in the in-sample period for each commodity futures. Table 4.1

reports the optimised values 4 of α for four forecasting horizons of each commodity

futures. When the forecasting horizon is short, like 1-day-ahead and 1-week-ahead, the

optimised α has very small values. When the forecasting horizon is long, like 1-month-

ahead and 1-week-ahead, the optimised α could be very large for some commodity

futures, such as HC and CS.

3The numerical optimiser used is fminunc in Matlab.
4Notice that the values reported in the table are α× 1000
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The strong existence condition for the functional AR(1) model is that ‖Ψh‖ < 1. In

order to ensure that the model is used in a proper way, we calculate the norm of the

estimated kernel, i.e. ‖Ψ̂h‖. As described in Section 4.4.1, the kernel can be estimated

by only the first p most important EFPCs. In order to avoid redundancy, we only

report the value of ‖Ψ̂h‖ by using the first 5 EFPCs for both the in-sample period and

out-of-sample period.

With the purpose of saving space, we only report the best model FR2. Notice that FR2

could have negative values because of our definition in Equation 4.35. The interpretation

of a negative FR2 would be that the model produces more variation than the FTSS. In

this case, the prediction of a zero function could outperform the model.

4.5.1 In-Sample Fitting

The upper panel of Table 4.2 to Table 4.5 present the in-sample forecasting errors

(FRMSE), ‖Ψ̂h‖, and FR2 for four different forecasting horizons. We will use EK

to denote the estimated kernel method and PF to denote the predictive factors method.

Within the same forecasting horizon, there are three observations about the in-sample

fitting.

• Both the EK and PF method can consistently outperform the naive predictor,

based on the FRMSE. This indicates that additional forecasting power could be

gained by using the functional autoregressive structure.

• Using the same p/k, the PF method has a better fitting than EK. The better

performance of PF could be the idea that PF focuses on the directions that are

most relevant for the prediction, rather than the directions describing variance.

Compared with the EK method, the PF has one additional turning parameter α.

The improved performance may also come from the introduction of an additional

parameter.

• For both EK and PF, the FRMSE is decreasing with more EFPCs or predictive

factors. Using more EFPCs or predictive factors can always give a better fitting
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Table 4.1: Optimised Values of α× 1000

1-day-ahead 1-week-ahead

k=3 k=4 k=5 k=3 k=4 k=5

A 0.060 0.068 0.077 2.840 2.822 2.823
AG 0.127 0.129 0.128 0.057 0.057 0.057
AL 0.057 0.057 0.057 0.039 0.039 0.039
C 0.060 0.060 0.039 1.060 1.063 1.063
CF 0.039 0.039 0.039 1.940 1.942 1.943
CS 3.741 3.461 3.470 0.057 0.057 0.057
CU 0.057 0.057 0.057 0.072 0.063 0.063
HC 0.057 0.057 0.057 20.821 15.894 11.379
I 1.747 1.612 1.230 0.057 0.057 0.057
J 1.120 1.189 1.213 15.638 16.290 14.465
JM 0.057 0.057 0.057 0.057 0.057 0.057
L 0.057 0.057 0.057 10.612 10.624 11.030
OI 0.279 0.284 0.284 3.260 3.175 3.139
P 1.456 1.296 1.219 0.057 0.057 0.057
PP 0.057 0.057 0.057 0.057 0.057 0.057
RB 0.098 0.086 0.087 0.057 0.057 0.057
SR 0.063 0.063 0.063 0.057 0.057 0.057
ZN 0.039 0.039 0.039 0.157 0.160 0.161

1-month-ahead 1-quarter-ahead

k=3 k=4 k=5 k=3 k=4 k=5

A 27.197 27.058 27.089 55.082 57.272 56.083
AG 0.057 0.057 0.057 0.057 0.057 0.057
AL 0.457 0.451 0.451 0.057 0.057 0.057
C 5.023 5.051 5.064 31.881 32.030 31.616
CF 6.149 6.683 6.710 62.583 62.745 62.825
CS 0.057 0.057 0.057 5122.523 5072.378 5055.936
CU 0.675 0.671 0.641 0.057 0.057 0.057
HC 39.459 43.514 49.998 1683.064 1668.080 1654.022
I 4.773 5.008 4.789 97.297 96.015 96.018
J 316.294 326.450 334.966 695.041 666.286 684.190
JM 51.358 48.081 44.871 16.683 17.996 15.517
L 272.091 268.958 257.877 647.480 630.016 633.118
OI 21.161 21.070 20.989 107.871 107.390 106.798
P 0.057 0.057 0.057 15.900 14.478 12.007
PP 162.848 161.898 158.533 0.057 0.057 0.057
RB 3.539 3.576 3.530 28.105 27.637 27.650
SR 12.694 12.630 12.609 68.255 68.211 68.060
ZN 1.378 1.379 1.369 2.650 2.657 2.660

Note: The numerical optimisation is applied to find the value of α under
the principle to minimise the FRMSE. The values reported in the table are
α× 1000.
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for the in-sample period data, but more p/k may overfit the data, as indicated

by the out-of-sample forecasting performance. PF with five predictive factors can

always give the best in-sample fitting.

Across different forecasting horizons, there are four comments about the in-sample fit-

ting.

• With a longer forecasting horizon, the FRMSE becomes larger. This is an intuitive

result because more uncertainty will arise with a longer forecasting horizon. The

quarterly log return has a larger magnitude of variation than the daily log return.

• ‖Ψ̂h‖ are mostly less than 1, expect for the 1-quarter-ahead forecasting of four

commodity futures, namely AG, CF, CS, and OI. The strong existence condition

of the functional AR(1) model is that ‖Ψh‖ < 1. Most log returns of different com-

modity futures at different horizons meet the condition, except that the quarterly

log return of those four commodity futures is larger than 1. This suggests that the

quarterly log return of those four commodity futures could be non-stationary, and

cannot be modelled by the functional AR(1) model.

• With a longer forecasting horizon, ‖Ψ̂h‖ becomes larger. For the 1-day-ahead

and 1-week-ahead forecasting, ‖Ψ̂h‖ is very small, generally less than 0.1. The

temporal dependence of the daily and weekly log return is relatively weak, which

is the reason for the low FR2 of the functional AR(1) model. Hence, the log

returns at short horizons are not predictable. The temporal dependence of the

monthly and quarterly log return becomes stronger, implied by the larger values

of ‖Ψ̂h‖. Thus, the forecasts appear to be more accurate at long horizons due to

the stronger temporal dependence.

• When the forecasting horizon is short, FR2 is normally less than 15%, indicating

a small power of forecasting. With the increase of the forecasting horizon, FR2 is

getting larger. For the 1-month-ahead forecasting, FR2 is around 40% for many

commodities, such as I, L, and P. For the 1-quarter-ahead forecasting, FR2 can

be larger than 50 %, with CF, HC, and I close to 80%.



128 Chapter 4 Forecasting the Log Return of Term Structure

Our results are consistent with Horváth & Kokoszka (2012, Chapter 13) and Didericksen

et al. (2012). Their simulation results show that a larger value of ‖Ψ̂h‖ significantly and

visibly improves the predictions using the functional autoregressive structure.

4.5.2 Out-of-Sample Forecasting

For the out-of-sample forecasting, we recursively estimate the model and use the most

updated parameter to make the next forecast. At date n, the model is firstly estimated

by the data {Xd(t), 1 ≤ d ≤ n}, and then the h-step forecast for X̂n+h(t) is conducted by

either the EK or PF method. The optimised α for the PF method is always the same as

the in-sample 5. In this recursively updated manner, we can reduce the potential danger

of over-fitting in the in-sample period since the values of the parameters are updated

with new coming observations.

The lower panels of Table 4.2 to Table 4.5 present the in-sample forecasting errors

(FRMSE), ‖Ψ̂h‖, and FR2 for four different forecasting horizons. There are three ob-

servations about the out-of-sample testing.

• Both EK and PF outperform the naive predictor for the out-of-sample forecasting.

This double-confirm the benefit of using functional autoregressive structure to

forecast the log return of the term structure.

• When the forecasting horizon is short, EK outperforms PF. As for the 1-quarter-

ahead forecasting, PF shows increased predictive power than EK. Similarly to the

in-sample results, the value of ‖Ψ̂h‖ is larger when the forecasting horizon is longer.

It suggests that PF could outperform EK under the condition that the temporal

dependence is strong.

• As can be seen from FR2, the out-of-sample forecasting is less accurate than the

in-sample fitting. There are two possible reasons for a good in-sample fitting but

a bad out-of-sample forecasting. First, the data generation process (DGP) could

be changed. At least the parameter of the DGP could be different. Second, there

could be over-fitting in the in-sample period data. Using more EFPCs or predictive

5We do not choose to update α recursively because of extremely high computational costs.
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factors does not produce a better forecasting. This also suggests that there could

be overfitting in the in-sample period data. However, we have conducted out-of-

sample forecasting in a recursive way. The parameters are recursively updated.

The danger of overfitting is already mitigated.

It is interesting to see that the log returns at short horizons are not predictable, and

the forecasts appear much accurate at long horizons. Diebold & Li (2006) also find that

their model is more accurate at long horizons. The possible reason could be that the

magnitude of noise at short horizons is relatively larger than the fundamental values of

the term structure and its log returns. Under longer horizons, the relative magnitude

of noise would be smaller, with the comparison to the fundamental values. Then the

temporal dependence becomes stronger, which further enables the functional AR(1)

model to have a better forecast.

4.6 Conclusion

In this chapter, our aim is to forecast the log return of the term structure for Chinese

commodity futures. There are two advantages of working with the log return of the

term structure, rather than with the term structure. First, the log return has zero

mean, which can be fed into the functional AR(1) model directly. Second, the log return

of the term structure is stationary which can be modelled by the functional AR(1).

We start our analysis by inspecting the functional descriptive statistics. Compared

with the term structure of bond yields, the functional mean curves show that the term

structure for Chinese commodity futures is relatively flat. The relationship between the

functional standard deviation and the time to maturity has three patterns, negative,

positive, and not related.

The FANOVA has been applied to examine the calendar effect of the term structure.

SoY and MoY are found in most commodity futures. HC and ZN do not have both SoY

and MoY; CF has SoY but no MoY; while SR has MoY but no SoY. There is very strong

evidence for the WoM on RB. Before the last trading day in the month, the RB term
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Table 4.2: 1-day-ahead Forecasting Results

In-Sample
Estimated Kernel Predictive Factors

NP ‖Ψ̂1‖ FR2

p=3 p=4 p=5 k=3 k=4 k=5

A 3.741 3.738 3.735 3.727 3.725 3.724 5.193 0.036 1.839%
AG 4.929 4.923 4.919 4.884 4.880 4.877 6.732 0.118 5.593%
AL 3.554 3.551 3.543 3.518 3.516 3.514 4.891 0.062 3.725%
C 1.965 1.965 1.963 1.963 1.963 1.963 2.807 0.060 0.666%
CF 2.720 2.716 2.715 2.710 2.710 2.710 3.522 0.079 5.069%
CS 3.012 3.007 2.989 2.988 2.983 2.983 4.168 0.078 4.898%
CU 6.782 6.780 6.779 6.749 6.745 6.743 9.273 0.017 2.151%
HC 4.626 4.619 4.615 4.535 4.524 4.516 6.440 0.030 7.187%
I 5.720 5.715 5.704 5.634 5.627 5.622 7.900 0.044 9.950%
J 5.769 5.765 5.760 5.738 5.730 5.725 8.139 0.029 3.578%
JM 4.234 4.230 4.224 4.192 4.185 4.180 5.954 0.034 5.059%
L 7.142 7.139 7.135 7.100 7.093 7.087 9.953 0.027 3.852%
OI 3.474 3.467 3.460 3.458 3.457 3.456 4.752 0.096 2.820%
P 7.000 6.995 6.990 6.983 6.977 6.974 9.705 0.028 2.433%
PP 5.222 5.214 5.206 5.173 5.164 5.155 7.527 0.034 3.212%
RB 3.074 3.068 3.066 3.049 3.045 3.043 4.150 0.042 5.078%
SR 3.525 3.524 3.524 3.512 3.511 3.510 4.694 0.032 3.259%
ZN 6.083 6.081 6.078 6.032 6.029 6.027 8.131 0.031 4.607%

Out-of-Sample

Estimated Kernel Predictive Factors
NP ‖Ψ̂1‖ FR2

p=3 p=4 p=5 k=3 k=4 k=5

A 2.529 2.527 2.528 2.530 2.529 2.526 3.477 0.039 2.112%
AG 4.318 4.327 4.325 4.398 4.394 4.388 5.901 0.088 0.921%
AL 2.231 2.226 2.222 2.234 2.232 2.231 2.954 0.062 3.344%
C 2.200 2.202 2.203 2.201 2.202 2.202 3.070 0.036 0.106%
CF 2.260 2.258 2.256 2.254 2.254 2.254 3.049 0.100 2.809%
CS 3.061 3.063 3.059 3.063 3.062 3.062 4.188 0.096 3.221%
CU 3.443 3.443 3.443 3.434 3.435 3.434 4.639 0.100 1.830%
HC 6.416 6.408 6.402 6.420 6.421 6.413 8.652 0.057 7.072%
I 7.804 7.779 7.784 7.846 7.839 7.837 10.377 0.093 8.516%
J 6.618 6.617 6.618 6.638 6.635 6.632 9.010 0.045 3.390%
JM 7.293 7.296 7.308 7.349 7.350 7.348 9.906 0.045 2.753%
L 4.387 4.385 4.387 4.410 4.411 4.411 6.168 0.021 0.374%
OI 2.134 2.130 2.131 2.131 2.131 2.130 2.923 0.079 2.975%
P 4.196 4.197 4.195 4.185 4.186 4.186 5.893 0.040 2.635%
PP 5.677 5.673 5.672 5.740 5.736 5.729 7.804 0.046 2.588%
RB 4.470 4.471 4.466 4.485 4.485 4.483 5.728 0.042 6.070%
SR 2.551 2.550 2.549 2.552 2.552 2.551 3.501 0.046 1.420%
ZN 3.347 3.346 3.343 3.372 3.369 3.369 4.577 0.067 1.483%

Note: The lowest FRMSE for each commodity future is highlighted by the bold font.
‖Ψ̂1‖ is calculated based on the estimated kernel method with 5 EFPCs. Only the best
model FR2 is reported.
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Table 4.3: 1-week-ahead Forecasting Results

In-Sample
Estimated Kernel Predictive Factors

NP ‖Ψ̂5‖ FR2

p=3 p=4 p=5 k=3 k=4 k=5

A 9.007 8.987 8.917 8.773 8.769 8.766 12.624 0.116 5.471%
AG 12.315 12.273 12.258 12.185 12.182 12.180 16.541 0.238 3.885%
AL 8.418 8.400 8.360 8.275 8.270 8.268 11.518 0.115 5.637%
C 4.276 4.242 4.240 4.235 4.235 4.235 5.988 0.172 2.602%
CF 7.147 7.145 7.100 7.096 7.095 7.094 9.608 0.270 8.130%
CS 6.797 6.755 6.740 6.684 6.673 6.668 9.245 0.121 14.297%
CU 16.763 16.653 16.573 16.191 16.170 16.154 23.386 0.071 7.784%
HC 10.391 10.327 10.240 10.034 9.981 9.938 14.681 0.070 14.366%
I 13.608 13.535 13.455 13.176 13.147 13.125 18.858 0.095 15.201%
J 13.050 13.035 13.007 12.876 12.842 12.813 18.325 0.030 5.738%
JM 9.419 9.366 9.306 9.089 9.063 9.040 13.444 0.080 10.124%
L 17.411 17.351 17.283 16.987 16.921 16.891 24.165 0.044 8.071%
OI 8.448 8.422 8.400 8.371 8.365 8.359 11.543 0.186 5.407%
P 16.391 16.335 16.289 16.099 16.028 15.990 23.873 0.053 10.753%
PP 11.056 11.029 10.950 10.755 10.714 10.689 16.220 0.075 11.689%
RB 7.506 7.481 7.444 7.311 7.305 7.301 10.511 0.122 7.071%
SR 8.894 8.833 8.789 8.778 8.775 8.774 12.689 0.165 3.405%
ZN 15.755 15.735 15.675 15.518 15.502 15.498 21.932 0.086 4.250%

Out-of-Sample

Estimated Kernel Predictive Factors
NP ‖Ψ̂5‖ FR2

p=3 p=4 p=5 k=3 k=4 k=5

A 5.887 5.896 5.930 5.990 5.986 5.981 8.456 0.076 -0.064%
AG 10.296 10.319 10.321 10.402 10.397 10.393 14.819 0.132 -1.235%
AL 5.484 5.492 5.534 5.558 5.555 5.552 7.656 0.111 -0.243%
C 5.084 5.088 5.088 5.088 5.087 5.085 7.044 0.070 0.871%
CF 5.587 5.584 5.585 5.587 5.587 5.587 7.378 0.095 -2.412%
CS 7.425 7.431 7.421 7.472 7.469 7.464 10.192 0.117 -0.660%
CU 8.291 8.279 8.290 8.355 8.356 8.358 11.724 0.266 -0.206%
HC 16.834 16.717 16.752 16.751 16.733 16.717 23.285 0.116 3.165%
I 21.102 20.947 20.916 21.026 21.019 21.014 30.105 0.141 -0.916%
J 16.359 16.311 16.309 16.308 16.292 16.277 22.095 0.094 7.928%
JM 17.553 17.575 17.518 17.592 17.549 17.534 25.677 0.083 7.228%
L 9.711 9.723 9.744 9.904 9.901 9.897 13.961 0.046 -0.666%
OI 5.103 5.086 5.085 5.097 5.093 5.089 7.293 0.131 -0.466%
P 9.719 9.707 9.677 9.767 9.767 9.761 13.996 0.064 -2.462%
PP 13.785 13.688 13.707 13.726 13.716 13.701 19.044 0.119 3.218%
RB 12.266 12.269 12.237 12.208 12.207 12.207 16.742 0.117 2.389%
SR 5.938 5.933 5.975 5.958 5.956 5.954 8.686 0.104 -0.516%
ZN 7.828 7.827 7.791 7.905 7.904 7.903 11.051 0.120 0.704%

Note: The lowest FRMSE for each commodity future is highlighted by the bold font. ‖Ψ̂5‖ is
calculated based on the estimated kernel method with 5 EFPCs. Only the best model FR2 is
reported.
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Table 4.4: 1-month-ahead Forecasting Results

In-Sample
Estimated Kernel Predictive Factors

NP ‖Ψ̂20‖ FR2

p=3 p=4 p=5 k=3 k=4 k=5

A 18.568 18.352 18.200 17.872 17.860 17.853 27.518 0.217 10.535%
AG 27.158 27.041 26.997 26.730 26.728 26.727 36.145 0.496 4.600%
AL 18.097 17.934 17.925 17.678 17.674 17.671 24.716 0.129 10.606%
C 8.376 8.263 8.239 8.213 8.209 8.208 12.518 0.345 15.378%
CF 16.505 16.485 16.436 16.425 16.419 16.418 22.414 0.354 9.402%
CS 16.328 16.268 16.205 15.983 15.963 15.954 25.085 0.209 22.942%
CU 33.939 33.397 33.298 32.197 32.145 32.101 46.810 0.166 22.310%
HC 21.209 20.511 20.269 19.596 19.466 19.360 30.302 0.150 27.608%
I 28.761 27.294 25.623 24.616 24.521 24.489 43.202 0.445 38.816%
J 25.723 24.844 23.836 23.292 22.625 22.162 39.566 0.153 33.719%
JM 17.262 17.056 16.888 16.539 16.444 16.401 24.929 0.127 15.889%
L 33.417 31.336 31.188 29.229 28.732 28.417 55.611 0.176 41.785%
OI 18.943 18.612 18.208 18.207 18.201 18.198 26.544 0.808 9.864%
P 30.947 30.211 29.666 26.805 26.538 26.306 49.268 0.161 44.554%
PP 21.549 20.759 20.379 18.557 18.375 18.298 30.102 0.224 39.874%
RB 15.793 15.756 15.727 15.062 15.049 15.043 21.828 0.113 12.176%
SR 18.168 18.111 18.062 17.379 17.370 17.363 25.572 0.172 10.892%
ZN 33.859 33.769 32.760 32.539 32.495 32.479 48.973 0.338 10.753%

Out-of-Sample

Estimated Kernel Predictive Factors
NP ‖Ψ̂20‖ FR2

p=3 p=4 p=5 k=3 k=4 k=5

A 11.452 11.512 11.588 11.792 11.792 11.790 16.274 0.092 -2.481%
AG 18.778 18.767 18.888 19.031 19.030 19.028 29.216 0.225 -0.861%
AL 11.865 11.753 11.752 11.636 11.632 11.631 15.598 0.094 0.497%
C 9.724 9.768 9.704 9.712 9.701 9.695 15.360 0.184 13.897%
CF 12.347 12.302 12.333 12.287 12.288 12.288 16.772 0.195 -3.661%
CS 13.235 13.191 13.089 13.103 13.093 13.095 21.179 0.322 18.857%
CU 17.702 17.699 17.700 18.014 18.023 18.024 24.654 0.188 -3.593%
HC 37.642 37.785 37.470 36.555 36.530 36.530 53.164 0.213 5.419%
I 43.053 43.614 44.027 43.272 43.267 43.259 59.767 0.312 0.349%
J 39.641 39.494 38.067 38.218 38.199 38.201 54.019 0.226 12.280%
JM 39.176 38.342 38.000 37.277 37.192 37.112 50.181 0.166 14.528%
L 18.285 18.455 18.093 18.727 18.754 18.758 26.066 0.119 2.563%
OI 9.728 9.993 10.277 10.223 10.214 10.210 13.158 0.147 1.831%
P 19.000 18.962 18.726 19.805 19.782 19.770 26.267 0.111 -2.935%
PP 29.774 28.894 28.979 27.854 27.825 27.799 40.236 0.245 12.320%
RB 26.225 25.917 25.756 24.584 24.570 24.560 37.757 0.423 16.428%
SR 11.931 11.943 11.925 11.804 11.805 11.807 16.279 0.098 0.441%
ZN 16.039 16.052 16.459 16.468 16.467 16.468 21.426 0.286 -2.798%

Note: The lowest FRMSE for each commodity future is highlighted by the bold font. ‖Ψ̂20‖ is
calculated based on the estimated kernel method with 5 EFPCs. Only the best model FR2 is
reported.
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Table 4.5: 1-quarter-ahead Forecasting Results

In-Sample
Estimated Kernel Predictive Factors

NP ‖Ψ̂60‖ FR2

p=3 p=4 p=5 k=3 k=4 k=5

A 29.385 29.098 28.904 28.741 28.658 28.632 46.266 0.364 29.885%
AG 54.710 54.708 54.424 53.941 53.941 53.940 73.916 1.034 4.064%
AL 37.200 37.174 36.839 36.015 36.006 36.002 49.118 0.404 13.684%
C 15.163 15.102 14.912 14.767 14.756 14.749 21.812 0.597 18.315%
CF 31.224 28.574 27.115 26.841 26.800 26.789 41.997 1.561 38.381%
CS 24.554 23.073 22.154 20.989 20.857 20.850 40.932 1.037 74.104%
CU 68.779 68.686 68.650 66.200 66.174 66.160 98.285 0.180 17.496%
HC 34.352 32.772 29.451 20.846 20.473 20.274 38.825 0.522 79.725%
I 30.237 30.063 29.918 26.757 26.670 26.612 48.928 0.399 77.555%
J 43.998 43.490 42.443 38.997 38.588 38.221 72.003 0.244 39.394%
JM 27.751 27.676 26.701 24.342 24.286 24.243 40.652 0.414 57.539%
L 59.289 55.134 54.642 51.621 51.499 51.391 92.266 0.293 30.272%
OI 33.279 32.364 31.875 31.888 31.867 31.863 47.955 1.309 25.557%
P 65.251 58.074 57.826 50.954 50.830 50.743 90.603 0.343 41.668%
PP 49.516 49.427 48.260 40.428 40.373 40.317 77.547 0.354 40.790%
RB 26.460 26.289 26.275 26.097 26.089 26.084 42.977 0.456 16.239%
SR 30.588 30.355 30.117 28.203 28.150 28.119 43.788 0.429 27.623%
ZN 56.786 56.599 56.463 55.468 55.451 55.439 80.821 0.307 12.301%

Out-of-Sample

Estimated Kernel Predictive Factors
NP ‖Ψ̂60‖ FR2

p=3 p=4 p=5 k=3 k=4 k=5

A 22.269 19.939 20.093 19.723 19.719 19.700 25.943 0.390 -10.460%
AG 31.121 31.177 31.373 31.366 31.365 31.364 42.563 0.347 -2.175%
AL 21.810 21.764 22.060 22.288 22.288 22.286 28.609 0.474 0.091%
C 16.686 16.325 15.894 16.267 16.227 16.199 24.474 0.392 19.390%
CF 22.901 24.266 24.905 24.859 24.836 24.835 27.598 0.405 -7.625%
CS 27.824 26.833 26.587 25.326 25.329 25.308 45.817 0.794 0.117%
CU 29.824 29.796 29.805 31.272 31.272 31.272 40.967 1.670 -3.214%
HC 60.852 61.162 56.924 56.343 56.325 56.313 69.062 0.753 26.967%
I 79.216 76.969 76.717 76.280 76.274 76.270 107.459 0.615 -3.562%
J 74.867 74.913 74.056 73.460 73.461 73.494 75.841 0.385 12.532%
JM 71.617 70.651 71.355 67.126 67.089 67.049 74.510 0.310 37.507%
L 32.253 33.073 33.250 34.861 34.852 34.834 49.016 0.193 1.462%
OI 21.298 22.163 22.522 22.391 22.379 22.376 23.031 0.392 -22.396%
P 29.854 31.005 31.181 31.910 31.908 31.859 44.004 0.177 0.707%
PP 48.108 47.100 46.966 45.889 45.858 45.839 70.788 0.324 6.553%
RB 45.308 45.178 45.096 44.268 44.259 44.254 53.102 0.445 11.321%
SR 21.554 21.691 21.966 20.907 20.885 20.882 31.512 0.720 6.894%
ZN 29.260 29.201 29.180 29.083 29.078 29.077 32.645 0.151 8.997%

Note: The lowest FRMSE for each commodity future is highlighted by the bold font. ‖Ψ̂60‖ is
calculated based on the estimated kernel method with 5 EFPCs. Only the best model FR2 is
reported.
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structure is upward sloping. While after the last trading day, the RB term structure

becomes downward sloping. As for the DoW, the test is rejected for AL and SR at the

1% significance level. Additionally, it is found that the RB term structure is relatively

lower on Friday than on other weekdays.

We employ an h-step Functional Autoregressive model to forecast the log return of the

term structure for Chinese commodity futures at both short and long horizons. Two

prediction approaches are used. The estimated kernel method is a conventional approach

using functional principal components, and the predictive factor method is a more refined

approach focusing on the directions more relevant to predictions. Compared with the

naive predictor, the in-sample and out-of-sample forecasting performance indicates that

additional forecasting power is gained by using the functional autoregressive structure.

Although the log return at short horizons is not predictable, the forecasts appear to be

more accurate at long horizons due to the stronger temporal dependence. The predictive

factor method has a better in-sample fitting, but it cannot outperform the estimated

kernel method for out-of-sample testing, except for the 1-quarter-ahead forecasting.

The limitation of our research is that our functional AR(1) only uses the temporal

dependence information. The exogenous variables, such as interest rates and convenience

yields, are not used for the forecasting, which could potentially contribute to a better

forecasting performance. Future research will consider incorporating exogenous variables

into the functional AR(1) model.



Conclusions, Limitations and

Future Research

In this collection of four loosely related essays, several advanced quantitative methods,

hidden semi-Markov model, diffusion process, and functional data analysis, have been

applied to understand and model the asset returns in the Chinese financial market.

In the introduction, we firstly provide background information about the Chinese stock

market, including basic statistics, unique features, and two historical events. Those

unique features are closely related to the quantitative results from the statistical meth-

ods. Then, we review the relevant finance theories, including the efficient market hy-

pothesis (EMH), technical analysis, and behavioural finance. Furthermore, we present

the research question, motivations, and contributions.

HSMM is a generalisation of the HMM by explicitly specifying the sojourn time distri-

bution (Yu, 2010). Bulla & Bulla (2006) examine the reproduction of the stylized facts

of the asset returns by the US industry stock indices and show that HSMM is superior

to HMM because the stylized facts of the daily returns were entirely reproduced. Due

to the merits of HSMM in the literature, we employ a three-state HSMM to decode the

Chinese stock market returns in Chapter 1. The research question is divided into three

research sub-questions, which have been answered separately. Firstly, it is appropri-

ate to employ a three-state HSMM to explain the time-varying distribution of Chinese

stock market returns. In terms of the model performance, our three-state HSMM along

with a SV model and a tGARCH(1,1) can reproduce the stylized facts of the “long-

memory” and the Taylor effect, but tGARCH(1,1) fails to reduce the fat tails. Secondly,
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the hidden states in the HSMM correspond to the market conditions, namely the bear,

sidewalk, and bull market. Unlike the definition of market conditions in the literature

(Fabozzi & Francis, 1977; Chauvet & Potter, 2000; Edwards & Caglayan, 2001; Lunde &

Timmermann, 2004; Gonzalez et al., 2006; Cheng et al., 2013), we provide a systematic

way to find the timing of three-category classification, namely the bull, sidewalk, and

bear market, for the daily data. Thirdly, we show the inefficiency of the market by de-

sign a trading strategy based on the expanding window decoding. The trading strategy

generates risk-adjusted return with a Sharpe ratio of 1.14 in the testing sample. The

result of our simple trading strategy is consistent with the previous studies shown that

technical trading strategies are profitable for the stock market indices in emerging mar-

kets (Ratner & Leal, 1999; Ito, 1999; Coutts & Cheung, 2000; Gunasekarage & Power,

2001).

The by-product of Chapter 1 is our statistical definition of market conditions, i.e. bear,

sidewalk, and bull markets, which correspond to the three states in the HSMM. Since

the regulation and the investor structure of the Chinese stock market are different from

the developed markets, it is natural to question the difference in terms of market con-

ditions between the Chinese stock market and developed market. Many studies have

investigated the Chinese stock market. Herding behaviour, overreaction, and specula-

tion in the Chinese stock market are well-documented (Tan et al., 2008; Mei et al., 2009;

Ni et al., 2015). However, less attention has been to paid from the perspective of the

market condition. In Chapter 2, we are interested in investigating the unique character-

istics of market conditions in China with particular comparison to developed markets.

Using the Viterbi algorithm to globally decode the most likely sequence of the market

conditions, we systematically find the precise timing of bear, sidewalk, and bull markets

for all eight markets. Through the comparison of the estimation and decoding results,

many unique characteristics of the Chinese stock market are found, such as “Crazy

Bull”, “Frequent and Quick Bear”, and “No Buffer Zone”. In China, the bull market is

more volatile than in developed markets, the bear market occurs more frequently than

in developed markets, and the sidewalk market has not functioned as a buffer zone since

2005. Lastly, possible causes of the unique characteristics. For the policy suggestions,
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it is very important to adjust the investor structure, to provide risk management tools,

and to strengthen supervision on the excess leverage from other source financing.

Many parametric diffusion processes have been developed to improve the Black-Scholes

by explaining the stylized facts (Mandelbrot, 1997; Jäckel, 2004; Bingham & Kiesel,

2001; Eberlein & Keller, 1995; Merton, 1976). To the best of our knowledge, there is

no parametric diffusion process considering the market condition and the price rever-

sal, although they have been widely studied in the literature of technical analysis and

behavioural finance. Financial economists often argue that asset price may behaves dif-

ferently in different market conditions(Levy, 1974; Kim & Zumwalt, 1979; Chen, 1982).

Price reversal is the phenomenon after the overreaction because stock prices tend to con-

verge back to the fundamental values. The price reversal has been widely empirically

studied in different markets (Bremer & Sweeney, 1991; Liang & Mullineaux, 1994; Farag,

2014). Chapter 3 propose a new diffusion process referred to as the “camel process” in

order to model the cumulative return of a financial asset. This new process includes

three parameters, the market condition parameter α, the price reversal parameter β,

and the volatility parameter γ. Its steady state probability density function could be

unimodal or bimodal, depending on the sign of the market condition parameter. The

price reversal is realised through the non-linear drift term which incorporates the cube

term of the instantaneous cumulative return. The time-dependent solution of its Fokker-

Planck equation cannot be obtained analytically, but can be numerically solved using

the finite difference method. The properties of the camel process are confirmed by our

empirical estimation results of ten market indexes in two different periods.

In the last chapter, we shift from the stock market to the commodity futures market

because the stringent constraints on short selling stocks make it very difficult to manage

the downside risk and investing in commodity futures is an effect way to diversify against

falling stock prices (Edwards & Caglayan, 2001; Jensen et al., 2002; Wang & Yu, 2004;

Erb & Harvey, 2006). Chapter 4 takes the tools in functional data analysis to under-

stand the term structure of Chinese commodity futures and forecast their log returns

at both short and long horizons. A functional ANOVA (FANOVA) has been applied in

order to examine the calendar effect of the term structure. We use an h-step Functional
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Autoregressive model to forecast the log return of the term structure. Compared with

the naive predictor, the in-sample and out-of-sample forecasting performance indicates

that additional forecasting power is gained by using the functional autoregressive struc-

ture. Although the log return at short horizons is not predictable, the forecasts appear

to be more accurate at long horizons due to the stronger temporal dependence. The

predictive factor method has a better in-sample fitting, but it cannot outperform the

estimated kernel method for out-of-sample testing, except in the case of 1-quarter-ahead

forecasting. We conclude that the log returns at short horizons are not predictable, and

the forecasts appear much accurate at long horizons, which is consistent with Diebold

& Li (2006) that also find that their model is more accurate at long horizons.

Limitations and Further Research

One limitation of the HSMM is that the empirical results can be largely changed by

the model setting. Finding the appropriate model settings can involve many times of

trial and error. Another limitation is that the transition matrix is static. It should

be pointed out that the transition matrix can be time-varying and can also depend on

the macroeconomic variables. Kim et al. (1999) designed a HMM with time-varying

transition matrix depending on the macroeconomic variables. It is possible to develop

a HSMM with time-varying transition matrix in a similar manner.

Furthermore, our three-state HSMM can be used to explore the link between the market

conditions and macroeconomic variables. But there are two potential challenges that

need extra care to deal with. Firstly, the market conditions obtained from our three-

state HSMM are daily, but the macroeconomic variables are most likely to be monthly

or longer frequencies. Effort should be taken to design the aggregation rule to convert

daily market conditions into monthly market conditions. There is no aggregation rule

for this conversion at the moment. Secondly, selecting the appropriate macroeconomic

variables also need extreme care to avoid multicollinearity and potential endogeneity. It

would be interesting to compare the monthly market conditions obtained from our three-

state HSMM and other traditional market condition definitions. From this comparison,
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we can evaluate whether different definitions of market conditions can produce different

conclusions.

In Chapter 2, we only compare China with other developed markets. It is interesting

to compare China with other emerging markets as well. Since some other emerging

market may also have price limit and individual investors dominating structure, we

can investigate on whether the features of market conditions are similar between the

emerging markets. Through the comparison with other emerging markets, we can gain

more understanding on the Chinese stock market.

As for the “camel process”, the parameters of the camel process are possibly time-

varying, especially for the parameter α, because the market condition can change along

with time. Hence, the parameters may not be stable during the two periods in the

empirical analysis. The first possible research is to design a change-point detection test

to find the change-point for the “camel process”. This research is promising because it

can provide another way to systemically find the exact dates of the change in market

condition. The second potential research is to develop a “time-varying camel process”.

Specifically, the parameter α is assumed to be time-varying according to another diffusion

process.

Regarding the functional autoregressive model, the limitation is that our functional

AR(1) only uses the temporal dependence information. The exogenous variables, such

as interest rates and convenience yields, are not used for the forecasting, which could

potentially contribute to a better forecasting performance. Future research will consider

incorporating exogenous variables into the functional AR(1) model.
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processes. Mathematical Finance, 13 , 345–382.

Chan, K., Menkveld, A. J., & Yang, Z. (2008). Information asymmetry and asset prices:

Evidence from the China foreign share discount. The Journal of Finance, 63 , 159–196.

Chan, L. K., Jegadeesh, N., & Lakonishok, J. (1996). Momentum strategies. The Journal

of Finance, 51 , 1681–1713.

Chauvet, M., & Potter, S. (2000). Coincident and leading indicators of the stock market.

Journal of Empirical Finance, 7 , 87–111.

Chen, S.-N. (1982). An examination of risk-return relationship in bull and bear markets

using time-varying betas. Journal of Financial and Quantitative Analysis, 17 , 265–

286.

https://CRAN.R-project.org/package=hsmm
https://CRAN.R-project.org/package=hsmm


144 CONCLUSIONS

Chen, S.-S., Lee, C.-f., & Shrestha, K. (2003). Futures hedge ratios: a review. The

Quarterly Review of Economics and Finance, 43 , 433–465.

Cheng, T. Y., Lee, C. I., & Lin, C. H. (2013). An examination of the relationship

between the disposition effect and gender, age, the traded security, and bull–bear

market conditions. Journal of Empirical Finance, 21 , 195–213.

Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical

issues. Quantitative Finance, 1:2 , 223–236.

Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. Chapman &

Hall.

Coutts, J. A. (2010). Trading rules and stock returns: some further short run evidence

from the hang seng 1997–2008. Applied Financial Economics, 20 , 1667–1672.

Coutts, J. A., & Cheung, K.-C. (2000). Trading rules and stock returns: some prelimi-

nary short run evidence from the hang seng 1985-1997. Applied Financial Economics,

10 , 579–586.

Cox, D. R., & Peterson, D. R. (1994). Stock returns following large one-day declines: Ev-

idence on short-term reversals and longer-term performance. The Journal of Finance,

49 , 255–267.

Curcio, R., Goodhart, C., Guillaume, D., & Payne, R. (1997). Do technical trading rules

generate profits? Conclusions from the intra-day foreign exchange market. Interna-

tional Journal of Finance & Economics, 2 , 267–280.

Day, T. E., & Wang, P. (2002). Dividends, nonsynchronous prices, and the returns from

trading the Dow Jones industrial average. Journal of Empirical Finance, 9 , 431–454.

De Bondt, W. F., & Thaler, R. H. (1987). Further evidence on investor overreaction

and stock market seasonality. The Journal of Finance, (pp. 557–581).

DeBondt, W. F., & Thaler, R. (1985). Does the stock market overreact? The Journal

of Finance, 40 , 793–805.



CONCLUSIONS 145

Didericksen, D., Kokoszka, P., & Zhang, X. (2012). Empirical properties of forecasts

with the functional autoregressive model. Computational statistics, 27 , 285–298.

Diebold, F. X., & Li, C. (2006). Forecasting the term structure of government bond

yields. Journal of Econometrics, 130 , 337–364.

Ding, Z., & Granger, C. W. (1996). Modeling volatility persistence of speculative returns:

a new approach. Journal of Econometrics, 73 , 185–215.

Ding, Z., Granger, C. W., & Engle, R. F. (1993). A long memory property of stock

market returns and a new model. Journal of Empirical Finance, 1 , 83–106.

Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for

affine jump-diffusions. Econometrica, 68 , 1343–1376.

Dupire, B. et al. (1994). Pricing with a smile. Risk , 7 , 18–20.

Eberlein, E., & Keller, U. (1995). Hyperbolic distributions in finance. Bernoulli , (pp.

281–299).

Edwards, F. R., & Caglayan, M. O. (2001). Hedge fund and commodity fund investments

in bull and bear markets. The Journal of Portfolio Management , 27 , 97–108.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the

variance of United Kingdom inflation. Econometrica, (pp. 987–1007).

Erb, C. B., & Harvey, C. R. (2006). The strategic and tactical value of commodity

futures. Financial Analysts Journal , 62 , 69–97.

Fabozzi, F. J., & Francis, J. C. (1977). Stability tests for alphas and betas over bull and

bear market conditions. The Journal of Finance, 32 , 1093–1099.

Fama, E. F. (1965). The behavior of stock-market prices. The Journal of Business, 38 ,

34–105.

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work.

The Journal of Finance, 25 , 383–417.

Fama, E. F. (1998). Market efficiency, long-term returns, and behavioral finance. Journal

of Financial Economics, 49 , 283–306.



146 CONCLUSIONS

Fama, E. F., & French, K. R. (1988). Permanent and temporary components of stock

prices. Journal of Political Economy , 96 , 246–273.

Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and

bonds. Journal of Financial Economics, 33 , 3–56.

Farag, H. (2014). Investor overreaction and unobservable portfolios: Evidence from an

emerging market. Applied Financial Economics, 24 , 1313–1322.

Frazzini, A. (2006). The disposition effect and underreaction to news. The Journal of

Finance, 61 , 2017–2046.

French, K. R. (1980). Stock returns and the weekend effect. Journal of Financial

Economics, 8 , 55–69.

Gaviraghi, B. (2017). Theoretical and numerical analysis of Fokker-Planck optimal con-

trol problems for jump-diffusion processes. Ph.D. thesis Dissertation, Würzburg, Uni-

versität Würzburg, 2017.

Gaviraghi, B., Schindele, A., Annunziato, M., & Borz̀ı, A. (2016). On optimal sparse-

control problems governed by jump-diffusion processes. Applied Mathematics, 7 , 1978.

Gencay, R. (1998). Optimization of technical trading strategies and the profitability in

security markets. Economics Letters, 59 , 249–254.

Girardin, E., & Liu, Z. (2003). The Chinese stock market: A casino with ‘buffer zones’?

Journal of Chinese Economic and Business Studies, 1 , 57–70.

Girardin, E., & Liu, Z. (2005). Bank credit and seasonal anomalies in China’s stock

markets. China Economic Review , 16 , 465–483.

Girardin, E., & Liu, Z. (2007). The financial integration of China: New evidence on

temporally aggregated data for the A-share market. China Economic Review , 18 ,

354–371.

Gonzalez, L., Hoang, P., Powell, J. G., & Jing, S. (2006). Defining and dating bull and

bear markets: two centuries of evidence. Multinational Finance Journal , 10 , 81–116.



CONCLUSIONS 147

Gorton, G., & Rouwenhorst, K. G. (2006). Facts and fantasies about commodity futures

(digest summary). Financial Analysts Journal , 62 , 47–68.

Granger, C. W., & Ding, Z. (1995). Some properties of absolute return: An alternative

measure of risk. Annales d’Economie et de Statistique, (pp. 67–91).
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Horváth, L., & Kokoszka, P. (2012). Inference for functional data with applications

volume 200. Springer Science & Business Media.



148 CONCLUSIONS
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