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Martin J Holland9, Sarah E Burr9,10, William D Shannon2, Erica Sodergren1 and George M Weinstock1*

Abstract

Background: Characterizing the biogeography of the microbiome of healthy humans is essential for
understanding microbial associated diseases. Previous studies mainly focused on a single body habitat from a
limited set of subjects. Here, we analyzed one of the largest microbiome datasets to date and generated a
biogeographical map that annotates the biodiversity, spatial relationships, and temporal stability of 22 habitats
from 279 healthy humans.

Results: We identified 929 genera from more than 24 million 16S rRNA gene sequences of 22 habitats, and we
provide a baseline of inter-subject variation for healthy adults. The oral habitat has the most stable microbiota with
the highest alpha diversity, while the skin and vaginal microbiota are less stable and show lower alpha diversity.
The level of biodiversity in one habitat is independent of the biodiversity of other habitats in the same individual.
The abundances of a given genus at a body site in which it dominates do not correlate with the abundances at
body sites where it is not dominant. Additionally, we observed the human microbiota exhibit both cosmopolitan
and endemic features. Finally, comparing datasets of different projects revealed a project-based clustering pattern,
emphasizing the significance of standardization of metagenomic studies.

Conclusions: The data presented here extend the definition of the human microbiome by providing a more
complete and accurate picture of human microbiome biogeography, addressing questions best answered by a
large dataset of subjects and body sites that are deeply sampled by sequencing.

Keywords: Biogeography, Human microbiome, Biodiversity, Temporal stability

Background
Biogeography in traditional ecology attempts to describe
spatial and temporal patterns of biological diversity of
organisms [1]. It seeks to answer what organisms are pre-
sent, how they are distributed, and how they vary over
time. Biogeographical patterns allow one to explore what
ecological rules apply, such as cosmopolitan (global) or
endemic (confined to a location) distribution patterns of
taxa.
The human body is composed of many niches that are

directly or indirectly exposed to the external environment
and are modulated by interaction with multiple systems

such as the host immune, endocrine, and nervous systems.
Each niche thus serves as a unique and complex space for
microbes to survive and thrive. Alteration of the microbial
balance in humans is associated with disease [2-12].
Characterization of the human microbial community by
culture-independent, high-throughput sequencing
unveiled the high diversity of microbes in different habitats
of the body. The gut microbiome is the best-characterized
human microbial habitat, and it was originally estimated
to harbor 500 to 1,000 species [13]. Bacterial community
structures in other habitats of the human body such as
the oral, skin, nasal, and vaginal areas also have been
addressed [14-21]. Over 500 species-level phylotypes were
discovered in oral habitats [16,22]. Two hundred and five
genera were identified on the skin surface from 10 subjects
[18]. Traditionally, urine has been thought to be sterile but
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culture-independent sequencing uncovered diverse micro-
bial communities and substantial intra- and inter-subject
variability [7].
High variation of microbial composition between indi-

viduals requires deeper sequencing and larger subject
numbers to have a more complete view of human
microbiome. The NIH launched the Human Micro-
biome Project (HMP) [23], aiming to more fully charac-
terize the human microbiota and address its role in
health and disease. This project enrolled 300 healthy,
young adults, collected samples from 15 (male) or 18
(female) habitats in the body, and produced datasets of
both 16S rRNA gene and whole genome shotgun
(WGS) sequences [24]. The 16S rRNA gene sequences
aim to define community structures in different habitats,
representing major niches of the human body, including
stool, oral, skin, nasal, and vaginal areas. The HMP con-
sortium has been conducting extensive analysis with the
HMP 16s rRNA gene dataset to explore different aspects
of human microbiome [24-29]. RDP-based taxonomic,
operational taxonomic unit (OTU), and phylogenetic
approaches are the main analytic methods used to char-
acterize microbial community structure [24,25,28]. The
RDP taxonomic approach used in this study possesses
easy interpretability and better sequence error tolerance.
It provides confident taxonomic assignment at the
genus and other higher taxonomic levels. The OTU
approach offers a sub-genus level resolution. However,
the OTU does not always reflect a biological unit, and
technical factors (single, average, complete linkage) lar-
gely affect the components within an OTU. The phylo-
genetic approach dependent on the tree construction
provides phylogeny of the bacterial community, but it
inevitably bears the intrinsic problems of tree construc-
tion using short reads. Each of these methods has its
pros and cons, and they are complementary to each
other. They provide equally important insight into the
bacterial community structure [30].
As a companion paper of the HMP main papers, we

presented an extensive taxonomic analysis of the major-
ity of the HMP samples as well as additional samples
comprising preterm baby stool, two urogenital sites, and
the conjunctiva in adults, thus expanding the view of
the microbiome beyond that of the HMP. We addressed
the following aspects of human microbial biogeography
in the context of a large cohort and deep sequencing:
how many organisms inhabit the human body; is the
biodiversity of one habitat influenced by other habitats;
is the presence or abundance of the organism in one
habitat affected by other habitats; what is the bacterial
distribution pattern in a habitat; what is the degree of
inter-personal variation and temporal variation in differ-
ent habitats; are the HMP data comparable with the
prior human microbiome studies. The analysis focusing

on the above questions are not addressed in other HMP
companion papers or are insufficiently investigated in
the main papers. Answering these questions allows us to
have a more complete and broad understanding of the
ecosystems of the human body.

Results
Overview of the datasets
Sample collection, DNA extraction, sequencing, as well
as data processing followed the manual of procedures of
the HMP consortium [24]. Based on investigations of
mock communities and a pilot study of 24 subjects from
the HMP, we found bacterial community structure,
including composition and abundance, was not biased
by the center performing sequencing and there was con-
sistency of community structure between technical repli-
cates [24,25,31].
To have a broader view of the human microbiome, we

used datasets from the HMP and healthy controls from
two HMP demonstration projects, necrotizing enteroco-
litis (neonatal stool) and urethritis microbiome (urine
and penis) as well as a study of the conjunctiva. All sub-
jects were adults except for necrotizing enterocolitis
(preterm babies) and urethral microbiome (adolescents).
All samples were from the USA except conjunctiva (The
Gambia). The description of each dataset is summarized
in Table 1.
Over 24 million, high-quality 16S rRNA gene sequences

(generated on the Roche-454 Titanium FLX platform)
were included in the analysis. All sequences were gener-
ated from the V3-V5 variable regions of the 16S rRNA
gene with the exception of conjunctiva (V1-V3, due to the
better amplification of V1-V3 of conjunctiva samples).
The reads were from 2,983 specimens, sampled from 236
HMP healthy subjects at 15 (male) or 18 (female) body
habitats, 18 subjects at urine and penis habitats, 10 pre-
term babies at the stool habitat, and 15 subjects at the
conjunctiva (Table 1). Raw reads were processed by filter-
ing low quality reads and removing chimeras as described
by the HMP [24,25,31]. The average read length of V3-V5
was 468 ± 82 bp, and the average sequencing depth was
8,167 reads ± 5,556 reads (mean ± sd). All reads were
further classified by the RDP classifier [32] (version 2.2
with training set 6) from phylum to genus level at the 50%
confidence threshold.

Biodiversity of human microbiota
One of the goals of the HMP is to characterize the bac-
terial composition and distribution pattern in and on
the human body. In the combined extended datasets in
the present analysis, we identified 30 phyla, 51 classes,
125 orders, 493 families, and 929 genera from all body
habitats (Table 1). In addition, a wide range of unclassi-
fied organisms was present in each habitat (Figure S1 in
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Table 1 Cumulative and average number of taxa per body habitat

Total taxa Mean ± SE

Body habitat Project Subjects (n) Reads Phylum Class Order Family Genus Reads (m ± sd) Phylum Class Order Family Genus Genus_1000a

Gut

Stool HMP 209 1774406 13 23 38 76 203 8490 ± 8308.1 6 ± 0.1 10 ± 0.2 12 ± 0.3 25 ± 0.5 54 ± 1.2 32 ± 0.7

Stool (preterm) NEC 10 84574 6 12 21 39 90 8457 ± 3505.8 4 ± 0.3 5 ± 0.4 7 ± 0.6 12 ± 1.1 26 ± 2.5 14 ± 0.7

Nasal

Anterior nares HMP 166 1178682 20 38 75 165 457 7100 ± 4031.8 7 ± 0.1 12 ± 0.2 17 ± 0.3 34 ± 0.8 53 ± 1.5 27 ± 0.9

Oral

Buccal mucosa HMP 186 1542387 15 25 46 99 241 8292 ± 5166.5 7 ± 0.1 12 ± 0.2 17 ± 0.2 33 ± 0.5 59 ± 1.1 33 ± 0.7

Hard palate HMP 193 1551365 19 34 62 127 301 8038 ± 4518.7 7 ± 0.1 13 ± 0.2 18 ± 0.3 36 ± 0.5 63 ± 1 39 ± 0.6

Keratinized gingiva HMP 199 1553381 13 22 37 88 218 7806 ± 4591.9 6 ± 0.1 11 ± 0.1 14 ± 0.2 25 ± 0.4 41 ± 0.9 23 ± 0.5

Palatine tonsil HMP 199 1648985 15 25 47 93 242 8286 ± 5068.5 8 ± 0.1 14 ± 0.2 18 ± 0.3 35 ± 0.5 62 ± 1 40 ± 0.6

Saliva HMP 182 1335119 17 29 49 99 266 7336 ± 4083.7 9 ± 0.1 15 ± 0.2 20 ± 0.3 39 ± 0.5 72 ± 0.9 50 ± 0.6

Subgingival plaque HMP 201 1603380 14 23 42 84 244 7977 ± 4364.2 8 ± 0.1 14 ± 0.2 19 ± 0.2 38 ± 0.4 68 ± 0.9 46 ± 0.6

Supragingival plaque HMP 208 1677580 15 24 40 77 219 8065 ± 4539.6 8 ± 0.1 13 ± 0.2 17 ± 0.3 35 ± 0.5 62 ± 0.9 41 ± 0.7

Throat HMP 186 1455561 18 29 53 119 322 7826 ± 3784.6 8 ± 0.1 13 ± 0.2 18 ± 0.3 36 ± 0.5 63 ± 1 41 ± 0.6

Tongue dorsum HMP 206 1769242 13 21 35 74 185 8589 ± 7921.7 7 ± 0.1 13 ± 0.2 16 ± 0.2 32 ± 0.4 56 ± 0.8 35 ± 0.5

Skin

Antecubital fossa (left) HMP 75 470729 21 41 78 168 501 6276 ± 4981.6 8 ± 0.2 13 ± 0.4 23 ± 0.7 48 ± 1.7 81 ± 3.9 56 ± 2.5

Antecubital fossa (right) HMP 87 541278 21 42 81 186 534 6222 ± 5348.3 8 ± 0.2 14 ± 0.4 23 ± 0.8 48 ± 1.9 80 ± 3.9 52 ± 2.4

Retroauricular crease (left) HMP 181 1762310 20 38 75 162 474 9737 ± 6158.1 7 ± 0.1 11 ± 0.2 17 ± 0.4 31 ± 1 47 ± 1.9 19 ± 1.0

Retroauricular crease (right) HMP 189 1710301 23 42 79 173 484 9049 ± 4839.4 6 ± 0.1 11 ± 0.2 16 ± 0.4 30 ± 0.9 44 ± 1.7 19 ± 1.0

Ocular

Conjunctiva The Gambia 15 158577 20 37 70 165 409 10571 ± 10554. 8 ± 0.8 14 ± 0.9 21 ± 1.4 37 ± 2.8 81 ± 8.7 54 ± 5.7

Urogenital

Mid vagina HMP 89 732322 10 19 36 75 218 8228 ± 6675.7 5 ± 0.1 8 ± 0.2 11 ± 0.4 20 ± 0.8 29 ± 1.5 12 ± 0.9

Posterior fornix HMP 89 822111 10 18 31 70 176 9237 ± 7652 5 ± 0.1 7 ± 0.2 9 ± 0.4 15 ± 0.7 20 ± 1.2 7 ± 0.6

Vaginal introitus HMP 80 660867 13 20 35 75 203 8261 ± 4389.5 5 ± 0.1 9 ± 0.2 12 ± 0.4 23 ± 0.8 34 ± 1.5 16 ± 0.9

Urine Urethritis 18 152360 23 38 64 131 312 8464 ± 4694.9 9 ± 0.5 14 ± 1.4 24 ± 2.5 49 ± 5.6 61 ± 5.2 38 ± 4.8

Penis Urethritis 18 203866 20 35 64 135 333 11326 ± 3523.4 8 ± 0.7 14 ± 1 22 ± 1.9 42 ± 3.3 68 ± 5.5 30 ± 3.0

Total All projects 279 24385112 30 109 125 493 929 8173 ± 5556 ND ND ND ND ND ND
a1,000 reads were subsampled from each sample and the average number of genera is listed.
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Additional file 1), from which novel organisms at the
genus level or higher rank were identified [33].
The 30 bacterial phyla observed represent less than half

of the known bacterial phyla [34]. The human habitats
contain a large number of Firmicutes, Actinobacteria,
Proteobacteria, and Bacterioidetes (Figure S2A in Addi-
tional file 1). Actinobacteria and Proteobacteria were the
most predominant phyla in the marine and soil micro-
biomes [35,36] whereas Firmicutes were less dominant,
indicating a major difference between the external envir-
onments, the presumed source of microbes, and the
human body. Bacterial distributions at the phylum level
exhibited different patterns in different habitats. The dif-
ferences were revealed in both abundant phyla as well as
low abundance phyla (<0.5% of the average relative abun-
dance) (Figure S2A, S2B in Additional file 1).
At the genus level we identified 501 and 534 genera

from left and right antecubital fossa, respectively, and
474 and 484 genera from left and right retroauricular
crease, respectively, making these four skin sites the
richest communities even though the number of sub-
jects sequenced from skin habitats was less than oral
and stool habitats. As indicated by the accumulation
curves in Figure 1, skin and skin-associated sites con-
tinue to yield more taxa with increasing numbers of
subjects. On the other hand, the slopes of the accumula-
tion curves for the three vaginal sites, seven of nine oral
sites (except throat and hard palate), and the stool
become asymptotically flatter, suggesting the sampling is
close to saturation for those habitats. This indicates a
lower richness of genera in these sites.
The accumulation curves in Figure 1 represent the

overall richness of each habitat, which is a function of
both sequence depth and sample size. Accumulation
curves based on subsampling down to 1,000 reads show
similar patterns as using all of the reads, with skin being
the richest community (Table 1, Figure S3A in Addi-
tional file 1).
Richness is one dimension of biodiversity. Shannon

diversity is another diversity index that measures both the
richness and evenness. To compare the differences of
diversity between habitats, a t-test was performed for each
combination of two different habitats. P values corrected
by Bonferroni method are summarized in Table S1 in
Additional file 2. Oral sites, particularly saliva, have the
highest evenness (Figure 2). Buccal mucosa and kerati-
nized gingiva have lower diversity than the other seven
oral sites. Posterior fornix of the vagina shows the lowest
diversity. Stool and skin sites show moderate diversity.
In contrast to the overall richness estimated at the
genus level, the stool habitat had the highest species
(OTU) level richness (with an OTU defined as 97%
identity of sequences), followed by oral, skin, and vaginal
habitats [28]. Stool, the best-studied habitat, was ranked

second to last in terms of community richness at the
genus level among all of the 18 HMP habitats. The rich-
ness difference observed in genus and OTU level may
be because: (1) the richness observed at genus level is
database-dependent (RDP database); or (2) there are
more unclassified genera in stool and oral sites than
skin and vaginal sites (Figure S1 in Additional file 1),
and the unclassified genera may contain different OTUs.

Universal distribution pattern of human microbiota
The bacterial distribution patterns in all 22 human habi-
tats follow a general rule, which is seen in other sys-
tems: all communities are dominated by from one to
several genera, and rank abundance curves (RAC) have
a long tail of less abundant organisms (Figure 3). These
minor organisms are detected after quality filtering and
chimera removal and thus are unlikely to be due to
these types of artifacts. Concern has been previously
raised over the possibility that minor species/OTUs are
nevertheless ‘noise’ due to various issues. One of these
is sequencing artifacts that are not removed by quality-
based filtering [37,38]. As noted earlier, our methods
were developed using mock community approaches, in
which a limited number of false taxa were detected [31].
Moreover, different from the studies at the species/OTU
level, analysis at the genus level is also less likely to be
as sensitive to false taxon calls due to small sequence
errors. Thus we do not consider sequencing errors to be
a major source of the minor organisms detected.
As described previously, the best evidence for the gen-

uine existence of a minor taxon is its appearance across
many distinct samples [38]. If samples are truly distinct,
the possibility of contamination as the source of minor
taxa that are prevalent among samples is reduced. The
HMP samples were collected separately in St. Louis and
Houston and sequenced at four sequencing centers, and
may thus be regarded as such distinct data sources. We
note below that genera that are present at low abun-
dances, for instance nasal Streptococcus have an average
relative abundance of 2%, but are found in >80% of the
nasal samples. Two-thirds of those samples with Strepto-
coccus are from Houston, and sequenced roughly evenly
at the four sequencing centers, making it unlikely to be
noise from contaminants (Figure 4).
There are other organisms that are present at low

abundance but are found in few samples. To further
explore the prevalence of these minor organisms, we
chose 60 stool samples that had >9,000 reads and sub-
sampled 1,000, 3,000, 6,000, and 9,000 reads from these
samples. At each sequencing depth, the prevalence of
each taxon was calculated (Figure S4 in Additional file
1). With increasing sequencing depth, the prevalence
among the subjects for the majority of the taxa at the
1,000 read depth increased 3.6-fold on average. As an
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example of a well-known minor genus, that is not a false
taxon, we analyzed Escherichia/Shigella, and found it in
five out of 60 subjects at 1,000 reads, and increased to
24 subjects at 9,000 reads. As a second example, we
chose Corynebacterium and Propionibacterium, which
make up the majority of skin microbiota, but are not a
major part of the fecal flora. They were each identified
in one subject at 1,000 read depth and increased to 11
and six subjects, respectively, at 9,000 reads. These
examples show that there are likely real taxa among the
low abundance genera that are not as prevalent among
subjects.

Diversity correlation between major habitats from the
same subjects
Many previous studies addressed the bacterial community
biodiversity of a single habitat, thus biodiversity correla-
tions between habitats were not described. To answer this
question, we chose two different body sites from the same
subjects and computed their richness. Correlation of body
sites’ richness within a subject was then expressed by the
Spearman correlation coefficient. The richness correlation
was 0.68 between subgingival plaque and supragingival
plaque, 0.66 between left and right retroauricular crease,
0.68 between left and right antecubital fossa, and 0.41 to
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0.68 within vaginal sites, indicating a stronger correlation
for those pairs. In contrast, correlations between skin and
oral, skin and vaginal, or skin and stool sites were very
low, indicating richness was not correlated (Figure 5A).
Therefore, similar body sites had stronger correlation of
richness, while dissimilar sites had little or no correlation.
More specifically, an individual who harbors a greater col-
lection of taxa in saliva is more likely to have more taxa
on the tongue, but not necessarily more taxa in skin, stool,
or vagina. It has been well known that major habitats are
distinctive by their specific dominant taxa [25,39], and a
finer distinction between similar habitats, such as oral

sites, is achievable at the OTU level [28]. The taxa prefer-
ence to certain habitats is generally explained by environ-
mental selection. The richness specificity for the major
habitats that we found here contributed to another inter-
esting ecological observation.
Beta diversity, as measured by the Bray-Curtis dissimi-

larity index, also correlated well for similar body sites
and weakly for dissimilar body sites (Figure 5B). That is,
two individuals who have similar bacterial communities
in left and right retroauricular creases show similar com-
munities in their antecubital fossae. This result does not
provide support for the possibility that host genotype is
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the major modulator of microbial content since no indi-
viduals were observed with higher diversity in all body
sites, as might be expected if a host mechanism control-
ling microbiome diversity were a major factor. However,
the sample size and other factors such as environmental
determinants may obscure smaller effects of the host.

Quantitative measurement of bacterial community
variation
Understanding the variation of bacterial communities
between healthy subjects is a prerequisite to investigating
the role of microbiota in health and disease. Previous stu-
dies of fewer subjects revealed high interpersonal variation
of bacterial community structure. Because this study fea-
tures more subjects and deep sequencing than previous
studies, we are able to more accurately assess this varia-
tion. Here, we evaluated the interpersonal variation at the
single taxon level as well as the whole community level.
The variation of a single taxon in a habitat was measured

by the range and quantiles of the taxon relative abundance.
The quantiles of the top 20 most abundant genera in each
site are summarized in Table S2 in Additional file 2, which
provides a reference on bacterial variation of healthy

subjects for future studies. The taxon variation in vaginal
sites was evident by the wide range of Lactobacillus
(0-100%). In particular, at 4,000 read depth, the Lactobacil-
lus genus was not detected in some subjects, and was the
only genus detected in other subjects. This large variation
of dominant genera was also seen in four skin sites, ante-
rior nares, and penis samples, and in stool samples where
the relative abundance of Bacteroides ranged from 1.3% to
98.2%.
Oral sites showed a more even abundance of major

organisms compared to skin and vaginal sites (Figure 2),
and associated with this, the genera in oral habitats have
a narrower range of abundances. For instance, the rela-
tive abundance of Prevotella in saliva ranges from 2.3%
to 47.4%.
While variation of the abundance of a single taxon

between subjects is important, the variation of the abun-
dance of the whole bacterial composition is another
important measure. The HMP consortium not only pro-
duced a large amount of sequence data, but it also
developed new analytical tools to cope with the high
dimensional metagenomic data [40,41]. Given the multi-
variate nature of the metagenomic data, we recently
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developed multivariate statistical method, Dirichlet-
multinomial distribution, to model the variation of the
whole bacterial community composition in a habitat
[41]. In the model, theta is an overdispersion parameter
reflecting the variance of each taxon and covariance
between taxa. It ranges from 0 to 1, with the higher
value representing higher variation (Figure 6). Lowest
variation (theta <0.1) was observed for the nine oral
sites and stool samples. Two of the three habitats show-
ing highest variation were vaginal sites. Although these
sites had the lowest alpha diversity, due to the domi-
nance of Lactobacillus in most samples, the high over-
dispersion resulted from the subset of samples with low

Lactobacillus abundance. Skin habitats also showed
higher overdispersion presumably due to their exposure
to the environment. High variability was also observed
for urine and preterm baby stool samples as expected
since neither of these habitats shows consistent patterns
of organisms between subjects.
The numbers of organisms that we detected in samples

were largely influenced by the sequence depth and num-
ber of sampled individuals (Figure S3B in Additional file
1). However, community variation was not sensitive to
sequencing depth. Community variation measured by
theta in DM model at 1,000, 3,000, 6,000, and 9,000 read
depths was not significantly different (P >0.05) (Figure 6).
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Cosmopolitan and endemic features of human microbiota
In microbial ecology, the abundant species are found in
many samples, that is, show high prevalence. Similarly,
highly abundant genera in the human microbiota were
present in higher percentage of subjects, whereas low
abundance genera were restricted in distribution. This
phenomenon is shown for the anterior nares (Figure 4)
and the other body sites (Figure S5A, 5B, 5C in Additional
file 1). Propionibacterium and Staphylococcus are present
in all anterior nares samples with the abundance of 23% ±
2.6% and %19 ± 3.0% (m ± sd), respectively. The majority
of genera (92%) in the anterior nares are <1% abundance.
However, we do not have evidence to suggest that they are
noise within the sequence dataset as described above.
Interestingly, some of the relatively low abundance genera
are also widely distributed across subjects. For example,
Streptococcus and Anaerococcus are both present in >80%
of the nasal samples, however, their relative abundances
are about 2% ± 0.8 and 2% ± 0.3 on average. This observa-
tion was also evident in stool and oral sites. Coprococcus
in stool, Fusobacterium in throat and hard palate, and
Haemophilus in hard palate are all low abundance and
high prevalence. As a result, the cosmopolitan aspect of
human microbiota is not limited to high abundant taxa.

On the other hand, a small group of subjects can con-
tain relatively highly abundant genera that are unique to
those subjects. For example, the genus Moraxella was
present in 17.5% of the anterior nares samples with rela-
tive abundance of 21.4% ± 3.8 (Figure 4). Prevotella
identified from stool was highly represented in 39% of
the samples (10.8% ± 2.3 of relative abundance) (Figure
S5 Additional file 1). The presence of high abundance
genera in a subset of the cohort indicates the endemic
aspect of human microbiota.
Analyzing the taxa distribution in a whole body view, we

found that there were 39 genera present in all the 18 habi-
tats of the HMP data in at least one subject (Figure 7).
Extending this beyond the HMP habitats, and using this
same criterion, we found that 12 genera are present in at
least one subject of each of the full set of 22 habitats. These
12 genera are found in disparate body sites in samples ran-
ging from the USA to Africa, indicating the extreme cos-
mopolitan nature of the organisms of these genera. In
addition to the intercontinental distribution, these genera
were identified in preterm baby, adolescent, and adult sam-
ples, suggesting their ubiquity is not limited by age.
There is no single genus present in all habitats of all

subjects. Streptococcus is the most widespread genus
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across the whole body with relatively high prevalence. It
was found in all the subjects in the oral habitats, nearly
all of the skin sites and anterior nares samples, about
50% of vaginal samples, and 30% of stool samples. To
investigate whether a locally abundant genus affects its
abundance in less dominant sites, the abundance of
Streptococcus from throat, Lactobacillus from posterior
fornix, Bacteroides from stool were compared with their
abundances in the rest of habitats (Figure S6 in Addi-
tional file 1). The abundance of Streptococcus in throat
has moderate correlation with the abundance of Strepto-
coccus in other oral habitats except subgingival and
supragingval plaques, and it has no correlation with
non-oral sites. Similarly, no correlation was found
between stool and non-stool site for Bacteroides, vaginal
and non-vaginal sites for Lactobacillus. The strong asso-
ciation of microbes within habitats and lack of associa-
tion between major habitats is consistent with the
findings from another HMP companion paper focusing
on the microbial co-occurrence in human bodies [26].

However, both of our conclusions were based on the
genus level analysis, while species and strain level analy-
sis may reveal a different picture of the correlation pat-
tern within habitat since the same genus from two
different habitats may represent different species.

Temporal variation of bacterial community
To gain insight into temporal changes of the human
microbiome in the 18 HMP body habitats, we evaluated
the community similarity between two visits by Spear-
man correlation (Figure 8). The mean time interval
between visits is 212 days (Table S3 in Additional file 2).
Bacterial communities in oral and stool habitats have
strong correlation (>0.6) between first and second visits,
thus representing stable communities, whereas skin/
nares and vaginal sites have weak correlation (<0.4)
between visits, thus representing variable communities.
Furthermore, within a body site, correlation between vis-
its varies greatly from person to person, especially in skin
and vaginal sites.

Overdispersion

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Posterior.fornix

Preterm.baby.stool

Mid.vagina

Right.retroauricular.crease

Urine

Left.antecubital.fossa

Left.retroauricular.crease

Conjunctiva

Penis

Right.antecubital.fossa

Vaginal.introitus

Anterior.nares

Keratinized.gingiva

Stool

Throat

Palatine.tonsils

Buccal.mucosa

Hard.palate

Subgingival.plaque

Supragingival.plaque

Tongue.dorsum

Saliva

Overdispersion

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Posterior.fornix

Preterm.baby.stool

Mid.vagina

Right.retroauricular.crease

Urine

Left.antecubital.fossa

Left.retroauricular.crease

Conjunctiva

Penis

Right.antecubital.fossa

Vaginal.introitus

Anterior.nares

Keratinized.gingiva

Stool

Throat

Palatine.tonsils

Buccal.mucosa

Hard.palate

Subgingival.plaque

Supragingival.plaque

Tongue.dorsum

Saliva

Overdispersion

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Posterior.fornix

Preterm.baby.stool

Mid.vagina

Right.retroauricular.crease

Urine

Left.antecubital.fossa

Left.retroauricular.crease

Conjunctiva

Penis

Right.antecubital.fossa

Vaginal.introitus

Anterior.nares

Keratinized.gingiva

Stool

Throat

Palatine.tonsils

Buccal.mucosa

Hard.palate

Subgingival.plaque

Supragingival.plaque

Tongue.dorsum

Saliva

Overdispersion

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Posterior.fornix

Preterm.baby.stool

Mid.vagina

Right.retroauricular.crease

Urine

Left.antecubital.fossa

Left.retroauricular.crease

Conjunctiva

Penis

Right.antecubital.fossa

Vaginal.introitus

Anterior.nares

Keratinized.gingiva

Stool

Throat

Palatine.tonsils

Buccal.mucosa

Hard.palate

Subgingival.plaque

Supragingival.plaque

Tongue.dorsum

Saliva
1000 reads
3000 reads
6000 reads
9000 reads

Figure 6 Bacterial community variation. Overall the variation of bacterial community for each habitat was evaluated by the over-dispersion
parameter theta (m ± sd) from the Dirichlet-multinomial model. Higher theta indicates higher variation and vice versa. The variation within a
bacterial community was calculated at 1,000, 3,000, 6,000, and 9,000 read depths as shown by different colors. No significant difference was
found in bacterial community variation at different read depths.

Zhou et al. Genome Biology 2013, 14:R1
http://genomebiology.com/content/14/1/R1

Page 10 of 18



Consistent with previous studies on the dynamics of
the vaginal microbiota [42], we also detected a signifi-
cant change in the relative abundance of Lactobacillus
between visits in 11 out 29 repeated samples (Figure S7
in Additional file 1). A decrease of Lactobacillus was
accompanied by an increase in the bacterial vaginosis-
associated genera such as Gardnerella, Prevotella, and
Atopobium.
We also observed drastic variation in bacterial com-

munities of the anterior nares between visits. Moraxella
is a genus that colonizes mucosal surfaces and can give
rise to opportunistic infections. It is also one of the
notable causes of otitis media and sinusitis. In this data-
set, Moraxella was detected in 17.5% of the sampled
individuals. High variation was detected in nine out of
48 paired samples. For example, in one subject Morax-
ella was 74.3% in abundance in the first visit, but
dropped to 0% in the second visit while another subject
showed 0% in first visit and 66.2% in second visit
(Figure S8 in Additional file 1). The increased abun-
dance of Moraxella was accompanied by decreasing
abundance in other genera, such as Staphylococcus,
Propionibacterium, and Corynebacterium.
The time interval between two sampling points ranged

from 30 days to 359 days and we additionally examined the
correlation of the time interval and bacterial community
variability. No strong correlation between time interval and
the degree of bacterial variability was found (Table S3 in

Additional file 2). A weak negative correlation was found
in left retroauricular crease and throat.

Comparison of HMP data with other human microbial
data
The HMP seeks to define the baseline of a healthy micro-
biome. The large datasets produced are potentially of use
as healthy controls for other studies. To investigate the uti-
lity of HMP data for other studies, we examined the com-
parability of HMP data with published data. We used the
data from a study of the microbiota of lean and obese
twins (154 subjects) and a Chinese saliva study of the
microbiota in dental caries (45 subjects) (Table S4 in Addi-
tional file 2) [43,44]. Reads were reprocessed as had been
done for the HMP dataset to exclude bias caused by analy-
sis pipelines. All samples were subsampled to 1,000 reads.
The taxa identified from different projects were rela-

tively consistent. For instance, 72% of the prevalent gen-
era (defined as present in at least 50% of the samples)
are present in both HMP saliva samples and Chinese
saliva samples. Nine out of 12 phyla identified in HMP
stool samples were also identified by the twin study at
1,000 read depth. The three phyla unique to HMP stool
samples were present in only 4, 14, and 16 reads in total
and thus were quite minor and possibly absent due to
sampling rather than biological issues.
Although different studies detected similar prevalent

or abundant taxa, the frequency of taxa varied among

0
2
0

4
0

6
0

8
0

1
0
0

F
re

q
u
e
n
c
y
 o

f 
s
a
m

p
le

s

A
ct
in
om
yc
es

C
or
yn
eb
ac
te
ri
um

P
ro
pi
on
ib
ac
te
ri
um

A
to
po
bi
um

O
ls
e
n
e
ll
a

B
a
c
te
ro
id
e
s

B
a
rn
e
s
ie
ll
a

P
or
ph
yr
om
on
as

P
ar
ap
re
vo
te
lla

P
re
v
o
te
ll
a

A
lis
tip
es

C
ap
no
cy
to
ph
ag
a

G
e
m
e
ll
a

G
ra
n
u
li
c
a
te
ll
a

L
a
c
to
b
a
c
il
lu
s

S
tr
ep
to
co
cc
us

P
a
rv
im
o
n
a
s

A
n
a
e
ro
v
o
ra
x

B
la
u
ti
a

C
op
ro
co
cc
us

D
o
re
a

M
or
ye
lla

O
ri
b
a
c
te
ri
u
m

S
yn
tr
op
ho
co
cc
us

P
ep
to
st
re
pt
oc
oc
cu
s

S
po
ra
ce
tig
en
iu
m

F
a
e
c
a
li
b
a
c
te
ri
u
m

O
s
c
il
li
b
a
c
te
r

D
ia
li
s
te
r

M
eg
as
ph
ae
ra

V
e
il
lo
n
e
ll
a

F
u
s
o
b
a
c
te
ri
u
m

Le
pt
ot
ri
ch
ia

N
e
is
s
e
ri
a

C
am
py
lo
ba
ct
er

H
e
li
c
o
b
a
c
te
r

C
it
ro
b
a
c
te
r

A
c
ti
n
o
b
a
c
il
lu
s

H
ae
m
op
hi
lu
s

Anterior nares

Keratinized gingiva

Buccal mucosa

Hard palate

Left antecubital fossa

Left retroauricular crease

Mid vagina

Palatine tonsils

Posterior fornix

Right antecubital fossa

Right retroauricular crease

Saliva

Stool

Subgingival plaque

Supragingival plaque

Throat

Tongue dorsum

Vaginal introitus

Preterm baby stool

Penis

Urine

Conjunctiva
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studies. The frequency of Bacteroidetes from HMP data
is significantly higher than that in the twin study (Wil-
coxon rank sum test, P <0.001) (Figure S9 in Additional
file 1). Hierarchical clustering of stool samples using the
Bray-Curtis dissimilarity was performed as a general
comparison. Surprisingly, stool clustering revealed two
distinct groups (Figure S10A in Additional file 1) with
each cluster based on projects. The HMP saliva samples
and the Chinese saliva samples were separated into two
project-based clusters with the exception of six caries
and two healthy Chinese saliva samples that clustered
with HMP healthy samples. Two Chinese caries samples

were outliers (Figure S10B in Additional file 1). The
clear boundary separating samples by projects suggest
significant variation between the bacterial communities
in each project. Multiple factors differ between projects
(for example, read length, DNA extraction, 16S rRNA
region, see Table S4 in Additional file 2), and these in
addition to individual variation, demographic difference,
and other technical issues [45] can have significant
impact on bacterial community structure. The above
analyses indicate the challenges for comparisons across
projects and suggest that care must be taken in use of
HMP data as healthy controls for other projects.
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Figure 8 Community stability over time. The longitudinal studies were based on 18 habitats from HMP. The similarity of the bacterial
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Discussion
Using the large 16s rRNA gene dataset generated by
HMP and other projects, we analyzed the biogeographic
patterns of human microbiota from 22 different habitats.
The biodiversity by the 22 habitats representing the

human body has implications in human microbial ecology.
Each habitat has its own characteristic biodiversity and
taxon abundance distribution curve. While there are many
contributing factors to each characteristic pattern, this
description of the healthy state will contribute to recogni-
tion of changes associated with disease. The trend of the
biodiversity changes varies with diseases. For example,
diversity was reduced in stool habitat with obesity [43],
but increased in the vaginal habitat with vaginosis [46].
However, it is not clear whether the disturbed biodiversity
is the consequence or the cause of disease. Moreover,
compared to classical macro-ecological systems, where
healthy ecosystems show high biodiversity, considered
important for stability and surviving stress to the system,
it is apparent that the situation with the human micro-
biome is more complex as there is no simple rule relating
biodiversity to health. Thus for use of biodiversity as a
diagnostic of health or disease, careful analysis of the base-
line healthy state in each habitat is required.
Despite the community variation with different habi-

tats, the structures of these communities in human habi-
tats adhere to general ecological rules. For example, most
habitats have a few dominant taxa with a large number of
individually rare species; the more abundant taxa show
the most dispersal among subjects, although some minor
taxa are widespread too; habitats showing lower Shannon
diversity (vagina, skin) also are among the most variable.
It was reported that the vaginal bacterial communities
from healthy adults underwent drastic changes over a
short period of time [21]. In this study, we also observed
the dynamic community structure of the anterior nares.
Clinical studies have revealed that the prevalence of phar-
yngeal colonization and respiratory tract infections
caused by Moraxella catarrhalis displays seasonal varia-
tion and increases in winter [47]. Unfortunately, no
detailed seasonal information is available for this dataset.
Further study with multiple sampling points at different
seasons will provide a better picture of the seasonal effect
on the bacterial community in the anterior nares. In gen-
eral, familiar concepts from macro-ecology appear to
apply. Both cosmopolitan and endemic organisms are
found in the human microbiome, with many organisms
found in multiple habitats, albeit at varying abundance,
so the adage ‘everything is everywhere, but environment
selects’ [48] in ecology appears to hold for the human
microbiome as well.
Distinguishing rare organisms from noise is challen-

ging. Although methods for denoising data to remove
reads with sequencing errors is useful, even after quality

filtering and chimera removal there are still artifacts to
be addressed such as contamination. Tests based on
increasing sequencing depth or prevalence in samples
partially address artifacts but still leave aspects unre-
solved. It should be noted that the presence of Propi-
nionbacterium and Corynebacterium in stool samples is
uncertain for these reasons. More carefully designed
controls for multiple sample processing steps are impor-
tant for more definitive studies on rare organisms.
The goal of defining the normal human bacterial biogeo-

graphy is to be able to identify specific associations of
altered bacterial biogeography with human disease. The
high level inter-personal variation of bacterial commu-
nities has significant impact for study designs. Host geno-
type, effects due to viruses, sub-genus, and sub-species
level genetic variation, functional equivalence of multiple
taxa, and other biological effects all contribute to this var-
iation and will need to be measured and/or controlled in
studies seeking disease correlations. In addition, efforts are
required to carefully select subjects to preclude bias and
impose universal protocols of metagenomic sample pre-
paration and sequencing, as exemplified by the HMP.
Metagenomic DNA storage, preparation [45], sequencing,
and analysis pipelines vary with different projects, which
complicates the comparison between projects, as seen
here in comparisons of HMP data with twin study data as
well as with Chinese saliva data.
Despite the scale of the dataset in terms of numbers

of sequences, the total number of study subjects is still
relatively small in epidemiological terms, albeit larger
than most previous studies. Efforts to define the appro-
priate study design to obtain statistical power for con-
clusions as to effects at different taxonomic levels are
underway but are not yet complete. Thus the observa-
tions reported here should be taken with this caveat in
mind.
Finally, we note that the approach presented here pro-

vides an organismal picture of ‘who’ comprises the human
microbiome, potentially useful for recognizing deviations
in disease. However, the 16S rRNA gene method involves
PCR amplification with degenerate primers that may
nevertheless favor some taxa over others. This method also
creates chimeric sequences that are largely but not comple-
tely removed during data processing. With the decrease of
sequencing cost, sequencing large cohorts of samples by
WGS is feasible in the future. The taxonomic profiling
derived from WGS data (that is, MetaPhlAn) will over-
come the above concerns [49]. Furthermore, the taxonomic
approach using either 16S rRNA gene or WGS sequences
must be complemented by studies of the individual organ-
isms to understand ‘what’ functional activities they are pro-
viding, necessary for a mechanistic understanding of the
functioning of the microbiome. The pure focus on the
organisms of many studies of the human microbiome
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leaves this analysis incomplete. As aptly stated by early
researchers in the field ‘It is what bacteria do rather than
what they are that commands attention, since our interest
centers in the host rather than the parasite’ [50].

Conclusions
We comprehensively addressed the bacterial biogeography
of multiple habitats from a cohort of 279 healthy subjects.
What emerges is the beginning of a detailed picture of the
character of each of these habitats with respect to aggre-
gate ecological properties such as biodiversity as well as the
specifics of their bacterial compositions. Each of these habi-
tats was also analyzed with respect to variation between
subjects, variation over time, and correlations between the
habitats. While the biogeographic patterns of the human
microbiome have been establishing, future investigations
should turn the focus from observational study to hypoth-
esis driven study. By testing the current and novel biogeo-
graphic theories, we will better understand the underlying
mechanisms that govern the observed biogeographic
patterns. This in turn will enable us to manipulate our
microbiota in clinic for medical benefit.

Materials and methods
Ethics statement
Subjects provided written informed consent for screening,
enrollment, and specimen collection. The HMP protocol
entitled ‘HMP-07-001 Human Microbiome Project - Core
Microbiome Sample Protocol A’ was reviewed and
approved by Institutional Review Boards at Washington
University in St. Louis, IRB ID#: 201105198 (previously
08-0754) and Baylor College of Medicine, IRB ID#: H-
22895. The preterm infant study ‘The Neonatal Micro-
biome and Necrotizing Enterocolitis’ was reviewed and
approved by the Institutional Review Board at Washington
University in St. Louis, HRPO #: 201104267 (previously
09-0652). Parents of infants provided informed consent
under HRPO #: 09-0652. The penis samples were obtained
as part of the project ‘The Young Men’s Project’ reviewed
and approved by the Indiana University Institutional
Review Board - 1011004291 (previously 0906-17). The
conjunctival samples were collected with permission from
the ‘Gambian Government/Medical Research Council
Unit, The Gambia Joint Ethics Committee’ under study
number L2011.16. The projects adhered to the regulations
of the boards for all experiments and research was con-
ducted according to the principles expressed in the
Declaration of Helsinki. Data were analyzed without per-
sonal identifiers.

Sample collection
HMP samples were collected by teams at the Baylor
College of Medicine and Washington University in St.
Louis based on a sampling strategy developed by HMP.

Core Microbiome Sampling Protocol A (HMP-A) was
provided by the NIH Roadmap for Medical Research. In
brief, 236 healthy adults were included in the HMP ana-
lysis. Fifteen habitats comprised of anterior nares, skin
(left and right retroauricular crease, left and right ante-
cubital fossa), oral (hard palate, keratinized gingiva, buc-
cal mucosa, subgingval plaque, supragingval plaque,
saliva, tongue dorsum, palatine tonsil, and throat), and
stool were sampled from both male and female subjects.
Female subjects were sampled at three extra sites, vagi-
nal introitus, posterior fornix, and mid vagina. Subjects
with vaginal pH >4.5 were excluded from the study. For
longitudinal studies, sets of samples from each habitat
were collected at two time points (Table S3 in Addi-
tional file 2). The mean time interval between the two
time points was 212 days. We also included some data-
sets from other projects. The control group from a tra-
choma project with collaborators from The Gambia
showed no evidence of acute or chronic trachoma and
had normal healthy conjunctiva. Those samples provide
a view of microbiota in the conjunctiva. Preterm baby
stool samples from a neonatal microbiome project [51]
contribute to the more complete picture of stool micro-
biome. Microbiota vary greatly in the early weeks of life,
thus a single sampling point was chosen at the age of
4 weeks. No antibiotics were taken 3 weeks before sam-
pling of the preterm baby stool. The urine habitat from
healthy controls from the Urethral Microbiome of Ado-
lescent Males project were added to represent other
body habitats that were not represented in the HMP
samples [7]. The penis microbiome data was also from
the Urethral Microbiome of Adolescent Males project.
Urine specimens were tested for C. trachomatis and
N. gonorrhoeae infection.

16S rRNA gene sequencing process
Sequencing data were produced by the Baylor College of
Medicine Human Genome Sequencing Center, the Broad
Institute, the Genome Center at Washington University,
and the J. Craig Ventor Institute. The quality filtering and
trimming, chimera checking were performed as described
[24]. In brief, the protocol allows one mismatch in the pri-
mer and zero mismatches in the barcode. Chimeric reads
were removed using Chimera slayer software [52]. At the
beginning of the HMP, investigation on the Mock Com-
munity that is composed of known organisms demon-
strated that the increased richness was mainly from the
chimeric and low quality reads [31]. All the high quality
16S rRNA gene reads were classified from phylum to
genus level at a confidence threshold of 0.5 using the
Ribosomal Database Project (RDP) Naiive Bayesian Classi-
fier version 2.2, training set 6 [32]. The reads whose taxo-
nomic assignments were <0.5 confidence threshold were
assigned to the unclassified group. Samples with <1,000
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reads were removed to ensure adequate representation of
the community structure. The reads used in this analysis
can be downloaded from the Data Analysis and Coordina-
tion Center (DACC) website [55] with SRA study ID
SRP002395. The metadata of HMP study was submitted
by the EMMES Corporation, which serves as the clinical
data collection site for the HMP. It can be obtained from
dbGaP website [56].

Reads subsampling
Read subsampling is done using the rarefy function from
the Vegan package in R [53]. The random sampling is
done without replacement so that the variance of rarefied
communities is related to the rarefaction proportion rather
than to the size of the sample. To avoid the bias that is
potentially caused by different sequencing depths, all the
samples were rarefied to 1,000 reads in Figures 3, 5, 7, and
8 and additional files involved comparison across sites.
The minimal number of reads among all the samples were
used for the analysis of the taxa abundance association
between habitats. The taxa relative abundances were cal-
culated as the reads assigned to the taxa divided by the
total number of reads (after subsampling) of the sample.

Accumulation curve
Accumulation curves were used to evaluate the total num-
ber of genera in a body habitat and performed using the
Vegan Package in R [53]. As mentioned in the read sub-
sampling method, to compare the richness of 22 habitats,
1,000 reads (minimal reads for the sample) were sub-
sampled from each sample for the accumulation curve
analysis (Figure S3A in Additional file 1). To assess the
overall richness of the 22 habitats, the maximum number
of reads for each sample was used (Figure 1). For both
accumulation curves, the number of genera was summed
stepwise with the accumulation of subjects. Only new gen-
era were added in each step. This process was repeated
500 times randomizing the choice of samples. The average
value for each sample point was plotted.

Bacterial distribution pattern viewed by rank abundance
curve
Rank abundance curve analysis was conducted by aggre-
gation of the reads from all samples per habitat, and
further normalized to relative abundance. The genera
were ranked from highest abundance to the lowest
abundance along the x-axis and the corresponding rela-
tive abundances were plotted on the y-axis. Analysis was
conducted by the Biodiversity package in R [54].

Measuring community variation by the overdispersion
parameter of DM model
To measure single taxon distribution in a given habitat,
we computed the range and percentiles of its frequency

across all the samples. The overall subject variation was
represented by the average variation of all the taxa in a
body site and evaluated by the overdispersion parameter
θ in the Dirichlet-multinomial (DM) model. Human
metagenomic data with high inter-subject variation fol-
low Dirichlet-multinomial (DM) distribution as shown
by us and other independent study recently [40,41]. It is
defined as:

P (Xi = xi) =
Ni!

xi1! . . . xiK!

∏K
j=1

∏xij

r=1

{
πj (1 − θ) + (r − 1) θ

}
∏Ni

r=1 (1 − θ) + (r − 1) θ
,

where xik , is the number of reads in subject i for
taxonk , for i = 1, . . . , P with P the total number of sub-
jects and k = 1, . . . , K with K the total number of taxa,

Ni =
∑K

j=1
xij is the total number of sequence reads,

π =
{
πj, j = 1, . . . , K

}
is the vector containing the mean

of the taxa-frequencies, and θ is an overdispersion para-
meter. The vector π provides the average distribution
of taxa frequencies across subjects, and the parameter θ

quantifies the variation of taxa frequency. θ ranges
from 0 to 1, if θ = 0 it reduces to the multinomial dis-
tribution, which means that every sample has the same
taxa frequency distribution. θ is a suitable parameter to
quantify the variation of subjects as measured by the
taxa abundance distributions. Both π and θ can be
estimated directly from the data using either the meth-
ods of moments or the maximum likelihood estimation
method. The above analysis was performed using the R
package from [41].

Diversity comparison
To compare the diversity between habitats, we com-
puted Richness and Shannon index for each individual
in the habitats. For 22 habitats, a two sample t-test was
performed on paired habitats. The P value was adjusted
by the Bonferroni method.

Diversity correlation
Diversity correlations between habitats were performed
using the subjects who have samples for both habitats.
Due to the purpose of comparison of richness diversity
between habitats, samples were subsampled to the mini-
mal number of reads of the two habitats to be compared
by random sampling [53]. The correlation of richness
diversity of paired habitats was assessed by Spearman
correlation coefficient. Bray-Curtis dissimilarity matrix
was calculated for each habitat using the same abun-
dance matrix generated for evaluation of richness diver-
sity correlation. Mantel correlation was used to compare
the paired distance matrices and assess the beta diversity
association.
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Evaluation of community similarity between two visits
Samples with both visit 1 and visit 2 data were used to
investigate the temporal variation of the bacterial com-
munity for all of the 18 habitats. The similarity of the
bacterial community between visits was evaluated by
Spearman correlation coefficient.

Additional material

Additional file 1: Figure S1. Distribution of unclassified genera of
22 habitats. Sequences that could not be classified at RDP confidence
threshold 0.5 were assigned to unclassified genera. Unclassified reads
account for relatively small proportion of the total reads in the majority
of the samples. Figure S2. Phylum profiling of 22 human habitats.
The average relative abundance of phyla in each habitat was measured
by the fraction of total 16S rRNA gene sequences. Each color represents
a phylum. (A) Firmicutes, Actinobacteria, and Proteobacteria are the
major phyla identified in human body. (B) Phyla accounting for <0.5% of
the total phyla are shown. Preterm baby stool in this dataset does not
contain low abundance phyla with the 0.5% standard, thus there are no
data plotted. The total fractions of the phyla <0.5% in this figure are
listed on top of the plot. Figure S3. Accumulation curves at the
genus level. The only difference between Figure S3A and Figure 1 is
that all the samples were rarified to 1,000 reads in Figure S3A. The
accumulation curves exhibit similar patterns in both figures. Figure S3B
shows stool richness at different sequencing depths. Sixty stool samples
with >9,000 reads were rarified to 1,000, 3,000, 6,000, and 9,000 reads.
Both deep sequencing and a large number of subjects are required to
detect all the possible taxa. Figure S4. The association of sequencing
depth and sample frequency. The x-axis shows the rank abundance of
each genus and the y-axis shows the number of subjects who share the
genus. Sixty stool samples with >9,000 reads were rarified to 1,000, 3,000,
6,000, and 9,000 reads. The points showing the abundance of each
genus at different depths are linked by line segments. With increased
sequencing depth, the number of subjects who share the same genus,
including the minor genera, is increased. Figure S5. The relative
abundances of taxa in each habitat and dispersal among subjects.
Dispersal of a given genus is indicated by sample prevalence of that
genus on x-axis. The average relative abundance (m ± se) of each genus
is indicated on y-axis. The most abundant genera in general have the
highest prevalence. However low abundance genera can also be
ubiquitous and high abundance genera can be distributed in a limited
number of subjects. Also see Figure 4. Figure S6. The correlation of
abundant taxa between their dominant habitats and less dominant
sites. The abundances of Bacteroides from stool, Streptococcus from
throat, and Lactobacillus from posterior fornix were compared with
abundances in the rest of the habitats. The taxon abundance lacks
correlation between major habitats (oral, skin, vaginal, stool), but it shows
moderate correlation within the oral and vaginal sites. Figure S7.
Dynamics of Lactobacillus in vaginal habitats between visits. The
relative abundances of Lactobacillus undergo great changes between
two visits. Vaginosis related genera (Gardnerella, Prevotella, Atopobium)
are over-represented after Lactobacillus loses its dominance. These
subjects were asymptomatic and met the criteria of HMP study. Figure
S8. Dynamics of Moraxella in anterior nares between visits. The
relative abundance of Moraxella (colored orange) varies from 0% to 70%
between visits. Figure S9. The relative abundances of Bacteroidetes
and Firmicutes in HMP stool samples and twin study stool samples.
The relative abundances of two major phyla Bacteroidetes and Firmicutes
are plotted. Bacteroidetes in HMP stool samples are significantly higher
than those in obese and lean group of the twin studies (P <0.001).
Figure S10. Cluster analysis of the HMP dataset with data from
other studies. (A) Clustering analysis of HMP stool and twin study stool
samples. Hierarchical clustering was performed using Bray-Curtis
dissimilarity and complete linkage. Red labels represent the HMP samples
and blue labels represent twin study samples. (B) Clustering analysis of
HMP saliva and Chinese saliva samples. Red: HMP sample; green: healthy
controls of Chinese saliva samples; blue: Chinese saliva samples from

subjects with dental caries. The majority of the samples are clustered by
project rather than health status.

Additional file 2: Table S1. P values of the pair-wised student’s t-test
of richness (sheet 1) and Shannon diversity (sheet 2) for 22 habitats.
Table S2: The variation of the top 20 most abundant phyla (sheet 1)
and genera (sheet 2). The range and quartiles of each taxon’s relative
abundance within a habitat are listed. Table S3. Correlation of time
interval and bacterial community variation between visits. The time
intervals between visits for 18 body sites are listed. Temporal stability of
bacterial community varies with habitats, indicated by the Spearman
correlation coefficient in column 5. There is no strong correlation between
the time interval and bacterial variation between visits as shown by the
Spearman correlation coefficient in column 7. There is a weak correlation
for left retroauricular crease and tongue. Table S4. Comparison of the
HMP data with other datasets.
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