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Chapter 1

Introduction

1.1 Introduction

A Symmetric system is a system comprising of some identical processes.
These systems contain some identical tasks that are the same for all iden-
tical processes. A symmetric system often satisfies a set of properties; for
example, safety, meaning ”something bad will not happen”, liveness, mean-
ing ”some particular situation must eventually happen” and fairness, mean-
ing ”something should happen infinitely often”. There have been numerous
attempts to exploit symmetry in systems [15, [34] B0, 16]. However, they
mostly involve model checkers. In this thesis we try to tackle symmetry
using theorem proving instead.

Automated theorem proving is a collection of techniques to deal with
mathematical theorems using a computer program. This technique has been
applied into many different logics including temporal logic. Temporal proof
is a technique used to ascertain whether a temporal logic formula is valid
or not. In this thesis, we consider automated temporal theorem proving,
focusing on an extension of the resolution procedure developed by Robin-
son [32], namely the clausal resolution method for propositional temporal
logic (PTL) [19]. As the complexity of satisfiability for PTL is PSPACE
complete, its use becomes more difficult as the considered PTL formulae be-
come larger. Our approach is to infer resolution steps in larger problems by
considering, and extending, resolution steps in corresponding, but smaller,
versions. Based on the steps that have been carried out for smaller formu-
lae, we make a ‘guess’ at the steps needed for larger formulae of a similar
pattern. Clearly, this will only work if the formulae increase in a regular
way and if we have a quick way to validate the ‘guesses’.

On the other hand, when considering symmetric systems, we are norm-
nally interested to prove the system for arbitary number of processes. Thus,
another approach to specify these systems is to use a fragment of first order
temporal logic known as monodic FOTL [22] instead, in which we can spec-



ify these system for arbitary number of processes. One of its sub-fragment
known as monadic FOTL can even be decideable. Unfortunately, even this
sub-fragment loses its decidability once equality is added[I0]. As an inspira-
tion from FOTL, in this thesis, in chapter Template we try to explain that
if we can prove a symmetric system for i processes, we can greatly reduce
the steps required to prove the same symmetric system with ¢+ 1 processes.
The detail of this has been published in TIME International Symposium on
Temporal Representation and Reasoning [28]

The stimulus for this work comes from temporal model checking [7],
where the main problem is the state-space explosion that occurs as problems
increase in size. In that field, symmetric techniques have been used to
tackle larger problems by considering smaller instances. The SPIN model
checker [23] method has exploited symmetry to overcome the state-space
problems, albeit to a limited extent, and only for certain classes of system.
Thus, our aim in this paper is to introduce a symmetric way to increase the
efficiency of the resolution method as the size of the problem increases.

After the introductory and preliminary sections, we define symmetric
systems. Then we introduce a new notion, the template, which can be used
to guess a step resolution of a large symmetric system from a step resolution
of the same system with a smaller number of processes, and finally checking
its correctness. By doing this, we can bypass the step resolution for the
large system, thus improving the efficiency. We then apply this technique
to the deductive temporal verification of a cache coherence protocol [11].

For small numbers of identical processes, propositional temporal provers
can handle their deductive verification. However, if the number of processes
increases, or if the formula is complex, even temporal resolution provers such
as TeMP [24] or TSPASS [26] may fail to handle such problems. By applying
our technique to such symmetric problems, we can perform automated tem-
poral proofs for larger numbers of processes by extrapolating from simpler
examples.

Thus, the ultimate aim of this thesis is to provide a technique that
allows deductive temporal methods to be applied to larger problems. Just
as model-checking can be applied to problems comprising large numbers of
identical processes [0, B3, [6], this thesis shows how propositional temporal
proving can be productively used in a similar way.



Chapter 2

Preliminaries

2.1 Temporal Logic

Temporal logic is an extension of classical logic, specifically adding operators
dealing with time. In addition to operators of classical logic, temporal logic
often contains extra operators dealing with time. For example, '[I’, meaning
always, (), meaning in the next moment in time and ’¢’, meaning sometime
in the future. These additional operators allow us to construct formalisms
such as:

O(active_process = Qtask_is_done)

Meaning : ”whenever there is an active process, then at some point in the
future, our task is achieved.”

Temporal logic was first introduced by Arthur Prior and later was further
developed by Hans Kamp and Amir Pnueli.

2.1.1 Propositional Temporal Logic

Propositional Temporal Logic (PTL)[29] is a logic that is discrete, linear and
propositional Additionally to classical propositional operator, PTL contains
a set of temporal operators that deal with time.

e Discrete: the underlying model of time being isomorphic to the natural
numbers, with a distinguished initial point and an infinite future.

e Linear: in each moment in time, there is at most one successor.

e propositional : with no explicit first-order quantification

Basic syntax and semantics

The set of well-formed PTL formulae is the smallest set containing all propo-
sitions (and their negations) and the boolean constants T and L, such that
whenever ¢ and 1 are PTL formulae so are the following;:



- At this moment in time ¢ is not true
=1 At this moment in time, v is true if ¢ is true
oY At this moment in time, ¢ is true if and only if ¥ is true
oV Y At this moment in time, ¢ or ¢ (or both) are true
O NY At this moment in time, both ¢ and v are true
Oo At the next moment in time, ¢ will be true
(o ¢ is always true (at any moment in time)
Qb ¢ will eventually become true
oUW ¢ will be true until 1» becomes true
oW1p | ¢ will be true unless v is true (¢» doesn’t have to become true at all)

In the above table (), ¢, O are unary temporal connectors while U and W
are binary temporal connectors. In addition, ”(” and ”)” are used to avoid
ambiguity. In later we avoid the use of U and W connectors as one can
transform them into a combination of unary connectors.

For the semantics of PTL, let us recall that PTL has a linear and discrete
basis that is isomorphic to N, thus the model structure is the following:

M = (N, )

where 7 : N — P maps each moment in time to the set of propositions ( P
) that are true at that moment. Thus, for a structure, M, temporal index
(the moment in time), ¢ and a formula ¢ we have

(M,i)E ¢

which is true if, and only if, ¢ is satisfied at the temporal index ¢ within the
model M. For full semantics, let’s look at the following;:

Eo iff ¢ is a proposition and ¢ € 7 (i)
E - iff p is not the case that (M,i) E ¢
Fony iff (M,i) E ¢ and (M,i) ¢

Fovy M (Md) ¢ or (M,i) Ev
Fo=1 iffif (M,i) ¢ then(M,i)
Eoey iffif (M,i) | ¢ then(M, i)
Fony iff (M,i) E ¢ and (M,i) =
FO¢ it (Mit+1) ¢
':
':
':
':

=
=1 and if (M, 1) = 9 then(M, i) = ¢
G

S, .

) iff for all 7, if (j > 1) and (M, j) = ¢

Od iff there exists j such that(j > i) then (M, j) = ¢
t (M, j) F

and for all k: i < k < j, (M, k) = ¢

Y >
oWy iff either(M, i) = ¢Uy or (M, i) = 0o

¢oUv  iff there exists j > ¢ such that

< X<XxX<xxxxgkx

—~
.
~



2.1.2 Satisfiability, Unsatisfiability and Validity

Given a formula ¢, we say ¢ is satisfiable if and only if there exists a model
M, which ¢ holds. ¢ is valid if it holds under all interpretations e.g.

¢ < true

Finally ¢ is unsatisfiable if there is no interpretation that ¢ is true.

2.1.3 System Properties

The key motivation for temporal logic has been to specify the dynamic prop-
erties for reactive systems. Some of the interesting properties are safety,
meaning ”something bad will not happen”, liveness, meaning ”some partic-
ular situation must eventually happen” and fairness, meaning ”something
should happen infinitely often”.

Using temporal logic we can specify such properties as follows:

e safety: O-p
e liveness: Op

e fairness: OOp

2.1.4 First-order temporal logic

First-order temporal logic (FOTL) over the natural numbers is incomplete.
Thus there is no finitary inference systemE] which is sound and complete. Or
it could be said that the set of valid formulae of the logic is not recursively
enumerable. However, monodic fragments of first-order temporal logic [22],
where every subformula can have at most one free variable. In addition, a
monodic fragment has a finite inference system. Some of the sub-fragments
of monodic FOTL can even be decidable. An interesting sub-fragment of
monodic FOTL is monodic monadic where each predicate has, at most,
an arity of one. However decidability and completeness only holds for logic
without equality. Unfortunately, even this sub-fragment loses its decidability
once equality is added [10], thus it is not recursively enumerable.

Syntax of FOTL

Well-formed formulae of FOTL (W FFy) are generated from the symbols of
PTL together with the following:

o A set, £,, of predicate symbols represented by strings of lower-case
alphabetic characters.

LA finitary inference system is a system that takes a finite input to produce an output



e A set, L,, of variable symbols, z, y, z, etc.
e A set, L., of constant symbols, a, b, ¢, etc.
e A set, Ly, of function symbols, f, g, h, etc.

e Quantifiers, V and 3

The set of terms, L;, is defined as follows.
1. Both £, and L. are subset of L;.

2. if t1,...,t, are in Ly, and f is a function symbol of arity n, then
f(tl, . ,tn) is in ['t-

The set of well-formed formulae of FOTL(W FFy) is defined as follows.

1. If t1,...,t, are in £; and P is a predicate symbol of arity n, then
P(t1,...,t,) is in WFFy.

2. if A and B are in WFFy, then the following are in W EFFy

¢ At this moment in time ¢ is not true
=Y At this moment in time, ¢ is true if ¢ is true
oY At this moment in time, ¢ is true if and only if ¢ is true
oV Y At this moment in time, ¢ or ¢ (or both) are true
o NY At this moment in time, both ¢ and v are true
Oo At the next moment in time, ¢ will be true
Oo ¢ is always true (at any moment in time)
420, ¢ will eventually become true
U ¢ will be true until ¥ becomes true
oW1 | ¢ will be true unless 1) is true (¢ doesn’t have to become true at all)

3. If Aisin WFFy and v is in £, then J3v. A and Vv.A are both in W F F}.

2.2 Automated theorem proving

In general, automated theorem proving is a collection of techniques to deal
with mathematical theorems using a computer program. There are varieties
of theorem-proving techniques such as resolution and tableaur and etc. De-
pending on the problem, one technique may prove to become more useful
than another. In this thesis we mainly focus on the proof procedure using
resolution. Resolution for classical logic was first proposed by Robinson [32].
It is claimed to be "machine oriented” as it was deemed particularly suitable
for proof to be performed by computers. Using this approach, the validity



of a logical formula, ¢, is checked by first negating it and translating —¢
into Conjunctive Normal Form (CNF). Then by using an inference rule, re-
peatedly checking for unsatisfiability. If a contradiction is derived, then —¢
is unsatisfiable, therefore the original formula is valid.

2.2.1 Robinson’s Resolution method

Robinson resolution method is a method of theorem proving that proceeds
by constructing refutation proofs. It is called proofs by contradiction. This
method uses one rule of inference that may have to be applied many times.
This approach is particularly suitable for proofs to be done by computers. In
this approach, the validity of a logical formula, ¢, is checked by first negating
it and translating —p into a particular form, Conjunctive Normal Form
(CNF) before applying resolution rules. A CNF form can be represented as:

0 =C1ANCyAC,

where each C;, known as a clause, is a disjunction of literals, and each literal
is either an atomic formulaE] or its negation. Typically, this CNF formula is
represented as a set of clauses C' = {C1,Cy,...,C,}.

Having a formula in CNF form, we can apply the resolution rule of
inference:

(R1Vp)
(R2 V —p)
(Rl V Rz)

Ry and Ry are disjunctions of literals, and p is a proposition. Since one
of p and —p must be false, then one of Ry or Ro must be true. Then we
can produce a new clause (R; V Rg) that can be added to the set of CNF
clauses. We continuously apply the inference rule until an empty clause
(false) is generated or no new clause can be generated. If false is derived,
- is unsatisfiable, thus the original formula ¢ is valid. This procedure is
guaranteed to terminate in propositional logic. The resolution principle also
applies to first-order logic formulas in skolemized form. As justification of
Robinson’s original statement that resolution provides a “machine oriented”
approach, many theorem provers based on resolution have been developed
for computers; for example, Otter[27] and Vampire|31] are successful reso-
lution based provers.

2.2.2 Temporal Automated Proving

There have been attempts to use Robinson’s resolution technique for Tem-
poral Logic. These fall into two main classes: non-clausal and clausal. The

2 Atomic formula is a formula that contains no logical connectives



non-clausal method described in [I] and extended to First-Order Temporal
Logic in [2] requires a large number of resolution rules. Although it is un-
clear what the maximum number of rules is, having many resolution rules
can make implementation problematic, as each rule must be implemented
separately, and the decision of which rule should follow is often difficult. On
the other hand, a clausal resolution technique was originally introduced in
[19] by Michael Fisher. This technique requires the PTL formula to be in
a normal form, namely Separated Normal Form (SNF) [1§]. This was later
refined into Divided Separated Normal Form, which has been found to be
particularity useful in developing clausal resolution for FOTL, as it preserve
satisfiability of the original formula with only linear growth in size [25].

Separated Normal Form (SNF)

PTL formulae can become complex and difficult to understand. Thus it is
useful to replace one complex formula by several simpler formulae which have
behaviour equivalent to the original. This transformation process preserves
satisfiability and ensures that any model of the transformed formula is a
model of the original one.

Therefore Separated Normal Form [19] was introduced. In SNF formulae
are represented as:

where each R;, known as a clause, must be of one of the following forms

T
start = \/ ly (an initial rule)
b=1

g T
/\ ko = O \/ Iy (a step rule)
b=1

a=1

g
/\ ko = Ol (a sometime rule)

a=1

where each ky, [, or [ is simply a literal.

Divided Separated Normal Form (DSNF)

DSNF is an equivalent alternative to SNF. A temporal problem is comprised
of four sets of formulae Z,U, £ and S where

7: represents the initial part of the problem and contains non-temporal
formulae that should be satisfied at the first moment in time. Each element
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of Z would be of the form:

Vi

a

U: represents the universal part of the problem and contains non-temporal
formulae that are universally true. Each element of &/ would be of the form:

O\ &)
b

S: represents the step part of the problem containing step clauses. Each
element of S would be of the form:

D(/\lc = O\/ld)
¢ d

E: represents the sometime part, containing eventualities that must be
satisfied infinitely often Each element of £ would be of the form:

0ol

The full temporal problem is characterised by the formula

ANZANUNA\SANE

where ” \” means that all elements of subsequent set are conjoined.

As mentioned above, DSNF is particularly useful in developing clausal res-
olution for FOTL.

2.2.3 Clausal Temporal Resolution

An overview of the Clausal Temporal Resolution method is as follows:

1. Transform formula A into Separate Normal Form (SNF) [17], giving a
set of clauses A,.

2. Perform step resolution [17] on clauses from A, until either:

(a) A contradiction is derived, in which case A is unsatisfiable; or
(b) No new resolvent are generated, in which case we continue to
step(3).

3. Select an eventuality from within Ay, and perform temporal resolution
[17] with respect to this - if any new formulae are generated, go back
to step (2).

11



4. If all eventualities have been resolved, then A is satisfiable; otherwise,
go back to step (3).

The soundness, completeness and termination of this method was proved
n [19]. The basis of the above method is the following two-resolutions rule:

e Step Resolution:

(initial) (RiVp) (step) O(Ly = O(R1VDp))
(12 V —p) O(L2 = OBz V p))
(R1 V Ry) OL1AL2) = O(R1V Ry))

e Temporal Resolution:

00!
O(L = OO1)
O-L

While step resolution closely resembles the classical resolution rule, the key
inference rule in clausal temporal resolution, namely the temporal resolution
itself, requires further steps. The translation to SNF restricts the PTL
clauses to be of a certain form.

The formula O(L = OOI) is called the loop formula and the process
must reconstruct this formula. The process of reconstructing the loop for-
mula is known as loop search. The conclusion of temporal resolution is a
clause that is always true at any moment in time. Such a clause is called
universal clause. However, (L = (OUO=I) can only be constructed by a
combination of universal and step clauses. L is a disjunction of conjunc-
tions of literals (i.e. in DNF); therefore, its negation is a conjunction of
clauses, which is added to the set of universal clauses. Loop search was orig-
inally developed by Clare Dixon in [12]. It was further developed in [14], so
classical automated reasoning can be used for this purpose.

2.2.4 TSPASS

TSPASS[26] is an implementation of clausal temporal resolution based on
the first-order theorem prover SPASS [35]. It implements temporal resolu-
tion for monodic first-order temporal logic. TSPASS implements a number
of simplifications and enhancements over the clausal temporal resolution
approach as follows:

e It uses the simplified clausal temporal resolution calculus [9].
e It is based on ordered resolution [3].

e It uses TSPASS underneath.

12



TSPASS is currently available and can be found at:

http://lat.inf.tu-dresden.de/~michel/software/tspass/

2.2.5 TeMP

TeMP [24] is another implementation of clausal temporal resolution based
for monodic first-order temporal logic. It is based on the first-order theorem
prover Vampire [31]

TeMP is currently available and can be found at:

http://www.csc.liv.ac.uk/~konev/software/TeMP/

TSPASS and TeMP are usually competitive; sometimes one can perform
better than the other on different scenarios and examples, but a combination
of both can also be useful.

2.3 Symmetric system

A symmetric system comprises of some identical processes. These systems
contain some identical tasks that are the same for all identical processes.
Preferably these systems should be specified for arbitrary number of pro-
cesses.

The aim is to first specify these systems and then check some of the
properties they might have. One way of specifying these systems is to use
a temporal logic specification; for instance, we can use PTL to specify a
system for i processes, then use a PTL prover to verify and check certain
properties.

This procedure works as follows; say ¢; is a specification of a symmet-
ric system S; with ¢ processes. We also have a property ; of system .5;.
We want to check whether F ¢; = ;. This can be achieved by proving
that one temporal formula implies another. One way of doing that is by
using clausal resolution [19] for PTL, in which we check for unsatisfiablity of
—(¢; = ;). This technique is based on a proof procedure for classical logics
by Robinson[32]. However, as previously mentioned, there might be an un-
known number of processes in such systems, therefore, proving —(¢; = ;)
can only provide proof for ¢ processes and cannot determine the proof for,
say, ¢ + 1 processes.

Another approach might be to specify these systems is to use monadic
FOTL instead, in which we can specify these system for arbitrary numbers of
processes. But a problem arises when we come to a situation where equality
becomes an issue. The full details of such issues has been explained in [20]
and [4]. It becomes difficult to specify such system in monadic FOTL. Even
though these papers suggests some techniques to deal with the specification,
none of these techniques are complete. We will instead show a way of dealing
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with specification and proof of a strict set of symmetric systems for an
arbitrary number of processes.

2.4 Parameterised System

A parameterised system is a distributed system comprising of N identical
processes. Every process has inner states known as ’local state’; e.g. initial
and final states. Processes in a parameterised system can interact with each
other. This interaction results in some general states known as ’global states’
within a system. Cache Coherence Protocol [11, [20] is an example of such a
system. Parameterised systems are considered to be symmetric as systems
contain of identical processes.

2.4.1 Cache Coherence Protocol

In a shared-memory multiprocessor system local caches are used to reduce
memory access latency and network traffic. Although local caches improve
system performance they introduce the cache coherence problem as multiple
cached copies of the same block of memory must be consistent at any time
during a run of the system. A cache coherence protocol ensures the data
consistency of the system: the value returned by a read must be always the
last value written to that location. cache coherence protocols are an example
of Parameterised systems.

Automatically checking the safety properties independently from the
number of processors has been tackled using general purpose, infinite-state
symbolic model checking [11]. Alternatively, one may verify cache coherence
protocols for all possible dimensions by first translating into monodic first-
order temporal specification and then applying temporal theorem proving.
This has been done in [20]. The following correctness conditions are the
most important for cache coherence protocols:

1. non co-occurrence of state: some specific local states q1 and g2
cannot appear in the same global state.

2. at most one: a local state q can appear at most once - i.e. be the
state of no more than one processor - in any global state.

Even though cache coherence protocols can be represented as monodic first-
order formulae, and then be verified using a first-order prover, it is still
hard to prove some properties. The reason for this difficulty is the general
difficulty of first-order formula.

Another approach to verify these system is to first translate them into
Propositional Temporal Logic for some number of processes. The trade off
for this approach compared with monodic first-order translation is simple;

14



we lose expressiveness but on the other hand gain advantage over decidability
of the formula.

MSI Protocol

The MSI protocol is a basic cache coherence protocol that is used in multi-
processor systems.

MSI has three components. Every process can be in exactly one of these
components:

e Modified: The block has been modified in the cache. The data in
the cache is then inconsistent with the backing store (e.g. memory).
A cache with a block in the ”M” state has the responsibility to write
the block to the backing store when it is evicted.

e Shared: This block is unmodified and exists in at least one cache.
The cache can evict the data without writing it to the backing store.

e Invalid: This block is invalid, and must be fetched from memory or
another cache if the block is to be stored in this.

For any given pair of caches, the permitted states of a given cache line
are as follows:

Figure 2.1: Relation between two processes in MSI Protocol

M S I
M| X X/
S| X|/ |V
1\ V| /|

As the figure shows, two processes cannot be in the Modified state
at the same time. Furthermore, if one process is in the Shared state, no
other process can be in the Modified state.

Figure demonstrates this concept in more detail, how each process
in MSI can read/write either locally or globally, meaning; reading from the
local cache (LR), writing to the local cache (LW), writing to memory (BW)
and reading from memory (BR).

If the process is in inwvalid state then

e LR : process has to put a read request on the bus and then move to
modified state.
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e LW : process has to put a write request on the bus and then move to
shared state.

e BR : process doesn’t have to do anything (stays in the same state).

e BW : process doesn’t have to do anything (stays in the same state).

If the process is in shared state then :

e LR : process doesn’t have to do anything (stays in the same state).
e LW : process doesn’t have to do anything (stays in the same state).
e BR : process has to write back to memory then move to shared state

e BW : process has to write back to memory then move to invalid state.
If the process is in modified state then:

e LR : process doesn’t have to do anything (stays in the same state).

e LW : put invalidation request on the bus to ask everyone to invalidate
their copy then move to modified state.

e BR : process has to write to memory then move to shared state.

e BW : move to invalid .

16



Figure 2.2: Relation between two processes

PrRd/-,
Prwr/-

Modified

PrWr/BusUpgr Bust./FIush

BusRd/Flush

PrRd/BusRd BusRdX/-
PrRd/, BusRd/- :

in MSI Protocol

\ " BusRdX/Flush
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Chapter 3

Template

In this chapter we describe a formal representation of formulas in a symmet-
ric system. This representation shows how we can capture such similarties
and eventualy use them in order to improve our proof.

3.1 Definition

Template is a mean to sort and group disjunctions of logic formula from a
symmetric system. Typically it is a way of representing a disjunction or a
conjunction of propositions. More formally we can define a template as :

Definition 1 A template is a set of expressions of the form q or p,, (The
latter is just a predicate labelled with x) where p is a state of a symmetric
system and x is a variable referrering to the process. If the template does
not have a variable it is therefore called constant

In above definition, p is the encoded state of a process as proposition and
x is the process number that p is referring to. For example, p; is the state
p of process 1, where as g because it doesn’t have any variable is therefore
a constant.
The variables in a template is bounded to the total number of identical
processes in a specification of a symmetric system.

3.2 Creation

Algorithm [I]is used to produce a template from a disjuntion of propositions.

18



Algorithm 1

1. procedure TEMPLATECREATION(Formula ¢)

2 b0

3 for all proposition p in ¢ do

4: if p is constant then > if p doesn’t end with number
5: t.add(p,0)

6 else

7 P+ stateO f(p)

8 k < processO f(p)

9 if isUsed (k) then

10: v = thecurrentvariablethatisusedf orprocessk
11: t.add(p',v)

12: else

13: v = afreshvariable

14: t.add(p'v)

15: end if

16: end if

17: end for

18: return #

19: end procedure

An example of using Algorithm [I] to create a template as follows: Suppos-
edly we a have a disjunct ¢ such as

p=p1VpaVagVrzVec

Lets assume these propositions refer to a symmetric system’s states of p, p, q, 7, ¢
and numbers stating their unique process. For simplicity of tracking the re-
lation between states and propositions same letters are used for refer to each
state and its represntitive proposition. We define a template ¢ = ().

Now lets look at the first proposition in ¢, p; is state p belonging to process
1. since process 1 has yet used in $, we define a new wvariant x1 and add py,
to &.

By looking at the next proposition in ¢(p2) we can add ps, to . ¢y, can
be added to t with the same procedure from g3. The next proposition is rs.
however process 3 has been used in t before, therefore we are not going to
create a new variant and used the variant that this process was referred to.
Thus adding 7, to . The last proposition is c. However this is not referred
to any process. Therefore its a constant. so we simply add ¢ to . We finally
end up with the following for our template.

= {p.l’17pl727q-733’ Tags C}S

!Template set is referring to the total number of distinct processes used to create this
template.
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Definition 2 Template lead is a means to expand a template t to be used
for the same system with more processes.

We say template ' is a symbolic lead of & iff
Y =tUgq
where q is:
e g=10,or

e ¢ is a set of all states in t that are marked with at most one variable
within ¢

Algorithm [2] is used to produce all the symbolic lead for a template. In
addition to check if a template ¢ is a lead of ¢ we can use Algorithm

Algorithm 2

1: procedure TEMPLATESYMBOLICLEAD (template t)

2 let lead be a set of Templates.

3 array v < Distinct variables in ¢

4 lead.add(t) > every template is a symbolic lead of itself
5: newVar < a variable that is not in v

6 for all variant v in ¢ do

7 s < variants of v in ¢

8 g« 0

9 for all i €s do
10: q.add(inewvar) > Add variant ¢ with variable newvar to q
11: end for
12: lead.add(q)
13: end for
14: return lead

15: end procedure

Algorithm 3
1: procedure CHECKTSL(templates t,t') > check if ¢’ is a TSL of ¢
2 let set ¢ < TemplateSymbolicLead(t)

3 for all template ¢t in t” do

4 if tt ==t then

5: return true
6

7

8
9:

end if
end for
return false
end procedure
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3.3 Producing clauses from Template

As we can create a template from a formula we can also produce the formula
using a template. For example given template:

t= {pxlapzwrzyc}?)
we can create the following DNF":
((p1Vp2VraVe)A(p1VpsVrsVe) A(p2VpiVriVe) A(p2VpsVrsVe) A(psVpiVriVe) A(psVpaVraVe) )

Definition 3 Two templates ¢ are equal iff they produce identical clauses
regardless of clause orderings for k processes.

In Algorithm [4]it is shown how to create a DNF clauses from a template.
Let’s consider ¢ set. We know there are three processes invovled and the set
contains four expressions {pz,, Puy, Tzy, ¢} With two variables {z1,x2} and a
constant c. Algorithm 4 simply create DNF clauses containing #V ariablesx
#Processes(2 x 3 = 6) disjunctions. since c¢ is a constant, then it will be
repeated in every clause. and variables will be replaced by process numbers.
For example, if in a clause p;, is replaced by p; then p,, and r,, will be
replaced by a process number that is not 1 meaning either ps,r9 or ps,rs
for that clause.
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Algorithm 4

1: procedure CLAUSEFROMTEMPLATE(¢,N) > Template T and N
processes.

2: mapper < array of distinct variables

3: FF + 0 > A set of conjunctions of formula
4: array A < {1,...,v}

5: changeable < v — 1

6: while true do

7 clause <— conjunction of constatns in T
8: fori=0tovdo

9: for all stat € T' do

10: if stat.variable = mapper[i] then
11: clause « clause A state g[;)

12: end if

13: end for

14: end forF F.add(clause)

15: if A[0] =n—v+1 then

16: return FF > TERMINATE
17: end if

18: if Al[changeable] = (N — (v — (changeable +1))) then
19: changeable — —
20: end if
21: for i+ v—1downto1l do
22: if Al{] < (N —(v—(i+1))) then
23: changeable = 1 ; break;
24: end if
25: end for
26: q < populate(V, A, changeable)
27: A+q
28: end while
29: return F'F
30: end procedure

31: procedure POPULATE(V, A, changeable)

32: array q

33: for ¢ = 0 to changeable-1 do

34: qli] < Ali]

35: end for

36: g[changeable] <— A[changeable] + 1

37: for ¢ < changeable +1 to V do

38: q[i] < g[changeable] + (i — changeable)
39: end for

40: return q

41: end procedure
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We now provide an overview of how we use symmetry to remove some
of the complexity in temporal resolution refutations for larger instances of
a problem. For simplicity of presentation, in what follows we assume that
¢ contains both the specification of the system and the negation of the
property (and thus we are applying temporal resolution to ¢ in an attempt
to show unsatisfiability) and that £ = {J0l}.

1. Instantiate a monodic first-order temporal formula ¢ to give the PTL
formula ¢; with a fixed 7 (initially, i = 1).

2. Run the clausal propositional resolution method on ¢;.

3. If a contradiction is mot derived, increment ¢ and return to step
(in this case, the property requires some minimal number of processes
before it holds). If a contradiction for ¢ processes is derived, move to
step 4.

4. From the results gathered from step 2, try to guess a loop set of
potential loop formulae for the eventuality [J(! in the instance of the
specification with a larger number of processes ¢; (with j > ).

5. If the loop set is empty then increment ¢ and go to step[I} else continue
to step [6]

6. Select a loop formula candidate L from the loop set and check if L is
indeed a loop formula in this larger instance of the problem (i.e. ¢;).
If the loop check procedure returns ’yes’ then go to step [7] otherwise
remove L from the loop set and return to step [5

7. Once it is confirmed that L is indeed a loop formula, replace the even-
tuality rule applied for IO/ with the conculision =L in ¢; and run the
temporal theorem prover.

8. If a contradiction is obtained, go to step 1 setting ¢ = j, otherwise go
back to step 5.

Thus, if we fail to successfully guess a loop that works for refutations in
problems with larger numbers of processes, then we must continue applying
the full temporal resolution procedure to successively larger instances of the
problem. If we do guess a suitable loop for a larger instance, then we can
carry out proof in that instance without the necessity of temporal loop search
(i.e. with a DSNF problem with empty £) — this is significantly faster.

In what follows, we introduce machinery to analyse loop formulae col-
lected from a successful run of the theorem prover on ¢; in step 2 of the
algorithm.

3.4 “Guessing” Loop Formulae

In order to capture symmetry in the system, we have defined the notion of
a template, which can be used to group together a set of formulae with the
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same behaviour and therefore, give a direction to our guesses. Template is
mainly used to “guess” the loops needed for the temporal specification of
the system containing more processes.

Given resolvent clauses for ¢l of system ¢ , we create the templates
of individul disjunct and add them to a set of templates. This procdure is
called grouping.

Definition 4 A group is the transformation of a template ¢ to a set of
formulae F
group : template — F

The function to achieve such transformation is called grouping

To group the formulae with the [5| algorithm below, we assume that the
give formulae is a resolvent of the loop for a symmetric system.

Algorithm 5
1. procedure GROUPFORMULAE(L) © L is a loop formula in DNF form
2 letF:{ll,...,lk}
3 let + be the template for a l; in F'
4: let g= 0

5 while F # () do

6

7

8

9

for all fin F do
let Q=10
if f can be represented with ¢ then
: add f to @ and remove f from F
10: end if

11: end for

12: addt— Q tog

13: let t be the template for another /; in F'
14: end while

15: return g

16: end procedure

In Algorithm [6] below, we return all the possibilities for ¢ based on what
we know about .
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Algorithm 6

1: procedure TEMPLATESYMBOLICLEAD (template %)

2 let lead be a set of Templates.

3 array v < Distinct variables in

4: lead.add(%) > every template is a symbolic lead of itself
5: newVar < a variable that is not in v

6 for all variant v in ¢ do

7 s < variants of v in %

8 g« 0

9 for all i € s do

10: q.add(inewvar) > Add variant ¢ with variable newvar to q
11: end for

12: lead.add(q)

13: end for

14: return lead

15: end procedure

Similar to a loop formula, which can be thought of as a set of conjunc-
tions, we define a loop-template as a set of templates 1,59,. .. k5. Intuitively,
a loop template represents all conjunctions of literals from a loop formula.
A loop-template Tis a predecessor of T if, and only if,

e Tand T both contain the same number of templates, and

e for each template ¢ in T there is a template ¢ in F such that that ¢
follows from #.

Theorem 1 Let ¢, ¥ be templates and L be a loop formula such that for no
two conjuncts F, F' of L we have F C F'. Then if ¥ follows from ¢, the loop
formula L cannot contain instances of both ¢ and ¥, unless ¥ is a syntactic
variation of %.

PROOF Let t and ' be two templates for loop formula L, since ¢’ follows
from ¢, then ¢/ = tUq if ¢ = O then t’ is a syntatic variabtion of ¢.(1) if
q # O then we have to prove that for every conjunct ; that is produced
from ¢ for n number of processes, there is a conjuct ls that will be produced
from ¢’ for n in such a way that Iy C Iy or Iy C ;. E]

This will be sufficient because for every cunjuct F; and F> in L. we have
Fy ¢ F». Therefore this proves that L cannot contain both conjuncts from
t and ¢’ unless (1). Since I is a bigger conjunts than l; because it has at
least one more proposition. therefore,

la Cly

2 number n is greater than the number of distinct varibles of ¢ and t'.
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Based on this result, we first present a naive GUESSEDLOOPTEMPLATE algo-
rithm that enumerates possible loop templates that follow from the current
loop template obtained by the GROUPFORMULAE algorithm.

There are two problems with the algorithmGUESSEDLOOPTEMPLATE.
First, it can potentially introduce n? guesses, where n is the maximum
number of propositions in a loop formula , which can be too many to prac-
tically consider. The second, more serious problem, is that the algorithm
only produces templates that follow from the current loop template. In some
cases, the loop formula for an instance of the symmetric system for a larger
number of processes is not an instance of any template for a smaller number
of processes. Therefore, we need more information to produce a loop. The
algorithm GUESSEDLOOPTEMPLATEZ2 produces a smaller number of guesses
based on loop formulae for L; and L;y1 where L; is the loop for a specifica-
tion with specification with ¢ processes and L; 1 is the loop for specification
for a specification with ¢ + 1 processes

Example. Suppose that for an instance of a symmetric system ¢; the loop
formula is just a single conjunction of literals. Then the loop template is
a singleton {¢;}, where t; = {as,b,}. Using GUESSEDLOOPTEMPLATE we
obtain the following set of possible loop templates G for ¢;1:

G = {{as, by}, {az,ay,b.}, {az, by, b.}}.

Suppose now that the loop template for ¢;1 is tiy1 = {az,ay,b.}.
Guided by this additional knowledge, the algorithm GUESSEDLOOPTEM-
PLATEZ2, generates a smaller guess for ¢;9:

G = {{axa Gy, Az, bd}v {axa Ay, bz}}-

Now, once we have a guess for a loop formula we need to check whether
it is indeed a loop or not.

3.5 Checking Loop Guesses

In order to present an algorithm checking whether a given formula is a loop
formula, we need to give more detail on how eventuality resolution works.
Given a DSNF (Z,U,S,€) with € = {00!}, the loop formula L should
satisfy the following properties (for details see [13]):

1. UUS EO(L = O-l),

2. UUS DO = OL).

It should be clear that under these conditions, (L = (OO=I) is a conse-
quence of the DSNF as required to apply the eventuality resolution rule.
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Both properties can be checked in a similar manner. To check (2), we
form a new DSNFE| (Z',U',S', &’ as follows

T ={L} §=8SU{O-L}
U=u ¢&=0

and run temporal resolution on the resulting set of clauses. If a contradiction
is derived, L is a loop formula for the original DSNF.

Theorem 2 For a DSNF (Z,U,S,€&) with € = {0001} and a formula L we
have UUS = O(L = QL) if, and only if, (Z',U',S’,E") is unsatisfiable.

PROOF Loop formuale is created using step and universal clauses thus,
the properties of the loop has nothing to do with the start and eventuality
clauses. now let’s assume our system specification is

p=UUS
and our property to check is
O(L = QL)

by refutation U U S = O(L = QL) is valid iff ¢ A ~(O(L = OL) is
unsatisfiable. Note:

(=(O(L = QL) O(LANO~L))
Another way of writing an eventuality formuale is

OLAOL) & (LAO-L)VOLAO-L)VO O (LAO-L)...)

Since the assumption is that L is the loop formulae thus it is sufficient enough
to check for satisfiability of the first portion of the formual that is :

e N (LAQO-L)
Now we can create our DSNF formula to be the set:
7I'={L} S§'=SU{O~L}
u=u =10

3Notice that although L and —L are not in the required clausal form, they can be easily
transformed in this form by applying de Morgan rules.
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3.6 Applying the Technique

The algorithms in the previous section have been applied to the verifica-
tion of the MSI Protocol [11]. To check the “non-co-occurrence of states”
property, we add the negated property:

B0(3z,y.(S(z) A M(y)))

to the specification and then run the proof procedure. If the combined for-
mula is unsatisfiable, then we know that the “non-co-occurrence” property
holds.

It is also worth mentioning that, we are using two different Theorem
Provers, namely TSPASS[26] and TeMP [24]. There are two reason for
this combinations, one is that based on the specification one can perform
better than other one. In addition, since they are used as 'Black Box’
each can produces different set of useful outputs which then can be used
for later investigations. To describe the approach in detail, we provide a
walk through a run of the algorithms. All the used algorithms have been
programmed, however they have not yet put together. Also the decision of
what prover to be used is decided by the user. Nevertheless, the automation
of each part is relatively easy and is set for our future work. First, we
ran the temporal prover TSPASS on an instance of the MSI protocol with
two processes. Through the internal processes of TSPASS, the property is
transformed into

OO (—~wait _for_l)

and loop search returns the following loop formula loopo:

(wait_for_I Niy) V (wait_for_l Nig)V
(wait_for I Amy Ama) V (wait_for_l A s1 A\ s2).

From this, we can extract the loop template T5 to be:

{wait_for_l,ix},
{wait_for_l,mx,my},
{wait_for_l, sx, sy}

Now we can use the GUESSEDLOOPTEMPLATE algorithm to create a set
of loop templates TT to be used for MSI3 and then derive a potential loop
formula to be tested using the TESTLOOP algorithm. Unfortunately, at this
stage we are unable to find an appropriate loop for MSI3, and therefore turn
to the GUESSEDLOOPTEMPLATE2 algorithm. We run TSPASS on MSI3 and

2Time to prove property in MSI protocols without any changes
3Time to prove property with removing eventuality and adding the formulae as step
clauses
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Number of processes | Original Problem? | Modified Problem? | results

2 0.060s 0.011s Unsatisfiable
3 1.240s 0.036s Unsatisfiable
4 16.124s 0.134s Unsatisfiable
5 119.662s 0.640s Unsatisfiable
6 1717.886s 4.138s Unsatisfiable
7 00 35.108s Unsatisfiable
8 0 340.408s Unsatisfiable
9 o0 4249.012s Unsatisfiable

Table 3.1: Performance Comparison using the TeMP [24] Clausal Resolution

Prover

extract the loop loops from it:

(wait_for_l Aiy A ig)
V (wait_for_l Niy Nig) V. (wait_for_l Aig Aig)
V (wait_for_l Amy Ama Amg) V (wait_for_l A\ s1 A sa A s3)

(
V (wait_for_ L A sy A\ sg Nis) V. (wait_for_L A s1 A s3 Aig)

V (wait_for_L A\ sa A s3 N iq)
V (wait_for_l Ami A ma Ai3)
V (wait_for I Amy Ams Aig)
V (wait_for_Il Amg Ams Aiy)

The loop template for the above formulae is T3 (X, Y and Z are variants):

{wait_for 1,ix, iy},
{wait_for_l,mx,my,mz},
{wait_for_l,sx,sy,sz}},
{wait_for_l,mx,my,iz},

{wait_for 1, sx,sy,iz}

At this stage we use T, and T3 in GUESSEDLOOPTEMPLATE2(Ty,T3) to
produce a set of template guesses 1Ty for MSI,. As before, once we have
the templates we produce the formulae and test them. One of the loop
formulae candidates extracted from one of the templates in 77Ty, namely
from

{wait_for_l,ix, iy},

{wait_for_l,mx, my,mz, mq},
{wait_for_l,sx, sy, sz, 5q},
{wait_for_l,mx,my,mq,iz},
{wait_for_l,sx, sy, sq, iz}

turns out to be the loop for MSIy,.
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Using the same template and the same follow ups we can then produce
a template for MSI5, MSIg, .... Table provides some practical results in
establishing the non-co-occurrence property for the MSI protocol of up to 9
processes.
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Chapter 4

Related work

A survey on the use of symmetry in model checking can be found in [34].
Indexed Simplified Computational Tree Logic (ISCTL), introduced in [16],
allows one to specify and verify properties of parametrised systems, where
the index corresponds to the number of processes. Our research differs in
that our main focus is the speed of reasoning rather than representation
issues.

Emerson and Kahlon [I5] tackle the verification of temporal proper-
ties for parametrized model checking problems in an asynchronous systems.
They reduced model checking for systems of arbitrary size n to model check-
ing for systems of size (up to ) a small cutoff size c¢. Furthermore, in [30],
Pnueli, Ruah and Zuck used the standard deductive INV rule for prov-
ing invariance properties, to be able to automatically resolve by finite-state
(BBD-based) methods with no need of theorem proving. They have devel-
oped a system to model check a small instances of the parametrised system
in order to derive candidates for invariant assertions. Therefore, their work
results in an incomplete but fully automatic sound method for verifying
bounded-date parametrized system.

Giorgio Delzanno proposed a method [11] to verify safety properties of
parametrized cache coherence protocols using symbolic model checkers for
infinite-state based on real arithmetics [21].

In [§], Clarke, Jha and Filkorn investigated techniques for reducing the
complexity of temporal logic model. They show how symmetry can be fre-
quently used to reduce the size of the state space that must be explored
during model checking in finite state systems.

Even though the work above are all concern using symmetry in model
checking, our work differs from them as it provides a heuristic method to
reduce the inner complexity of theorem provers itself rather than combining
it with different techniques.
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Chapter 5

Future work

The algorithms presented in this thesis constitute a first step towards prac-
tical deductive verification of symmetric systems. While the preliminary re-
sults presented in Table are encouraging, we clearly need a much greater
performance improvement before systems involving a realistically large num-
ber of processes can be verified.

We are also exploring ways to to extend the approach presented in this
thesis to proof generalisation: Rather than just guessing loop formulae,
one can try to construct the entire temporal proof for a larger number of
processes guided by the proof for a smaller number of processes.
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Chapter 6

Conclusion

Model checking is by far the most popular approach to verification. One
of the reason is due to the large amount of research and development into
implementation techniques that has been carried out. Especially there has
been huge investigation in verifying systems that contain symmetry using
model checker. The focus of this thesis was to investigate what it is meant for
a system to be symmetric and how we could exploit symmetry in theorem
proving. We focus on Cache Coherence Protocol which contains of many
processes that carry out the same task. As the result once these systems are
specified in PTL there can be many similarities between formulas. We later
use FOTL specification as an inspiration to create the notion of template,
which helps us to prove a larger symmetric system based on the proof that
was carried out on the same system but with lower number of processes.
This shows although model checking is more popular, theorem proving can
still be competitive.
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