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Abstract 

 

This thesis focussed on the immunobiology of colorectal cancer (CRC).  It explored 

the role of the γδ T cell ligand Endothelial Protein C Receptor (EPCR) in 

tumourigenesis, and subsequently characterised the relationship between           

intra-tumoural immunity and tumour genetics. In silico analyses and 

immunohistochemistry indicated EPCR was commonly overexpressed in epithelial 

cancers including CRC.  EPCR was upregulated due to gene amplification and DNA 

hypomethylation alongside neighbouring genes on chromosome 20q, a region 

previously implicated in tumourigenesis. These results clarify why EPCR is 

upregulated in diverse epithelial malignancies, with implications for EPCR-focussed 

clinical studies and understanding of γδ T cell immunity. 

TCGA analyses revealed that a novel immune signature, termed The Co-ordinate 

Immune Response Cluster (CIRC), comprising 28 genes, was co-ordinately regulated 

across CRC patients.  Four patient subgroups were delineated based on CIRC 

expression.  Microsatellite instability and POLE/POLD1 mutations were associated 

with high mutational burden and immune infiltration.  Immune checkpoint molecules 

were highly co-ordinated in expression.  RAS mutation was associated with lower 

CIRC expression. Further analyses revealed that RAS-associated 

immunosuppression was greatest in the most immunosuppressed transcriptional 

subtype, CMS2. These findings have implications for design of stratified 

immunotherapy approaches and highlight factors contributing to the particularly poor 

outcome of RAS mutant CRC. 
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1.1  Introduction 

This thesis explores the immunobiology of colorectal cancer (CRC).  CRC is the 

fourth commonest cancer in the UK and the second largest cause of cancer-related 

death [1].  Though there has been an increase in survival over the last 30 years, 5 

year survival for metastatic (stage IV) disease remains as low as 12% [2].  It 

therefore represents a significant challenge for both healthcare systems and for the 

research community.   

 

1.1.1 Colorectal Cancer Development 

CRC development follows a well characterised progression from normal colonic 

mucosa to adenoma to carcinoma, with known molecular aberrations responsible for 

each step (Figure 1.1).  This paradigm was first proposed by Fearon and Vogelstein 

[3].  

 

Mutation in the Adenomatous Polyposis Coli (APColi) gene is a key early step in 

CRC development [4].  This gene is crucial in the degradation of β-catenin, which is a 

component of the Wnt signalling pathway.  Wnts produced by stromal cells maintain 

the proliferating undifferentiated stem cell population at the base of colonic crypts 

(the functional subunits of the colon).  As stem cells migrate up the crypt, they 

receive fewer Wnt signals and therefore differentiate, cease proliferating and 

eventually apoptose.   Following APColi mutation, β-catenin levels remain high even 

in the absence of Wnt signalling, due to the decrease in its degradation.  Therefore 

cells with APColi mutation remain undifferentiated and do not migrate normally up the 

crypt.  This leads to the formation of an adenomatous polyp.  Mutations of APColi 
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may be inherited, causing familial adenomatous polyposis (FAP), a familial syndrome 

that leads to the development of a large number of colonic polyps.  However, the 

majority of CRCs are associated with a spontaneous mutation of APColi or another 

defect in the Wnt signalling pathway such as β-catenin mutation [4].   
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Figure 1.1  The genetic model for colorectal tumourigenesis (adapted from 
Fearon and Vogelstein [3]), showing the key mutations and abnormalities responsible 
for progression from normal mucosa to carcinoma. 
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Following APColi mutation and the development of an adenoma, further mutations 

occur which drive the progression to invasive carcinoma [3].  These can include 

mutations in the KRAS, NRAS, HRAS, PIK3CA, PTEN, BRAF, and TP53 genes.  

Biologically, CRCs are of one of two major subtypes – microsatellite unstable (MSI-H) 

and microsatellite stable (MSS) [5].  MSI-H tumours, as seen in the hereditary 

condition Lynch syndrome and in a proportion of sporadic tumours, are 

hypermutated.  This hypermutation is caused by defects in the DNA mismatch repair 

genes (including MLH1, MLH2 and MSH2).  Conversely, MSS tumours have low 

mutation rates but have a high degree of chromosomal instability, leading to 

aneuploidy and large gene copy number variations.  These two subtypes tend to 

have differing clinical courses.  MSI-H tumours tend to metastasise less frequently 

than MSS, and produce a stronger intra-tumoural immune response [5].  In addition, 

the overall patient survival is superior with MSI-H tumours.  However, patients with 

MSI-H tumours that recur have a poor prognosis [6, 7].   

 

The mutation profile of a tumour has implications not only for its progression but also 

for its sensitivity to emerging targeted therapies.  One particularly important pathway 

in this regard is the Epidermal Growth Factor Receptor (EGFR) pathway [8, 9] 

(Figure 1.2).  Mutations in the tyrosine kinases RAS and RAF can lead to constitutive 

activation of the pathway and MEK/ERK phosphorylation, even in the absence of 

EGFR activation by Epidermal Growth Factor (EGF).  This pathway is particularly 

important in cancer cell growth, and is therefore targeted in many emerging 

therapies.  Mutations within these genes have therapeutic implications.  For example, 

the EGFR monoclonal antibodies cetuximab and panitumumab are ineffective in 
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patients with RAS mutant tumours, as inhibition of EGFR alone fails to inhibit RAS 

signalling  [10].  

 

1.1.2 Management of colorectal cancer 

Currently, the management of CRC is dependent on the stage of disease at 

presentation, and whether the disease is colonic or rectal [11].  In brief, early stage I 

and II disease that is localised to the colon is usually treated solely with surgical 

resection.  Patients with stage III disease (with lymphatic metastases) may also 

require adjuvant (post-operative) chemotherapy for 6 months.  Finally, the treatment 

of patients with stage IV disease (distant metastases) is dependent on whether the 

intent is curative or palliative.  Curative intent may be feasible if the metastases are 

surgically resectable.  Otherwise, palliative treatment is offered which may consist of 

primary chemotherapy combined with targeted therapy, such as with EGFR 

monoclonal antibody therapy.   In contrast, rectal cancers may require preoperative 

chemoradiotherapy to downstage the tumours and enable surgical resection. 
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Figure 1.2 EGFR pathways. Schematic of key EGFR-associated signalling 
pathways.  EGFR activation (by its cognate ligand epidermal growth factor (EGF)), 
leads to activation of key signalling cascades including the RAS-RAF-MEK-ERK and 
PI3K-AKT-mTOR pathways.  This leads to increased cell growth, proliferation and 
survival.  PTEN negatively regulates the PI3K-AKT-mTOR pathway.  In malignancy, 
mutations can occur in several of these genes, including EGFR, RAS, RAF, PI3K and 
PTEN, which can lead to constitutively active signalling in the absence of EGFR 
activation.     
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1.2  Cancer Immunology 

Cancer immunology is the study of the interactions of cancer cells and the immune 

system.  It is a rapidly developing field, and recent therapeutic advances have given 

hope that cancer immunotherapy will become a key treatment modality in a range of 

cancer types [12-16]. 

The immune system has long been perceived to play an important role in preventing 

the development of tumours – the concept of immunosurveillance  – where the 

immune system constantly surveys the body for developing tumours and eliminates 

them before they become clinically apparent [17, 18].  Immunosurveillance is thought 

to comprise three phases – the elimination phase, the equilibrium phase and the 

escape phase.  In the elimination phase, the immune system identifies and destroys 

cancerous cells.  In some cases, where elimination is not complete, this is followed 

by the equilibrium phase.  During this phase, the immune system maintains residual 

cancerous cells in a state of dormancy, which can persist for many years, such as in 

the case of the latent tumour cells that lead to recurrent or metastatic disease [19]. 

During this dormancy, the selection pressure created by the immune response 

encourages the growth of tumour cells that are able to avoid immune killing – a 

process also known as immunoediting [18].  This process may lead to the 

development of tumour cells that are resistant to the immune attack. These cells may 

then proliferate and dominate the tumour mass – the escape phase.  The concept of 

immunosurveillance remains controversial in the field [18].  However, it is clear that 

tumour cells escape immunity through several established mechanisms and 

potentially some unknown ones.  Some of the key mechanisms include down-

regulation of Class I MHC expression, repression of tumour antigen expression and 
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presentation, the release of suppressive cytokines (such as IL-10, TGF-β), and the 

repression of NKG2D ligands (to evade NK attack) [17].  Subsequently, the immune 

system may no longer effectively eliminate tumour cells.  Immunotherapy strategies 

need to overcome this loss of tumour immunogenicity – a challenge made 

considerably more difficult by the fact that tumour cells are effectively ‘altered self’, 

rather than foreign such as infectious pathogens. 

 

1.3  Cancer immunotherapy 

Cancer immunotherapy involves the harnessing of immunity for anti-cancer effect. 

Various approaches are in development, some of which are now used in patient care.  

Briefly, these include approaches that induce or increase neoantigen (mutated 

antigens) or tumour-associated antigen directed T cell responses (such as 

vaccination, chimeric antigen receptors (CARs) and adoptive T cell therapies), 

strategies that induce stimulatory signalling and proliferation (such as IL-4, GM-CSF 

and TNF-based (cytokine) therapies), modalities that utilise native or engineered 

viruses that kill cancer cells (oncolytic virus therapy) and finally methodologies that 

inhibit suppressive pathways or restore responses of exhausted/inactivated T cells 

through the inhibition of immune checkpoints (checkpoint blockade) [17, 20, 21].  In 

addition, conventional cytotoxic regimes may improve the anti-tumour immune 

response by releasing tumour neoantigens and modifying the immunosuppressive 

environment of the tumour [22-24].   Here, I introduce some of the key emerging 

immunotherapy modalities. 
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1.3.1 Adoptive cell therapy 

Adoptive cell therapy exploits the anti-tumour activity of lymphocytes to eradicate 

tumour cells [20].  It requires the isolation of lymphocytes from the patient’s 

peripheral blood, tumour tissue or draining lymph nodes, followed by ex vivo 

expansion and stimulation of the lymphocytes with a mixture of cytokines, followed by 

reinfusion back into the patient.   This approach expands tumour-specific T cells 

away from the immunosuppressive tumour microenvironment.  The lymphocytes 

reinfused are generally mixtures of CD4 and CD8 positive T cells.  It is often 

administered following lymphodepletion, which may improve the functionality of the 

infused T cells by eliminating immunosuppressive cells such as Tregs and myeloid-

derived suppressor cells [25].   

The key advantage with this strategy is that it enables the generation of a large 

number of high avidity T cells (avidity is the accumulated binding strength of the TCR 

with the peptide-MHC complex, determined by the accumulated strength of multiple 

individual interactions/affinities). Also there is no need to break tolerance against  

tumour antigens as is often the case with other approaches [20].  Disadvantages 

include the cost and time required to isolate and expand the T cell populations.  

Furthermore, the side effects, particularly with lymphodepletion, can be life-

threatening.   

In addition, this approach has been successful mostly in melanoma thus far.  

However, results in this tumour type have been promising, with high response rates 

and long-lasting tumour regression [26]. Additionally, a durable response was 
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obtained in a patient with cholangiocarcinoma on infusion of autologous mutation-

specific CD4+ cells which adopted a poly-functional Th1 phenotype [27]. 

 

1.3.2 Engineered T cell receptors and Chimeric Antigen Receptors 

There are two main strategies through which T cells are engineered to improve their 

anti-tumour activity.   The first is TCR engineering.  In this approach, the TCR α and 

β chains are designed or modified to increase the TCR’s antigen specificity and 

avidity [20].  The synthetic TCR is then expressed by the T cell [21].  

The second approach is the creation of chimeric antigen receptors (CARs).  CARs 

use a single-chain variable fragment (scFv) derived from the variable heavy and light 

chains of an antibody to target an extracellular antigen [21].  The advantage of this 

approach is that it can target antigens independently of the peptide-HLA complex 

[28].  CARs have evolved significantly since the generation of the initial functional 

CAR T cells.  T cell activation in the lymph node requires both ‘signal 1’, normally 

derived from the TCR-peptide-MHC interaction, and ‘signal 2’, by stimulation of CD28 

with B7 costimulatory molecules [20].  First generation CARs only provide activation 

of signal 1 to T cells [21].  Therefore, first generation CARs could lead to T cell 

anergy, due to repeated antigen stimulation without signal 2.  Second generation 

CARs address this by including an additional co-stimulatory domain that provides 

signal 2, such as the stimulatory domains of CD28 [21].  Third generation CARs 

include two co-stimulatory domains, such as CD28 and OX40.  Finally, ‘armoured’ 

CAR T cells include a further gene that provides the resulting T cell with a survival or 
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cytotoxicity advantage, or modulates the microenvironment.  This may include IL-12 

or CD40L.   

Responses have been seen with genetically engineered T cell therapies in various 

cancers.  However, the clinical use of highly avid TCRs have been associated with 

off-target effects on healthy tissues that express the same target antigen [20].   

 

1.3.3 Vaccination 

Vaccination in cancer includes preventative vaccines against cancer-causing 

infectious diseases such as Hepatitis B or the Human Papilloma Virus, and 

therapeutic vaccines which are being developed to treat cancers.  One of the main 

obstacles to the latter approach has been the identification of suitable antigens.   The 

ideal target antigens should be expressed at high levels in the target tumour in a high 

proportion of patients, and at low levels in normal tissue to minimise off-target effects 

[21].  In addition, the antigen should be important for the tumour’s growth or survival, 

to reduce the risk of immune escape due to downregulation of antigen expression 

[29].   

Suitable antigens may include tumour antigens, which are expressed at much higher 

levels in tumour tissue than normal tissue, such as NY-ESO-1, MUC-1 and CA-125 

[20, 21].  A further possibility is the targeting of neoantigens, which derive from the 

peptides encoded by tumour mutations.  An issue with this approach is that it is 

unclear to what extent neoantigens overlap between patients.  Therefore, efforts 

have been made to develop personalised vaccines, which target the specific 

neoantigens found in an individual patient’s tumour [16].  This requires genetic 
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sequencing of the patient’s tumour, in silico prediction of neoantigen-HLA binding, 

and then vaccine production – in this case a polytope mRNA vaccine (containing 5 

epitopes).  This approach is being investigated in an early phase clinical study.  In 

addition, both tumour antigens and neoantigens may be utilised in cell therapies.   

Dendritic cells (DCs) play a crucial role in vaccination approaches, which initial 

vaccine therapies did not fully exploit.  DCs, as professional antigen presenting cells, 

process the delivered antigens and present them upon Class II HLA molecules to 

CD4 T cells.  For this reason, attempts have been made to create DC-based 

vaccines, where DCs are isolated from patients and are loaded with antigens ex vivo 

[21].  One such DC vaccine, sipuleucel-T, has been associated with a 4-month 

median survival improvement in metastatic prostate cancer [30, 31]. 

 

1.3.4 Checkpoint blockade 

Of the various immunotherapies in development, checkpoint blockade has been the 

most successful thus far [14, 15].  The rationale of this therapy is to unleash pre-

existing anti-tumour responses.  CTLA-4, an inhibitory receptor expressed on T cells, 

prevents T cell activation by DCs through its interaction with the B7 co-stimulatory 

molecule, blocking the crucial ‘signal 2’ discussed above [20].  Ipilimumab, an anti-

CTLA-4 antibody, which has been approved for clinical usage in advanced 

melanoma, was a significant step forward for the field of immunotherapy.  This 

approval followed phase III trials that demonstrated significant prolongation of overall 

survival [12].  In addition, 20% of patients who survived went on to have long term 

durable benefit, which seems to be a particular strength of checkpoint blockade in 
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comparison to targeted therapies. However, response rates were low (12%), and a 

significant proportion of patients developed severe immune-related adverse events 

[21].  Of note, responses to this drug took longer to manifest than existing therapies, 

reflecting its mode of action.   

PD-1 is another inhibitory receptor expressed on T cells.  The ligands for PD-1, PD-

L1 and PD-L2, are expressed on tumour cells and antigen presenting cells [21].  The 

downstream signalling of PD-1, rather than preventing the activation of T cells like 

CTLA-4, inhibits T cell proliferation, cytokine release, and cytotoxicity [32, 33].  

Therefore, CTLA-4 regulates de novo immune responses, whereas PD-1 affects 

ongoing immune responses.  Two anti-PD-1 mAbs, pembrolizumab and nivolumab, 

have been approved for the treatment of advanced melanoma.  Clinical trials showed 

that up to 40% of patients with advanced melanoma had objective responses with 

these drugs – a considerable improvement over the 12% response rate observed 

with ipilimumab monotherapy [34, 35].  This included patients who previously had no 

response to ipilimumab.     

Nivolumab has also been approved for treatment of squamous-cell lung cancer 

refractory to platinum based therapy, based on a study showing a 3 month 

improvement on overall survival, and a 17% improvement in 2 year survival over 

those receiving docetaxel [15].  

A key improvement of PD-1 over CTLA-4 blockade is the toxicity profile.  The rates of 

severe toxicity were considerably reduced with PD-1 therapy [12, 14, 35], perhaps 

reflecting the benefit of specifically targeting cancer-induced immunosuppressive 

pathways rather than non-specifically activating the immune system [20]. 
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Monoclonal antibodies have also been developed against PD-L1 and PD-L2, which 

have shown responses in a range of human cancers [20].  In addition, other immune 

checkpoints such as TIM-3 and LAG-3 have also been targeted [21]. 

A key priority in the field is the development of biomarkers for these therapies.  

Currently, PD-L1 is used as a biomarker for PD-1 therapy.  However, patients with 

low PD-L1 expression can occasionally respond to PD-1 blockade, and conversely, 

patients with high PD-L1 expression may not respond [20], demonstrating that PD-L1 

may be a suboptimal biomarker. 

Due to these highly promising results, checkpoint blockade therapies are being 

investigated in a range of cancer types.  However, results in CRC have been 

relatively disappointing [14, 36], despite the fact that CRC is a tumour type where 

intratumoural immunity is known to be predictive for patient outcome [37].   
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1.4  Colorectal cancer immunology  

Though immunotherapies have had limited success in CRC thus far, this disease has 

been the prototype cancer for studying the significance and the impact of tumour 

immunity and the tumour microenvironment [38].  Over a decade ago, multiple 

groups demonstrated that tumour infiltrating lymphocytes (TILs) are associated with 

improved prognosis in CRC [39-41].  Then, a seminal paper by Galon and colleagues 

in 2006 revealed that the density of TILs and the expression of certain immune-

related genes are of prognostic and predictive value in CRC [37].  The group 

identified a dominant cluster of genes for Th1 adaptive immunity, the expression of 

which were inversely associated with tumour recurrence.  Furthermore, 

immunohistochemstry analysis of CRC tissue microarrays revealed that densities of 

CD3, CD8, GZMB and CD45RO in the tumour core (CT) and invasive margin (IM) 

could stratify patients into groups with different disease-free survival and overall 

survival rates.  Combining the CT and IM scores increased the accuracy of the 

survival prediction.  CD3 density in these regions remained associated with overall 

survival after multivariate analysis adjusting for tumour and lymph node stage.  This 

led to the development of the ‘Immunoscore’, which is based on CD3 and CD8 

densities within the CT and IM, and is currently undergoing worldwide validation as a 

prognostic marker in CRC [38].  These two markers were selected as they are the 

two easiest membrane stains, and to avoid the technical difficulties with CD45RO 

and GZMB staining.  The aim of the validation is to ensure standardisation of the 

assay, which is crucial to ensure that this test can be applicable on a worldwide 

multicentre basis.  The relative simplicity of the test, requiring only two IHC stains, is 

likely to aid its implementation and reproducibility.  However, though it is prognostic 
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in CRC, and is potentially superior to the existing TNM classification in predicting 

outcome, it remains unclear how well it will predict responses to chemotherapy.  It is 

likely that this will be crucial in determining its clinical utility in the stratification of 

patients into treatment groups, rather than as an additional prognostic marker with 

only limited value.  This will be particularly relevant to Stage II patients, where the 

benefit of adjuvant chemotherapy is unclear [38].  Predicting which patients have a 

high recurrence risk could help target chemotherapy appropriately in this group. To 

determine its predictive value, clinical trials will likely be necessary. 

In their key 2006 paper, Galon and colleagues initially highlighted a cluster of 7 

genes that were correlated with disease-free survival [37] – TBX21/Tbet, IRF1, IFNγ, 

CD3z, CD8, granulysin and granzyme B.    Subsequently, they further confirmed that 

the Th1 genes, TBX21/Tbet, IFNG, IRF1 as well as STAT1 were all individually 

associated with disease-free survival [42]. Other independent immune gene 

predictors in this analysis included IL18RAP, ICOS, PD-L1, PD-L2 and PD-1.   

Additionally, the group found that patients with high expression of genes associated 

with Th1 T helper cells (TBX21/Tbet, IRF1, IL12RB2 and STAT4) exhibited 

prolonged disease-free survival, whereas those with high expression of Th17-

associated genes (RORC, IL17A) had a poor prognosis [43].  This highlights the 

potential significance of Th1 CD4 cells, alongside the previously discussed cytotoxic 

CD8 cells, in mediating effective anti-tumour immunity.  

Despite the known impact of immunity on patient outcome in CRC, the factors that 

determine a patient’s immune phenotype are still unclear.  These are likely to include 

tumour, host and environmental factors [44].  Within tumour and host factors, few 

systematic analyses have investigated the somatic and germline molecular drivers of 
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immune infiltration.  Although microsatellite unstable (MSI-H) cancers are known to 

be associated with increased TIL density [5, 45-50], the nature of the immune 

infiltration and the molecular drivers of the immune phenotype in microsatellite stable 

(MSS) CRCs are poorly understood. In particular it is unclear whether defined 

molecular subsets (such as RAS mutant, BRAF mutant, PIK3CA mutant, quadruple 

wildtype (BRAF, PIK3CA, NRAS, KRAS all wildtype)) are associated with high or low 

immune infiltration.  In addition, in both MSI-H and MSS cancers the extent to which 

therapeutically targetable inhibitory immune checkpoint receptors are represented 

are unclear and is of substantial interest, particularly considering recent checkpoint 

blockade failures in colorectal cancer [13, 14]. Given the prognostic and predictive 

relevance of CRC immunophenotype, a clearer understanding of the link between 

immunophenotype with tumour genotype is crucial.    
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1.5 EPCR and the immune recognition of cancer  

As discussed above, the conventional adaptive immune response plays an important 

role in preventing the development and progression of cancers.  However, the role of 

the unconventional immune response has yet to be fully explored.  Recently, γδ T 

cells, an unconventional T cell subset, have been suggested to correlate closely with 

prognosis across different cancers [51].  γδ T cells are less well understood than 

conventional αβ T cells and are thought to have an innate-like function similar to NK 

cells [52].  One of the primary aims of this project is to determine the significance of 

Endothelial Protein C Receptor (EPCR), a γδ T cell ligand, in epithelial 

tumourigenesis.  EPCR had no known immunological role until a recent study by the 

Willcox and Déchanet-Merville groups [53], who aimed to identify possible ligands for 

the γδ T cell receptor.   γδ T cells have important roles in bacterial and viral infection.  

However, they are also thought to be important in cancer immunosurveillance.  Mice 

deficient in γδ T cells have increased rates of carcinogenesis.  Expansion of this set 

of T cells in blood is associated with better outcome in cancer in humans [54].  As γδ 

T cells are not MHC/HLA-restricted, the HLA haplotype of patients is not relevant.  

This makes them attractive for potential immunotherapies.  Early stage clinical 

studies involving γδ T cells in cancer have shown promising results [54-57].  

However, the manner in which the Vδ2-negative γδ T cell receptor (TCR) in particular 

recognises infected or transformed cells had not been determined.   

The work stemmed from a patient who underwent lung transplantation and 

developed acute cytomegalovirus (CMV) infection whilst on immunosuppressive 

medication.  In this patient, a γδ clone with a specific TCR called LES had expanded 

and comprised 40% of blood γδ T cells and 20% of all blood T cells.  It had 
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previously been suggested that Vδ2-negative γδ T cells could recognise CMV 

infected cells and tumour lines [58].  Therefore, the authors hypothesised that the 

TCR of the LES clone recognised a ligand present on both CMV infected cells and 

transformed cells.   

The group created cDNA from the LES TCR’s Vγ4 and Vδ5 chains, and induced 

expression of this TCR in JRT3 cells (which lack a TCR).  These cells now reacted to 

several cancer cell lines (including HT29) and CMV infected cells.  Antibodies were 

produced against the LES TCR’s ligand by immunising mice with HT29 colorectal 

cancer cells.  One antibody, 2E9, stained all LES targets, including the tumour lines, 

after which it also inhibited all LES recognition.  To identify the ligand of 2E9 (2E9L), 

the group immunoprecipitated proteins from 2E9L positive cells (including HT29 and 

HeLa).  They separated the proteins with SDS-PAGE and then trypsinised the 2E9 

reactive band.  Using mass spectrometry, they were able to identify the protein as 

EPCR.   

The group confirmed that EPCR and 2E9L were the same.  EPCR antibodies 

prevented 2E9 binding in previously positive cells.  Using surface plasma resonance, 

the group were able to confirm direct and specific binding between EPCR and 2E9.  

Through mutational analysis, they identified specific binding sites.  Significantly, 

EPCR did not have an antigen-presenting role like MHC but directly bound to the 

TCR.  However, EPCR alone was necessary but insufficient for TCR activation. 

In view of the role of γδ T cells in cancer immunosurveillence, the discovery of EPCR 

as a ligand in a specific subset was significant.  EPCR is not upregulated upon CMV 

infection, but EPCR’s upregulation on various tumour lines [59] suggested the 
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possibility that it may have relevance for γδ T cell recognition of cancer as part of a 

“multimolecular stress signature”.  This highlighted the role of EPCR in tumorigenesis 

as an interesting avenue to explore.   

 

1.6   EPCR structure and signalling 

 

EPCR is a type I transmembrane protein with 20% homology to MHC class I and 

CD1 (Figure 1.3), though it lacks an α3 domain [60].  It was initially described in 

relation to Protein C (PC), an important modulator of coagulation [61].  EPCR 

increases the conversion of the zymogen PC to Activated Protein C (APC), and is 

also a receptor for both PC and APC.  APC cleaves coagulation factors V and VIII 

and therefore down modulates coagulation [60].   
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Figure 1.3 The structure of a) EPCR and b) CD1d [62, 63].  The α1 and α2 
platforms are highly homologous. The α3 domain of CD1d has been omitted for 
clarity.  The lipids within the binding grooves are P-Phosphatidylmethanolamine or 
phosphatidylcholine (EPCR) and α-galactosylseramide (CD1d).  

Figure courtesy of Dr Fiyaz Mohammed. 
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1.7 EPCR’s role in blood coagulation 

EPCR’s most significant role is in preventing the excess clotting of blood.  Seegers 

and collaborators initially identified autoprothrombin II-A, now termed Protein C, in 

the 1960s [64].  The discovery of PC partially explained the remarkable capacity of 

the haemostatic system to clot in areas of endothelial injury but maintain sufficient 

flow elsewhere.  Esmon and colleagues at the University of Oklahoma (USA) have 

made significant contributions to the understanding of PC and its pathways, and have 

expanded the known roles of PC from the inhibition of clotting factors to the wide 

range of functions known today.   It became apparent that whilst PC activation 

requires thrombin, the rate of activation with thrombin alone is insufficient for effective 

coagulation modulation [65].  Esmon postulated that there could be an important 

cofactor in the vascular endothelium.  Prior to this, endothelium was thought to only 

play a passive role in clotting.  This was confirmed by perfusing an isolated rabbit 

heart’s coronary arteries with thrombin and PC.  When both of these were perfused, 

the effluent from the heart possessed anticoagulant activity.  Without perfusing 

through the vessels, the thrombin and PC failed to produce anticoagulant activity.  

When the perfusate contained only thrombin, the effluent failed to activate PC.  This 

experiment was crucial in demonstrating that the endothelium was central to the 

prevention of potentially harmful clotting.   

It took several more years for the group to identify EPCR [61], and demonstrate that 

it directly activates PC.  In the interim period, a study suggested that PC protected 

against E. coli septicaemia in baboons [66].  Therefore, it seemed increasingly likely 

that PC affected inflammation and intracellular signalling via an unknown receptor.  

The Esmon group showed that APC bound to Human Umbilical Vein Endothelial 
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Cells (HUVECs) [61].  From here, the group were able to determine the likely final 

primary structure of the APC-binding protein, which they termed Endothelial Protein 

C Receptor.  They correctly predicted that it was a type 1 transmembrane protein, 

with 4 glycosylation sites in the extracellular domain and a short cytoplasmic tail. This 

cytoplasmic tail is significant in the cellular distribution of EPCR [60]. Interestingly, the 

sequence of EPCR is highly homologous to the CD1 family (Figure 1.3). Esmon and 

colleagues did make an astute observation that CD1d promotes T cell responses, 

and therefore EPCR could interact in some manner with the immune system.  

Although EPCR lacks the α3 domain of CD1, the α1 and α2 domains are highly 

analogous.  The binding of PC to HUVECs was compared to several other cell lines 

[61].   Esmon noted that the osteosarcoma cell line HOS and the epidermoid 

carcinoma line HEph-2 both bound to APC, albeit much more weakly than the 

HUVEC line.  The HOS line and the monocyte cell line U937 both had low levels of 

detectable EPCR mRNA.   These findings may have been the earliest indications of 

EPCR expression in cancers.  However, clearly the emphasis of Esmon’s work was 

to investigate the receptor structure and function in terms of coagulation and 

inflammation, perhaps explaining why EPCR’s expression in those cancer cell lines 

was not investigated further.  Esmon correctly suggested that EPCR would be 

involved in intracellular signalling, and that the EPCR/APC complex might activate 

other proteins.  However, at that stage, it was not linked directly to protease activated 

receptor 1 (PAR1), a type of proteolytically-activated receptor that was identified later 

[67].  Thus, although it was clear that EPCR significantly augmented the activation of 

PC, the intracellular signalling initiated as a result of EPCR activation was poorly 

understood.   
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1.8    Protease Activated Receptors and EPCR signalling 

Protease activated receptors (PARs) are group of receptors activated by proteolytic 

cleavage, and are crucial for EPCR-mediated signalling.  The first to be described 

was PAR1, which is activated by thrombin and factor X [67].  The Ruf group utilised 

PAR1 deficient murine fibroblasts to determine whether APC had proteolytic activity 

upon PARs [68].   PAR1 deficient fibroblasts were responsive to APC only when 

EPCR was co-expressed with a PAR.   PAR1 cleavage-blocking antibodies 

prevented APC-induced intracellular signalling but not that induced by the direct 

PAR1 agonists.  Blocking PAR1 also inhibited any PAR2 signalling.  This was 

evidence that the APC/EPCR complex activated PAR1 by proteolytic cleavage.  This 

work provided the important insight that PC mediated intracellular effects, including 

anti-apoptotic and anti-inflammatory effects, are entirely dependent on PAR1 

activation.  Gene induction by APC and direct PAR agonists was highly concordant.  

Anti-apoptotic genes that were upregulated by APC included the Bcl-2 related protein 

A1 and inhibitor of apoptosis protein 1 (IAP1).  Other upregulated genes include 

negative regulators of multiple pro-inflammatory pathways, including mitogen 

activated protein kinase (MAPK) and the nuclear factor kappa B (NF-κb) pathways.  

The gene profile matched closely with the expression profile of PC defined in an 

earlier study [69].  The Ruf group’s work substantially progressed the understanding 

of PC function by linking EPCR and PC to PAR1, a receptor that can initiate a 

diverse set of intracellular pathways. 

Grinnell and collaborators utilised RNA microarrays to identify the broad range of 

genes modulated by APC [69].  However, the group did not link APC’s effects with 

EPCR or PAR1, as this was established subsequently [68].  Yet, the work by Grinnell 
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was the earliest evidence that the PC/APC/EPCR pathway had a significant impact 

on gene transcription, independently of APC’s inhibition of thrombin production, and 

explained the in vitro and in vivo results found in the sepsis setting, where APC was 

found to have an anti-inflammatory effect  [66, 70, 71].  The genes regulated by APC 

were related to inflammation, apoptosis, cell survival and cell adhesion (which is 

significant in early cancer metastasis [72]).  The inflammatory gene NF-B2 was 

downregulated by APC.  Genes related to cell adhesion included intracellular 

adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and E-

Selectin. Two pro-apoptotic genes were downregulated by APC – calreticulin and 

TRPM-2.  Anti-apoptotic genes that were upregulated included A1 and IAP.   All of 

these genes have potential relevance in the cancer setting, although APC and EPCR 

were not thought to be relevant in cancer at that time. Physiologically produced PC 

could increase cell and organ survival.  In vitro assays using Staurosporine (an 

apoptosis inducer) confirmed that recombinant APC (rhAPC) reduced the proportion 

of cells undergoing apoptosis, as confirmed by caspase-3 staining.  This effect was 

dose dependent, which in light of the now known signalling pathway, suggests 

progressively greater EPCR and PAR1 signalling with higher doses of APC.  With 

this work, APC’s potential as an anti-inflammatory and anti-apoptotic agent were 

substantiated with transcriptional data. 

Other than A1 and IAP, other pro- and anti-apoptotic proteins have been found to be 

modulated by EPCR, including Bax and Bcl-2 [73].  Cheng and collaborators 

investigated the effects of APC in ischaemic brain injury.  Hypoxia induced apoptosis 

in endothelial cells through an increase in p53 and subsequent alteration of the 

Bax/Bcl-2 ratio.  APC produced a cytoprotective effect in hypoxic conditions by 
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reducing p53 (by 77% in 2 hours) and altering the Bax/Bcl-2 ratio to reduce 

apoptosis.  APC reduced TUNEL and caspase-3 (a key executioner caspase) 

staining.   This was independent of thrombin effects.  PAR1 and EPCR-blocking 

antibodies completely inhibited this effect, but non-blocking EPCR antibodies did not 

prevent the effect.  IAP or A1 expression was unaltered, which differs from Joyce’s 

findings in HUVECs [69].  The finding that APC/EPCR/PAR1 can modulate p53 is 

particularly significant with regard to cancer.  p53 is a well-described and crucial 

tumour suppressor protein.  EPCR reducing p53 activity could potentially affect 

apoptosis in cancer.  Therefore it is feasible that EPCR expression on cancer cells 

could confer an intrinsic advantage on them. 

In addition to reducing apoptosis, Xue et al. provided in vitro evidence that EPCR 

activation can induce cellular proliferation [74].  After demonstrating EPCR 

expression in skin keratinocytes using immunohistochemistry, they established that 

APC stimulation of keratinocytes causes phosphorylation of ERK2.  This 

phosphorylation was dependent on both EPCR and PAR1, as confirmed by the lack 

of phosphorylation when using blocking antibodies.  ERK2 is an example of a 

mitogen-activated protein kinase (MAPK), which is important in growth factor 

signalling via the EGFR pathway.  The discovery that EPCR activation leads to 

MAPK phosphorylation suggests that it could have a role in cell proliferation in 

endothelium and skin.  Alongside the anti and pro-apoptotic genes that are regulated 

by EPCR [69], this is another mechanism by which EPCR could encourage 

uncontrolled growth in cancer.   
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Several EPCR-activated pathways overlap with pathways known to be important in 

cancer, including the ERK pathway.  Figure 1.4 provides a summary of EPCR-

associated signalling.   
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Figure 1.4 PC induced signalling pathways (adapted from Thiyagarajan et al. 2007 
[75]).  
The thrombin/thrombomodulin (TM) complex presents PC to EPCR.  PC is then 
activated (APC). APC inactivates factors V and VIII.  In addition the APC/EPCR 
complex cleaves PAR1, a G-protein coupled receptor.  This leads to activation of 
phospholipase C.  Inositol triphosphate (IP3) mediates influx of calcium, causing 
activation of kinases and phosphorylation of ERK (green arrows).  This induces 
expression of pro-proliferative genes in the nucleus.  Additionally, PAR1 activation 
downregulates p53 and alters the Bax/Bcl-2 ratio, thus inhibiting apoptosis (yellow 
arrows).  PAR1 also mediates APC’s anti-inflammatory effect through downregulation 
of NFκB and inhibition of pro-inflammatory genes (red arrows). 
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1.9     The study of EPCR in cancer 

1.9.1  In vitro studies 

The earliest evidence that EPCR may have a role in cancer came from Fukudome 

and collaborators in 2001 [76]. The group approached their work on the basis of PC’s 

and EPCR’s anticoagulant activity.  Their initial aim was to explain the coagulopathic 

state in cancer.  Around the same period, other groups were investigating EPCR and 

APC’s anti-inflammatory effects [68-70].  Using techniques including 

immunohistochemistry and western blotting, the Fukudome group determined that 

EPCR was expressed on a range of glioblastoma and haematological cancer cell 

lines.  Importantly, they demonstrated that PC activation was inhibited by an EPCR-

blocking antibody, but not by an antibody that allowed EPCR/PC binding.  Positive 

EPCR staining was demonstrated on paraffin-embedded sections of invasive ductal 

breast carcinoma (96% of samples).  The group postulated that the high frequency of 

EPCR expression in these aggressive cancers may have benefitted tumour 

progression.  Yet at the time very few viable explanations for this observation could 

be provided.  Nevertheless, by closely scrutinising for factors that explained 

coagulopathy in cancer, the group identified aberrant expression of EPCR, a protein 

that we now know has pleiotropic effects [69]. 

The Scheper group suggested that EPCR may have a role in chemoresistance [59].  

The group generated a panel of antibodies against proteins highly expressed in multi-

drug resistant (MDR) cancer cell lines.  One of these antibodies, LMR-42 mAb 

(monoclonal antibody), reacted with a protein that was induced by selecting 

doxyrubicin resistant cancer cell lines.  The group noted that LMR-42 mAb reacted 
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with several MDR lines, but not their parental lines nor non-cancer cell lines.  The 

highest expression was in cell lines most poorly responsive to chemotherapy.  Of 

note, the commonly used HCT116 colon cancer line was strongly positive.  IHC 

staining with the antibody was positive on endothelium and some cancer tissue.  The 

group deduced through sequence analysis that LMR-42 was identical to EPCR.  This 

work demonstrated that EPCR was associated with chemoresistance, without 

providing a mechanistic explanation for this effect.  EPCR expression was a stable 

trait in these cells even after several weeks without doxyrubicin treatment, and was 

therefore not transiently induced by the chemotherapy.  The group suggested that 

EPCR might provide a coagulation-free environment, but this cannot fully explain its 

effects, especially in view of these cell line studies, where coagulation does not 

occur.  Therefore, this work gives a strong indication that EPCR is important 

potentially in cancer and may have relevance to chemotherapy treatment, but does 

not provide a mechanism of action.   

A study from the University of Carolina (USA) was the first to investigate the role of 

EPCR in cancer cell migration and invasion [72].  Around this time, evidence was 

accumulating that APC increased migration in endothelial cells [77] and keratinocytes 

[74]. This group used a transwell assay system to investigate migration in endothelial 

cells (HUVECs) and breast cancer cell lines (MDA-MB-231 and MDA-MB-435).  APC 

was found to increase breast and endothelial cell migration and invasion by 125-

375%.  This effect was dose dependent.  PC did not have the same effect.  Anti-

EPCR and anti-PAR1 antibodies both attenuated migration and invasion. The anti-

EPCR antibody inhibited production of APC, but EPCR was also noted to be crucial 

to APC’s effects on migration.  As the effect was seen both in endothelial cells and 
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cancer cells, it suggested that a common APC/EPCR/PAR1 mediated pathway was 

present in both cells.  APC was not itself a chemotactic agent.  This suggests that the 

pathway increases invasion and chemotaxis towards other chemotactic factors, 

which may have relevance in early metastasis.  The group could not fully explain the 

mechanism of the increased migration and invasion.  They suggested that APC’s 

protease activity was crucial, both in the activation of PAR1 (intracellular signalling) 

and perhaps in the activation of extracellular matrix proteases, as had been shown 

previously [74].  This paper brought developments of EPCR understanding in the 

endothelial setting to cancer.   

 

1.9.2 In vivo and clinical studies 

Several groups have performed in vivo studies into EPCR’s role in various cancers, 

but clinical data are limited.  A key study by a group based at the University of 

Navarra (Spain) extensively investigated EPCR’s role in cancer metastasis using in 

vivo models [78].  Building on previous findings relating APC/EPCR to apoptosis, cell 

survival and migration, the group sought to determine if EPCR expression aids the 

metastatic process in lung cancer.  They identified an adenocarcinoma cell line 

(A549) that expressed EPCR based on flow cytometry.  APC was able to induce 

intracellular signalling via EPCR, leading to phosphorylation of ERK and Akt.  They 

therefore established that key EPCR-relevant pathways in endothelial cells were also 

functional in this tumour cell line.  On microarray analysis, the genes upregulated by 

APC treatment included several that have previously been identified [69], and as 

expected had anti-apoptotic and cyto-protective roles.  EPCR expression was 
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knocked down in A549 cells using shRNA (small hairpin RNA).  Rather than 

proceeding with in vitro assays, the group utilized these knockdown cell lines in an in 

vivo mouse model of lung cancer.  Controls or shRNA treated A549 cells were 

injected into Athymic nude-Foxn1nu mice and subsequent development of bone 

metastases was assessed.  The key finding was that the shRNA group of mice 

developed significantly fewer hind limb bone metastases.  Similar results were 

obtained by inoculating mice with control A549 cells and then regularly injecting them 

with EPCR-blocking antibodies.  Antibody administration significantly decreased the 

metastatic tumour burden.  Taking a non-EPCR expressing parental A549 line and 

inducing EPCR expression (using viral vectors) increased the development of 

metastasis in this mouse model.  Administration of EPCR-blocking antibodies 

ameliorated this effect.  This is strong evidence that EPCR has an important role in 

metastasis development. 

Anton and collaborators also made attempts to characterise EPCR’s expression in a 

cohort of lung cancer patients (n=295).  These patients underwent standard 

treatment, i.e. surgery with or without adjuvant chemotherapy.  EPCR expression 

was determined post-operatively by immunohistochemistry.  Pathologists blinded to 

the details of each case scored each patient’s EPCR expression.  The group 

performed a multivariate Cox regression analysis to determine the relationship 

between EPCR expression and progression, recurrence, chemotherapy response 

and survival.  In multivariate analysis, high EPCR expression was associated with a 

shorter time to progression (TP, P=0.021), suggesting that EPCR could be an 

independent predictor of disease progression.  There was no significant relationship 

with overall survival.  However, when only the stage I patients (those with cancer 
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confined to the lung) were analysed, high EPCR expression significantly correlated 

with disease progression (p<0.001) and decreased survival (p<0.05). When stage I 

patients were removed from the overall analysis, no significant correlations were 

observed in the stage II-IV patients alone.  This analysis suggests that EPCR may be 

important in the development of early metastasis rather than in the continued growth 

of established metastases.   

Another important finding in this study relates to patient stratification and prediction of 

chemoresponsiveness, which are both increasingly important in cancer.  Patients 

with stage I cancer were grouped according to whether they had adjuvant 

chemotherapy post-surgery or not.  In patients with low EPCR expression, 

chemotherapy was not associated with any change in disease progression or 

survival.  In contrast, for patients with high EPCR expression, chemotherapy was 

associated with decreased progression and increased survival.  This suggests that 

EPCR expression could be used to predict chemotherapy response, as well as 

serving as a prognostic marker for early stage patients.  This would require validation 

in prospective trials.  Overall however, this work has progressed the understanding of 

EPCR’s role in cancer through a multi-faceted approach, and makes the protein a 

strong candidate for investigation in a range of cancers.  It also demonstrates its 

possible clinical uses as a predictive and prognostic biomarker, or in the modulation 

of EPCR to control disease. 

An earlier study by Bezuhly et al. [79] led to observations that were contrary to the 

work published by Anton et al, albeit in a different tumour type.  The group aimed to 

relate endothelial EPCR activity with melanoma liver and lung metastases.  Bezuhly 

and colleagues examined whether APC, with its established anti-inflammatory 
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activity, could reduce adhesion molecule expression and therefore metastasis 

development.  APC decreased both adhesion and migration significantly in in vitro 

models.  However, this effect was lost at the higher doses of APC, for reasons that 

were unclear.   

The group used a mouse model in which endothelial EPCR was overexpressed 

(Tie2-EPCR).  These mice and WT mice were inoculated with the melanoma cells.  

Two weeks later, surviving mice were sacrificed and spleen and liver were taken for 

analysis.  In the two week period, 4/10 of the WT mice died, but all of the Tie2-EPCR 

mice survived.  The liver and lungs had significant reductions in tumour nodules in 

the Tie2-EPCR mice respectively.  qRT-PCR revealed that P-selectin and TNF were 

significantly reduced in the EPCR overexpressing mice, suggesting that a reduction 

in adhesion molecule expression accounted for the decreased metastases.   Injecting 

APC in WT mice led to a less marked but still significant reduction in tumour nodule 

development.  Therefore in this study, EPCR expression limited metastasis. The 

group did not perform any experiments where EPCR expression was reduced, to 

assess whether the opposite effect occurred.   

This study contradicts Anton’s findings, where reducing EPCR in lung cancer cells 

using shRNA reduced the development of bone metastases, as did an EPCR 

blocking antibody.  There are several possible reasons for this discrepancy.  The 

metastatic sites investigated differ, and it is possible that crucial pathways vary in 

different anatomical sites.  The B16-F10 melanoma line is a mouse cancer line, 

whereas the A549 lung cancer line is a human line. The melanoma line did not 

express EPCR, whereas the lung cancer line did.  This means that the anti-human 

antibodies used in the Anton study only targeted the engrafted cancer, whereas in 
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the Bezuhly study the anti-mouse antibody only targeted the endothelium.  Therefore 

the different findings may arise from inherent differences in the biology of different 

tumour types, and also in the specific targeting of EPCR in cancer or in endothelium.  

The effects of EPCR may be context dependent. 

Schaffner, Esmon and colleagues investigated the relevance of EPCR expression in 

stem cell-like cancer cell (CSC) populations [80].  CSCs are postulated to be 

important in cancer chemoresistance, recurrence and metastasis.  They may have 

the ability to differentiate into all the cell types within a cancer.  Previous work had 

shown that EPCR is expressed in aggressive breast cancer CSCs [81].  Schaffner 

and colleagues confirmed EPCR’s importance in breast cancer CSC niches and 

investigated its consequences in breast cancer in vitro and in vivo models.  Like 

Beaulieu and colleagues [72], this group utilized the breast cancer cell line MDA-MB-

231.  However, they selected a highly aggressive triple-negative (oestrogen receptor, 

progesterone receptor, Her2/neu negative) derivative line by using cells that were 

passed through mouse mammary fat pad.  They separated the derived cells into 

EPCR+ and EPCR- cells using fluorescence-activated cell sorting (FACS).  Similarly 

to previous groups [69, 78], they extracted RNA and performed microarray analyses 

to determine differential gene expression.  In addition to genes previously described 

such as MAPK1/ERK2 [69], markers associated with CSCs were overexpressed in 

EPCR positive cells.  These included ALDH1B1 and ALDH1A3, and integrins 4 and 

6. 

The group used a polyoma middle T (PyMT) mouse model that spontaneously 

develops breast cancer in a fashion similar to the clinical scenario.  They were able 
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to breed these mice with EPCRlow/low mice to produce an EPCR deficient model for 

breast cancer.  These EPCRlow/low mice had a significantly smaller tumour burden and 

increased survival over the experimental period compared to controls.  However, the 

group took further steps to ensure that only the EPCR gene was differentially 

expressed, by breeding PyMT EPCRflox/flox mice.  EPCR deletion led to an increase in 

survival and decrease in tumour load.   

Two findings from these experiments were particularly important.  Firstly, EPCR 

expression in the cancer cells rather than the host determined outcome.  Secondly, 

the tumours resulting from high EPCR-expressing cell xenografts mostly contained 

cells that were EPCR negative.  This demonstrates that the EPCR cells either 

reduced EPCR expression or differentiated into other cell types, as would be 

expected from CSCs.  The EPCR-expressing cells may therefore have an increased 

capacity to initiate tumour growth.  This initiating capacity was reduced by using 

blocking antibodies that were injected alongside cancer cells in one experiment and 

intra-peritoneally in another.  In the intra-peritoneal group, mice were administered 5 

injections of blocking antibody (or control) over 14 days.  In both experiments, the 

blocking antibodies were associated with decreased tumour growth and burden. 

This study demonstrated that EPCR may have broad relevance across epithelial 

cancer groups.  The work links EPCR to the stem-cell like phenotype and attempted 

to identify the source of ligands in the tumour environment.  The group discussed the 

possibility of therapeutic EPCR blockade.  The safety of latter approach has not been 

explored, though the Schaffner group note that no adverse effects have been 

observed in animal models.  This point should be treated cautiously, as there are 

EPCR-associated examples such as APC in sepsis where animal models did not 
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reveal the serious complications of treatment [66, 70, 71, 82], and the universal 

expression of EPCR on endothelium could be a major obstacle.  

Keshava and colleagues investigated EPCR expression in mesothelioma and their 

results were seemingly contradictory to what has been observed in other cancers 

[83].   Their work was centred on Tissue Factor (TF), an important factor in the 

extrinsic coagulation pathway that, like EPCR, has been linked to poor outcomes in 

cancer.  In investigating TF, they also studied EPCR, due to their shared pathways.  

In vitro, the group found that a more aggressive mesothelioma cell line (REN) did not 

express EPCR, whereas EPCR was present in less aggressive lines (MK9 and MS-

1).  This is contrary to the results in other cancers [78, 80].  In their xenograft models, 

REN cells that had been treated with a pZeoSV plasmid containing human EPCR 

cDNA were injected into mouse pleural cavities.  The EPCR cDNA decreased tumour 

growth and burden significantly.  The Keshava group found that apoptosis markers 

(TUNEL) were increased in the tumours with increased EPCR expression, which 

again differs from the known actions of EPCR and PAR1 [69].  Conversely, grafting 

EPCR shRNA-treated MK9 and MS-1 cells significantly increased tumour growth and 

burden, but only when TF was overexpressed concurrently.  There was no effect 

observed on parental MK9 and MS-1 cells that were treated with the shRNA.  

The authors acknowledged that their findings differ from others groups, and 

suggested that this may be due to the particular cell types that they have used or the 

particular environment of these mesotheliomas.  The biology of these cancers may 

differ.  Like EPCR, TF (in complex with FVIIa and Xa) activates PAR1 [67].  The 

group noted that PAR1 activation can be pro or-anti apoptotic depending on the 

amplitude and duration of the signal [73, 84, 85].  In the presence of TF mediated 
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activation of PAR1, EPCR may have a pro-apoptotic/anti-proliferative effect.  This 

study demonstrates the complexity of these signalling pathways, where EPCR may 

have distinct effects in different cancer types.   

A French group, Ducros and collaborators, investigated EPCR’s potential role as a 

biomarker and in cancer associated coagulopathy [86]. The group obtained blood 

samples from 79 patients with ovarian cancer. They found that soluble EPCR 

(sEPCR) correlated closely with CA-125, the established ovarian tumour marker.   

The group also found that sEPCR and membranous EPCR were expressed in the 

ascitic fluid of these patients.  The study is most notable for its extensive genotyping.  

They sequenced the sEPCR from ovarian cancer patients and membranous EPCR 

from several cancer lines, including ovarian (OVCAR-3), lung (A549), colorectal (HT-

29) and breast (MDA-MB-231) lines.  The group detected 13 single nucleotide 

polymorphisms (SNPs), which were consistent with established SNPs in endothelial 

EPCR.  Cells carrying haplotype A3 shed a higher quantity of sEPCR into their 

growth medium.  This is consistent with work suggesting that the A3 haplotype in 

cancer patients is associated with higher levels of sEPCR, which is associated with 

increased venous thrombosis [87].  The mechanism of this effect is thought to be due 

to sEPCR binding with PC in blood, leading to less APC production by endothelial 

EPCR.    This study demonstrates that EPCR may be a potential biomarker for at 

least one type of cancer, and may be predictive for the development of 

thromboembolism.  Potentially, sEPCR measurement could allow more appropriate 

and personalised thromboprophylaxis.   

It is evident that recently there has been increasing interest in EPCR’s role in cancer.  

The recent finding that it can act as a γδ TCR ligand suggests possible interaction 



40 
 

with anti-tumour immune responses.  The tumour biology of EPCR therefore 

becomes very relevant.  However, several key questions remain unanswered.  The 

majority of these studies have investigated EPCR-intrinsic functions, and have not 

investigated the wider biological context of EPCR dysregulation.  Though many 

studies have utilised mouse models, there are very few that have investigated EPCR 

in the human setting [78, 86].  Furthermore, there have been diverse effects of EPCR 

in different tumours, and the reason for this has not been explored.  The breadth of 

its expression in different cancers also needs to be determined.  In view of its 

recently discovered function as a γδ T cell ligand, it is now increasingly crucial to 

understand EPCR’s role in tumourigenesis.   
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1.10 Project aims  

 

Emerging immunotherapies such as checkpoint blockade are now impacting on 

patient care.  However, the results have been variable in different cancer types [13, 

14].  Responses to checkpoint blockade have been linked to genetic factors [88], and 

though genetics and immunity are both relatively well understood, the link between 

the two is less well characterised.  CRC is a good model to develop this 

understanding, as it has well defined molecular subtypes with variable mutation rates 

and immune infiltration (which has been linked to patient outcome [37]).  To 

understand why immunotherapies have had limited success thus far in CRC, I shall 

investigate the genetic and pathological factors that impact on the immune 

microenvironment (Chapter 4).  This could potentially enable better targeting of 

existing immunotherapies, and could facilitate the development of novel approaches.  

To characterise immunity in different patient groups, I shall establish a gene 

expression signature for the immune microenvironment.  In addition, I will explore the 

immune microenvironment of the key RAS mutant subgroup of patients (Chapter 5). 

In addition, I shall explore the role of the γδ T cell ligand EPCR in colorectal 

tumourigenesis (Chapter 3).  The known functions of EPCR have expanded since its 

discovery.  Initially significant mainly for its role as an anti-coagulant factor, it is now 

implicated in inflammation and potentially immunity as a γδ T cell ligand.  There is 

also growing evidence that EPCR has a role in tumourigenesis.  Since this project 

was conceived, EPCR has been studied in a range of tumour types.  However, it has 

not as yet been investigated in CRC, the third commonest cancer in this country and 

the second most common cause of cancer-related death.  In view of the well-
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established developmental pathway and pathological characterisation of CRC, this 

tumour type is a promising model in which to explore the role of EPCR in 

tumourigenesis.  Therefore, I shall investigate the extent and mechanism of EPCR 

expression and its impact in CRC, both in vitro and in a clinical cohort, to determine 

its significance in this setting. 
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2.1 Bioinformatic analyses 

2.1.1 EPCR bioinformatics 

EPCR mutation, methylation, copy number and expression data were retrieved from 

the The Cancer Genome Atlas (TCGA) project via the cBioportal tool [89-92].   

Pathological and clinical data were also downloaded.  Cancer cell line encyclopaedia 

[93] data were retrieved using the CCLE portal and cBioportal.  Oncomine 

(Compendia Bioscience) was used for analysis and visualization of EPCR expression 

in multiple tumour types [94]. 

Data were tabulated and analysed with The Integrative Genomics Viewer [95] and 

Excel (Microsoft Corp.).  Pearson correlations were performed when the data 

distributions were parametric, and Spearman when they were non-parametric.  

Significance tests were performed in Minitab (Minitab Inc.) using T-tests for 

parametric data and Mann-Whitney U for non-parametric data.  Normality of 

distributions were confirmed using the Anderson-Darling Test. 

2.1.2 Immunity bioinformatics 

2.1.2.1 Gene identification 

Genes associated with innate and adaptive tumour immunity in cancer [37, 42] and 

genes relevant to established colon cancer pathways were shortlisted as initial 

genes.  This list was expanded using molecular network pathway analysis (using 

cBioportal) [89, 90, 92].  This revealed further molecules and genes with known 

genetic, pathway and functional associations with the initial genes.  Genes revealed 
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through this approach were screened for inclusion into the final gene list based on 

known immunological relevance (Table 2.1).  

Gene IDs 

ACTB HLA-DQA2 

CCL11 HLA-DRA 

CCL2 HLA-DRB5 

CCL5 ICAM1 

CD247 ICOS 

CD274 IFNG 

CD276 IL12RB2 

CD3D IL17A 

CD3E IL18RAP 

CD3G IL7R 

CD4 IRF1 

CD80 KLRK1 

CD86 LAG3 

CD8B MADCAM1 

CTLA4 MICB 

CX3CL1 PDCD1 

CXCL10 PDCD1LG2 

CXCL9 PROCR 

GNLY RAET1E 

GZMB RAET1G 

HAVCR2 STAT1 

HLA-A STAT3 

HLA-B TBX21 

HLA-C TNFRSF14 

HLA-DMA TNFSF4 

HLA-DMB ULBP1 

HLA-DOA ULBP2 

HLA-DOB ULBP3 

HLA-DPA1 VCAM1 

HLA-DPB1 VTCN1 

HLA-DQA1  
 

Table 2.1 Final gene list for hierarchical clustering analysis 
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2.1.2.2 Data extraction 

Normalised Agilent microarray and RNAseq z-score data for initial genes and 

mutation data for TP53, KRAS, BRAF, NRAS, HRAS, PIK3CA and PTEN were 

extracted from The Cancer Genome Atlas (TCGA) colorectal dataset [91] using the 

cBioportal tool [89, 90, 92].  Where expression data were unavailable, genes were 

excluded from the analysis.  Clinical data for these patients were retrieved from the 

TCGA portal (https://tcga-data.nci.nih.gov/tcga/) and were tabulated with genetic 

data.   

2.1.2.3 Data analysis 

Data were tabulated in Excel (Microsoft Corp.) and unsupervised two-dimensional 

hierarchical clustering was performed using MeV (Dana-Farber Cancer Institute, 

Boston, MA, USA) and the Pearson correlation.  Patient and gene clusters were 

identified by varying gene-tree distance-thresholds and visual analysis.  Normality of 

distributions was confirmed with the Anderson-Darling test.  Pearson Coefficient of 

determination (R2) values were calculated in Excel and Minitab (Minitab Inc.) to 

investigate correlations in gene expression.  Gene expression was correlated against 

beta actin as a control gene.  T tests were performed for univariate analyses of 

normally distributed data, and Mann Whitney U tests for non-normally distributed 

data.   Multivariate linear regression analyses of gene expression against mutations 

in key tumour associated genes (P53, KRAS, BRAF, NRAS, HRAS, PI3KCA, PTEN) 

were completed in Stata 12.2 (Statacorp.).  For two by two comparisons, a Chi 

squared test was used; if any groups contained less than 5 values, the Fishers Exact 
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test was used in preference.  MEK activation signature data were retrieved for the 

TCGA dataset from the authors [16] and statistical analyses were performed in Excel.      

2.1.2.4 Mutation rate analysis 

Mutation rate and number data for 12 TCGA cancer types, including CRC, produced 

by Kandoth et al. [96] were downloaded from the Synapse platform 

(https://www.synapse.org/, Sage Bionetworks).  Expression data for CIRC genes 

were extracted using cBioportal, and were combined with mutation data in Excel.  

CIRC expression was calculated for each case, and correlations with mutation rate 

were made both by mutational group comparisons and Pearson and Spearman tests.  

Graphs were produced in Excel and Minitab. 

2.1.2.5 Neoantigen analysis 

Neoantigen analysis was undertaken in collaboration with Sebastian Boegel and 

Ugur Sahin (TRON, University of Mainz, Germany).  Full CRC TCGA RNAseq data 

and sequencing data were used.  Initially, the number of non-synonymous single 

nucleotide variations (nsSNVs) was determined per patient.  Using RNAseq, the 

number of reads per mutation was calculated to determine whether the neoantigen 

was expressed.  HLA-type was predicted from RNAseq data using seq2HLA and 

HLA-binding predictions were made using the IEDB MHC binding prediction 

algorithm v2.9 (consensus method), as described by Boegel et al. [97, 98].  A cutoff 

for strong binding (and thus “likely immunogenic”) was 1.0. This approach was used 

to determine how the strength of neoantigen binding to HLA and the total number of 

neoantigens related to CIRC expression in TCGA patients. 
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From the total neoantigen data, the number of neoantigens per case and top rank 

neoantigen data were calculated and combined with CIRC expression in Excel, and 

correlation tests were performed.  Individual analysis of RAS-associated neoantigens 

were performed by extracting RAS neoantigen data from total neoantigen data for all 

cases and determining the number and frequency of these neoantigens as well as 

binding strength in each case. 

2.1.2.6 Cancer cell line encyclopaedia analysis 

CIRC microarray z-score data for 51 colorectal cell lines were retrieved from the 

CCLE database using cBioportal.  These were combined with mutation data for 

KRAS, NRAS, HRAS, BRAF, PIK3CA and PTEN.  Mean expression of the CIRC and 

key immune genes in each mutational subtype were calculated, and significance 

testing was performed using T-Tests for one by one comparisons.   

2.1.2.7 Consensus Molecular Subtypes (CMS) analysis 

Consensus molecular subtype (CMS) data were obtained from the Colorectal Cancer 

Subtyping Consortium through the Synapse platform (https://www.synapse.org/, 

Sage Bionetworks). 

These data were utilized to perform intra-CMS group analysis of RAS mutation and 

CIRC.  In addition, RNAseq data were downloaded for the extended TCGA RNAseq 

dataset and the Koo Foundation Sun-Yat-Sen Cancer Center (KFSYSCC) dataset.  

Single sample enrichment of pathways was assessed using the Gene Set Variation 

Analysis (GSVA) algorithm [99].  Data from TCGA were downloaded as level 3 

processed data; genes with no variation were removed, and remaining genes 

expression values were log2 transformed.  CMS labels for these datasets were 
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downloaded from Synapse at https://www.synapse.org/crcsc.  Immune cell type gene 

sets used in this analysis are described in Bindea et al. [100].  Differential enrichment 

using KRAS mutation status within and across CMS groups was tested using the 

Wilcoxon rank sum test, and corrected for multiple testing using Benjamini-Hochberg 

procedure. 

 

2.2 Specimen collection 

 

2.2.1 EPCR specimens 

Patient tumour and serum specimens were collected from the University of 

Birmingham Human Biomaterials Resource Centre (HBRC) (ethical approval HBRC 

11-058).  Survival analysis utilised tumour samples from the MRC COIN study 

(ISRCTN27286448), under ethical approval 13/WM/0339 [10].  All patients had 

provided consent for use of their tissue.  Specimens were cut to a thickness of 4 

microns.  

2.2.2 RAS cohort specimens 

2.2.2.1 Sample size calculation and sample collection 

To determine the required sample size, a power calculation was performed using 

Altman’s nomogram.  This confirmed that a total of 100 samples (50 RAS mutant, 50 

RAS wildtype) were required for a power of 80%, a significance level (α) of 0.05 and 

a minimum detectable standardised difference of 0.55.   This power provided an 80% 

probability of detecting a difference between the RAS mutant and wildtype groups if 

one existed.  The significance level was the threshold below which the null 
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hypothesis (that there was no difference between the RAS mutant and wildtype 

groups) would be rejected, in this case corresponding to a p value <0.05.   

The specimens were selected to represent the range of RAS mutations observed in 

the original TCGA microarray data set.  The final cohort comprised 28 RAS 

G12D/G13D mutants (24.3%), 38 RAS non-G12D/G13D mutants (33.0%), and 49 

RAS wild types (42.6%).  Therefore, there were 66 RAS mutants and 49 RAS 

wildtypes (total = 115).  Samples were obtained from the completed CRUK Stratified 

Medicine Programme One pilot study and CRC patients from the Queen Elizabeth 

Hospital, Birmingham.  These patients had their RAS mutation status determined as 

part of their routine clinical workup.  Samples were collected under ethical approval 

HBRC 14-205 (Sponsor: University of Birmingham).  

2.2.2.2 Sample processing 

Suitable formalin-fixed, paraffin-embedded (FFPE) blocks were identified from 

pathology reports and were retrieved and processed at the HBRC biobank.  Twenty 

sections of 4 micron thickness were cut from each block and were mounted onto 

slides for staining.  Additionally, six 10 micron scrolls were cut from each block and 

were put into 2 eppendorfs (containing 3 scrolls each) for RNA and DNA extraction.  
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2.3 Immunohistochemistry 

2.3.1 EPCR and PAR1 immunohistochemistry 

2.3.1.1 Immunohistochemistry protocol 

Paraffin-embedded colorectal cancer sections and matched adjacent normal sections 

were deparaffinised and heat-induced epitope retrieval (HIER) was performed by 

adding the slides (in a slide rack) to a tray containing Novocastra Epitope Retrieval 

Solution pH8 (Leica, RE7116), which was incubated in a water bath heated to 97°C 

for 40 minutes. Slides were then washed twice (5 minutes per wash) in diluted DAKO 

wash buffer (S3006, containing 0.05 mol/L Tris/HCl, 0.15 mol/L NaCl, 0.05% Tween 

20 at pH7.6).  A hydrophobic mark was drawn around the tissue section using a 

DAKO Delimiting pen (DAKO, S2002).   Two to three drops of dual endogenous 

enzyme inhibitor were applied (component of Dako Envision Detection System 

peroxidase/DAB, Rabbit/Mouse kit, K406511-1).  Slides were then washed twice as 

above.  Non-specific binding was blocked by adding 100μl of 1% normal goat serum 

(NGS) (50μl concentrated NGS diluted in 5000μl of antibody diluent), with 30 minute 

incubation at room temperature (RT). Primary antibody was then added immediately 

after tipping off the NGS without washing the slides - 100μl 1:75 mouse anti-human 

EPCR antibody (R&D Systems, clone 304519, targeting human EPCR Ser18-

Ser210, mouse anti-human), diluted with antibody diluent (DAKO, S0809). The slides 

were incubated with the primary antibody overnight at 4°C. Slides were then washed 

three times with wash buffer and incubated for 30 minutes with 4 drops of polyclonal 

anti-mouse secondary antibody (Dako, component of Envision Detection System) at 

RT.  Slides were then washed three times with wash buffer as above.  Peroxidase 
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activity was revealed by adding 100μl diaminobenzidine (DAB – component of Dako 

Envision Detection System) for 5 minutes at RT.  The slides were counterstained with 

haematoxylin (100%, for 40 seconds) and were then washed under warm running tap 

water for 2 minutes.  Slides were dehydrated in 70% ethanol for 2 minutes, then 

100% industrial methylated spirit (IMS) for 2 minutes, and were then added to 

Histoclear for 2 hours at RT (Fisher Chemical).  Coverslips were mounted using 2-3 

drops of DPX (National Diagnostics), and were left to dry overnight.  Guidance on 

antibody optimisation was provided by a histopathologist (Dr Philippe Taniere, Queen 

Elizabeth Hospital, Birmingham). Controls that omitted the primary antibody were 

also performed to rule out non-specific binding of the secondary antibody.   For PAR1 

IHC the same protocol was used with a primary antibody that targeted PAR1 (NBP1-

71770, clone N2-11 Novus Biologicals), at a dilution of 1:100. 

2.3.1.2 EPCR immunohistochemistry scoring 

EPCR-stained slides were imaged on a Vectra 2.0 (Perkin Elmer) system using 

custom imaging algorithms developed on Inform software (Perkin Elmer).  Analysis of 

slides was performed on Inform software, using trained tissue and cell segmentation 

algorithms that were validated by a histopathologist (Dr Philippe Taniere).  Staining 

intensities were determined on a per cell basis, and H-scores were created by the 

Inform software.  H scores were calculated by the following formula:  [1 x (% cells 

with weak staining) + 2 x (% cells with moderate staining) + 3 x (% cells with heavy 

staining)].  This produced a score ranging from 0 to 300.  Tumour region and Stroma 

region H-scores across all slides were collated and compared using the unpaired T 

Test, after the normality of distributions were confirmed using the Anderson Darling 

test.  
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COIN study slides were stained for EPCR at the HBRC biobank using a Bondmax 

Autostainer.  The primary antibody (R&D systems, clone 304519) incubation time 

was 10 minutes at a dilution of 1:200. Antigen retrieval was performed at pH9.  

Stained slides were scanned using a Leica SCN400 slide scanner.  Scanned slides 

were analysed on Definiens Tissue Studio software.  Tumour regions of each slide 

were manually identified, and trained segmentation algorithms were used to separate 

epithelium and stromal regions.  Quantification of EPCR staining was performed on a 

regional basis, with the software quantifying the percentage of pixels that had strong 

staining, moderate staining, weak staining or no staining in each area. These data 

were used by the software to create a percental score for each region in each slide.   
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2.3.2 RAS cohort immunohistochemistry 

2.3.2.1 Immunohistochemistry protocol 

Immunohistochemical staining was performed using a Leica Bondmax autostainer.    

Clinically validated (IVD-CE) antibodies were chosen where available (Table 2.2).  

Otherwise, knockdown/knockout validated antibodies were selected.  If these were 

not available, in-house validation was performed, as described below. 

Marker Vendor Antibody 
clone 

Dilution Primary 
antibody 
incubation 
time 
(minutes) 

Conditions Validation 

CD4  Leica 4B12 Prediluted, 
ready to 
use 

30 pH9 IVD-CE 
(clinically 
validated) 

CD8 Leica 4B11 Prediluted, 
ready to 
use 

20 pH9 IVD-CE 
(clinically 
validated) 

Tbet Cell 
Signalling 
Technology 
(CST) 

D6N8B 1:100 20 pH9 Validated 
by CST* 

PD-L1 Cell 
Signalling 
Technology 
(CST) 

E1L3N 1:200 20 pH9 Validated 
by CST* 

STAT1 Cell 
Signalling 
Technology 
(CST) 

D1K9Y 1:500 20 pH9 Validated 
by CST* 

CXCL10 
 

Abcam ab9807 
(vendor ID) 

1:100 40 pH9 In-house 
(data not 
shown) 

Class II 
HLA 

Abcam CR3/43 1:100 20 pH6 In-house 

 

Table 2.2 List of antibodies.   

*CST antibody validation includes western blot analysis, staining of paraffin-
embedded cell pellets with known expression, the use of blocking peptides, and the 
staining of gene knockdown and knockout cell lines. 



55 
 

 

Initial staining conditions and concentrations were based on vendor 

recommendations, and were iteratively optimised in conjunction with a 

histopathologist (Dr Philippe Taniere).  

2.3.2.2 RAS cohort Immunohistochemistry scoring 

After staining of the CRC sections for the markers above, slides were scanned at 40x 

magnification using a Leica SCN400 slide scanner.  Scanned slides were digitally 

analysed using Definiens Tissue Studio software.  Analysis algorithms were created 

and optimised for each individual marker.  Regions of interest (ROIs) were created in 

the tumour regions of each slide, in order to enable an inter-tumoural analysis.  All 

tumours were digitally segmented into tumour epithelium and stroma regions using 

trained segmentation algorithms.  Depending on the marker type, staining was 

quantified on a per cell basis or on an area basis.  Class II HLA alone was quantified 

using the area method as the staining was strong and therefore the Definiens 

software could not reliably identify haematoxylin-stained nuclei (which is necessary 

for cell based scoring).  Percentages of cells or pixels with high, medium, low or no 

immunoreactivity were quantified in each region.  This produced either histological 

scores for cell-based scoring, which is a function of the number and intensity of 

immunoreactive cells as described above, or percental scores for area-based 

scoring, which is a function of the number and intensity of positive pixels on the 

scanned specimen.  Thresholds for negative/low, low/medium and medium/high were 

set to maximise the dynamic range of results between samples and to reduce false 

positive results (Table 2.3).  Haematoxylin thresholds (the staining intensities at 

which haematoxylin was recognised) were set individually and differed for each 
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antibody due to differences in DAB staining.  Haematoxylin thresholds were set to 

ensure accurate identification of individual cells. 

Marker 
Scoring 
method 

Haematoxylin 
threshold 

Negative/low 
threshold 

Low/moderate 
threshold 

Moderate/high 
threshold 

CD4 
Cell 

based 
0.05 0.28 0.30 0.40 

CD8 
Cell 

based 
0.05 0.16 0.25 0.35 

Tbet 
Cell 

based 
0.02 0.15 0.20 0.25 

PDL1 
Cell 

based 
0.03 0.20 0.40 0.60 

STAT1 
Cell 

based 
0.01 0.14 0.20 0.35 

CXCL10 
Cell 

based 
0.01 0.14 0.20 0.30 

Class II 
HLA 

Area 
based 

0.02 0.25 0.60 1.00 

 

Table 2.3 Definiens scoring method and thresholds for each marker 

After analysis, segmentation was manually validated for each slide.  Analysis was 

performed using Excel (Microsoft Corp) and Minitab (Minitab Inc).  The normality of 

the distribution of Histological scores in each group (RAS mutant or RAS wildtype) 

was determined by performing the Anderson-Darling test.  All data were non-

parametrically distributed.  Therefore, for one by one comparisons, Mann Whitney U 

tests were performed for significance testing.  A p-value <0.05 was considered 

significant. 
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2.3.2.3 HLA Class II antibody validation 

To validate the HLA class II mAb (Anti-HLA DR + DP + DQ antibody [CR3/43] 

(ab17101)) (Abcam) a stably CIITA (Class II major histocompatibility complex 

transactivator) lentiviral transduced HEK293T cell line was used.  The parental 

HEK293T and K562 cell lines served as negative controls.  Expression of MHC class 

II was initially confirmed by flow cytometry.  Cells were then pelleted by centrifugation 

and fixed in 10% formaldehyde.  The pellets were embedded into paraffin blocks and 

cut into 4µm sections and mounted onto glass slides.  Immunohistochemistry was 

performed on those sections using the Leica Bond-RX automated platform.  Images 

of the sections were scanned using a Leica SCN400 Slide scanner (Figure 2.1). 

Flow cytometry was performed.  Cells in the cell suspension were counted and the 

volume containing 1 x 105 transferred to a 96-well plate.  Cells were then pelleted by 

centrifugation and re-suspended in 1:50 dilution of BioLegend allophycocyanin 

(APC)-conjugated anti-human HLA-DR (clone L243) (BioLegend).  A further two wells 

were used for isotype control (BioLegend APC Mouse IgG1 isotype) and negative 

control (MACS buffer). The cells were incubated with the antibody for 30 minutes at 

4°C. They were then washed with MACS buffer and fixed in 2% paraformaldehyde 

(PFA).  Flow cytometry was performed on a BD LSR II Flow Cytometer running the 

BD FACSDiva software (BD Biosciences). Flow cytometry demonstrated high levels 

of MHC class II in transfected cells in comparison to complete lack of expression in 

the negative controls.   
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Figure 2.1 HLA Class II antibody validation.  The left panel shows staining of the 
parental HEK293T cell line, and the right panel shows the Class II HLA-expressing 
transfected HEK293T cell line. 

(Figure courtesy of Dr Ghaleb Goussous) 
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2.4 Survival analyses 

2.4.1 EPCR survival analysis 

Clinical data for the patients in the COIN study were obtained from the MRC under 

REC approval 13/WM/0339.  Data obtained included treatment arm (chemotherapy 

or chemotherapy plus cetuximab), demographic details including age and sex, 

clinical data including WHO performance status, number of metastases, timing of 

metastases, site of primary (within colorectum), serum carcinoembryonic antigen 

(CEA), microsatellite status and mutation status for key genes including KRAS, 

BRAF, NRAS and PI3K.  Survival data included 12-week response, best response, 

death, censored time to death, progression and censored time to progression (PFS 

time). 

The median EPCR percental score was used to categorise patients into EPCR high 

and low groupings.  Additionally, a separate analysis was performed for the top 20% 

of EPCR expressors against the bottom 20%.  Statistical modelling was performed 

using Stata 12.1 (Stata Corp).  Both the prognostic and predictive analyses utilized 

the Cox proportional hazards model, and adjusted for factors that significantly 

associated with PFS to p<0.05.  The proportional hazards assumption was tested by 

calculating Schoenfeld residuals (estat phtest).  

Stata commands: 

stset pfstime, failure(pfsstatus) 

estat phtest 

stcox i.factorx -  (for each factor) 

xi:stepwise, pr(0.05):stcox factor x factor y i.EPCRfactor   
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sts graph, by(factorx) 

 

2.4.2 RAS cohort survival analysis 

Clinical data for the patient cohort were extracted from patient notes.  Clinical 

information included patient age, gender, ethnicity, tumour stage, RAS mutation 

status and overall survival.  Microsatellite status data (as determined by fragment 

analysis) were added, as were the results of IHC scoring. Using Stata, survival 

analysis was performed (Cox regression) as above to determine the association 

between RAS mutation/patient stage and survival.  

  



61 
 

2.5 shRNA transfection 

5 clones of EPCR shRNA (Sigma MISSION lentiviral pLKO.1-puro transduction 

particles) and 1 control shRNA (Sigma MISSION pLKO.1-puro Control high titre 

transduction particles - SCH001H) were obtained from Sigma (Table 2.4).   

 

 TRC number Clone ID Sequence 

1 TRCN0000061378 NM_006404.3-
253s1c1 

CCGGTGGCCTCCAAAGACTTCATATCTCGAGATATG
AAGTCTTTGGAGGCCATTTTTG 

2 TRCN0000061382 NM_006404.3-
706s1c1 

CCGGTCGGTATGAACTGCGGGAATTCTCGAGAATT
CCCGCAGTTCATACCGATTTTTG 

3 TRCN0000300553 NM_006404.3-
679s21c1 

CCGGGCAGCAGCTCAATGCCTACAACTCGAGTTGTA
GGCATTGAGCTGCTGCTTTTTG 

4 TRCN0000369969 NM_006404.3-
1123s21c1 

CCGGTTTGCTGAATTAGTCTGATAACTCGAGTTATC
AGACTAATTCAGCAAATTTTTG 

5 TRCN0000061379 NM_006404.3-
743s1c1 

CCGGGTGCAGTATGTGCAGAAACATCTCGAGATGT
TTCTGCACATACTGCACTTTTTG 

 

Table 2.4 shRNA clone IDs. 

1.6x104 HCT116 cells or HT29 cells were plated in each well of a 96 well plate and 

grown to 70-80% confluence in Dulbecco’s Modified Eagle Medium (DMEM) with 

10% Foetal Calf Serum (FCS). The media was removed, and 110μl media and 

hexadimerine bromide (polybrene, final concentration 8μg/ml) was added to each 

well.  shRNA lentiviral particles were added to appropriate wells at multiplicity of 

infections (MOIs) of 5, 1.5 and 0.5.  Cells were incubated with shRNA for 20 hours at 

37 with 5% carbon dioxide. The media containing lentivirus was then removed, and 

fresh media was added (120μl per well), and cells were incubated for a further 24 

hours.  Triplicate wells for each lentiviral construct and control were used.  The media 

was then removed from wells, and fresh media containing puromycin (1μg/ml) was 
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added, which was used to select shRNA transfected cells, as the shRNA construct 

contained a puromycin resistance gene.  A puromycin titration curve was previously 

produced to determine the minimum concentration that caused complete cell death 

after 3-5 days (1μg/ml).  Puromycin-containing media was replaced every 3-4 days 

until resistant colonies could be identified.   Colonies were expanded into a 12 well 

plate.  All 5 constructs and the controls for MOI 5 and MOI 0.5 were expanded.  They 

were subsequently expanded into 6 well plates, and then into 10cm culture dishes. 

EPCR expression was quantified with flow cytometry.  Maintenance of EPCR 

knockdown throughout the experimental period was confirmed with flow cytometry 

after completion of assays. 

EPCR-overexpressing HT29 cells were a generous gift from Julie Dechanet-Merville 

(University of Bordeaux, France). 

 

2.6 Flow cytometry 

2.6.1 EPCR cell line expression 

After incubation of HCT116 and HT29 cells with shRNA, media were removed from 

the wells and cells were washed with PBS buffer.  Cells were trypsinised with 500μl 

trypsin for 2 minutes at 37°C.  Trypsin was neutralised with media, and 500μl of cell 

suspension were aliquoted into flow cytometry tubes.  These were centrifuged and 

the supernatant was discarded.  EPCR (anti-human EPCR APC, eBioscience, clone 

RCR-227) and isotype control (Rat IgG1 K Isotype Control APC, eBioscience, clone 

eBRG1) antibodies were diluted with MACs buffer (5μl EPCR antibody in 50μl MACs 
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buffer per test, 0.83μl isotype control antibody in 66.6μl MACs buffer per test).  MACs 

buffer comprised 1 x PBS (pH 7.2) + 2nM EDTA + 0.5% BSA.  Cells were suspended 

in 50μl of diluted antibody, and the tubes were incubated in a dark ice box for 30 

minutes.  MACs buffer was then added to the tubes using transfer pipettes, cells 

were centrifuged, and the supernatant was discarded.  The cells were resuspended 

with MACs buffer, and were again centrifuged.  Supernatant was discarded, and cells 

were resuspended in MACs buffer.  The cells were fixed with 250μl of 1% PFA, and 

were stored at 4°C until analysis.  Cells were analysed on an Accuri C6 or LSR II (BD 

Biosciences) flow cytometer using standard protocols, and data were analysed using 

FlowJo and Excel. 

2.6.2 EPCR expression in mast cells 

The human Mast Cell (MC) line HMC-1.1 (V560G) [101] was cultured in IMDM with 

10% FBS.  Human Lung Mast Cells (HLMCs) were isolated from healthy lung 

obtained at surgery using anti-CD117-coated Dynabeads at ∼99% purity [102].  

HLMCs were cultured in DMEM (Dulbecco's Modified Eagle Medium) supplemented 

with 10% FCS, and cytokines (100 ng/ml SCF, 50 ng/ml IL-6, and 10 ng/ml IL-10) as 

described previously [103]. HMC-1 cells and HLMCs were stained with 2E9 antibody 

(1µg/mL) [53] which recognises EPCR protein or stained with IgM isotype control. 

Cells were indirectly labelled with FITC (Dako) and analysed by one-colour flow 

cytometry on a FACSCanto (BD Biosciences).  

EPCR expression was then confirmed on lung FFPE tissue using IHC.  Briefly, 10 nM 

citrate buffer was used for antigen retrieval on 4 µm sequential paraffin sections, 

followed by immunostaining with mouse anti-human EPCR monoclonal antibody 
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(R&D systems, clone 304519, 10 µg/mL) and  mouse anti-human tryptase (DAKO, 

clone AA1, 0.1 µg/mL).  Sections were counterstained with Mayer’s haematoxylin. 

 

2.7 MTT assays  

HCT116 and HT29 shRNA EPCR knockdown cells were cultured in DMEM with 10% 

FCS. Equal numbers of cells (4x103) were plated in each well of a 96 well plate.  

Cells were incubated at 37C with 5% carbon dioxide.  After 48 hours of incubation, 

chemotherapy drugs were added to the plates (either 5-Fluorouracil (5FU) or 

epirubicin) in concentrations determined by serial dilution (5FU - 0 to 256 μM, 

epirubicin – 0 to 8 μM).  After a further 48 hours of incubation, 10μl MTT (3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5mg/ml in PBS) was added to 

each well and after 2 hours cells were lysed with 50μl DMSO and absorbance was 

calculated using a Victor plate reader at 490nm for 0.1 seconds.  Colour intensity 

was normalised against controls untreated with chemotherapy.  All experiments were 

performed in triplicate.   

 

2.8 BrdU assays 

Assays were performed using the BrdU (bromodeoxyuridine) cell proliferation ELISA 

kit (Roche).  Cells were plated and treated with epirubicin or 5FU as with the MTT 

assays above.  After 48 hours of incubation, cells were labelled with 10μl per well of 

BrdU labelling solution and incubated for 4 hours at 37°.  The media was then 

removed and the plate dried with absorbent paper.  Cells were then denatured by 

http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Di-
http://en.wikipedia.org/wiki/Thiazole
http://en.wikipedia.org/wiki/Phenyl
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incubation with 200μl FixDenat solution for 30 minutes at RT.  Cells were incubated 

with 50μl Anti-BrdU-POD antibody solution for 90 minutes at RT (100μl per well) and 

then washed with wash buffer.  The wash buffer was then removed and absorbent 

paper was used to remove excess wash fluid.  This was repeated a further two times.  

100μl of substrate solution was added to each well, and plates were incubated for 15 

minutes at RT and were then analysed on a Victor plate reader at 405nm for 0.1 

seconds.  Colour intensity was normalised against untreated controls. 

 

2.9 Migration assays 

70-80% confluent EPCR-perturbed and control HCT116 and HT29 cells were serum-

starved by incubation in serum-free medium (DMEM) for 24 hours.  600μl of DMEM 

with 10% FCS was added to the wells of a 24 well plate.  2x105 cells in 100μl serum-

free DMEM were added to a Corning Transwell insert (Sigma, pore size 0.4 µm). The 

insert was then added to a well of the 24 well plate.  Cells were incubated from 3 - 48 

hours.  The cells on the lower side of the Transwell insert were fixed with 30% 

methanol and stained with 2% crystal violet for 2 hours at 4°C.   The Transwell 

inserts were removed and the upper side of the membrane was cleaned with a cotton 

bud to remove the non-migrated cells.  The inserts were photographed with a light 

microscope and camera in 5 set regions (upper left, upper right, lower left, lower right 

and centre) using Axiovision software (Carl Zeiss).  Cells were counted and analysed 

using Excel (Microsoft Corp).  The Mann-Whitney U test was used to compare 

migration in control versus knockdown lines.  
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2.10 Invasion assays   

70-80% confluent EPCR-perturbed and control HCT116 and HT29 cells were serum-

starved as with the migration assays.  Cells were suspended at 1.0 x 106 cells/ml in 

serum-free DMEM. 250μl of this cell suspension (containing 2.5 x 105 cells) was 

added to a QCM cell invasion assay insert (Millipore).  The insert was then added to 

a well of a 24 well plate that contained DMEM with 10% FCS.  Cells were incubated 

for 24-48 hours at 37°C and 5% CO2.  The cells and media from the top side of the 

insert were removed by pipetting out the remaining cell suspension.  The cells on the 

lower side of the insert were then detached by incubation for 30 minutes at 37°C with 

cell detachment solution (component of Millipore QCM cell invasion assay kit).  The 

insert was removed and detached cells were lysed and fluorescently labelled with 

200μl lysis buffer/dye solution (CyQuent GR Dye 1:75 with 4x lysis buffer, 15 minute 

incubation at RT).  200μl of the mixture was transferred to a new plate.  The wells 

were read with a fluorescent plate reader (Victor) using the 480/520 nm filter set.  

Results were analysed in Excel (Microsoft Corp). 

2.11 Activated Protein C ERK phosphorylation  

Activated Protein C (APC, Sigma) was added at a concentration of 180nM to 

confluent HCT116 cells after 24 hours of serum starvation.  APC was added for 2 

minutes, 5 minutes or 10 minutes, with or without prior 30 minute incubation with 

EPCR function-blocking antibodies (RCR-252, Novus Biologicals, 20μg/ml) after 

which cells were lysed with sodium dodecyl sulfate (SDS) containing phosphatase 

inhibitor (Phosphatase Inhibitor Cocktail II, Sigma).   
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2.12 Western blotting 

Western blotting for ERK and pERK was performed using HCT116 cell lysates with 

Biorad TGX precast gels (Miniprotean TGX precast gel 12% 10 wells).  The transfers 

from gels onto membranes were performed using the Biorad Trans-blot Turbo system 

(using Biorad Transblot Turbo transfer pack PDVF midi).  After blockade with 3% 

BSA in TBST, separate membranes were incubated with primary antibody 

(ERK/pERK, New England Biolabs PhosphoPlus (Thr202/Tyr204) Antibody Duet 

(4370S + 4695S)) overnight at 4°C (pERK antibody 1:2000 dilution, ERK antibody 

1:1000 dilution, both into 20ml diluent (TBST with 5% BSA and 0.01% sodium 

azide)). Membranes were then incubated with goat anti-rabbit horseradish 

peroxidase (HRP) conjugated secondary antibodies (1:20000 dilution, 1μl antibody 

diluted in 20ml BSA).  Development was completed with an EZ-ECL kit (Biological 

Industries) and images of membranes were taken using the ChemiDoc MP system 

(Biorad).  Images were analysed using Image Lab 4.1 (Biorad).   

Western blotting was also performed to determine whether PC and APC were 

present in culture media (DMEM) or HCT116 cell lysate or supernatant.  Exogenous 

APC (Sigma), was used as a positive control in this analysis.  The western blotting 

protocol was as described above, except that a protein C primary antibody (clone 

NBP1-58065, Novus Biologicals, 1:1000 dilution) was used.  This antibody detected 

both PC and APC, as it targeted the light chain of PC from amino acids 1 to 236, 

which are found in both PC and the cleaved form APC. 
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2.13 Microarray 

HCT116 cells were treated with APC after 48 hours of serum starvation.  Optimal 

APC concentrations and treatment durations were determined by assessing APC-

induced expression changes of 4 genes (NFkB2, PCNA, BCL2A1, EFNA1, which 

were chosen based on previous findings in endothelium [69]) using quantitative real 

time polymerase chain reaction (qRT-PCR) (probes from Invitrogen (Table 2.5)).   

Genes Probe IDs NCBI reference Sequence 

NFkB2 Hs01028901_g1    NM_001077494.2 

PCNA Hs00427214_g1 NM_002592.2 

BCL2A1 Hs00187845_m1 NM_004049 

EFNA1 Hs00358886_m1 NM_004428.2 

 

Table 2.5 Taqman Probe IDs  

APC concentrations of 22.5nM, 45nM, 90nM and 180nM and treatment durations of 

24 and 48 hours were tested, based on a previous microarray study [69]. RNA was 

extracted from APC-treated cells using the RNeasy Plus Kit (Qiagen), as per the 

manufacturer’s instructions, alongside negative controls.  Reverse transcription was 

performed using the superscript VILO cDNA synthesis kit (Life Technologies), as per 

the manufacturer’s instructions.  qPCR was performed using a Sensimix II probe kit 

(Bioline) on a ABI 750 qPCR machine (Applied Biosystems).  The following program 

cycle was used: 50°C for 2 minutes; 95°C  for 10 minutes; (95°C for 15 seconds; 

60°C for 1minute) x 40.  Data were analysed in Excel.  The mean cycle threshold 
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values (Ct) were calculated using triplicate reactions, and were normalised against 

18S controls to calculate gene expression. A concentration of 180nM for 24 hours 

was associated with maximal alteration in gene expression.   

RNA was extracted from cells treated with 180nM APC for 24 hours using the 

RNeasy Plus Kit (Qiagen) alongside negative controls.  Extracted RNA purity and 

concentration was confirmed using a spectrophotometer (NanoDrop 3300, Thermo 

Scientific).  RNA was sent for two-colour Agilent Microarray analysis at the Functional 

Genomics Facility at the University of Birmingham, using Agilent SurePrint G3 

Human Gene Expression v3 8x60K Microarrays.  Three experimental replicates were 

performed.  A minimum of two technical replicates were performed for each 

specimen.  APC treated cells were assigned to Cy5 and controls to Cy3.  Differential 

gene expression data was produced in R using the Limma package (Bioconductor) 

after ‘Loess’ normalisation [104-106].  Genes with a Bayes factor greater than 5 or an 

adjusted p value of<0.05 (Benjamini and Hochberg’s method) were considered for 

further analysis. Further analysis was completed using DAVID [107, 108] and GSEA 

[109, 110].  

Limma commands for microarray analysis: 

library (limma) 

targets <- readTargets("Targets.txt") 

RG <- read.maimages(targets, path=".", source="agilent.median") 

RG <- backgroundCorrect(RG, method="normexp", offset=16) 

MA <- normalizeWithinArrays(RG, method="loess") 



70 
 

noControls <- MA$genes$ControlType == 0 

MA2 <- MA[noControls,] 

MA.avg <- avereps(MA2, ID=MA$genes$ProbeName) 

design <- modelMatrix(targets, ref="Control") 

fit <- lmFit(MA2, design) 

fit2 <- eBayes(fit) 

output <- topTable(fit2, adjust="BH", coef="Test", number=100000) 

write.table(output, file="Results.txt", sep="\t", quote=FALSE) 

 

2.14 sEPCR ELISA 

EPCR ELISA was performed using a Human EPCR ELISA kit (Elabscience, E-EL-

H0065).  Serum from 21 early stage (Dukes A or B) and 19 late stage (Dukes C or D) 

CRC patients were obtained from the HBRC biobank.  Reference standards were 

created with serial dilution.  100μl of serum or standard was added to a well of the 

ELISA plate which was then incubated at 37°C for 90 minutes.  The solution was 

removed, and 100μl of EPCR biotinylated detection antibody was added and 

incubated for 60 minutes at 37°C.  Each well was aspirated with wash buffer (350μl 

per well).  The wash buffer was removed at each step by patting the plate dry on 

absorbent paper.  The wells were washed three times in total.  100μl of HRP 

conjugate solution was added to each well and the plate was covered and incubated 

for 30 minutes at 37°C.  The wells were washed five times as above.  90μl of 
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substrate solution was added to each well. The plate was sealed and incubated in 

darkness at 37°C for 15 minutes.  The reaction was terminated by adding 50μl of 

Stop solution (containing sulphuric acid) to each well.  The optical density was 

measured on a Victor plate reader at 450nm.  Results were analysed on Excel. 

2.15 CEA ELISA 

CEA ELISA was performed using a CEA human ELISA kit (Abcam, ab99992).  

Reference standards were created with serial dilution.  100μl of serum or standard 

was added to a well of the ELISA plate which was then incubated at RT for 150 

minutes.  Each well was aspirated and washed four times with wash buffer (300μl per 

well).  The wash buffer was removed at each step and the plate dried using 

absorbent paper.  100μl of biotinylated CEA detection antibody was added and 

incubated for 60 minutes at RT.  The wells were washed four times as above.  100μl 

of HRP-streptavidin solution was added to each well and the plate was covered and 

incubated for 45 minutes at RT.  The wells were washed four times as above.  100μl 

of substrate solution was added to each well. The plate was sealed and incubated in 

darkness at 37°C for 30 minutes.  50μl of Stop solution was then added to each well 

to terminate the reaction.  The optical density was measured on a Victor plate reader 

at 450nm.  Results were analysed on Excel. 
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2.16 RNAseq 

2.16.1 RNA extraction 

RNA was extracted from 3 FFPE scrolls per tumour using the Purelink FFPE total 

RNA isolation kit (Invitrogen) as per the manufacturer’s instructions.  After extraction, 

the samples were treated with 1μl/sample DNAse (DNase I Amplification Grade, 

Thermo Fisher (1 unit/μl)) to eliminate any extracted DNA.  The RNA concentration 

was determined using the Qubit RNA Broad Range assay kit (Life Technologies), as 

per the manufacturer’s instructions. 
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2.16.2 Truseq panel 

A custom Illumina Truseq library/panel was designed in collaboration with Dr Andrew 

Beggs.  This panel targeted the genes in Table 2.6.  The genes selected included the 

28 genes in the CIRC metagene, a host of additional immune-related genes, and 

genes associated with the Dry et al MEK signature.  The CIRC and Dry et al MEK 

signature are described in chapter 4. 

ALOX5AP ELF1 ICOS MAP2K3 

BIN2 ETV4 IDO1 NCKAP1L 

BNIP3 ETV5 IFNG ORM1 

CCL18 EVI2A IGHA1 PDCD1 

CCL5 EVI2B IGLL1 PDCD1LG2 

CD247 FOXP3 IL10 PHLDA1 

CD274 FXYD5 IL10RA PIAS1 

CD4 GNLY IL12A PROS1 

CD48 GZMH IL12B PTPRC 

CD53 GZMK IL17A S100A6 

CD74 HAVCR2 IL18 SASH3 

CD80 HLA-A IL18RAP SERPINB1 

CD8A HLA-B IL6 SLCO4A1 

CIITA HLA-C IRF1 SOCS1 

CSF1R HLA-DMA ITGB2 SPRY2 

CTLA4 HLA-DMB JAK2 SRGN 

CXCL10 HLA-DOA KANK1 STAT1 

CXCL11 HLA-DPA1 LAG3 TBX21 

CXCL13 HLA-DPB1 LAPTM5 TRIB2 

CXCL9 HLA-DQA2 LAT2 VEGFA 

CYBB HLA-DRA LCP2 WAS 

DOCK2 HLA-DRB1 LGALS3  

DUSP4 HLA-DRB5 LST1  

DUSP6 ICAM1 LZTS1  

 

Table 2.6 Genes analysed in targeted RNAseq panel. 
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Figure 2.2 contains a summary of the library preparation workflow.  In brief, 400ng of 

the RNA extracted from each tumour was used for the protocol.  The RNA was 

reverse transcribed into first strand cDNA using Protoscript II reverse transcriptase 

and random primers.  The Oligo pool was then hybridised to the cDNA.  This 

hybridized an oligo pool containing upstream and downstream oligos specific to the 

targeted regions of interest to the cDNA samples and bound them to paramagnetic 

streptavidin beads.  The bound oligos were then washed, extended and ligated.  This 

removed unbound oligos from cDNA.  A DNA polymerase extended from the 

upstream oligo through the targeted region, followed by ligation to the 5’ end of the 

downstream oligo using a DNA ligase.  This resulted in the formation of products 

containing the targeted regions of interest flanked by sequences required for 

amplification.  Then PCR amplification was performed, amplifying the extension-

ligation products using primers that added index sequences for sample multiplexing.   

The resultant output was cleaned using AMPure XP beads, to purify the PCR 

products from the other reaction components.   The library was then pooled and 

quantified.  This combined, quantified, denatured, and diluted equal volumes of 

library in hybridisation buffer in preparation for sequencing. The sequencing was 

performed on a Miseq sequencing system (Illumina). The full protocol is available 

online: 

http://support.illumina.com/downloads/truseq-targeted-rna-expression-protocol-guide-

1000000005011.html. 
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Figure 2.2 Summary of RNAseq library preparation workflow.  
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2.17 Microsatellite status 

DNA was extracted from one FFPE scroll per tumour using the Maxwell RSC DNA 

FFPE kit (Promega) as per the manufacturer’s instructions.  DNA concentration was 

determined using the Qubit dsDNA BR assay kit (Life Technologies). 

Microsatellite status was determined with a protocol adapted from Buhard et al. [111].  

This technique uses a refined version of the ‘Bethesda panel’ of five markers for the 

analysis of MSI.  The Bethesda panel includes two mononucleotide (BAT-25 and 

BAT-26) and three dinucleotide (D5S346, D2S123, and D17S250) repeats.  Tumours 

with instability at two or more of these markers are defined as being MSI-H, whereas 

those with instability at one repeat or showing no instability are defined as MSI-low 

and MSS tumours, respectively.   

Extracted DNA from tumour samples underwent polymerase chain reaction (PCR) 

with the reagent volumes in Table 2.7. 

Reagent Volume per reaction 
(μl) 

Water 19 

5x 5 

Primer Mix 0.6 

MyTaq 0.2 

Sample (DNA) 1.0 

 

Table 2.7 Microsatellite status PCR reagents 

PCR reaction conditions were 95°C for 2 minutes, then 33 cycles of 95°C for 15 

seconds, 55°C for 15 seconds and 72°C for 50 seconds.  Successful amplification 

was confirmed by running the product on an agarose gel. 
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Fragment analysis was conducted on an Applied Biosystems 3730 DNA analyser set 

to run in ‘fragment analysis’ mode.  1µl sample (from a 1/100 dilution of PCR 

product), 9µl of formamide and 1µl LIZ-600 size standard (Applied Biosystems) were 

loaded onto each well of the plate.  Sizes of microsatellite markers were determined 

using Peak Scanner software and microsatellite status in each sample was 

assessed. 
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Chapter 3 

 

The role of EPCR in colorectal tumourigenesis 
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3.1 Introduction 

3.1.1 The physiological role of EPCR 

Endothelial protein C receptor (EPCR) is a type I transmembrane protein that is 

homologous to Major Histocompatibility Complex (MHC) molecules.  It was initially 

described as a receptor for Protein C (PC), which is crucial in the down modulation of 

blood coagulation [61].  EPCR increases the conversion of the zymogen PC to 

Activated Protein C (APC), and is a receptor for both PC and APC.  In endothelium, 

APC cleaves factors V and VIII, which is central to its anti-coagulative effect [60].  In 

addition to coagulation, EPCR expression on endothelium is known to play important 

roles in inflammation, apoptosis and cell proliferation [69, 73, 74, 112].   APC binding 

to EPCR initiates intracellular signalling and alters gene transcription [69].  This 

signalling is dependent on Protease-Activated Receptor 1 (PAR1).  Downstream 

effects of PAR1 activation include ERK and Akt phosphorylation and subsequent 

alteration in the expression of inflammatory genes [69, 74].  Pro and anti-apoptotic 

proteins such as Bax and Bcl2, as well as p53, are modulated by PAR1 cleavage 

[73].  Subsequently, it is thought that APC/EPCR, through cleavage of PAR1, has 

anti-inflammatory and anti-apoptotic effects [113].     

3.1.2 EPCR as a ligand for γδ T-cells 

EPCR has been shown to be upregulated in various cancer cell lines [59].  Moreover, 

work in our laboratory has highlighted EPCR as a direct ligand for Vδ2-negative γδ T-

cells [53], the predominant tissue subset of these unconventional T cells.  γδ T cells 

are able to recognise ‘altered self’, by detecting upregulation of host components via 

germline-encoded receptors (eg NKG2D) or potentially via the γδ TCR, in either 
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microbial or non-microbial stress. EPCR is a direct ligand for the Vγ4δ5 LES TCR, 

originally isolated from a patient with acute CMV.  EPCR, expressed on endothelial 

cells infected by CMV in vivo, was not upregulated by CMV infection, but TCR 

recognition of EPCR in the context of a CMV-induced ‘multimolecular stress 

signature’ was sufficient to induce LES recognition of target cells.  LES was able to 

recognise various cell lines expressing EPCR in an EPCR-dependent manner.  

These studies highlighted the possibility that EPCR might act as a signal of epithelial 

tumourigenesis to γδ T cells.  To understand this more fully, a greater knowledge of 

EPCR’s role in epithelial tumourigenesis was required.  I therefore sought to 

understand the extent and significance of EPCR’s expression in epithelial cancers, 

the cellular mechanisms of its expression, and its functional significance in 

transformed tumour cells.  EPCR-associated signalling pathways have potential 

relevance in cancer, overlapping with key proliferative and apoptotic pathways in the 

tumour setting, raising the possibility that dysregulated EPCR expression on 

transformed epithelial tissue may directly effect similar mechanisms to promote 

tumour cell survival and growth. 

3.1.3 EPCR in cancer 

Recently, there has been increasing interest in EPCR’s potential role in the epithelial 

tumour setting.  However, there have been conflicting results in different tumour 

types.   A number of studies suggest that EPCR expression increases tumour cell 

survival.  In mouse xenograft models of lung cancer, treatment with EPCR-blocking 

antibodies reduces metastatic tumour burden [78].  Knockdown of EPCR in a gastric 

cancer cell line suppresses cell proliferation and migration [114].  In breast cancer, 

EPCR is a marker of cancer stem cell-like populations, which are thought to have a 
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high tumour-initiating capacity, and in vivo EPCR blockade attenuates tumour growth 

[80].  Conversely, mouse melanoma studies suggest that APC treatment and 

endothelial EPCR overexpression are associated with decreased metastasis 

development in this tumour type [79].  Additionally, in in vivo models of 

mesothelioma, EPCR knockdown significantly increases tumour growth and burden 

[83].   

These opposing results demonstrate that there is ambiguity regarding EPCR’s 

significance in the cancer setting, with varying effects in different tumour types.  

However, there are clearly suggestions that EPCR is clinically relevant.  Significantly, 

EPCR has been shown to be a marker of chemoresistance in tumour cell lines [59],  

including colorectal cancer cell lines such as HCT116.  Furthermore, EPCR 

expression is predictive for chemotherapy response in early stage non-small cell lung 

cancer [78].  Finally, in ovarian cancer, serum EPCR expression is correlated with the 

tumour marker CA-125, suggesting possible clinical relevance as a biomarker [86].  

The role of EPCR in CRC, a tumour type with high mortality and prevalence [1], has 

not been explored, and in view of the well-established developmental pathway and 

pathological characterisation of CRC, this tumour type is a promising model in which 

to clarify the role of EPCR in tumourigenesis.  

3.1.4 Chapter aims 

In this chapter, I have characterised EPCR expression in CRC, and have provided 

potential explanations into the mechanisms of its expression.  The role of APC 

induced signalling on ERK and gene transcription has been explored.  Furthermore, I 

have shown that EPCR has a modest impact on tumour cell chemosensitivity and 
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influences migration.  Finally, utilizing cancer tissue from the MRC COIN clinical trial 

[10], which investigated the efficacy of EGFR monoclonal antibody therapy in 

metastatic colorectal cancer, I provide insights into EPCR’s likely clinical relevance.  

The data provide a compelling mechanism for EPCR expression in multiple epithelial 

tumour settings, and suggest that its upregulation could represent a wider 

dysregulation of chromosome 20q.  These findings have implications for 

understanding the clinical significance of EPCR in different tumour settings.   

Furthermore, they highlight that single γδ TCR ligands may have the potential to 

denote ‘altered self’ in different ways in distinct stress stimuli, including infection and 

tumourigenesis.  
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3.2 Results 

3.2.1 EPCR mRNA expression in multiple cancer types 

The Oncomine database, which enables comparative analysis of gene expression in 

tumours versus normal tissue, was interrogated to determine EPCR expression in 

multiple tumour types [94].  EPCR was upregulated in tumour versus normal in 126 

separate datasets and downregulated in 50 datasets, which included 21 different 

cancer types.  Of all cancer types, colorectal cancer had the highest level of EPCR 

overexpression, and the most datasets in total in which EPCR was overexpressed 

(Table 3.1).  In CRC, across 9 separate non-overlapping datasets, EPCR was 

significantly overexpressed (p <0.0001).   This suggested amongst all tumours, 

colorectal cancer had one of the highest and most consistent levels of EPCR 

upregulation.   

Interestingly in certain cancer types, particularly ovarian cancer, EPCR was amongst 

the most downregulated genes.  This highlights that the expression of EPCR is highly 

variable across different cancers. 
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Analysis type by cancer Cancer vs. 
normal 

Bladder cancer 4  

Brain and CNS cancer 13  

Breast Cancer 3 9 

Cervical Cancer 3  

Colorectal cancer 22  

Oesophageal cancer 8 2 

Gastric cancer 8  

Head and Neck cancer 14  

Kidney cancer 9 1 

Leukaemia 8 1 

Liver cancer 4 2 

Lung cancer  5 

Lymphoma 11 1 

Melanoma  2 

Myeloma 1  

Other cancer 12 4 

Ovarian cancer  10 

Pancreatic cancer 5  

Prostate cancer  9 

Sarcoma 2 4 

 

Percentile of underexpressed genes 
containing EPCR 

 Percentile of overexpressed genes 
containing EPCR 

1% 5% 10%  10% 5% 1% 

       
 

Table 3.1 ONCOMINE expression data – number of datasets in which EPCR is significantly 

differentially expressed in cancer versus normal to p<0.0001.  Cell colour is determined by the highest 

overexpression (left column) or underexpression (right column) gene rank percentile for EPCR. 
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3.2.2 EPCR expression in colorectal cancer 

To confirm EPCR’s upregulation in colorectal cancer, sections from 30 colorectal 

cancers and adjacent normal regions were stained for EPCR using 

immunohistochemistry.   The primary EPCR antibody was validated using a HCT116 

EPCR knockdown cell line, and endothelium acted as a positive control (Figure 3.1).  

In addition, a control was performed with the primary antibody omitted (data not 

shown).     

Stained sections were imaged on the Vectra platform and were analysed using 

Inform software (Figure 3.2 and 3.3).  Segmentation and scoring algorithms were 

validated by a Histopathologist.  This confirmed that EPCR reactivity was higher in 

tumour regions compared to normal regions (p<0.0001).  Reactivity was measured 

using the H-score, which is a function of reactivity intensity and percentage coverage.  

The mean H score in tumour regions was 244.2 (standard error 5.03), versus 87.6 

(standard error 10.43) in normal regions.  EPCR reactivity was observed in the 

cytoplasm and membrane compartments.  Intense reactivity of what appeared to be 

mast cells (as confirmed by a Histopathologist) was observed throughout tissue 

sections (Figure 3.2D).  Collaborative studies by Professor Peter Bradding confirmed 

EPCR expression on mast cells (Figure 3.4).  This is the first report of 

immunoreactivity to EPCR on mast cells to my knowledge.   
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Figure 3.1 Validation of EPCR antibody. 

a) IHC staining of wild type HCT116 cells with anti-EPCR antibody. 

b) IHC staining of EPCR shRNA knockdown HCT116 cells with anti-EPCR 

antibody. 

c) Positive EPCR immunoreactivity in endothelium. 

 

  



87 
 

 

 

 

Figure 3.2 Scanned image of EPCR-stained CRC section. 

a) Whole slide scanned image of CRC region surrounded by normal colonic 

mucosa.  

b) 5x magnified image of tumour with adjacent normal colonic mucosa 

c) 20x magnified image of tumour region, demonstrating strong EPCR 

staining 

d) 20x magnified image of normal region, with negative staining of colonic 

crypts 
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Figure 3.3 Digital software analysis of EPCR-stained CRC section. 

a) Area for digital analysis with Inform software (20x magnification) 

b) Image a) with Inform tissue-segmentation through trained automated 

algorithm.  Red=epithelium, green=stroma, yellow=background 

c) Image b) with staining intensities within tumour cells. Red=strong, 

orange=moderate, yellow=weak 
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Figure 3.4 EPCR expression on mast cells. 
  
a) Flow cytometry demonstrating EPCR protein expression on mast cells using 2E9 
antibody  
b) Flow cytometry data are presented as percentage of 2E9+ cells of the total cell 
population using the Overton method [115] for Human Mast Cell line 1 (HMC-1) and 
Human Basophil and Lung Mast Cell line (HLMC) 
c) and d) Sequential sections demonstrating co-localisation of EPCR to tryptase 
positive mast cells within airway tissue (black arrows, x20 magnification). 
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3.2.3 The association between EPCR expression in colon cancer and gene 

amplification and hypomethylation 

To determine the possible mechanisms of EPCR overexpression, I utilised public 

bioinformatic genomics and transcriptomics datasets [91].  The EPCR gene 

(PROCR), though rarely mutated in any cancer type, was frequently amplified (Figure 

3.5).  In the CRC TCGA dataset, gene amplification was significantly associated with 

increased mRNA expression (p<0.05).  Overall, there was a strong correlation 

between PROCR copy number and mRNA expression (Spearman rho = 0.325, 

p<0.00001) (Figure 3.6A).  In the same dataset, the chromosomal unstable (CIN) 

group of cancers had a significantly higher EPCR expression than the non-CIN group 

(p<0.01).  Despite this, some EPCR overexpressors were of the non-CIN 

microsatellite unstable (MSI) hypermutated subtype.  These tumours were mostly 

diploid, thus gene amplification could not account for overexpression.  I therefore 

suspected that epigenetic factors were also important in determining EPCR 

expression.  Indeed, there was a strong inverse correlation between PROCR 

promotor methylation and gene expression across the entire patient dataset 

(Spearman rho -0.59, p<0.001) (Figure 3.6 B, C).  When copy number data were 

combined with methylation data, it became clear that hypomethylation played a key 

role in determining expression across all patient groups (Figure 3.7).  Patients that 

overexpressed EPCR had significantly lower methylation than those that did not 

(p<0.001).  Amplification and hypomethylation when combined associated with the 

highest expression.  Having established that EPCR is overexpressed in a large 

number of colorectal tumours, and the likely mechanism, the wider genomic context 

of EPCR expression was then investigated. 
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Figure 3.5 PROCR amplification, deletion and mutation rates across a range of 
cancer types and databases [89, 92].  The number above each bar represents the 
size of each dataset. 
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Figure 3.6 The association between EPCR expression and PROCR gene 
amplification and hypomethylation in the TCGA CRC dataset (n=195) 

a) PROCR copy number versus mRNA expression 

b) Variation in PROCR copy number and promotor methylation with mRNA 

expression  

c) Heatmap showing correlation between PROCR mRNA expression, promotor 

methylation and copy number values (blue = low, red= high) 
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Figure 3.7 Relationship between PROCR methylation, GISTIC copy number 

scores and expression.  GISTIC (Genomic Identification of Significant Targets in 

Cancer) scores of 0 (blue) represent tumours with diploid PROCR copy number, 

scores of 1 (green) represent tumours with low level gains in PROCR copy number, 

and scores of 2 (red) represent tumours with high level amplification of PROCR copy 

number.  The upper box highlights patient group with low methylation and highest 

expression.  The lower box highlights most highly methylated patients, who have low 

expression regardless of copy number status.  
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3.2.4 The association between EPCR expression and chromosome 20q 

amplification 

To determine whether PROCR was co-expressed with other genes, I explored TCGA 

expression and genetic data. The majority of genes whose expression correlated 

most closely with PROCR were located in the same chromosomal region - 

chromosome 20q (Table 3.2).   

On an individual patient basis, PROCR gene amplification was frequently associated 

with amplification of all genes in chromosome 20q (Figure 3.8).  Across the entire 

195 patient cohort, the copy numbers of the majority (99.42%) of genes located on 

chromosome 20q were positively correlated with PROCR copy number (Figure 3.9A), 

whereas a significantly smaller proportion of 20p genes were correlated (36.90%, 

p<0.05 (chi-squared)).  In addition, the expression of a high proportion (53.80%) of 

20q genes were positively correlated with PROCR expression, though the 

correlations were not as strong as those seen with copy number (Figure 3.9C).  A 

significantly smaller proportion of 20p genes were correlated in terms of expression 

(13.72%, p<0.05 (chi-squared)).  Finally, 55.33% of chromosome 20q genes 

correlated with PROCR in terms of promotor methylation.  However, a similar 

proportion of 20p genes were also correlated in terms of methylation (51.30%, 

p=0.47, chi-squared) (Figure 3.9B).  This suggests that whilst PROCR copy number 

and expression co-regulation are a 20q regional phenomenon, regulation of 

methylation is less region-specific. 
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Across the entire colon cancer dataset, chromosome 20q was amongst the most 

frequently amplified chromosomal regions (Figure 3.10).  Additionally, 20q was 

amplified across a range of cancer types, including several in which EPCR has been 

shown to be expressed, including melanoma [79], gastric cancer [114] and lung 

squamous cell cancer [78] (Figure 3.10). These data suggest that EPCR may be a 

marker of tumours with chromosome 20q amplification, which are known to have 

poorer outcome [116, 117].     
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Gene Symbol 
Spearman Score vs 

PROCR (mRNA 
expression) 

Chromosomal 
location 

HM13 0.45 20q11.21 

PDRG1 0.44 20q11.21 

C20ORF24 0.43 20q11.23 

PSMA7 0.43 20q13.33 

TPD52L2 0.43 20q13.33 

TRPC4AP 0.43 20q11.22 

MRGBP 0.43 20q13.33 

ADRM1 0.42 20q13.33 

BRI3 0.42 7q21 

EIF6 0.41 20q11.22 

ATP6V1F 0.41 7q32.1 

EFNA2 0.41 19p13.3 

SSUH2 0.41 3p25.3 

NDRG3 0.4 20q11.23 

RHOD 0.4 11q13.2 

EDEM2 0.39 20q11.22 

ACTR5 0.39 20q11.23 

DYNLRB1 0.39 20q11.22 

CEBPA 0.39 19q13.11 

FAM96B 0.39 16q22.1 

UQCC1 0.38 20q11.22 

PIGU 0.38 20q11.22 

ROMO1 0.38 20q11.22 

AHCY 0.38 20q11.22 

NEU1 0.38 6p21.33 

TOMM34 0.38 20q13.12 

TCFL5 0.38 20q13.33 

RPS21 0.38 20q13.33 

TLDC2 0.37 20q11.23 

 

Table 3.2 Genes most highly co-expressed with EPCR in TCGA CRC dataset, 

and their chromosomal locations 
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Figure 3.8 Copy numbers of chromosome 20 genes in 195 TCGA colorectal 
cancer patients.  Genes are organised by chromosomal location (20p is left, 20q is 
right).  Each individual horizontal coloured line represents a patient.  Blue represents 
loss of gene, red represents gain of gene and white represents no change in copy 
number.  The location of PROCR is indicated by the arrow. 

Image created using Integrated Genomics Viewer. 
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Figure 3.9 PROCR correlations with chromosome 20 genes.   

Pearson correlations for PROCR gene (A) copy number, (B) methylation and (C) 
expression with genes on chromosome 20, arranged by chromosome region.  
PROCR is located on 20q11.2 (boxed). Red lines represent the thresholds of 
statistical significance (Pearson value >0.1405 or <-0.1405, significant to p<0.05).    
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Figure 3.10 Genomic copy number variations across a range of cancers.   

Red represents gene and chromosome amplification.  Blue represents deletion of 
genes and chromosomes.  Chromosomes are ordered from 1 to 23,X,Y. 
Chromosome 20q is one of the most frequently amplified regions in colon cancer and 
across a range of cancer types (colon adenocarcinoma, breast adenocarcinoma, 
lung squamous cell cancer, gastric adenocarcinoma and melanoma TCGA data). 

Image created using Integrated Genomics Viewer. 
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Carvalho et al. previously identified 3 regions, called ‘smallest regions of overlap’ 

(SROs), of chromosome 20q that are commonly amplified in CRC [117].  PROCR is 

located within the first of these (SRO 1) which spans 32-36 Mb.  The group identified 

7 putative oncogenes located on 20q based on upregulation on carcinomas versus 

adenomas, association with 20q amplification, and correlation between copy number 

and gene expression.  Of these 7 genes, 6 significantly correlated with EPCR 

expression (Table 3.3).  Furthermore, EPCR expression was significantly correlated 

with 13/13 potential ‘cancer initiating genes’ located on 20q identified by Tabach et 

al. [116].  Finally, PROCR was significantly correlated with a gene that was 

previously ranked first in a microarray-based CIN signature (TPX2) [118], reinforcing 

the view that its expression is associated with chromosomal instability. 

 Chromosomal 
location 

Copy 
number 

Methylation Expression 

C20orf24 20q11.22 0.989164 0.227405 0.498511 

AURKA 20q13.2 0.907967 0.009653 0.239549 

RBM38 (RNPC1) 20q13.32 0.928319 0.21619 0.053815 

NELFCD (TH1L) 20q13 0.901242 0.155924 0.334379 

ADRM1 20q13.33 0.920162 0.295276 0.454516 

MRGBP 
(C20orf20)  

20q13.33 0.909783 N/A 0.409151 

TCFL5 20q13.3-qter 0.909783 0.214221 0.364161 

 

Table 3.3 Correlation of the Carvalho et al. putative chromosome 20q 

oncogenes and PROCR.  Table values for copy number, methylation and 

expression are Pearson scores (R) versus PROCR in the TCGA CRC dataset.  

P<0.05 where R>0.1405, highlighted red. 

 

Having established that EPCR upregulation correlates with regional dysregulation, I 

then sought to understand the significance of EPCR expression in tumourigenesis. 
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3.2.5 EPCR expression in colorectal cancer cell lines 

Using the Cancer Cell Line Encyclopaedia [93], in silico analyses of EPCR 

expression in multiple colorectal cancer cell lines were performed to inform in vitro 

studies.  5 cell lines were selected which were predicted to have high EPCR 

expression (HCT116, HT29, RKO, COLO320 and SW480).  EPCR expression was 

confirmed with flow cytometry (Figure 3.11).  All CRC carcinoma cell lines that were 

tested expressed EPCR.  Both HCT116 and HT29 cell lines had high expression, 

and these lines were chosen for further in vitro studies as they represent the two 

main biological subtypes of CRC (MSI-H and CIN respectively).  EPCR expression 

was also investigated in adenoma cell lines.  The AA/C1 adenoma line exhibited low 

expression (Figure 3.11 F,G), but its malignant derivative AA/C1 10C had higher 

expression.   
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Figure 3.11 Expression of EPCR on colorectal cancer cell lines.  Expression of 
EPCR on a) Colo320, b) RKO, c) SW480, d) HT29 and e) HCT116 cells by flow 
cytometry. Expression of EPCR on f) AA/C1 non-tumourigenic adenoma cells or g) 
the tumourigenic AA/C1/10C derivative.  Isotype control staining is shown in grey and 
EPCR staining in black. 
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3.2.6 Exogenous Activated Protein C (APC) induction of ERK phosphorylation 

in colon cancer cells 

ERK is a key MAP kinase that mediates several of the downstream effects of EGFR 

and RAS signalling, as well as other pathways [10, 119].  APC treatment of vascular 

endothelial cells has been shown to induce ERK phosphorylation [120].  Therefore, I 

wanted to investigate whether EPCR-mediated signalling could induce ERK 

phosphorylation in the CRC setting, as this could have implications for the effects of 

EPCR upregulation on tumour cells.  HCT116 cells were therefore treated with 

exogenous Activated Protein C (APC) to determine whether APC could induce ERK 

phosphorylation in this colorectal cancer cell line (Figure 3.12).  Treatment of serum-

starved HCT116 cells with APC for 2-10 minutes was associated with an increase in 

ERK phosphorylation.  This increase was inhibited by EPCR-blocking antibodies, 

suggesting that APC-induced ERK phosphorylation is EPCR dependent.   
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Figure 3.12 Western blotting investigating the effect of APC on ERK 
phosphorylation.  

a) Western blotting for pERK and Total-ERK of lysates from serum-starved 

HCT116 cells that had been treated with APC for 5 minutes.  Negative controls 

were serum starved only.  Positive controls were treated with 50% FCS for 10 

minutes. 

b) Western blotting after pre-treatment with EPCR-blocking antibody.  The 

protocol was otherwise identical to a), and was performed in parallel. 

ERK phosphorylation assays and western blotting were performed in triplicate.   
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3.2.7  Detection of EPCR-related proteins in CRC  

APC is produced through the activation of Protein C (PC), via EPCR [75].  To 

determine whether HCT116 cells produce endogenous PC, serum-starved HCT116 

cells were lysed and western blotting for PC was performed (Figure 3.13).  A faint 

band for PC was observed in the cell lysate, but no signal was detected in the 

supernatant or media.  This suggests that these cells can produce PC endogenously, 

and therefore autocrine EPCR-mediated PC activation may be possible.   

To determine if Protease-Activated Receptor 1 (PAR1) (which is crucial for EPCR-

mediated signalling [75]) is present in primary CRC tissue, exploratory 

immunohistochemistry was performed on 10 CRC cases.  This demonstrated PAR1 

immunoreactivity in cancer cells (Figure 3.14) in all cases.  The presence of PAR1 

suggests that EPCR may be capable of initiating intracellular signalling in CRC. 
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Figure 3.13 Detection of Protein C in HCT116 cell lysate.  The anti-Protein C 
antibody detects both Protein C (62 KDa) and Activated Protein C (APC, 21 KDa).  
Exogenous APC was used as a positive control.  A faint band was detected in the 60-
65KDa range in the HCT116 lysate, suggestive of the presence of PC.  Lysis of 
HCT116 cells and western blotting for APC were performed in triplicate.  The faint 
band visible in the HCT116 lysate was present in all three experiments. 
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Figure 3.14 PAR1 immunohistochemistry in (A) CRC and (B) normal colon.  

In addition, controls were performed with the primary antibody omitted (data not 
shown).      
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3.2.8 Microarray analysis 

After establishing that APC can induce ERK phosphorylation in HCT116 cells, I 

wanted to determine the effect of APC treatment on gene transcription. Optimal APC 

concentrations and treatment durations were determined by assessing APC-induced 

expression changes of 4 genes (NFkB2, PCNA, BCL2A1, EFNA1, which were 

chosen based on previous findings in endothelium [69]) using qRT-PCR.   A 

concentration of 180nM for 24 hours was associated with maximal alteration in gene 

expression.  Therefore, serum-starved HCT116 cells were treated with 180nM APC 

for 24 hours.  RNA was extracted from both APC-treated cells and control cells for 

two-colour Agilent microarray analysis.  Differential gene expression was determined 

using the R Limma package.  There was strong overlap between the three 

experimental replicates, with over 400 genes with differential gene expression across 

all three replicates.  Table 3.4 shows genes with significant differential expression 

(Bayes factor > 5).  Within the list of differentially expressed genes, a high proportion 

were ribosomal.  Gene groupings were investigated by gene set enrichment analysis 

(GSEA) (Table 3.5, Figure 3.15).  Several gene groupings were enriched, a large 

proportion of which were associated with gene transcription.  Additionally, several 

gene sets associated with epidermal growth factor (EGF) signalling were enriched, 

consistent with the ERK phosphorylation data.  Finally, a gene set containing genes 

upregulated by thrombin signalling in HUVEC cells was significantly enriched, 

consistent with thrombin and APC’s common signalling pathways. 
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Gene ID Gene name LogFC (Fold 
Change) 

P Value Adjusted P 
Value 

Bayes 
factor 

RPL13A ribosomal protein L13a 0.729831 1.32E-09 5.04E-05 11.4789 

RPS2 ribosomal protein S2 0.75432 2.37E-09 5.04E-05 11.07495 

RPS21 ribosomal protein S21 0.64925 7.57E-09 8.69E-05 10.22977 

RPL38 ribosomal protein L38 0.640211 8.88E-09 8.69E-05 10.10872 

RPS20 ribosomal protein S20 0.56367 1.23E-08 9.05E-05 9.857144 

RPL12 ribosomal protein L12 0.589346 1.61E-08 0.000105 9.647333 

RPL26 ribosomal protein L26 0.527112 2.52E-08 0.000119 9.293517 

RPS27 ribosomal protein S27 
(metallopanstimulin 1) 

0.569845 2.63E-08 0.000119 9.257807 

EEF1A1 eukaryotic translation 
elongation factor 1 alpha 1 

0.687543 3.33E-08 0.000125 9.067365 

RPL23 ribosomal protein L23 0.691122 3.35E-08 0.000125 9.06284 

RPL8 ribosomal protein L8 0.581833 3.41E-08 0.000125 9.047782 

RPL35A ribosomal protein L35a 0.614064 3.76E-08 0.00013 8.96871 

RPL31 ribosomal protein L31 0.484977 7E-08 0.000188 8.453052 

TACSTD2 tumor-associated calcium 
signal transducer 2 

0.505105 8.88E-08 0.000226 8.251977 

RPL37A ribosomal protein L37a 0.457551 9.24E-08 0.000226 8.218734 

UBC ubiquitin C 0.505567 1.26E-07 0.000286 7.951056 

RPL32 ribosomal protein L32 0.44282 1.27E-07 0.000286 7.948702 

KITLG KIT ligand 0.430458 1.36E-07 0.000289 7.885965 

RPS18 ribosomal protein S18 0.430622 1.38E-07 0.000289 7.876527 

DUT dUTP pyrophosphatase -0.4403 1.79E-07 0.000357 7.648652 

GIPR gastric inhibitory polypeptide 
receptor 

0.665148 2.49E-07 0.000421 7.360759 

RPS8 ribosomal protein S8 0.49689 2.51E-07 0.000421 7.35272 

RPL7A ribosomal protein L7a 0.431458 2.9E-07 0.00046 7.224366 

RPS13 ribosomal protein S13 0.366457 4.07E-07 0.00052 6.922628 

CLK1 CDC-like kinase 1 -0.38066 4.25E-07 0.000532 6.882765 

RPL17 ribosomal protein L17 0.377933 4.57E-07 0.000555 6.818574 

ING3 inhibitor of growth family, 
member 3 

0.367639 5.26E-07 0.000596 6.692568 

RPL3 ribosomal protein L3 0.446173 6.22E-07 0.000629 6.540546 

RPS7 ribosomal protein S7 0.413569 8.01E-07 0.000677 6.309131 

SLC1A3 solute carrier family 1 (glial 
high affinity glutamate 
transporter), member 3 

0.36994 9.43E-07 0.000693 6.159936 

LCN2 lipocalin 2 (oncogene 24p3) 0.483695 9.43E-07 0.000693 6.159605 

MT2A metallothionein 2A 0.448027 9.86E-07 0.000695 6.118647 

RPL10A ribosomal protein L10a 0.373973 9.91E-07 0.000695 6.113851 

ANXA2 annexin A2 0.352575 1.02E-06 0.000695 6.089494 

C10orf10 chromosome 10 open reading 
frame 10 

0.396982 1.07E-06 0.000716 6.040645 
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HNRPH2 heterogeneous nuclear 
ribonucleoprotein H2 (H') 

0.348645 1.17E-06 0.000757 5.958679 

ARHGEF15 Rho guanine nucleotide 
exchange factor (GEF) 15 

0.451955 1.24E-06 0.000776 5.910181 

RPL36A ribosomal protein L36a 0.459017 1.27E-06 0.000784 5.886451 

RPS16 ribosomal protein S16 0.587827 1.33E-06 0.000806 5.841946 

RPS3A ribosomal protein S3A 0.38013 1.42E-06 0.000822 5.782664 

RPL34 ribosomal protein L34 0.401456 1.5E-06 0.000845 5.732861 

ATF6 activating transcription factor 
6 

0.330841 1.52E-06 0.000846 5.71839 

FAU Finkel-Biskis-Reilly murine 
sarcoma virus (FBR-MuSV) 
ubiquitously expressed (fox 
derived); ribosomal protein 
S30 

0.402734 1.54E-06 0.000846 5.70528 

BRP44L brain protein 44-like 0.389064 1.68E-06 0.000881 5.624935 

RPL13 ribosomal protein L13 0.526131 1.85E-06 0.000946 5.534252 

MIF macrophage migration 
inhibitory factor 
(glycosylation-inhibiting 
factor) 

0.379488 1.85E-06 0.000946 5.533545 

EIF4A3 eukaryotic translation 
initiation factor 4A, isoform 3 

-0.33887 1.92E-06 0.000947 5.501359 

DHTKD1 dehydrogenase E1 and 
transketolase domain 
containing 1 

0.364546 1.94E-06 0.000951 5.489604 

FAM49B family with sequence 
similarity 49, member B 

0.396678 1.97E-06 0.000955 5.477903 

RPS26 ribosomal protein S26 0.454294 2.2E-06 0.001032 5.372796 

RPL30 ribosomal protein L30 0.362797 2.21E-06 0.001032 5.367476 

HRASLS5 HRAS-like suppressor family, 
member 5 

0.456289 2.25E-06 0.001032 5.351502 

TAPBP TAP binding protein (tapasin) 0.312637 2.26E-06 0.001032 5.349157 

CNOT7 CCR4-NOT transcription 
complex, subunit 7 

0.352376 2.27E-06 0.001032 5.344529 

RASD1 RAS, dexamethasone-induced 
1 

0.525178 2.31E-06 0.00104 5.326405 

FKSG30 actin-like protein 0.315158 2.43E-06 0.001081 5.279509 

SSBP4 single stranded DNA binding 
protein 4 

-0.36137 2.67E-06 0.001143 5.192159 

SPATA22 spermatogenesis associated 
22 

0.446524 2.86E-06 0.001206 5.125614 

RPLP0 ribosomal protein, large, P0 0.376217 2.87E-06 0.001206 5.121352 

DTL denticleless homolog 
(Drosophila) 

-0.32126 2.91E-06 0.001212 5.10953 

RPL10 ribosomal protein L10 0.320072 2.97E-06 0.001219 5.091869 

RPS19 ribosomal protein S19 0.349232 2.97E-06 0.001219 5.090609 



111 
 

GJB3 gap junction protein, beta 3, 
31kDa (connexin 31) 

0.307522 3E-06 0.001225 5.08002 

RPS12 ribosomal protein S12 0.319493 3.07E-06 0.001242 5.059895 

HMBS hydroxymethylbilane 
synthase 

-0.31278 3.12E-06 0.001242 5.044439 

DUSP1 dual specificity phosphatase 1 0.395831 3.12E-06 0.001242 5.043594 

ATAD4 ATPase family, AAA domain 
containing 4 

0.375962 3.15E-06 0.001242 5.034235 

TES testis derived transcript (3 
LIM domains) 

0.428908 3.27E-06 0.001244 5.000888 

 

Table 3.4 Genes differentially expressed after APC treatment of HCT116 cells 

(Bayes Factor >5).  Log FC shows fold change (base 2) in APC-treated cells versus 

controls.  A logFC of 0 therefore represents equal expression in the APC-treated and 

control cells, >0 represents higher expression in the APC-treated cells, and <0 

represents lower expression in the APC-treated cells. 
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NAME OF GENE SET 
SIZE 

(Genes) 
Enrichment 

score 
FDR q-
value 

FWER 
p-

value 

RANK 
AT MAX 

REACTOME_PEPTIDE_CHAIN_ELONGATION 83 0.830811 0 0 958 

REACTOME_INFLUENZA_VIRAL_RNA_ 
TRANSCRIPTION_AND_REPLICATION 

97 0.791672 0 0 958 

REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_ 
PROTEIN_TARGETING_TO_MEMBRANE 

106 0.767984 0 0 958 

KEGG_RIBOSOME 85 0.838541 0 0 958 

REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_ 
REGULATION 

91 0.791225 0 0 958 

REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED 
_BY_THE_EXON_JUNCTION_COMPLEX 

102 0.748643 0 0 958 

REACTOME_TRANSLATION 131 0.695274 0 0 958 

REACTOME_INFLUENZA_LIFE_CYCLE 130 0.687707 0 0 958 

BILANGES_SERUM_AND_RAPAMYCIN_SENSITIVE_GENES 61 0.72625 0 0 958 

REACTOME_FORMATION_OF_THE_TERNARY_COMPLEX 
_AND_SUBSEQUENTLY_THE_43S_COMPLEX 

35 0.815359 0 0 958 

REACTOME_ACTIVATION_OF_THE_MRNA_UPON_BINDING 
_OF_THE_CAP_BINDING_COMPLEX_AND_EIFS_ 

AND_SUBSEQUENT_BINDING_TO_43S 
43 0.737235 0 0 958 

CHNG_MULTIPLE_MYELOMA_HYPERPLOID_UP 44 0.714276 0 0 958 

REACTOME_METABOLISM_OF_MRNA 202 0.517838 0 0 958 

FLOTHO_PEDIATRIC_ALL_THERAPY_RESPONSE_UP 50 0.642381 0 0 1173 

NAGASHIMA_EGF_SIGNALING_UP 52 0.629965 0 0 2671 

PECE_MAMMARY_STEM_CELL_DN 128 0.529283 0 0 1489 

REACTOME_METABOLISM_OF_RNA 245 0.453754 0 0 958 

NAGASHIMA_NRG1_SIGNALING_UP 160 0.485804 7.41E-05 0.001 2099 

CHASSOT_SKIN_WOUND 10 0.878359 2.08E-04 0.003 1642 

JECHLINGER_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_ 
DN 

63 0.526858 3.91E-04 0.006 886 

HOLLEMAN_ASPARAGINASE_RESISTANCE_B_ALL_UP 22 0.674004 3.73E-04 0.006 551 

REACTOME_OLFACTORY_SIGNALING_PATHWAY 102 0.474621 5.87E-04 0.01 3844 

REACTOME_METABOLISM_OF_PROTEINS 382 0.395476 8.40E-04 0.015 2516 

UZONYI_RESPONSE_TO_LEUKOTRIENE_AND_THROMBIN 34 0.597898 8.05E-04 0.015 4451 

TIEN_INTESTINE_PROBIOTICS_6HR_UP 50 0.533304 0.00148 0.028 1092 

HSIAO_HOUSEKEEPING_GENES 363 0.389684 0.00247 0.049 1536 

LEE_LIVER_CANCER_HEPATOBLAST 15 0.701492 0.00248 0.051 3202 

AMIT_EGF_RESPONSE_40_HELA 39 0.545263 0.00395 0.083 2970 

YAMASHITA_LIVER_CANCER_WITH_EPCAM_UP 46 0.535978 0.00390 0.085 1692 

BILANGES_SERUM_RESPONSE_TRANSLATION 33 0.579625 0.00436 0.099 1489 

 

Table 3.5 Top 30 gene sets in Gene Set Enrichment Analysis of APC-treated 

HCT116 cells versus control HCT116 cells. 
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Figure 3.15 Gene set enrichment analyses. Enrichment plots for gene sets: 

a) Nagashima EGF signalling up 

b) Zwang EGF persistently up 

c) Amit EGF response 40 Hela 

d) Uzonyi response to leukotriene and thrombin 

These enrichment plots rank all genes (bottom section) in order of most 
overexpression after APC treatment to most underexpression.  0 represents equal 
expression after treatment.  The black vertical bars (middle section) represent genes 
from the relevant gene set. The green line (top section) represents the running 
enrichment score for the gene set as the analysis walks down the ranked list, 
increasing the running-sum statistic when a gene is in a gene set and decreasing it 
when it is not.  As the peaks of these green lines occur towards the left 
(overexpression) side of the gene list, these gene sets are highly enriched. 
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3.2.9 EPCR shRNA knockdown assays  

Having established that EPCR signalling can induce ERK phosphorylation and alter 

gene transcription, I wanted to determine whether the functional effect of EPCR 

provided any benefit to tumour cells.  Previous work had demonstrated that EPCR is 

a marker of chemoresistant cell lines, including HCT116 [59].  To further examine the 

effect of EPCR expression on chemosensitivity, EPCR expression was knocked 

down in HCT116 cells using shRNA (Figure 3.16).  Two shRNA constructs were 

chosen that induced high (clone 969 – 90-95%) and medium (clone 379 – 60-70%) 

levels of knockdown.  EPCR knockdown significantly reduced the effectiveness of 

5FU and epirubicin in MTT and BrdU assays (Figure 3.17 A,B).  

Transwell assays were performed to determine how EPCR expression affected 

cellular migration.  Over 48 hours, HCT116 cells with high EPCR knockdown had a 

significantly higher rate of migration than control cells (p<0.001) or medium-level 

EPCR knockdown cells (p<0.001) (Figure 3.17C).  However, no significant 

differences between the groups were observed in QCM invasion assays (Figure 

3.17D).  

To determine whether the effect of EPCR perturbation was similar in a MSS/CIN cell 

line, the experiments were repeated in HT29 cells.  In HT29 cells, EPCR knockdown 

did not have any consistent effect on MTT and BrdU chemosensitivity assays (Figure 

3.17 A,B).  In comparison to the HCT116 cells, the effect of the chemotherapy drugs 

was significantly smaller in both the control and knockdown cells.  However, as with 

HCT116 cells, high EPCR knockdown (>95%) correlated with an increase in cellular 

migration in the Transwell assay (p<0.01) (Figure 3.17C).  No difference was 

observed with knockdown in QCM invasion assays (Figure 3.17D).  Both total cell 
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migration and invasion were less in the HT29 cells compared to the HCT116 cells.  

HT29 EPCR overexpression (to over 600% of wild type HT29) did not consistently 

affect chemosensitivity, migration or invasion.  These data suggest that the effect of 

EPCR on chemosensitivity may differ in different cell lines, though the effects on 

migration were similar.   
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Figure 3.16 shRNA EPCR knockdown in HCT116 cells. 

a) Flow cytometry data confirming knockdown of EPCR expression with 

shRNA (vector 969) compared to control cells. 

b) EPCR expression in wild type cells and shRNA transfected cells (vectors 

969 and 379), as a percentage of control vector transfected cells. 
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Figure 3.17 Functional assays after shRNA EPCR knockdown in HCT116 cells.  

a) MTT scores for control and shRNA knockdown (clone 969) HCT116 and 

HT29 cells after treatment with 5FU (32μM), shown as a percentage of 

control cells (cells untreated with chemotherapy). 

b) BrdU scores for control and shRNA knockdown (clone 969) HCT116 and 

HT29 cells after treatment with 5FU (32μM), shown as a percentage of 

control cells (cells untreated with chemotherapy). 

c) 48 hour Transwell migration assay – Number of cells that migrated through 

Transwell membrane for each clone in five assessed regions. 

d) 48 hour QCM invasion assay. 

Asterixes represent statistical significance of EPCR-low cells versus control cells 
(*=p<0.05, **=p<0.01, ***=p<0.001).  Bars represent standard error. 
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3.2.10 Serum sEPCR correlation with CEA and clinical stage 

Serum soluble EPCR (sEPCR) has previously been shown to correlate with the 

ovarian tumour marker CA-125 in ovarian cancer [86].  To investigate whether 

sEPCR may increase with clinical stage or correlate with the colorectal tumour 

marker CEA in CRC patients, exploratory experiments were performed on serum 

retrieved from 21 patients with early stage colorectal cancer (Duke Stage A-B) and 

19 patients with late stage disease (Duke Stage C-D).  ELISAs for sEPCR and CEA 

were performed.  Neither sEPCR nor CEA were significantly higher in patients with 

lymph node or distant metastases versus patients with localised disease (p=0.371 

and 0.593 respectively) (Figure 3.18).  There was a trend towards a correlation 

between sEPCR and CEA, but this did not reach significance (Spearman Rho=0.271, 

p=0.091).  These studies were exploratory and underpowered, and further 

experiments with a sufficient numbers of samples will be required for confirmation of 

any association with stage or correlation between EPCR and CEA. 
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Figure 3.18 ELISA for (A) sEPCR and (B) CEA on serum from CRC patients. 
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3.2.11  EPCR expression and chemotherapy or cetuximab responsiveness 

Previous studies have indicated that EPCR is a marker for chemoresistant cell lines 

[59], and conversely its expression may predict chemotherapy responses in early 

stage lung cancer [78].  Furthermore, I have shown that EPCR perturbation can 

marginally affect CRC cell line chemosensitivity. Therefore I wanted to determine 

whether EPCR could affect chemosensivity in CRC patients. In addition, having 

established that EPCR can mediate APC-dependent ERK phosphorylation on CRC 

cells, I was also interested in the potential impact of EPCR upregulation on clinical 

responses to EGFR monoclonal antibodies (mAbs) in CRC patients.  Patients with 

RAS mutation do not respond to EGFR mAbs due to ‘bypass signalling’ resulting 

from constitutively active MEK/ERK signalling [10].  As EPCR-mediated signalling 

induces ERK phosphorylation, I hypothesised that EPCR could also act as a bypass 

signalling pathway in an analogous manner.  

To determine whether EPCR expression is associated with chemotherapy or EGFR 

monoclonal antibody (cetuximab) responsiveness in CRC, 153 CRC tumour samples 

from the MRC COIN study [10] were stained for EPCR using immunohistochemistry.  

Of these, 71 were from the chemotherapy arm, and 82 were from the chemotherapy 

plus cetuximab arm.  These slides were analysed using Definiens Tissue Studio 

software.  Percental scores for EPCR were calculated for each slide.  Survival 

analyses were performed using the Cox proportional hazards model, adjusting for 

factors that significantly associated with progression-free survival (PFS) to p<0.05 

(KRAS mutation status and MSI status).  No significant difference in PFS was 

observed between EPCR high and low cases (divided by median EPCR expression) 

across all patients (Figure 3.19) or when both treatment arms were analysed 
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individually.  No difference in PFS was observed when the top and bottom 20% of 

EPCR expressors were compared.  Finally, EPCR did not predict for survival in either 

treatment arm after exclusion of RAS mutant cases.  These data suggest that EPCR 

expression does not predict for chemotherapy or cetuximab responsiveness in CRC.   
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Figure 3.19 Kaplan-Meier curves for progression free survival in EPCR high 

and low patients.  Patients have been separated by median EPCR expression in: 

a) Tumour epithelium 

b) Tumour stroma 

 

The blue lines represent low EPCR expression, and the red lines represent high 

EPCR expression.  This cohort contains 153 patients from the MRC COIN trial. 
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3.3 Discussion  

 

EPCR, a receptor with anti-apoptotic and proliferative effects [69, 73, 74], is known to 

be expressed on various cancer cell lines [59, 72].  I have demonstrated, using 

robust digital immunohistochemistry algorithms and bioinformatic analyses, that 

EPCR is aberrantly expressed in colorectal cancer tissue, with expression being 

higher in cancer regions compared to normal regions in all cases tested. 

 

Though EPCR expression has been investigated in various epithelial cancers, the 

mechanism of its upregulation has previously been unclear, and EPCR upregulation 

has not previously been linked to chromosome 20q amplification and promotor 

hypomethylation.  20q amplification occurs as a result of chromosomal instability 

(due to the loss of the CIN suppressor genes of Chr18q [121]) and occurs frequently 

in malignant transformation.  The phenomenon occurs in multiple cancer types [116, 

117, 122-124], and there is in vitro evidence that it occurs early in the natural history 

of transformation, promoting cancer initiation independently of other chromosomal 

abnormalities [116].  20q amplification has been correlated with poor prognosis, 

aggressive tumour phenotype, progression, and metastasis formation, and Tabach et 

al. suggest that 20q amplification plays a causative rather than a bystander role in 

the process of tumourigenesis [116].  In colorectal cancer, 20q amplification has 

been associated with the progression of colonic adenomas into malignant 

carcinomas [117, 122, 125], and occurs in over 65% of CRC cases.  Carvalho et al. 

confirmed that 20q amplification occurs in under 20% of non-progressed adenomas, 

but in over 60% of progressed adenomas [117]. This is consistent with my in vitro 
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findings, which demonstrated poor expression of EPCR in the adenoma cell line 

AA/C1.   However, the AA/C1 10C derivative, a malignant variant of the AA/C1 cell 

line, had higher EPCR expression [126].   EPCR expression correlates strongly with 

6/7 of the Carvalho et al. putative oncogenes and 13/13 of the Tabach et al. ‘cancer 

initiating genes’, all located on chromosome 20q [116, 117].   It is therefore possible 

that the characteristics of EPCR-expressing tumours may be a result of both EPCR 

and of co-expression of local genes on 20q.  Previous studies have confirmed EPCR 

expression in breast cancer, ovarian cancer and lung cancer, but these studies have 

not related EPCR expression to chromosomal amplification or hypomethylation [78, 

80, 86].  Significantly, all of these tumour types are associated with 20q amplification.  

I have shown that EPCR expression should be taken in the context of this 

phenomenon, as 20q amplification is itself is associated with an aggressive and 

invasive phenotype [72, 78, 116, 117].    

 

Though amplification of genes on 20q was uniform, promotor methylation was less 

co-ordinated, suggesting that this important epigenetic control mechanism may be 

one factor which accounts for the relatively greater variability in gene expression 

compared to copy number across the chromosomal region.  Other epigenetic control 

mechanisms may explain the minority of cases where copy number and methylation 

status do not predict EPCR expression.   

 

I then investigated the implications of aberrant EPCR expression on the functional 

phenotype of CRC cells, following studies highlighting EPCR’s effects on cancer cell 



125 
 

migration, invasion and proliferation in different tumour settings [72, 78, 79, 83]. 

While the results establish that EPCR, via APC binding, can stimulate ERK signalling 

and elicit changes in gene transcription (as is the case in endothelial cells), the in 

vitro functional assays failed to identify compelling evidence that overexpression of 

EPCR per se might provide functional advantages for CRC cells.  Interestingly, in 

both HCT116 and HT29 cells, EPCR expression appeared to decrease migration in 

in vitro assays.  Furthermore, EPCR had variable effects on cancer cell phenotype 

across cell lines: specifically, it increased chemosensitivity of HCT116, consistent 

with a report that higher EPCR expression was associated with superior 

chemotherapy response in early stage lung cancer [78]. In contrast, no 

chemosensitivity effects were observed in HT29 cells, and no effects on invasion 

were observed in either cell line. However, an important limitation of these 

experiments and of approaches highlighting both beneficial and detrimental effects of 

EPCR perturbation in animal models [78, 79, 83, 114] is that they primarily address 

EPCR-intrinsic effects on cancer development, and typically focus on a small number 

of cell lines.  My findings underline that the effects of EPCR upregulation on cancer 

cells may be heavily dependent on biological context, including the exact cancer cell 

line and potentially upregulation of functionally important neighbouring genes co-

amplified on chromosome 20q.  This demonstrates the need for models that 

represent the variety of biological variants observed in the clinical scenario.   

 

Increased migration rates were observed in HCT116 and HT29 shRNA EPCR 

knockdown cells.  As a potential inhibitor of migration, EPCR may impact on 

metastasis development. The migration data are contrary to the data observed in 
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breast cancer cells by Beaulieu and collaborators [72], who demonstrated that APC 

increased chemotaxis in a dose-dependent manner.  However, rather than altering 

Activated Protein C (APC) concentrations as in Beaulieu’s study, I perturbed EPCR 

directly.  In addition, in lung cancer, EPCR knockdown decreased the development of 

bone metastases in a mouse xenograft model [78].  However, in mesothelioma, 

EPCR expression has been observed to suppress tumourigenicity and growth [83], 

which is consistent with my findings.  As with chemosensitivity, it is possible that 

EPCR’s effect on migration is variable in different tumour types, depending on the 

specific context of its expression.   

 

Treatment of HCT116 with EPCR’s natural ligand APC induced ERK 

phosphorylation, which was inhibited by EPCR blockade.  Consistent with this, 

microarray analysis of APC-treated cells showed an increase in ribosomal RNA 

expression, which is a known effect of ERK phosphorylation [127].  An increase in 

cellular proliferation due to APC may explain why EPCR knockdown decreases 

chemosensitivity in these cells, as tumour cells that divide more rapidly are more 

sensitive to chemotherapy [4].  Multiple gene sets associated with EGF signalling 

were enriched, consistent with the suggestion that APC induces ERK 

phosphorylation through EPCR-mediated signalling.  Additionally, a gene set 

associated with thrombin signalling was enriched.  Thrombin in complex with 

thrombomodulin, in the endothelial setting, presents PC to EPCR, activating PC [75].  

This enrichment therefore suggests that the effects of APC signalling on gene 

transcription in the endothelial and tumour cell settings overlap considerably. 
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Analysis of samples from the MRC COIN study did not reveal any association 

between EPCR expression and progression free survival in advanced CRC within the 

chemotherapy or chemotherapy plus cetuximab arms.  There is a need for the 

identification of predictive biomarkers for EGFR monoclonal antibody therapy in 

metastatic CRC, as thus far, no predictive biomarkers have been identified in RAS 

wildtype patients.  As EPCR mediates ERK phosphorylation, it could potentially have 

acted as an additional bypass pathway during EGFR inhibition with cetuximab, 

similar to RAS mutation.  However, survival analysis of EPCR stained specimens did 

not show any association with PFS.  Less than half of RAS wild type patients 

respond to EGFR monoclonal antibody therapy, and the response rate is only 

approximately 15% higher than with chemotherapy treatment alone [128].   Therefore 

there remains a considerable need to identify predictive biomarkers that will enable 

improved targeting of this therapy and to prevent toxicity in patients who will not 

derive benefit.  Additionally, as EPCR is a marker for chemoresistant cell lines [59], 

and has been linked to chemotherapy responses in early stage lung cancer [78], I 

wanted to determine whether there was any association with PFS in CRC.  No 

significant relationship with PFS was found, suggesting that the impact of the EPCR-

high phenotype is insufficient to impact on chemosensitivity. 

 

Previous work in our laboratory has demonstrated that EPCR is a ligand for a specific 

Vδ2-negative clone of the γδ T-cell receptor [53].  EPCR is constitutively expressed 

on endothelium.  In this context γδ T-cells detect CMV via a multimolecular stress 



128 
 

signature.  In epithelium however, where EPCR is not normally expressed, EPCR 

could act as bona fide marker of cellular stress as it is likely to be consistently 

upregulated in multiple transformed tissues.  Therefore EPCR could represent a 

molecular exemplar of how γδ T-cells can recognise stress in different settings. 

Further work is required to determine whether EPCR expression in epithelial tumours 

is relevant to γδ T-cell responses. 

 

EPCR may not be an attractive therapeutic target in CRC due to physiological 

expression throughout the vasculature and its variable effect on cancer cells.  The in 

vitro and microarray data, taken together with the bioinformatics analysis and survival 

data, suggest that EPCR does not have a substantial impact on tumour phenotype.  

The analyses therefore raise the possibility that the EPCR-high phenotype may be 

due to regionally co-expressed genes, rather than EPCR itself.  Work by Tsafrir et al. 

has shown that 20q amplification is absent in normal colonic mucosa, occurs at low 

levels in adenoma, becomes more frequent as disease advances, and is found in the 

majority of metastatic samples [125].  As the group note, such wide scale 

chromosomal changes are likely to lead to the expression of genes which in 

themselves do not confer a selective advantage.  EPCR may be such a bystander 

gene.  However, EPCR may have value as a surrogate marker of 20q amplification.  

Furthermore, there have been suggestions that EPCR could predict for thrombotic 

risk [86].  Both of these aspects require further exploration in the CRC setting. 
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Chapter 4 

 

An immunogenomic stratification of colorectal cancer 
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4.1 Introduction 

 

In addition to investigating the role of EPCR, a ligand for unconventional T cells, I 

wanted to explore how conventional adaptive immunity could be used to stratify CRC 

patients.  Patient stratification involves the grouping of patients for specific 

interventions or treatments.  Bowel cancer treatment is currently stratified mainly by 

clinical stage and tumour site [11] as discussed in the thesis introduction.  However, 

molecular stratification is becoming increasingly significant in clinical management.  A 

key example of this, as highlighted in the previous chapter, is the mutation status of 

RAS, which is crucial in the prediction of EGFR mAb treatment responses [10].  

Furthermore, stratification based on the mutation status of multiple genes is being 

investigated in multiple tumour types.  In a key CRC stratified medicine clinical trial 

(FOCUS4 [129]), patients are stratified and recruited into specific treatment arms on 

the basis of their BRAF, KRAS, NRAS, PIK3CA and PTEN mutation status.  In terms 

of immunological stratification, a tumour’s microsatellite status affects patient 

survival, potentially due to differences in immune infiltration [5].   

The extent of immune infiltration is now emerging as another key stratifier.  The 

density of tumour infiltrating lymphocytes (TILs) and the expression of certain 

immune-related genes are of prognostic and predictive value in colorectal cancer 

(CRC) [37, 38, 42, 100, 130].  A worldwide task force is attempting to validate the 

‘immunoscore’, an immunohistochemistry based scoring system centred on CD3 and 

CD8 density conceived by Galon and collaborators [38, 42].  TNM staging, when 

combined with immunoscore (TNM-I), is more prognostically accurate than traditional 

TNM staging alone [37, 130].  Whilst the simplicity of this scoring system will likely be 
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beneficial for clinical implementation, it is limited in the biological insights it can 

provide into the immune microenvironment in CRC.  For instance, it does not 

incorporate key molecules, such as CD4, cytokines, class II molecules and inhibitory 

molecules, which are likely to play important roles in the tumour microenvironment.  

Furthermore, the factors that determine a patient’s immune microenvironment are still 

unclear.  These are likely to include tumour, host and environmental factors [44].  

Within tumour and host factors, few systematic analyses have investigated the 

somatic and germline molecular drivers of immune infiltration.  Although microsatellite 

unstable (MSI-H) cancers, which represent approximately 15% of colorectal cancers 

and have a superior prognosis [46], are known to be associated with increased TIL 

density [5, 45-50], the nature of the immune infiltration and the molecular drivers of 

the immune phenotype in microsatellite stable (MSS) CRC are poorly understood. In 

particular it is unclear whether defined molecular subsets (RAS mutant, BRAF 

mutant, PIK3CA mutant, quadruple wildtype (BRAF, PIK3CA, NRAS, KRAS all 

wildtype)) are associated with high or low immune infiltration.  In addition, in both 

MSI-H and MSS cancers the extent to which therapeutically tractable inhibitory 

immune checkpoint receptors are represented are unclear and is of substantial 

interest, particularly considering recent checkpoint blockade failures in colorectal 

cancer [13, 14]. Given the prognostic and predictive relevance of CRC 

immunophenotype, a clearer understanding of the link between immunophenotype 

with tumour genotype is crucial. 

To explore the determinants of immune phenotype I carried out a bioinformatic 

analysis of CRC data in The Cancer Genome Project (TCGA). These analyses 

defined a co-regulated cluster of immune related genes with a distinct Th1 bias, 
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expression of which defines four patient subgroups.  Subsequently, the determinants 

of the immune response in colorectal cancer were explored.  The findings have 

implications for our understanding of the immunobiology of colorectal carcinogenesis, 

and provide a potential framework for the development of stratified immunotherapy 

approaches for CRC.  Much of this work has been published [131].  
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4.2 Results 

 

4.2.1 Co-ordinate expression of immune response-related genes in colorectal 

cancer 

I interrogated expression of immune response-related genes in the colorectal cancer 

(CRC) dataset in The Cancer Genome Atlas (TCGA).  This dataset includes a total of 

195 patients with complete transcriptomic, mutation and clinical data.  Preliminary 

analyses focussed on an larger initial gene group (Table 4.1) that was based partly 

on previous studies on bio-molecular networks incorporating immune genes linked 

with disease-free survival in CRC [37, 42, 100].  These included those associated 

with Th1 subset function (STAT1, IRF, IFNG, TBX21, IL18RAP, ICOS, GNLY), 

certain chemokines (CX3CL1, CXCL9, CXCL10), adhesion molecules (ICAM and 

MADCAM) and an array of class II genes.  I also included a number of immune 

checkpoint genes (PD-1, PD-L1, PD-L2, LAG3, TIM3, CTLA-4), two of which (PD-L1 

and PD-L2) were previously associated with outcome [42].  Finally, the initial gene list 

was supplemented with class I genes, additional class II genes and genes involved in 

T cell activation.  I also included NKG2D ligands (including ULBPs) and the γδ T-cell 

ligand EPCR (PROCR). 

  



134 
 

 

 

Gene IDs 

ACTB HLA-DQA2 

CCL11 HLA-DRA 

CCL2 HLA-DRB5 

CCL5 ICAM1 

CD247 ICOS 

CD274 IFNG 

CD276 IL12RB2 

CD3D IL17A 

CD3E IL18RAP 

CD3G IL7R 

CD4 IRF1 

CD80 KLRK1 

CD86 LAG3 

CD8B MADCAM1 

CTLA4 MICB 

CX3CL1 PDCD1 

CXCL10 PDCD1LG2 

CXCL9 PROCR 

GNLY RAET1E 

GZMB RAET1G 

HAVCR2 STAT1 

HLA-A STAT3 

HLA-B TBX21 

HLA-C TNFRSF14 

HLA-DMA TNFSF4 

HLA-DMB ULBP1 

HLA-DOA ULBP2 

HLA-DOB ULBP3 

HLA-DPA1 VCAM1 

HLA-DPB1 VTCN1 

HLA-DQA1  

 

Table 4.1 Initial gene group for analysis. 
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Unsupervised two-dimensional hierarchical clustering was performed to assess the 

extent to which gene expression was co-ordinate or independent across the patient 

cohort. Visual analysis of the clustering highlighted a 28-gene subset (Table 4.2) 

which formed a clear gene grouping, expression of which was co-ordinately regulated 

(Figure 4.1).  Gene-tree analysis of the dendrogram confirmed the validity of this 

grouping, identifying a subset of 24 highly co-ordinated genes (distance threshold 

0.46) predominantly associated with Th1 immunity, including numerous class II MHC 

loci, and inhibitory molecules targeted in checkpoint blockade strategies.  This 24-

gene block was identical to my 28-gene cluster other than the absence of three 

additional class II MHC loci (HLA-DRB5, HLA-DQA2 and HLA-DQA1) and one 

additional inhibitory molecule (HAVCR2 (TIM3)), all of which correlated closely with 

the 24-gene block and were positioned directly adjacent on the gene cluster 

dendrogram.  I therefore proceeded with the 28-gene cluster as it formed a clearly 

co-ordinated block on visual and correlation analysis.  This grouping was termed the 

co-ordinate immune response cluster (CIRC). 
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Figure 4.1 Two-dimensional hierarchical clustering reveals a closely co-ordinated immunological gene expression 
cluster – The Co-ordinate Immune Response Cluster (CIRC). Clustering was performed by gene expression (rows) and 
patients (columns) using the Pearson algorithm.  Yellow represents high gene expression, black represents intermediate gene 
expression and blue represents low gene expression.  The red box shows a group of closely associated genes (the CIRC) that 
had a co-ordinated expression pattern across the patient population. 
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Gene ID 

HLA-DQA1 

HLA-DQA2 

HLA-DRB5 

CTLA4 

PDCD1LG2 

ICAM1 

CD274 

STAT1 

IRF1 

IFNG 

GNLY 

TBX21 

CCL5 

LAG3 

CD247 

ICOS 

IL18RAP 

CXCL9 

CXCL10 

HLA-DPB1 

HLA-DPA1 

HLA-DMB 

HLA-DRA 

HLA-DMA 

CD80 

HLA-DOA 

CD4 

HAVCR2 

 

Table 4.2 Genes within the co-ordinate immune response cluster (CIRC).  These 
genes are presented in the order of the CIRC signature. 
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Of the 28 genes in the CIRC, 20 have previously been associated with outcome 

based on experimental data [37, 42, 100].  I have shown here that these prognostic 

immune response genes are highly co-ordinately expressed in CRC and correlate 

with other biologically associated genes including HLA-DQA1, HLA-DRB5, HLA-

DPB1, LAG3, TIM3, CTLA4 and CCL5.  The degree of correlation between immune 

checkpoint receptor/ligand gene expression was notable (Table 4.3).  Particularly 

striking was the correlation between PD1 and LAG3 (r2=0.62, Figure 4.2).  CTLA4 

and PD1, both key targets of checkpoint blockade therapy, were also correlated 

(Figure 4.3).  Beta actin acted as a control in this analysis (Figure 4.4). 

  
CTLA4 PD-1 PD-L1 PD-L2 TIM3 LAG3 Beta Actin 

  
CTLA4 PDCD1 CD274 PDCD1LG2 HAVCR2 LAG3 ACTB 

CTLA4 CTLA4 X 0.36 0.42 0.35 0.35 0.42 0.04 

PD-1 PDCD1 0.36 X 0.45 0.31 0.45 0.62 0.04 

PD-L1 CD274 0.42 0.45 X 0.48 0.5 0.51 0.07 

PD-L2 PDCD1LG2 0.35 0.31 0.48 X 0.49 0.31 0.08 

TIM3 HAVCR2 0.35 0.45 0.5 0.49 X 0.52 0.06 

LAG3 LAG3 0.42 0.62 0.51 0.31 0.52 X 0.03 

Beta Actin ACTB 0.04 0.04 0.07 0.08 0.06 0.03 X 

  

Table 4.3 R2 values correlating expression of inhibitory molecules in colorectal 
cancer.  Analysis is controlled against beta actin. 
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Figure 4.2 Significant correlation between LAG3 and PDCD1 (PD1) expression.  
Pearson correlation analysis indicates the inhibitory molecules LAG3 and PDCD1 
(PD1) are highly coordinated in mRNA expression (R2=0.62).  
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Figure 4.3 Significant correlation between CTLA4 and PDCD1 (PD1) expression.  
Pearson correlation analysis indicates the inhibitory molecules CTLA4 and PDCD1 
(PD1) are highly coordinated in mRNA expression (R2=0.36).  
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Figure 4.4 Correlation between ACTB (Beta Actin) and PDCD1 (PD1) expression 
(R2=0.04).   This acted as a control in the analysis. 
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Given the Th1 bias of the cluster I performed separate unsupervised hierarchical 

clustering analysis of Th2 cytokines IL-2, IL-3, IL-4, IL-5 and IL-6 and transcription 

factor GATA3, revealing that these genes were excluded from the CIRC.  I also noted 

that the Th17 cytokine IL-17A was also excluded from the cluster (Figure 4.1).  The 

exclusion of these genes confirmed that the CIRC was a Th1-centric cluster. 

4.2.2 Molecular determinants of the co-ordinate immune response cluster 

 

Two-dimensional hierarchical clustering (Figure 4.5) was performed for the entire 

gene list (Table 4.1) incorporating expression data together with molecular and 

clinical characteristics (KRAS, BRAF, NRAS, TP53, PIK3CA & PTEN mutations; 

microsatellite status, methylation subtype, tumour stage, tumour site & recurrence 

data).  The microsatellite status of the total patient population was as follows: 11.8% 

were MSI-H, 15.9% were MSI-L (microsatellite-low) and 71.8% were MSS.  6.7% of 

patients were BRAF mutant (MT)/MSI-H, and 3.1% were BRAF MT/MSS.  The 

mutational status of the cohort was as follows - KRAS MT (39.5%), NRAS MT (8.2%), 

BRAF MT (9.7%), PIK3CA MT (18.4%) and TP53 MT (51.8%).  38.5% of patients 

were quadruple wild type (BRAF WT, KRAS WT, NRAS WT and PIK3CA WT).  I also 

investigated mutations in the novel genes POLE (7.2% of patients) and POLD1 

(2.6% of patients), which have recently been highlighted as key drivers of colorectal 

carcinogenesis for a minority of CRC patients [132].  As in MSI-H tumours, the 

mutational burden in POLE and POLD1 mutant tumours is high.  In the case of POLE 

and POLD1 mutants, this is due to a defect in the correction of mispaired bases 

inserted during DNA replication [132]. 

Hierarchical clustering delineated four distinct patient groups (Figure 4.5, Table 4.4)
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Figure 4.5 Two-dimensional hierarchical clustering delineates distinct immunological CRC patient groups. Gene expression (yellow, high 
expression; black, intermediate; blue, low expression) was clustered together with mutation data of key genes (TP53, KRAS, BRAF, NRAS, PI3KCA 
and PTEN (yellow, mutant; blue, wildtype)) and clinical data (microsatellite status (yellow, MSI-H; black, MSI-L; blue, MSS), recurrence data (yellow, 
recurred/progressed; blue, disease-free), tumour site (yellow, left sided; blue, right sided), tumour stage (yellow, stage III/IV; blue, stage I/II), 
methylation subtype (yellow, CIMP-H;  black, CIMP-L; blue, CIMP-negative). Clustering was performed by genes/mutations/clinical data (rows) and 
patients (columns) using the Pearson algorithm.  Red boxes indicate groups of patients with strong clustering of the co-ordinate immune response 
cluster.  Patients were delineated into four distinct groups (A to D) on the basis of the dendrogram and the cluster expression.   



144 
 

 Group A Group B Group C Group D 

Microsatellite 
status 

MSI-H (82%) MSS (86%) MSS (94%) MSS (75%) 
MSI-L (25%) 

Methylation CIMP-High 
(68%) 

CIMP-Neg 
(77%) 

CIMP-Neg 
(66%) 

CIMP-Neg 
(69%) 

Side of 
tumour 

Right (82%) Left (63%) Left (94%) Left (82%) 

Stage I+II  73% 55% 72% 49% 

TP53 MT 35% 65% 62% 48% 

BRAF MT 50% 4% 3% 1% 

KRAS MT 18% 47% 22% 49% 

NRAS MT 0% 4% 9% 13% 

PIK3CA MT 39% 14% 9% 18% 

Quadruple 
WT 

18% 39% 69% 33% 

Percentage 
of patients 

14% 26% 16% 43% 

Mean cluster 

expression z-

score 

+0.98 +0.13 +0.50 -0.62 

Cluster 
expression 
pattern 

    

 

Table 4.4 Characteristics of patient groups.  For microsatellite status, methylation 
and tumour side, the most frequent result is stated.  Tumour side refers to the right or 
left side of the colon.  The cluster expression pattern displays the expression pattern 
of the CIRC cluster in each patient group. 
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Group A patients (Table 4.4) demonstrated strong CIRC expression (mean 

expression 0.98).  Notably, all of the MSI-H patients were included in this group, who 

constituted 82.1% of all group A patients, whereas only 10.7% were MSS and 7.1% 

were MSI-L. Across the entire cohort, expression of the CIRC signature was 

significantly higher in the MSI-H cancers versus MSS (p<0.001) and MSI-L cancers 

(p<0.001).  Multivariate analysis revealed that expression of HLAA, HLAB and HLAC 

were all significantly less in MSI-H than MSS cancers (p=0.027, p=0.017 and 

p=0.018 respectively for HLA-A, B and C), consistent with previous observations 

[133].  Group A was characterised by the CpG island methylator phenotype (CIMP-H) 

(67.9%), right-sided tumour site (82.1%), TP53 wild type (65%) and KRAS wild type 

(82.1%).  50% of patients in this group were BRAF mutant and of these BRAF 

mutants, 92.9% were MSI-H.  Notably, POLE and POLD1 mutant tumours were 

associated with higher expression of the CIRC (p<0.05). 42.9% of patients in group A 

were either POLE or POLD1 MT, and 70.6% of all patients with POLE or POLD1 

mutations were found in group A; 100% of POLD1 mutants were assigned to group 

A.  Of the non-MSI-H patients in group A, 3/5 were POLE mutant, two of which were 

MSS and one MSI-L.  

 

I then analysed patient groups B, C and D (Table 4.4), which displayed lower 

expression of the CIRC signature than group A, to determine whether any molecular 

characteristics were associated with low CIRC expression. Group D comprised 

cancers with the lowest expression of the cluster (mean expression -0.62) and 

represented 43% of the entire patient population; group B had a lower mean cluster 
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expression (0.13) than group C (0.50). Significantly, RAS mutation (KRAS/NRAS), 

occurring in 47.7% of patients, was associated with lower CIRC expression 

(p<0.001).  This was confirmed in the provisional TCGA dataset, in which mutation 

and expression data for a further 30 patients (225 total) was available (p<0.001).  

The frequency of RAS mutation was significantly higher in group B and D than other 

patient groups (p=0.01), with group D having the highest frequency (D (61.9%)>B 

(51.0%)>C (28.1%)>A (21.4%)) (p=0.01).  Consistent with these observations, within 

MSS cancers (enriched in groups B-D), there was a strong trend for RAS mutation to 

be associated with low CIRC expression (p=0.076).  Furthermore, in the MSS group, 

NRAS mutant cancers had significantly lower CIRC expression than RAS wild type 

cancers (p<0.05).  In group A, 83.3% of RAS mutations were MSI-H and 16.7% were 

MSS.  In RAS mutant MSI-H patients, the expression of HLA-DRA was lower (0.518) 

than in RAS wild types (1.027) but this difference did not reach significance 

(p=0.209).  Finally, multivariate analysis indicated that KRAS and NRAS mutation, as 

well as PIK3CA and PTEN mutation, were associated with decreased CD4 

expression (p<0.05) (Table 4.5).   
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Mutation Gene 
Expression 

Direction 
of change 

P-value 

BRAF CD247 Down <0.001 

 CD80 Up 0.017 

 GNLY Up 0.031 

 HAVCR2 Up 0.039 

 HLAA Up 0.004 

 HLAB Down 0.003 

 HLADOA Down 0.017 

 LAG3 Up <0.001 

KRAS CD4 Down 0.008 

NRAS CCL5 Up 0.002 

 CD247 Down 0.007 

 CD4 Down 0.036 

 CXCL10 Down 0.037 

PIK3CA CD4 Down 0.001 

 HAVCR2 Up 0.005 

 STAT3 Up 0.002 

TP53 CD274 Up 0.028 

 CD276 Down 0.001 

 CD4 Up 0.005 

 CX3C11 Down 0.012 

 CXCL10 Up 0.008 

 HLAB Up 0.024 

 HLADQ2 Down 0.002 

 IFNG Down 0.004 

 IL7R Down 0.018 

PTEN CD4 Down 0.003 

 CTLA4 Up <0.001 

 HLADMB Up <0.001 

 HLADRA Down 0.027 

 IL7R Down 0.004 

 STAT1 Down 0.001 

 STAT3 Up 0.026 

 VTCN1 Up 0.017 

 

Table 4.5 Multivariate analysis of gene expression changes in key mutation 
groups.  p-values are derived from multivariate linear regression analysis.  This 
analysis includes all genes in the initial gene list. 
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The association of low expression of the cluster and RAS mutation was particularly 

strong in the case of NRAS mutation where 76.9% of these cancers were in group D 

and over 90% of these tumours clustered in the two lowest expression groups (B and 

D).   

Thus RAS mutation, unless linked with microsatellite instability, was commonly 

associated with low levels of Th1 infiltration and activation, class II expression and 

inhibitory checkpoint expression in this dataset.  This depletion appeared to be 

stronger in NRAS cancers in particular.  Table 4.6 shows the distribution of key 

mutations.   

Expression of the CIRC correlated inversely with tumour stage.  Stage IV cancers 

had significantly lower CIRC expression than stage I (p< 0.05) or stage II (p<0.001) 

cancers.  In analysis of MSS patients alone, stage IV cancers had lower expression 

than stage II (p<0.05). 

CIRC expression was higher in disease-free patients than those with progressive or 

recurrent disease (p<0.05). This is despite the fact that only 22.2% of disease-free 

patients were MSI-H.  Formal survival analysis on a per-stage basis was not possible 

due to the lack of sufficient survival data. 
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% of total 
patient 

population 

% of total in 
patient 
group A 

% of total in 
patient 
group B 

% of total in 
patient 
group C 

% of total in 
patient 
group D 

TP53 MT 51.8% 6.9% 32.7% 19.8% 40.6% 

BRAF MT 9.2% 72.2% 11.1% 5.5% 11.1% 

KRAS MT 41.0% 7.5% 30% 10% 52.5% 

NRAS MT 6.7% 0% 15.4% 7.7% 76.9% 

KRAS/NRAS 
MT 

47.7% 6.5% 28.0% 9.7% 55.9% 

PIK3CA MT 4.1% 50% 37.5% 0% 12.5% 

Quadruple 
Wildtype 

39.0% 6.6% 26.3% 28.9% 38.2% 

 

Table 4.6 Frequencies of mutations in total patient population and distribution 
of mutations across patient groups A to D.   

To prevent overlap of patients, in this analysis patients were classified initially on the 
basis of KRAS status, followed by NRAS, BRAF, and finally PIK3CA.  According to 
these criteria, KRAS mutations may also have NRAS, BRAF and PIK3CA mutations 
(KRAS MT +/- NRAS MT +/- BRAF MT +/- PIK3CA MT).  NRAS mutations are KRAS 
wildtype but may have mutations in BRAF and PIK3CA (KRAS WT + NRAS MT +/-
BRAF MT +/- PIK3CA MT).  BRAF mutants are KRAS and NRAS wildtype but may 
have mutations in PIK3CA (KRAS WT + NRAS WT + BRAF MT +/- PIK3CA MT).  
PIK3CA mutants are wildtype for KRAS, NRAS and BRAF.  Quadruple wildtype 
patients are KRAS, NRAS, BRAF and PIK3CA wildtype.  TP53 mutation status is 
independent of other mutations.    
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4.2.3 MEK activation signature 

To determine how RAS mutation impacts on immunity, I wanted to investigate the 

contribution of the RAS-RAF-MEK-ERK pathway on immunosuppression.  To do this, 

the MEK activation signature characterised by Dry and colleagues was utilised [16].  

This signature was initially developed to predict responses to the MEK inhibitor 

selumetinib in vitro, and has been validated in multiple tumour types including colon 

cancer.  It comprises 18 genes that are upregulated by MEK activation, and this 

upregulation is a strong indicator of MEK and ERK phosphorylation, which occurs 

downstream to both RAS and RAF.  The signature’s authors also characterised a 5-

gene CRC optimised MEK signature (MEK CRC), comprising DUSP6, PHLDA1, 

SPRY2, DUSP4 and ETV4, which was used in this analysis.  

In the TCGA dataset, NRAS and KRAS mutant tumours had significantly higher 

expression of the MEK CRC signature than RAS wild type tumours (p<0.05 for both).  

The expression of the signature in NRAS mutants was borderline significantly higher 

compared with KRAS mutants (p=0.055).  The NRAS mutant group therefore served 

as a group where any MEK driven effects were likely to be most obvious.  Indeed, the 

expression of the CIRC was significantly lower in the NRAS mutants compared with 

the RAS wild types (p<0.05).  
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 KRAS 
MT 

NRAS 
MT 

RAS 
WT 

MEK CRC signature 0.089 0.251 -0.096 

CIRC -0.187 -0.604 -0.011 

Class II HLA -0.104 -0.625 0.013 

IL-12 -0.128 -0.513 0.322 

CXCL9 -0.203 -0.646 -0.029 

CXCL10 -0.075 -0.724 0.025 
 

Table 4.7 Mean MEK signature, CIRC, and other selected immune genes in 
NRAS mutant, KRAS mutant, and RAS wild type patients.  Values represent 
mean microarray z-scores. 

 

Class II HLA expression is an important component of the CIRC and the differences 

in class II expression mirrored that of the MEK signature where expression was 

significantly lower in NRAS cancers compared with wild type (-0.625 vs 0.013, 

p<0.05) and borderline significantly lower in NRAS compared with KRAS mutant 

tumours (-0.625 vs -0.104, p=0.067).  Another key molecule in Th1 immunity is IL-12, 

which is the key cytokine in the decision of CD4 cells to polarise towards Th1 and is 

produced by DCs, monocytes and macrophages.  IL-12 expression was significantly 

lower in both NRAS and KRAS mutant cancers compared with wild type (p<0.05 for 

both).  There was a high degree of negative correlation between IL-12 expression 

and expression of the MEK signature (R = -0.359, p<0.00001) and a positive 

correlation between IL-12 expression and expression of the CIRC (R = 0.217, 

p<0.01), in all patients and in MSS patients only.  When KRAS mutant MSS cancers 

were considered, there was a highly significant difference in IL-12 expression 

between those with MEK signature expression in the top and bottom quartiles 
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(p<0.0001).  These data show strong correlations and suggest the possibility that 

RAS mutation could inhibit Th1 immunity through inhibition of IL-12.    

 

4.2.4 RAS mutant subtype analysis 

It is established that the degree of RAF/MEK/ERK pathway activation following KRAS 

mutation is dependent on the specific amino acid substitution that occurs [134].  For 

example, G12D/G13D KRAS mutations have low affinity for RAF and a fast 

hydrolysis rate, which should lead to relatively low levels of RAF activation. 

Consistent with this, G12D/G13D mutations have been shown to signal through the 

PI3K/Akt pathway, with no activation of RAF [135].  In contrast, G12V KRAS 

mutations, which are associated with more aggressive tumours, strongly signal 

through the canonical RAF/MEK/ERK pathway [135].  As a strong inverse 

relationship between the Dry MEK activation signature and CIRC expression was 

observed, I hypothesised that differing subgroups of KRAS mutants would also vary 

in immune profile.  Table 4.8 shows the CIRC expression in each KRAS and NRAS 

subgroup, with the number of patients per group. 
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Substitution (KRAS 
unless otherwise 

stated) 
CIRC 

Number of 
patients per 

group 

Percentage of 
patients per 

group 

NRAS Q61L 0.556 1 1.45 

G12R 0.146 1 1.45 

G12D 0.007 20 28.99 

G13D -0.084 6 8.70 

A146T -0.087 6 8.70 

R68S -0.170 1 1.45 

A146V -0.286 1 1.45 

G12V -0.368 14 20.29 

G12F -0.428 1 1.45 

G12S -0.511 3 4.35 

NRAS Q61K -0.521 6 8.70 

Q22K -0.541 1 1.45 

Q61L -0.667 2 2.90 

G12C -0.724 4 5.80 

NRAS Q61H -1.100 1 1.45 

NRAS G13R -1.763 1 1.45 
 

Table 4.8 Mean CIRC expression within each RAS mutation subtype, and 
number and percentage of patients per group.  Mutations are ordered from 
highest to lowest CIRC expression.   

 

It was clear that KRAS G12D/G13D mutants made up a large proportion of the KRAS 

mutants, but these patients had relatively high immunity.  KRAS mutant patients were 

therefore divided into G12D/G13D and non-G12D/G13D mutants.  Table 4.9 shows 

the expression of the CIRC and other key parameters in the RAS subgroups of MSS 

POLE and POLD1 WT patients. 
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 G12D/G13D 
KRAS MT 

(n=26) 

Other KRAS 
MT  

(n=37) 

NRAS MT 
(n=9) 

RAS WT 
(n=68) 

KRAS expression -0.177 0.706 -0.083 -0.327 

NRAS expression 0.014 -0.543 0.369 0.222 

CIRC -0.014 -0.374 -0.604 -0.018 

CXCL9 -0.009 -0.485 -0.646 -0.040 

CXCL10 0.246 -0.421 -0.724 0.030 

IL12A -0.076 -0.167 -0.513 0.288 

IL18 -0.104 -0.026 0.108 -0.071 

IL6 -0.286 -0.533 -0.046 -0.139 
 

Table 4.9 Expression of key genes by RAS subtypes in MSS POLE+POLD1 WT 
patients.  KRAS mutants are divided into G12D/G13D mutants and other KRAS 
mutants.  Values represent mean microarray z-scores. 

 

These data suggest that G12D/G13D KRAS mutants are very similar to RAS wild 

type in terms of immune profile, whereas the non-G12D/G13D KRAS mutants have 

significantly lower CIRC expression than RAS wild type cancers (-0.374 vs -0.018, 

p<0.05).  This may be due to the lower RAF/MEK/ERK activation seen in 

G12D/G13D KRAS mutants, and also lower KRAS expression than in non-

G12D/G13D mutants.  Therefore, it is likely that subcategorization of KRAS mutants 

will be essential when exploring the association between RAS mutation and 

immunity. 
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4.2.5 Consensus Molecular Subtypes (CMS) analysis 

Several groups have identified molecular subtypes of colorectal cancer based on 

expression data.  In an effort to create consensus and to facilitate clinical translation, 

and in parallel with my efforts to create an immunological classification, the colorectal 

cancer subtyping consortium (CRCSC) created an integrated classification - 

consensus molecular subtypes (CMS) [136].   This consortium of groups utilised data 

from six independent CRC transcriptional subtyping systems to create a consensus 

classification which focussed on the core transcriptional groups in CRC (Table 4.10). 

Group Typical Clinical Features Common Pathological features 

CMS1 Females, older age, right 
colon 

MSI-H, hypermutation, BRAF MT 

CMS2 Left Colon Epithelial, MSS, high CIN, TP53 MT, WNT/MYC 
pathway activation 

CMS3  Epithelial, heterogeneous CIN/MSI, KRAS MT, 
IGFBP2 overexpression 

CMS4 Younger age, 
Stage III/IV 

Mesenchymal, CIN/MSI, TGFβ/VEGF activation, 
NOTCH3 overexpression 

 

Table 4.10 Characteristics of each CMS group. Adapted from Guinney et al [136]. 

 

To investigate how closely my CIRC patient groupings (based predominantly on 

immunological gene expression) correlated with the CMS classifications, I retrieved 

CMS data for the TCGA dataset.  Table 4.11 shows the distribution of CMS 

classifications across the four CIRC patient groups.  
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Percentage 
of total 
patient 

population 
CIRC 

Group A 
CIRC 

Group B 
CIRC 

Group C 
CIRC 

Group D 

CMS group 
Th1 signature 

rank 

CMS1 13.8% 81.5% 7.4% 3.7% 7.4% 1 

CMS2 40.0% 0.0% 15.4% 23.1% 61.5% 4 

CMS3 10.3% 0.0% 30.0% 20.0% 50.0% 3 

CMS4 18.5% 5.6% 63.9% 13.9% 16.7% 2 

Unclassified 12.3% 12.5% 25.0% 12.5% 50.0%  

CIRC group 
Th1 signature 

Rank 
 1 3 2 4  

 

Table 4.11 Distribution of Consensus Molecular Subtype (CMS) groups across 
CIRC patient groups. 

The cells show the percentage of each CMS group that fall within each CIRC patient 
group, and the respective rank for Th1 infiltration from high to low (1=highest Th1 
immunity, 4=lowest Th1 immunity), by CIRC expression for CIRC groups and Th1 
infiltration gene set enrichment for CMS groups [136].  5.1% of TCGA patients did not 
have CMS classification data available.   

 

As expected, CMS1, which is a group comprised of mostly MSI-H and BRAF MT 

tumours with strong immunity, falls predominantly within Group A.  Interestingly, 80% 

of CMS3 tumours, which are mostly epithelial with KRAS mutations, fall within patient 

groups B and D, similar to my KRAS distribution data (Table 4.6).  This reinforces the 

hypothesis that KRAS mutant tumours are immunologically impoverished.  A large 

proportion of CMS4 tumours, which are predominantly mesenchymal with a poor 

prognosis, were found in patient group B (63.9%), and a large proportion of CMS2 

tumours, which are epithelial with high CIN and WNT/MYC pathway activation, fall 

within patient group D (61.5%).   This demonstrates that patient groups B and D are 

distinct despite both groups having low CIRC expression levels.  
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4.2.6 The CIRC compared to other immune signatures 

To determine whether the observed immunosuppression in RAS mutant cases was 

specific to my particular immune metagene/signature (CIRC), or whether it was 

observable with other immune signatures, I retrieved expression data from the TCGA 

CRC dataset for a variety of published immune metagenes and determined how well 

their expression correlated with the CIRC [49, 137-139].  These metagenes 

overlapped little with each other, with only 14.8% of genes replicated in two or more 

separate metagenes.  Strong correlations were found between the CIRC and the 

Nagalla T/NK (T cell and NK cell) and M/D (macrophage and dendritic cell) 

signatures, as well as the class II-centric 14-gene Fehlker signature (p<0.0001 for 

all).  The expression of several of these immune signatures were significantly lower in 

NRAS mutant CRC compared to RAS wild type (Table 4.12), providing further 

evidence that RAS mutant tumours appear to be immunologically depleted relative to 

RAS wild type in this dataset.  In addition, the expression of the signatures were 

highly concordant in each patient group. 
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 KRAS MT NRAS MT RAS WT 

CIRC signature -0.135 -0.646 0.157 

Lym signature (3 gene version) -0.149 -0.715 0.173 

Fehlker signature (14 gene version) -0.098 -0.538 0.132 

Nagalla T/NK signature -0.128 -0.528 0.096 

Nagalla M/D signature -0.132 -0.635 0.136 

 

Table 4.12 Expression of various immune signatures/metagenes by RAS 
mutation status. Values represent mean microarray z-scores. 

 

In MSS patients, when KRAS mutants were further subcategorised into G12D/G13D 

and non-G12D/G13D mutants, it was clear that non-G12D/G13D KRAS mutants had 

lower expression of all immune signatures than G12D/G13D KRAS mutants (Table 

4.13). 

 KRAS 
G12D/G13D 
MT 

Other 
KRAS MT 

NRAS MT RAS WT 

CIRC  -0.014 -0.291 -0.604 -0.011 

Lym signature (3 gene version) 0.014 -0.309 -0.598 -0.015 

Fehlker signature (14 gene version) 0.065 -0.226 -0.529 0.045 

Nagalla T/NK signature -0.008 -0.271 -0.455 -0.008 

Nagalla M/D signature 0.063 -0.274 -0.635 0.003 

 

Table 4.13 Expression of immune signatures by RAS subtype in MSS patients.  
KRAS has been divided into G12D/G13D KRAS mutants and other KRAS mutants. 
Values represent mean microarray z-scores. 

  



159 
 

4.2.7 The relationship between immunity and total mutation rates 

MSI-H tumours, which have high mutational burden, had strong CIRC expression, 

whereas MSS tumours had lower CIRC expression generally.  However, the degree 

of variability in immunity within the MSS group, as well as the reasons for this 

variability, is poorly understood. Oncogenic signalling by pathways such as RAS, as 

explored previously, may partly contribute.  Neoantigens, which derive from non-

synonymous mutations, are another possible contributor to this variability.  Kandoth 

and colleagues determined mutation rates in 12 major cancer types using TCGA 

data, and made this data freely available [96].  To determine how mutation rate 

relates to immunity, I retrieved mutation rate (mutations per megabase pair (Mbp)) 

and total mutation (mutations per tumour) data for the colorectal TCGA patients and 

assessed their relationship with the CIRC.  Overall, CIRC expression did not 

correlate with mutational rate (R2=0.0026, p=0.48).  However, those tumour types 

with high mutational load (MSI-H and POLE/POLD1 mutant), had higher CIRC 

expression than MSS and POLE+POLD1 WT tumours (p<0.05) (Figures 4.6, 4.7 and 

4.8). 
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Figure 4.6 Mutation rate by Microsatellite status.   

The boxes represent the 25th and 75th percentile values.  The lines within the boxes 
represent median values.  The lines emerging from the boxes represent the 
maximum and minimum values. 
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Figure 4.7 CIRC expression by microsatellite status. 

The boxes represent the 25th and 75th percentile values.  The lines within the boxes 
represent median values.  The lines emerging from the boxes represent the 
maximum and minimum values. 
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Figure 4.8 Relationship between mutation rate and CIRC expression, by 
microsatellite and POL subtypes.  
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All MSS POLE and POLD1 WT patients had relatively low mutation rates (<15/Mbp) 

(Figure 4.9).  In this group, there was no significant correlation between mutation rate 

and CIRC expression, and yet the CIRC expression was highly variable, with the 

patients with the highest CIRC expression in this group having similar expression to 

patients in the MSI-H group.  Conversely, many patients in this group had very low 

CIRC expression.  In figure 4.9, MSI-H patients above the horizontal blue line have a 

CIRC expression within the top 75% of all MSI-H patients.  The box highlights MSS 

POLE+POLD1 wild type patients (orange dots) with a CIRC signature equal to or 

above this cut off, representing 20.7% of this patient group.  These patients could be 

classed as ‘MSS-CIRC-high’.  Like MSI-H patients, these immune-rich MSS patients 

may be amenable to checkpoint blockade approaches. 
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Figure 4.9 Variability of CIRC expression in the MSS POLE+POLD1 wild type 
patient group.  MSI-H patients above the horizontal blue line have a CIRC 
expression within the top 75% of all MSI-H patients.  The box highlights MSS 
POLE+POLD1 wild type patients (orange dots) with a CIRC signature equal to or 
above this cut off, representing 20.7% of MSS POLE+POLD1 WT patients that could 
be classified as ‘MSS-CIRC-high’.   
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To further investigate how mutation rate correlates with the CIRC, the analysis was 

extended to a further 8 cancer types that had TCGA mutation rate data available 

(head and neck cancer, lung squamous cell cancer, lung adenocarcinoma, bladder 

cancer, glioblastoma, uterine cancer, ovarian cancer and breast cancer) [96]. 

When analysing mutation rate groups, it became clear that the majority of patients 

with these tumour types had mutation rates below 15/Mbp (Figure 4.10).  However, 

when correlating mutation rate with CIRC expression, CIRC expression only began to 

rise markedly when the mutation rate proceeded above 15 mutations/Mbp (Figure 

4.11).  

Similar results were observed when total numbers of mutations were analysed rather 

than mutation rate (Figure 4.12).  In this case, the CIRC only increased significantly 

when the number of mutations increased above approximately 500 mutations. 
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Figure 4.10 Percentage of all tumours within each mutation rate group. 
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Figure 4.11 CIRC expression in each mutation rate group. 

Error bars represent standard error. 
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Figure 4.12 CIRC expression in relation to number of mutations per tumour.  

Error bars represent standard error. 
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Since the vast majority of patients had a mutation rate below 15/Mbp (Figure 4.10), 

and a fraction of these patients had high immunity, only a small percentage of 

patients with high CIRC expression had high mutation rates (above 15/Mbp) (Figure 

4.13).  This suggests that in the majority of these patients’ cancers, mutational rate 

was not the dominant determinant of intra-tumoural immunity.  Mutation type may be 

important – patients with low mutation rate with high immunity may have particularly 

immunogenic mutations.   
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Figure 4.13 Percentage of patients with high mutation rates (>15/Mbp) by CIRC 
expression group. 
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4.2.8 Neoantigen prediction analysis 

 

As the majority of patients in the TCGA CRC dataset had relatively low mutation 

rates but variable CIRC expression, I wanted to investigate the factors that 

determined the immune profile in these patients.  One factor likely to have 

contributed, as shown above, is mutational profile and the effect of driver mutations.  

Another important possibility is that both the quality (in terms of antigenicity) and 

quantity of neoantigens were important.  Certain mutations are likely to be more 

immunogenic than others, partly due to the strength of binding to the patient’s 

particular class I and II HLA molecules.  To explore this idea further, I collaborated 

with the Sahin Group at TRON (Translational Oncology, University of Mainz, 

Germany).  This group had previously utilised Next Generation Sequencing (NGS) 

and RNAseq technology to predict the neoantigens present in individual cancers, and 

were using this approach in a personalised cancer vaccine trial [16].  In addition, they 

had performed a parallel analysis on the TCGA CRC dataset, and therefore had 

neoantigen data available.  To perform the analysis the number of non-synonymous 

single nucleotide variations (nsSNVs), which are responsible for the alteration of the 

protein amino acid sequence, was determined for each patient.  Then, using RNAseq 

data, the number of reads per mutation was calculated to determine whether the 

neoantigen was expressed.  Highly expressed neoantigens are more likely to 

produce immune responses [16].   Finally, HLA-type was predicted from RNAseq 

data using seq2HLA, and HLA-binding predictions were made using the IEDB MHC 

binding prediction algorithm v2.9, “consensus” method [97, 98].  A cut-off for strong 

binding (and thus “likely immunogenic”) was below 1.0. This approach was used to 
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determine how the strength of neoantigen binding to HLA and the total number of 

neoantigens related to CIRC expression in TCGA patients. 

In addition, I wanted to explore how the neoantigen profile varied between patients 

and patient groups.  A recent study demonstrated that there is little overlap in 

neoantigen profile between CRC patients and that individual neoantigens are rarely 

shared [140].  This group suggested that 70 peptides would be required in a generic 

vaccine to cover 50% of MSS CRC patients.   However, what had not been explored 

is how the profile of neoantigens varies in key patient subgroups, such as RAS 

mutant patients.  Increasing this understanding could be key to stratified vaccine 

approaches targeting such groups, which could have a key role in the window before 

personalised treatments are produced for patients. 

Initially, the number of genomic, expressed and predicted to be presented nsSNVs 

were determined for each patient and were grouped by microsatellite status (Figure 

4.14).  As expected, MSI-H patients were predicted to present significantly more 

nsSNVs than MSI-L or MSS patients.  However, the difference was larger than 

expected, with MSI-H tumours predicted to present a median of 359 nsSNVs, and 

MSS tumours predicted to present a median of only 26 nsSNVs (p<0.001).   
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Figure 4.14 Number of total presented Class I neoepitopes per patient by MSS 
status.  The top panel shows the total number of non-synonymous single nucleotide 
variations (nsSNVs) in each patient (red dots).  The middle panel shows the number 
of these nsSNVs that were expressed (at mRNA level) in each patient.  The bottom 
panel shows the number of these expressed nsSNVs that were predicted to be 
presented on that particular patient’s predicted class I HLA type.  Boxes represent 
median, 25th and 75th percentile of each group. 

Figure courtesy of Sebastian Boegel, TRON. 
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In the overall population, patients with stronger binding Class I neoepitopes (in terms 

of the single strongest binder) had significantly higher CIRC scores than those with 

weaker binders (p<0.001), which was consistent with the quality of neoantigens 

impacting significantly on the overall immune phenotype (Figure 4.15).  This was also 

observed in relation to total number of neoantigens.  However, in the MSS group 

alone, this correlation was not observed for neoantigen binding strength or quantity, 

suggesting that in the majority of patients with low mutation rates, strongest binding 

neoantigen or neoantigen number was not the main determinant of immune 

response.  The same result was observed for Class II-binding neoantigens (Figure 

4.15).  Furthermore, the number of mutations in each sample did not correlate with 

CIRC expression within the MSS or MSI-H groups (though MSI-H patients had both 

higher mutation numbers and CIRC than MSS patients) (Figures 4.16 and 4.17).  

This is consistent with my findings above regarding mutation rates and immune 

responses across 8 tumour types.  It is possible that the immune response only rises 

substantially with mutation rate above a certain level.  This highlights the need for 

further work to explore and fully understand the determinants of immune response in 

this key patient group. 
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Figure 4.15 CIRC score in patients with top binding neoantigens versus 
patients with bottom binding neoantigens, for both Class I and II neo-epitopes in 
all patients and MSS patients only.  The single strongest binding neoantigen in each 
case was considered.   

Figure courtesy of Sebastian Boegel, TRON. 

All patients MSS patients 

Class I 
neoepitopes 

Class II 
neoepitopes 

P < 0.001 P > 0.4  

P <0.003 P > 0.6 

Bottom Bottom 

Bottom Bottom 

Top Top 

Top Top 

C
IR

C
 

C
IR

C
 

C
IR

C
 

C
IR

C
 



176 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Class I neoantigens analysis.  Correlation between CIRC and total number of expressed nonsynonymous single nucleotide variations 

(nsSNVs) and those likely to bind to class I HLA in all patients, MSS patients only, and MSI-H patients only.  Spearman values are non-significant. 
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Figure 4.17 Class II neoantigens analysis. Correlation between CIRC and total number of expressed nonsynonymous single nucleotide variations 

(nsSNVs) and those likely to bind to class II HLA. Spearman values are non-significant. 
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In addition to investigating quality and quantity of neoantigens, and the association 

with the CIRC, I also wanted to investigate the antigenicity of RAS-associated 

neoantigens. This analysis demonstrated that approximately 94% of TCGA CRC 

RAS mutant patients were predicted to express a RAS-associated neoantigen on 

Class I HLA (Table 4.14).  Approximately 23% of all KRAS mutant patients were 

predicted to present a ‘likely immunogenic’ strong-binding KRAS-associated 

neoantigen.  When considering that MSS patients were only predicted to present a 

median of 26 Class I neoepitopes each, this represents strong overlap within this 

patient group.  Furthermore, within certain RAS mutant subgroups (Table 4.15), such 

as the common G12V subgroup, 50% of patients were predicted to present an 

immunogenic KRAS-associated neoantigen (Figure 4.18).  These analyses took into 

account the predicted HLA-types of the patients.  Certain HLA and neoantigen 

combinations were recurrent (Table 4.16).  The identification of recurrent RAS-

associated neoantigens has implications for RAS as a target for vaccination and cell 

therapy approaches. 
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KRAS 
substitution 

Total 
in 

group 

Number predicted to 
present KRAS 

associated 
neoantigen 
(any rank) 

Number predicted to 
present 'likely 

immunogenic‘ KRAS 
associated 

neoantigen (rank <1) 

Percentage of group 
predicted to present a 

KRAS associated 
neoantigen (any rank) 

Percentage of group 
predicted to present 
'likely immunogenic’ 

KRAS associated 
neoantigen (rank <1) 

A146T 6 6 0 100.00 0 

A146V 1 1 1 100.00 100 

A155D 1 0 0 0.00 0 

G12A 5 5 0 100.00 0 

G12C 3 3 1 100.00 33.33 

G12D 19 19 0 100.00 0 

G12R 2 2 1 100.00 50 

G12S 5 5 3 100.00 60 

G12V 16 14 8 87.50 50 

G13C 1 1 0 100.00 0 

G13D 17 17 0 100.00 0 

K117N 1 1 0 100.00 0 

L19F 1 1 1 100.00 100 

P34L 1 1 1 100.00 100 

Q22K 1 1 1 100.00 100 

Q61H 2 2 1 100.00 50 

Q61K 2 0 0 0.00 0 

Q61P 1 1 1 100.00 100 

Q61R 1 1 1 100.00 100 

All KRAS 
mutants 

86 81 20 94.19 23.26 

 

Table 4.14 KRAS subtype neoantigens predicted to present on HLA A and B. 
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KRAS 
substitution 

Total in 
group 

Percentage of group with 'likely 
immunogenic’ KRAS associated 

neoantigen (rank <1) 

A146T 6 0 

G12A 5 0 

G12C 3 33.33 

G12D 19 0 

G12S 5 60 

G12V 16 50 

G13D 17 0 

 

Table 4.15 KRAS subtype neoantigens predicted to present on HLA A and B – 
selected mutations. 

 

Predicted class I HLA 
subtype binding to KRAS 

neoepitope 

Presented KRAS 
associated neo-epitope 

(substitution in red) 

Percentage of total KRAS 
G12V mutant patient group 

(n=16) 

B*49:01 TEYKLVVVGAV 6.25% (n=1) 

B*40:02 TEYKLVVVGAV 6.25% (n=1) 

B*18:01 TEYKLVVVGAV 18.75% (n=3) 

A*03:01 VVGAVGVGK 18.75% (n=3) 

 

Table 4.16 Analysis of HLA-restriction and presentation frequency of predicted 
strong binding KRAS G12V-derived neoantigens. Notably, this analysis predicts a 
promiscuous HLA-B-restricted neoepitope (TEYKLVVVGAV), as well as HLA-A 
derived G12V presentation by HLA-A*03 (VVGAVGVGK). In addition, it highlights the 
potential for presentation of some form of KRAS G12V-based neoantigen in up to 
50% of the patient group.  
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Figure 4.18 Neoepitope prediction for recurrent KRAS mutations.  

All KRAS mutation subtypes (frequency indicated by the blue bars) were predicted to 
give rise to class I MHC epitopes (red bars). However the proportion of predicted 
strong-binding (score ≤1) KRAS-derived neoantigens (green bars) was highest for 
KRAS G12V and a miscellaneous grouping excluding the G12V, G12D, and G13D 
subtypes. 
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4.3 Discussion 

 

In this chapter, I have identified a group of tightly co-regulated immune-related genes 

that was termed the Coordinate Immune Response Cluster (CIRC), and used this to 

assess differences in the intra-tumoural immune response in a molecularly 

characterised cohort of CRC patients.  The CIRC signature I defined stems from the 

work of Galon and colleagues, who first established the prognostic impact of T cell 

infiltration in CRC, initially highlighting 7 co-modulated genes principally associated 

with Th1-associated immunity that correlated with outcome [37].  Subsequently, they 

demonstrated that the Th1 genes, TBX21, IFNG, IRF1 and STAT1 were all 

individually associated with outcome [42].  Other independent immune gene 

predictors in that analysis were IL18RAP, ICOS, PD-L1, PD-L2 and PD-1.  I 

extended this gene list by adding the class I and class II genes, further immune 

checkpoint genes and a number of other genes related to innate immune recognition 

and T cell activation, generating an initial gene list of >50 genes.  Hierarchical 

clustering then highlighted a core cluster of 28 tightly co-regulated genes comprising 

the CIRC signature.   Importantly, 20 of the 28 genes had previously been highlighted 

by Galon and colleagues [37, 42, 141] as either prognostically or predictively 

relevant, including 5 of the original prognostic 7 gene cluster (with only CD8A (for 

which microarray data was unavailable) and GZMB not represented).  In contrast, 

genes associated with Th2 and Th17 profiles were excluded from the cluster. Thus, 

applying a different approach to an independent dataset my analysis verified the high 

level of correlation of a number of genes based on Th1-associated immunity, and 

also highlighted involvement of additional immune genes.   
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An important feature of the CIRC signature is that it includes essentially all class II 

MHC loci, as well as CD4, whereas in contrast, expression of class I MHC molecules, 

CD8B and also GZMB are all excluded from the signature.  In addition to the critical 

role of T helper cells for CD8 cell priming [142, 143] and expansion [144, 145], CD4 

cells have also been suggested to be major mediators of immunological tumour cell 

death [146-148].  Adoptive CD4 T cell transfer has been found to up-regulate class II 

expression on tumour cells mediating protection from tumour progression [147].  

Class II up-regulation was mediated via IFNγ and protection was attenuated using 

anti-IFNγ antibodies.  Recent adoptive transfer approaches involving autologous 

CD4+ T cells have met with clinical success.  A durable complete response was 

obtained in a patient with melanoma after infusion of NY-ESO-1 specific CD4+ cells 

recognizing an HLA-DP4 restricted epitope [149].  Additionally, a durable response 

was obtained in a patient with cholangiocarcinoma on infusion of autologous 

mutation-specific CD4+ cells which adopted a poly-functional Th1 phenotype [27].  

These studies highlight the potential for CD4 cells to mediate clinically potent anti-

tumour responses via Th1 mechanisms.  The CD4-centric nature of the CIRC 

highlights that CD4 T cells may be important in CRC anti-tumour immunity.  

 

The CIRC included the major immune checkpoint molecules.  Not only PD-L1, PD-L2 

but also LAG3, TIM3 and CTLA4 were all represented in the CIRC and there was a 

high degree of correlation between inhibitory checkpoint gene expression.  This is 

consistent with the expected feedback sequelae of a pronounced Th1 infiltrate.  IFNγ 
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is the canonical cytokine associated with Th1 T helper cells and expression of PD-L1 

is significantly augmented by IFNγ [150].  IRF1 is of primary importance in the 

constitutive expression of PD-L1 and in IFNγ-driven up-regulation [151].  In animal 

models, significant percentages of infiltrating CD4+ and CD8+ cells co-express high 

levels of both PD-1 and LAG-3 [152].  Dual anti-LAG3/anti-PD-1 immunotherapy 

strikingly enhanced survival in the MC38 colon cancer model compared with animals 

treated with single antibodies alone [152].  My data provide justification for trialling 

combinations of checkpoint blockade agents in CRC.  

 

One of the key aims of this study was to investigate the somatic factors associated 

with the immune response in CRC. Group A, which exhibited strong expression of 

the CIRC signature, was dominated by MSI-H tumours, all of which fell in this 

grouping.  This complements very well the work of Biossière-Michot and colleagues, 

who revealed that MSI-H tumours have a high density of Tbet-positive Th1 T cells 

relative to MSS tumours, and higher expression of the chemokines CCL5, CXCL9 

and CXCL10, all of which are found in the CIRC [50].  The Th1 response may be 

driven through activation of the CXCL9/CXCL10 signalling axis [50].   Previous 

studies have also shown that MSI-H phenotype is highly associated with class II 

expression [153].  Strongly DR positive tumours had a significantly higher TIL density 

than those with absent or weak staining and survival was significantly better in 

patients with high DR expression.  Consistent with this, Bindea and colleagues 

demonstrated that the expression of several class II genes, including HLA-DRA, are 

individually associated with improved disease-free survival [141].  High DR 

expression in MSI-H CRC contrasts with that of class I molecules, which are 
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completely lost in 60% of sporadic MSI-H cases and only 16.7% of right sided MSS 

cancers [133].  Thus, the immune landscape of MSI-H CRC, which is characterised 

by a high mutational burden including frameshift mutations [48], is dominated by T 

helper cell infiltration and activation, class II expression and co-ordinated up-

regulation of a range of immune checkpoint genes.  My data suggested that these 

patients may be more responsive to checkpoint blockade – a hypothesis which has 

since been confirmed [154].  Similarly, POLE/POLD1 mutant tumours, which also 

have a high mutational burden whether microsatellite stable or unstable [132], were 

also associated with high CIRC expression.  This association has also now been 

confirmed in a retrospective clinical study [155].  These data in combination support 

the hypothesis that high mutational burden may translate into a strong immune 

response, possibly due to neoantigen presentation, leading to better outcomes.  The 

finding that the gene encoding TGFβR undergoes frameshift mutation in 90% of MSI-

H CRC, giving rise to a highly immunogenic promiscuous class II peptide, is entirely 

in keeping with this hypothesis [156].  Though FOXP3 was not in the hierarchical 

clustering due to an absence of microarray data, I separately analysed RNA 

sequencing data which showed that FOXP3 expression is highest in patient group A 

and lowest in group D, suggesting that the immune enrichment in MSI-H patients 

may include suppressive Tregs.  However, the ratio of effector T cells to regulatory T 

cells, which was not determined in this analysis, may be important [157] and may 

differ between MSI-H and MSS patients. 

  

A further aim of this work was the investigation of mutation rates and CIRC.  I found 

that overall, the CIRC was higher in patients with high mutation rates, both in CRC 



186 
 

and across eight tumour types.  Increased mutation rate is likely to increase the 

probability of immunogenic mutations, such as missense mutations.  However, this 

relationship was not linear, and the CIRC only increased significantly above a certain 

level (15 mutations/Mbp, or 500 total mutations).  MSI-H and MSS differed in both the 

number of neoantigens, as well as the strongest binding neoantigens. The frameshift 

mutations seen in MSI-H lead to multiple changes in amino acid sequence, whereas 

single point mutations may lead to single amino acid substitutions.  It is likely that 

multiple amino acid changes are more immunogenic than single amino acid 

alterations, due to the higher number of neoantigens (each with potentially multiple 

amino acid changes) that will be derived from these mutated proteins.   Factors 

related to this are likely to explain the difference in immunity between these two 

groups, as well as the difference in clinical outcomes.  However, within both the MSS 

and MSI-H groups, there were no correlations between total mutations, total 

predicted neoantigens, or strongest-binding neoantigen and the CIRC.  Therefore, it 

is possible that other undetermined factors may explain the differences between 

MSS patients.  Specific immunogenic mutations may be important.  Another 

possibility is that the cumulative strength of neoantigen binding is significant – this 

analysis was superficial as it only considered the single strongest binder.  In addition, 

strong HLA-binding may not necessarily produce strong immune responses [20].  

Other important factors may include tumour factors (including cell signalling, tumour 

antigen expression, microenvironmental factors), host factors (including germ line 

genetics, single nucleotide polymorphisms (SNPs), expression quantitative trait loci 

(eQTLs [158]), general health), and environmental factors (such as bowel flora [159, 

160]).  Determining how each of these factors and possibly as-yet-unknown factors 
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contribute to the overall immune phenotype is likely to be crucial to the appropriate 

targeting of existing therapies such as checkpoint blockade, as well as for the 

development of novel approaches that adjuvantise the microenvironment.  As 

discussed, checkpoint blockade therapy is most effective in patients with high 

mutation load (MSI-H) [154]. This is likely to be due to the strong infiltration of 

exhausted T cells within these tumours, which are retained in the tumour by 

neoantigens presented on HLA molecules.  Therefore, measures that can alter the 

immune environment to induce immune infiltration may improve efficacy of 

checkpoint blockade.   

 

Interestingly, approximately 20% of MSS POLE+POLD1 wild type patients had CIRC 

scores that fell within the top 75% of CIRC scores for MSI-H patients.  These patients 

could be classified as ‘MSS CIRC-high’.  These patients, who have strong immune 

infiltration through an unknown mechanism, could, like MSI-H patients [154], be 

responsive to checkpoint blockade therapies.  Potentially responsive patients could 

be identified by PD-L1 expression (which is a biomarker used to predict anti-PD1 

mAb responses [14]), or high RNA or protein expression of various other molecules 

found within the CIRC, such as CD4 or Class II HLA, as my data suggest that these 

are upregulated in a co-ordinated fashion.  This should be a priority for further clinical 

study, as MSS patients make up over 80% of CRC cases.   

 

RAS mutation was significantly associated with lower CIRC expression, with over 

60% of cancers in the group exhibiting very low expression (group D) being RAS 
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mutant.  KRAS and NRAS mutant CRC had significantly lower levels of CD4+ T cells 

on multivariate analysis.  Although 21.4% of cancers in group A were RAS mutant, 

over 80% of these were MSI-H.  This is the first analysis to my knowledge to clearly 

define the immunological landscape of RAS mutant CRC.  Ogino and colleagues 

examined the interaction between T cell infiltration and KRAS, BRAF and PIK3CA 

mutation status and found no significant associations with KRAS mutation [161], but 

this study was limited to the density of CD3+, CD8+, CD45RO+ and FoxP3+ cells.  

Morris and colleagues demonstrated that transfection of mutant KRAS into fibroblasts 

abrogated the IFNγ-mediated up-regulation of class II expression: effects on class I 

expression were minimal [162].  RAS transfection into fibroblasts inhibited 

proliferation and IFNγ production of alloreactive T cells, an effect mediated by loss of 

class II expression on target cells [163].  These data suggest that abrogation of IFNγ 

related signalling may be a possible mechanism for my observed paucity of class II 

expression and hence Th1-related gene expression in RAS mutant CRC.  My data 

complement previous studies demonstrating widespread abnormalities of class I 

presentation in RAS mutant CRC [164].  Of the RAS subtypes, the less common 

NRAS mutant tumours had the lowest CIRC expression, potentially due to increased 

MEK activation.  NRAS and KRAS mutant tumours had significantly higher 

expression of the Dry et al. MEK signature than RAS wild type cancers, as expected, 

and the expression of the MEK signature was borderline significantly higher in NRAS 

mutants compared with KRAS mutants, and thus served as a mutation set where any 

MEK driven differences would be likely most evident. I further investigated MEK 

signature expression and immune expression by the exact amino acid substitution 

that occurred.  Certain KRAS mutations, such as G12D and G13D, have low affinity 
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for RAF and a fast hydrolysis rate, which leads to low levels of RAF activation [134].  

G12D/G13D KRAS mutants had CIRC expression very similar to RAS wild type.  The 

finding that RAS-associated immunosuppression is strongest in the non-G12D/G13D 

mutants, which have the highest MEK signatures, is consistent with the hypothesis 

that the immunosuppression is MEK-driven.   

 

In MSI-H tumours, it is likely that any inhibitory effect of RAS mutation is overcome by 

the strong immunity resulting from neoantigens linked to mutations induced by 

microsatellite instability. Thus MSI-H RAS mutant tumours retain strong Th1 

immunity, despite having numerically lower HLA-DRA expression than MSI-H RAS 

wildtype tumours.   In sum, these data suggest that the micro-environment of MSS 

RAS mutant CRC is relatively immunologically unfavourable to conventional  T cell 

responses.  

 

The identification of recurrent and commonly presented strong-binding neoantigens 

derived from mutant RAS raises the possibility of utilising these antigens in 

vaccination approaches.  Currently,  RAS-associated neoantigens are frequently 

amongst the strongest identified, and are being targeted in personalised vaccine 

approaches [16].  However, the frequency of RAS-associated neoantigens in certain 

mutation groups, such as the G12V group, raises the possibility of stratified 

vaccination for patients with particular mutations. This is discussed further in the 

overall discussion.   
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The CIRC molecular associations relate to the CRCSC consensus molecular 

subtypes and their immune and molecular characteristics [136].  The majority of 

CMS1 patients (MSI high and immune activated) fall within CIRC group A.  82.5% of 

KRAS mutated patients were in CIRC groups D and B (the lowest two CIRC 

expression groups) and almost the same percentage of CMS3 patients, 

characterised by KRAS mutations and no significant immune infiltration and 

activation, were present in CIRC groups D and B.  The relationship between CMS, 

RAS mutation and immunity is explored further in the next chapter.  

 

The development of the CIRC provides a useful tool with which to explore the 

immunobiology of different cancers.  As an example, I investigated CIRC expression 

in the TCGA head and neck squamous cell cancer dataset, in a study exploring the 

relationship between immunity and hypoxia.  This revealed an inverse correlation 

between immunity and hypoxia signatures, and the combination of these two factors 

had a significant impact on patient survival.  Those patients with high hypoxia and 

low immunity had significantly poorer survival than those with low hypoxia and high 

immunity.  Patients with both low hypoxia and low immunity had intermediate 

survival. This work is now being prospectively validated, and has potential 

implications for the targeting of hypoxia modulators and immunotherapies to specific 

patient groups.  Hypoxia and immunity could conceivably be combined into a new 

scoring system (for example, a ‘hypoximmunoscore’), which could potentially be 

prognostic and predictive in head and neck cancer.   
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Chapter 5 

 

The impact of RAS mutation on the immune phenotype of 

colorectal cancer 
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5.1 Introduction 
 
 
The RAS genes were the first identified oncogenes [165, 166], and encode a family 

of tyrosine kinases that includes KRAS, NRAS and HRAS.  RAS is downstream of 

EGFR in the EGFR-RAS-RAF-MEK-ERK pathway, and its activation can mediate 

both RAF phosphorylation and PIK3CA phosphorylation [134].  RAS is therefore 

capable of activating two key oncogenic signalling pathways.  After RAS mutation, 

which occurs in approximately 40% of CRC [91, 119], the RAS protein becomes 

constitutively active.   

 

Patients with RAS mutant CRC have poorer outcomes than those with wild type RAS, 

and receive no benefit from EGFR inhibitors [167]. The outcome of RAS mutant CRC 

matches that of advanced non-small cell lung cancer [10, 168].  Although KRAS 

mutant tumours are critically dependent on intact MEK pathway signalling, clinical 

efforts to target this pathway either with or without parallel pathway inactivation of 

PI3K/AKT/mTOR signalling, through which mutant RAS can also signal [134], have 

been disappointing [169, 170].  Therefore, RAS mutant patients are a key group of 

unmet need in CRC.  In addition to CRC, RAS mutation occurs in a range of common 

cancer types, with some, including pancreatic cancer, being predominantly RAS 

mutant [134].   

 

Following my in silico transcriptomic analyses in the TCGA CRC dataset that 

revealed a link between RAS mutation and low expression of immunity related 

genes, I wanted to investigate the relationship between RAS and immunity further in 
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a separate, independent local sample.  The TCGA analyses were based on 

transcriptomics, and, though RNA expression and protein expression are correlated, 

this association is not always linear or reliable.  The correlation depends on multiple 

factors which vary according to the specific gene, including mRNA transcription and 

degradation, and protein translation and degradation [171, 172].  Therefore, for the 

analysis of the independent local sample set, in addition to transcriptomics, I wanted 

to investigate protein expression.  Protein expression is not only more functionally 

relevant than RNA, but its quantification through immunohistochemistry is more 

clinically aligned, and allows the assessment of the tumour microenvironment. 

 

In addition, I wanted to investigate how RAS mutation affects immunity within the key 

molecular subgroups of CRC.  The recently published CMS analysis, introduced in 

the previous chapter, demonstrated that the classification of CRC could be 

significantly refined beyond one based on common single mutations [136]. The 

authors showed that RAS mutations are heterogeneous, being observed across all 

CMS groupings to varying extents and with these groupings displaying very different 

underlying biology.  Secondly, although under-representation of a Th1 immune 

signature is observed in CMS3, which is the RAS-enriched sub-type, low Th1 

signature expression is also seen in CMS2, characterised by high WNT and MYC 

pathway signalling and a lower RAS mutation rate.  Indeed CMS2 is globally 

immunologically impoverished, with under-expression of multiple signatures of innate 

and adaptive immunity and to a much greater extent than CMS3.  In this chapter, I 

show that the immunological impact of RAS mutation is dependent upon the 

transcriptional context of the tumour.  
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5.2 Results 

5.2.1 Cohort characteristics 

To determine the required sample size, a power calculation was performed using 

Altman’s nomogram.  This confirmed that a total of 100 samples (50 RAS mutant, 50 

RAS wildtype) were required for a power of 80%, a significance level (α) of 0.05 and 

a minimum detectable standardised difference between the two groups of 0.55.   This 

power provided an 80% probability of detecting a difference between the RAS mutant 

and wildtype groups if one existed.  The significance level represented the threshold 

below which the null hypothesis (that there was no difference between the RAS 

mutant and wildtype groups) would be rejected, in this case corresponding to a p 

value <0.05.   

The specimens were selected to represent the range of RAS mutations observed in 

the original TCGA microarray data set.  The final cohort comprised 28 RAS 

G12D/G13D mutants (24.3%), 38 RAS non-G12D/G13D mutants (33.0%), and 49 

RAS wild types (42.6%).  Therefore, there were 66 RAS mutants and 49 RAS 

wildtypes (total = 115), which closely matched the requirements determined by the 

power calculation. 

As microsatellite instability is associated with high immune infiltration [5], the 

microsatellite status for each tumour was confirmed by extracting total DNA from 

formalin-fixed paraffin-embedded (FFPE) tumour scrolls and performing fragment 

analysis (details in methods).  This confirmed that 7 tumours (6.09%) were MSI-H.  

Of these 7 tumours, 3 were RAS mutant (2 G12D/G13D MT, 1 non-G12D/G13D 

mutant).   Fragment analysis failed in 12.2% of cases due to low DNA yields. 
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5.2.2 Immunohistochemistry 

To determine the relationship between RAS mutation status and protein expression 

of key markers of immune infiltration, IHC was performed targeting CD4, CD8, Tbet, 

Class II HLA, STAT1, PD-L1 and CXCL10 on the cohort of 115 primary CRC 

specimens.  Clinically validated (IVD-CE) antibodies were chosen where available.  

Otherwise, knockdown/knockout validated antibodies were chosen.  If these were not 

available, in-house antibody validation was performed (details in methods).  Stained 

slides were digitally scanned, and were analysed using Definiens Tissue Studio 

software.  Tumour regions were segmented into tumour epithelium and stroma 

regions during analysis, and percentages of cells or pixels with high, medium, low or 

no immunoreactivity were quantified in both regions.  This produced either 

histological scores for cell-based scoring (Figure 5.1), which is a function of the 

number and intensity of immunoreactive cells, or percental scores for pixel-based 

scoring (Figure 5.2), which is a function of the number and intensity of positive pixels 

in the scanned specimen.  The results for each slide were grouped by RAS mutant 

and RAS wild type, as well as by RAS mutant subtype.  H-scores were compared for 

RAS mutant and RAS wild type across the entire sample set.  To align the results 

with previous studies [153, 173], for PD-L1, STAT1 and Class II HLA, each patient 

was additionally categorised into expression groups according to the percentage of 

cells/pixels that were positive for the marker in each region.  Finally, I calculated the 

number of Tbet positive cells in each group normalised by area (mm2), to enable 

comparisons with existing literature [174].  A separate correlation of immune markers 

in paired biopsy and resection samples was also performed (Appendix). 
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Figure 5.1 Cell-based IHC scoring algorithm.   
Identification of CD8 immunoreactive cells using trained Definiens Tissue Studio cell-
based scoring algorithm.   
 

a) Tumour region of a CD8-stained CRC slide (20x magnification) 

b) Image A, after analysis with cell identification and scoring algorithm.  In this 

image, white cells are negative, yellow cells are lightly stained, orange cells 

are moderately stained, and dark red cells are heavily stained.  This image is 

not segmented by regions. 
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Figure 5.2 Pixel-based IHC scoring algorithm.   
Identification of Class II HLA positive cells and pixels using trained Definiens Tissue 
Studio pixel-based algorithm.   
 

a) Tumour region of a Class II HLA-stained CRC slide (20x magnification) 

b) Image A, after analysis with cell identification and pixel scoring algorithm.  In 

this image, blue represents cell nuclei.  Yellow areas represent pixels with light 

staining, orange areas represent pixels with moderate staining and dark red 

areas represent pixels with heavy staining. This image is not segmented by 

regions. 
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In the epithelial compartment, STAT1 protein expression was significantly lower in 

RAS mutant cancer cells compared with their wild type counterparts thus 

recapitulating at the protein level the findings at the transcriptional level in the TCGA 

dataset (Table 5.1).  This was the case whether samples were analysed by H-scores 

(p=0.016 in the epithelial compartment) or by analysing samples according to 

percentage of cells positive for STAT1 (Chi squared p=0.033 in the epithelial 

compartment).  However, there were no significant differences in Tbet positive cells, 

CD4 positive cells, CD8 positive cells, PD-L1 reactivity or CXCL10 reactivity in either 

the epithelial or stromal compartments (Table 5.1 and 5.2).  In the stromal 

compartment, class II HLA reactivity was borderline higher (p=0.051) in the RAS 

mutant group, contrary to my previous in silico findings.  Just over 50% of both RAS 

mutant and RAS wild type tumours were negative for class II HLA and only 6.35% 

RAS mutant tumours had >50% class II HLA positive cells.  Strikingly, more than 

95% of both RAS mutant and RAS wild type cancers were cancer cell PD-L1 

negative although stromal PD-L1 positivity was seen in greater than 50% of both sub-

types.  The median number of Tbet positive cells in the epithelial compartment of 

RAS mutant cancers was 146/mm2 compared with 163/mm2 in RAS wild type 

cancers (p=0.46) and in the stromal compartment 96/mm2 and 104/mm2 respectively 

(p=0.98).  Figures 5.3 to 5.9 demonstrate staining in the tumours with the lowest, 

median and highest reactivity for each marker in the RAS mutant and wildtype 

groups (in stromal regions for CD8, CD4 and Tbet, and in epithelial regions for 

CXCL10, PD-L1, Class II HLA and STAT1). 
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No significant differences were observed in protein expression of any of the markers 

between MSI-H and MSS cases, likely reflecting the small number of MSI-H samples.  

In addition no significant differences were seen between G12D/G13D RAS mutant 

cases and non-G12D/G13D RAS mutant cases in terms of IHC scoring, though this 

study was not sufficiently powered for RAS subgroup analysis. 

 

 RAS 
mutant 

RAS wild 
type 

P-value 

CD8 3 6 0.633 

CD4 1 0 0.462 

Tbet 2 3 0.308 

STAT1 180 238 0.016 

PD-L1 0 0 0.960 

CXCL10 270 224 0.175 

Class II HLA 125.16 136.79 0.260 

 
Table 5.1 Median Histological scores or Percental scores in epithelial regions.  
Class II HLA reactivity is represented by percental scores.  All other markers are 
represented by histological scores. 
 
 

 RAS 
mutant 

RAS wild 
type 

p-value 

CD8 10 11 0.986 

CD4 5 6 0.984 

Tbet 5 5 0.897 

STAT1 88 122 0.086 

PD-L1 1 1 0.741 

CXCL10 70 55 0.290 

Class II HLA 143.87 135.82 0.051 

 
Table 5.2 Median Histological scores or Percental scores in stromal regions. 
Class II HLA reactivity is represented by percental scores.  All other markers are 
represented by histological scores. 
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Figure 5.3 Stromal CD8 staining. Representative images (20x magnification) of the 
tumours with the lowest, median and highest stromal CD8 reactivity in the RAS 
mutant and RAS wildtype groups. 
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Figure 5.4 Stromal CD4 staining. Representative images (20x magnification) of the 
tumours with the lowest, median and highest stromal CD4 reactivity in the RAS 
mutant and RAS wildtype groups. 
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Figure 5.5 Stromal Tbet staining. Representative images (20x magnification) of the 
tumours with the lowest, median and highest stromal Tbet reactivity in the RAS 
mutant and RAS wildtype groups. 
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Figure 5.6 Epithelial CXCL10 staining. Representative images (20x magnification) 
of the tumours with the lowest, median and highest epithelial CXCL10 reactivity in the 
RAS mutant and RAS wildtype groups. 
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Figure 5.7 Epithelial PD-L1 staining. Representative images (20x magnification) of 
the tumours with the lowest, median and highest epithelial PD-L1 reactivity in the 
RAS mutant and RAS wildtype groups. 
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Figure 5.8 Epithelial Class II HLA staining. Representative images (20x 
magnification) of the tumours with the lowest, median and highest epithelial Class II 
HLA reactivity in the RAS mutant and RAS wildtype groups. 
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Figure 5.9 Epithelial STAT1 staining. Representative images (20x magnification) of 
the tumours with the lowest, median and highest epithelial STAT1 reactivity in the 
RAS mutant and RAS wildtype groups. 
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5.2.3 Targeted RNAseq panel 
 
 
In addition to IHC analysis, targeted RNAseq analysis was performed using RNA 

extracted from FFPE scrolls from the same patient cohort.  This exploratory study 

took advantage of RNAseq’s ability to sequence relatively degraded RNA that would 

not be suitable for microarray-type analysis, such as the RNA extracted from 

archived FFPE tissue.  If this technique was found to be robust, it would provide the 

opportunity to perform transcriptomics on samples collected retrospectively, without 

the need for prospective collection of fresh tissue.  Targeted sequencing was 

performed for all genes from the CIRC signature, as well as several other key 

immune genes and the Dry et al. CRC-optimised MEK signature as a positive control 

(full list of genes in methods) [175]. 

 

On logistic regression analysis of all included genes against RAS mutation status, 

several genes were significantly differentially expressed in RAS mutant versus wild 

type tumours (Table 5.3). This analysis suggested that the expression of key genes 

including CD4, CCL5, CXC10 and PDCD1 were significantly lower in RAS mutant 

cases.  However, genes including CD8A, GZMH and CXCL11 were significantly 

higher in RAS MT cases on multivariate analysis.  The CIRC metagene itself was not 

significantly differentially expressed.  The Dry et al. CRC-optimised MEK signature 

was higher in RAS mutant tumours than RAS wild type tumours on univariate 

analysis, but surprisingly this did not reach significance (0.225 vs 0.011, p=0.285). 
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Gene 
Odds 
ratio 

Standard 
error 

Z P value 

95% CI 95% CI 

Lower 
limit 

Upper 
limit 

ALOX5AP 9.362858 6.825728 3.07 0.002 2.243179 39.07986 

BNIP3 2.130329 0.626167 2.57 0.01 1.197439 3.790007 

CCL5 0.331359 0.138236 -2.65 0.008 0.146284 0.750587 

CD4 0.560019 0.14001 -2.32 0.02 0.343079 0.914138 

CD48 0.654067 0.1225 -2.27 0.023 0.453108 0.944154 

CD74 2.449633 0.701375 3.13 0.002 1.397611 4.293541 

CD80 1.592431 0.361971 2.05 0.041 1.019944 2.486251 

CD8A 1.853823 0.435369 2.63 0.009 1.169942 2.937461 

CSF1R 0.562262 0.115678 -2.8 0.005 0.375678 0.841516 

CXCL10 0.615967 0.152273 -1.96 0.05 0.379431 0.999959 

CXCL11 1.663005 0.408575 2.07 0.038 1.027464 2.691664 

DOCK2 0.459117 0.10747 -3.33 0.001 0.290184 0.726394 

ETV4 0.571134 0.147028 -2.18 0.03 0.344835 0.945942 

EVI2B 2.839844 0.805265 3.68 <0.001 1.629026 4.950636 

GNLY 0.158137 0.069613 -4.19 <0.001 0.066731 0.374748 

GZMH 4.898323 3.359166 2.32 0.021 1.277354 18.7838 

HLAB 2.676023 1.187708 2.22 0.027 1.12124 6.38677 

KANK1 3.559602 1.110757 4.07 <0.001 1.931025 6.561678 

LAT2 2.231394 0.597264 3 0.003 1.320505 3.770617 

LCP2 0.395805 0.101685 -3.61 <0.001 0.239222 0.65488 

LGALS3 0.458636 0.124752 -2.87 0.004 0.269115 0.781627 

LST1 1.667267 0.415677 2.05 0.04 1.02279 2.71784 

PDCD1 0.048851 0.037932 -3.89 <0.001 0.010665 0.223773 

 
Table 5.3 Logistic regression of RAS mutant versus wild type tumours using a 
custom targeted TRUSEQ RNAseq panel.  Odds ratio>1 indicates higher 
expression in RAS mutant cases, and odds ratio<1 indicates lower expression in 
RAS mutant cases. 
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5.2.4 Survival analysis 

Clinical data, including age, gender, ethnicity, clinical stage and overall survival were 

retrieved for all the patients in the clinical cohort.  Cox regression analyses were 

performed to determine which factors associated with survival.  On multivariate 

analysis, patients with higher stage disease had significantly poorer survival, as 

expected (Figure 5.10A).  Furthermore, patients with NRAS mutant tumours had 

significantly poorer survival than KRAS or RAS wild type patients (Figure 5.10B).  In 

addition, there was a clear trend towards KRAS mutant patients having poorer 

survival than RAS WT, consistent with the literature [176].  After 5 years post-

resection, 80.7% of RAS wild type patients survived, compared to 56.5% of KRAS 

mutant patients.  This did not reach statistical significance, most likely because this 

study was insufficiently powered to detect smaller changes in overall survival.  In 

addition, when RAS mutation was categorised according to mutational subtype, there 

were no significant differences in survival between the RAS G12D/G13D mutant 

group, the non-RAS G12D/G13D mutant group and the RAS wild type groups.  

Furthermore, there were no significant differences between MSI-H and MSS patients 

in survival.  Protein expression of CD4, CD8, Tbet, STAT1, Class II HLA, PD-L1 or 

CXCL10, in epithelium or stroma, as determined by IHC above, were not predictive 

for survival in this cohort on multivariate analysis. 
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Figure 5.10 Kaplan-Meier curves for overall survival, by: 

d) Clinical Stage 

e) RAS mutation status 
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5.2.5 Cancer Cell Line Encyclopaedia analysis 

To investigate whether the effect of RAS mutation on immunity was due to a cell 

autonomous effect, independent of the tumour microenvironment, I calculated 

expression of key immune genes in multiple CRC cell lines from the Cancer Cell Line 

Encyclopaedia [93].   This analysis revealed that the MEK signature was significantly 

higher in RAS G12D/G13D mutant (n=11), RAS non-G12D/G13D mutant (n=20) and 

BRAF mutant (n=13) cell lines versus the RAS/RAF/PIK3CA wildtype (n=7) cell lines 

(p<0.001 for all). BRAF mutants, which are known to have the strongest MEK 

activation [175], had the highest MEK signature, as expected.  However, with only 7 

RAS/RAF/PIK3CA wildtype lines, this study was insufficiently powered to detect 

smaller effects.  There were no significant differences found in expression of potential 

mediators of a RAS-associated immunological effect such as STAT1 or IRF1, or 

class I and class II HLA (Table 5.4).  STAT1 expression was lowest in BRAF 

mutants, then non-G12D/G13D RAS mutants, then G12D/G13D RAS mutants, and 

was highest in wild type cell lines, as would be expected if its expression was 

suppressed by MEK signalling.  However, this was not statistically significant.  In 

addition, the expression of genes including CD4 and PDCD1 (PD1) were not 

significantly different in RAS mutant and wild type cell lines, but this was expected, 

as the cell line analysis excluded the tumour microenvironment, and therefore 

microenvironmental cells such as CD4 positive lymphocytes.  However, despite the 

lack of statistical power, this analysis did provide indications that MEK pathway 

activation may have an impact on STAT1 expression, though this requires further in 

vitro investigation to confirm causality. 
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RAS 
G12D/G13D 

MT 

Other RAS 
MT 

BRAF MT, 
RAS WT 

BRAF/RAS/ 
PIK3CA WT 

MEK signature 0.347 0.420 0.400 0.026 

CCL5 -0.001 -0.102 -0.497 -0.531 

CD247 -0.363 -0.325 -0.380 -0.292 

CD274 -0.318 -0.208 0.107 0.129 

CD276 -0.049 -0.068 -0.056 0.450 

CD3E -0.317 -0.222 -0.102 -0.102 

CD4 -0.198 -0.279 -0.314 -0.139 

CD8A -0.166 0.017 -0.131 0.054 

CD8B -0.066 0.047 -0.060 -0.166 

CTLA4 -0.239 -0.150 -0.147 -0.201 

CXCL10 0.168 0.069 -0.337 -0.009 

CXCL9 -0.220 -0.210 -0.094 -0.329 

GZMB -0.104 0.814 0.807 0.206 

HAVCR2 -0.235 -0.283 -0.211 -0.223 

HLA-A 0.036 0.506 -0.199 0.333 

HLA-B 0.257 0.322 -0.288 -0.056 

HLA-C 0.353 0.447 -0.165 -0.053 

HLA-DMA -0.179 -0.246 -0.348 -0.446 

HLA-DMB -0.415 -0.362 -0.549 -0.546 

HLA-DOA -0.304 -0.354 -0.328 -0.328 

HLA-DPA1 -0.525 -0.575 -0.503 -0.587 

HLA-DQA1 -0.278 -0.297 -0.281 -0.345 

HLA-DRA -0.359 -0.473 -0.502 -0.599 

IFNG -0.254 -0.194 -0.182 -0.116 

IL12B -0.173 -0.142 -0.128 -0.127 

IL12RB2 -0.076 -0.262 -0.309 -0.187 

IL18RAP -0.220 -0.105 -0.276 -0.339 

IRF1 -0.152 0.039 -0.240 -0.125 

LAG3 -0.183 -0.176 -0.201 -0.217 

PDCD1 -0.186 0.368 0.193 0.020 

PDCD1LG2 -0.490 -0.494 -0.267 0.662 

STAT1 0.038 -0.105 -0.382 0.373 

STAT3 -0.138 -0.272 -1.007 0.209 

TBX21 -0.201 -0.304 -0.242 -0.289 

 
Table 5.4 Cell line encyclopaedia analysis.  Mean expression of key immune 
genes in cell lines grouped by RAS, BRAF and PIK3CA status. 
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5.2.6 Consensus Molecular Subtypes analysis 

In view of the lack of significant differences in expression of key proteins including 

CD4 and CD8 between RAS mutant and wild type cancers in my IHC analysis, and 

the discrepancy with my previous TCGA transcriptomic analysis, I investigated 

possible reasons for the difference.  One hypothesis was that the significance of RAS 

mutation could be related to biological context, and in particular, the transcriptional 

subgroup of CRC in which the mutation occurs.  RAS mutation occurs in all of the 

Consensus Molecular Subtype groupings to varying degrees, even though each of 

them differ biologically [136].  Therefore the immunosuppressive effect of RAS 

mutation could be restricted to particular CMS groups.  When I investigated the 

impact of RAS mutation within specific CMS groupings in the original 195 patient 

TCGA microarray dataset [91], there was a trend towards CMS2 RAS mutants having 

lower CIRC expression than CMS2 RAS wild types (Figure 5.11).  To explore this 

further I collaborated with Justin Guinney, the lead author of the CMS classification.  
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Figure 5.11 CIRC expression z-scores in each CMS grouping by RAS mutation 
status (original 195 patient TCGA microarray dataset). 
The boxes represent the 25th and 75th percentile values.  The lines within the boxes 
represent median values.  The lines emerging from the boxes represent the 
maximum and minimum values. 
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The TCGA dataset was first reinvestigated.  190 of the 195 original TCGA 

microarray-based samples have subsequently been analysed by RNAseq and were 

included in an expanded TCGA dataset totalling 291 samples.  We initially wanted to 

confirm whether RAS mutation was associated with lower CIRC expression in this 

expanded dataset.  Table 5.5 shows that the expression of the CIRC was indeed 

significantly lower in RAS mutant samples than in wild types (p=0.0117).  In a 

separate validation set, using transcriptional data from the Koo Foundation Sun-Yat-

Sen Cancer Center dataset ((KFSYSCC), n=289) [177], again there was a 

significantly lower expression of the CIRC in RAS mutant cancers (p=0.00376).  This 

therefore confirmed that RAS mutation is associated with reduced expression of the 

CIRC metagene in CRC.  In both datasets, as expected, expression of the Dry et al. 

CRC MEK activation signature was significantly higher in RAS mutants than 

wildtypes. 

 

The original CMS study demonstrated that the CMS groups clearly have different 

levels of the transcription of a range of immune-related genes [136]. The RAS-

directed IHC analysis had not taken CMS sub-type into account and left open the 

question as to whether the observed transcriptional differences between RAS mutant 

and RAS wild type cancers might be particular to certain molecular sub-types.  This 

could explain why differences were not seen in my local cohort.  Thus CIRC 

expression of RAS mutant cancers was compared with RAS wild type cancers in 

each individual CMS in both the extended RNAseq TCGA and the KFSYSCC 

datasets (Table 5.5).    



216 
 

 
All 

patients 
CMS1 CMS2 CMS3 CMS4 

Extended 
TCGA dataset      

CIRC 0.0117 0.816 0.000193 0.268 0.855 

MEK 2.20E-13 0.0758 4.03E-09 0.163 0.000235 

T cells 0.434 0.792 0.0156 0.563 0.570 

Cytotoxic cells 0.162 0.566 0.00227 0.198 0.758 

iDC 0.0993 0.699 0.0133 0.930 0.570 

KFSYSCC 
dataset      

CIRC 0.00376 0.494 0.0256 0.696 0.0774 

MEK 1.76E-17 0.614 2.59E-08 3.06E-05 1.24E-06 

T cells 0.576 0.614 0.582 0.207 0.522 

Cytotoxic cells 0.0202 0.243 0.206 0.171 0.241 

iDC 0.460 0.157 0.907 0.665 0.141 

 
Table 5.5 CIRC, MEK, T cell, cytotoxic cell and iDC signatures by CMS 
grouping.  p-values of differences in expression of signatures in all patients and by 
CMS groups between RAS mutant and RAS wild type colorectal cancers.  
 
Cell colour relates to whether mean expression was higher in RAS mutant or wild 
type cases.  Pink cells = higher in RAS wild type samples, but not significant.  Red 
cells = significantly higher (p value <0.05) in RAS wild type samples.  Light blue cells 
= higher in RAS mutant samples, but not significant.  Dark blue cells = significantly 
higher (p value <0.05) in RAS mutant samples. 
  
 
In the TCGA dataset there was no difference in the expression of the CIRC between 

RAS mutant and RAS wild type cancers in CMS1, CMS3 and CMS4.  CMS2 is the 

most immune suppressed MSS subtype [136]: expression of the CIRC was 

significantly lower in RAS mutant CMS2 tumours compared with wild type tumours 

(p=0.000193).  This finding was confirmed in the KFSYSCC dataset where 

expression of the CIRC was lower in RAS MT tumours in CMS2 (p=0.0256), but 

there was no difference in CIRC expression in CMS1, CMS3 and CMS4.   
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A range of different immune transcriptional signatures, characterised by Bindea et al. 

[100], were also utilised in this analysis.  In the TCGA dataset only, T cell, cytotoxic 

cell and immature dendritic cell (iDC) signatures, like the CIRC, were significantly 

lower in CMS2 RAS mutant cancers compared with CMS2 RAS wild type cancers 

(Table 5.5).  This suggests that at the microenvironmental level the possible Th1 

suppressive effect of RAS mutation may manifest itself in cancers that are already 

relatively immune impoverished whereas this effect may be functionally insignificant 

in CRCs that are more immunologically activated such as CMS4 and especially 

CMS1.  It also suggests that the relationship between RAS mutation and immunity in 

CMS2 patients may go beyond the Th1 phenotype. 

 

To determine the relative impacts of RAS mutation and CMS groupings on immunity, 

the most immunosuppressed MSS CMS subtype (CMS2) and the least suppressed 

MSS subtype (CMS4) were compared.  CIRC expression was significantly lower in 

CMS2 RAS mutants compared to CMS4 RAS mutants in the TCGA (p=2.76x10-8) 

and KFSYSCC (p=0.00042) datasets.  CIRC expression was also significantly lower 

in CMS2 RAS wild type cancers compared with CMS4 RAS wild type cancers in both 

datasets (p=9.90x10-7 (TCGA) and 4.30x10-6 (KFSYSCC)).  Importantly, in the TCGA 

dataset, CIRC expression was significantly lower in CMS2 RAS wild type cancers 

compared with CMS4 RAS mutant cancers (p=0.000588) in spite of the fact that, as 

expected, the Dry et al. 5-gene MEK signature was significantly higher in the CMS4 

RAS mutants (p=1.90x10-5).  Finally, in the TCGA dataset, expression of the CIRC 

was significantly lower in CMS2 RAS mutants (p=0.00832) compared to RAS mutant 

CMS3 tumours, highlighting that CMS2 is the most immunosuppressed group.  Thus, 
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the CMS status of the patient appears to govern the immunological impact of RAS 

mutation status.  
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5.3 Discussion 
 
 
The work in this chapter focussed on the impact of RAS mutation on immunity.  RAS 

mutant patients form a critical group of unmet need in CRC as well as in a range of 

other cancer types.  Therefore it was important to confirm whether the RAS-

associated immunosuppressive effect observed in the previous chapter could be 

replicated in an independent dataset and at a protein level.  The TCGA, though large 

and comprehensive, with 195 patients in the published CRC dataset [91], is 

nevertheless only a single dataset and it was possible that the RAS correlation with 

immunity was a cohort-specific finding. 

 

A range of experimental approaches were used to attempt to validate this finding.  

Firstly, digital IHC approaches were used to investigate the effects of RAS mutation 

at a protein level in a local, independent sample set, using digital pathology software.  

In parallel, exploratory RNAseq was performed from RNA extracted from FFPE 

tissue.  Next, to supplement the in silico analyses previously performed, and to 

investigate the cell autonomous effect of RAS mutation, the cell line encyclopaedia 

was interrogated.  Finally, in view of the findings from the above experiments, 

additional in silico analyses were performed on the expanded RNAseq TCGA dataset 

and the KFSYSCC dataset to investigate the impact of CMS groupings and RAS 

mutation status together on immunity.  This variety of approaches proved invaluable 

in investigating the hypothesis (that RAS mutation is associated with 

immunosuppression) and took advantage of the strengths of different techniques.  

The advantage of publically available datasets are in accessibility, the speed of 

analysis, and the data-rich nature of the sample set, with a quantity of data that could 
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not be easily replicated locally.  However, the functional and clinical importance of 

changes in DNA and RNA depend on the effect on protein expression and structure, 

as well as changes to the tumour microenvironment.  IHC, a clinically aligned 

approach, is best placed to investigate protein expression and the microenvironment. 

 
The IHC studies analysed the impact of RAS mutation on the protein expression of 

key molecules represented in the CIRC using digital pathology.  Digital pathology is 

emerging as a key technique in the research setting, and attempts are being made to 

validate and standardise the approach for clinical usage [38].  The advantage that 

digital pathology provided for this study was that, with pathologist input and 

validation, I was able to create computer-based learning algorithms that could 

objectively analyse whole CRC sections, producing data on a per region and cell 

basis.  This approach eliminates the subjective variation that occurs in the scoring of 

different specimens.  However, it cannot completely eliminate user-dependent 

variation, as the segmentation and setting of scoring thresholds is partly subjective.  

However, this was minimised by close pathologist collaboration.  In addition, any 

small scoring errors would have been spread equally between the two groups (RAS 

mutant and wildtype), and therefore the effect on the inter-group analysis would have 

been minimal.  

 

In addition to careful creation of the scoring algorithms, particular efforts were made 

to ensure that the antibodies used were validated.  Antibodies that do not target the 

correct antigen or that are non-specific are a particular problem in laboratory and 

clinical studies, leading to a lack of reproducibility of published findings [178].  

Therefore, clinically validated antibodies (conforming to In Vitro Diagnostics 
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Conformité Européenne (IVD-CE) standards) were chosen where possible (CD4, 

CD8).  These antibodies go through robust validation before they are approved for 

clinical use [178].  If these were not available, antibodies that were carefully validated 

by the vendor, using techniques including gene knockout/knockdown and peptide-

blocking, were chosen (Tbet, STAT1, PD-L1).  Where these were not available, in-

house in vitro validation was performed (CXCL10, Class II HLA).  This, alongside 

careful optimisation, ensured robust and reliable staining.  In addition, the use of an 

autostainer and digital analysis reduced the likelihood of inter-batch variability. 

 

The IHC analysis revealed that there were no differences in the expression of class II 

or PD-L1 between RAS mutant and RAS wild type cancers in spite of significantly 

reduced protein expression of STAT1.  CIITA is the master transcriptional activator of 

the class II molecules and along with PD-L1 is a STAT1 target gene.  Half of all CRC 

tumours analysed were class II negative in the epithelial component in agreement 

with previous data [179] and I found that this negative fraction was very similar in 

RAS mutant and RAS wild type cancers.  Membranous PD-L1 expression was very 

low again in agreement with recent data [180], using the same antibody as used 

herein which critically only stains membranous (and hence biologically relevant) PD-

L1 [181]. This suggests that CRC at the protein level is generally significantly 

immunosuppressed independently of RAS mutation status.  As I was not aware of 

the possible importance of CMS status on the effect of RAS mutation at this stage, I 

did not perform IHC specifically in CMS2 samples.  This would have required full 

transcriptomics to accurately classify the CMS grouping of each case, but could have 



222 
 

enabled investigation of the CMS-RAS interaction at a protein level.  This will be 

crucial future work. 

 

The targeted RNAseq for transcriptomics from FFPE tissue was a novel approach, 

and was used as it enabled transcriptomic analysis using degraded RNA from 

archived FFPE tissue.  This work was performed to both investigate this method for 

transcriptomic analysis, to determine whether it is a robust and feasible approach 

warranting further evaluation, and to ascertain whether the transcriptomic results 

observed in the TCGA could be replicated locally, albeit with a different experimental 

approach (in the TCGA analysis, microarray and RNAseq were performed from fresh-

frozen tissue derived RNA).  This approach makes the presumption that degraded 

RNA in FFPE samples is comparable between cases, despite possible differences in 

the lengths of time samples have been stored prior to RNA extraction.  Ideally, a 

more established method would have been used, such as full transcriptomics (total 

RNAseq) from fresh resection tissue.  However, this approach would take a 

considerable amount of time to accrue the necessary number of samples.  In view of 

the additional transcriptomics analysis subsequently performed on the extended 

TCGA and KFSYSCC datasets, this analysis may not have been necessary, as the 

transcriptomic finding from the previous chapter was validated on the second 

dataset.  The key local analysis was on the protein IHC level.  The findings of the 

targeted panel were not consistent with the TCGA dataset, as univariate analysis 

failed to show expression differences between key immune genes in RAS mutant 

versus wildtype cases.  However, multivariate logistic regression analysis did reveal 

changes in key genes such as CD4.  However, though useful to discern biological 
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interactions, the multivariate analysis in this case does not represent the clinical 

scenario where absolute differences in gene expression between groups will likely be 

more meaningful.  Regardless of this, the finding that the Dry et al. MEK signature 

did not differ significantly between RAS mutant and RAS wildtype cases (though 

there was a trend in the expected direction) suggests that the data and technique 

require further evaluation, as this signature has proven robust and has been 

validated in multiple datasets [175], and by us in the TCGA and KFSYSCC datasets.  

This lack of significance may have been due to a small number of outliers in the 

analysis, or a small amount of contamination during tissue processing, rather than an 

inherent problem with the technique.  However, for validation of the FFPE targeted 

RNAseq approach, firstly a comparative RNAseq analysis of fresh-frozen and FFPE 

tissue should be performed, to determine whether FFPE analysis aligns with the 

results obtained from fresh-frozen tissue.  This could be performed using fresh tissue 

obtained at resection, and then with corresponding FFPE tissue blocks at various 

time points, to determine whether there is a time limit after which the RNA is too 

highly degraded for analysis.  Additionally, established positive and negative controls 

are needed for the analysis, which may include tissue from tumours with known high 

and low immune infiltrate in this case.  Finally, to ensure that the quantification is 

accurate, parallel quantitative real-time PCR (qPCR) analysis could be performed for 

selected targets from the same cDNA. 

 

Despite the lack of significance in the RNAseq analyses, my previous TCGA 

transcriptomic analyses did reveal a significant association between RAS mutation 

and reduced STAT1 expression, which I have now also observed at the protein level.  
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There are several potential mechanisms through which RAS mutation could 

potentially suppress immunity, including direct tumour cell mediated effects and 

indirect effects.  In terms of direct effects, a reduction in STAT1 expression in RAS 

mutant tumours may lead to a reduction in IFNγ signalling.  CRC cell lines bearing 

activating mutant KRAS have been found to downregulate levels of numerous IFNγ 

responsive genes, and studies in isogenic HCT116 cell lines have shown that 

abrogation of KRAS signalling pathways elevate basal and IFNγ stimulated 

expression of IFN-responsive genes, including class II MHC [182].  In addition, such 

approaches have suggested that mutant RAS signalling decreases basal and IFNγ 

induced expression of STAT1, the critical Th1-associated transcription factor [182], 

and negatively influences IFNγ induced activation of IRF1 [182, 183], which plays a 

central role in activating STAT1 expression [184].  Both IRF1 and STAT1 are 

components of the CIRC.  CIITA, which is activated by STAT1, is the master 

transcriptional activator of class II expression, and also effects class I expression 

[185, 186].  Therefore RAS mutation may have an immunosuppressive effect by 

reducing IRF1 activation and STAT1 expression, which then suppresses IFNγ 

signalling, thereby reducing CIITA activation and therefore HLA Class I and II 

expression. 

 

A potential indirect mechanism of RAS-associated immunosuppression is a reduction 

in the cytokine IL-12.  IL-12, produced by dendritic cells, is a key cytokine 

determining Th1 development and IFNγ production by T cells [187, 188].  I have 

shown in the previous chapter that IL-12 expression is significantly reduced in both 

NRAS (p=0.016) and KRAS mutant CRC (p=0.011) compared with RAS wild type.  In 
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the TCGA dataset, there was a negative correlation between IL-12 expression and 

expression of the Dry et al. MEK signature [175], and a positive correlation between 

IL-12 expression and expression of the CIRC.  The mechanism by which tumour cell 

RAS mutation would decrease IL-12 expression is currently unclear, but a reduction 

in class II expression and therefore DC activation could be contributory factor.    

 

IL-12 production by DCs could also be suppressed by immunosuppressive cytokines 

produced by RAS mutant tumour cells.  In vitro expression of RAS G12V in HEK cells 

has been found to result in tumourigenicity that is dependent on production of the 

immunosuppressive cytokine IL-6 that acts in a paracrine fashion [189].  In addition, 

melanoma cells bearing mutations in BRAF, immediately downstream of RAS, have 

been shown to produce IL-6 [190], which could decrease maturation of, and IL-12 

production by, monocytic dendritic cells [190, 191].  MEK inhibition not only 

decreases immunosuppressive cytokine production by BRAF mutant melanoma cells 

[190], but also affects DCs, abrogating the effects of immunosuppressive cytokines 

on IL-12 induction, and promoting Th1 induction [191].  Therefore there are multiple 

potential mechanisms for RAS-induced immunosuppression, which warrant further 

investigation in in vitro studies.  

 

The limitations of cancer cell line data from the CCLE were in fact useful for this 

study as the effects of the microenvironment were excluded, which allowed me to 

assess if RAS-mediated autonomous effects were evident.  However, though the 

MEK signature was associated with RAS mutation as expected, there were no 

significant differences in the expression of key genes such as STAT1 (though there 
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was a trend towards lower STAT1 expression in RAS mutant lines), perhaps 

reflecting the small number of wild type cell lines in this analysis.  Ideally, to 

determine the effect of RAS mutation in cell lines, local in vitro studies would be 

performed using an isogenic cell line system, with specific RAS mutations generated 

with for example CRISPR-Cas9 gene editing, to determine the effect on possible 

expression of key genes such as STAT1 or CIITA.  This would be important future 

work for determining whether there is a causal relationship between RAS mutation 

and immune response in CRC. 

 

After finding that RAS mutation did not appear to be associated with low immunity at 

the protein level in the local sample set, I considered possible reasons for the 

discrepancy with the TCGA data, which included the established variability in the 

correlation between RNA and protein expression in CRC [171, 172].  However, 

another possibility was that the relationship between RAS and low immunity was 

restricted to particular subgroups of CRC that only comprised a subset of my cohort.  

The CMS classification (a consensus classification based on six independent 

classification systems), introduced in the previous chapter, classifies tumours by their 

transcriptional profile, and therefore separates them by key biological subtypes rather 

than by single driver mutations such as RAS.  As the CMS classification is based 

upon transcriptomics, rather than genomics, it is more closely linked with tumour 

phenotype and clinical behaviour, and each CMS group includes tumours with a 

variety of different mutations that lead to the same phenotype [136].  As key 

mutations such as KRAS are distributed across all four CMS groups, this suggests 
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that CMS is a more accurate classifier of key biological groupings than a system that 

uses mutation status alone.  

  

My previous finding that RAS mutation was associated with reduced transcription of 

the CIRC metagene was confirmed in two large bioinformatics datasets.  However, in 

addition, it was found that the net impact of RAS mutation was dependent upon the 

CMS in which the mutation was found. CMS2 is the most immunosuppressed 

subtype and in this subtype alone the addition of RAS mutation appeared to deepen 

that immunosuppression at least at the level of immune-related gene transcription.  

As previously discussed, RAS mutation is associated with a reduction in STAT1 

expression [182], which I have observed at RNA (in the TCGA) and protein level.  

There are potential reasons why a reduction of STAT1 expression in RAS mutant 

CRC would only cause a concomitant reduction in the transcription of its target genes 

in CMS2.  The previously discussed in vitro data demonstrated that RAS mutation 

dampens the STAT1 response to IFNγ and the level of STAT1-driven transcription in 

CRC cells but does not abolish it [182].  My work has demonstrated that 

membranous PD-L1 expression is very low across MSS CRC suggesting that MSS 

CRC in general lacks sufficient immune reactivity to elicit adaptive PD-L1 up-

regulation.  It is possible that in immune impoverished environments (such as CMS2) 

RAS mutation’s effect on STAT1 may be a limiting factor on immunity, whereas in 

more enriched environments (such as CMS4), RAS mutation is not a limiting factor.  

The analysis showed that the level of STAT1 expression is significantly lower in 

CMS2 wild type tumours compared with CMS4 wild type tumours in the TCGA.  The 

addition of a possible RAS mutation-mediated STAT1 decrease in CMS2 cancers is 
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likely to have a greater impact on the downstream transcriptional network than that 

same change in tumours where STAT1 levels are less close to the lower limits of the 

functional range.  Furthermore, in somewhat less immune impoverished tumours 

such as those in CMS4, there may be at least sufficient microenvironmental IFNγ 

production to partially abrogate the decrease in STAT1 expression and hence 

STAT1-driven transcription due to RAS mutation.    

 

Thus, prediction of the effect of RAS mutation on immune-related 

microenvironmental gene transcription may be impossible without knowledge of the 

CMS group in which that mutation is found.  Therefore IHC is of limited relevance 

unless the CMS group can be assigned, which is not currently feasible in the clinical 

setting, as it requires full transcriptomic analysis.  Manipulation of the specific 

pathways activated by RAS mutation in order to up-regulate immune gene 

transcription may mainly be of therapeutic relevance in CMS2.  However, this alone 

is unlikely to significantly immune activate these cancers.  CMS2 RAS wild type 

tumours have lower expression of the CIRC than CMS4 RAS mutant tumours. 

Hence, attention to the underlying biological effect limiting the immune infiltration in 

each particular CMS group is required.  

 

In view of the potential CMS2-specific effect of RAS mutation, it would be interesting 

to consider the biology of CMS2.  This CMS group, termed the ‘canonical’ CRC 

subgroup as it is characterised by high activation of the classical CRC-initiating Wnt 

and MYC pathways, includes 37% of all CRC patients.  It includes a substantial 

proportion of the microsatellite stable group of patients, who I have previously shown 
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have almost universally low mutation rates, and is associated with a high number of 

somatic copy number alterations (SCNAs) due to chromosomal instability (CIN) [136].  

There is evidence that Wnt signalling is immunosuppressive.  Activation of WNT/β-

catenin signalling in melanoma significantly reduces T cell infiltration into the tumour 

microenvironment as a result of decreased ingress of BATF3-lineage DCs [192]. 

These findings of the immunosuppressive effect of WNT/β-catenin signalling have 

been generalized across other cancer types including CRC [193].   The apparent 

restriction of RAS-associated immunosuppression to CMS2 suggests that the 

interaction of Wnt signalling and RAS mutation warrants further investigation to 

determine whether there is a synergistic effect.  If so, dual inhibition of these 

pathways could be a route to improving immunity in this CMS grouping. 

 

If RAS mutation is causatively linked with immunosuppression, inhibition of 

downstream signalling may be a route towards increasing intra-tumoural immunity.  

Recent clinical data have shown that combining the MEK inhibitor cobimetinib with 

the anti-PD-L1 antibody atezolizumab results in a durable 17% response rate in 

KRAS mutant MSS CRC patients [194].  This approach was based on the pre-clinical 

observation of synergy between MEK inhibition and PD-L1 blockade, driven by a 

reduction in antigen-driven T cell exhaustion mediated by activated MEK signalling in 

microenvironmental T cells and by class I up-regulation [195].  Interestingly therefore, 

in this case, the MEK activation within T cells, not tumour cells, was crucial.  A 

worthwhile therapeutic avenue to explore may be a combinatory approach utilising 

the previously discussed neoantigen-directed or tumour antigen-directed  vaccination 

or adoptive cell therapies to increase anti-tumour T cell responses, followed by MEK 
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inhibition to reduce antigen-driven T cell exhaustion and checkpoint blockade to 

reduce subsequent inhibition of responses. 
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Chapter 6 

 

Overall Discussion 
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This thesis has explored the role of EPCR, a γδ T cell receptor ligand, in colorectal 

tumourigenesis and the genetic factors that impact on the immune microenvironment. 

The EPCR study investigated the mechanism of its upregulation in tumourigenesis 

and whether this has functional significance in CRC.  I found that EPCR is 

consistently upregulated in CRC and can mediate intra-cellular signalling via ERK 

phosphorylation.  However, the results of my in vitro assays did not suggest that 

EPCR has any positive impact on CRC cell survival.  In fact, perturbation of EPCR 

reduced chemosensitivity and increased cell migration in HCT116 cells. In addition, 

EPCR expression was not predictive for patient survival, chemotherapy response or 

cetuximab response.  These results, together with my bioinformatics analyses, 

suggest that EPCR may be upregulated as a bystander gene as a component of 

chromosome 20q amplification, rather than due to it conferring a selective advantage 

per se.  Previous studies have confirmed EPCR expression in breast cancer, ovarian 

cancer and lung cancer, but these studies have not related EPCR expression to 

wider abnormalities such as chromosomal amplification or hypomethylation [78, 80, 

86].  Significantly, all of these tumour types are associated with 20q amplification to 

varying degrees.  A limitation of previous studies, and of approaches highlighting 

both beneficial and detrimental effects of EPCR perturbation in animal models [78, 

79, 83, 114] is that they primarily address EPCR-intrinsic effects on cancer 

development, and typically focus on one or a small number of cell lines. This study 

has utilised a broader approach, and investigated the wider context of EPCR 

dysregulation, highlighting that the effects of EPCR upregulation on cancer cells may 

be heavily dependent on biological context, including the exact cancer cell line (even 

within a single cancer type) and potentially upregulation of functionally important 
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neighbouring genes co-amplified on chromosome 20q.  Therefore studies that focus 

on cell lines or animal models may not accurately recapitulate the clinical scenario.  

EPCR expression may be clinically useful as a marker of 20q amplification and as a 

marker of thrombotic risk in a range of tumours, potentially in serum or urine as 

sEPCR.  This has not been determined in this study and would be important future 

work.   In CRC, amplification of chromosome 20q occurs mostly in the progression of 

adenomas into carcinomas, and increases further in metastatic disease [117, 125].  

EPCR could be a useful biomarker of 20q amplification, and therefore of progression. 

 

EPCR upregulation in CRC may provide an example of how γδ T cells can recognise 

cellular stress in different settings.  This aspect of EPCR, and whether it is directly 

recognised by γδ T cells within colorectal cancer is an area which is being explored 

by our group and others.  γδ T cells may respond to stress ligands, and as these 

cells are not MHC restricted, they do not require Class I expression on tumour cells 

and are traditionally thought to have an innate-like function similar to NK cells, with 

pre-expanded γδ T cells able to respond rapidly to stress stimuli in an innate-like 

fashion [52].  However, work within our group has shown that the γδ repertoire 

appears to be private to each individual, and therefore the LES clone, which 

recognises EPCR, appears unlikely to be present in many patients.  The discovery of 

private repertoires and selective expansions of individual T cell receptors (TCRs) 

suggest that γδ T cells may also play an adaptive role.  Despite this, a group from 

Freiburg (Germany) have claimed to have identified the LES clone in breast cancer 

tissue from multiple patients [196].  If true, this suggests that the γδ TCR repertoire is 

larger, or not as private, as it appears and that cells capable of recognising EPCR, 
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which is upregulated during tumourigenesis, may be enriched in the tumour 

microenvironment.  Importantly, highly sensitive in-situ hybridisation (ISH) 

approaches have now been developed to explore this issue further.  Nevertheless, 

EPCR may fit a general theme of dysregulation of stress ligands.  While LES was 

expanded in CMV infection [53], the dysregulation of EPCR in cancer suggests the 

possibility that known γδ T cell ligands may signal stress in different scenarios, and 

via different mechanisms.  As my work was focussed mainly on the mechanism and 

biological significance of EPCR expression, the significance of EPCR expression with 

regards to γδ T cell recognition in CRC still needs exploration. 

 

In addition to investigating EPCR, I also studied the impact of tumour genetics on the 

immune microenvironment of CRC.  My bioinformatics studies revealed important 

links between genetics and immunity, allowing the stratification of CRC patients into 

groups based on immunogenomics.  This has implications for patient care, and has 

led to several predictions which have subsequently been confirmed.  Firstly, this work 

suggested that MSI-H patients, who have high mutation rates and immune infiltration, 

would likely respond to checkpoint blockade therapy.  This has since been confirmed 

in a clinical study [154].   

 

Secondly, I hypothesised that combination checkpoint blockade would be beneficial, 

due to the co-ordinate upregulation of several of these molecules as part of the 

CIRC.  Combination therapy has now been shown to be effective in melanoma, 

where a combination of CTLA4 and PD-1 inhibition had an additive beneficial effect 

beyond the effect of each individual drug [197].  Currently, it is unclear whether this 
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benefit is directly related to the co-upregulation of these checkpoint molecules.  

However, such a combination approach warrants investigation in MSI-H CRC 

patients, as well as potentially MSS patients with strong immune infiltration, who, like 

MSI-H patients, have co-upregulation of immune checkpoints.  Such combination 

therapy is associated with higher toxicity.  However, the toxicity levels, whilst 

occasionally severe and life threatening, compare favourably to existing 

chemotherapeutics regimens [15].                      

 

Third, I showed that POL mutant cancers are associated with increased immune 

infiltration.  This has recently been confirmed in a retrospective clinical study, which 

demonstrated that POLE mutant CRCs display increased CD8+ lymphocyte 

infiltration and expression of cytotoxic T cell markers and effector cytokines, similar to 

the immune infiltration seen in MSI-H cancers [155].   

 

Finally, another key prediction was that MEK inhibition and checkpoint blockade 

could be synergistic, and this has been partially confirmed in a phase I clinical study 

that revealed that combining the MEK inhibitor cobimetinib with the anti-PD-L1 

antibody atezolizumab resulted in a durable 17% response rate in KRAS mutant 

MSS CRC patients [194].  Clearly, this requires further assessment in phase II and III 

studies.  Interestingly, rather than a tumour cell effect, this response appears to be 

due to inhibition of MEK signalling within microenvironmental T cells.  TCR signalling 

is known to activate RAS [198, 199]. 
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A further key prediction would be that the subset of MSS patients who have a similar 

immune profile to MSI-H patients (the ‘MSS CIRC-high’ group) could also respond to 

checkpoint blockade therapy.  This would be a crucial clinical study, as MSS patients 

make up over 80% of sporadic CRC cases, and therefore responses in even a small 

subset of the MSS group could benefit a large number of patients.  In such a trial, 

MSS patients could be treated with checkpoint blockade therapy based on protein 

expression of key immune markers, such as PD-L1 (the current biomarker for anti-

PD-1 mAb therapy), CD4, CD8 or class II HLA.  This study would be important even if 

the mechanism underlying the variability in immunity in MSS is not yet understood, as 

responses are likely to depend on the immune phenotype itself, rather than the 

factors determining the immune phenotype. 

 

To investigate one of the factors determining immune phenotype, the relationship 

between overall tumour mutation rate/number and immunity was explored.  This 

demonstrated that immune infiltration was linked to overall mutation rate and number, 

but this relationship was weak when intra-group analysis was performed within either 

MSS or MSI-H patients.  This seemed to suggest that the quality and type of 

mutation may have been the key determinant of immunity, perhaps in relation to 

certain host genes, e.g. HLA.  However, investigation of neoantigen binding using 

binding prediction algorithms did not show any clear association between the 

strongest binding neoantigen and CIRC expression, though, as only the strongest 

single neoantigens was considered, this analysis was superficial.  However, it 

suggests that neoantigen number and strongest binding neoantigen, whilst clearly 

being highly significant and likely being responsible for the high immune infiltration in 
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MSI-H tumours, cannot reliably predict the strength of intra-tumoural immunity in 

MSS POLE+POLD1 wild type patients, who all have relatively low mutation rates 

(<15/Mbp).  Whilst in MSI-H patients the high neoantigen load may override other 

factors, in MSS patients other tumour, host and environmental factors may be the 

key determinants of immune response.  As such, there are many possible 

contributors which are currently poorly understood, including tumour-extrinsic factors 

such as bowel flora and host genetics, both of which warrant further investigation.   

Bowel flora have previously been linked to colorectal tumourigenesis [159], with 

particular microbiota such as Fusobacterium enriched in CRC patients [160].  In 

addition, lipopolysaccharide (LPS), a gram-negative bacterial antigen present in 

primary CRC due to breakdown of epithelial integrity, has been implicated in cell 

migration, metastases and immune response in CRC [200-203].  If bowel flora have 

an immunosuppressive effect in CRC, this could contribute to the low immune 

infiltration seen in many patients, and modifying the microbiome could conceivably be 

a route to improving immunity.  Host genetics, and in particular expression 

quantitative trail loci (eQTLs), which are genomic loci which contribute to the 

expression of nearby (cis eQTLs) or distant (trans eQTLs) genes [158], have been 

linked with immune response in the infectious and inflammatory disease settings 

[204-206].  It is possible that eQTLs could also affect immunity in the tumour setting.  

It is now established in melanoma that tumour regression after PD-1 blockade 

depends on pre-existing CD8 T cells and PD-1/PD-L1 expression in the invasive 

margin and inside the tumour [207]. Understanding the determinants of immunity in 

MSS patients could lead to the development of new therapeutic approaches that 
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could ‘adjuvantise’ the microenvironment, and then enable the effective use of 

checkpoint blockade in MSS CRC patients.   

 

The frequency and predicted immunogenicity, based on HLA-binding prediction 

algorithms, of RAS-associated neoantigens were also investigated.  The prediction of 

recurrent and commonly presented strong-binding neoantigens derived from mutant 

RAS raises the possibility of utilising these antigens in vaccination or other 

immunotherapeutic approaches, such as cell-based therapies.  In comparison to 

personalised vaccination, a stratified vaccination approach would have the 

advantage of being usable at diagnosis, as determination of RAS mutation status is 

now routine in clinical practice, after biopsy or resection.  The patient’s HLA-type 

would likely need to be determined, as certain HLA/neoepitope combinations were 

recurrent.  However, full genetic sequencing would not be necessary.  In the longer 

term, it is feasible to envisage an approach where off-the-shelf stratified vaccines are 

given to patients very soon after biopsy or surgery, potentially bridging the time gap 

before personalised vaccines can be developed and complementing more costly 

personalised approaches.  Currently, personalised vaccination requires a significant 

amount of time to be produced following tumour resection [16].  Furthermore, the 

vaccines could be applicable to multiple patients, and could therefore result in 

production scale cost savings.  As RAS is a key cancer driver mutation, it could 

potentially be less susceptible to immune escape, which is desirable for a potential 

target antigen [29].  The RAS-associated neoantigen could be combined with highly 

expressed tumour antigens to increase efficacy.  MSS KRAS mutant patients tend to 

have low mutation rates, and therefore have a limited number of targetable 
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neoantigens (a median of 26 class I presented neoepitopes were predicted per 

patient).  KRAS mutant as a group makes up 40% of all CRC patients, who do not 

respond to current targeted therapies such as EGFR monoclonal antibodies [10].  

Therefore novel therapeutic options are needed.   

 

The success of such a vaccine programme would have significant implications.  It 

could improve survival in a patient group with very poor survival outcomes.  Crucially, 

the approach focusses the vaccine development on tumour groups with low 

mutational burden, where immunotherapies such as up-front checkpoint blockade are 

unlikely to work as single therapies.  If successful in generating potent anti-tumour 

responses, it could increase the effectiveness of such checkpoint blockade 

approaches, through the ‘adjuvantisation’ of the microenvironment.  Such stratified 

vaccine approaches could be applied to a wide range of tumour types other than 

CRC, as driver mutations such as KRAS are highly commonplace throughout all 

tumours.  Stratified vaccination warrants further study in preclinical and clinical 

models. 

 

One of the key findings from my in silico studies was that RAS mutation was 

correlated with reduced immune infiltration.  In the TCGA dataset, this correlation 

was most marked in those RAS mutants with highest MEK signatures – the non-

G12D/G13D subtypes.  However, my local IHC analysis did not show any association 

between RAS mutation and CD4, CD8, Class II HLA, CXCL10, PD-L1 and Tbet 

density, although STAT1 was significantly reduced in RAS mutants, suggesting that 

RAS signalling may reduce STAT1 expression, which mediates IFNγ receptor 
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signalling.  However, this did not appear to produce significant reductions in immune 

infiltration in this sample set. 

 

As I did not see a clear association between RAS mutation and immune protein 

expression, the TCGA data was revisited and in collaboration with Justin Guinney, I 

found that the association of RAS mutation with immunity depended on CMS 

groupings.    RAS mutation did not have a significant association with immunity within 

all CMS groupings – only within CMS2.  This group is associated with left sided 

colonic tumours that have high WNT/Myc pathway activation.  CMS2 is relatively 

immunosuppressed, and it is possible that in an immunosuppressed group, RAS 

mutation has a further suppressive effect.  However, the fact that CMS2 RAS wild 

types have lower immunity than CMS4 RAS mutants suggests that the CMS 

groupings, which are based on overall transcriptional profiles, are more significant in 

terms of immune impact than individual driver mutations such as RAS.  Though 

understanding the key mechanisms and mutations driving tumours may be of benefit 

if they can be affected (such as with targeted therapies), targeting of 

immunotherapies based on transcriptional profiles such as CMS or immune 

phenotype may be more appropriate than mutational subtype alone, as discussed 

above.  It is possible that different factors limit immunity within the three MSS CMS 

groups (2, 3 and 4), and specific therapies may need to be developed for each 

subgroup to improve immune infiltration.  For example, dual MEK and Wnt pathway 

inhibition may be warrant further exploration in CMS2 RAS mutant patients, both to 

reduce signalling through these oncogenic signalling pathways and to reduce 

immunosuppression. 
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This study has shown the value of recently developed bioinformatic approaches, 

which can utilise large publically available databases that include clinical, mutation 

and transcriptomic data.  These large databases could not be produced locally 

without great time, effort and cost, and enable a ‘reverse translation’ approach, 

whereby clinical and scientific hypotheses can be investigated with patients as the 

starting point.  Important findings can then be explored and validated in the 

laboratory and a local patient set, and then, finally, could impact on patient 

management.    

 

Overall, this work has increased the understanding of the factors that determine 

immunity in CRC, and it is a step towards implementing successful immunotherapy in 

CRC, which though showing great promise in a range of cancer types, has only been 

successful in MSI-H CRC thus far.  CRC is a useful model for the tumour 

immunology field in general, due to the established relationship between immune 

infiltration and patient outcome, the variety of well characterised molecular subtypes 

with both high and low mutational burdens, and the identification of different patient 

groups in which checkpoint blockade therapy has been both effective and ineffective.  

It is likely that immunotherapies can succeed in MSS CRC once the factors that 

determine immune infiltration are better understood, and once existing and emerging 

immunotherapies are targeted appropriately and are used in intelligent combinations.  

The future of immunotherapy in CRC and other cancers will likely involve the use of 

synergistic combinations of immunotherapies, such as combination checkpoint 

blockade, or vaccination in low immune profile patients followed by checkpoint 
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blockade.  In addition, it is likely that immunotherapies will increasingly be combined 

with other therapy types including targeted therapies, chemotherapy, radiotherapy 

and surgery.  Several such combinations are being investigated in studies worldwide 

[20].  My work has provided strong indications as to how immunotherapies should be 

targeted in CRC. 
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Appendix. Association of immunity in paired CRC biopsy and resection 

specimens 

 

In a window-of-opportunity clinical trial, patients may be given a drug or intervention 

between the time of cancer diagnosis (biopsy) and surgical resection.  To investigate 

how immunity within colonic tumour biopsies (obtained endoscopically) correlates 

with immunity in full colonic surgical resection samples, resected several days after 

the biopsy, I collected FFPE sections from 15 CRC biopsy/resection pairs.  IHC 

staining revealed relatively weak correlations between CD8, STAT1 and PD-L1 

protein expression in the biopsies and resections.  In epithelium, Spearman 

correlations were 0.369 (p=0.175) and -0.322 (p=0.243) for CD8 and STAT1 

respectively.  All biopsy sections were negative for PD-L1 in epithelium.  In stroma, 

Spearman correlations were 0.316 (p=0.251), -0.018 (p= 0.952) and 0.261 (p= 

0.347), for CD8, STAT1 and PD-L1 respectively.  Though analysis of further samples 

is required to confirm this finding, if confirmed this potentially has significant 

implications for the design of windows-of-opportunity studies.   In such a study, 

biological differences between the biopsy and the resection sample may be 

measured to determine the effect of a drug or intervention on the tumour 

microenvironment.  However, this result suggests that biopsy and resection sample 

immune infiltrations are not closely correlated, which would need to be considered in 

a window study design.  It is possible that immune infiltration changes during the 

period between biopsy and resection, leading to potential bias according to when the 

resection occurs.  Furthermore, heterogeneity in different areas of the tumour could 

lead to sampling bias depending on which areas of the biopsy and resection are 
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analysed.  However, despite this, this study design may be useful if an intervention or 

drug has a substantial impact on the microenvironment of the resection sample, 

overcoming variabilities due to the above factors. 
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Collaborative Statement 

 

All work in this thesis was my own other than:  

Initial confirmation of EPCR expression on CRC cell lines (Carrie Willcox). 

Confirmation of EPCR expression on mast cells (Peter Bradding and Aarti Shikotra). 

Validation of Class II HLA and CXCL10 antibody (Ghaleb Goussous). 

 

In addition, the neoantigen studies were in collaboration with Sebastian Boegel, who 

performed the neoantigen prediction.  The CMS grouping studies were in 

collaboration with Justin Guinney, who performed the statistical analyses on the 

extended TCGA RNAseq and KFSYSCC datasets. 
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