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Abstract 
Lymphatic filariasis (LF) is a public health problem in 73 countries and is associated 
with marked morbidity and disability. It is unique because of its transmission by five 
main genera of mosquitoes, including Culex, Aedes, Anopheles, Mansonia and 
Ochlerotatus. In Mali, LF endemicity mapping in 2004 found all eight administrative 
regions to be endemic for LF. Prior to the National LF Elimination Programme (NPELF), 
six pilot sentinel villages were selected for baseline research studies to inform the most 
appropriate strategy for monitoring the impact of the proposed elimination programme 
based on treatment with ivermectin in combination with albendazole. The following 
three objectives form the basis of my PhD studies:(i) investigate LF vector population 
and associated transmission patterns before, during and after the initiation of mass drug 
administration (MDA) (ii) assess efficacy of new entomological trapping tools for LF 
post-MDA xenomonitoring and (iii) determine transmission potential in a urban 
environment in Mali. The overall design is a descriptive study including cross sectional 
entomological surveys along with longitudinal human surveys to assess the MDA 
impact. I used standard infection status assessment methods as well as recently 
developed methods; including the antibody test for Wb123. I conducted these studies in 
both rural (Sikasso and Kolondieba districts) and urban areas (Bamako, the capital city). 
My thesis is the first report of the outcome of up to five years post-MDA annual 
assessment of W. bancrofti transmission using both entomological and parasitological 
data in an Anopheles transmission area where albendazole plus ivermectin is the 
recommended drug regimen and Anopheles gambiae s.l the main vector for LF 
transmission. These features are found mainly in the Western part of Africa. In the pilot 
sentinel sites in Mali, made of six neighbouring villages, seven MDA rounds with the 
albendazole plus ivermectin were successful not only at stopping LF transmission 
(infection rates within 6-7 years old children <2%) in the short term, but also at 
sustaining it for up to five years after the last MDA. In contrast, impact assessment in 
another hyper endemic area (two neighbouring villages treated by the NPELF in the 
district of Kolondieba) did not demonstrate interruption of transmission after the sixth 
and seventh MDA rounds. The reasons of these different outcomes of MDA 
implementation in the different areas are discussed. Of note, the failure in the latter 
villages was detected using only the ICT card, a method that has been found to 
overestimate the infection rate in children when compared to the circulating filarial 
antigen test (Og4C3 ELISA) and the Wb123 antibody test in the pilot sentinel area. In 
Anopheles transmission areas, it has been observed that focal low-level transmission can 
exist without being a real threat for re-emergence of transmission, due to lower capacity 
of the vector to transmit when parasite density is low. Nevertheless, in areas that fail the 
Transmission Assessment Survey (TAS), adult populations should be checked in 
addition to the recommended 6-7 year-old age group. Additionally, this thesis showed 
very promising results for using the Ifakara tent trap type C (ITTC), a human baited trap 
alternative to the human landing catch. Anopheles yields and infection rates using ITTC 
were strongly correlated with results using human landing catch (HLC) overall, as well 
as monthly, in two villages with significantly different Anopheles densities. Finally, it 
appears that the current version of the TAS needs more tools and additional directions 
for human infection status determination especially when the baseline endemicity level 
is high. Further evaluation the ITTC after reducing its bulkiness is required to confirm 
its usefulness for LF entomological studies in Anopheles transmission areas. From the 
6,174 Culex spp and the 16 Anopheles gambiae s.l processed and 1,002 volunteers tested, 
there was no evidence of LF transmission in the urban environment of Bamako in Mali. 
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 Introduction 

Lymphatic filariasis (LF) is a chronic debilitating infection caused by the mosquito-

borne filarial parasites, Wuchereria bancrofti, Brugia malayi and Brugia timori. 

Belonging to the class of Secernentea and the order of Spirurida, these filarial worms 

are nematode parasites. The adult worms live in tissues and body cavities of their 

vertebrate hosts. Filariidae and Onchocercidae are families of the superfamily 

Filarioidea. The filarial parasites capable of human infection belong to the family of 

Onchocercidae (Anderson and Bain 2009; Chabaud 1974). 

 

LF is a public health problem in 73 countries and is associated with marked morbidity 

and disability (Ramaiah and Ottesen 2014; WHO 2015). It is unique because of its 

transmission by five genera of mosquitoes including Culex, Aedes, Anopheles (An.), 

Mansonia and Ochlerotatus (Bockarie, Taylor, and Gyapong 2009; WHO 2013a). LF 

infection is found in the tropical areas of all continents, albeit with different endemicity 

levels. These regional variations are linked with the local vector species distribution 

worldwide (Figure 1.1). 

 

LF is one of the Neglected Tropical Diseases (NTDs) (WHO 2016b). The NTDs do 

not frequently kill patients but rather cause disabilities. The Disease-Adjusted Life 

Years (DALY) estimates are the metrics commonly used to assess the chronic impact 

of these infections, although they do not encompass all of the detrimental 

consequences of infection (Hotez et al. 2014). When assessing the burden of mental 

health in LF, Thanh et al in 2015 reported 5.09 million DALYs (Ton, Mackenzie, and 

Molyneux 2015). 
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Figure 1.1 Map of 
lymphatic filariasis 

endemicity, elimination 
programme status and 

vector species 
distribution worldwide 
(Modified from WHO 

2015). 
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 Burden and distribution of LF and the GPELF (Global Programme 

to Eliminate Lymphatic Filariasis) 

 Global burden 

After malaria, LF is the second most common vector transmitted parasitic infection 

(Wynd et al. 2007). As of 1996, before the current global effort to eliminate LF as a 

public health problem, an estimated 119 million people were infected including 43 

million already affected by at least one of the chronic consequences (lymphedema and 

hydrocele) (Michael, Bundy, and Grenfell 1996). Additionally, LF was ranked the 

second most important cause of permanent and long-term disability because of its 

aesthetic and functional impacts according to the 1995 World Health Report (WHO 

1995). 

 

The Global Programme to Eliminate Lymphatic Filariasis (GPELF) was launched in 

2000 and considerably scaled up its efforts in MDA (Mass Drug Administration) 

implementation and as a consequence have significantly reduced LF endemicity to 

36.45 million, 19.43 million and 16.68 million cases respectively for microfilaraemia, 

hydrocele and lymphedema by 2013 (Ramaiah and Ottesen 2014). In 2000, the 

microfilaraemia, hydrocele and lymphedema were estimated to respectively 91.14, 

29.94 and 17.66 cases in the endemic countries (Ramaiah and Ottesen 2014). 

Nevertheless, in 2014, a total of 73 countries were still considered to be endemic for 

LF. Among them, 18 had reached the surveillance phase, while 55 still required MDA. 

Eleven countries did not provide information about their endemicity and had not 

initiated MDA (WHO 2015). Full country geographical coverage for MDA, as defined 

by at least one MDA conducted in each endemic implementation unit (IU), was 

achieved in 21 endemic countries. In 23 additional countries, only a few IUs have 
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received one or more MDA rounds (WHO 2015). An IU is the smallest geographical 

area where LF elimination activities are undertaken, usually it is a health district 

(WHO 2011b). In Mali, the 65 health districts represent the operational level of the 

health system organization. The 8 administrative regions are made of 4 to 10 health 

disctritcts. Each district is made of 10 to 265 villages with a total population ranging 

from 9,788 to 710, 216 inhabitants (Institut national de la statistique Mali 2017). By 

2014, about 314.7 million people less were considered to be at risk and in need of 

MDA. Thus, the highest population initially estimated to be at risk of LF went from 

1.4 billion to 1.3 billion from 2011 to 2014 (WHO 2015). 

 

 LF burden in the African Region 

This section is mainly based on information provided by the last Weekly 

epidemiological record from WHO published in September 2016 (WHO 2016a). Some 

of the information was out of date due to the fact that the country did not send the last 

information to WHO before the report was published. We report here the data made 

available by WHO.  

The last intensified mapping activities allowed shrinking the LF distribution areas in 

Africa (WHO 2016b). The Gambia is not classified as a non-endemic country because 

required assessments and the resulting evidence of absence of LF transmission have 

not been submitted to WHO yet. Similar evidence is also awaited for other countries 

such as Eritrea, Gabon, Botswana, Mauritania and some parts of Zimbabwe. The 

regional MDA coverage of 44.7% (based on 20 countries among the originally 35 of 

the region) in 2015 showed an 18% improvement as compared to 2014. Togo and 

Malawi are still in the post-MDA surveillance period and continue making progress in 
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term of Morbidity Management and Disability Prevention (MMDP). 

Several countries are significantly increasing their MDA coverage like Cameroon, 

Democratic Republic of Congo, Ethiopia, Kenya, Nigeria, Senegal, and Zambia. That 

is contrasting with about 22 countries that are having difficulties in initiating, 

increasing the geographical coverage rate or maintaining a regular annual MDA. 

   

There is an urgent need of 100% geographical coverage of the IUs in Central African 

Republic, Congo, Democratic Republic of Congo, Ethiopia, Guinea-Bissau, 

Madagascar, Nigeria and Zimbabwe. The following countries need to start the MDA 

as soon as possible in order to get on track for LF elimination- Angola, Chad, 

Equatorial Guinea, Sao Tome and Principe and South Sudan. 

 

By 2020, a total of eight countries are expected to have completed MDA, namely 

Benin, Burkina Faso, Ghana, Mali, Niger, Sierra Leone, Uganda and United Republic 

of Tanzania). Notwithstanding the Ebola outbreak, Sierra Leone (5.4 million) and 

Guinea (1.5 million) were able to implement the MDA in 2015. 
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 Global Programme for the Elimination of lymphatic filariasis 

Given the high burden of LF in endemic countries (120 million people affected 

including 40 million with incapacities) in 1996 and the availability of diagnosis tools 

and drug combinations that were proven effective on microfilariae, the World Health 

Assembly committed in 1997 to eliminate the disease as a public health problem by 

2020 (WHA resolution 50.29). The GPELF was launched in 2000 in order to eliminate 

LF globally by 2020. It has two aims: to interrupt its transmission and to manage 

morbidity and prevent disability. LF elimination is defined by the World Health 

Organization as the transmission interruption in an endemic evaluation unit. Children 

aged 6 to 7 years are the targeted group for the transmission assessment with a 

prevalence within this group indicating the interruption when it is less than 2% in areas 

where Anopheles and Culex are the main vectors (WHO 2011b). 

 

The first and major pillar of transmission interruption is targeted by two means: annual 

community-directed MDA and vector control. To achieve these aims, the GPELF 

established a group of partners, including the endemic countries’ ministries of health, 

funding agencies, the drug manufacturers, academic and research institutions, non-

governmental organizations and the WHO. This is called the Global Alliance to 

Eliminate Lymphatic Filariasis (GAELF). Its mission is to eliminate LF by bringing 

together diverse groups of public-private health partners to support the Global 

Programme to Eliminate Lymphatic Filariasis by mobilising political, financial and 

technical resources to ensure success (GAELF 2017). 
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 Programmatic steps for interrupting transmission 

The GPELF recommend four main steps to stop LF transmission: disease geographical 

mapping; MDA; post-MDA surveillance; verification of disease elimination (Figure 

1.2). 

 

1.2.4.1 Disease geographical mapping 

Mapping is required to determine the level of endemicity and to identify areas with 

active transmission of LF. It is performed according to IUs- the country-defined 

administrative units that are used for MDA. The process is comprised of a mapping 

survey and review of existing data related to LF. The survey determines circulating 

filarial antigen (CFA) prevalence using immunochromatographic card test (ICT) or 

microfilaraemia prevalence using blood film in older school-aged or adult populations. 

If the prevalence is ≥1% of the sample tested, the IU is considered endemic for LF 

(WHO 2011b).   

 

1.2.4.2 Mass Drug Administration   

The total population of the different IUs of a country is considered at risk of LF until 

MDA is implemented for at least five years with epidemiological coverage ≥ 65% and 

a Transmission Assessment Survey (TAS) confirms that transmission has been 

stopped. As soon as transmission interruption is reached, the population of the 

concerned IUs is considered to no longer be at risk of LF (WHO 2011b). The MDA 

recommended by the GPELF is based on co-administration of two of the three 

dedicated drugs. This is due to the fact that two drugs have been found to be more 

effective at clearing microfilaraemia than any single drug. Albendazole plus 

ivermectin is used in countries where onchocerciasis is co-endemic with LF, and 
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diethylcarbamazine (DEC) plus albendazole is used in countries free of onchocerciasis 

(WHO 2015) because of serious adverse events associated with the administration of 

ivermectin to L. loa infected individuals or DEC to O. volvulus infected individuals. 

 

A single dose of therapy should be administered yearly to all eligible people in 

endemic areas for a period of at least five years to reduce microfilarial density in 

infected people and the overall infection prevalence in the endemic area below a 

threshold at which transmission is unlikely to be maintained. In areas with low initial 

LF prevalence, such as some districts in Sierra Leone and Burkina Faso, MDA was 

stopped after 2-3 rounds per the RPRG recommendation according to the respective 

Ministry of health annual reports on NTD. Trained community members under 

supervision of health workers are preferred as distributers of the drugs to targeted 

endemic communities. The whole process requires a well organized and coordinated 

monitoring and evaluation at the local, regional and national levels (WHO 2015). 

MDA coverage should be ≥65% of the total population to be considered effective. It 

should be noted that reaching 65% effective coverage is not easy in urban cities 

(Mwakitalu et al. 2013; Simonsen and Mwakitalu 2013). 

 

After three annual rounds of MDA, an optional mid-term assessment of the prevalence 

of microfilaraemia or CFA can be undertaken before the TAS eligibility assessment 

after the 5th MDA round. If the sentinel and spot-check sites are eligible for TAS, then 

a TAS can be undertaken followed by the 6th MDA round. That last round can be done 

even if the Evaluation Unit (EU) passes the TAS.  
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The TAS is a standardized method to assess the impact of MDA and provide national 

programme officials with technical information that can help to decide whether to stop 

MDA in an EU. The EU is the geographical area where TAS is implemented. It can be 

made of a combination of IUs, an entire IU or a part of an IU. The EU should not 

exceed two million inhabitants and should be made of contiguous geographical areas 

that share similar LF endemicity level and transmission dynamics (WHO 2015). After 

five to six years of annual MDA rounds, the LF elimination programmes’ 

impact needs to be assessed to determine whether the programme has achieved 

its objective of reducing levels of microfilariae in endemic areas to a level where 

transmission is unlikely to occur even if the MDA are stopped. TAS are 

designed to help programme managers determine whether areas have reached 

this critical threshold of infection (Deming and Lee 2011). The evidence 

provided by the TAS should not divert the programme managers to thoughtfully 

consider the MDA stopping decision. The geographical area for the TAS is the 

evaluation unit (EU), which may comprise multiple IUs or part of an IU.  

After the 5th MDA round, an assessment survey using blood films should be 

carried out� at least six months after the MDA. The survey will target the 

inhabitants aged 5 years and above in sentinel and spot-check sites. A 

microfilaraemia rate <1% in all sites in order to continue to implement the TAS 

(WHO 2004). Regardless of the results of this assessment, the sixth MDA round 

should be planned and carried out in the EU. In EUs with less than 1% 

microfilaraemia rate, programme managers should plan to conduct the TAS at 

least 6 months after the last MDA round (Gyapong et al. 2005).  



 
 

11

The targeted population for the TAS is the 6-7 years children that should be free 

of infection if the MDA was successful in stopping LF transmission. 

Antigenemia using Immunochromatographic card tests or Filaria Test Strips is 

usually determined within all the surveyed individuals in W. bancrofti endemic 

area. The survey is implemented in each Evaluation Unit that underwent at least 

5 MDA rounds with a coverage rate of at least 65%. To determine the TAS 

sample size and select both the required sampling strategy (school or 

community based) and the villages to be visited, the Survey sample builder tool 

(Horton et al. 2000) could help to automate the calculations. The survey is 

implemented at school-based or at and community-based according to the 

school enrollment rate that should be equal or higher than 75% for a school-

based survey. In areas where W. bancrofti is endemic and Anopheles or Culex 

is the principal vector, the target threshold is <2% antigenaemia prevalence. 

Because Aedes species are known to be more efficient transmitters of the 

parasite, in Bancroftian areas where Aedes is the primary vector, the target 

threshold is <1% antigenaemia prevalence (WHO 2015). 

 

1.2.4.3 Post-MDA surveillance 

The post-MDA surveillance period starts after the EU has passed the TAS. The TAS 

is also the recommended survey to detect any resurgence of LF transmission after 

MDA stopping. For post-MDA surveillance, the TAS should be conducted three times 

every 2-3 years to ensure that transmission is not re-emerging. The TAS planning and 

reports should be shared with WHO and the Regional Programme Review Group 

(RPRG) for advice. 
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1.2.4.4 Verification of the disease elimination 

The verification of LF elimination necessitates five main actions from the national 

programme managers, RPRG, WHO and the Strategic and Technical Advisory Group 

on Neglected Tropical Diseases (STAG-NTD): 

(i) the compilation of all data related to LF before, during and after the national 

programme initiation from each IU; 

(ii) the national dossier preparation by the national programme for LF elimination 

after data analyses; 

(iii) the submission of the national dossier to the RPRG via WHO by the national 

programme; 

(iv)  the dossier review by the RPRG that will stipulate recommendations to the 

Monitoring and Evaluation Working Group (MEWG) of the STAG-NTD via 

WHO headquarters; 

(v) the review of the RPRG recommendations by the MEWG that will make their 

recommendations to the STAG-NTD.
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Figure 1.2 Overall framework and programme steps of the GPELF 
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1.2.4.5 Morbidity management and disability prevention 

The GPELF’s MMDP activities mainly focus on lymphedema and hydrocele. The 

other clinical manifestations of LF such as the adenolymphangitidis and the fever 

are supposed to be managed by standard practices and referral of individuals, 

because public-health approaches related to them have not yet been established  

(WHO 2011a). LF chronic clinical burden is estimated to be about 19.4 million 

cases and 16.7 million cases respectively for of hydrocele and lymphedema 

(Ramaiah and Ottesen 2014).  Effective surgery is available that leads to significant 

improvement in the patients’ economic situation and quality of life (WHO 2011a). 

 

LF is an important contributor to the global disability burden with at least 2.8 

million DALYs and additional mental disorders often experienced by affected 

peoples and their health workers (Ton et al. 2015; WHO 2015). Elimination of 

these disabilities will not only require implementation of MDA but also the care of 

afflicted individuals in all endemic communities.  

 

Despite significant advances in terms of MDA implementation, little progress has 

been made regarding the care of people suffering from the clinical manifestations 

of LF. The lack of information with respect to morbidity control in endemic areas 

has contributed to the problem (WHO 2015). A minimal package of recommended 

assistances needs to be provided to people with LF: 

(i) MDA or treatment to remove any remaining adult parasites and Mf; 

(ii) Surgery for hydrocele (in W. bancrofti endemic areas); 
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(iii) Treatment for adenolymphangitis (ADL) when it occurs; management 

of lymphedema to avoid its worsening as well as the occurrence of ADL 

episodes (WHO 2016b).  

 

Simple and self-administered hygiene and exercise applied to the affected parts are 

recommended for the basic management of lymphedema. The simplicity of the care 

should not impair its lifelong availability for patients in local primary health care 

facilities. Additional measures, such as properly caring the wound, elevating the 

affected limb and proper footwear, are important. These measures were found to 

be effective in decreasing the number of ADL episodes and providing patients with 

a better quality of life. Home-based care is encouraged (WHO 2016b). 

 

The success of MMDP is currently assessed in terms of the geographical coverage 

of the basic management package for all known patients in endemic countries. As 

of 2014, only 24 endemic countries had sent MMDP service data to WHO, of which 

10 seem to have organized surveillance of these services at the IU level (WHO 

2015). 

 

In order to obtain a certification of elimination, countries that show evidence of 

transmission interruption will also need to provide in their dossier the following 

MMDP details: 

(i) the number of patients estimated by the IU; 

(ii) the number of facilities designated to provide recommended care serving 

IUs with known cases; 
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(iii) an assessment of the readiness and quality of services provided in 

designated facilities. 

Endemic countries are advised to start documenting the MMDP activities and 

follow the directions in documents available from WHO (WHO 2016b). 

 

 Transmission of LF 

 Life cycle of W. bancrofti  

Arthropod vectors are needed for the maturation and the transmission of filarial 

worms from one vertebrate to another (Sasa et al. 1976; Schacher 1973). The 

female adult worms stay in the lymphatics and mature before producing live pre-

larval forms called microfilariae.  

 

The microfilariae produced by female adult worms are found in the host blood in 

the daytime (in large blood vessels) or at night (in peripheral blood vessels) 

depending on the characteristics of the filarial species. They are found in the blood 

or lymphatic vessels. When the microfilariae are circulating in the peripheral blood 

or moving in the cutaneous tissue, they get taken up by mosquito vectors during a 

blood meal. Once in the suitable mosquito vector, the microfilariae pass through 

the wall of the digestive tract into the mosquito haemocele. Later, the microfilariae 

pass through three maturation stages: the first larval stage (L1), the second larval 

stage (L2) and the infective third larval stage (L3) (Figure 1.3). Each stage in the 

vector has specific suitable locations, so the L1 and L2 are usually found in the 

thorax of the host vector. L3s are released into the hemolymph which is the 

circulatory system that baths allows the larvae to move freely inside the mosquito 

into head, thorax, abdomen, palps and even legs. The L3 in the head move into the 
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mosquito mouth before being deposited on the vertebrate host’s skin where it 

penetrates actively the lymphatic vessels under the skin through the biting wound 

and goes to the deeper lymphatic vessels and lymph nodes (Beaver et al. 1984). In 

a suitable host, the infective larvae undergo a maturation process that takes nine to 

14 days to reach the larval stage 4 (L4) that will become an adult worm after 

approximately 16 days. 

 

 

 

Figure 1.3 Life cycle of W. bancrofti 
 (Modified from Centers for Disease Control and Prevention (CDC 2016)  
 

 They become adults that commonly reside in the lymphatics 

 The adult worms (male and female) produce microfilariae that migrate into 

lymph and blood vessels moving actively through lymph and blood 



18 
 

 A mosquito ingests microfilariae when biting an infected human host 

 After ingestion by the vector, the microfilariae undergoa series of changes 

asthey move through the mosquito’s midgut and reach the thoracic muscles 

 The microfilariae start a maturation process that leads to the larval stage 1 (L1) 

 and later to the larval stages 2 (L2) and 3 (L3)  

 The L3s go to the mosquito's proboscis 

 and will be deposited on the skin of the host during a vector mosquito blood 

meal before migrating into the lymphatic vessels through the biting wound.  

 

 Life cycle of mosquitoes  

The mosquito life cycle passes through four different stages, the egg, the larva, the 

pupa, and the adult (American Mosquito Control Association 2017). 

Egg stage 

This is the first stage of mosquito life cycle. Eggs can be laid one at a time 

(Anopheles, Ochlerotatus and Aedes) or attached together making what is called 

"rafts" and float on the surface of the water (Culex and Culiseta species). Several 

Aedes and Ochlerotatus lay eggs on humid topsoil that will be swamped by water. 

Eggs usually hatch into larvae within 48 hours; others might resist very cold winters 

before hatching. This habitat reqires water for the process to continue (American 

Mosquito Control Association 2017)..  

Larva stage 

The larva in the water needs to go to the surface for breathing. Larvae molt their 

skins four times and get larger after each molt. Most larvae have siphon tubes for 

breathing and hang upside down from the water surface. At this stage, some 

differences exist between species: 
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- Anopheles larvae do not have a siphon and lie parallel to the water surface 

to get a supply of oxygen through a breathing opening.  

- Coquillettidia and Mansonia larvae attach to plants to obtain their air 

supply.  

The larvae feed on microorganisms and organic matter in the water. During the 

fourth molt, the larva changes into a pupa (American Mosquito Control Association 

2017).  

Pupa stage 

The pupal stage is a resting, non-feeding stage of development. Pupae are mobile, 

responding to light changes and moving (tumble) with a flip of their tails towards 

the bottom or protective areas. This is the time the mosquito changes into an adult. 

In Culex species, this takes about two days in the summer (South of the united 

States). At the end of the development, the pupal skin splits and the adult mosquito 

(imago) emerges (American Mosquito Control Association 2017)..  

Adult stage 

The newly emerged adult rests on the surface of the water for a short time to allow 

itself to dry and all its body parts to harden. The wings have to spread out and dry 

properly before it can fly. Blood feeding and mating will occur couple of days after 

the adults emerge. 

The different stages of this cycle will usually last for a period that depends on both 

temperature and species characteristics. For exemple, Culex tarsalis, a common 

California (USA) mosquito, might go through its life cycle in 14 days or 10 days 

respectively at 70° F and 80° F. Additionally, some mosquitoes species adapted 
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their entire life cycle to be as short as four days or as long as one month (American 

Mosquito Control Association 2017). 

 Vectors of LF 

LF is a mosquito-borne disease transmitted by more than 80 mosquito species 

(White 1975). The main mosquito vectors can be considered to be found in three 

different geographical areas: South Pacific islands and some limited areas of South 

East Asia (Aedes); West Africa, Papua New Guinea, Vanuatu and Solomon islands 

(Anopheles); China, South East Asia, Egypt, East Africa, the Caribbean and Latin 

America (Culex). The LF elimination strategy in any endemic area will depend 

upon the vector and their associated competence (White 1975). 

 

Transmission intensity is dependent on ecological and socioeconomic 

characteristics of the area. In non-urban areas without pit latrines, anophelines are 

the main vectors of LF; whereas in urban areas, Culex quinquefasciatus (Cx. 

quinquefasciatus) is the principal vector (Hawking 1977; Mandsfied-aders 1927; 

Maxwell et al. 1999; White 1971). The permanence of these types of breeding sites 

creates a situation of continuous LF transmission over the year in urban areas, but 

in rural settings, LF transmission is intense during rainy season because of the non-

permanent nature of the breeding sites (McMahon et al. 1981; Wijers and Kiilu 

1977). Rapid expansion of urban areas without appropriate accompanying 

sanitation measures is the leading cause of the abundance of Cx.quinquefasciatus. 

These vectors are responsible for more or less biting nuisance depending on the 

number of breeding sites (wet pit latrines, cess pits and blocked open drains) (Curtis 

and Feachem 1981). 
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 Measures of human infection and LF transmission 

After the launch of the GPELF in 2000, an important improvement was observed 

in LF diagnosis that was previously limited to clinical examination, detection of 

antibodies against native-antigen preparations, observation of microfilariae in night 

blood samples using microscopic examination of giemsa stained thick smears or 

blood filtration membranes (Ramzy 2002; Rebollo and Bockarie 2014). The current 

human diagnostic tools aim at mapping W. bancrofti infection and assessing 

interventions’ impact. They can be categorized into parasitological, 

immunological, medical imagery, and molecular biology methods. 

 

 Parasitological methods 

Many epidemiological surveys and control programmes for filariasis determine the 

prevalence of microfilaraemia and assess the effect of interventions based on 

microfilariae (Mf) detection methods. W. bancrofti Mf has a nocturnal periodicity 

in many endemic areas (Sasa et al. 1976), requiring night time blood collection be 

conducted from around 10 pm to 2 am. This is not convenient for either the affected 

communities or the evaluation team. Examination of Giemsa-stained thick blood 

films is widely used for detection of microfilaraemia (Eberhard and Lammie 1991). 

Even though Mf can be lost during fixation and staining leading to erroneous results 

(Sabesan et al. 1991), the visualization, and counting of Mf in blood samples under 

a microscope remains the gold standard to diagnose active LF infection. However, 

microfilaraemia can be an insensitive method if microfilarial density is very low, 

especially after implementation of MDA as part of an elimination programme 

(Eberhard and Lammie 1991; Melrose et al. 2004). Nearly 50% of infected children 

are not detected using measurement of microfilaraemia alone. Moreover, a majority 
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of individuals with active LF infection have no detectable circulating Mf, but can 

perpetuate the transmission of infection (Lammie, Hightower, and Eberhard 1994; 

Rebollo and Bockarie 2014). Therefore, the prevalence of LF based solely on 

microfilaraemia underestimates the real burden of the disease (Turner et al. 1993). 

However, it is inexpensive and can be used in laboratories with limited facilities 

(Rebollo and Bockarie 2014). It is the method used for baseline LF endemicity 

level assessment as part of the elimination programme in endemic countries like 

Mali. The additional following three microfilarial concentration techniques are also 

used and may or may not increase the test sensitivity. They are used for research 

studies only.  

 

1.4.1.1 The membrane filtration technique (Nucleopore®) (Chularerk and 

Desowitz 1970) 

Usually, one mL of whole blood is haemolysed and filtered through a membrane 

with 5 µm pores that traps the Mf but allows smaller cells to pass through. The 

filter is then removed from the plastic holder, placed on a microscope slide and 

stained with Giemsa. Mf are counted under a microscope (Figure 1.4). This method 

allows quantification of Mf from a known amount of blood and morphologic 

identification of the microfilarial species, especially in areas where more than one 

filarial species are endemic. For this method, it is recommended to do two 

filtrations for each individual and use a mean to determine parasite load. This 

technique is not cheap and requires qualified techncians. Its use is limited in Mali 

to the clinical research activities for an accurate assessment of various 

interventions’ impact. 
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1.4.1.2 The modified Knott’s concentration method (Knott 1935) 

One mL of blood is mixed with 9 mL of 2% formalin in a 15-mL tube and 

centrifuged to sediment the Mf. The supernatant is removed, a drop of 1% 

methylene blue is added to the sediment and the mix is transferred to a glass slide 

and visualized under a microscope for Mf. The precipitate can make Mf 

examination difficult and thus reduce its sensitivity. 

 

1.4.1.3 The counting chamber technique (McMahon et al. 1979) 

Widely used in East Africa, 100 µl of blood is mixed with 900 µl of 3% acetic acid 

and then transferred into a special chamber called “counting chamber” and Mf 

examination and counting is done under a microscope. This method does not 

distinguish between microfilarial species.  
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Figure 1.4 Nucleopore filtration technique set for blood filtration 
 

 

 

 

A: Filtration membrane box and the other 
filtration device components 

B: The other filtration device components (membrane 
holder) 

D: recovery of the 
filtered blood into a 

C: Blood sample filtration through the 
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 Immunological Methods 

 

1.4.2.1 CFA Detection  

For Bancroftian filariasis, the development of a monoclonal antibody, Og4C3, for 

detecting CFA by ELISA (Enzyme-Linked Immuno-Sorbent Assay) in early 1990 

(More and Copeman 1990) offered the convenience of daytime blood collection 

with a greater test sensitivity as compared to microfilaraemia (Simonsen and 

Dunyo 1999; Turner et al. 1993). The CFA assay is aimed at showing the presence 

of the circulating filarial antigen in the tested blood sample. It has the advantage of 

detecting infection in children (or adults) with LF who were tested negative for 

microfilaraemia (Steel et al. 2001). The Og4C3 assay approaches 100% sensitivity 

for patent infection as assessed by Giemsa-stained thick blood films, which makes 

it suitable for field studies (Lammie et al. 1994). It can also be used for quantitative 

assessment of LF infection. In its current format, this ELISA, in addition to its 

operating cost, requires a well-trained technician and specialized equipment such 

as an ELISA reader, making it not very user friendly for fieldwork. 

 

The ICT, based on the monoclonal antibody AD12.1, was developed later in the 

90’s (Weil et al. 1997). It has comparable sensitivity and specificity to the Og4C3 

assay, but revolutionized the diagnosis of Bancroftian filariasis due to its rapid test 

format, readily applicable in field studies (Chandrasena et al. 2002; Njenga and 

Wamae 2001; Pani et al. 2000; Simonsen and Dunyo 1999). The ICT test is 

currently the preferred method for LF mapping (Gyapong et al. 2002; Onapa et al. 

2005). This test is qualitative and semi-quantitative (Chesnais et al. 2013) and 

provides with the result in 10 minutes. However, it has some backlogs such as the 

need of a cold chain (2-8 degrees Celsius), the necessity to read the card at exactly 
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10 minutes after blood application, a short shelf life (no more than nine months in 

suitable storage conditions) and the fact that one will remain positive several 

months after worms and Mf dying (Bockarie et al. 2002; Reimer et al. 2013).  

 

Recently, a new CFA test, the Alere Filariasis Test Strip (FTS) was produced. It 

uses similar reagents of those of the ICT, but on a different platform. The FTS is 

cheaper than the ICT and can be stored for a longer period of time. The two tests 

are comparable in terms of ease of use in the field, but laboratory studies 

demonstrated that the FTS could detect lower concentrations of CFA than ICT. In 

a subsequent study, the FTS detected CFA in 27% more samples than ICT in a 

highly LF endemic area in Liberia (Weil et al. 2013). 

 

Although the available tests for CFA can detect infection as early as the first month 

of patency (Weil et al. 1996), their utility in the early detection of recrudescence of 

transmission is compromised by the fact that microfilaraemia and antigenaemia 

develop months or years after exposure (Lammie et al. 1998; More and Copeman 

1990; Weil et al. 1987, 1997; Witt and Ottesen 2001). 

 

1.4.2.2 Filarial Antibody Detection 

Methods for filarial antibody detection targeting crude filarial antigens, have been 

available and used for epidemiological and diagnostic purposes since the1960s 

(Harnett, Bradley, and Garate 1998; Melrose et al. 2004). Antibody assays provide 

a cumulative measure of exposure to filarial infection and may circumvent some 

limitations of methods based on direct detection of the parasite or its antigens 

(Lammie et al. 2004). In filarial endemic areas, isotype-specific antifilarial 
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antibody responses against parasite antigens across populations characteristically 

correlate with LF infection status (Ottesen 1992), and that fact has driven the 

development of antibody assays. For example, filarial-specific IgG4 levels 

correlate well with antigenaemia (Addiss et al. 1995), making its measurement a 

potential useful strategy for assessing the impact of mass chemotherapy on filarial 

infection. Antifilarial IgG4 antibody assays reduce cross-reactions with antibodies 

against non-filarial helminths and most nematodes except Strongyloides (Melrose 

et al. 2004; Muck, Pires, and Lammie 2003). Many recombinant filarial antigens 

have been developed and used in filarial antibody assays with a presumably greater 

specificity for either the diagnostic or exposure assays (Lammie et al. 2004; Wang 

et al. 1999). Bm14, WbSXP and BmR1 are three recombinant antigens 

commercially available that demonstrated a >90% sensitivity in field studies 

without any cross-reactivity due to non-filarial helminth infections. Unlike the two 

other assays, Bm14 ELISA assay demonstrated antibody reactivity with sera from 

patients with W. bancrofti, B. malayi, L. loa and O. volvulus. The Filariasis Cellabs 

ELISA kit (CELISA) is based on Bm14. In Samoan villages, CELISA was found 

to be a potential diagnostic tool that could be used for LF surveillance in the South 

Pacific (Joseph et al. 2011). BmR1 assays are relatively insensitive for W. bancrofti 

infection, but sensitive for B. malayi infection, making the assay suitable and useful 

in areas with mostly or only Brugian filariasis (Lammie et al. 2004).  

 

More recently, Wb123 IgG4, an immunoassay based on detection of antibody to a 

W. bancrofti L3-specific antigen, was found very specific and sensitive (>90%) in 

detecting W. bancrofti infection. It exists in a laboratory based ELISA format and 

in a field-friendly strips format with comparable performance (Kubofcik, Fink, and 
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Nutman 2012; Steel et al. 2012, 2013). A biplex format of the strips exists for LF 

(Wb123) and onchocerciasis (Ov16) simultaneous diagnosis on the same test (Steel 

et al. 2013). 

 

Urinary antibody tests also exist for LF endemicity determination and assessment 

of children exposure to W. bancrofti infection. These tests exist only on laboratory-

based format and the antibodies are not available for sale (Samad et al. 2013; 

Yahathugoda et al. 2014). 

 

In sum, antifilarial antibody detection provides a good assessment tool of LF 

transmission after MDA cessation (Lammie et al. 2004). This assertion is sustained 

by the fact that antibodies are detectable in infected humans before CFA or any 

other manifestation or sign associated with the infection. Antibody responses and 

their detection should be more sensitive than microfilaraemia or CFA detection 

(Lammie et al. 2004) . Additionally, children born after transmission is stopped 

should not be positive for antibody, providing the optimal population for testing 

during the post MDA surveillance (Gao, Cao, and Chen 1994; Rodríguez-Pérez et 

al. 1999; Weil et al. 2000). A limitation of this test is the fact that antibody remains 

detectable after treatment (Steel et al. 2013). 

 

 Medical imagery method 

Ultrasound has been successfully used to visualize adult W. bancrofti worms in the 

scrotal lymphatics of living patients (Amaral et al. 1994). Adult worm 

characteristic movements within the lymphatics, otherwise known as “the filarial-

dance sign” allow its detection. This method has a sensitivity of about 80% (Norões 
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et al. 1996). It was found suitable for assessing the effects of antifilarial drugs on 

adult worms especially in men (Dreyer et al. 1998; Hussein et al. 2004), but is not 

practical for large epidemiologic screening and requires considerable expertise. 

 

 Measures of entomoloigical infection and tranmission 

Dissection is performed on freshly collected mosquitoes or on fixed and stained 

mosquitoes if dissection is not possible at the collection time. 

 

 Measures of entomological infection 

1.5.1.1 Dissection 

Freshly collected mosquitoes  

Dead mosquitoes can be dissected within six hours following the collection or the 

next day if they are kept at four degrees celcius (usually from pyrethrum spray 

catch or light trap). If the collected mosquitoes are alive (usually from the human 

landing catch (HLC) or any other method that allows live mosquito collection), 

they can be kept for a longer time before dissection if they are in a humid 

environment and allowed to feed on a sugar solution on cotton wool. Prior to 

dissection, mosquitoes are sorted and containers (collection tubes or cups) labelled 

by species, collection date, collection site, collection point and collection time. A 

technician can process about 50–100 specimens daily. The tube or cup containing 

the mosquitoes can be shaken gently or placed in a refrigerator for few minutes to 

kill mosquitoes. The killed mosquitoes are then placed in a petri dish on a wet wipe 

before individual dissection. 
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The mosquito is deposited on a clean microscope slide before being separated into 

three parts (the head, the thorax and the abdomen segments) that should be placed 

individually in each of the three different drops of saline (0.9%NaCl) on the same 

slide. The wings and legs are removed beforehand and placed in a tube if further 

molecular processing is needed, especially for An. gambiae sensu lato (s.l) to 

determine the specific species. These steps are done using a dissecting needle under 

a dissecting microscope with mirror or lateral light. 

 

For the head, the mouth part should be opened cautiously to allow any L3 to 

actively move into the saline water. After the head, the two other parts should be 

lacerated with caution not to damage any larval stage (L1 or L2 usually) that does 

not move. Larvae can be seen at this stage of the process, but to avoid missing any 

larvae, the three drops are covered with a cover slip before an observation under a 

compound microscope at x40 (WHO 2013a). 

 

For recently blood-fed mosquitoes, the mid-gut is removed and placed in distilled 

water to lyse the red blood cells. The solution is then covered with a cover slip and 

observed under a compound microscope at x10 firstly followed by x40 (WHO 

2013a). Quality control should be done by reading 10% of the slides randomly 

selected by a senior experienced technician.   

 

Fixed and stained mosquitoes  

When part or all the collected mosquitoes cannot be processed soon after the 

collection, the specimens are sorted according to the information sought by the 

investigators, fixed and stained for later dissection as described by Nelson (1958) 

(Nelson 1958) and modified by Chambers et al (2009) (Chambers et al. 2009). 
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Specimens are fixed individually or in pools of interest (on a 80% or more ethanol 

solution or a 70% ethanol solution with 5% glycerol) in decreasing ethanol 

dilutions (70%, 55% and 25%) for 30 min in each dilution before a final 30 minutes 

wash in distilled water. The fixed specimens can be stored for a long period before 

staining. The mosquitoes are then stained in Mayer’s haemalum stain for a week at 

room temperature followed by washing the specimens in distilled water for three 

days and storage in pure glycerol. Dissection can occur at any time on fixed 

specimens. 

 

Items needed: Ethanol (ethyl alcohol) ≥ 80%; Distilled water; Haemalum (Mayer’s) 

stain (VWR, West Chester, Pennsylvania, USA); Glycerol; Glass screw-top vials; 

measuring cylinder to make up alcohol dilutions of 70%, 55% and 25%; Glass 

slides and cover slips; Dissecting microscope with mirror or light source and 

compound microscope. 

 

Method: After collection and identification, place mosquitoes in 80–98% ethanol 

in tightly sealed vials. Alternatively, 70% ethanol with 5% glycerol (v/v) can be 

used. They can be placed in individual vials or grouped by species and collection 

site or time. Up to 200 mosquitoes can be placed together in one 2.5 x 7.6 cm tube. 

They can be transported and stored indefinitely in alcohol until staining. The 

dissection is done under a stereoscopic zoom dissecting microscope (at x8 to x35) 

by separating each mosquito in three parts (head, thorax and abdomen) and 

carefully opening each part on a microscope slide. Larval stage can be seen at this 

step but the positive or doubtful slides need further observation under a microscope 
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at 20x–40x magnification or even at x100 as well as a help from an expert if doubts 

persist. The number of the different larval stages recovered can then be recorded. 

 

For verification or training purposes, positive and negative slides can be 

permanently mounted in glycerol if desired.  

 

1.5.1.2 Molecular Biology Methods 

The Polymerase chain reaction (PCR) is a molecular biology technique that can 

detect the parasite DNA or RNA (reverse transcriptase PCR or RT-PCR) in ground 

mosquitoes and amplify them. It requires well-trained technicians and specialized 

equipment and laboratories. The PCR method can detect the DNA without 

distinction between the different larval stages (Fischer et al. 2007; Rao et al. 2006) 

while the RT-PCR can detect the infective larvae RNA as well as the other larval 

stages ones (Laney et al. 2010). Given the operating cost and the vectors’ low 

infection rates, these PCR are done on pools of mosquitoes (5-50 usually) gathered 

according to the parameters of interest and grounded mechanically in a tube. For 

DNA extraction, samples can be sun dried, put on silica gel or on an alcohol 

solution (100%) while for the RNA extraction, they should be kept on an 

RNAlaterR solution (Laney et al. 2010). A DNA or RNA extraction kit is used for 

the release in the tube and the reaction takes place in a thermal cycler machine that 

assures the DNA or RNA fragment replication to allow its detection.  

 

Filaria genomic DNA can be detected after amplification using the loop-mediated 

isothermal amplification (LAMP). This sensitive and highly specific method 

allows DNA detection within 30 minutes and can be used on field as a point of care 
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(POC) tool. The targeted product amplification causes a turbidity of the solution if 

the tested human blood or mosquito sample contains W. bancrofti DNA. This 

method is cheaper (no need of thermocycler) and less sensitive to inhibitors in the 

samples as the conventional PCR (Rebollo and Bockarie 2014; Takagi et al. 2011). 

 

The tested mosquitoes infection or infectivity rates are estimated in term of 

maximum infection likelihood using statistical software PoolScreen 2.0 (Katholi 

and Barker 2010). The software uses the number of positive and negative pools as 

well as the number of mosquitoes in each pool. The pool screening methods are 

used to reduce the number of tests to perform to estimate the infection prevalence 

within a large population. The pool sizes are chosen to minimize the number of 

tests required (Charles R. Katholi et al. 1995). When processing pools of 

mosquitoes, it is not possible to know how many mosquitoes were positive once a 

pool becomes positive. Thus, it is not possible to directly calculate the prevalence 

of infected flies from the proportion of positive pool samples. However, an 

algorithm developed by Katholi et al in 1995 enables an estimate of the prevalence 

of infection from the available data. The pool screen software was made based on 

that algorithm. 

 

 Measures of LF transmission intensity and elimination endpoints 

 
LF transmission intensity and its elimination endpoints are measured using indices 

related to the vector abundance and bioecology and to the transmission. 
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1.5.2.1 Related to the vector abundance and bioecology 

• Vector biting density: number of female mosquitoes collected when attempting 

to feed on human for a specified period of time (usually hour or day).  

• Vector resting density: number of female mosquitoes resting in a room or house 

and collected per a specified period of time.  

• Parity rate: percentage of mosquitoes that laid eggs at least once (parous), 

calculated by dividing the number of parous mosquitoes of the species of interest 

by the total number of dissected females of the same species (parous and 

nulliparous) and multiplying the obtained number by 100. 

• Monthly vector biting rate (MBR): number of female mosquitoes collected when 

attempting to feed on human per month. If collections were not done every night 

of the month, the daily vector biting density can be multiplied by the mean number 

of days in a month (30.5 days) (WHO 2013a).  

• Annual vector biting rate (ABR): estimated number of female mosquitoes 

collected when attempting to feed on human per year. If collections were not done 

every night of the year, the vector biting density per person per day can be 

multiplied by 365, the number of days in a year. It can also be determined by 

multiplying the MBR by 12, the number of months in a year. Seasonal variations 

should be taken in account. 

• Human blood index: percentage of female mosquitoes that really fed on human. 

It is determined by dividing the number of female mosquitoes whose blood meal 

was identified as human blood by the total number of female mosquitoes whose 

blood meal was tested for blood origin (from human or animal). An ELISA usually 

determines the blood origin. 
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1.5.2.2 Related to LF transmission 

• Vector infection rate: percentage of female mosquitoes found infected with any 

filarial larval stage. It is determined by multiplying the number of female 

mosquitoes found harbouring a L1, L2 or L3 by 100 and dividing the obtained 

number by the total number of dissected females of the same species. 

• Vector infective rate: percentage of female mosquitoes found infected with a L3 

larval stage. It is determined by multiplying the number of female mosquitoes 

found harbouring a L3 of the parasite by 100 and dividing the obtained number by 

the total number of dissected females of the same species. 

• Monthly infective biting rate (MIBR): estimated number of mosquitoes 

harbouring at least one L3 biting a human per month. It is determined by 

multiplying the vector infective rate by the monthly vector-biting rate. 

• Annual infective biting rate (AIBR): estimated number of mosquitoes harbouring 

at least one L3 biting a human per year. It is determined by multiplying the vector 

infective rate by the annual vector-biting rate.  

• Monthly Transmission Potential (MTP): indicator of risk for infection per month. 

It is determined by dividing the total number of L3 recovered by the number of 

mosquitoes dissected and multiplying the obtained number by the MBR. 

• Annual transmission potential (ATP): indicator of risk for infection per year. It is 

determined by dividing the total number of L3 recovered by the number of 

mosquitoes dissected and multiplying the obtained number by the yearly vector-

biting rate. It is also the sum of the 12 MTP calculated for the 12 months of the 

year (WHO 2013a). 

The cut-off values of 0.25%, 0.5% and 1% were suggested for Culex transmission 

areas (Farid et al. 2007; Michael et al. 2006; Rao et al. 2014) while 0.65% was 
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suggested for Anopheles transmission areas (Pedersen et al. 2009). These cut-offs 

are only suggestive.  

 

1.5.2.3 Specific to Aedes mosquitoes 

The standard methods for assessing the effect of Vector Control (VC) on Aedes 

mosquitoes is based on collection of larval stages (immature specimens, including 

pupae) rather than collection of eggs or adults. The usual sampling unit is a house 

where a careful search, count and characteristic recording of all potentially water-

containing containers is implemented. The containers’ main characteristics of 

interest are the presence or absence of water and the presence or absence of Aedes 

larvae, pupae and larval and pupal skins.  

• House (premises) index: proportion of houses infested with Aedes larvae or pupae. 

It is determined by multiplying the number of infested houses by 100 before diving 

the obtained number by the total number of houses inspected. 

• Container index: percentage of containers infested with Aedes larvae or pupae. It 

is determined by multiplying the number of positive containers by 100 and dividing 

the obtained number by the total number of containers inspected. 

• Breteau index: number of containers infested with Aedes larvae or pupae per 100 

houses inspected. It is calculated by multiplying the number of positive containers 

by 100 and dividing the obtained number by the total number of houses inspected 

(WHO 2013a). 

 

LF transmission intensity and the impact of elimination interventions (mass drug 

administration, vector control) in an area can be quantified by examining blood 

samples to determine the prevalence of microfilarial or filarial antigen carriage 
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(WHO 2011b). The microfilarial prevalence and the antigen prevalence are 

determined by dividing the number of people found positive for Mf or for antigen 

(using ICT, FTS or Og4C3 antigen tests) by the total number of people tested for 

each method. To have the prevalence in per cent, the obtained number is multiplied 

by 100. 

 

 Potential vector control 

A total of four categories of methods are used for lymphatic filariasis vector 

control: chemical control and impregnated materials; environmental management; 

biological control; and integrated control. 

 

 Chemical control and impregnated materials 

Several categories of chemical products are being used for LF vector control, 

namely oils, chlorinated hydrocarbons, organophosphates, carbamates, natural 

pyrethrins (pyrethrum extract) and synthetic pyrethroids, insect growth regulators, 

and systemic insecticides. In urban settings, mosquito larval stages in breeding sites 

can be targeted using a thin film of petroleum oils at the surface of the water body. 

Larvae are deprived of air and die because of that or by poisoning when the oils 

penetrate into their respiratory orifice.  

 

Dichloro-diphenyl-trichloroethane (DDT) was the most important and commonly 

used organochlorine. Its use in houses against Anopheles mosquitosas part of 

malaria control programmes allowed drastic reduction of LF transmission levels 

and even achieved elimination in some areas like Solomon Islands (Webber 1977, 
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1979). DDT could not be recommended in most of West and Central African 

countries because of high resistance of the main LF vectors. 

 

The use of insecticide treated nets to prevent mosquito bites is becoming a more 

common means of vector control because of its efficiency in preventing malaria 

and ease of use. The nets are currently well known in tropical areas even if their 

actual usage rate is not ideal (Atieli et al. 2011). For insecticide treated nets to get 

a significant impact the coverage should be at least 60%, which is not the case in 

most of LF endemic countries in Africa. Togo and Malawi are the exceptions. 

Coverage of long lasting insecticidal nets (LLIN) distributed by the national 

malaria control programme was >75%, contributuing significantly to the fact that 

these two countries got Mf rate below 1% after five consecutive MDA rounds. 

 

For controlling Cx. quinquefasciatus, only organophosphate molecules were used 

for a long period in some areas like Dar es Salaam and Rangoon. Cx. 

quinquefasciatus is difficult to control because of the variety of breeding sites and 

the absence of an effective strategy to stop its breeding in a sustainable manner. 

Using the most effective control measure available would require retreatment of all 

the numerous potential breeding sites at least four times per year (Hougard et al. 

1993), a substantial expenditure in term of money and employees. Polystyrene bead 

treatment of non-open water bodies can be effective in stopping Culex breeding for 

a long period (Maxwell et al. 1990; Reiter 1978) if the water does not overflow. 

 

Ivermectin, the mainstay of MDA due to its activity against Mf in humans, has also 

been demonstrated to be toxic for several arthropod species, especially mosquitoes 
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(Wilson et al. 1993). Mosquitoes that bite people treated with this drug exhibited a 

shorter survival (Bockarie et al. 1999; Cartel et al. 1990; Foley, Bryan, and 

Lawrence 2000). This effect was also seen in Ae. polynesiensis in French Polynesia 

up to a four month period after the drug absorption (Cartel et al. 1991). Mortality 

rates of up to 41% and 82%, respectively, were observed in Ae. vexans and 

Psorophora confinnis after a blood meal on animals treated with ivermectin (Loftin 

et al. 1996). 

 

 Environmental management 

Environmental management is the sustained modification or change one can do to 

the environment to circumvent the multiplication of mosquito vectors of pathogens 

in the concerned area. These modifications are oriented towards the clearance of 

water bodies or vegetation that are suitable to the reproduction of local vector 

species. 

 

In places where mosquitoes that transmit LF (eg. Anopheles and Mansonia 

mosquitoes) lay eggs; proper management of used water to avoid marshes will 

prevent multiplication of these vectors. If the principal mosquito species 

transmitting LF in an area are Mansonia species, discarding plants like Pista (used 

by the mosquito eggs and larval stages to develop) will decrease the number of 

bites that a person receives daily. These plants can be removed manually or by 

depriving them of water, dramatically reducing the Mansonia mosquito population. 

 

As in the case of Mansonia, other mosquito vectors may need special control 

methods targeting specific developmental stages. For example, Ae. scutellaris 
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group mosquitoes lay eggs in small receptacles that contain rain water. So, removal 

of empty bottles, coconut shells, and used tyres around habitation help reduce 

Aedes densities. 

 

 Biological control 

The biological control of LF vectors consists of the use of pathogens and predators 

of mosquito vectors, such as viruses, bacteria, protozoa, fungi, nematodes and 

fishes that feed on mosquito larval stages. The implementation of biological control 

can have more impact if done at the same time as environmental handling. 

 

The two important bacteria currently in large use are Bacillus thuringiensis 

israelensis (Bti) and Bacillus sphaericus. The first uses toxin to kill various 

mosquito species larvae, including Anopheles (Majori, Sabatinelli, and Coluzzi 

1987), Culex (Kar et al. 1997) and Mansonia (Chang, Ho, and Chan 1990), while 

the second is very good in killing Culex genera from polluted and non-polluted 

water bodies by inducing an osmotic shock caused by the interaction between the 

toxin and intestinal proteins of the insect (Pardo-López, Soberón, and Bravo 2013). 

Gambusia affinis is a fish that feeds on mosquito larvae pullulating rice cultivation 

areas or wells and helps considerably in reducing the number of mosquito produced 

by these water bodies. 

 

Romanomermis culicivorax (a mermithid nematode pathogen for adult mosquito) 

and Lagenidium giganteum (a fungus) were successfully used in rice fields to 

control mosquitoes (Lacey and Lacey 1990).  
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Introduction of sterile male Culex mosquitoes allowed the elimination of this 

species in an island of Florida (Patterson et al. 1970). Genetic control of mosquitoes 

was first used successfully (Grover et al. 1976; Jayasekera et al. 1980; Yasuno et 

al. 1978) for Cx. quinquefasciatus. The use of a chemosterilisant (Sharma et al. 

1973), creation of an intrinsic “cytoplasmic incompatibility” (Curtis and Adak 

1974; Laven 1967) and the elimination of female Culex based on the larval stage 

pupae size has also been used successfully (Sharma et al. 1973) with this species. 

Unfortunately, females from other areas (≥3km from the intervention area) were 

found to migrate to the intervention area. 

 

Although there has recently been considerable interest inthe development of 

transgenic mosquitoes unable to transmit Plasmodium, this approach has not yet 

been explored for W. bancrofti. 

 

These methods and technologies can be used to control LF transmission. Some of 

these technologies such as the bi-directional "cytoplasmic incompatibility" (gene 

driving system) exist only for Culex (not for Anopheles). 

 

 Integrated vector management 

Integrated vector management involves the combination of two or more of the 

methods mentioned above so that they act in a complementary way to achieve a 

high degree of control. Control of mosquitoes using chemical pesticides has 

generated several problems including insecticide resistance, safety risks for 

humans and domestic animals, and other environmental concerns. These problems 

and the high cost and sustainability issues of programmes based predominantly on 
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conventional insecticides have stimulated increased interest in integrated vector 

control. 

 

 The role of vector control against LF transmission 

Besides the common mosquito control measures evocated prior to this section, 

many other recent measures exist and can be used as part of an integrated vector 

management (IVM) that can foster the LF elimination process. 

 

Because of the presence of more than one LF vector species (each of which may 

have different behaviour) in several endemic areas, the use of several IVM 

measures will likely be needed for sustained elimination in most cases. 

Nevertheless, the use of a single method for LF vector control was successful in 

eliminating LF in some Anopheles-transmitted countries. Examples include the 

Solomon Islands using indoor spraying (residual) of DDT (Webber 1977, 1979) 

and The Gambia using ITN (Rebollo, Sambou, et al. 2015). In PNG, use of LLIN 

was successful to drastically reduce LF transmission (Reimer et al. 2013). 

 

Spraying DDT in houses is the most commonly used vector control measure for 

malaria control. It has also been used successfully to reduce W. bancrofti 

transmission by An. punctulatus group in several countries, including the Solomon 

Islands (Webber 1979), PNG (Bockarie 1994) and Indonesia (Iyengar, De Rook, 

and Van Dijk 1959). It has also been found to decrease LF transmission by An. 

gambiae s.l and An. funestus in Togo (Brengues, Subra, and Bouchite 1969; 

Scheiber et al. 1976). 
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An. mosquitoes are characterized by a facilitation transmission pattern (Southgate 

and Bryan 1992; Webber 1991) and were found to be very sensitive to vector 

control. Only in Anopheles and Mansonia LF transmission areas had transmission 

interruption achieved using vector control alone. This phenomenon was observed 

in some areas of Central America where An. darlingi is the vector, and in some 

countries of South-East Asia where B. malayi was transmitted by An. sinensis, An. 

barbirostris and other mosquitoes that bite indoors (WHO 1984). Thus, reducing 

the vector density, the parasite load or both, can interrupt Anopheles transmission. 

 

In Sri Lanka, where Brugian filariasis was transmitted by Mansonia species, the 

countrywide use of DDT spraying (from 1959 to 1965) in houses to fight malaria 

induced the complete disappearance of microfilaraemia (Abdulcader and Sasa 

1966) despite a prevalence of 6.8% in 1939 before any intervention (Sasa 1976). 

 

 The type of vector control in endemic countries 

In sub-Saharan Africa, elimination of LF and malaria will require a combination of 

chemotherapy and decreased human-vector contact through vector control with 

LLIN and indoor residual spraying (IRS) (Onyango et al. 2013). LLINs are 

currently provided at no cost for endemic communities, with a focus on pregnant 

mothers and children < 5 years, as part of the malaria elimination actions in many 

countries (Rebollo, Mohammed, et al. 2015). Several authors have pointed out the 

important reduction of microfilaraemia prevalence due to vector control alone and 

discussed how this can be improved by adding MDA (Bockarie et al. 2002; Reimer 

et al. 2013; Sunish et al. 2007). In areas where bed net usage rates are high and 

vector populations are still susceptible, bed net use may eliminate LF if the 
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reservoir of microfilaraemia has first been reduced by MDA or if the baseline 

endemicity level was low, as in the Solomon Islands (Reimer et al. 2013; Webber 

1979). Recently, national governments and their funding partners achieved better 

coverage of LLIN in many malaria and LF endemic areas (Rebollo, Sambou, et al. 

2015), creating a real opportunity for universal coverage (one net for every two  

people) and fostering of the elimination of these diseases (Rebollo, Sambou, et al. 

2015). Nevertheless, in many hyper endemic areas, the addition of MDA to vector 

control measures is needed, because a small increase in mosquito vector biting rate 

with no change in the human microfilaraemia rate can induce re-emergence of 

transmission, especially when Anopheles mosquitoes are not the main transmitting 

vectors and the MDA coverage is low (WHO 2013a).  

 

 The insecticide resistance issue  

About 70 million LLIN were distributed at no cost in 88 countries worldwide, 

including 39 countries in Africa (WHO 2013a). These free distributions targeted 

malaria although they also impacted other mosquito borne diseases, such as LF 

(Blackburn et al. 2006). Unfortunately, this useful control measure is threatened by 

an increasing frequency of resistance of mosquito vectors to the insecticides 

recommended by the WHO for LLIN and IRS (Hemingway, Field, and Vontas 2002; 

WHO global malaria program 2012). These resistance issues are due to a 

combination of factors, including chemical vector control pressure (LLIN; IRS) 

(Mathias et al. 2011), the use of insecticides in agriculture (Baleta 2009; Lines 1988) 

and environmental pollution (Xenobiotic pollution) that has been reported to 

accelerate the selection for insecticide resistance in malaria vectors (Djouaka et al. 

2008; Nkya et al. 2013). 
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Studies are underway to determine how to best overcome the resistance issue.  

Currently, Chlorfenapyr is available for vector control in the form of ITN or residual 

spraying in areas where mosquitoes are showing pyrethroid resistance (N’Guessan 

et al. 2007). 

 

Due to the paucity of entomological studies targeting LF, the impact of insecticide 

resistance on the efficacy of ITN and IRS has not been established in the context 

of LF elimination. Since there has been geographical expansion of resistance of 

mosquitoes to multiple classes of insecticide across Africa (Ranson et al. 2016), the 

impact of this on LF control requires assessment. 

 

 Vector competence and transmission 

The competence of a mosquito vector in transmitting LF is its ability to pick up 

microfilariae and allow its maturation up to the third stage larvae (L3) before 

transmitting this L3 to a human (Boakye et al. 2004). Vector-parasite relationship 

in terms of W. bancrofti transmission is characterized by two main schemes, the 

facilitation and the limitation.  

 

The facilitation that is observed with An. gambiae is associated with an increase in 

the vector’s capacity to uptake and bring microfilariae to the L3 stage when the 

microfilarial load is high. On a biological point of view, the well developed teeth-

like cibarial armatures damage some of the ingested microfilariae providing the 

remaining ones with more chance to get to a mature L3 stage. The limitation is the 

pattern that allows more efficient development to the L3 stage when the blood 
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microfilarial load is low. This characterize vectors species with relatively less 

developed cibarial armatures for which too many microfilariae will impede the 

capacity of the vector to bring many of them to the mature L3 stage. Limitation is 

observed within the Culicine species. A third relationship, deemed less 

epidemiologically important, is the proportionality that is characterized by a 

constant parasite yield ratio that does not change as microfilarial intake increases 

(Bockarie, Pedersen, et al. 2009; WHO 2013a).  

 

LF due to W. bancrofti is transmitted by several mosquito species exhibiting 

different level of competence in transmitting. The vector competence becomes 

particularly important currently with the MDA impact on infection and parasite 

load. The main described LF transmission patterns are all linked with the blood 

parasite load and the vector species (Erickson et al. 2013; Southgate and Bryan 

1992). The elimination thresholds in the context of the LF TAS are currently driven 

by the local vectors’ competence (Erickson et al. 2013; WHO 2013a). They are 

different for the vectors showing limitation (Culex and Aedes genera) and those 

showing facilitation (Anopheles genus) (Erickson et al. 2013; WHO 2013a).   

 

Several studies showed the vector-parasite relationship in anophelines, as the 

facilitation but in other areas, Anopheles species might be characterized by the 

limitation as the type of relationship (Amuzu, Wilson, and Boakye 2010; Boakye 

et al. 2004). In Papua New Guinea at low parasite density exposures, An. farauti 

s.s was carrying five times more parasites than African Anopheles species 

(Erickson et al. 2013).  
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Differences in vector competence mainly reside in the structures of the cibarial 

armatures that are more developed within those showing limitation (Bryan and 

Southgate 1988; Erickson et al. 2013), the host immune responses as a reaction to 

an external element by inducing a melanization, the Mf uptake impact on mosquito 

survival that becomes more important when the ingested number is high (Erickson 

et al. 2013) and the vectors’ resistance to insecticides on vector side (Hemingway 

and Ranson 2000). On the human blood side, vector competence may be impacted 

by the presence or absence of coinfection with the malaria parasite, Plasmodium 

falciparum (P. falciparum) (M T Aliota et al. 2011; Muturi et al. 2006) and previous 

treatment with ivermectin (Foley et al. 2000). 

 

Some of the vector related factors are listed below: 

 Structure of cibarial armature 

In many LF vectors, the digestive tract contains teeth-like structures (armatures) 

protruding from the gut wall into the lumen. At which extent these armatures are 

developed may determine the variation in vectorial efficiency between and within 

mosquito species (Amuzu et al. 2010; Bryan and Southgate 1988). The more 

developed the refractory apparatus, like the cibarial armature in Anopheles species, 

the higher the threshold density of Mf sufficient to interrupt transmission of LF 

(Bryan and Southgate 1988). McGreevy et al (1982) demonstrated that the African 

vector An. gambiae with a well-developed cibarial armature kills about 50% of 

ingested W. bancrofti microfilaraemia while Cx. quinquefasciatus and Ae. aegypti, 

with less prominent ones, kill only about 6% (McGreevy et al. 1982). The 

complexity of the structure of the cibarial armature also varies among anopheline 
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vectors (McGreevy et al. 1978) but it is not known to what extent it affects vector 

competence within the same genera. 

 

 Melanization 

In partially susceptible and in refractory mosquito species, filarial larvae encounter 

host immune responses in the form of melanization at different stages during their 

development. Extracellular and intracellular melanization of Brugia larvae have 

been reported in different species of mosquitoes. However, this phenomenon has 

not previously been observed in wild caught anopheline mosquitoes infected with 

W. bancrofti in Africa. Melanized microfilariae have been observed in wild caught 

An. punctulatus in Papua New Guinea (M. Bockarie personnal communication, 

December 2009). In the same country, Erickson et al (2013) did not observe this 

phenomenon and found very few An. farauti harbouring melanized W. bancrofti 

(Erickson et al. 2013). 

 

 Infection impact on mosquito survival 

As reported by Michael, Snow and Bockarie (2009) from a meta-analysis study that 

took in account the available data on mosquito infection and infectivity mostly in 

controlled conditions, no apparent relationship was found between the mortality of 

the three main genera of mosquito involved in LF transmission (Culex, Aedes and 

Anopheles) and the Mf uptake (Michael, Snow, and Bockarie 2009). Some of the 

available individual studies observed an impact of the infection intensity on 

mosquito survival (Erickson et al. 2013; Jordan and Goatly 1962) while others did 

not (Michael et al. 2009). In Papua New Guinea, an increased mortality rate was 

observed for An. farauti s.s that fed on medium to high mf load blood (Erickson et 
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al. 2013) but this phenomenon was not observed for An. punctulatus (Michael et 

al. 2009).   

 

The rarity of data regarding Anopheles genus mortality allows saying very little 

about the role played by filarial infection (Michael et al. 2009). These vectors’ 

characteristics appear to be specific not only for area but also for species in the 

same area.  

 

 Insecticide resistance impact on LF transmission 

The extremely high levels of esterases associated with insecticide can have an 

impact on the Mf maturation within the mosquito vector as observed in Culex in 

the form of Mf development inhibition by very elevated esterases levels 

(McCarroll et al. 2000). Additionally, Hemingway and Ranson reported that 

insecticide resistant Anopheles may exhibit the same phenomenon (Hemingway 

and Ranson 2000). 

 

 The Loa loa co endemicity with LF 

In WHO African Region countries like Cameroon are faced with life-threatening 

adverse reactions experienced by certain persons with high levels of Loa loa Mf in 

the blood receiving ivermectin. A new strategy has been introduced in L. loa and 

LF co-endemic areas where elimination program is needed (WHO 2015). Given 

the importance of the bed net especially in areas where loasis is coendemic with 

LF, the hard to reach remote areas deserve alternative ITN that are part of the main 

component of WHO strategy in these areas (Cano et al. 2014). 
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Research is ongoing to find new strategies to detect these individuals with very 

high microfilarial loads in the suspected areas to exclude them from ivermectin 

treatment or to provide them with alternative drug regimen like albendazole alone 

given twice a year as a MDA plus the IVC (WHO 2016a). The WHO has proposed 

the last two points, but only one of the nine countries facing this issue had 

implemented this strategy by the end of 2015 except few research studies on these 

strategies (WHO 2016a). 

 

 LF transmission in non-rural settings in Africa 

Many urban areas in West Africa were undergoing annual MDA or started in 2015 

(WHO 2016a). The mosquito species composition in these settings is dominated by 

Culex spp that may not be vectors or have not been proven to transmit LF despite the 

fact that they have been experimentally infected with W. bancrofti up to the L3 stage 

in Liberia (Gelfand 1955). In West Africa, the main vectors of LF are members of 

the An. gambiae complex that are relatively uncommon in urban areas because of the 

nature of available breeding sites (de Souza et al. 2014). Recently, the same authors 

reported a lack of evidence for LF transmission in big cities of Sierra Leone and 

Liberia where rural-urban migration occurred because of the political conflict. The 

reallocation of the resources used to implement MDA in such settings is an important 

issue (de Souza et al. 2014) and assessing urban settings based on parasitological 

assessment and xenomonitoring before a final decision is taken regarding MDA is 

crucial.  
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 Mali situation 

 LF elimination progress in the country 

In Mali, although the public health importance of LF was noted as early as the 

1970′s (Touré 1979), the prevalence and distribution were not studied again until 

2002. This was due to the lack of orginzation of the health system and the 

priotization given to diseases that are associated to higher mortality rates such as 

malaria. Based on Point of care diagnosis using the Immunochromatographic card 

test for LF antigen detection, all eight administrative regions of Mali were shown 

to be endemic for lymphatic filariasis with an overall prevalence of 7.07%, ranging 

from 1% in the north to 18.6% in the south in 2004 with approximately 10 million 

people at risk of the disease (Dembélé, Bamani, Dembélé, M. O. N. O. Traoré, et 

al. 2012). More than one thousand cases of chronic LF clinical manifestations were 

reported by the census survey undertaken by the NPELF (Dembele M, personal 

communication, June 2014). The MDA was initiated in 2005 with few districts and 

reached the countrywide coverage in 2009. As of 2016, 49 of the 65 endemic health 

districts have passed the TAS1, stopped MDA and entered the program surveillance 

phase. In 2012, the first two health districts that initiated the pilot MDA 

implementation met the criteria and stopped the MDA.  

 

Except the three administrative regions of the Northern part of the country where 

safety issue are oingoing since 2012, the EU of the other regions passed the TAS 

as of 2016. As part of the post-MDA surveillance, in 2015, the first two districts 

that stopped the MDA passed their TAS2 using ICT within the 6-7 years old 

children three years after their last MDA. In Mali, the NPELF and its technical arm 

that is the Filariasis Research Unit (FRU) of the Faculty of Medicine of Bamako 



53 
 

are implementing the LF elimination activities. The FRU plans and implements the 

national programme’s activities impact assessment as well as clinical research 

activities. As part of the reasearch activities, the FRU conducted clinical trials on 

the doxycycline impact on Mansonella perstans, the impact of the higher dose and 

higher frequency on Wuchereria bancrofti and the triple co administration of 

albendazole, ivermectin and azithromycin for the MDA targeting LF and trachoma. 

Additional studies on entomological and immunological aspects of LF are being 

conducted by the FRU. 

 

 

LF: lymphatic filariasis; ONCH: onchocerciasis; SCH: schistosomiasis; STH: soil-
transmitted helminthiasis; TRA: trachoma. In Kidal region, the endemicity level of 
schistosomiasis in each district is not yet clear and further mapping is planned. 

Figure 2.1 Map of Mali showing the endemicity areas for lymphatic 
Filariasis (Dembélé, Bamani, Dembélé, M. O. Traoré, et al. 2012) 
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 Vectors of LF in Mali 

The main vectors of LF in Mali belong to the An. gambiae group (An. gambiae s.l 

also called An. gambiae complex), followed by An. funestus complex (Coulibaly et 

al. 2006; Toure et al. 1996). In Mali, the An. gambiae complex of mosquitoes is 

composed of An. arabiensis Patton and three chromosomal forms of An. gambiae 

Giles sensu stricto (s.s) named Bamako, Savanna and Mopti (Coluzzi, Petrarca, and 

Di Deco 1985; Ranque et al. 1984). Based on molecular and bionomical evidence, 

the An. gambiae molecular "M form" (chromosomal form Mopti) is named 

Anopheles coluzzii Coetzee & Wilkerson sp. n., while the "S form" (chromosomal 

forms Bamako and Savanna) retains the nominotypical name Anopheles gambiae 

Giles (Coetzee et al. 2013). 

 The members of An. gambiae s.l exhibit noticeable differences in spatial and 

seasonal distribution (Coluzzi et al. 1985; Sogoba et al. 2008a). They are all 

susceptible vectors for malaria and LF (Toure et al. 1996). The eco-climatic 

characteristics drive the density and the specific species of Anophes mosquito 

frequency distribution in Mali.  

 

Besides this complex, the second important vector of LF in Mali is the An. funestus 

complex. Its members are not as well-known as those of An.gambiae s.l because of 

the difficulty with rearing An. funestus in the insectary (Koekemoer et al. 2014). Of 

note, An. funestus was shown to be the main vector of LF in certain regions of Mali 

(Coulibaly et al. 2006; Toure 1979) and played a more prominent role than An. 

gambiae s.l during the dry cold season (Coulibaly et al. 2013; Toure 1979).  
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Although other Anopheles species, such as An. nili, An. rufipes and An. 

pharaoensis, exist in West African countries, they have never or rarely been found 

infected with LF due to their relatively low numbers (Hamon et al. 1968). 

 

An. gambiae and An. funestus are both highly anthropophilic, improving their 

capacity as vectors (Toure 1979). They have different types of breeding sites with 

small temporary rain-dependent pools and puddles for An. gambiae and large non-

temporary water bodies with plants for An. funestus. The two vectors also have 

different high-density periods ensuring a long period of transmission (Coulibaly et 

al. 2006; Toure 1979). An. gambiae s.s and An. arabiensis are more frequent from 

the beginning of the rainy season to the end of the rainy season (May-June to 

September-October) while An. funestus start to be more common at the end of the 

rainy season (October to December) (Coulibaly et al. 2006; Toure 1979). To be 

successful, vector control strategies targeting malaria and LF in the country, should 

take into account the biology and behaviour of the common species as well as the 

relatively less common vector species. 
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A: Source: (Sogoba et al. 2007) 

 

B: Source: (Sogoba et al. 2008b) 

Figure 2.2 Map of Mali showing the distribution of different Anopheles 
mosquitoes species relative frequencies  
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A: Observed relative frequencies of An. arabiensis and An. gambiae s.s. in 94 
sampling locations in Mali, West Africa  

The green color represents the relative frequencies of An. gambiae s.s. and the red 
the relative frequencies of An. arabiensis. 

B: Observed relative frequencies of the chromosomal forms in 71 locations in 
Mali, West Africa  

 The orange represents Mopti, the red Savanna, the green Bamako and the purple 
the hybrids/recombinants relative frequencies. (Source Spatial distribution of the 
chromosomal forms of anopheles gambiae in Mali  

 

 Rationale 

 MDA with albendazole/ivermectin combination impact on Anopheles 

transmitted LF 

One of the key questions that has emerged as the GPELF has grown globally since 

2000 (WHO 2015) is the impact of annual MDA using albendazole plus ivermectin 

(ALB/IVER) on the transmission of the W. bancrofti infection in different 

epidemiological settings in Africa. 

 

Whereas the long-term impact of combination albendazole/diethylcarbamazine 

(ALB/DEC) on transmission of LF has been demonstrated in multiple 

epidemiologic settings (Ramzy et al. 2006; Supali et al. 2013), few studies have 

examined the long term impact of repeated annual administration of ALB/IVER on 

LF transmission by An. gambiae complex members in West Africa (CDC 2011; 

Richards et al. 2011). This regimen is the one recommended in West Africa because 

of the overlapping geographic distributions of LF and onchocerciasis. 

 

An infection rate of <2% in 6-7 year old children is believed to be the level that is 

unable to sustain transmission (WHO 2011b) in an Anopheles transmission area. 
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Although not part of most of the post-MDA TAS, entomological assessment of LF 

transmission can be of great importance, because it directly measures the 

transmission potential. For this thesis, the ICT was used, as it is the gold standard 

CFA prevalence assessment tool recommended for TAS. Given some of the 

features of this test, additional data on LF prevalence were obtained using a variety 

of other techniques to ascertain whether or not transmission has been interrupted in 

this previously highly LF-endemic region (Sikasso) of Mali. Our methodology was 

based on an integrated approach to surveillance, using a newly available alternative 

diagnostic method (Wb123) that detects antibody against W. bancrofti (Steel et al. 

2012) as well as xenomonitoring to allow clearer identification of any potential 

resurgence of transmission. 

 

Xenomonitoring is used to measure level of Mf reservoir in the community during 

and after MDA through the determination of infection rates in mosquitos. Although 

the use of xenomonitoring as a monitoring tool holds promise as an important 

component of post-MDA surveillance in the LF elimination process, it requires a 

safe and effective way of collecting mosquitoes at the community level that is 

representative of the vector fauna. 

 

 Anopheles mosquito collection methods 

Several LF endemic countries have stopped or are about to stop MDA in many 

endemic districts. Given the increasing role of entomology in determining where 

MDA alone is not as effective as expected in eliminating LF, it is important to study 

local vector behaviours and adapt the tools used for vector collection to meet local 

and current needs, including ethical concerns. Ideally, examination of vector 



59 
 

abundance, distribution, species composition and infectivity should be assessed 

prior to initiation and at the end of MDA. To date, the HLC has been the most 

frequently used method for Anopheles collections in many endemic areas of West 

Africa. This is due in large part to the fact that it mimics the natural situation of 

mosquitoes trying to bite humans. However, HLC raises ethical concerns including 

the possibility that infected mosquitoes can bite the collectors (Govella, Moore, and 

Killeen 2010; Sikaala et al. 2013). Additionally, HLC is labour intensive and the 

mosquito yield may depend on the collector’s attractiveness to mosquitoes, ability 

and experience (Govella et al. 2010; Sikaala et al. 2013). Thus, despite the fact that 

most of the existing mosquito data were generated using this method, its use is 

controversial and many ethics committees are reluctant to continue to approve its 

use for sampling mosquitoes.  

  

To overcome these issues, alternative trapping methods have been explored with 

regard to ease of use, operator independence, cost of implementation and safety to 

the operator. The Biogents sentinel trap (BGST) (Maciel-de-Freitas, Eiras, and 

Lourenço-de-Oliveira 2006), and a human-baited tent trap, the Ifakara tent trap type 

C (ITTC) (Govella et al. 2011, 2010) represent alternative collection methods. 

 

 Spatial distribution of LF endemicity foci 

Kouassi et al (2015) in Guinea (Kouassi et al. 2015) and De Souza et al, 2014 in 

Sierra Leone and Liberia (de Souza et al. 2014) reported a lack of evidence for LF 

transmission in urban big cities. In pre-MDA era studies, dispersal of endemicity foci 

within endemic areas was reported as focally distributed in areas where Anopheles 

species act as vectors of W. bancrofti (Graves et al. 2013; Kazura and Bockarie 
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2003). However, the impact of An. gambiae complex density on LF endemicity at a 

fine scale in endemic areas under MDA is unknown, especially after more than five 

annual MDA rounds. Such knowledge coupled with distribution maps may help 

increase our understanding of the natural history of LF endemicity and provide with 

information to help decision makers allocate scarce resources.  

 

 Aims and specific objectives 

The main aims of the research were to i) investigate LF vector population and 

associated transmission patterns before, during and after the initiation of MDA ii) 

assess efficacy of new entomological trapping tools for LF post-MDA xeno-

monitoring and iii) determine transmission potential in an urban environment in 

Mali. 

To achieve this goal, six specific objectives have been defined: 

1. To assess LF transmission pattern in a pilot area in southern Mali prior 

to and following the institution of MDA; 

2. To determine the impact of six annual rounds of MDA on vector fauna 

competence to transmit LF in the pilot area of Sikasso district; 

3. To assess the dynamics of antigenemia and transmission intensity of 

W. bancrofti following cessation of mass drug administration in a 

formerly highly endemic region of Mali 

4.  To compare the efficacy of human landing catch method for sampling 

mosquitoes against a human baited tent trap and the Biogents sentinel 

trap in two villages with different vector densities in the the Sudan 

savannah district of Kolondieba, Mali; 
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5. To compare LF transmission intensity after six MDA rounds in two 

neighbouring villages of Kolondieba district with different Anopheles 

densities; 

6. To assess LF transmission in urban settings in Mali.  

 

The pilot site was selected three years prior to the launch of the MDA by the 

National Programme to provide the decision makers locally (Ministry of Health) 

and globally (GPELF) with information and advice on the outcome of their 

intervention. In anticipation of the launch of NPELF activities in the country, a 

pilot study of the impact of MDA with ALB/IVER on W. bancrofti transmission 

was initiated in collaboration with the WHO in Mali, Ghana (West Africa) and 

Kenya (East Africa) in 2001.  

 

 General methods 

 Study overall design 

These studies were predominantly descriptive and included cross sectional 

entomological surveys along with longitudinal human surveys. Additionally, the 

impact of an intervention (the MDA) on both human and vector infection rates were 

explored. Standard infection status assessment methods were used as well as a 

recently developed method, antibody testing for Wb123, which detects infection 

earlier than the previous tests because it targets antibody responses instead of CFA 

(Kubofcik et al. 2012; Steel et al. 2013).   
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 Study sites 

This study was conducted in rural and non-rural settings. The rural endemic areas 

were in Sikasso and Kolondieba districts, in the administrative region of Sikasso, 

the most highly endemic area in Mali before any LF oriented intervention 

(Dembélé, Bamani, Dembélé, M. O. N. O. Traoré, et al. 2012). Bamako, the capital 

city, was used for the urban LF transmission assessment. 
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Figure 2.3 Map of Mali showing the three study districts (Sikasso, Kolondieba and Bamako)  
The 3 study sites names are in Red and the Bamako area was enlarged to show the communes that were visited during the study 
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 Collection methods 

The sample collection was done based on a quantitative data collection scheme 

using entomological tools, such as the HLC, the BGST and ITTC. The collected 

mosquitoes were either individually dissected or processed using qPCR or Reverse 

Transcriptase PCR. For the parasitological component, finger prick blood samples 

were collected on filter paper for subsequent testing, on a glass slide for the night 

blood thick smear and/or directly using a pipette for the ICT. The dried blood spot 

on the filter paper was used in the laboratory for the Og4C3 ELISA (Das et al. 

2006) and Wb123 ELISA (Steel et al. 2012) and PCR (Williams et al. 1996).  

 

Methodologies and guidelines from the WHO and GPELF’s documents were 

extensively used, especially the “Monitoring and epidemiological assessment of 

mass drug administration in the global programme to eliminate lymphatic filariasis: 

a manual for national elimination programmes” (WHO 2011b), the manuals for 

National Elimination Programmes on “Transmission assessment surveys training” 

(WHO 2013b) and on “Practical entomology” (WHO 2013a).  

 

The geographical information system (GIS) was developed to determine the 

coordinates of the houses and main breeding sites in the study villages through a 

Global Positioning System or GPS (GPS, Garmin 12 (Garmin, Olathe, KS, USA)). 

The maps were produced using ArcGIS Software. 

 

The MDA impact assessment of this thesis was a 7-year long study that initially 

assessed the capacity of Anopheles to transmit W. bancrofti after five to six annual 
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MDA rounds. After transmission interruption was demonstrated, the Task Force 

for Global Health (TFGH) based in Atlanta, US, supported the surveillance 

component for three years followed by an additional four years of support from the 

Division of Intramural Research of the National Institutes of Health (NIH), 

Bethesda, MD. The second year of WHO funding was obtained from the Filarial 

Programmes Support Unit (FPSU) located at the Liverpool School of Tropical 

Medicine (LSTM), UK. FPSU, formerly known as the Centre for Neglected 

Tropical Diseases (CNTD) and the NIH supported the comparison surveys of 

Anopheles collection methods in Kolondieba district. 

 

Data management and statistical analyses were performed using the following 

software: Poolscreen version 2.0 (C R Katholi et al. 1995) for mosquito pools’ 

infection probability estimation, GraphPad Prism software version 5 (GraphPad 

Software, La Jolla, CA), Microsoft Excel® version 2010, SPSS version 14 

(Statistical Package for Social Sciences) (SPSS Inc., Chicago, IL) for data entry and 

statistical analyses (comparison of rates, proportions and continuous numbers such 

as the number of mosquito collected) and ArcGIS 10.1 (ESRI, Redland, CA ) for 

mapping.  

 

A collective village-wide oral consent was obtained from the villages’ elders. 

Signed individual written consent was also obtained from all study participants 

and/or guardians. Protocol and consent forms were approved by the Institutional 

Review Boards of the WHO/Tropical Diseases Research and LSTM and the Ethics 
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committees of the Faculty of Medicine of Bamako and National Institute for 

Research in Public Health, in Mali. 

 

Some data were collected before the PhD starting (Chapters 3 and 4) but all data 

sets were reviewed, cleaned and final analyses conducted after the thesis initiation 

under the supervision of the thesis supervisors. More detailed specific descriptions 

of the materials and methods are embedded within individual chapters.
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 Introduction  

The LF vectors in Mali, as in other areas of sub-Saharan Africa, are members of the 

An. gambiae and An. funestus complexes (Coulibaly et al. 2006; Touré 1979). Whereas 

An. gambiae is the predominant species described in most studies, Touré (1979) noted 

a high prevalence of An. funestus especially at the end of the rainy season (from June-

July to December) in a transmission study in a North Sudan savannah area. Though 

other Anopheles species are more common in rural areas, they are not present in high 

enough densities to be vectors of public health importance (Coulibaly et al. 2006; 

Touré 1979). Since An.gambiae complex is the main vector in Mali, its characteristics 

and behaviour regarding LF transmission need to be elucidated in order to better plan 

adapted elimination measures  (Bockarie, Pedersen, et al. 2009; WHO 2013a).  

 

This chapter aimed to assess the vector fauna abundance and the main species involved 

in LF transmission in the sentinel area composed of six neighbouring hyper endemic 

villages in the district of Sikasso before and after the first round of MDA.  

 

 Methods 

 Study site identification and characterization 

The study was initiated in the Sikasso district in southern Mali prior to the introduction 

of MDA for the elimination of LF. This area was historically known to be endemic 

for W. bancrofti (Bogoba 1981), and mapping surveys performed by the NPELF 

confirmed a high prevalence of CFA positivity (as assessed by ICT on 50-100 

individuals/village) in the village of Dozanso and a neighbouring village in 2001 

(unpublished data). Additional ICT based surveys were subsequently carried out in the 
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larger villages surrounding Dozanso in 2001 and led to the selection of six high 

prevalence villages (Dozanso, Gondaga Missasso, N’Torla, Niantansso and 

Zanadougou) for baseline entomological studies (Figure 3.1). 

 

The study villages are comparable with regard to socio-cultural indicators, health care 

seeking behaviour and disease perception. The distance between the villages and the 

community health care centre of Kolokoba ranges from six to 15 km (mean 9.5 km), 

occupied by cotton fields, backwaters, and trees typical of the dense Sudan Savannah 

vegetation. The administrative region of Sikasso covers 76,480 km2. Rainfall in this 

region ranges between 1200 and 1500 mm per year, with a rainy season from July to 

December. Due to the high levels of transmission observed during the first year of the 

study, yearly MDA was instituted in the six study villages in June 2002, one month 

prior to the second entomological survey. The region has a total population of 2.45 

million, the highest population density in the country with 32 inhabitants per km2 in 

2008. Prior to this study, there had been no MDA implemented in this area. 
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Location of the study sites within the district of Sikasso 

Figure 3.1 Spatial repartition of the study villages 
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 Study population 

A complete census, including the name, age, sex and profession of each inhabitant, 

was performed in all six villages. All dwellings were recorded and assigned an 

identification number. A GPS device was used to develop basic maps showing 

locations of the six villages within the Central District of Sikasso. The total population 

of the six study villages was 3,681 in 2001, consisting primarily of farmers, whose 

main occupations are agriculture (cotton, maize, millet and peanut) and domestic 

animal breeding. The ICT surveys carried out in 2001 revealed CFA prevalence rates 

varying from 81.8% in Niantanso (165/202) to 24.6% in Zanadougou (50/202) 

(Table 3.1). The prevalence of microfilaraemia was assessed in 2002 (prior to the 

initiation of MDA) by examination of three slides of 20 μl of night blood/subject and 

ranged from 40% in Dozanso (48/120) to 13.8% in N’Torla (27/196). 
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Table 3.1 Characteristics of the study population prior to the MDA 
 

Villages 
Total 
tested 

Male Female 
Mf 

positive 
CFA 

positive  

% % % % 

Dozanso 120 54.2 45.8 40 61.7 

Missasso 207 35.3 64.7 20.3 36.9 

Gondaga 212 45.8 54.2 15.1 43.4 

Niantanso 202 42.1 57.9 29.7 81.8 

N’Torla 196 50.5 49.5 13.8 40.3 

Zanadougou 202 30.7 69.3 17.3 24.6 

Mf =Microfilaraemia, CFA =Circulating filarial antigen. 

 

A collective village-wide oral consent was obtained from the villages’ elders, and all 

study participants signed individual written informed consent. The study protocol and 

consent forms were approved by both the Institutional Review Board (IRB) of the 

WHO/TDR and the ethics committee of the Faculty of Medicine, University of 

Bamako, Mali. 
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 Study design 

This was a longitudinal study during which monthly entomological surveys were 

performed in six study villages from July to December in 2001 (prior to initiation of 

MDA with ALB/IVER) and during the same period in 2002 (one month after the first 

MDA conducted in May 2002). 

 Laboratory analyses 

Entomological surveys were performed for 12 days during each calendar month 

(2 days/village/month) by the same team. Mosquitoes were collected by two trained 

field personnel in one room in each of four different houses in each village using the 

HLC method. One collection team worked from 6:00 pm to midnight and the second 

from midnight to 6:00 am. Mosquitoes were captured using a Colluzi and Petrarca type 

mouth aspirator connected to a paper cup as the storage container (Coluzzi and 

Petrarca 1973). A supervisor retrieved the containers at two-hour intervals. The 

captured mosquitoes were kept overnight at ambient temperature in a paper cup under 

a damp cloth and dissected the following morning. 

 

Mosquitoes were sorted morphologically for species identification (An. 

gambiae and An. funestus complexes). Some An. gambiae complex specimens were 

processed by PCR method to distinguish between the two members of the complex 

(An. arabiensis and An. gambiae s.s). The An. gambiae s.s were further processed by 

PCR to identify the molecular forms, M and S, as described by Favia et al (Favia et al. 

1997; Favia and Louis 1999).  
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The selected specimen for the species identification using PCR were stored into a 

Carnoy’s solution (3 parts pure ethanol:1 part glacial acetic acid) on field before a 

storage at -20 °C in the laboratory. They were later processed individually by PCR 

using the following steps: 

- The mosquito is placed in a 1.5ml Eppendorf tube containing 25μl of "fly grinding 

buffer": (the stock of 500 ml of this product contains: NaCl: 2.92 g, Sucrose: 34.25g, 

Tris: 6.05 g, adjusted to pH 9.1 with HCl, EDTA: 50ml of 0.5M, 25 ml 10% SDS, 

Deionized water); 

- Using a sterilized pestle, the mosquito is crushed and the pestle rinsed with another 

25 microliters of "Fly Grinding Buffer"; 

- Place the tube in a water bath at 65 ºC for 30 minutes to inhibit DNase activity;  

- Add 7μl of potassium acetate and incubate on ice or at 4ºC in refrigerator for 30 

minutes. At this stage, the proteins are precipitated; 

- Centrifuge at 14000 rpm for 15 minutes; 

- Collect the supernatant in a new Eppendorf tube and pour over 100 μl of 100% 

ethanol for 5mn. Adding alcohol precipitates the DNA to the bottom of the tube;  

- Centrifuge at 14,000 rpm for 15 min; 

- Pour the 100% ethanol and add ethanol (but fresh 70% this time); 

- Centrifuge at 14000 rpm for 5 min; 

- Pour the ethanol, and let the DNA pellet dry at room temperature; 

- Suspend the DNA in 100 μl of a solution of TE (Tris-EDTA) or deionized and sterile 

water. The DNA thus extracted can be directly amplified or kept for several months in 

the refrigerator; 
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- Amplification of DNA: An amplification reaction comprises a total volume of 25 μl 

of reagents such as Water, specific primers and DNTPs. 

- Amplification parameters: denaturation 94°C for 30 seconds, pairing 50 ° C for 30s 

and extension 72 ° C for 30s. This cycle is repeated 30 times. 

- specimens will then be identified according to the migration levels of the bands on 

an agorose gel: An. gambiae s.s. has 390 bp and An. Arabiensis 315 bp. The An. 

gambiae complex members are characterized by these specific DNA bands which 

make it possible to identify them. For the molecular forms of An. gambiae s.s, the 390 

bp band is cleaved to give two bands, the molecular form (S) with 110 bp and the 

molecular form (M) with 280 bp. The gel is read on an UV light source and the number 

of bp is estimated according to a marker that size is known on the first and last well of 

each of the 2 lines of each gel. 

For the remaining mosquitoes, the head, thorax and abdomen were dissected separately 

for each mosquito and recovered parasite larvae were categorized into L1, L2 or L3 

stages. A fine needle was used for that dissection as previously described ( Coulibaly 

et al., 2006; Toure, 1979). 

 

Entomologic parameters assessed included infection rate, infectivity rate, Monthly 

biting rate, Monthly transmission potential and the Annual transmission potential that 

were calculated as previously described (Rwegoshora et al. 2005; Walsh et al. 1978; 

WHO 2013a): 

- Infection rate: proportion of mosquitoes found infected after dissection with any W. 

bancrofti larval stage (L1–L3). 
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- Infectivity rate: proportion of mosquitoes found infected with one or more infective 

larvae (L3). 

- MBR (Monthly biting rate): number of mosquitoes caught during the HLC x 30/ 

(total number of collectors used per collection x number of collections in the month). 

- MTP (Monthly transmission potential): MBR x (number of L3 recovered divided 

by the number of mosquito dissected). It provides for a given vector species with an 

estimate of the number of infective bites for W. bancrofti a human would receive per 

month. 

- The ATP (Annual transmission potential) is the annual total of the individual MTP. 

For this study, the 6-month transmission period data are used as the annual data since 

from January to May, LF vectors densities are too low to detect any transmission 

(Coulibaly et al. 2006; Lehmann et al. 2010). 

 

 Data management and analysis 

Data were analysed using SPSS version 14 (SPSS Inc., Chicago, IL) and GraphPad 

Prism software version 5 (GraphPad Software, La Jolla, CA). The Chi2 test or the 

Fisher’s exact test was used as appropriate to compare proportions as well as the 95% 

confidence intervals. 

 

 Results 

 Monthly variations in vector densities 

The total number of mosquitoes collected in the six villages of Sikasso District, from 

July to December in 2001 and 2002, were 23,265 and 12,986, respectively. Anopheles 
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gambiae complex members were the most commonly collected mosquitoes each 

collection year. Overall, An. gambiae s.l (20,957 in 2001 and 11,190 in 2002) was 

more common than An. funestus complex (2,308 in 2001 and 1,796 in 2002) among 

the known vectors in the study area (Tables 3.2 and 3.3). At the beginning of the 

transmission season, An. gambiae s.l was more abundant than An. funestus complex 

(158 fold more in July 2001 and 138 fold more in August 2002). However, by the end 

of the transmission season in December 2001, the two species were equally abundant 

(Table 3.2) and only a two-fold increase in collection of An. gambiae s.l was observed 

in November and December 2002 (Table 3.3). 

 

Table 3.2: Monthly variation of the entomological parameters for the 
transmission of lymphatic filariasis in six villages of the District of Sikasso in 2001 
 

Anopheles funestus complex 

Month Collected Dissected
Infected  Infective  

 MBR MTP
N (%) 95% CI N (%) 95% CI 

July 25 25 0 (0) [0-11.29] 0 (0) [0-11.29] 4 0 
Aug 33 33 0 (0) [0-8.68] 0 (0) [0-8.68] 5 0 
Sep 278 148 4 (2.7) [0.86-6.39] 2 (1.4) [0.23-4.40] 43 0.6 
Oct 1,402 789 51 (6.5) [4.90-8.35] 15 (1.9) [1.11-3.05] 219 4.2 
Nov 514 432 17 (3.9) [2.39-6.10] 13 (3) [1.68-4.96] 80 2.4 
Dec 56 44 0 (0) [0-6.58] 0 (0) [0-6.58] 9 0 

Total 2,308 1,471 72 (4.9) [3.88-6.09] 30 (2) [1.41-2.86] 60 1.2 

Anopheles gambiae s.l 

Month Collected Dissected
Infected  Infective   

MBR MTP
N (%) 95% CI N (%) 95% CI 

July 3960 3959 123 (3.1) [2.60-3.70] 88 (2.2) [1.80-2.72] 618.75 13.75
Aug 4971 4948 137 (2.8) [2.34-3.25] 91 (1.8) [1.49-2.24] 776.72 14.28
Sep 9096 4708 211 (4.5) [3.92-5.10] 120 (2.5) [2.13-3.03] 1421.25 35.53
Oct 2,320 2005 137 (6.8) [5.79-8.00] 61 (3) [2.36-3.86] 362.5 10.9 
Nov 544 544 36 (6.6) [4.75-8.95] 12 (2.2) [1.20-3.72] 85 1.88 
Dec 66 66 2 (3) [0.51-9.65] 0 (0) [0.00-4.44] 10.31 0 

Total 20,957 16,230 646 (4) [3.69-4.29] 372 (2.3) [2.07-2.53] 545.76 12.55
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N=Number, % =Percent, MBR =Monthly vector biting rate, MTP =Monthly 

transmission potential. 

Table 3.3: Monthly variation in the entomological parameters related to the 
transmission of lymphatic filariasis in six villages of the District of Sikasso in 2002 
 

                                   Anopheles funestus complex 

Months Collected Dissected 
Infected  Infective  

MBR MTP 
N (%) 95% CI N (%) 95% CI 

July 14 14 2 (14.3) [2.47-39.74] 0 (0) [0-19.26] 2.2 0 

Aug 18 18 2 (11.1) [1.91-32.11] 0 (0) [0-15.33] 2.8 0 

Sep 342 342 22 (6.4) [4.18-9.42] 4 (1.2) [0.37-2.80] 53.4 0.64 

Oct 786 786 38 (4.8) [3.49-6.51] 16 (2) [1.21-3.22] 122.8 2.46 

Nov 600 600 26 (4.3) [2.91-6.20] 20 (3.3) [2.11-5.01] 93.8 3.1 

Dec 36 36 2 (5.6) [0.94-17.16] 0 (0) [0-7.98] 5.6 0 

Total 1,796 1,796 92 (5.1) [4.17-6.22] 40 (2.2) [1.62-2.99] 46.8 1.03 

                               Anopheles gambiae s.l 

Months Collected Dissected 
Infected  Infective  

MBR MTP 
N (%) 95% CI N (%) 95% CI 

July 1,646 1,646 18 (1.1) [0.67-1.69] 2 (0.1) [0.02-0.40] 257.2 0.26 

Aug 2,488 2,488 37 (1.5) [1.06-2.02] 5 (0.2) [0.07-0.44] 388.8 0.78 

Sep 2,846 2,846 244 (8.6) [7.60-9.64] 40 (1.4) [1.02-1.89] 444.7 6.23 

Oct 3,214 3,214 160 (5) [4.27-5.77] 70 (2.2) [1.71-2.73] 502.2 11.05 

Nov 924 924 34 (3.7) [2.60-5.05] 22 (2.4) [1.54-3.52] 144.4 3.46 

Dec 72 72 12 (16.7) [9.40-26.61] 2 (2.8) [0.47-8.87] 11.3 0.31 

Total 11,190 11,190 505 (4.5) [4.14-4.91] 141 (1.3) [1.07-1.48] 291.4 3.79 

N =Number, % =Percent, MBR =Monthly vector biting rate, MTP =Monthly 
transmission potential. 

 

Relative frequencies of An. gambiae s.l members and An. gambiae s.s molecular 

forms 
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Among the 15,869 An. gambiae complex members examined by PCR for specific 

species identification, 99.02% [98.85-99.16] (15,713/15,869) were An. gambiae 

s.s and 0.98% [0.84-1.15] (156/15,869) were An. arabiensis. The relative frequency 

of An. gambiae s.s varied from 95.5% in December to 99.7% in July without 

statistically significant monthly variation (Table 3.4). The same scenario was observed 

for the relative frequency of An. arabiensis (Table 3.4). The overwhelming majority 

(95.09% [94.75-95.42]; 14,942/15,713) of the An. gambiae s.s collected in 2001 was 

the S molecular form (Table 3.5). This molecular form showed comparable relative 

frequency between collection months excepted in December when significant lower 

relative frequency was observed 66.7% [54.38-77.45] (Table 3.5).This high relative 

frequency of the S molecular form was observed in all of the study villages (data not 

shown). 

Table 3.4: Monthly variation in the relative frequencies of An. gambiae s.l 
members in 2001 
 

  

Months 

  

Total 

tested  

An. gambiae s.s An. arabiensis 

N (%)  95% CI N (%) 95% CI 

July 3,907 3,895 99.7 [99.48-99.83] 12 0.3 [0.17-0.52] 

August 4,883 4,859 99.5 [99.28-99.68] 24 0.5 [0.32-0.72] 

September 4,543 4,480 98.6 [98.24-98.92] 63 1.4 [1.08-1.76] 

October 1,926 1,895 98.4 [97.75-98.88] 31 1.6 [1.12-2.25] 

November 544 521 95.8 [93.82-97.24] 23 4.2 [2.76-6.18] 

December 66 63 95.5 [88.13-98.83] 3 4.5 [1.17-11.87] 

Total 15,869 15,713 99.02 [98.85-99.16] 156 0.98 [0.84-1.15] 

N =Number; % =Percent 
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Table 3.5: Monthly variation in the relative frequencies of the molecular forms 
of An. gambiae s.s in 2001 
 

    M Form S Form 

Months 
Total 

tested  
N (%) 95% CI N (%) 

95% CI 

July 3,895 195 5 [4.35-5.73] 3,700 95 [94.27-95.65] 

August 4,859 233 4.8 [4.22-5.42] 4,626 95.2 [94.58-95.78] 

September 4,480 211 4.7 [4.12-5.36] 4,269 95.3 [94.64-95.88] 

October 1,895 80 4.2 [3.38-5.2] 1,815 95.8 [94.8-96.62] 

November 521 31 6 [4.15-8.24] 490 94.05 [91.76-95.85] 

December 63 21 33.3 [22.55-45.62] 42 66.7 [54.38-77.45] 

Total 15,713 771 4.91 [4.58-5.25] 14,942 95.09 [94.75-95.42] 

N =Number; % =Percent; S Form = An. gambiae Form Bamako or Savannah; M 
Form = An. gambiae Form Mopti. 
 

3.3.2 Vector infection rates and transmission intensity 

Both An. gambiae and An. funestus complexes were found to be harbouring infective 

larvae during the two years of study (2001 and 2002). In July and August, infective W. 

bancrofti larvae were recovered only from An. gambiae s.l (Figure 3.2). An. 

funestus complex harboured infective larvae from September to November. No 

infective mosquito was recovered in December 2001 (Table 3.2). In both 2001 and 

2002, the An. funestus s.l monthly infectivity rate remained comparable from 

September to November (Table 3.2 and 3.3). 
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Figure 3.2 Species contribution to the overall monthly infectivity rates in 2001 
and 2002.  

The black represents the contribution of An. gambiae s.l and the white the contribution 
of An. funestus complex. 

 

Overall, infection rates were comparable between An. gambiae and An. 

funestus complexes with 4% [3.69-4.29] versus 4.9% [3.88-6.09] in 2001 (Table 3.2) 

and 4.5% [4.14-4.91] versus 5.1% [4.17-6.22] in 2002 (Table 3.3). In 2001, LF 

infected An. funestus complex species were observed from September to November 

with monthly infection rates ranging from 2.7% [0.86-6.39] to 6.5% [4.9-8.35] while 

infected An. gambiae complex was observed during each month from July to 

December 2001 with rates ranging from 2.8% [2.34-3.25] to 6.8% [5.79-8] (Table 3.2). 

In 2002, both An. funestus and An. gambiae mosquitoes were found infected during 

July to December with monthly infection rates ranging from 4.3% [2.91-6.20] to 

14.3% [2.47-39.74] and 1.1% [0.67-1.67] to 16.7% [9.4-26.61], respectively (Table 

3.3). The infectivity rate for An. gambiae s.l significantly decreased from 2.2% [1.62-

An. funestus complex An. gambiae complex     
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2.99] in 2001 to (1.3% [1.07-1.48] in 2002 following MDA, but only a non statistically 

significant increase in infection rate was observed from 2001 (4.0% [3.69-4.29]) to 

(4.5% [4.14-4.91]) in 2002. For An. funestus complex, infection (4.9% [3.88-6.09] 

versus 5.1% [4.17-6.22]) and infectivity (2% [1.41-2.86] versus 2.2% [1.62-2.99]) 

rates did not significant change from 2001 to 2002 (Tables 3.2 and 3.3). In 2001, the 

overall infctivity rates of the two species complexes were comparable but in 2002, 

after the first MDA round, An. funestus complex was significantly higher than the one 

of An. gambiae complex. 

 

In 2001, the overall MTP was more than 10 fold greater for An. gambiae complex 

than An. funestus complex. The An. gambiae complex was responsible for 0 to 35.53 

infective bites per human per month. The An. funestus complex was responsible of 0 

to 4.2 infective bites per human per month. In November 2001, the An. 

funestus complex was responsible for 2.4 infective bites while An. gambiae complex 

was responsible for 1.9. No infective bite was recorded in December 2001 (Table 3.2). 

In 2002, there was a dramatic decrease in the ATP for An. gambiae complex as 

compared to 2001 (from 12.55 to 3.79 infective bites per person during the 

transmission season). The same scenario was observed for An. funestus complex with 

the ATP in 2001 (84 infective bites/person) (Table 3.2) and the one recorded in 2002 

(28.1 infective bites/person) (Table 3.3). 

 

 Discussion 

The baseline entomological data collected in this longitudinal study confirmed 

exposure to infective mosquitoes in the six study villages in Sikasso District prior to 



83 
 

the initiation of MDA. As it had been reported previously in Mali, An. 

gambiae and An. funestus complexes are the predominant vectors of LF (Coulibaly et 

al. 2006; Toure 1979). In keeping with the high prevalence of human infection in these 

villages, the recorded vector densities were higher, especially for An. 

gambiae complex, than those reported in Banambani (Sudan savannah area) in Mali, 

where W. bancrofti is endemic but the prevalence of infection is lower (Coulibaly et 

al. 2006). Other Anopheles species (An. pharaoensis, An. nili, An. rufipes) were 

collected but not systematically processed during this study because of their very low 

relative densities, precluding no epidemiologically significant role in the transmission 

of LF, and the fact that they have not been recognized as vectors of W. bancrofti in 

Mali and other neighbouring West African countries (Coulibaly et al. 2006; Lenhart et 

al. 2007). 

 

Among the An. gambiae complex members examined by PCR for specific species 

identification, the S form of An. gambiae s.s was predominant. A predominance of the 

S form of An. gambiae s.s among vectors of LF has also been observed in Ghana 

(Amuzu et al. 2010). Although the PCR identification of An. gambiae complex species 

and An. gambiae s.s molecular forms was not performed on all the collected 

mosquitoes for logistical reasons, at least 76% of the mosquitoes collected each month 

were dissected to ensure that the samples tested were temporally and geographically 

representative. Mosquitoes were sent to our laboratory in Bamako for PCR analyses 

without identity numbers that could link them to the dissection results precluding the 

determination of infection rates for the different molecular forms. This was mainly due 

to the fact that molecular forms identification using the carcasses was not planned at 

the beginning of this multi-country study. 
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Overall, the highest monthly vector densities for An. gambiae s.l were found in July 

and August (at least 99% of the vectors collected in the month), while those of An. 

funestus complex were observed in November and December (at least 33% of the 

vectors collected in the month). Similar variations in the densities of the two vectors 

were reported in Banambani that is located in a different eco-climatic area in Mali 

(Coulibaly et al. 2006) and are related to differences in environmental conditions 

during the transmission season and the breeding preferences of each species (An. 

funestus complex prefers shadowed and vegetated breeding sites while An. 

gambiae complex prefers sunny breeding sites with limited vegetation) (Coulibaly et 

al. 2006; Toure 1979). The frequencies of An. gambiae s.s and An. arabiensis, two 

members of An. gambiae s.l, also showed differing patterns during the transmission 

season. 

 

Due to the relatively low infectivity rates and high number of mosquitoes, processing 

pools of Anopheles vectors for W. bancrofti infection is the most efficient strategy as 

compared to individual mosquito processing for following vector transmission rates 

during MDA (Chanteau et al. 1994; Kuhlow and Zielke 1978). L3 specific RT-PCR 

allows infective pools to be distinguished from infected pools and provides a more 

accurate determination of the transmission potential for W. bancrofti (Laney et al. 

2010; Lenhart et al. 2007). In the present study, the infection and infectivity profiles 

of the two morphologically distinct Anopheles species complexes (An. 

gambiae and An. funestus complexes) showed some variability over time, suggesting 

that the two species complexes should be processed for PCR in separate pools if 
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detailed information regarding their relative contributions to monthly transmission is 

desired. Nonetheless, in the setting of post MDA assessment, where human-vector 

contact is the main factor of interest, An. gambiae and An. funestus complexes can be 

processed in the same pool (Laney et al. 2010; Lenhart et al. 2007). 

 

In 2002 (post MDA), the number of mosquitoes caught was approximately half that in 

2001 (before MDA). This effect was most dramatic for An. gambiae s.l where the 

number captured decreased by almost 50%. Potential reasons for this decrease in 

mosquito numbers include changes in climate, increased awareness of the study area 

population with respect to the role of mosquitoes in disease transmission (resulting in 

less breeding sites and increased use of insecticide treated nets), and the effect of 

ivermectin on mosquito survivorship. Although decreases in mosquito numbers 

following the initiation of MDA (Simonsen et al. 2010) and an effect of ivermectin on 

mosquito survivorship (Kobylinski et al. 2010; Sylla et al. 2010) have both been 

described, these factors were not directly addressed in this thesis. 

 

Whereas the decreased vector numbers in 2002 (post-MDA) clearly contributed to the 

overall decrease in ATP observed for the An. gambiae complex, infectivity also 

declined significantly in 2002, suggesting that multiple factors may have played a role 

in the observed decrease in transmission including the decrease of the Mf prevalence 

and loads consecutive to the MDA (Simonsen et al. 2010). The fact that a similar 

decrease in ATP was not seen for An. funestus complex may have been due to the low 

overall numbers of An. funestus complex mosquitoes captured, although a higher 

degree of facilitation by An. funestus complex as compared to An. gambiae complex 
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cannot be excluded. Unfortunately, the study was not designed to address this issue, 

and published data comparing facilitation between the two species are limited 

(Southgate and Bryan 1992; De Souza et al. 2012). 

 

Despite the fact that the overall mosquito infection rates were relatively stable during 

the six months of collection in each of the two transmission seasons, the ATP for W. 

bancrofti varied considerably over the course of the seasons as a result of the large 

differences in vector densities and MBR (Chanteau et al. 1994). This has important 

implications for the timing of MDA for LF in this region, since drug administration 

conducted at the beginning of the rainy season would be predicted to be most effective 

in decreasing transmission due to maximal reduction in Mf prevalence and loads at the 

precise time that vector density and biting rates are beginning to rise. 

 

Ethical approval for this study was obtained from WHO and University of Bamako. 

At the time that the study was performed, HLC was considered an ethically acceptable 

method of mosquito collection. The collectors in this study were adult village residents 

normally exposed to mosquito bites. The collectors were not given antimalarial 

prophylaxis, but were provided access to a health practitioner (nurse) during the study 

in the event of malaria infection as recommended for adult subjects living in malaria 

endemic area. Since the goal of HLC is to collect the mosquito before it bites, the risk 

of infective bite is actually quite low. Although HLC is still used in some settings, 

research is actively ongoing in our Center and others to find a comparable method that 

does not involve human (Govella et al. 2011; Okumu et al. 2010). 

 



87 
 

 Conclusion 

In conclusion, the entomological data confirmed the district of Sikasso as an area of 

high W. bancrofti transmission. This led to the selection of this area as one site in a 

multi-country study on the effects of MDA on LF transmission by anopheline vectors 

and as the first region in Mali for implementation of MDA with ALB/IVER to 

eliminate transmission of LF. Comparison of the vector infectivity rate prior to and 

immediately following the first round of MDA showed a significant overall decrease 

after institution of MDA. Importantly, the dramatic variability in MTP over the 

transmission season suggests that the efficacy of MDA can be maximized by 

delivering drug at the beginning of the rainy season (just prior to the peak of 

transmission). 
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Objective 2. The Impact of six annual rounds 
of MDA on W. bancrofti infections in humans 

and in mosquitoes in Mali 
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 Introduction 

The mass drug administration (MDA) is the main pillar of the Global Programme to 

Eliminate Lymphatic Filariasis (GPELF). In addition to MDA, LF transmission is 

affected by mosquito competence, which is related to the vector-parasite relationship. 

This vector parasite relationship is characterized by two epidemiologically important 

patterns: facilitation (anophelines) and limitation (culicines) (Bockarie, Pedersen, et 

al. 2009; WHO 2013a). Thus, the important decrease in the peripheral blood 

microfilarial load after MDA implementation is associated with an improved capacity 

of Culex vectors to continue LF transmission; while theoretically, An. gambiae s.l fail 

to do so after a certain number of MDA rounds. Taking this into account, the threshold 

for LF transmission in terms of vector density and required microfilarial load are 

different for the two groups of vectors. 

 

The concept of limitation and facilitation arose from experimental studies (Bain 1971; 

Bain and Brengues 1972; Bain and Philippon 1970) and was later confirmed by 

empirical observations in some Anopheles transmission areas (Bockarie, Pedersen, et 

al. 2009; WHO 2013a). Mathematical analyses (Mougey and Bain 1976; Pichon 1974; 

Pichon et al. 1980; Pichon, Perrault, and Laigret 1974) subsequently showed that the 

limitation system has only one positive stable equilibrium. There will be a threshold, 

for interruption of transmission, which depends on vector density, but there is no 

threshold that depends on parasite density (Dye 1992) because a very low parasite load 

rather increases vector ability to transmit the disease if the limitation is the 

transmission system. 
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Within the An. gambiae s.l, there are data on the overall impact of the ALB/IVER 

regimen over a long period (Kyelem et al. 2003, 2005; Ramaiah and Ottesen 2014; 

Simonsen et al. 2010) but no close yearly data on the impact on both parasitological 

and entomological indicators over a long period of time. The objective of this chapter 

is to determine the vector fauna competence to transmit LF after one or more annual 

rounds of MDA. 

 

 Methods 

 Study sites  

The study was undertaken in six neighbouring villages of the district of Sikasso 

previously described in the chapter 3 of the thesis. 

 

 Study Design 

To assess W. bancrofti infection and transmission dynamics and the impact of six 

consecutive annual MDA rounds on the vectors’ competence in these six villages of 

Sikasso district, a monthly cross sectional entomological survey was undertaken from 

July to December each year, as well as a parasitological assessment in July each year 

just prior to the MDA and the entomological survey, from 2002 to 2008 before this 

PhD. All six villages received MDA for six years. During the seventh year (2008), 

ALB/IVER was not distributed in two of the villages that did not have any evidence 

of ongoing transmission to provide preliminary data in anticipation of stopping MDA 

in the remaining villages the following year.  
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 Study population 

A complete census, including the name, age, sex and profession of every inhabitant, 

was performed in the study villages every year before the parasitological assessment. 

All subjects ≥ 2 years of age who presented for evaluation were included in the study. 

 

 MDA 

As part of the NPELF activities, ALB/IVER was administered to all eligible subjects 

(not pregnant or breastfeeding within a week of delivery, taller than 90 cm and aged 

five years and above) in collaboration with the district and community health care staff 

using the health workers as drug distributors. MDA coverage rates were calculated 

based on the number of eligible subjects. 

 

 Entomological studies 

Villagers were trained to collect mosquitoes from 6:00 pm to 6:00 am using the HLC 

method. A 12-day monthly entomological survey was carried out concomitantly by 

different teams in each of the six villages to determine village-wide W. bancrofti 

transmission potential. The parameters assessed included the MBR, ABR, infection 

rate, infectivity rate and the ATP during the study period. From July to December each 

year, mosquitoes were collected by two collectors per room in four different rooms in 

each village at night. The first collection team worked from 6:00 pm to midnight and 

the second from midnight to 6:00 am in each room. The collector caught the 

mosquitoes as they tried to land using a mouth aspirator connected to a paper cup as 

the storage container, as developed by Coluzzi and Petrarca (Coluzzi and Petrarca 

1973). The mosquitoes that were collected during the night were kept in ideal 
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conditions (temperature, relative humidity using wet wipes) and dissected early the 

following morning.  

 

 Laboratory analysis 

 Mosquito samples were sorted by species (An. gambiae s.l and An. funestus complex) 

on the basis of morphology (Diagne et al. 1994). In 2002, a subset of the dissected An. 

gambiae s.l was tested using PCR techniques (Favia and Louis 1999) to determine the 

sibling species proportions. 

 

During the dissection, the head and thorax were dissected separately for each 

mosquito, and recovered parasite larval stages were categorized into L1, L2 and L3. 

Female mosquito’s dissection and observation of the ovaries tracheal coils 

(Beklemishev, Detinova, and Polovodova 1959) were done for parity status 

determination.  

 

 Parasitological and clinical assessment 

Although the main focus of this study was on entomological surveys, parasitological 

and clinical data were also collected each year to complete the LF endemicity level 

assessment. Sixty microliters of night blood were obtained by finger prick from adult 

volunteers (15 years and above) for preparation of three thick smears. The slides were 

stained with Giemsa for identification and quantification of W. bancrofti microfilariae. 

The adult volunteers, as well as children ≤ 5 years old, were tested for W. bancrofti 

CFA using ICT during the first year (chapter 3) and after the sixth MDA. The clinical 

assessment consisted of a brief interview and physical examination focusing on 
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characteristic manifestations of LF, namely lymphedema, elephantiasis and hydrocele. 

Any clinical stage of lymphedema (from reversible pitting oedema to elephantiasis) or 

hydrocele (small, big, unilateral or bilateral) was considered as a case and recorded 

without additional information. 

 

 Data management and analysis 

All data were recorded on standard data sheets and entered into the computer using SPSS 

version 14 (SPSS Inc., Chicago, IL) and GraphPad Prism software version 5 (GraphPad 

Software, La Jolla, CA). The Chi2 test or Fisher exact test was used as appropriate for the 

comparison of proportions. The confidence level was set at 95% for all statistical tests. 

A collective village-wide oral consent was obtained from the villages’ elders as well 

as a signed individual written consent form from all study participants and/or 

guardians. Both the IRB of the WHO/TDR and the Ethics committee of the Faculty of 

Medicine of Bamako in Mali approved the protocol and the consent forms. 

 

 Results 

 Clinical, parasitological, and MDA 

A total of 1,333 subjects from six villages aged two years and above have been 

included in the analysis. Females represented 57.8% of this population. Lymphedema 

and hydrocele had prevalences of 0.3 and 2.8 %, respectively (Table 4.1). Cross-

sectional assessment of the human microfilaraemia prevalence rate showed a dramatic 

decrease in the prevalence of W. bancrofti microfilaraemia over the course of the study 

(p< 10-4) from 21.4% (244/1139) in 2002 before the first MDA to 0.2% (2/856) in 

2007 and 0.0% (0/760) in 2008 after the 6th MDA round (Table 4.2). The geometric 
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mean microfilarial densities in microfilaria-positive individuals also decreased from 

103 Mf/ml in 2002 (Figure 4.1) to 23 Mf/ml in 2006 and 0 Mf /ml in 2007 and 2008.  

 

 

 

 

 

 

 

 

 

Figure 4.1 Wuchereria bancrofti microfilaraemia prevalence and geometric 
mean changes throughout the six consecutive MDA rounds in the study area] 

W. bancrofti microfilaraemia prevalence (white bar and bolded numbers) and 
geometric mean curve changes throughout the six consecutive MDA rounds in the 
study area. 
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The coverage rate for the eligible population varied from 67% to 78% during the first 

five MDA. In the four villages treated in 2008, coverage remained high at 89.6% 

(3,201/3,574).  Mild adverse events were reported by 0.6% (13/2,135) of the subjects 

in 2002 and the frequency decreased over time with only a few cases of mild headache 

reported in 2008 (data not shown). No severe adverse events were recorded during the 

study.  

Table 4.1: Baseline characteristics of the study population 

    
 

Male Female Elephantiasis Hydrocele 
Mf
+ 

CFA
+ 

  Total % % % %    % %

Age group        

<5 years 194 47.9 52.1 0 0 ND 53.1

≥5 years  1139 42.2  57.8  0.3 6.7 21.4 47.1

Villages       

Dozanso 120 54.2 45.8 1.7 7.7    40 61.7

Missasso 207  35.3 64.7 0 11 20.3 36.9 

Gondaga 212  45.8 54.2 0 6.2 15.1 43.4 

Niantanso 202  42.1 57.9 0.5 7.1 29.7 81.8 

N'Torla 196  50.5 49.5 0 3 13.8 40.3 

Zanadougou 202  30.7 69.3 0 6.5 17.3 24.6 

Mf= microfilaraemia, CFA= circulating filarial antigen, ND=Not Done 
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Table 4.2: Variation in the W. bancrofti microfilaraemia carriage rate within the 
five years and above in 2002 and 2008 
 

  Baseline (2002) Post 6 MDA (2008) 

Localities  N tested  Pos % 95% CI N tested Pos % 95% CI 

Dozanso 120 48 40 [31.52-48.96] 86 0 0 [0-5.33] 

Missasso 207 42 20.2 [15.23-26.18] 138 0 0 [0-2.15] 

Gondaga 212 32 15.1 [10.74-20.40] 167 0 0 [0-1.78] 

Niantanso 202 60 24.8 [23.71-36.28] 129 0 0 [0-2.30] 

N'Torla 196 27 13.7 [9.47-19.15] 141 0 0 [0-2.10] 

Zanadougou 202 35 17.3 [12.57-23.01] 99 0 0 [0-2.98] 

Total  1,139 244 21.4 [19.11-23.88] 760 0 0 [0-0.39] 

  Pos= positive, N= number 

 

 Entomological indices  

An. gambiae s.l was the most common vector in the study area (90.1%). At baseline, 

2.3% of A. gambiae complex vectors were infective. An. funestus complex had an 

infectivity rate of 2%. The ATP was 8 and 76 infective bites per human per year, 

respectively, for An. funestus and An. gambiae s.l (Table 4.3). Among the 15,869 An. 

gambiae s.l examined by PCR for specific species identification, 99.02% 

(15,713/15,869) were An. gambiae s.s and 0.98% (156/15,869) were An. arabiensis. 

The most common sibling species of An. gambiae s.s in all localities were the 

Bamako/Savannah molecular form (S form) also called  An. coluzzii, which comprised 

95.09% (14,942/15,713) of the mosquitoes examined, followed by the Mopti 

molecular form (M form), which accounted for 3.8 % (data not shown).  
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Table 4.3: Baseline vector characteristics in the study area prior to MDA 
 

Species 
No. 

collected 
No. 

Dissected

No. 
Infected 

(%) 
95% CI 

No. 
Infecti
ve (%)

95% CI ABR ATP 

An. 
gambiae s.l 

20,957 16,230 
646 
(4.0) 

[3.69-4.28]
372 
(2.3) 

[2.07-2.53] 545.8 76 

An. 
funestus  

2,308 1,471 72 (4.9) [3.88-6.09] 30 (2) [1.41-2.86] 60.1 8 

Overall 23,265 17,701 
718 
(4.1) 

[3.77-4.35]
402 
(2.3) 

[2.06-2.50] 605.9 84 

No. = number; ABR= annual biting rate; ATP= annual transmission potential 

 

The ABR decreased over time from 605.9 bites per human per year in 2001 (Table 

4.3) to 203.96 bites per human per year in 2007 (Table 4.4). The vector infection rate 

(An. gambiae s.l and An. funestus complexes) also decreased dramatically (by more 

than 98.11%) from 4.1% [3.77-4.35] (718/17,701) in 2001 (Table 4.3) to 0.04% [0-

0.14] (2/4,680) in 2007, twelve months after the 6th MDA (Table 4.4). Of the two 

infected An. gambiae s.l mosquitoes, one harboured a single infective L3 larva and the 

second one, a single non-infective L2 larva. Thus, An. gambiae complex members 

infectivity rate in 2007 was 0.02% [0-0.11] (1/4,624) (Table 4.5). The ATP for An. 

funestus was equal to 0 in 2006 and 2007 (Table 4.6). Due to the combination of a 

decrease in mosquito biting rates and lower numbers of infective mosquitoes, the ATP 

(number of infective bites per human per year) decreased by 99.6% from 84 in 2001 

to 0.3 in 2006 and 2007, twleve months after the 6th MDA (Table 4.4).  
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Table 4.4: An. gambiae and An. funestus annual variation of the LF transmission level over the six MDA rounds 
 

Years 
Number 

collected 

Number 

dissected 
ABR 

Infection rate (L1/L2 pos) Infectivity rate (L3 pos) 
ATP 

% (positive/N) 95% CI % (positive/N) 95% CI 

Before  23,265 17,701 605.9 4.1 (718/17,701) [3.77-4.35] 2.3 (402/17,701) [2.06-2.50] 84 

MDA 1 12,986 12,986 338.2 4.6 (597/12,986) [4.25-4.97] 1.4 (181/12,986) [1.20-1.61] 28.1 

MDA 2 18,394 18,394 479 1.2 (222/18,394) [1.06-1.37] 0.2 (44/18,394) [0.18-0.32] 6.9 

MDA 3 13,021 13,021 339 1.1 (143/13,021) [0.93-1.29] 0.1 (16/13,021) [0.07-0.20] 2.5 

MDA 4 10,622 9,578 276.61 0.17 (16/9,578) [0.10-0.27] 0.05 (5/9,578) [0.02-0.12] 0.9 

MDA 5 10,604 10,604 276.1 0.06 (6/10,604) [0.02-0.12] 0.02 (2/10,604) [0-0.06] 0.3 

MDA 6 7,832 4,680 203.96 0.04 (2/4,680) [0-0.14] 0.02 (1/4,680) [0-0.11] 0.3 

N= total number; MDA= mass drug administration; ABR=annual biting rate; ATP= annual transmission potential; 

 pos= positive 
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Table 4.5: Anopheles gambiae s.l annual variation of the LF transmission level over the six MDA rounds 
 

Years 

Number of 

mosquito 

collected 

Number of 

mosquito 

dissected 

ABR 

Infection rate Infectivity rate (L3 pos) 

ATP 
% (positive/N) 95% CI % (positive/N) 95% CI 

Before  20,957 16,230 545.8 4 (646/16,230) [3.69-4.29] 2.3 (372/16,230) [2.07-2.53] 75 

MDA 1 11,190 11,190 291.4 4.5 (505/11,190) [4.14-4.91] 1.3 (141/11,190) [1.07-1.48] 22 

MDA 2 17,825 17,825 464.2 1.2 (213/17,825) [1.04-1.36] 0.2 (42/17,825) [0.17-0.32] 6.63 

MDA 3 11,818 11,818 307.8 1.1 (128/11,818) [0.91-1.28] 0.1 (15/11,818) [0.07-0.20] 2.32 

MDA 4 10,072 9,080 262.29 0.15 (14/9,080) [0.09-0.25] 0.04 (4/9,080) [0.01-0.11] 0.72 

MDA 5 10,514 10,514 273.8 0.06 (6/10,514) [0.02-0.12] 0.02 (2/10,514) [0-0.06] 0.31 

MDA 6 7,755 4,624 201.95 0.04 (2/4,624) [0-0.14] 0.02 (1/4,624) [0-0.11] 0.28 

N= total number; MDA= mass drug administration; ABR=annual biting rate; ATP= annual transmission potential; 

 pos= positive 
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Table 4.6: Anopheles funestus complex annual variation of the LF transmission level over the six MDA rounds 
 

Years 
Number 
collected 

Number 
dissected

ABR 
Infection rate  Infectivity rate (L3 pos) 

ATP 
% (positive/N) 95% CI % (positive/N) 95% CI 

Before  2,308 1,471 60.1 4.9 (72/1,471) [3.88-6.09] 2 (30/1,471) [1.41-2.86] 7 

MDA 1 1,796 1,796 46.8 5.1 (92/1,796) [4.17-6.22] 2.2 (40/1,796) [1.62-2.99] 6.2 

MDA 2 569 569 14 1.6 (9/569) [0.77-2.88] 0.4 (2/569) [0.06-1.16] 0.3 

MDA 3 1,203 1,203 31.3 1.2 (15/1,203) [0.73-2.0] 0.1 (1/1,203) [0.004-0.41] 0.18 

MDA 4 550 498 14.32 0.4 (2/498) [0.07-1.32] 0.2 (1/498) [0.01-0.99] 0.16 

MDA 5 90 90 2.3 0 (0/90) [0-3.27] 0 (0/90) [0-3.27] 0 
MDA 6 77 56 2.01 0 (0/56) [0-5.21] 0 (0/56) [0-5.21] 0 
N= total number; MDA= mass drug administration; ABR=annual biting rate; ATP= annual transmission potential;  

     pos= positive
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 Discussion 

Consistent with the data from other studies (CDC 2011; Richards et al. 2011), six 

rounds of MDA with ALB/IVER were extremely effective in reducing the prevalence 

of W. bancrofti microfilaraemia in residents of a highly endemic area of Mali. 

Although testing for microfilaraemia was limited to 53.02% (604 /1139) of the total 

population eligible for MDA in the six villages, it is unlikely that the infection rate in 

the remaining population was substantially higher than that in the tested subjects. Thus, 

the observed impact of MDA on W. bancrofti microfilaraemia in the present study is 

compatible with the long-term objective of the GPELF to interrupt transmission using 

MDA alone.  

 

As previously reported in the baseline study in this area (chapter 3), the dominant 

vector, An. gambiae s.l, continued to account for more than 90% of the mosquito 

vectors collected in this area over the seven years of the study, followed by An.funestus 

(data not shown). The overall trend in any given year was characterized by a high 

frequency of An. gambiae s.l early in the rainy season followed by a gradual decrease 

in An. gambiae s.l and a gradual increase in the abundance of An. funestus towards the 

end of the rainy season (Coulibaly et al. 2013). These changes are related to the 

climatic conditions over the year and not a result of the current interventions such as 

the MDA (Toure et al. 1996).  

 

In addition to seasonal variation, the vector density showed significant yearly variation 

from 2001 to 2008. The dramatic decrease in ABR following the first MDA in the 

study area has previously been reported and was most likely due to increased 
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awareness of the study area population with respect to the role of mosquitoes in disease 

transmission (resulting in less breeding sites and increased use of insecticide treated 

nets). LLIN were provided for free only to mothers just after delivery at the community 

health centre from 2002 to 2004. Beginning in 2005, LLIN availability in the six 

villages increased because of the free distribution campaigns for vector control related 

to malaria prevention. Although yearly variations in ABR are not unusual in Mali and 

have been observed in the neighbouring sites of Pimperena (unpublished data), this 

would not be expected to have a significant effect on the ATP without a concomitant 

change in the vector infectivity rate.  

 

Despite high levels of transmission prior to the institution of MDA, the vector infection 

and infectivity rates decreased to a very low, but detectable, level in 2007. Only two 

captured mosquitoes were infected with W. bancrofti, of which only one was infective, 

representing a more than 99% reduction in the infectivity rate. No differences were 

apparent between the two villages that continued to have infected mosquitoes and the 

four other villages with respect to overall compliance with the program or distance to 

non-MDA villages. 

 

The mean ATP was also reduced by more than 99% after six MDA rounds. Although 

persistence of transmission despite low levels of microfilaraemia in the human 

population has been reported with Culex species that exhibit limitation (decreasing 

yield of infective larvae per Mf as the number of ingested Mf increases), An. gambiae 

and An. funestus complexes demonstrate facilitation (increasing yield of infective 

larvae per Mf as the number of ingested Mf increases) (Pichon 2002; Southgate and 
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Bryan 1992). Consequently, the dramatic reduction in transmission intensity (only one 

infective larvae recovered and an infectivity rate of the Anopheles vectors of 0.02% 

(the cut-off of 0.03% has been proposed) is likely sufficient to interrupt transmission 

in this rural area of Sikasso district (De Souza et al. 2012) as sexual reproduction is 

required in the human host to produce microfilariae.  

 

Nevertheless, caution should be exercised in stopping MDA, as there might be 

variation in the efficiency of the different sibling species within the An. gambiae group 

of mosquitoes; thus continued close surveillance for resurgence of transmission will 

be essential. In this regard, a staggered approach to stopping, as undertaken in this 

study, may be most prudent.  

 Conclusion 

In summary, the data to date suggest that six rounds of MDA with ALB/IVER may be 

sufficient to interrupt transmission in a highly endemic region of Mali where 

Anopheles is the main vector. Annual evaluation of the human and vector populations 

for evidence of W. bancrofti infection continues in the study villages following 

cessation of MDA and will be essential to validate this conclusion.  
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Objective 3. Dynamics of antigenemia and 
transmission intensity of Wuchereria 

bancrofti following cessation of MDA in a 
formerly highly endemic region of Mali 
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 Introduction 

MDA is aimed at interrupting LF transmission through clearing of peripheral blood 

microfilariae that prevent human-to-human vector-borne transmission (WHO 2015). 

As Bancroftian filariasis was found to be endemic in all eight administrative districts 

of Mali, ranging from 1% in Timbuktu (northern part of Mali) to >18% in Sikasso 

(southern part of the country) (Dembélé, Bamani, Dembélé, M. O. N. O. Traoré, et al. 

2012), annual MDA using ivermectin and albendazole was initiated sequentially 

starting from the most highly endemic district in the country (Dembélé, Bamani, 

Dembélé, M. O. N. O. Traoré, et al. 2012). These sentinel area data would be used to 

guide the NPELF for the potential outcomes of the post-MDA surveillance in 

previously hyper endemic areas. 

 

The current chapter reports data collected to assess transmission after MDA was 

stopped in 2007 (after seven rounds of MDA). Although this study was initiated prior 

to the formal WHO recommendations for TAS, which require demonstration of an 

infection rate of <1% in >400 children aged 6-7 years using the ICT to document 

interruption of transmission (WHO 2011b), a similar approach was taken using ICT 

testing of children aged 6-7 years. ICT testing of a cohort of children ≥8 years old and 

adults and entomological assessment of LF transmission were performed. Finally, the 

use of several additional methods (Og4C3 ELISA, PCR targeting W. bancrofti DNA 

and W. bancrofti infective larval stage specific antigen Wb123-based IgG4 

immunoassays) to assess transmission interruption in this previously highly LF-

endemic region (Sikasso) of Mali was explored. Our data support an integrated 

approach to surveillance.  
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 Methods 

 Study sites 

The study was conducted in the same area as the chapters 3, 4 and 5 of the thesis 

(Coulibaly et al. 2013;Coulibaly et al. 2015; Coulibaly et al. 2016). 

 Study design 

As post-MDA surveillance, a yearly cross-sectional parasitological assessment of all 

children 6-7 years of age and all eligible older volunteers aged eight years and above 

was performed in July from 2009 to 2012. In addition, a monthly entomological 

assessment of LF transmission (from July to December) was conducted in the six study 

villages in 2009, 2011 and 2013. In 2013, only children aged 6-7 years were tested 

with ICT, along with a thick smear from night blood. Infective stage W. bancrofti 

larvae (L3) were assessed in mosquitoes using an L3-specific RT-PCR technique as 

previously described (Laney et al. 2010). The study design is illustrated in Figure 5.1. 
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Figure 5.1 Timeline of treatment, EVAL, and monitoring 
The years in which MDA and EVAL surveys were performed are shown by the arrows 
and time at which monitoring tools in support of EVAL are shown by the + sign  

 

 

 Parasitological and serological assessments 

Infection status was assessed using the ICT for the detection of circulating W. bancrofti 

antigen (Allere, Portland, ME). Dried blood spots were collected for additional 

laboratory analyses. Microfilaraemia was assessed by finger prick at night (between 

10 p.m. and 2 a.m.) among ICT positive volunteers using a calibrated thick smear. 

Yearly parasitological studies were conducted in July, at the beginning of the 

transmission period, except in 2009 when, for logistical reasons, this assessment was 

performed in October. Because of the concern of potential transmission, other 

diagnostic tests were performed among the 6-7 years in 2012, namely the Og4C3 

(TropbioTownsville, Australia) and ELISA testing for antibodies to Wb123 on eluted 

blood spots as previously described (Steel et al. 2013). 

 

2002    2003   2004   2005    2006    2007    2008    2009   2010     2011   2012     2013  
 

MDA1  MDA2  MDA3   MDA4  MDA5  MDA6 MDA7  EVAL1 EVAL2 EVAL4 EVAL3 

ICT  +  +  +  + 

CFA ELISA   +    +   

MF  +  +  +  + 

Wb blood PCR                                                             +     

WB123 An body     +   

HLC Vector Collec on/Dissec on   +  +  +  + 

PSC/RT‐PCR       +   
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 Entomological assessment 

Each month a 12-day entomological survey was conducted in the six villages to assess 

the village wide W. bancrofti transmission pattern during the LF transmission period 

in Mali from July to December (Coulibaly et al. 2013). Two HLC sessions were 

organized per month and per village. Two collectors worked inside each of four 

collection rooms per session. Because An. gambiae is endophilic, collections were 

performed indoors to maximize yield. A total of 72 collection rounds were undertaken 

with the HLC. The collection was done from 6 pm to 6 am, and, for ethical reasons, 

the collectors were replaced at midnight at each collection site. All An. gambiae and 

An. funestus complexes collected were freshly dissected for parity status based on 

techniques previously described (Detinova and Gillies 1964) and for infection (any 

larval stage) and infectivity (L3 stage) status by individual mosquito dissection as 

previously described (Goodman et al. 2003). 

 

In 2012, Pyrethrum Spray Catches (PSC) were carried out to collect mosquito vectors 

in addition to the HLC using Premium®, a pyrethroid based insecticide, in 30 randomly 

selected rooms per village in each of the six collection months. The random selection 

consisted to select randomly 30 numbers from the list of numbers corresponding to the 

total number of rooms in each study village using Microsoft Excel. During each of the 

36 PSC collection rounds, the number of persons sleeping in each visited room was 

recorded on the mosquito collection sheet. The collected mosquitoes during the PSC 

were pooled (1 to 20 mosquitoes) in the field and stored in tubes containing RNAlater® 

and sent to Smith College, Northampton, Massachusetts, USA) for W. bancrofti RNA 

detection by RT-PCR as previously described (Laney et al. 2010). 
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For PSC, the MBR was determined by dividing the number of fed and half-gravid 

female Anopheles collected in a room by the number of sleepers in the room the night 

before the collection multiplied by 30 (WHO 2013a). The ABR was the sum of all the 

MBR calculated over the year (WHO 2013a). From HLC collected Anopheles, the 

parameters were determined as previously reported (Walsh et al. 1978; WHO 2013a). 

 

 Sampling 

The present study predated the official WHO guidelines for TAS (WHO 2013b). 

Because the evaluation unit was small (< 300 children aged 6-7 years), all of the 

available eligible children were screened. 

 

 Data analysis  

The collected data were entered using Microsoft Access 2007 and analysed using 

GraphPad Prism software version 5 (GraphPad Software, La Jolla, CA) and SPSS 

version 20 (SPSS Inc., Chicago, IL). To compare the infection prevalences between 

villages or mosquito species, we used the Pearson Chi2 or the Fisher exact test if 

necessary. The trend Chi2 was used to test the statistical significance of any frequency 

or proportion’s trend over time. 

 

 Results 

 Study demographics 

A total of 289 children aged 6-7 years were assessed in 2009, 301 in 2011, 285 in 2012 

and 309 in 2013. Concomitantly, available older children and adults were assessed in 

2009 (n=800), 2011 (n=795), and 2012 (n=1,812) (Tables 5.1 and 5.2). In 2013, testing 

of older children and adults was restricted to those who were positive by ICT in 2012 
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(n=50). Although the sizes of the six study villages differed, the study populations 

within the villages were quite well balanced in terms of gender within both the 6-7 

year old children and the ≥8 year old throughout the study period (Table 5.2). 

 

Table 5.1: Sampling activities by year 
 

 
Study human sample Mosquito collection 

Year Total 

population 

6–7 

years 

old 

≥ 8 

years    

old 

Number 

collected 

Technique 

used 

Number 

collection 

rounds 

2009 4,431 289 800 4,448 HLC 72 

2011a 4,761 301 795 2,962 HLC 72 

2012 5,044 285 1,812 7,168/1,907 HLC/PSC 72/36b 

2013c 5,225 309 50 nd nd nd 

aIn 2011, a random sample of 92 subjects from the 6 villages was tested with 

Wb123 ELISA  

bIn 2012, the 6 villages were visited once a month from July to December 

(collection in 30 rooms per visit per village) 

cIn 2013 the 50 subjects ≥ 8 years tested were the ones found positive using 

ICT in 2012  

nd= not done; HLC=Human landing catch; PSC= pyrethrum spray catch 
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Table 5.2: Characteristics of the study population per village throughout the 
surveillance period in the six study villages of the Sikasso district 

Village 6–7 years  8 years and above Overall 
M/F Total M/F Median age 

(Range) 
Total 

Survey 1 in 2009 
Dozanso 20/29 49 60/73 34 (12–79) 133 182 
Missasso 26/20 46 64/94 40 (15–76) 158 204 
Gondaga 22/21 43 55/64 33 (12–75) 119 162 
Niatanso 30/24 54 91/106 31 (12–69) 197 251 
N'Torla  23/16 39 50/49 37 (12–72) 99 138 
Zanadougou 28/30 58 31/63 37.5 (13–77) 94 152 
Total 149/140 289 351/449 35 (12–79) 800 1,089 

Survey 2 in 2011 
Dozanso 21/17 38 42/71 32 (15–82) 113 151 
Missasso 22/31 53 51/99 35 (15–86) 150 203 
Gondaga 21/17 38 58/73 29 (15–84) 131 169 
Niatanso 25/29 54 73/60 31 (15–82) 133 187 
N'Torla 35/26 61 53/80 31 (15–88) 133 194 
Zanadougou 26/31 57 49/86 31 (15–89) 135 192 
Total 150/151 301 326/469 38 (15–89) 795 1,096 

Survey 3 in 2012 
Dozanso 20/16 36 95/137 32 (15–82) 232 268 
Missasso 21/27 48 101/171 33 (15–79) 272 320 
Gondaga 27/21 48 100/177 28 (15–85) 277 325 
Niatanso 26/25 51 134/182 28 (15–83) 316 367 
N'Torla 22/15 37 127/208 30 (15–89) 335 372 
Zanadougou 34/31 65 137/243 30 (15–80) 380 445 
Total 150/135 285 694/1,118 30 (15–89) 1,812 2,097 

Survey 4 in 2013 
Dozanso 24/24 48 8/15 41 (8–75) 23 73 
Missasso 26/21 47 1/4 38 (31–68) 5 52 
Gondaga 30/25 55 0/5 28 (8–58) 5 60 
Niatanso 32/23 55 1/3 25.5 (8–63) 4 60 
N'Torla 18/24 42 1/6 46 (24–66) 7 49 
Zanadougou 31/31 62 4/2 29 (8–58) 6 68 
Total 161/148 309 15/35 38 (8–75) 50 359 

M/F= male/female 
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 CFA and Wb123 antibody prevalence assessment over the surveillance 

period  

The CFA prevalence in 6-7 year old children did not increase significantly over the 

surveillance period. It went from 0% [0- 1.64] (0/289) in 2009 to 2.7 % [1.24-5.37] 

(8/301) in 2011 and 4.5% [2.6-7.66] (14/309) in 2013 (Table 5.3). There was also a 

non statistically significant decrease in CFA positivity over the study period in the ≥8 

year olds, from 4.9% [3.53-6.67] (39/800) in 2009 to 3.5% [2.4-5.12] (28/795) in 2011, 

and 2.8% [2.08-3.65] (50/1,812) in 2012. Whereas none of the ICT-positive 6-7 year 

olds had detectable microfilaraemia, one of 39 (2.6%) [0.06-13.48] individuals in the 

older group was microfilaraemic in 2009, and 3/28 (10.7%) [2.81-29.37] were 

microfilaraemic in 2011. In 2012, none of the 50 ICT-positive older subjects was 

microfilaraemic 0% [0-8.89] (0/50) (Table 5.3). Forty-four of the previously ICT-

positive older subjects, as well as six of the 6-7 year olds who were ICT-positive and 

eight years old at the time of the 2013 survey, were reassessed in 2013. None of the 28 

subjects who remained ICT-positive in 2013 had detectable microfilaraemia (data not 

shown). In 2012, within the 6-7 year olds, positivity rates for both the Og4C3 ELISA 

for CFA (1.8% [0.65-4.27] (5/285)) and testing for antibodies to the W. bancrofti-

specific antigen, Wb 123 (1.8% [0.65-4.27] (5/285)) were similar and comparable to 

the results obtained using the ICT test (3.9% [2.04-7] (11/285) even though the later 

showed a higher number of positive.  

 

 Entomological assessment   

The number of mosquitoes collected using the HLC over the study period is detailed 

in Table 5.4. The highest ABR using the HLC was 374 bites per person in 2012 and 

the lowest was in 2011 with 155 bites per person. The parity rates for Anopheles 
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gambiae complex were comparable between the first two yearly entomological 

surveys with 83.9% [82.78-84.98] (3,675/4,380) in 2009, 84.34% [82.92- 85.65] 

(2,406/2,853) in 2011 but, in 2012, the observed parity rate 88.9% [88.05-89.70] 

(5,032/5,718) was significantly higher than those of the two previous years. In 2009, 

two (0.05%) filaria-infected Anopheles females were observed without any infective 

larval stage recovered. In 2011 and 2012, no W. bancrofti larvae were found in the 

dissected mosquitoes (Table 5.4). 
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Table 5.3: CFA and microfilaraemia prevalence rates in six to seven year old children and those eight years and above from 2009 to 2013  
Survey 1 (2009) Survey 2 (2011) Survey 3 (2012)a Survey 4 (2013) 

Sample 
size and 
target 

Targeted sample size 1,107 1,107 2,530 372 
Total population 4,431 4,761 5,044 5,225 
Number tested (n) 1,089 1,096 2,097 359 

ICT ≥ 8 years % Positive (n/N)  4.9% (39/800) 3.5% (28/795)  2.8% (50/1,812)  
 [95% CI] [3.53–6.67] [2.40–5.12] [2.08–3.65] –  

6–7 years % Positive (n/N)  0% (0/289)  2.7% (8/301)  3.9% (11/285)  4.5% (14/309)  
 [95% CI] [0–1.64] [1.24–5.37] [2.04–7.00] [2.60–7.66] 
Mf ≥ 8 years % Positive (n/N)b 2.6% (1/39) 10.7% (3/28)  0% (0/50)    

[95% CI] [0.06–13.48] [2.81–29.37] [0–8.89] – 
6–7 years % Positive (n/N)b  0 0% (0/8)  0% (0/11)  0% (0/14)  

 [95%  CI]  [0–40.23] [0–32.15] [0–26.76] 
PCR ≥ 8 years % Positive (n/N) 5.13% (2/39)  np np np 

[95% CI] [0.89–18.63] 
6–7 years % Positive (n/N)  0 np np np 

 [95% CI]     
Wb123 ≥ 8 years %Positive (n/N) np np 4.7% (2/43) nd 

[95% CI] [0.81–17.06]  
6–7 years % Positive (n/N)  np np 1.8% (5/285)  nd 

 [95% CI]   [0.65–4.27]  
Og4C3 ≥ 8 years ICT % Positive (n/N) np np 4% (2/50) np 

[95% CI] [0.70–14.86] 
6–7 years % Positive (n/N)  np np 1.8% (5/285)  np 

 [95 % CI]   [0.65–4.27]  
aIn 2012, the ELISA test was done on all the children and the 50 ICT positive adults 
bOnly the ICT positive subjects were tested for Mf  
ELISA= Enzyme-Linked Immuno-Sorbent Assay; ICT= Immunochromatographic Card Test; ICT+= ICT positive; Mf= microfilaraemia; n= 
number positive; N= number examined; nd= not done; np= not planned; PCR= polymerase chain reaction; Wb123= filarial antibody test 
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Table 5.4 Annual variation of mosquito densities and biting rates over the surveillance period from 2009 to 2012 
Collection 
method 

Year Species No. of 
collected 

No. and proportion of 
dissected  [95% CI] 

ABR Parity  
Frequency [95% CI] 

No. infected 
Infection % 
 [95% CI] 

HLC 2009 
GA 4,443 

4,375 
232 

3,671 2 
98.47 [98.05–98.8] 83.9 [82.78–84.98] 0.05 [0.01–0.18] 

FU 
5 

5 
0 

4 0 
 100 [46.29–100] 80 [29.88–98.94]  
PH 0 0 0 0 0 
RU 0 0 0 0 0

2011 GA 
2,911 

2,803 
152 

2,364 0 
 96.29 [95.52–96.93] 84.34 [82.92–85.65]
FU 3 3 0 3 0 
 100 [31.00–100] 100 [31–100]
PH 39 38 2 30 0 
 97.44 [84.92–99.87] 78.95 [62.22–89.86]
RU 9 9 1 9 0 

   100 [62.88–100]  100 [62.88–100]  
2012 GA 

7,138 
5,691 

368 
5,006 0 

 79.82 [78.86–80.74] 88.9 [88.05–89.70]  
FU 

3 
3 

0 
3 0 

 100 [31–100] 100 [31–100]  
PH 

23 
23 

1 
22 0 

 100 [77.08–100] 94.1 [69.23–99.69]  
RU 

1 
1 

0 
1 0 

 100 [5.46–100] 100 [5.46–100]  
PSC 2009 nd nd nd nd nd 

2011 
 

nd nd nd nd nd 
2012 An. spp. 1,907 115a 12b nd 0 

aNumber of pools of 20 mosquitoes tested with the RT-PCR; No.= number 
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bThe number of half gravid and blood fed mosquitoes divided by the number of sleepers in the rooms visited the night before the collection 
An. spp.= Anopheles species; HBR= human biting rate; HLC= Human landing catch; FU= Anopheles funestus; GA= Anopheles gambiae; PH= 
Anopheles pharaoensis; PSC= Pyrethrum spray catch; RU= Anopheles rufipes; nd= not done 
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With the PSC method during the six months of collection in 2012, 1,907 mosquitoes 

were collected and the ABR was 100 bites per person per year. The number of 

mosquitoes collected with the PSC technique was 3.75 times less than that collected 

with the HLC in 2012. Moreover, both the infection and infectivity of the PSC-

collected mosquitoes were 0 (Table 5.4). Of note, An. gambiae s.l was the most 

frequent vector comprising more than 99% of the active vector fauna each year as 

compared to An. funestus complex (data not shown). This is due to the decline of An. 

funestus population over time related at least partially to the environmental changes in 

the study area.  

 

We observed the highest vector density (12 mosquitoes per collector per night) in 2012 

with 7,165 mosquitoes collected by 576 collectors over the study period. This density 

was 2.4 times higher than that in 2011 (2,962 mosquitoes) and 1.6 times more than 

that in 2009 (4,448 mosquitoes). Of the 2,962 and 7,165 mosquitoes collected 

respectively in 2011 and 2012, the frequencies of An. pharaoensis varied from 1.31% 

in 2011 to 0.32% in 2012 while the frequencies of An. rufipes varied from 0.30% in 

2011 to 0.01% in 2012. These species were very rare during the previous collection 

years in this area and were never found to be infected with W. bancrofti (data not 

shown).  

 

 Discussion  

The current study investigated the LF transmission patterns following cessation of 

MDA during the surveillance period from 2009 to 2013 in six neighbouring previously 

highly LF endemic villages in the Sikasso region in Mali. In 2008, after seven rounds 

of MDA, the W. bancrofti microfilaraemia and ICT positivity in children (6 – 7 years) 
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was reduced to 0%. By 2011 and 2012, the prevalence of ICT-positivity in 6-7 year 

old children showed an increase that was not statistically significant, although 

microfilaraemia was not detected. Despite this increase in CFA prevalence in 6-7 year 

old children, there was a statistically significant decrease in CFA prevalence rates over 

the same 5-year period among those ≥8 years of age. This decrease is consistent with 

attrition over time of established worms. These data are most consistent with 

interruption of LF transmission based on the absence of detectable microfilaraemia, 

the lack of infective Anopheles, and the decreased CFA prevalence in the older age 

group. Nonetheless, close monitoring in areas of previously high transmission is 

necessary to detect early resurgence of transmission and to generate data that may 

guide and improve the LF elimination process. 

 

When prevalence was estimated using different tools (Og4C3 ELISA and Wb123 

immunoassays) at a single time point (2012), ICT consistently gave a higher 

prevalence rate compared to the two other tests, although the differences in prevalence 

were not statistically significant. Higher prevalences using ICT compared to Og4C3 

ELISA were also observed in Togo during a school-based TAS conducted three years 

after stopping MDA (Dorkenoo et al. 2015), although the reasons for this are unclear. 

L. loa microfilaraemia has been shown to be associated with ICT-positivity at both the 

community and individual levels (Bakajika et al. 2014; Wanji et al. 2015); however, 

the same studies showed no association between ICT-positivity and the prevalence of 

M. perstans, the only other filarial parasite endemic in the study area (Keiser et al. 

2003).  
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Re-emergence of infection after just a few years of surveillance has been reported in 

Nigeria in some but not in all districts (Richards et al. 2011). In India after 10 years 

following MDA implementation, new infection among children was also reported 

(Ramaiah and Vanamail 2013). Using 6-7 year old children as the sentinel population 

makes sense in the Malian context because this group remains in the villages, whereas 

many adults travel from place to place because of seasonal migration for agriculture 

and may acquire infection in areas that have not yet started MDA (Kia et al. 2014). 

 

The approach to post-MDA surveillance is still being perfected. Antibody testing (e.g. 

Wb123) has been proposed as a potential better tool than antigen testing for the early 

identification of on-going transmission, as antibody positivity typically occurs months 

prior to positivity in adult antigen-based circulating antigen testing (Harnett et al. 

1998; Kubofcik et al. 2012; Weil and Ramzy 2007). As there was good concordance 

between Wb123 prevalence and that of the CFA testing in the children (Table 5.3) and 

with both tests now being POC (Golden et al. 2013; Steel et al. 2013) , it is possible 

that the Wb123 rapid diagnostic test may be considered as a major surveillance tool in 

the near future. 

 

Although screening of vector populations for the presence of infective larvae has been 

one of the two pillars of assessing transmission interruption in onchocerciasis 

(Lamberton et al. 2014; Lovato et al. 2014), its widespread use in LF has not taken 

hold to date. However, using both standard (dissection) and molecular techniques on 

both HLC and PSC collected mosquitoes (n=9,072) only a few positives were found 

(and only just after the cessation of MDA). This is probably due to the drastic reduction 
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of microfilaraemia prevalence after the seven consecutive MDA treatments and to the 

relatively low number of mosquitoes collected and the low sensitivity of the dissection 

(Laney et al. 2010). Since RT-PCR, a more sensitive method to detect infective stage 

L3 larvae in the vector, is available (Laney et al. 2010), screening of larger numbers 

of mosquitoes and pool screen-based molecular techniques will need to be assessed. 

The entomological data in the study area are in a very good concordance with the final 

conclusion from the parasitological data that are currently the WHO recommended 

transmission assessment criteria (mainly based on 6-7 year old children infection 

status).  

 

The observation that An. Pharaoensis and An. Rufipes were more frequently biting 

humans and their identification as secondary vectors of W. bancrofti in West Africa 

(Brengues et al. 1974), raises the possibility that transmission can be sustained by a 

number of vectors other than the most prevalent (An. Gambiae complex). The rain 

pattern in 2012 (number of precipitations and average rainfall) likely played a role in 

the increased vector density, as well as in the increase in An. pharaoensis and An. 

rufipes frequencies (Ngom et al. 2014; Talla et al. 2014). However, what is needed is 

an adequately designed prospective study of W. bancrofti transmission dynamics and 

vector control in this region of Mali. In addition, HLC was much more effective at 

collecting Anopheles than PSC; because of potential ethical issues related to HLC 

(Govella et al. 2010), better collection methods are needed.  

 

With very low human infection and vector infectivity rates, there is no evidence that 

W. bancrofti transmission has re-emerged in the study villages in the present study 

(WHO 2011b, 2013a). Nevertheless, new entomological studies are needed to 
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understand transmission dynamics in the context of post MDA surveillance. Mosquito 

vectors transmit W. bancrofti in two primary patterns, limitation and facilitation. 

Limitation is typically exhibited by Culex species and allows more efficient L3 

development when microfilaraemia loads are low. Conversely, facilitation (usually 

exhibited by Anopheles species) leads to decreased numbers of developing L3 when 

microfilaraemia loads are low. Because limitation of An. gambiae sensu stricto has 

been observed in Ghana (Amuzu et al. 2010), it should also be assessed in other 

geographic locations (e.g. Mali) given the possibility of adaptation or specific mutation 

that can modify mosquito’s transmission pattern (Southgate and Bryan 1992). From 

our previous studies, in the same area, WHO criteria were met but the mosquitoes were 

still infective (infectivity rate of 0.02 %) when the MDA was stopped (Coulibaly et al. 

2015). Taking into account the entomological data and determining a threshold could 

be beneficial to be able to safely stop MDA in highly LF endemic areas.  

 

 Conclusion 

Despite a dramatic and stable decrease in the prevalence of infection in the older age 

groups and in mosquitoes five years following the cessation of MDA in six villages 

previously highly endemic for LF, a non statistically significant increase in the 

prevalence of LF antigenaemia occurred among 6-7 year old children. The observed 

non significant prevalence increase within this group was in concordance with the 

entomological data that showed an absence of LF transmission and with two other LF 

testing methods. The strength and weakness of tests used in post-MDA assessments 

should be known and taken in account before a final testing strategy is selected. By 

applying multiple different tests to the assessment of transmission interruption 
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following cessation of MDA in LF-endemic areas, an integrated assessment strategy 

can be suggested that combines serologic and vector-based techniques. 
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Objective 4. Comparison of the human landing 
catch method for sampling mosquitoes against a 

human baited tent trap and Biogents sentinel 
trap in a Sudan savannah area of Mali 
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 Introduction 

The human-biting rate (ma) is obtained by multiplying the female mosquito density 

per person (m) times the number of blood meals a single mosquito take on humans (a). 

The human-biting rate, also expressed as HBR, is directly and accurately provided by 

human bait collections as the number of bites per human per period of time (night, 

month or year). When using non-human-bait mosquito collection methods, the 

parameters (a) and (m) have to be calculated independently. The parameter (a) depends 

on host preference, host availability and oviposition cycle duration. Usually, it is 

calculated by dividing the human blood index by the duration of the gonotrophic cycle 

in days. Blood-meal analyses are not needed when human-baited collection methods 

are used to estimate HBR. Human bait collections typically yield higher HBR than 

pyrethrum spray catch; although it remains unclear which method yields the best 

estimate of mosquito-human contact. 

 

In terms of vector abundance and mosquito-human contact estimation, caution is 

needed due to the inherent biases that need to be taken in account. For example, 

children do not receive as many mosquito bites as the adult baits used for the 

collection. This can lead to an overestimation of the overall human-biting rate (Bryan 

and Smalley 1978; Carnevale and Molinier 1978; Port et al. 1980). Additionally, not 

taking in account the time people usually spend outdoors before going to bed can lead 

to bias in the estimation of the indoor human-biting rate. Even if no definitive 

relationship has been established between the number of sleepers and the room’s 

attractiveness to vectors, unfed mosquitoes are more attracted to rooms with more 

sleepers (Haddow, Gibbins, and Gibbins 1942).  

 



125 
 

Transmission potential can be determined by multiplying the number of infective 

larvae (L3) recovered by the average human biting rate of the same vector for a 

specified period of time and dividing this by the number of dissected mosquitoes 

(Rwegoshora et al. 2005). This method combines important vector and parasite 

characteristics in a unique measure of the likelihood of monthly or yearly LF 

transmission. A small decrease in the biting rate can translate into a huge decrease in 

the transmission potential because the transmission potential is determined by 

multiplying the mosquito biting rate by the infectivity rate. At equal infectivity rate, 

lower biting rate can then considerably decrease the transmission potential. Local 

environmental conditions also affect transmission: rainfall, temperature, humidity and 

soil type can all affect the production of breeding sites and the survival of adult 

mosquitoes.  

 

Thus, the scenario is complex given the high number of genera and species involved 

in LF transmission, each vector–parasites combination having different characteristics 

sometimes in the same ecological area. In West Africa, for example, it has been 

observed that An.gambiae s.l transmits LF up to a certain period from which  

An.funestus take over. When the density of the first begins to decrease, that of the 

second starts to increase. This maintains a certain level of transmission throughout the 

transmission season (Coulibaly et al. 2013; Toure 1979). 

 

GPELF interventions are expected to lead to a decrease to less than 1% of the human 

microfilariae carriage rate or <2% for W. bancrofti antigen prevalence (within the 

population > five years old) at the follow-up survey that takes place about six months 

after the fifth MDA round. If this condition is satisfied, a final MDA can be done 
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followed by the TAS that will check the infection rate in children between 6-7 years 

old or those from the first and second grade if the primary school crude enrolment rate 

is higher or equal to 75% (WHO 2013b) . 

 

One of the main challenges for GPELF has been the monitoring of transmission 

intensity during and after MDA. Since stopping transmission relies primarily on MDA 

and vector control in areas where MDA alone failed or is taking too long to achieve 

the elimination (WHO 2013b), vector control and the use of xenomonitoring as a 

monitoring tool are an important component of post MDA surveillance in the LF 

elimination process. Thus, a safe and effective way of collecting mosquitoes at the 

community level that is representative of the vector fauna is required (Pedersen et al. 

2009). 

 

Studies comparing human-baited tent traps to HLC found good correlation between 

the yields of these two collection methods when studying malaria vectors (Govella et 

al. 2009, 2011). LF is unique because it is transmitted by four genera of mosquitoes 

including Anopheles, Culex, Aedes and Mansonia. Anopheles mosquitoes are the 

principal vectors in rural areas in Africa, but Culex species play an important role in 

LF transmission in urban communities in East Africa. Mansonia has also been 

incriminated as a vector of LF in Ghana (Ughasi et al. 2012). Despite this, the value of 

the different traps in sampling the vectors of LF has not been studied previously. The 

BGST have been included in this study because of their efficiency in sampling 

culicidae. 
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The BGST is essentially a collapsible, white fabric container with an opening that is 

partially covered by white gauze. With a diameter of 36 cm and a height of 40 cm, the 

trap has a fan that sucks air into the trap through a black catch pipe. The airflow draws 

approaching mosquitoes into a catch bag (Figure 6.1). 

 

To date, HLC is the most frequently used method for Anopheles collections in many 

endemic areas of West Africa, due in large part to the fact that it mimics the natural 

situation of mosquitoes trying to bite humans. HLC, however, raises ethical concerns 

including the possibility that infected mosquitoes can bite the collectors (Govella et al. 

2010; Service 2009; Sikaala et al. 2013). Additionally, HLC is labour intensive and 

the mosquito yield is dependent on the collector’s attractiveness to mosquitoes, ability 

and experience (Sikaala et al. 2014). Thus, despite the fact that most of the existing 

mosquito data were generated using this method, its use is controversial and many 

ethics committees are reluctant to approve its use for sampling mosquitoes (Figure 

6.2). 

 

To overcome these issues, alternative trapping methods have been explored with 

regard to ease of use, operator independence, cost of implementation and safety for the 

operator. Human-baited tent traps, like ITTC, represent alternative collection methods 

that, like HLC, allow fresh specimen collection for live dissections and adequate 

storage for PCR or RT-PCR processing. ITTC has been reported to have yields more 

similar to those of the HLC as compared to several other methods (Govella et al. 2011, 

2010; Krajacich et al. 2015) (Figure 6.3).  
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Ideally, examination of vector abundance, distribution, species composition and 

infection rate should be assessed prior to initiation and at the end of MDA. Several LF 

endemic countries have stopped or are about to stop MDA in many implementation 

units (districts). Given the increasing evidence for the importance of the association 

between vector competence and outcome of interventions against LF, effective vector 

sampling is becoming increasingly important (Gambhir et al. 2010). Most of the data 

on ITTC are from Tanzania (Chaki et al. 2012; Govella et al. 2011, 2010; Krajacich et 

al. 2015), Zambia (Sikaala et al. 2013) and Kenya (Mukabana et al. 2012) that are 

populated by mosquito species other than members of the An. gambiae complex, which 

is the predominant one in many West African countries. The BGST, a CO2 or human 

odor baited trap, has been shown as a quite good alternative sampling tool for An. 

darlingi and Culex in Suriname (Maciel-de-Freitas et al. 2006) but turned out to be 

weak in collecting An. aquasalis in the same country (Schmaedick et al. 2008). So, it 

may be good at collecting An. gambiae and An. funestus complexes, the main vector 

of LF in Mali. 

 

None of the prior studies compared the collected Anopheles infection rate for W. 

bancrofti and P. falciparum. To confirm the good reported correlation between ITTC 

yields and that of HLC in West African settings, this chapter assesses alternative LF 

vectors collection methods such as the BGST and a human baited tent trap, ITTC, and 

how they compare to the HLC in two villages in Mali that have different mosquito 

densities in the context of MDA impact on LF endemicity and transmission levels after 

the fifth MDA round.   
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     Figure 6.1 Biogents sentinel trap 
 

 

A: Mosquito sucking 
fan of a Biogents  

sentinel trap 
(BioGents, 
Regensburg, 
Germany, http://ww
w.biogents.com/) 
with BG Lure 
(BioGents, GmbH, 
Regensburg, 
Germany, http://ww
w.biogents.com/)  

B: Mosquito collection 
bag in a Biogents 
sentinel trap 

C: An operating 
Biogents sentinel 
trap 
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Figure 6.2 Mouth aspirator for human landing catch 
 

 

A: A colluzi and Petrarca 
type mouth aspirator for 
HLC with its different 
parts including in the 
middle a cardboard paper 
soup cup whose basis is 
replaced by a net in order 
not to block the air flow 
produced by the collector 
sucking. 

B: A mouth aspirator ready 
to operate 

 

C: A collector acting as 
bait to collect mosquito 
trying to bit his legs 
using a mouth aspirator 
and a lighting lamp 
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Figure 6.3 Ifakara tent trap type C 
 

B: The different parts 
of a tent trap type C 

C: An operating tent 
trap type C with 
protected human bait 

A: Picture from Govella 
et al, 2010 showing the 
Ifakara tent trap type C 
design with dimensions 
in millimeters. 
Mosquitoes get into the 
trap through 6 funnel 
shaped entrances (2 on 
each side of the 
rectangle length and 
one on each width of 
the rectangle). Each 
entrance is maintained 
by a wire bar that has 
soft caps outside of the 
plastic rings, forming 
an inner small aperture 
of the funnel end 
(Govella et al. 2010).  
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 Methods 

 Study site identification and characteristics 

Kolondieba district has an estimated population of 216,260 inhabitants distributed over 

205 villages. The study was conducted in the villages of Bougoula (1,906 inhabitants) 

(longitude 11.045155758 and latitude -6.982963281) and Boundioba (3,201 

inhabitants) (longitude 11.04218429 and latitude -6.984337661) that are located ~ 15 

km apart, 276 km at the south of Bamako in the district of Kolondieba, region of 

Sikasso. This area has the highest annual rainfall in the country, ranging from 1,200 to 

1,500 mm, with a rainy season that extends from July to December. Subsistence 

agriculture is the main occupation followed by panning for gold and wood harvesting 

from the forests. The district had already received five consecutive annual MDA 

rounds with ~80% annual epidemiological coverage rate when the present study was 

initiated in 2011. The endemicity levels of the study villages before MDA were 

unknown, although the sentinel site representing both villages, another neighbouring 

village, was highly endemic before the initiation of MDA with a W. bancrofti anigen 

prevalence rate of 60% in 2000) (Dembele M, personal communication, June 2014). 

The two study villages share several important characteristics (climate, vegetation and 

housing style, ethnic group composition, and socio-cultural and health care seeking 

behaviours), despite the existence of a permanent backwater in Boundioba (but not 

Bougoula) that is an important potential larval habitat for mosquitoes.  

 

 Study Design  

A longitudinal study with monthly mosquito collections was conducted from July to 

December in 2011 and 2012 in the two study villages to compare the ITTC and BGST 
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to the commonly used HLC in this previously LF endemic area. Mosquito collections 

were conducted three times a month in each study village in 2011 and six times a 

month in 2012 (in order to increase the number of collected mosquitoes). This 

frequency was driven by logistical constrains such as the number of ITTC available 

and the long delay to have them delivered in Mali from Tanzania. 

 

 Vector collection methods 

Local teams were trained to set up the traps and collect the mosquitoes. The three 

collection tools were: 

1) The all-night HLC method - Mosquitoes attempting to feed were captured 

by adults seated on benches, with their feet and legs bared to the knee, using 

mechanical mouth aspirators and aided by light from torches. One collector operated 

indoors and the other outdoors at each collection point. These two collectors operated 

from 6 p.m to midnight before being replaced by two others who operated from 

midnight to 6 a.m   

2) The newly developed BGST- A simple suction trap constructed to use 

upward-directed air currents as well as visual cues to attract mosquitoes. The trap was 

used with a dispenser system (BG-Lure) that releases artificial human skin odours and 

needs no CO2 (Krockel et al. 2006).  

3) The ITTC - It does not require electricity or moving parts and has been found 

to be able to collect well correlated numbers of Anopheles with the HLC yields in rural 

and urban settings in Tanzania (Govella et al. 2011, 2010). An attractant, a villager, 

slept under each ITTC and was responsible for collecting the trapped mosquitoes using 

a mechanical mouth aspirator every two hours. 
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 Logistics 

Vectors were collected during the last two weeks of each collection month (from July 

to December). To control for random effects, the three trapping methods were 

implemented simultaneously at each of the three collection Zones, first in one village 

for three consecutive days and then in the other village for another three days in 2011 

and every other day in each village in 2012. All of the collections occurred between 

6:00 pm and 6:00 am at each of the three collection sites in the two villages selected 

according to the village environmental characteristics and separated from each other 

by ≥200 m. Overall, the three areas we named ‘Zones’ were at the Northern side (Zone 

A), at the middle (Zone B) and at the Southern side of the village (Zone C). One of 

them (Zone A) was close to the main breeding site in the village, the second (Zone B) 

was close to the original settlement area corresponding to the middle of the village, 

and the third (Zone C) was located close to the recently occupied area of the village. 

In each Zone, the locations for the three sampling methods were separated by ~ 100 m 

due to the relatively small size of the villages inhabited areas. Collectors worked in 

two shifts (from 18:00 to 24:00 and from 24:00 to 6:00) for the HLC and ITTC. Only 

An. gambiae s.l members were further processed because the other species are of little 

epidemiological importance (do not transmit disease or were present in very low 

numbers). Collected mosquitoes were stored in labelled screw top tubes containing a 

solution of 70% ethanol in 2011 or RNALater® solution in 2012 after sorting 

according to morphologically identified species, collection site and method. Whereas 

the specimens from 2012 were freshly stored and frozen the next day, those from 2011 

were freshly dissected for parity rate and W. bancrofti infection status in the field 

before preservation of the carcass in alcohol and storage at room temperature 

thereafter.   
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 Processing of specimens 

Infection status and species identity were determined for the 2011 specimens stored in 

alcohol using the hemalum staining technique. In 2012, the mosquitoes were sorted 

and directly stored in RNALater® solution for subsequent screening using PCR in the 

laboratory (Laney et al. 2010). Given the fact that no infective mosquito was recovered 

in 2011, the 2012 collected mosquitoes tested using PCR provided with an opportunity 

to test the same mosquitoes pools for the co endemic malaria parasite plasmodium 

faliciparum. This allowed to not only ascertain good DNA extraction but also allowed 

to compare the tree collection methods yields as related to the infection rate for one or 

both co endemic parasites.   

 

 Parity rates and survival estimation 

Mosquitoes to be dissected were kept fresh (about 100 per day per collection method) 

or preserved in 70% ethanol for future staining for W. bancrofti larval stages 

identification using Mayer's acid haemalum technique before being individually 

dissected under a dissecting microscope (Laurence and Pester 1961). Female Anopheles 

were individually placed on a slide into a drop of saline and dissected using a dissecting 

needle to remove the ovaries from the abdomen. A stereomicroscope (X40) was used 

to observe the tracheole structure. Parity was determined by checking tracheole 

structure according to the method described by Detinova and Gillies (Detinova and 

Gillies 1964). Daily survival rates were calculated by Davidson’s method based on the 

parity at the power of one divided by the duration of the gonotrophic cycle in days 

(Davidson 1954) and were equal to the cube root of the parity rate  of the gonotrophic 

cycle (Davidson 1954). We used the gonotrophic cycle duration of three days observed 
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in our insectary at the Faculty of Medicine of Bamako for Anopheles females collected 

in the study villages and reared for other experimental purposes (unpublished data). 

 

The freshly dissected mosquitoes in 2011 had the ovaries removed and examined for 

parity status according to Detinova’s method (Detinova and Gillies 1964). For W. 

bancrofti larval stages recovery, the head, thorax and abdomen were examined 

separately in three drops of saline water using a stereomicroscope at X 200. The larval 

stages were identified according to the criteria of Nelson (Nelson 1959). The mosquitoes 

collected in 2012 were stored in pools of one to 20 females on an RNAlater® solution 

(Laney et al. 2010) before a processing with a PCR technique for parasite DNA 

identification as previously described by (Rao et al. 2014). 

 

 Fresh specimen and dissection techniques 

Hemalum staining is a standardized mosquito staining procedure that involves a series 

of 30 min immersions of the mosquitoes in 70%, 55% and 25% alcohol solutions 

(Nelson 1958). Tubes containing approximately 20 mosquitoes are then stained in 

hemalum (Mayer’s) stain (VWR, West Chester, PA) following a modification of 

Nelson (1958) for seven days before immersion in distilled water for three days 

(Nelson 1958). The stained mosquitoes were then stored in glycerol before dissection 

to identify larvae of W. bancrofti. The dissection was done using a dissecting 

microscope by macerating the head, thorax and abdomen of the individual mosquito 

on a slide and covering it with a coverslip for observation under a stereomicroscope 

(Service 1993). 
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 Ethics statement 

A collective village-wide oral consent was obtained from village elders, and all 

mosquito collectors signed an individual written consent. The study protocol and 

consent forms were approved by both the IRB of the LSTM (reference#10.88RS) and 

that of the Malian National Institute of Research in Public Health, Bamako, Mali 

(reference #9/11/CE-INRSP). 

 

 Data management and analysis 

 In the field, mosquito identification and dissection results were noted on specific data 

recording sheets. The recorded data were later entered into Microsoft Access dataset 

and analysed using SPSS version 14 (SPSS Inc., Chicago, IL) and GraphPad Prism 

software version 5 (GraphPad Software, La Jolla, CA). The collection methods were 

compared in terms of correlation mosquito yields using non-parametric Spearman 

correlation test and the number of mosquito collected per night per trap over the study 

period, while the parity rate and overall proportions of An. gambiae s.l were compared 

using their 95% confidence intervals. A simple Spearman linear regression was done 

using the yields of each individual collection round for each year and over the two-

collection years to assess the relationship between the HLC yields and those of each 

of the two other mosquito collection methods.  

A generalized linear mixed model, also called the random effects model (Boussari et 

al. 2012; Breslow and Clayton 1993), was used to assess the relative collection rates 

of the different collection methods as compared to the HLC. Village and trap type were 

included as fixed effects in the model and collection date was included as a random 

effect. A negative binomial model was fitted as there was evidence of over dispersion 

in the data. The confidence level was set at 95% for all statistical tests. For the vector 
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infection level assessment, the PoolScreen software version 2 was used to determine 

the maximum infection prevalence likelihood (MIPL) and its 95% confidence interval 

(Katholi and Unnasch 2006).  



139 
 

 

 Results 

 Mosquito species composition and abundance by village, collection traps 

and time 

In term of mean number of mosquito per person per night, in 2011, based on individual 

collection rounds yields, Culex spp had a significantly higher density in Boundioba 

(13 with 95% CI [5.24-20.85]) as compared to Anopheles gambiae complex (2 with 

95% CI [0.82-2.99]); In Bougoula, a different scenario was observed with comaparable 

mean densities for the two species with 8 [5.05-10.6] versus 11 [5.89-16.73], 

respectively for Culex spp and Anopheles gambiae complex (Figure 6.4). 

 

 The percentage of Anopheles gambiae complex members from the total collected 

mosquitoes varied significantly by capture method. In 2011, An. gambiae complex 

mosquitoes represented 58.3% [55.92-60.55] of the total collected by HLC followed 

by the 40% [37.75-42.35] by ITTC and only 1.7% [1.18-2.41] by BGST. The same 

trend was observed in 2012 with 54.3% [51.71-56.89], 45.1% [42.48-47.66] and 0.6% 

[0.31-1.16] Anopheles captured by the HLC, the ITTC and the BGST, respectively. 

Overall, in the 2 villages, the BGST collected more Culex spp each year than the two 

other methods while, HLC collected more Anopheles gambiae complex than ITTC 

each year for the two villages combined) (Table 6.1). The vector density expressed in 

mean number of mosquito per person per night was higher for Anopheles gambiae 

complex members than Culex in Bougoula in 2011 and 2012 (Figure 6.4). The three 

collection methods showed comparable mean monthly numbers of mosquito per 

collection round given their overlapping 95% confidence intervals (Figure 6.5). 
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Table 6.1: Collected mosquitoes distribution per collection method in the two villages of the Kolondieba district in 2011 and 2012 

Species 
collected 

 

Total 
collected 

(%) 
HLC % [95% CI] BGST % [95% CI] ITTC % [95% CI] 

Culex 2011 

Bougoula 
1,033 

(37.50) 
27 (2.6) [1.76- 3.72] 917 (88.8) 

[86.73- 
90.59] 

89 (8.6) [7.02- 10.44] 

Boundioba 
1,722 

(62.50) 
22 (1.3) [0.82- 1.90] 

1,664 
(96.6) 

[95.70- 
97.41] 

36 (2.1) [1.49- 2.85] 

The 2 villages 2,755 (100) 49 (1.8) [1.33- 2.32] 
2,581 
(93.7) 

[92.73- 
94.55] 

125 (4.5) [3.81- 5.36] 

An. gambiae 
2011 

Bougoula 
1,494 

(85.57) 
844 (56.6) 

[53.97- 
58.99] 

18 (1.2) [0.74- 1.86] 631 (42.2) [39.75- 44.75] 

Boundioba 252 (14.43) 172 (68.3) 
[62.31- 
73.78] 

12 (4.8) [2.61- 7.95] 68 (27) [21.78- 32.72] 

The 2 villages 1,746 (100) 
1,017 
(58.3) 

[55.92- 
60.55] 

30 (1.7) [1.18- 2.41] 699 (40) [37.75- 42.35] 

Culex 2012 

Bougoula 
2,464 

(52.57) 
463 (18.8) 

[17.28- 
20.37] 

1,761 
(71.5) 

[69.66-
73.23] 

240 (9.7) [8.62- 10.96] 

Boundioba 
2,223 

(47.43) 
114 (5.1) [4.27- 6.11] 

2,055 
(92.5) 

[91.29- 
93.49] 

54 (2.4) [1.85-3.13] 
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The 2 villages 4,687 (100) 577 (12.3) 
[11.39- 
13.27] 

3,816 
(81.4) 

[80.28- 
82.51] 

294 (6.3) [5.61- 6.99] 

An.  
gambiae 

2012 

Bougoula 
6,368 

(81.81) 
3,474 
(54.6) 

[53.33- 
55.77] 

35 (0.5) [0.39- 0.76] 
2,859 
(44.9) 

[43.68- 46.12] 

Boundioba 
1,416 

(18.19) 
769 (54.3) 

[51.71- 
56.89] 

9 (0.6) [0.31- 1.16] 638 (45.1) [42.48- 47.66] 

The 2 villages 7,784 (100) 
4,243 
(54.5) 

[53.40- 
56.61] 

44 (0.6) [0.42- 0.75] 
3,497 
(44.9) 

[43.82- 46.03] 

An. gambiae = Anopheles gambiae complex; Culex= Culex spp; HLC= Human landing catch; BGST= Biogents sentinel trap; ITTC= Ifakara tent 
trap type C 
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Figure 6.4 Variations in the monthly yields of Anopheles gambiae s.l in 2011  

and 2012 using the three mosquito collection methods. 
The bars represent the number of mosquito collected monthly using the indicated 
trapping method in 2011 (black bars) and in 2012 (white bars) 
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6.3.2 Comparison of the Mosquito Collection Traps 

There was a strong and significant positive correlation between the HLC and ITTC 

yields of An. gambiae s.l members in both villages and over the two collection years. 

The correlation coefficients ranged from 66% to 84% and all p values were less than 

0.007 (Table 6.2). The BGST yields were never significantly correlated with those of 

the HLC in the two villages over the two collection years with all coefficients less than 

or equal to 28% (Table 6.2). All of the Anopheles collected using the three collection 

methods were dissected, and none was found to be infected.  

 

In 2011, the parity and daily survival rates were comparable for all three collection 

methods in both villages using their 95% confidence intervals. The parity and daily 

survival rates were also comparable between the two villages for each of the three 

methods using their 95% confidence intervals (Table 6.3). A significant difference was 

observed in the relative catch rates between villages (60% less for the village of 

Boundioba) and between the collection methods (20% and 98% less for the ITTC and 

BGST respectively as compared to the HLC) (Table 6.4). The Spearman linear 

regression using the combined data from the two villages over the two years showed 

that the HLC yield was equal to 28.15 plus the ITTC yield times 0.59 (Figure 6.6). 

This model had a slope significantly deviated from zero (p<10-3) and r2=0.52. The 

estimation has also been done for each village with relevant statistics (Figure 6.6). 
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Figure 6.5 Variations in the mean mosquito density in the two study villages over 
the study period showing the 95% confidence intervals 
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Figure 6.6 Variations in the correlation level between the monthly yields of 
Anopheles gambiae s.l from July to December in 2011 and 2012 using the three 

mosquito collection methods using a simple linear regression 
 

Legend: Relationship between the HLC monthly yields of An. gambiae s.l and those 
of the ITTC in Bougoula (A) and in Boundioba (B) and in the villages combined (C). 
The black dots represent the monthly yields. The solid lines represent the linear 
regression line while the dashed lines represent the upper and lower limits of the 95 % 
confidence interval.  

A:  HLC yield for An. gambiae s.l in Bougoula = 0.50 x ITTC yield + 37.39 

B:   HLC yield for An. gambiae s.l in Boundioba = 0.72 x ITTC yield + 0.69 

C:   HLC yield for An. gambiae s.l (2 villages combined) = 28.15 + [0.59 * ITTC 
yield]. 
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Table 6.2: Variations of the correlation level between the yields of the three 
methods per village and collection year 
 

Villages and 
collection year 

Tests Correlation between the yields from 
the collection methods 

 
Spearman 
correlation 

test 

HLC-ITTC HLC-BGST 

Bougoula in 2011 R 0.74 0.28 

P < 0.001 0.16 

Bougoula in 2012 R 0.74 0.08 

P <0.001 0.68 

Bougoula over the 2 
collection years 

R 0.84 0.12 

P <0.001 0.35 

Boundioba 2011 R 0.66 0.23 

P 0.007 0.40 

Boundioba 2012 R 0.74 0.10 

P <0.001 0.58 

Boundioba over the 2 
collection years 

R 0.77 0.07 

P <0.001 0.65 

 HLC= Human landing catch; BGST= Biogents sentinel trap; ITTC= Ifakara tent trap 

type C 
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Table 6.3: Variations of the Anopheles gambiae s.l parity and survival rates per 
village in 2011 
 

Collection 

methods 
Villages  Parity rate n/N (%) [95% CI] 

Survival rate 

(%) [95% CI] 

BGST 
Bougoula 17/18 (94.4) [72.71-99.86] 0.98 [0.90-1] 

Boundioba 11/12 (91.7) [61.52-99.79] 0.97 [0.85-1] 

HLC 
Bougoula 706/844 (83.6) [80.98-86.08] 0.92 [0.93-0.95] 

Boundioba 153/172 (89) [83.29-93.22] 0.95 [0.94-0.98] 

ITTC 
Bougoula 533/631(84.5) [81.4-87.21] 0.93 [0.93-0.96] 

Boundioba 54/68 (79.4) [67.88-88.26] 0.96 [0.88-0.97] 

n/N, number parous divided by the total number dissected; HLC=Human landing 

catch; BGST= Biogents sentinel trap; ITTC= Ifakara tent trap type C 

 

Table 6.4: Variation of the relative catch of the different collection methods yields 
according to the trap type and the village 
 

 

Fixed effect 

Relative 

catch 

95% CI p-value 

Trap type    

HLC (reference type) 1   

BGST 0.017 [0.012, 0.023] p<0.0001 

ITTC 0.712 [0.593, 0.8551] p=0.0003 

Village    

Bougoula 1   

Boundioba 0.404 [0.1753, 0.9322] p=0.0336 

HLC= Human landing catch; BGST= Biogents sentinel trap;  

ITTC= Ifakara tent trap type C 
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Table 6.5 shows that only one pool was found infected for W. bancrofti from both HLC 

and ITTC Anopheles yields in the village of Bougoula, with respectively 0.03% 

[0.0009% – 0.2%] and 0.04% [0.001% – 0.2%] as MIPL with 95% confidence 

intervals. The BGST collected Anopheles were not found infected but the 95% 

confidence intervals  of the three collection methods yields’ MIPL were largely 

overlapping indicating that they are comparable. No W. bancrofti infected pool was 

recovered in the village of Boundioba in 2012. From Table 6.6, it appears that P. 

falciparum was found in several pools from each study village in 2012 with 

comparable overall MIPL of 2% [95%CI (1.6% – 2.4%)] and 1.3% [95%CI (0.7% – 

2.1%)] respectively in Bougoula and Boundioba. In Bougoula, a significantly higher 

MIPL was observed for the HLC collected Anopheles 3% [95%CI (2.3% – 3.8%)] as 

compared to that for ITTC, which was 1% [95%CI (0.9%-1.4%)]. In Boundioba, the 

HLC reported the highest MIPL but the three methods showed comparable 95% 

confidence intervals for P. falciparum MIPL (Table 6.6). 
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Table 6.5: Variation of the likelihood of Anopheles gambiae s.l infection prevalence likelihood with  
Wuchereria bancrofti in 2012 per collection method and per village 

Bougoula 2012                                                                        

Collection 
method #Tested # pools pools size range  

#positive 
pools 

Wb infection prevalence 
likelihood* [95%CI] 

HLC 3,460 185 [1-20] 1 0.03% [0.0009% – 0.2%] 

ITTC 2,836 157 [1-20] 1 0.04% [0.001% – 0.2%] 

BGST 33 10 [1-7] 0 0% [0% – 6%] 

Total 6,329 352 [1-20] 2 0.03% [0.004% – 0.1%]  

Boundioba 2012                                                                        

Collection 
method #Tested # pools pools size range 

#positive 
pools 

Wb infection prevalence 
likelihood* [95%CI] 

HLC 718 49 [1-20] 0 0% [0% – 0.3%] 

ITTC 637 47 [1-20] 0 0% [0% – 0.3%] 

BGST 9  5 [1-3] 0 0% [0% – 19.2%] 

Total 1,364 101 [1-20] 0 0% [0% – 0.1%] 
HLC= human landing catch; ITTC= Ifakara tent trap type C, BGST= Biogents sentinel trap, Wb= W. bancrofti,                                  
CI= confidence interval; #= number 
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Table 6.6: Variation in the likelihood of Anopheles gambiae s.l infection prevalence likelihood with Plasmodium  
falciparum in 2012 per collection method and per village 

Bougoula 2012                                                                        

Collection 
method #Tested # pools pools size range  

#positive 
pools 

Pf infection prevalence 
likelihood* [95%CI] 

HLC 3,460 185 [1-20] 79 3% [2.3% – 3.8%] 

ITTC 2,836 157 [1-20] 25 1% [0.9% – 1.4%] 

BGST 33 10 [1-7] 1 3% [0.09% – 14.7%]

Total 6,329 352 [1-20] 105 2% [1.6% – 2.4%] 

Boundioba 2012                                                                       

Collection 
method #Tested # pools pools size range  

#positive 
pools 

Pf infection prevalence 
likelihood* [95%CI] 

HLC 718 49 [1-20] 11 2% [0.8% – 3.1%] 

ITTC 637 47 [1-20] 5 1% [0.3% – 1.9%] 

BGST 9 5 [1-3] 0 0% [0% – 19.2%]

Total 1,355 101 [1-20] 16 1.3% [0.7% – 2.1%] 
HLC= human landing catch; ITTC= Ifakara tent trap type C, BGST= Biogents sentinel trap, Pf= P. falciparum;                               
CI= confidence interval; #= numbe
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 Discussion 

  Vector species composition and variation between the two villages 

An. gambiae s.l were more frequent in the village of Bougoula in both collection years 

(Figure 6.5)), at each assessment point and using any collection method (data not 

shown). Such a dramatic difference in mosquito density between two villages 

separated by only 17 km in the same region could be due to several factors, including 

differences in the villages’ ecological conditions, breeding site dispersal and features, 

housing characteristics, and the frequency and abundance of rain (Animut, Balkew, 

and Lindtjørn 2013; Munhenga et al. 2014). The level of education, behaviours and 

occupations (type of crops and agricultural methods used) of the population can also 

impact vector density, although these characteristics are very likely to be similar 

between the two study villages. Regardless of the reason for the observed differences 

in vector density, this type of variability requires further study as it may impact both 

the success of MDA and the implementation of surveillance strategies post-MDA.  

  

Over the two years of the study, BGST yields were made of Culex complex members  

more frequently than the other two collection methods. Given the fact that Culex 

complex members are not vector of LF in West Africa, their role is not important in 

term of LF transmission assessment. Nonetheless, given the high number of Culex spp 

collected, even if they do not transmit LF, they may constitute a useful source for 

monitoring vector-human contact especially in areas where few Anopheles species 

exist (urban areas of most endemic African countries) and where several rounds of 

MDA have lowered both the LF infection and microfilaraemia rates. Finding Culex 

spp. infected with any stage of W. bancrofti DNA may presage an increase or re-

emergence of LF transmission (Chadee, Williams, and Ottesen 2002). 



152 
 

 

 Collection methods’ comparison 

The ability to follow the impact of entomological interventions or the re-emergence of 

an infection previously interrupted or dramatically reduced requires repeated 

assessments over a period of time. However, since vector density has important 

implications with respect to the determination of most transmission parameters, the 

use of different mosquito collection methods can make such comparisons difficult. Of 

the two trapping methods tested, the ITTC showed better correlation with the HLC 

than the BGST with respect to total yields, frequency trends and collected vector parity 

rates for An. gambiae complex over the transmission season. In fact, the BGST 

collected predominantly Culex complex members, which do not transmit LF in the 

study region. 

 

Both the HLC and ITTC collected relatively old mosquitoes, which are more likely to 

participate in disease transmission, with a survival rate >92 and a parity rate of > 83%. 

The high parity rates of mosquitoes captured with these two methods indicate the 

suitability of the collected fauna for transmission assessment (Jensen et al. 1998; 

Lindsay et al. 1991). The proposed linear regression model provides an estimate of the 

vector density based on HLC using data from an ITTC, allowing comparisons between 

historical HLC data and new data acquired using an ethically more acceptable method 

and addressing the need to standardize operational vector sampling methods, as raised 

by Wang et al. (Wong et al. 2013). 

 

In terms of infected mosquito identification, the HLC showed a higher MIPL for P. 

falciparum in Bougoula as compared to the ITTC. For W. bancrofti and in the village 
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of Boundioba, the collection methods were still comparable with respect to the 

infection MIPL. There seems to be an underestimation of P. falciparum when infection 

prevalence as well as vector densities are high. Such a scenario is likely to be more 

common for malaria as compared to LF due to the high impact of the MDA on LF 

endemicity levels in many endemic areas.  

 

Overall, in each village, the three methods had comparable MIPL except in Bougoula 

where the HLC it had significantly higher one than ITTC. This may be due to the 

sample sizes that certainly may need to be higher to achieve statistical significance for 

the observed phenomenon especially in the village of Boundioba. 

 

In most endemic areas, LF elimination programmes have been ongoing for several 

years and there is an increased need for surveillance prior to and after stopping MDA. 

Although the ideal package for surveillance has not yet been determined, it will likely 

be a combination of blood and vector surveillance on a regular basis with sustained 

community participation. The identification of the most cost-effective, safe and 

reliable vector surveillance method is, therefore, of high importance. Whereas the yield 

of Anopheles using HLC was twice that of the ITTC over the two years of the study, 

the ITTC uses one collector per collection point as compared to two for the HLC– one 

indoor and the other outdoor. Additionally, the cost of operation is higher for the HLC 

because of the need for training and expertise, especially in the setting of a community 

monitoring system that would be part of an integrated vector management system in 

endemic areas (Sikaala et al. 2014). Despite the initial cost of the tents which can pose 

a challenge, the ease of implementation, the possibility to use another type of bait in 

the tent (natural or artificial) (Jawara et al. 2009; Mukabana et al. 2012), the lack of 
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operator impact on the efficiency of the method, the capacity to collect both Culex and 

Anopeles complexes for xenomonitoring purposes, and the absence of ethical issues 

are also important factors in favour of the ITTC as compared to the HLC (Sikaala et 

al. 2014). 

 

 Conclusion 

Anopheles collection using the ITTC provides data that are well correlated to those 

from the HLC, independent of the vector density. Consequently, ITTC provides an 

ethically acceptable alternative to HLC for use in monitoring mosquito vectors as part 

of entomological surveillance during and following MDA for LF. Furthermore, the 

relationship established between ITTC and HLC yields will allow the comparisons 

between new and historical data. Insights on the collected females’ infection rate for 

the commonly transmitted parasitic diseases would be important. 
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Objective 5. LF transmission intensity after six 
MDA rounds in two neighbouring villages with 

different Anopheles densities 
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 Introduction 

The MDA was instituted as early as 2005 in Mali starting with the region of Sikasso that 

was the most endemic of the country. Within Sikasso administrative region, the district 

of Kolondieba was one of the most heavily affected by LF since it has the highest number 

of LF chronic manifestations in the country according to the Malian NPELF (Dr 

Dembele, NPELF Manager, Personal communication January 2014).  

 

This district is one of the two IUs that ever failed a pre-TAS in Mali. In 2010, the IU of 

Kolondieba failed with a microfilaraemia prevalence of 9.8% (49/500) for a threshold 

of < 1% within the > 5 year old in the sentinel and spot check sites of the implementation 

unit (IU) after five annual MDA rounds using ALB/IVER drugs combination. As 

recommended, two additional MDA rounds were done before a new assessment by the 

NPELF.  

 

Ecological differences were observed between two villages of Kolondieba district with 

significantly different mosquito vectors frequencies, the village of Bougoula and that of 

Boundioba (chapter 6). None of these villages were a sentinel or spot check site when 

the IU (Kolondieba district) failed to the pre-TAS. Given the focal nature of LF, an IU 

that passes the pre-TAS can have some villages or other subdivisions that are still having 

relatively high microfilaraemia prevalences. 

 

The WHO directions for such scenario were still not very detailed until the recent report 

of an ad hoc meeting that provided in December 2015 with more guidelines in case of 

TAS failure. A major component of these guidelines is the elucidation of the failure 

causes and the development of suitable alternative strategies (WHO 2016a).   
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In line with that, more evidence is needed in areas that fail to the pre-TAS/TAS or are 

having less than expected effect of MDA in order to build strong recommendations for 

these hotspots. 

 

In order to investigate at a fine scale two settings with very different vector density and 

check if there is any added value to the use of the newly available antibody test for the 

Wb123 specific antigen of W. bancrofti L3 (Steel et al. 2012), a cross sectional study 

was conducted in the two villages of Kolondieba. The hypothesis of this chapter was 

that in villages with different vector densities, after six mass drug administration rounds, 

lymphatic filariasis endemicity level may be higher in the village with a higher vector 

density. 

 

 Methods 

 Study Sites 

This study was conducted in Bougoula and Boundioba, two neighbouring villages 

described in the chapter 6 of the thesis.  

The study villages were divided in 3 differents zones as described in chapter 6 of this 

thesis. 

 

 Study design 

This was a longitudinal study with three visits in 2011, 2012 and 2014 for the 

parasitological aspect and a monthly visit from July to December in 2011 and 2012 for 

the entomological aspect. It was a community-based survey with blood testing in 

children >5 years old.  
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 Parasitological and clinical data collection 

7.2.3.1 Census 

A complete census of the two villages’ inhabitants was performed at the beginning of 

the study. All of the inhabitants were recorded with their name, surname, parental 

affiliation with the head of the family and their room coordinates using a GPS.  

 

7.2.3.2 Blood samples collection and processing  

All blood collections occurred at night (10 pm to 2 am). Eligible consenting volunteers 

for the blood collection underwent a finger prick to collect nocturnal peripheral blood 

for three thick smears of 20 microliters each (60 microliters) and a Whatman® paper 

filter (60 microliters). In 2014, only the ICTs (100 microliters) were used in one village 

(Boundioba) to check the LF infection trend. All of the parasitological survey targeted 

all volunteers > 5 years old as recommended for the follow-up survey after five rounds 

of effective MDA (WHO 2011b). 

 

The blood collected on filter paper was left to dry in the field before being placed in a 

labelled envelope. The envelopes were stored in a hermetically-sealed plastic box with 

a desiccant (Silica gel) avoiding direct contact between the blood and the dessicant. The 

slides were stored in plastic boxes in a dry place.  Slides were stained with a solution of 

Giemsa before observation using a stereomicroscope at X20 and confirmation with X40 

or X100.  

 

ICT results were marked on the card ten minutes after the blood sample application as 

recommended by the manufacturer. CFA detection using blood eluted from the filter 

spots was performed using the Og4C3 TropBio ELISA (TropBio, Townsville, 



159 
 

Australia) as previously described by Das et al (2012). Briefly, one dried blood spot 

on filter paper was cut and stored overnight at 4 °C in a solution of phosphate buffered 

saline (PBS) mixed with 0.05% Tween buffer. 100 μl of the eluted solution in 300 μl 

of sample diluent was boiled at 100 °C for five minutes and 50 μl of the boiled eluted 

solution was incubated overnight on a pre-coated plate. The following day, a washing 

buffer was used to wash the plate before adding 50 μl of rabbit anti-Onchocerca 

antibody in each well for an hour of incubation. After that, the plate was washed three 

times before reading with an ELISA reader machine. A spectrophotometer was used 

at 450 nm for the optical density determination. The value of 32,000 was used as the 

cut-off of positivity. 

 

7.2.3.3 Medical examination 

This assessment consisted of a brief examination of the patient in a discreet room based 

on a short interview about the subject’s medical history. Concomitant abnormal 

conditions were treated or referred to the local nurse if found. If these conditions 

precluded a blood collection, the volunteer was treated and excluded from the blood 

collection component of the study. 

 

7.2.3.4 Co endemic infection assessment 

In the study area, 2 parasitic diseases are co endemic with LF, malaria and 

Mansonellosis. These 2 parasitic infection were studied due to several similarities they 

had with LF. 

Malaria has the same vectors as LF in Mali,  the Anopheles gambiae and funestus 

complexes. Additionally, while expecting relatively low infection and infectivity rates 

for W. bancrofti on collected Anopheles vectors due to several rounds of mass drug 
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administration, P. falciparum  finding on these vectors were expected because of the 

high endemicity level of malaria in the study area. Malaria remains a major cause of 

death and morbidity in endemic areas (WHO 2016c), with infections by P. 

falciparum accounting for the majority of malaria mortality, though the less virulent P. 

vivax, and probably P. ovale, also contribute significantly to morbidity. These three 

plasmodium species exist in Mali (Williams et al. 2016). Plasmodium sporozoites 

injected by an infected female during a blood meal will migrate to the liver and the 

hepatic stage of the parasite life cycle starts by hepatocytes invasion and multiplication 

within them before the differentiation into schizonts containing thousands of hepatic 

merozoites. The obtained merozoites are later released into the blood where they 

initiate the erythrocytic stage characterized with the invasion and replication within 

red blood cells. Some of these asexual blood parasites differentiate into gametocytes 

that will ensure parasite transmission to the mosquito vector during another blood 

meal. A different life cycle within mammalian hosts is observed for P. vivax and P. 

ovale. Some sporozoites, once in the liver, do not develop immediately into schizonts, 

but remain at an uninucleate stage, in a quiescent form named hypnozoite, before 

resuming hepatic development on the impulse of still unknown factors. They can then 

cause relapses weeks, months or even years after the initial infection (Galinski, Meyer, 

and Barnwell 2013). 

The vectors of M. perstans are biting midges (Diptera: Ceratopogonidae) belonging 

to the genus Culicoides. The females mainly bite around dawn and dusk although 

biting also occurs during day or night (Simonsen, Onapa, and Asio 2011). The mature 

mated female worms release live Mf that circulate without any specific periodicity 

(night or day time) in the blood often in high numbers. They measure about 190–200 

by 4.0–4.5 μm. The mf are ingested by the vectors during blood meals and undergo a 
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maturation process. They migrate through the stomach wall to the thoracic muscles 

where further development takes place. They shorten and thicken to become ‘sausage 

forms’, but from the fifth day they increase considerably in length. Although not 

studied, M. perstans most likely has two moults in the vector like other filariae. The 

mature infective stage larvae (length 750–900 μm) may be seen in the proboscis 7–9 

days after infection of the vector. The larvae escape from the proboscis by stretching 

and finally bursting the terminal membranous portion of the labrum (Sharp 1928). 

 

 Entomological data collection 

Monthly mosquito collections were conducted from July to December in 2011 and 2012 

as previously described in the chapter 6 of this thesis.  

 

 Mapping and spatial analysis 

The geographical coordinates (latitude and longitude) of each individual/participant’s 

household were determined using a GPS device. This was for assessing the magnitude 

and geographical distribution of LF vectors and infected humans and their households 

in the two study villages. Using the GIS software ArcGIS (ESRI 9.2, Redlands, CA), 

the data were extracted from the Garmin GPS. 

 

 Statistical analysis 

As detailed in chapter 6 of this thesis, the same entomological analyses were used as 

needed. For the parasitological data, the same software was used for the proportions and 

continuous variables comparison between the two study villages. In 2012, some of the 

antigen and Mf positive subjects were not tested again but their data have been used for 

the 2012 data analysis since they participated in another study between the two surveys 
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that confirmed their status. The 95% confidence intervals were used for statistical 

comparisons between point estimates. 

 Results 

 Study population description 

A total of 958 subjects were included in the parasitological aspect of the study with 532 

from the village of Boundioba and 426 form that of Bougoula (Table 7.1). There were 

more females in both villages, with 70.1% and 66.9% respectively in Bougoula and 

Boundioba. The sample median age was 26 years (Table 7.1).  

 

Table 7.1: Study population characteristics in 2012 
 

Characteristics 

Villages 

Bougoula (N=532) Boundioba (N=426) 

Sex 

Male 159 (29.9%) 141 (33.1%) 

Female  373 (70.1%) 284 (66.9%) 

Age group 
Median age for the study 
population  26 years 26 years 

6-25 years 240 (45.1%) 231 (54.2%) 

26 years and above 292 (54.9%) 195 (45.8%) 
   N=Number of subjects sampled 

 

 Parasitological and clinical results in the two villages  

An overall W. bancrofti microfilaraemia prevalence of 0.8% [0.39-1.58] (8/958) was 

observed in the study population. Seven of the eight microfilaria-positive subjects were 

from zone B of the village of Boundioba, and one was from zone C. Five of the eight 

were ≥26 years old and two were in the younger age group (Table 7.2). One 9-year-old 

male with microfilaraemia was diagnosed in the village of Boundioba. He was living in 

a family where no infected adult was identified. Six of the eight microfilariae positive 
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subjects were females aged 20 to 43 years old with microfilarial loads ranging from 17 

to 383 mf per ml of blood. No microfilaria-positive subject was identified in the village 

of Bougoula (Table 7.2).  

The village of Boundioba had a significantly higher W. bancrofti Mf prevalence 1.9% 

[0.88-3.53] as compared to Bougoula where no Mf positive subject was identified 0% 

[0-0.56] (Table 7.2). The same scenario was observed for W. bancrofti antigen 

prevalence with 0.8% [0.24-1.80] (4/532) in Bougoula and 3.5% [2.06-5.61] (15/426) in 

Boundioba (Table 7.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



164 
 

Table 7.2: Wuchereria bancrofti microfilaraemia prevalence rate variations 
within the > 5 years old per village, zone, and age group in 2012 
 

VILLAGE Zone 
Age 

group 

Total 

sampled 

Wb Mf positive 
[95% CI] 

N % 

Bougoula 

A 
6-25 years 94 0 0 [0-3.14] 

≥26 years 87 0 0 [0-3.39] 

Total A   181 0 0 [0-1.64] 

B 
6-25 years 88 0 0 [0-3.35] 

≥26 years 98 0 0 [0-3.01] 

Total B   186 0 0 [0-1.60] 

C 
6-25 years 58 0 0 [0-5.03] 

≥26 years 107 0 0 [0-2.76] 

Total C   165 0 0 [0-1.80] 

Bougoula 

Total 
    532 0 0 [0-0.56] 

Boundioba 

A 
6-25 years 50 0 0 [0-5.82] 

≥26 years 26 0 0 [0-10.88] 

Total A   76 0 0 [0-3.87] 

B 
6-25 years 147 2 1.4 [0.23-4.42] 

≥26 years 128 5 3.9 [1.45-8.44] 

Total B   275 7 2.5 [1.12-4.97] 

C 
6-25 years 34 1 2.9 [0.15-13.66]

≥26 years 41 0 0 [0-7.05] 

Total C   75 1 1.3 [0.07-6.40] 

Boundioba 

Total 
    426 8 1.9 [0.88- 3.53] 

2 villages 

Total 
    958 8 0.8 [0.39-1.58] 

Wb= W. bancrofti; N= number of subjects 
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Table 7.3: Wuchereria bancrofti antigen prevalence rate variations within the > 5 
years old per village, zone, and age group in 2012 
 

    Wb= W. bancrofti; N= number of subjects 

 

VILLAGE Zone 
Age 

group 
Total 

sampled

Wb antigen 
positive [95% CI] 
N % 

Bougoula 

A 

6-25 
years 

94 1 1.1 [0.05-5.13] 

≥26 
years 

87 0 0 
[0-3.39] 

Total A   181 1 0.6 [0.03-2.69] 

B 

6-25 
years 

88 0 0 [0‐3.35] 
≥26 

years 
98 3 3.1 [0.78- 8.10] 

Total B   186 3 1.6 [0.41-4.33] 

C 

6-25 
years 

58 0 0 [0-5.03] 

≥26 
years 

107 0 0 [0-2.76] 

Total C   165 0 0 [0-1.80] 
Bougoula 

Total 
    532 4 0.8 [0.24-1.80] 

Boundioba 

A 

6-25 
years 

50 0 0 [0-5.82] 

≥26 
years 

26 1 3.8 [0.19-17.54] 

Total A   76 1 1.3 [0.07-6.32] 

B 

6-25 
years 

147 3 2 [0.52-5.45] 

≥26 
years 

128 10 7.8 [4.04-13.48] 

Total B   275 13 4.7 [2.65-7.75] 

C 

6-25 
years 

34 1 2.9 [0.15-13.66] 

≥26 
years 

41 0 0 [0-7.05] 

Total C   75 1 1.3 [0.07- 6.40] 
Boundioba 

Total 
    426 15 3.5 [2.06- 5.61] 

Total for the 
2 villages  

    958 19 2 [1.23- 3.02] 
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The village of Boundioba had a filarial antigen prevalence rate of 3.5% [2.06- 5.61] 

(15/426) significantly higher than the one in Bougoula with 0.8% [0.24-1.80] (4/532). 

In Bougoula, three infected subjects were from the zone B and the fourth from Zone 

A. In terms of age, three were in the ≥26 year age group and the fourth in the younger 

age group (Table 7.3). In Boundioba, 13 of the 15 infected individuals were from Zone 

B and one from each of the two other Zones. Additionally, 10 of the 15 infected 

individuals were from the ≥26 year age group and the three remaining from the 

younger age group. No statistically significant difference was observed between the 3 

zones in Bougoula nor in Boundioba regarding W. bancrofti antigen prevalence even 

if the Zone B that corresponds to the middle of the village with the highest population 

desnity seems to have higher numbers of infected people (Table 7.3).  

In 2014, 367 volunteers were tested using the ICT in the village of Boundioba where 

microfilaria positive subjects were observed in 2012. Their average age was 19 years 

varying between 11 and 73 years old (data not shown). The mean infection rate was 

7.6% [5.23-10.69] (28/367) with comparable prevalences between the three zones in 

the village (1.5% [0.07-7.14], 8.8% [5.36-13.39] and 9.4% [4.89-16.17]) respectively 

for the zones A, B and C (Table 7.4). While the M. perstans infection was comparable 

between the three zones in each village, Boundioba had a significantly higher 

prevalence of 11.5% [8.73-14.80] (49/426) as compared to Bougoula 0.6% [0.14-1.53] 

(3/532) (Table 7.5). 

 

Clinically, two and four cases of elephantiasis were observed in Bougoula and 

Boundioba, respectively (data not shown). The recorded data for hydrocele prevalence 

were not reliable since some volunteers did not report obvious hydroceles that could be 

perceived without the subject removing his clothes.  
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Table 7.4: Wuchereria bancrofti antigen prevalence rate within the > 5 years    old 
subjects in the village of Boundioba in 2014 
 

    Age in years  ICT Positive 

Collection 
point 

Total 
sampled 

Median Min Max N % [95% CI] 

Zone A 67 33 14 61 1 1.5 [0.07-7.14] 

Zone B 194 32 11 70 17 8.8 [5.36-13.39] 

Zone C 106 31 12 73  10 9.4 [4.89-16.17] 

Total 367 32 11 73  28 7.6 [5.23-10.69] 
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Table 7.5: Manonella perstans microfilaraemia prevalence rate variations  
within the  > 5 years old per village, zone, and age group in 2012 
 

VILLAGE Zone 
Age 

group 
Total 

sampled 

Mp positive 
[95% CI] 

N % 

Bougoula 

A 

6-25 
years 

94 0 0 [0-3.14]  

≥26 
years 

87 0 0  [0-3.39] 

Total A   181 0 0  [0-1.64] 

B 

6-25 
years 

88 0 0  [0-3.35] 

≥26 
years 

98 2 2 [0.34-6.58] 

Total B   186 2 1.1 [0.18-3.51] 

C 

6-25 
years 

58 0 0  [0-5.03] 

≥26 
years 

107 1 0.9 [0.05-4.52] 

Total C   165 1 0.6 [0.03-2.95] 

Bougoula 
Total 

    532 3 0.6 [0.14-1.53] 

Boundioba 

A 

6-25 
years 

50 6 12 [5.01-23.29] 

≥26 
years 

26 7 26.9 [12.61-46.14] 

Total A   76 13 17.1 [9.86-26.82] 

B 

6-25 
years 

147 7 4.8 [2.11-9.19] 

≥26 
years 

128 21 16.4 [10.73-23.59] 

Total B   275 28 10.2 [7.01-14.19] 

C 

6-25 
years 

34 2 5.9 [0.99-18.10] 

≥26 
years 

41 6 14.6 [6.15-27.97] 

Total C   75 8 10.7 [5.08-19.25] 

Boundioba 
Total 

    426 49 11.5 [8.73-14.80] 

2 villages 
Total 

    958 52 5.4 [4.12-7] 
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 Entomological results in the two villages  

Monthly variation of An. gambiae s.l proportions, densities and infection rates by 

village  

With the exception of the month of December 2012, when three mosquitoes were 

collected in both villages, the village of Bougoula had a higher Anopheles mosquito 

proportion within the yields of each collection month as compared to the village of 

Boundioba (Table 7.6). When considering all the individual collection rounds yields 

over the study period,  a  statistically significant difference was observed each year 

between the two villages in term of overall annual Anopheles desnity (number of 

Anopheles per person per night) using all collection methods yields. In 2011, an overall 

annual density recorded in Bougoula was  13.34 [95% CI: 7.22-19.46] versus  3.5 [95% 

CI: 1.78-5.21] in Boundioba. The same scenario was observed in 2012 with  48.16 [95% 

CI: 31.54-64.78] in Bougoula and 11.42 [95% CI: 6.25-16.58] in Boundioba.  

 

In Bougoula, Culex species mean density per person per night doesn't show any 

significant monthly variations in 2011. The same scenario was observed in 2012 

(Figure 7.1).  

            

In Boundioba, Culex mean number per person per night doesn't show any significant 

monthly changes in 2011 between the month of July and that of November (which 

were the lowest as compared to the months of August, September and October). In 

contrast, in 2012, only in December the density was significantly lower than the other 

months that were still having comparable monthly densities (Figure 7.2).  
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For An. gambiae complex members, in 2011, the monthly desnities in Boundioba were 

comparables while in Bougoula, a significant monthly changes of the densities was 

observed between the months of July, September, October and November and the 

month of August when the the highest density was observed (Figures 7.2 and 7.3).   

 

In Boundioba, there was no significant difference between the 3 zones as related to the 

ABR while in Bougoula, the Zone B showed a significantly higher ABR of 242 bites 

per person per year with a 95% CI [203-280] as  compared to the two other zones of 

the village (Table7.7). For Culex species, the ABR were comparable between the three 

zones in both villages (Table7.7). In Bougoula, An. gambiae complex members had 

sigificantly higher  number of bites per year per person in each of the three zones as 

compared to any of the three zones of Boundioba. For Culex species, in 2011, the 2 

villages zones had comparable ABR in the three collection zones (Table 7.7). 
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Figure 7.1 Monthly variations of the mean mosquitoes density in the village of 
Bougoula with 95% confidence intervals 
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Figure 7.2 Monthly variations of the mean mosquitoes density in the village of 
Boundioba with 95% confidence intervals 
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Table 7.6: Monthly variation of Anopheles gambiae complex proportions in the two villages of the district of  
Kolondieba in 2011 and 2012 using the three mosquito collection methods 
 

Years 

Month July August September October November December   

Village N 
%         

95% CI 
N 

%         
95% CI 

N 
%         

95% CI 
N 

%        
95% CI 

N 
%      

95% 
CI 

N
%      

95% 
CI 

Total

2011 

Bougoula 161 
10.78 

372 
24.9 

708 
47.39 

236 
15.81 

15
1 

2 
0.13 

1,494[9.28-
12.43] 

[22.76-
27.14] 

[44.86-
49.93] 

[14.01-
17.71] 

[0.58-
1.61] 

[0.02-
0.44] 

Boundioba 10 
3.97 

84 
33.33 

43 
17.06 

114 
45.24 

1 
0.4 

0 
0 

252 
[2.03-6.96]

[27.72-
39.33] 

[12,79-
22.09] 

[39.16-
51.42] 

[0.02-
1.94] 

[0-
1.18] 

Total 171 
9.79 

456 
26.12 

751 
43.01 

350 
20.05 

16
0.92 

2 
0.11 

1,746[8.47-
11.26] 

[24.10-
28.22] 

[40.70-
45.35] 

[18.22-
21.97] 

[0.54-
1.45] 

[0.02-
0.38] 

                  

2012 

Bougoula 1,918 
30.12 

2,516
39.51 

1,774
27.86 

128 
2.01 

29
0.46 

3 
0.05 

6,368
[29-31.26] 

[38.31-
40.72] 

[26.77-
28.97] 

[1.69-
2.38] 

[0.31-
0.64] 

[0.01-
0.13] 

Boundioba 295 
20.83 

383 
27.05 

684 
48.31 

37 
2.61 

14
0.99 

3 
0.21 

1,416[18.78-
23.01] 

[24.78-
29.41] 

[45.71-
50.91] 

[1.87-
3.55] 

[0.56-
1.62] 

[0.05-
0.58] 

Total 2,213 
28.43 

2,899
37.24 

2,458
31.58 

165 
2.12 

43
0.55 

6 
0.08 

7,784[27.44-
29.44] 

[36.17-
38.32] 

[30.55-
32.62] 

[1.82-
2.46] 

[0.40-
0.72] 

[0.03-
0.16] 

N= Number of An. gambiae complex; % =percentage  
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Table 7.7: Mosquitoes density and annual biting rate variation per Zones using the HLC in the two  
villages in 2011 
 

Village Species  

Zone A Zone B Zone C 

N ABR 95 % CI N ABR 95 % CI N ABR 95 % CI 

Bougoula 
Anopheles 182 98 [79-117] 451 242 [203-280] 212 114 [93-135] 

Culex spp 8 4 [-6-14] 13 7 [-3-17] 6 3 [-5-11] 

Boundioba 
Anopheles 70 38 [20-56] 43 23 [4-42] 59 32 [10-54] 

Culex spp 3 2 [-13-17] 8 4 [-6-14] 11 6 [-3-15] 

ABR= annual biting rate; Anopheles = Anopheles gambiae complex ; Culex spp= Culex species
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In Bougoula, An. gambiae s.l were found infected with W. bancrofti in two pools out of 

the 104 tested in July with a MIPL of 0.1% [95%CI (0.01%-0.4%)]. This corresponds 

to an overall MIPL of 0.03% [95%CI (0.004% - 0.1%)] for the 352 pools tested from 

July to December. Over the same period, 105 pools were positive for P. falciparum 

out of 352 pools tested, with an overall MIPL of 2% [95%CI (1.6%-2.4%)] (Table 

7.8). P. falciparum infected pools were recovered every month except in December. 

The highest infection rate was observed in November when 16.2% of the tested 

Anopheles pools were positive for P. falciparum. The same scenario was observed in 

Boundioba where 16 pools overall were found positive out of 101 pools tested with a 

MIPL of 1.3% [95% CI (0.7%-2.1%)] (Table 7.9). In this village, the highest MIPL 

were recorded in July and November (6.3% and 7.4% respectively). One of the two 

pools infected with W. bancrofti was also positive for P. falciparum (data not shown). 

The infection rates were not analysed at the zone level but only at the village level.  

 

In the village of Boundioba, An. gambiae s.l was not found infected with W. bancrofti 

(Table 7.9). In Bougoula, the overall P. falciparum MIPL was comparable to that of 

Boundioba with 2% [95%CI (1.5% – 2.4%)] and 1.2% [95%CI (0.6% – 2.1%)], 

respectively (Table 7.8; Table 7.9). The same scenario was observed for W. bancrofti 

with 0.03% [95%CI (0.004% – 0.1%)] and 0% [95%CI (0% – 0.1%)] respectively for 

Bougoula and Boundioba (Table 7.8; Table 7.9). 
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Table 7.8: Monthly variation of Anopheles gambiae s.l infection rate with 
Wuchereria bancrofti or Plasmodium falciparum in 2012 in Bougoula 
 

Bougoula 2012    

Month 
#Teste

d 
# 

pools 

pools 
size 
rang

e 

# 
Wb 
pos
itiv
e 

poo
ls 

Wb infection  
prevalence 

likelihood* with 
[95%CI] 

# Pf 
posit
ive 

pool
s 

Pf infection 
prevalence 

likelihood* with 
[95%CI] 

July 1,910 104 1-20 2 0.1% [0.01%-0.4%] 43 2.9% [1.9% – 3.9%] 

Aug. 2,492 130 3-20 0 0% [0%  – 0.08%] 45 2.2% [1.6% – 3%] 

Sept. 1,767 96 1-20 0 0%  [0%  – 0.1%] 11 0.7% [0.3% – 1.2%]

Oct. 128 9 5-20 0 0% [0% –  1.5%] 2 1.8% [0.2% – 6.2%] 

Nov. 29 11 1-8 0 0%  [0%  – 6.4%] 4 
16.2% [4.3% – 

37.2%] 

Dec. 3 2 1-2 0 0%  [0%  – 0.5%] 0 0%  [0%  – 0.5%]

Total 6,329 352 1-20 2 0.03% [0.004% – 0.1%] 105 2% [1.6% – 2.4%] 
ND=Not Done, #=number, CI =Confidence interval; Wb= W. bancrofti; Pf= P. 

falciparum, *= Maximum likelihood from the PoolScreen software (Katholi and 

Unnasch 2006) 
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Table 7.9: Monthly variation in Anopheles gambiae s.l infection rate with 
Wuchereria bancrofti or Plasmodium falciparum in 2012 in Boundioba 

Boundioba 2012    

Mont
h 

#Teste
d 

#pool
s 

pool
s 

size 
rang

e 

# Wb 
positiv

e 
pools 

Wb infection 
prevalence 

likelihood* with 
[95%CI] 

# Pf 
positi

ve 
pools 

Pf infection 
prevalence 

likelihood* with 
[95%CI] 

Jul. 293 21 2-20 0 0% [0% – 0.7%] 12 6.3% [3% – 11.4%]

Aug. 382 25 1-20 0 0% [0% – 0.5%] 0 0% [0% – 0.5%]

Sept. 635 39 1-20 0 0% [0% – 0.3%] 2 0.3% [0.04% – 1.1%]

Oct. 37 4 1-18 0 0% [0% – 5%] 1 2,9% [0.09% – 14.6%]

Nov. 14 10 1-2 0 0% [0% – 12.8%] 1 7.4% [0.2% – 32.9%]

Dec. 3 2 1-2 0 0% [0% – 47.3%] 0 0% [0% – 47.3%]

Total 1,364 101 1-20 0 0% [0%–  0.1%] 16 1.3% [0.7% – 2.1%]
ND=Not Done, #=number, CI =Confidence interval; Wb= W. bancrofti; Pf= P. 

falciparum,  

*= Maximum likelihood from the PoolScreen software (Katholi and Unnasch 2006) 
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Spatial distribution of the parasitological data over the two study villages 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 7.3 Villages of Bougoula and Boundioba with Wuchereria bancrofti and 
Mansonella perstans infected subjects’ location 
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 Discussion 

 Study population  

From 2011 to 2012, volunteers from the villages of Bougoula (n=532) and Boundioba 

(n=426) participated in this study to assess the impact of six to seven rounds of MDA 

on LF transmission and its focal nature in two neighbouring villages with significantly 

different densities of Anopheles vectors. After informed consent for all the phases of the 

study, the majority of the volunteers were female in both villages, reflecting the 

demographic profile of Malian society. 

 

 Residual W. bancrofti microfilaraemia carriers 

This follow-up survey after six MDA rounds identified a total of eight W. bancrofti 

microfilarial carriers in Boundioba, highlighting the presence of a residual reservoir of 

this parasite in this village. In Bougoula, no W. bancrofti microfilarial carriers were 

found. More importantly, the six infected adults were from the same area of Boundioba, 

Zone B. The three zones in each village were virtually selected before the start of the 

study by geographical location and the associated type of housing (density of houses 

mainly) that are affecting the number and nature of the potential mosquito breeding sites. 

Despite the relatively young age of two of the microfilaria-positive subjects (the 

youngest was nine years old), a lack of MDA drug use by these eight people likely 

explains their persistent microfilaraemia. Issues related to MDA coverage are due to the 

lack of adhesion of certain members of endemic communities and to the lack of 

motivation of the community-based drug distributors. A more detailed assessment is 

needed, but from our discussions with the microfilaria-positive subjects, it became 

apparent that none of them participated in all of the MDA campaigns against LF in their 

community for diverse reasons. Infection was not imported, since they were residents. 
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Systematic non-compliance with MDA against LF is a real threat (Dicko et al. 2014) 

even in areas where the 65% coverage is achieved (Chapter 5) and there is a need to 

correctly assess and address it as suggested by Alexander in several Indian settings 

(Alexander 2015).   

 

 Public health implication of Mansonella perstans infection  

Despite the non incrimination of M. perstans as a human pathogen, several cases of 

infection (49/426) (Table 7.5) were observed in Boundioba, the village with the observed 

W. bancrofti microfilarial carriers (8/426) (Tables 7.2). Furthermore, the coincidental 

higher frequency of the infected subjects in Zone B where six of the W. bancrofti 

microfilarial carriers were located may be a sign of less individual protection measure 

use in that specific area. Both M. perstans and W. bancrofti are vector borne diseases 

and although Culicoides spp midges are much smaller than mosquitoes, an effective 

insecticide netting system could help reduce human-vector contact. Given the high 

prevalence and spread of this parasite in Mali as well as in West Africa in general 

(Bassene et al. 2015; Coulibaly et al. 2009; Simonsen et al. 2011; Stensgaard et al. 2016), 

it would be useful to better assess the pathogenicity of this parasite because of the 

associated high microfilarial loads and their potential immunological implications.  

 

 Disparities in An. gambiae s.l densities between the villages  

The density of An. gambiae s.l was significantly higher in Bougoula as compared to 

Boundioba by all the collection methods. Such differences in vector densities between 

relatively close villages have been reported in many settings in Mali from entomological 

surveys (Baber et al. 2010). This may be due to the rainfall abundance and pattern, the 

temperature and the number and nature of the mosquitoes breeding sites in different 
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villages. Based on infection status and vectors density, microfilarial carriers should have 

been more frequent in the village where the Anopheles density was higher. Yet, no W. 

bancrofti microfilarial carriers were identified in Bougoula. It is possible that 

microfilarial carriers do exist, but with low loads that could not be detected with 60 µl 

of blood or with the current sample size. It is also possible that higher transmission level 

occurred in Boundioba with lower vector density because of the greater availability of 

the microfilarial reservoir. Nonetheless, there is a real threat to the success of the NPELF 

in this area that needs careful follow-up of microfilarial carriers and a tailored 

sensitization campaign to encourage behavioural change towards better compliance with 

interventions such as the annual MDA.  

 

 An. gambiae s.l infection with W. bancrofti and/or P. falciparum 

By comparing the vector infection status with W. bancrofti in Boundioba and Bougoula, 

it appeared that the infection was nil in the first while the second showed two infected 

pools of Anopheles in July 2012. This scenario was opposite to that of human infection 

in the two villages. Assuming that the transmission level is higher where mosquito 

density is high, the higher human infection rate in Boundioba is consistent with the 

hypothesis that the observed microfilarial carriers were MDA non-compliant subjects 

infected before or early after the MDA initiation. Conversely, the absence of 

microfilarial carriers in the village of Bougoula where the Anopheles density is higher 

may reflect insufficient sampling. This is based on the fact that Anopheles gambiae is a 

vector that requires a high parasite load to get infected (Boakye et al. 2004; Pichon 

2002). These complex scenarios suggest that it is important to take into account 

entomological parameters such as vector density when deciding to stop MDA in 

previously hyper endemic areas (Bockarie, Pedersen, et al. 2009; WHO 2013a).  
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The presence of malaria parasite P. falciparum in all month with a significant difference 

only in August with a higher MIPL in Bougoula. For malaria transmission pattern, there 

seems to do not be a difference between these two neighbouring villages. Such a 

difference would be expected when LF transmission was still occurring at a relatively 

higher rate since the two parasites are transmitted by the same vectors. The actual impact 

of the co infection with W. bancrofti and P. falciparum is still not well known because 

of scarce data. Nonetheless, in co endemic areas, filarial worms could reduce 

Plasmodium infectivity in mosquitoes (Matthew T. Aliota et al. 2011) and vectors’ 

infection rates could most likely be reflecting infection levels with these parasites in the 

human population in the area (Derua Yahya et al. 2015). 

 

 
 Implications of the geographical distribution of residual infection of 

lymphatic filariasis  

Given the locations of infected individuals and microfilarial carriers in the two villages 

(Figure 7.3) and the ABR (Table 7.7) at the Zone level, there was no significant 

difference observed. Anopheles density and ABR do not appear to be the main 

parameters driving the endemicity level of the disease at the village scale. The generated 

data prevent to speculate about the between zones levels variations that rely on very 

small numbers. At village level, Boudioba showed a higher infection prevalence for W. 

bancrofti and a lower vector density. 

 

Mitjà et al (2011) in PNG reached similar conclusions about the lack of a significant 

relationship between Anopheles vector density and the LF endemicity level (Mitjà et 

al. 2011). Better designs are difficult given the current MDA strategy, but are required 

for a strong conclusion because the current study as well as the one of Mitjà et al (2011) 
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in PNG are ecological studies that compare two neighbouring villages (Mitjà et al. 

2011). The limits associated with this type of design are that it only allows hypothesis 

generation (Morgenstern 1995). 

 

A fine scale evaluation of LF endemicity may be misleading if several parameters are 

not assessed at the same time. It can especially be a concern when an entire health district 

or EU is assessed for LF transmission by sampling in only one village as a sentinel site. 

The recommended accompanying control site use (WHO 2011b) is very important in 

order to report a more representative endemicity level for the EU given the high 

endemicity level differences between neighbouring villages.  

 

The potential threat of infection transmission after five to six MDA rounds raised by 

these data, especially in Boundioba where detectable microfilarial carriers were 

observed, was confirmed by the evidence of recent transmission in this village as 

demonstrated by the W. bancrofti CFA prevalence of 7.6% in children >5 years old using 

ICT. According to the WHO guidelines (WHO 2011b), this antigen prevalence after the 

5th MDA round should be <2% to even start planning the last MDA round and the TAS 

thereafter in the 6-7 year old children. Specific and adapted elimination measures are 

needed for this area that still need to be checked with other LF diagnosis tools since ICT 

has been reported to overestimate the infection prevalence (Dorkenoo et al. 2015). 

Furthermore, the relatively high reported coverages for the MDA in this area (all > 65%) 

have never been specifically checked by the national programme and its partners through 

a coverage monitoring survey. 
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As previously discussed in this thesis, isolated persistence of LF infection in a limited 

area may not be a big threat if An. gambiae s.l is the main vector. Since these villages 

are part of the district of Kolondieba, TAS will be conducted by the national programme 

the EU that is made with the district of Kolondieba plus another district called Kadiolo 

to check the frequency of the phenomenon in the district and decide whether or not to 

continue MDA.  

 

 Conclusion 

In light of these results, in villages under MDA, the vector density may not necessarily 

be associated with a higher endemicity level or risk of MDA failure to follow-up 

assessment in a village undergoing MDA in previously hyper endemic areas where An. 

gambiae s.l are the main vectors of LF. Vector density alone may be misleading 

because even though it is rapidly perceived due to the nuisance associated to the 

frequent bites, it may have lost some of its epidemiological importance because of the 

relatively high coverage with insecticide treated materials in rural endemic areas. 

Villages with several other risk factors such as Mf positive subjects during the follow-

up survey, history of low MDA coverage and baseline high infection rate among others 

deserve great attention when implementing MDA follow-up and post MDA 

surveillance strategies. 
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 Introduction 

Of the five genera of mosquitoes transmitting LF, Culex is the most common 

worldwide and represents through the Cx. pipiens complex (especially Cx. 

quinquefasciatus) the principal vector of nocturnal periodic W. bancrofti in urban areas 

of Asia, Africa, the West Indies, South America, and Micronesia. In Sub-sharan 

Africa, its area of transmission is limited to the Eastern part of the continent (Bockarie, 

Pedersen, et al. 2009). The high density of Cx. quinquefasciatus in urban areas is due 

to the high frequency of the specific types of breeding sites this species prefers, such 

as different types of stagnant water more or less polluted.  

 

In West Africa, Anopheline species that are less abundant in urban areas than Culex 

spp. are the main vectors of LF (de Souza et al. 2014). In non-rural areas (urban), e.g 

cities and towns, communities are characterized by relatively high human population 

densities and high standards of living in comparison to villages and hamlets in rural 

areas.   

 

Culex species in Africa have been found not susceptible to local strains of W. bancrofti 

by several authors (Bockarie, Pedersen, et al. 2009; de Souza et al. 2014; WHO 2013a), 

but experimentally, they have been found susceptible to W. bancrofti from India 

(Kuhlow and Zielke 1978), Sri Lanka (Jayasekera et al. 1980) and Tanzania (Curtis, 

Kihamia, and Ramji 1981). Based solely on the vector-parasite relationship, Culex 

species are potentially more competent for LF transmission than Anopheline 

mosquitoes, especially when the microfilariae load is low as usually a result of the 

MDA (Bockarie, Pedersen, et al. 2009; WHO 2013a). MDA is currently the main 

intervention of the GPELF, for LF elimination by 2020 (WHO 2016a).  
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Guidelines and thresholds for monitoring the elimination process have been provided.   

In many African countries, especially in West Africa, people move frequently from  

rural areas to urban areas, either temporarily for seasonal work or permanently for 

economic or security reasons (i.e. lack of employment after the rainy season, civil 

wars) (de Souza et al. 2014). In Mali, LF elimination activities started in 2005 in the 

most endemic areas and scaled up to attain 100% geographic coverage in 2009 

(Dembélé, Bamani, Dembélé, M. O. N. O. Traoré, et al. 2012). Bamako, the capital 

city has been found to have an LF antigen prevalence of 1%. Indeed, among the total 

of 599 people tested  (about 100 persons per locality in six localities) using the ICT, 

nine were positive with 0 positive in two localities, one positive in two localities, and 

five and two positive in each of the two remaining localities for an overall prevalence 

of 1.5% (Table 8.1). The localities with positive subjects were in the peripheral areas 

of the city. Thus, MDA was initiated in the city in 2008. 

 

These localities are also called “quartiers”. The quartiers represent the smallest 

administrative unit in Bamako. A group of geographically closed quartiers constitute 

a commune. The district of Bamako has a total of six communes adminstered by 

mayors. Given the frequent movement of the population from rural endemic areas to 

African cities, the high density of Culex species, the very limit antigen prevalence in 

this area and the three rounds of annual MDA, the likelihood of ongoing transmission 

in this urban area, where Anopheline mosquitoes are rare, is low. The present chapter 

is designed to determine if Culex species are incriminated in W. bancrofti transmission 

in this urban area and to assess the current endemicity level of this neglected tropical 

disease (NTD).  
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 Methods 

 Study site 

This study was conducted in Bamako, the capital city of Mali in West Africa. It is the 

most populated of the 63 districts of the country with an estimated population of 1 810 

000 as of 2009. It covers an area of 1420 km2 and is the place for the main economic 

activities. There are regular buses and planes to all the neighbouring countries as well 

as the rural and sub-urban areas of the country. The Niger River forms a very large 

water body at the middle of the city. The city is located in the Sahel zone and has a 

tropical wet and dry climate with average high temperature of over 30°C. 

The eight selected quartiers are the six NPELF sentinel sites plus two other sites to 

assess the presence of lymphedema cases (Faladie and Bozola). More details on the 

eight localities are provided in Appendix 1.  

 

An overall LF prevalence of 1.5% was reported for the district of Bamako by the 

mapping survey in 2004 using ICT (Table 8.1). The MDA coverage rates in the 

sentinel sites of Bamako varied from 39% in Sabalibougou in 2008 to 100% in 

Sokonafing in 2009. With the exception of the first year (2008), all coverage rates were 

higher than 65% (NPELF, unpublished data) (Appendix 3). Vector collection was 

performed in only seven of the eight quartiers where human subjects were tested for 

LF infection because of logistical constraints. 
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Table 8.1: LF prevalence in the National Programme for Elimination of 
Lymphatic Filariasis sentinel sites of Bamako for mapping purpose in 2004 
 

Name of the 

Communes of 

Bamako 

Selected 

quartiers  
Number 

tested 

Number 

of positive 

Prevalence 

using ICT  

in % 

[95% CI] 

 in the commune 

Commune I Dianguinebougou 100 0 0 [0-2.95] 

Commune II Bakaribougou 100 5 5 [1.85-10.73] 

Commune III Sokonafing 100 0 0 [0-2.95] 

Commune IV Taliko 99 2 2 [0.34-6.51] 

Commune V Sabalibougou 100 1 1 [0.05-4.83] 

Commune VI Niamakoro 100 1 1 [0.05-4.83] 

Total 599 9 1.5 [0.74-2.74] 

Source: NPELF, appendix of the Mapping survey report  

 

 Study design 

This was a cross sectional study conducted in 2011 in eight quartiers of Bamako, the 

capital city of Mali. It comprises an entomological assessment as well as a 

parasitological assessment of LF in the selected localities of Bamako. The 

entomological survey was conducted in October to increase the likelihood of capturing 

more Anopheles specimens while Culex density is still high in this urban area.  

 

 Data collection 

8.2.3.1 Entomological data 

In Bamako, the collections were performed in October 2011 for seven consecutive 

days with a day per locality. During the day of collection in each locality, six CDC 
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light traps (indoor) and six CDC gravid traps (outdoor) were used from 6 pm to 6 am. 

Each light trap was in a volunteer’s room and operated after removing all the other 

source of light. It was suspendend at about 1.3 meter above the floor of the room, close 

to the occupant who was using a bednet sometimes. The selected localities are 

administrative sub-divisions of Bamako, the capital city. At each of the six collection 

sites, one light trap and one gravid trap were operated 100 meters from each other. The 

sites were selected in each quartier according to ecological factors such as water 

bodies, specific breeding sites, and presence of LF clinical signs in local people. 

 

8.2.3.2 Collected mosquitoes processing 

The collected mosquitoes were sorted by morphology into distinct species (Culex spp, 

An. gambiae s.l, An. funestus, other An. species and Aedes spp) and stored in pools of 

one to 30 according to the collection method and the quartier in 1ml Nunc® Tubes 

containing absolute alcohol. The next day, they were stored at room temperature in the 

laboratory before the PCR to detect W. bancrofti infection. The PCR technique used 

was previously described by (Rao et al. 2006) and used in Chapter 6.  

 

8.2.3.3          Parasitological data 

From March 21, 2011 to April 27, 2011, blood samples for thick smears were collected 

from volunteers from eight quartiers of the district of Bamako (Bakaribougou, Bozola, 

Dialakorodji, Faladiè, Niamakoro, Sabalibougou, Sirakoro dounfing and Taliko). The 

head of each quartier as well as the local notables were met to obtain community 

consent for both the entomological and parasitological components of the current 

study. The research team worked with the local health workers through the whole 

process. The proposal was part of the NPELF surveillance activities.  
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Volunteers aged 14 years and above residing in the selected localities were invited to 

participate to the study. The volunteers, after signing an informed consent form if aged 

18 and above or an assent form if < 18 years in adition to the consent form signed by 

a tutor, underwent a brief health history interview focused on LF. Depending on the 

pathology detected by the physician, advice was provided as well as assistance or free 

medicines if needed and available with the research team.  

Blood samples were collected by finger prick on site for making three calibrated 20 

microliters blood films on three different glass slides between 10 pm and 2 am as well 

as three blood spots of 20 microliters each on Whatman® filter papers. The following 

day, the slides were dried on site and sent to the laboratory for 5% Giemsa staining 

and reading by experienced stereomicroscopists at X40. 

 

The dried blood spots were stored in individual envelopes with a desiccant (silica gel) 

before their use for W. bancrofti CFA detection using the Og4C3 TropBio ELISA 

(TropBio, Townsville, Australia) as previously described by Gass et al (2012) (Gass 

et al. 2012). This ELISA method has previously been described in the Chapter 6. 

 

 Data management and analysis 

Vector infection likelihood and the related 95% confidence intervals were estimated 

using Poolscreen v2.0 (Katholi and Unnasch 2006). Collected data were analyzed 

using SPSS version 14 (SPSS Inc., Chicago, IL) and GraphPad Prism software version 

5 (GraphPad Software, La Jolla, CA). For proportions comparisons, the Chi2 test or 

the Fisher’s exact test was used as appropriate.  
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 Results 

The number of subjects enrolled in the eight localities ranged from 81 (Faladie) to 207 

(Dialakorodji). Overall, women made up the majority of the sample with 66.27% 

overall of the 1,002 volunteers enrolled (Table 8.2). Subjects aged 14 to 24 years were 

more common overall at 42% and the locality of Dialakorodji had the largest sample 

of 207 volunteers while the smallest one was from the locality of Faladie with 81 

volunteers (Table 8.3). 

 

Table 8.2: Distribution of study subjects by gender in the eight study localities of 
Bamako 
 

 Localities Total enrolled Women (%) Men (%) 

Bakaribougou 149 63.09 36.91 

Bozola 141 85.11 14.89 

Dialakorodji 207 70.05 29.95 

Faladie 81 43.21 56.79 

Niamakoro 88 80.68 19.32 

Sabalibougou 100 54 46 

Sirakoro dounfing 142 68.31 31.69 

Taliko 94 51.06 48.94 

Total 1,002 66.27 33.73 
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Table 8.3: Distribution of the study population by age group in the eight study 
localities of Bamako 

Localities  

Total 

enrolled 

Proportion in each age group (in %) 

14-24 25-34 35-44 45-54  55-64  ≥ 65 

Bakaribougou 149 56 22 9.4 6 2.7 4 

Bozola 141 57 16 11 8.5 3.6 4.3 

Dialakorodji 207 38 17 17 14 8.7 5.3 

Faladie 81 41 19 17 11 9.9 2.5 

Niamakoro 88 49 14 23 8 4.6 2.3 

Sabalibougou 100 35 23 20 12 6 4 

Sirakoro dounfing 142 25 17 11 21 13 13 

Taliko 94 33 20 13 11 11 13 

Total 1,002 42 18 15 12 7.3 6.2 

 

A total of 6,174 Culex spp (85.2%), 16 An. gambiae s.l (0.2%), 26 Aedes spp (0.4%), 

858 Ceratopogonidea (11.8%) and 170 other insects not identified (2.3%) were 

collected in October 2011 in the seven study localities of Bamako visited for mosquito 

collection (Table 8.4). The 6,174 Culex spp were pooled into 1 to 30 specimens per 

pool to make the 252 pools that were tested. The 2 additional pools made with the 16 

Anopheles gambiae s.l and the 26 Aedes spp were also tested. No infected pool was 

identified using the PCR technique (Table 8.5). 

 

The night time blood thick smear was negative for the 1,002 volunteers tested in the 

eight selected localities for parasitological studies (Table 8.6). The overall prevalence 

from the TropBio Og4C3 ELISA was 81.2% among the 1,002 subjects tested. A 

prevalence of 90% or higher was recorded in all tested localities except Dialakorodji 

and Bozola that showed 31.4% and 75.2%, respectively (Table 8.7). M. perstans was 

detectable in women (0.75%) and men (0.30%) (Table 8.8). It was observed only in 
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the subjects older than 24 years with 1.09%, 2.04% and 1.37% respectively in the 25-

34 years, 35-44 years and 55-64 years old age groups (Table 8.9). 

 

 
 

 

 

 

 

 

 



196 
 

Table 8.4: Number of flying insects collected per species in the seven visited localities of Bamako in October 2011 
 

  Locality Culex spp An. gambiae s.l 
An. 

funestus 
Aedes spp Ceratopogonidea Other Total 

  N 
%          

[95% CI] 
N 

%       
[95% CI] 

N % N 
%       

[95% CI] 
N 

% 
 [95% CI] 

N 
% 

 [95% CI] 
N 

Faladie 1318 
95.6 

[94.5-96.6]
2 

0.1  
[0.02-0.5]

0 0 4 
0.3 

[0.09-0.7] 
34 

2.5 
[1.7-3.4]

20 
1.5 

[0.9-2.2]
1,378 

Bakaribougou 1235 
95.1 

[93.9- 96.2] 
2 

0.2 
 [0.03-0.5] 

0 0 0 
0 

[0.0-0.2] 
42 

3.2 
[2.4-4.3] 

19 
1.5 

[0.9-2.2] 
1,298 

Dialakorodji 572 
91.1 

[88.7-93.1] 
4 

0.7  
[0.2-1.7] 

0 0 7 
1.1 

[0.5-2.2] 
16 

2.5 
[1.5-4.02] 

29 
4.6 

[3.8-6.5] 
628 

Niamakoro 710 
85.7 

[83.2-88.1] 
1 

0.1 
 [0.0-0.6] 

0 0 6 
0.7 

[0.3-1.5] 
90 

10.9 
[8.9-13.1] 

21 
2.5 

[1.6-3.8] 
828 

Sabalibougou 1309 
75.9 

[73.8-77.9] 
0 

0  
[0.0-0.17] 

0 0 2 
0.1 

[0.02-0.4] 
400 

23.2 
[21.2-25.2] 

14 
0.8 

[0.5-1.3] 
1,725 

Sirakoro 274 
47.2 

[43.1-51.2] 
6 

1   
[0.42-2.14] 

0 0 4 
0.7 

[0.2-1.7] 
254 

43.7 
[39.7-47.8] 

43 
7.4 

[5.5-9.8] 
581 

Taliko 756 
93.8 

[91.9-95.3] 
1 

0.1 
 [0.0-0.61] 

0 0 3 
0.4 

[0.09-1.01] 
22 

2.7 
[1.8-4.04] 

24 
3 

[1.96-4.3] 
806 

Total  6,174 
85.2 

[84.4-86.03] 
16 

0.2  
[0.13-0.35] 

0 0 26 
0.4 

[0.24-0.52] 
858 

11.8  
[11.1-12.6] 

170 
2.3  

[2.02-2.7] 
7,244 

            Sirakoro= Sirakoro dounfing; spp= Species
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Table 8.5: Culex spp infection rates in the seven study localities of Bamako in October 2011 
 

 

Localities 

Total 

Number 

collected 

Pools size 

range 

Number of 

pools 

tested 

Number of 

Positive 

pools 

Maximum likelihood 

of infection prevalence 

(95%CI) 

Bakaribougou 1,318 1 to 30 53 0 [0%-0.002%] 

Dialakorodji 1,235 2 to 30 48 0 [0%-0.002%] 

Faladie 572 9 to 30 24 0 [0%-0.003%] 

Niamakoro 710 1 to 30 31 0 [0%-0.003%] 

Sabalibougou 1,309 1 to 30 49 0 [0%-0.002%] 
Sirakoro 
dounfing 

274 
2 to 30 16 0 [0%-0.007%] 

Taliko 756 1 to 30 31 0 [0%-0.003%] 

Total 6,174 1 to 30 252 0 [0%-0.003%] 
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 Table 8.6: Prevalence of Wuchereria bancrofti microfilariae carriage according to the gender in the eight visited localities of Bamako 
 
 
 
 
 
 
  

Localities/quartiers 
Total Women 

sampled 
% Women 

positive  
Total Men 
sampled 

% Men 
positive  

Bakaribougou 94 0 55 0 

Bozola 120 0 21 0 

Dialakorodji 145 0 62 0 

Faladie 35 0 46 0 

Niamakoro 71 0 17 0 

Sabalibougou 54 0 46 0 

Sirakoro dounfing 97 0 45 0 

Taliko 48 0 46 0 

Total 664 0 338 0 
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Table 8.7: Wuchereria bancrofti infection prevalence variations in the eight study localities of Bamako using the TropBio Og4C3 ELISA 
on filter paper dried blood sample 
 

Localities Total Number        Positive 
[95% CI] 

  enrolled Tested Number  (%) 

Bakaribougou 149 147 142 96.6 [90.93-97.97] 
Bozola 141 137 103 75.2 [67.44-8187] 
Dialakorodji 207 169 53 31.4 [24.70-38.65] 
Faladie 81 81 81 100 [96.37-100] 
Niamakoro 88 88 85 96.6 [91-99.13] 
Sabalibougou 100 95 90 94.7 [88.72-98.04] 
Sirakoro 
dounfing 

142 142 135 95.1 [90.49-97.82] 

Taliko 94 94 85 90.4 [83.16-95.23] 

Total 1,002 953 774 81.2 [78.64-83.60] 
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Table 8.8: Mansonella perstans infection prevalence variations according to the gender in the eight study localities of Bamako 
 

 Localities 

Total 

Women 

sampled 

% 

Women 

positive  

[95% CI] 

Total Men 
% Men 

positive  
[95% CI] 

sampled 

Bakaribougou 94 0 [0-3.14] 55 0 [0-5.30] 

Bozola 120 0 [0-2.47] 21 0 [0-13.29] 

Dialakorodji 145 2.07 [0.53-5.53] 62 1.61 [0.08-7.70] 

Faladie 35 0 [0-8.2] 46 0 [0-6.31] 

Niamakoro 71 0 [0-4.13] 17 0 [0-16.16] 

Sabalibougou 54 0 [0-5.40] 45 0 [0-6.44] 

Sirakoro dounfing 97 1.03 [0.05-4.98] 45 0 [0-6.44] 

Taliko 48 2.08 [0.10-9.85] 46 0 [0-6.31] 

Total 664 0.75 [0.28-1.66] 337 0.3 [0.01-1.45] 

 

 

 

 



 201

 Table 8.9: Mansonella perstans infection prevalence variations according to the age groups in the different localities of Bamako 
 

Age groups/Years 14-24 25-34 35-44 45-54 55-64 ≥65 

Localities N %pos N %pos N %pos N %pos N %pos N %pos 

Bakaribougou 83 0 33 0 14 0 9 0 4 0 6 0 

Bozola 80 0 23 0 15 0 12 0 5 0 6 0

Dialakorodji 79 0 35 2.86 36 5.56 28 0 18 5.56 11 0 

Faladie 33 0 15 0 14 0 9 0 8 0 2 0

Niamakoro 43 0 12 0 20 0 7 0 4 0 2 0 

Sabalibougou 34 0 23 0 20 0 12 0 6 0 4 0 

Sirakoro dounfing 35 0 24 0 16 6.25 30 0 18 0 19 0 

Taliko 31 0 19 5.26 12 0 10 0 10 0 12 0 

Total 418 0 184 1.09 147 2.04 117 0 73 1.37 62 0 
          N= number of volunteers ; %pos= % positive 
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 Discussion 

In Mali, as part of the LF elimination process, MDA was instituted in 2005 starting in 

the region of Sikasso that had the highest overall infection rate of 18.6% in 2004 

(Dembélé, Bamani, Dembélé, M. O. N. O. Traoré, et al. 2012). According to the 

mapping survey data, all the eight administrative regions of the country needed the 

ALB/IVER combination for interrupting LF transmission. 

 

LF transmission is mainly rural in Mali and in the other West African countries. This 

is primarily due to the abundance of the main LF vector – An. gambiae s.l in those 

areas as well as an important reservoir of parasite constituted by the infected and 

microfilarial carriers in rural areas. 

 

In Mali, these Mf carriers move to the big cities and rice cultivation areas of the country 

for seasonal work since the main activities in the rural areas are agricultural based on 

maize, millet and cotton. These crops are grown during the rainy season that extends 

from July to December. From January to June, most young people leave their villages 

for the cities to find temporary jobs. These rural people’s movements are directed to 

the peripheral areas where appartments’ renting is cheaper, opportunities for room 

sharing and the likelihood of finding people from one’s original village higher. These 

factors place the peripheral localities at higher risk of transmission since the newly 

moved rural people may bring more reservoirs for the local vectors. Another 

observation in line with this rural exodus is the M. perstans infection rate in some of 

the localities where people come mainly from the district of Kolokani for seasonal 

work (personal communications with the chief health officer of Dialakorodji, October 

2011). Midges of Culicoides genus transmit this parasite especially in rural areas 
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(Bassene et al. 2015; Noireau, Itoua, and Carme 1990). No Culicoides were collected 

during our study in Bamako despite a high density captured using the same traps in 

Kolokani, the site of an ongoing PhD thesis study on these vectors (Diallo A, 

unpublished data). Furthermore, the fact that there are very few infected individuals 

and only in two localities, corroborates the imported origin of M. perstans infections 

in Bamako.  

 

Our data provides no evidence for LF transmission in Bamako, given the rarity of the 

microfilarial carriers (0 positive over more than 1000 subjects of 14 years old and 

above tested) and the failure to detect any parasite DNA in 252 pools of Culex 

processed. MDA started in Bamako in 2008 and by 2011, three rounds had already 

occurred with coverage rates >65% every treatment year except the first year 

(Appendix 2). Whether the current lack of microfilarial carriers is due to MDA or 

because transmission was absent even before MDA is not possible to determine from 

our current data or from the national programme’s baseline assessment data that were 

generated using ICT alone. It remains clear that the disease does not seem to be a 

public health problem in Bamako and that transmission is not occurring given the low 

frequency of the An. gambiae and funestus complexes, the only known vectors of LF 

in Mali (Toure 1979), and the non-infection status of Culex spp. The observed very 

high prevalence with the ELISA tests are higher than all the prevalence reported in 

Mali even before the MDA initiation (Dembélé, Bamani, Dembélé, M. O. Traoré, et 

al. 2012). These rates close to 100% infection rate were due to the storage condition 

or a contamination of our samples since a second batch of tests were used on the same 

dried bllod spots and similar results were obtained. It should be noted that these Og4C3 

kits were successfully used on the samples of the chapter 7 of this thesis. 
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An. gambiae s.l abundance was relatively low in the study sites but the total numbers 

of mosquitoes collected was substantial and would allow detection of infection rates 

as low as one infected female/1000 tested with a 63% probability when approximately 

a total of 1000 mosquitoes are tested (Katholi and Unnasch 2006). We actually 

processed 6,174 Culex spp. Such a low W. bancrofti microfilarial prevalence could be 

expected after three MDA in endemic areas if initial prevalence was low (Farid et al. 

2007; Goodman et al. 2003).  

 

In Bamako, given the limitation pattern that characterizes the Culex spp and increases 

its ability to take up microfilariae and bring them to the infective stage even if the 

microfilarial load is very low, such number of vectors is strongly evocative of a lack 

of transmission. This is due to the lack or very rare infected mosquito-human host 

contact as demonstrated by the current xenomonitoring findings. It has been reported 

that even mosquitoes that feed on a microfilarial carrier can be detected as positive 

because of W. bancrofti DNA in the ingested blood (Rao et al. 2006). Moreover, the 

absence of microfilariae carriers in the tested samples highlights the non-availability 

or rarity of an infection reservoir for the local mosquitoes to sustain transmission in 

Bamako. 

 

In terms of vector control, it is very important to identify and characterize the vector 

involved in LF transmission in all endemic areas and to implement, if required, a tailor-

made vector control strategy based on the generated information. Culex spp is the most 

widely distributed LF vector but, in Africa, its transmission area seems to be limited 

to the Eastern part of the continent (Bøgh et al. 1998; Maxwell et al. 1990). 
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Clinical signs of LF, especially the different stages of lymphedema were checked 

among the subjects involved in the blood collection. A total of three cases of 

elephantiasis were observed in one family in the locality of Faladie. This, motivated 

the inclusion of other families in the vicinity of that family into the mosquito collection 

sites as well as the sensitization for parasitological assessment. The remaining 

localities were the ones that the NPELF is using as sentinel sites (Dembele 2004, 

unpublished data). In that family located in Faladie, the father, a 68-year-old man 

originally from the region of Koulikoro was infected in his native village. When he 

moved to Bamako for professional reasons, he already had early stage lymphedema, 

according to the discussion with him. About 15 years later, his two daughters, but not 

his son or his wife, started to have the same signs that had reached the stage of 

elephantiasis with dermatological complications when the current study was taking 

place. This suggests the possibility of very focal urban transmission of LF in Bamako. 

 

The use of the dried blood spots was problematic in obtaining valid results with the 

TropBio ELISA for W. bancrofti CFA Og4C3 (TropBio, Townsville, Australia). The 

malfunction was reported to the manufacturer, who replaced the kits. When the tests 

were repeated with the new batch of tests, the same trend of all samples being positive 

was observed. Since the testing was performed in our laboratory with good quality 

control (Das et al. 2012), we assume that the failure may be due to the quality of the 

kits or to the sample storage quality between the collection and processing periods. 

This needs to be further investigated. Until these issues are clarified, we suggest that 

dried blood spot use for CFA detection with the TropBio kits (TropBio, Townsville, 

Australia) be done with caution. 
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After three rounds of MDA, undertaking a TAS with the RPRG’s authorization in this 

urban area may be advisable, especially if funding constraints exists, so that money 

can be reallocated to other areas where transmission is still on-going. Even if funds are 

reallocated, surveillance should be continued as in any endemic or at risk of 

transmission area in order to detect early resurgence or appearance of LF. 

 Conclusion 

There is no evidence from the collected data of active LF transmission or an 

endemicity level that may require an intervention in Bamako. The few M. perstans 

microfilarial carriers identified in two of the eight visited localities provide 

information about the endemic areas that people living in Bamako have come from.  
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General discussion and recommendations 
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 Principal findings and novelty of data 

The main findings of this thesis was the details on the short and long term capacity of 

West African LF vectors (An. gambiae s.l) to transmit LF in various conditions linked 

with the current MDA in hyper endemic areas. It also assessed the focal nature of LF 

transmission at the intra village level and compared the commonly used HLC to two 

alternative mosquito collection methods. 

 

MDA is the main pillar of the LF elimination strategy for the GPELF and is on-going 

or about to start in many endemic countries. The elimination process is underway but 

many gaps need to be filled to end up with the best tools and strategies for its 

acceleration and sustainability. This work generated data on the validity of the current 

surveillance strategy that still needs more accurate and standardized tools and 

endpoints. This thesis reports for the first time the outcome of up to five years post-

MDA annual assessment of W. bancrofti transmission using both entomological and 

parasitological data in an Anopheles transmission area where ALB/IVER is the 

recommended drug regimen and An. gambiae s.l the main vector for LF and malaria. 

These features are found mainly in the Western part of Africa. The long term impact 

of the MDA was more assessed in Culex transmission areas in LF endemic areas. 

 

In the Sikasso region, constratsting pattern were observed in the two study areas that 

were in 2 different districts, as related to the MDA efficacy. In the sentinel area made 

up of six neighbouring villages, seven MDA rounds with the ALB/IVER regimen were 

successful not only in stopping LF transmission but also in sustaining it for up to five 

years after the last MDA. In contrast, another hyper endemic area (two neighbouring 
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villages treated by the NPELF) in a neighbouring district of Kolondieba failed at the 

MDA follow-up survey (pre-TAS) after the sixth and seventh MDA rounds.  

 

The reasons for these different efficacies of MDA in two hyper endemic areas were 

discussed in this thesis. The six sentinel villages were treated as part of a research 

study with close supervision and observation of the different activities while the two 

villages were treated and supervised as part of the NPELF activities that are less 

closely followed due to the extent of the programme intervention areas. In Mali, all 

eight administrative regions are endemic for LF and need MDA. Of note, the failure 

in the two villages has been detected using the ICT only which has been found to 

overestimate the infection rate in children. Dorkenoo et al (2015) found that the 13 

ICT positive subjects were negative for nocturnal microfilaraemia and Og4C3 ELISA 

(Dorkenoo et al. 2015). More recently, in 2015, Wanji et al made a similar observation 

(Wanji et al. 2015). Thus, the ICT results should be checked and taken with caution 

by always thinking about the overestimation it may bring when it comes to take public 

health decisions. For instance, decision to continue mass drug administration (TAS 

failure) or to stop it (TAS passing successfully) after five or more treatment rounds 

would greatly benefit from the results of a set of  available tests plus the experts’ 

opinions until one test is accepted by all the stakeholders as the suitable one for TAS 

based on its results.  

Additionally, the research study settings are usually different from the public health 

intervention areas such as evaluation or implementation units. These differences can 

be in terms of population size and geographically covered areas, population overall 

awareness about the issue of interest, the differences between the implementors of the 

same intervention such as the mass drug administration and the way the data are 
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collected. Any comparison especially if it is aimed at influencing the policy and 

behaviour of the concerned population should extensively take in account these 

potential differences for sound decision making. 

 

To confirm the ICT overestimation in children, the Wb123 and the Og4C3 ELISA 

were used in the six sentinel villages. The same tests are needed to assess areas where 

ICT finds >2% infection rate in 6-7 years old. Such overestimated prevalence may lead 

to further epidemiological assessment in the vicinity of the positive children’s houses 

as well as two additional MDA rounds before a new TAS. The burden of these 

additional studies in terms of funds, logistical and health staff time consumption is 

high enough to push stakeholders to foster the validation of new field adapted POC 

usable diagnosis methods. In Anopheles transmission areas, it has been observed that 

focal transmission can still exist without being a real threat for a transmission re-

emergence due to the vector’s lower capacity to transmit when parasite density is low 

and facilitation is the transmission pattern. 

 

Currently, the lack of recommendations for assessment of the adult microfilaraemia 

rate during the surveillance period seems to be a weakness, since it has been observed 

here that only adults were microfilarial carriers and may provide the mosquito vectors 

with a reservoir of parasites for transmission (chapter 5). This group could be added 

to the TAS sample to improve the quality of the collected information since the 

prevalence and geographic distribution of microfilarial carriers in the village or area 

can be insightful in term of transmission risk and the need for additional urgent 

measures. This is especially relevant in areas that were previously hyper endemic for 

LF with environmental conditions suitable for mosquito vectors. A recent ad hoc 
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meeting report of WHO experts in 2016 provided with insights regarding the 

management of localized hotspot that could threaten the elimination process when the 

EU passes the TAS. Since most NTD funding agencies only support activities that are 

in line with WHO guidelines, clear guidelines and detailed directions accoding to 

different scenarios are needed to sustainably tackle the threat represented by by 

microfilaremiae positive adults in areas that had a high baseline LF prevalence. 

 

Additionally, this thesis showed very promising results for the ITTC (chapter 6), a 

human baited trap that had strongly correlated Anopheles yields with the HLC overall 

as well as monthly in two villages with significantly different Anopheles densities. The 

two methods produced comparable infection rates for P. falciparum in collected An. 

gambiae s.l. This human baited trap is not associated with any ethical concerns in term 

of potential human-vector contact. Its yields for An. gambiae s.l are less than the HLC 

ones but that can be overcome by increasing the number of traps. The other challenges 

of this trap are the cost of acquisition and its bulkiness that make it difficult to use in 

different places over the collection areas. These two issues could also be compensated 

by the modification of the tent using locally available materials and weather adapted 

lighter weight fabrics. The possibility of using the tent over a relatively longer period 

and the possibility to use it as a community-based mosquito collection method make 

it more cost effective than the HLC (Sikaala et al. 2014). It has no associated collector 

specific potential impact (dexterity, alertness, odour, and rapidity among other) (Wong 

et al. 2013). 

 

Finally, the generated data in chapter 7 allow to confidently consider the focal nature 

of the LF transmission foci after > five MDA rounds. The GIS tools were useful in that 
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matter and should be increasingly used by LF elimination programmes’ officers since 

the increase of LF infection in children can sometimes be in one or two families and 

the operational attitude should be different than in the case of a non-clustered spread 

of the infection. 

 

 Limitations and proposed method of improvement 

As part of the post MDA surveillance, the most informative method for mosquito pool 

screening for filarial infection and or infectivity, the RT-PCR assay developed by 

Laney et al in 2010. LF vectors’ infection rate is a sign of the presence of one or more 

larvae of W. bancrofti at the stage L1 to L2 (non infective stages) while the infectivity 

rate is epidemiologically more important since it says that the pool had at least one 

infective stage W. bancrofti larve (L3). The L3 carriage can be considered as a risk of 

transmission and also a sign of vector ability to pick up and bring the ingested 

microfilariae to the infective stage.   has been used for the processing of additional 

mosquito collections done by PSC in 2012. Unfortunately, this technique could not be 

used to process the samples collected in the Kolondieba district for the collection 

methods comparison and the LF indices assessment in the two study villages in that 

district because of the expected absence or very low W. bancrofti infection rate and 

the fact that extracting the RNA would impede any assessment of the malaria parasite 

P. falciparum infection and co infection rates. Collecting more mosquitoes and doing 

both the DNA extraction for the malaria assessment in vector as well as the RNA 

extraction for determining the infectivity level of the mosquito pools seemed a better 

option. This is why we initially used RNALater solution for mosquito samples storage. 
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The number of mosquito pools infected with W. bancrofti was so low that many 

deductions cannot be reasonably made from it (2 pools over 350 made with 6,329 

female Anopheles tested overall). One of the two pools found positive in July was co 

infected with P. falciparum, which was quite commonly infecting the pools of 1-30 

females with monthly infection rates in 2011 ranging from 0% in August to 6.9% in 

November (Chapter 6). This raises another reason for control in this area because with 

the high vector density, such infection rates for P. falciparum can cause a high malaria 

transmission rate if no intervention is done. An assessment of how a good integration 

can be done between the LF and malaria control programme will be useful for the fight 

against these two parasitic diseases transmitted by the same vectors. 

 

Additionally, instead of pooling the mosquitoes per collection method in the two 

villages of Kolondieba, they could be pooled per village zone (each of the two villages 

was actually divided into three zones at the beginning) and per collection method. This 

was not part of the study objectives but could have provided information on the zone 

with the infected mosquitoes. Nonetheless, this would have unexpected financial costs 

for processing more pools which would then be of much smaller sizes. 

 

A study in a larger previously hyper endemic area that underwent ≥ 5 MDA rounds 

would be insightful about the mosquito infection/infectivity distribution and how it 

relates to infected human distribution across the area and finally allow an assessment 

of the risk for the neighbouring villages. 

 

The same study could be conducted in areas where LF endemicity is found higher than 

the threshold after ≥ five MDA using ICT and the other available LF diagnosis 
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methods to better quantify the overestimation of the ICT and eventually identify the 

best method to recommend for the TAS. In such settings, the importance of the 

migration (number of people and frequency) between the concerned area and 

surrounding areas, the MDA coverage rates and drug distributors’ motivation level 

would also be important aspects to investigate using a mixed quantitative and 

qualitative approach. 

 

It is also crucial to reassess at least the infection and microfilarial prevalence in 

neighbouring villages within Anopheles flight range (~2 km according to Baber et al 

(2010) in Mali) (Baber et al. 2010) to see extent of the transmission resurgence and 

plan the needed MDA accordingly in the concerned area. A study on vector specific 

species capacity to transmit should be initiated to investigate An. gambiae s.l capacity 

to transmit according to the limitation model. This has previously been reported in 

Ghana (Amuzu et al. 2010). If confirmed in many areas, this would oblige review of 

all of the GPELF’s previous estimations in term of thresholds and elimination 

strategies in Anopheles transmission areas. 

 

Finally, another concern is the fact that after five years without any MDA, in case of 

transmission re-emergence, the population compliance with MDA is unknown, 

although the adverse events frequencies have been shown to be significantly lower at 

that time. Those questions need urgent responses and actions should be taken to avoid 

a failure of the whole process after important efforts by the WHO and its partners.  

 



 215

 Recommendations from these data 

(i) Further studies on Wb123 should be conducted in other endemic areas at different 

stages of the LF elimination process to ascertain its suitability for TAS in order to 

determine the best test or group of tests that can more reliably be used in order to detect 

early a resurgence of LF transmission; 

(ii) if an EU fails the TAS, a follow-up survey should be initiated to assess the of the 

positive children’s villages and neighbourhood using not only the ICT test but also 

other LF diagnosis methods such as the Og4C3 and the Wb123 antibody test; 

(iii) Reference laboratory for LF surveillance after MDA stopping should be instituted 

in endemic countries and also for group of countries in the same sub-region in order 

to insure the long term follow up that would be required to verify elimination; 

(iv) A safe and sustainable xenomonitoring should be planned and undertaken based 

on locally acceptable and community-based human baited method for mosquito 

collection; this could be done using a more user friendly format of the Ifakara tent trap 

type C (after more standardization and validation studies); 

(v) MDA usefulness should be established in African big cities where there is lack of 

evidence of transmission using a criteria based on not only a prevalence of antigenemia 

≥ 1% but also on vector fauna and other environmental characteristics. A standardized 

method specifically for high-density of humans population should be developed to 

identify potential hotspots that should be targeted as risk areas to help save resources 

and funds.  
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Appendices 
 

Appendix 1. Brief description of the study localities of Bamako 

Communes Selected 
localities 

 Brief description of the locality Reason of the 
locality choice 

II Bakaribougou 
and Bozola 

The Communes II, bounded on the east 
by the backwater of Korofina, on the 
west by the hill of Point G, on the north 
by the northern limit of the District of 
Bamako and on the south by the bed of 
the River Niger, it covers 16.81 km² 
and has a population of 160 680 
inhabitants. The town has eleven 
localities including Bakaribougou (N = 
12o 39’204’’ and W = 007o 58’ 466’’) 
and Bozola ( N = 12o 38’443’’ and W = 
007o 59’ 393’’). 

Bakaribougou is 
a sentinel site for 
the LF 
elimination 
programme 
while Bozola is 
at the border of 
River Niger and 
has more Culex 
breeding sites 
than any other 
locality of 
Bamako 

III Sirakoro 
dounfing 

The town III is limited to the north by 
the Kati, east by the People of the 
boulevard that separates it from the 
Commune II, to the south by the 
portion of the Niger River and to the 
west by the backwater of Farako Lido, 
it covers an area of 23 km². Its 
population is 119 287 inhabitants. 
Twenty localities comprise this 
Commune including the recently added 
villages of Koulouninko and Sirakoro 
dounfing (N = 12o41’360’’and W = 
008o 03’ 145’’). 

Sirakoro 
dounfing is a 
rural area 
recently added to 
the District 
because of its 
proximity and 
the quickly 
expanding 
population 

IV Taliko The Commune IV is bounded on the 
east by the Commune III, north and 
west by Kati another district of the 
country and south by the left bank of 
the Niger River. It covers an area of 
36,768 hectares with a population of 
more 200 000 inhabitants in 2001. The 
town IV consists of eight localities 
including Taliko (N = 12o37’808’’ and 
W = 008o 03’ 209’’). 

Taliko is a 
sentinel site for 
the LF 
elimination 
programme 
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V Sabalibougou The Commune V covers an area of 41 
square kilometers and has 249,727 
inhabitants. It is bounded to the north 
by the Niger River, the south by the 
airport area and the town of Kalanban-
Coro, on the east by the Commune VI 
and Niger. It consists of eight districts 
including Sabalibougou (N = 12o 
35’596’’ and W = 008o 00’ 159’’). 

Sabalibougou 

is a sentinel site 
for the LF 
elimination 
programme 

VI Faladie and 
Niamakoro 

Commune VI with an area of 8,882 
hectares is the largest district of 
Bamako. Its population is about 600 
000 inhabitants. It consists of ten 
localities including Faladie (N = 12o 
35’565’’ W = 007o 57’ 498’’) and 
Niamakoro (N = 12o 35’119’’ and W = 
007o 58’ 399’’). 

Niamakoro is a 
sentinel site for 
the LF 
elimination 
programme 
while three cases 
of lymphedema 
were observed 

Kati Dialakorodji The district of Kati is the closest to that 
of Bamako and Dialakorodji (N = 
12o43’202’’ and W = 007o 58’ 053’’) is 
bordering sub-urban area where people 
from Kolokani an endemic area are 
very common. Kolokani and Kati are 
both from the Koulikoro region. 

Dialakorodji is a 
sentinel site for 
the LF 
elimination 
programme and 
is the favorite 
destination for 
internal migrants 
from the district 
of Kolokani 
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Appendix 2. Lymphatic filariasis mass drug administration coverage rates in the 
sentinel sites of Bamako from 2008 to 2011 

Communes Locality 2008 2009 2010 2011 

Commune I Dianguinebougou  61 110 93 77 

Commune II Bakarybougou 47 100 110 89 

Commune III Sokonafing 83 117 99 82 

Commune IV Talico 54 103 96 78 

Commune V Sabalibougou  39 91 97 80 

Commune VI Niamakoro 77 112 107 89 

Source: National Lymphatic filariasis elimination programme's annual MDA 
reports 
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Appendix 3. Chapter 3 related published paper in Parasites and Vectors 

 

Wuchereria bancrofti transmission pattern in southern Mali prior to and 
following the institution of mass drug administration 

Yaya Ibrahim Coulibaly, 1,3 Benoit Dembele,1 Abdallah Amadou Diallo,1 Sibylle 
Kristensen,2 Siaka Konate,1 Housseini Dolo,1 Ilo Dicko,1 Moussa Brema Sangare,1 
Falaye Keita,1 Boakye A Boatin,4 Abdel Kader Traore,3 Thomas B Nutman,5 Amy D 
Klion,5 Yeya Tiemoko Touré,1 and Sekou Fantamady Traore1 

 

Abstract 

Background 

The Global Programme to Eliminate Lymphatic Filariasis (GPELF) was launched in 

2000 with the goal of stopping transmission of lymphatic filariasis (LF) through yearly 

mass drug administration (MDA). Although preliminary surveys of the human 

population in Mali suggested that Wuchereria bancrofti infection was highly endemic 

in the Sikasso district, baseline entomological data were required to confirm high 

levels of transmission prior to the selection of villages in this region for a study of the 

impact of MDA on transmission of LF by anopheline vectors. 

Methods 

W. bancrofti transmission was assessed in 2001 (pre-MDA) and 2002 (post-MDA) in 

the Central District of Sikasso in southern Mali by dissection of Anopheles mosquitoes 

caught using the human landing catch (HLC) method. The relative frequencies and 

molecular forms of An. gambiae complex were determined. 

Results 

The majority (86%) of the anopheline vectors captured were identified as An. gambiae 

complex, and these accounted for >90% of the entomological inoculation rate (EIR) 
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during both years of the study. There was a dramatic decrease in the number of An. 

gambiae complex mosquitoes captured and in the An. gambiae complex infectivity 

rates following MDA, accounting for the observed decrease in EIR in 2002 (from 

12.55 to 3.79 infective bites per person during the transmission season). An. funestus 

complex mosquitoes were responsible for a low level of transmission, which was 

similar during both years of the study (1.2 infective bites per person during the 

transmission season in 2001 and 1.03 in 2002). 

Conclusions 

Based on the entomological data from this study, the district of Sikasso was confirmed 

as an area of high W. bancrofti transmission. This led to the selection of this area for a 

multi-national study on the effects of MDA on LF transmission by anopheline vectors. 

Comparison of vector transmission parameters prior to and immediately following the 

first round of MDA demonstrated a significant decrease in overall transmission. 

Importantly, the dramatic variability in EIR over the transmission season suggests that 

the efficacy of MDA can be maximized by delivering drug at the beginning of the 

rainy season (just prior to the peak of transmission). 

Background 

Lymphatic filariasis (LF) is a chronic debilitating infection caused by the mosquito-

borne filarial nematodes, Wuchereria bancrofti (W. bancrofti), Brugia malayi and 

Brugia timori. Worldwide, more than one billion people are at risk of infection, among 

which 120 million are already infected, the majority of whom are in India, with an 

estimated 49.2% of the infection burden, followed by sub-Saharan Africa with 34.1% 

[1]. W. bancrofti is responsible for approximately 90% of LF cases worldwide and all 

of the cases in sub-Saharan Africa, where the most common vectors are An. gambiae 
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and An. funestus complexes [2]. Forty-three million people are officially recognized 

as being disabled due to LF and millions more suffer from social and psychological 

problems [3]. Nevertheless, the socio-economic burden of LF is underestimated in 

many endemic areas that are among the poorest of the world [4]. 

In Mali, although the public health importance of LF was noted as early as the 1970′s 

[2], the prevalence and distribution were not studied again until 2002, when the 

National Lymphatic Filariasis Elimination Program (NLFEP) provided the first 

countrywide LF map. Based on antigen testing using ICT cards, all 8 administrative 

regions of Mali were shown to be endemic for LF with an overall prevalence of 7.07%, 

ranging from 1% in the north to 18.6% in the south. In anticipation of the launch of 

NLFEP activities in Mali, a pilot study of the impact of mass drug administration 

(MDA) with albendazole and ivermectin on W. bancrofti transmission was initiated in 

collaboration with the World Health Organization (WHO) in Ghana, Mali, and 

Nigeria. The present study was designed to provide baseline data on vector 

transmission in this highly endemic region of Mali and to assess the effects of the first 

round of MDA. 

Study site identification and characterization 

The study was initiated in the Sikasso district in southern Mali prior to the introduction 

of MDA for the elimination of LF. This area was historically known to be endemic for 

W. bancrofti, and mapping surveys performed by the National Program for the 

Elimination of Lymphatic Filariasis confirmed a high prevalence of circulating filarial 

antigen (CFA) positivity (as assessed by ICT card testing of 50-100 

individuals/village) in the village of Dozanso and a neighboring village in 2001 

(unpublished data). Additional ICT card surveys were subsequently carried out in the 
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larger villages surrounding Dozanso in 2001 and led to the selection of 6 high 

prevalence villages (Dozanso, Gondaga Missasso, N’Torla, Niantansso and 

Zanadougou) for baseline entomological studies. 

The study villages are comparable in terms of socio-cultural indicators, health care 

seeking behavior and disease perception. The distance between the villages and the 

community health care center of Kolokoba ranges from 6 to 15 km (mean 9.5 km), 

occupied by cotton fields, backwaters, and trees typical of the dense Sudan Savannah 

vegetation. Rainfall in this region ranges between 1200 and 1500 mm per year, with a 

rainy season that extends from July to December. Due to the high levels of 

transmission documented during the first year of the study, yearly MDA was instituted 

in the 6 study villages in June 2002, one month prior to the second entomological 

survey. 

Study population 

A complete census, including the name, age, sex and profession of each inhabitant, 

was performed in all 6 villages. All dwellings were recorded and assigned an 

identification number. A global positioning system device (GPS) was used to produce 

basic maps of the locations of the 6 villages within the Central District of Sikasso. The 

total population of the 6 study villages was 3,681 in 2001, consisting primarily of 

farmers, whose main occupations are agriculture (cotton, maize, millet and peanut) 

and domestic animal breeding. The ICT card surveys carried out in 2001 revealed CFA 

prevalences varying from 81.8% in Niantanso (165/202) to 24.6% in Zanadougou 

(50/202) (Table 1). The prevalence of microfilaremia was assessed in 2002 (prior to 

the initiation of MDA) by examination of 3 slides of 20 μl of night blood/subject, and 

ranged from 40% in Dozanso (48/120) to 13.8% in N’Torla (27/196). 
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Table 1 
Characteristics of the study population prior to MDA 

Villages 
Total 
tested 

Male Female Mf positive CAg positive

% % % % 

Dozanso 120 54.2 45.8 40 61.7 

Missasso 207 35.3 64.7 20.3 36.9 

Gondaga 212 45.8 54.2 15.1 43.4 

Niantanso 202 42.1 57.9 29.7 81.8 

N’Torla 196 50.5 49.5 13.8 40.3 

Zanadougou 202 30.7 69.3 17.3 24.6 

Mf Microfilaremia, CAg Circulating filarial antigen. 

 

A collective village-wide oral consent was obtained from the villages’ elders, and all 

study participants signed individual written informed consent. The study protocol and 

consent forms were approved by both the Institutional Review Board (IRB) of the 

World Health Organization/Tropical Diseases Research (WHO/TDR) and the ethics 

committee of the Faculty of Medicine, University of Bamako, Mali. 

Study design 

This was a longitudinal study during which monthly entomological surveys were 

performed in 6 study villages from July to December in 2001 (prior to initation of 

MDA with albendazole and ivermectin) and in 2002 (one month after the first MDA). 

Laboratory analysis 

Entomological surveys were performed 12 days per month (2 days/village/month) by 

the same team. Mosquitoes were collected by two trained field personnel in each room 

of four different houses in each village using the HLC method. One collection team 

worked from 6:00 pm to midnight and the second from midnight to 6:00 am. 
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Mosquitoes were captured using a Colluzi and Petrarca type mouth aspirator connected 

to a paper cup as the storage container. A supervisor retrieved the containers at two-

hour intervals. The captured mosquitoes were kept overnight at ambient temperature 

in a paper cup under a damp cloth and dissected the following morning. 

Mosquitoes were sorted morphologically for species identification (An. gambiae and 

An. funestus complexes). Some An. gambiae complex specimens were processed by 

polymerase chain reaction (PCR) method to distinguish between the 2 members of the 

complex (An. arabiensis and An. gambiae ss). The An. gambiae ss were further 

processed by PCR to identify the molecular forms, M and S, as described by Favia et 

al.[5,6]. The head, thorax and abdomen were dissected separately for each mosquito 

and recovered parasite larvae were categorized into L1, L2 or L3 stages. 

Entomologic parameters assessed included infection rate, infectivity rate, human 

biting rate (HBR) and entomological inoculation rate (EIR) and were calculated as 

previously described [5,7]: 

- Infection rate: proportion of mosquitoes found infected after dissection with any 

W. bancrofti larval stage (L1–L3). 

- Infectivity rate: proportion of mosquitoes found infected with one or more infective 

larvae (L3). 

- Human biting rate (HBR): number of mosquitoes caught during the 

HLC × 30/(total number of collectors used per collection × number of collections in 

the month). 

- Entomological inoculation rate (EIR): HBR × infectivity rate. The results of the 

monthly HBR (from all night HLC) multiplied by the W. bancrofti infectivity rate for 
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a given species give an estimate of the number of infective bites of W. bancrofti 

received per human per month. 

Data management and analysis 

Data were analyzed using SPSS version 14 (Statistical Package for Social Sciences) 

(SPSS Inc., Chicago, IL) and Prism V5.0 (GraphPad Software). The Chi square test or 

the Fisher’s exact test was used as appropriate to compare proportions. The confidence 

level was set at 95% for all statistical tests. 

Results 

Monthly variations in vector densities 

A total of 23,265 and 12,986 mosquitoes were collected in the 6 villages of the district 

of Sikasso from July to December in 2001 and 2002, respectively. Overall, An. 

gambiae complex (20,957 in 2001 and 11,190 in 2002) were more frequently captured 

than An. funestus complex (2,308 in 2001 and 1,796 in 2002) among the active vector 

fauna. At the beginning of the transmission season, An. gambiae complex was 

collected more frequently than An. funestus complex (158 fold more in July 2001 and 

138 fold more in August 2002). This trend diminished towards the end of the 

transmission season with equal collection of both species in December 2001 (Table 2) 

and only a two-fold increase in collection of An. gambiae complex in November and 

December 2002 (Table 3). 
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Table 2 
Monthly variation of the entomological parameters for the transmission of 
lymphatic filariasis in six villages of the District of Sikasso in 2001 

Anopheles funestus complex 

Month Collected Dissected Infected (%) Infective (%) HBR EIR

July 25 25 0 (0) 0 (0) 4 0

Aug 33 33 0 (0) 0 (0) 5 0 

Sep 278 148 4 (2.7) 2 (1.4) 43 0.6

Oct 1402 789 51 (6.5) 15 (1.9) 219 4.2

Nov 514 432 17 (3.9) 13 (3) 80 2.4 

Dec 56 44 0 (0) 0 (0) 9 0

Total 2,308 1471 72 (4.9) 30 (2) 60 1.2

Anopheles gambiae complex

Month Collected Dissected Infected (%) Infective (%) HBR EIR

July 3960 3959 123 (3.1) 88 (2.2) 618.75 13.75

Aug 4971 4948 137 (2.8) 91 (1.8) 776.72 14.28

Sep 9096 4708 211 (4.5) 120 (2.5) 1421.25 35.53 

Oct 2320 2005 137 (6.8) 61 (3) 362.5 10.9

Nov 544 544 36 (6.6) 12 (2.2) 85 1.88 

Dec 66 66 2 (3) 0 (0) 10.31 0

Total 20,957 16,230 646 (4) 372 (2.3) 545.76 12.55

N Number, % Percent, HBR Monthly biting rate, EIR Entomological inoculation rate. 
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Table 3 
Monthly variation in the entomological parameters related to the transmission of 
lymphatic filariasis in six villages of the District of Sikasso in 2002 

Anopheles funestus complex 

Month Collected Dissected Infected (%) Infective (%) HBR EIR

July 14 14 2 (14.3) 0 (0) 2.2 0

Aug 18 18 2 (11.1) 0 (0) 2.8 0 

Sep 342 342 22 (6.4) 4 (1.2) 53.4 0.64

Oct 786 786 38 (4.8) 16 (2) 122.8 2.46

Nov 600 600 26 (4.3) 20 (3.3) 93.8 3.1 

Dec 36 36 2 (5.6) 0 (0) 5.6 0

Total 1,796 1,796 92 (5.1) 40 (2.2) 46.8 1.03

Anopheles gambiae complex

Month Collected Dissected Infected (%) Infective (%) HBR EIR

July 1,646 1,646 18 (1.1) 2 (0.1) 257.2 0.26

Aug 2,488 2,488 37 (1.5) 5 (0.2) 388.8 0.78

Sep 2,846 2,846 244 (8.6) 40 (1.4) 444.7 6.23 

Oct 3,214 3,214 160 (5) 70 (2.2) 502.2 11.05

Nov 924 924 34 (3.7) 22 (2.4) 144.4 3.46 

Dec 72 72 12 (16.7) 2 (2.8) 11.3 0.31

Total 11,190 11,190 505 (4.5) 141 (1.3) 291.4 3.79

N Number, % Percent, HBR Monthly biting rate, EIR Entomological inoculation rate. 

Relative frequencies of An. gambiae complex members and An. gambiae s.s. 

molecular forms. 

Among the 15,869 An. gambiae complex members examined by PCR for specific 

species identification, 99.02% (15,713/15,869) were An. gambiae s.s. and 0.98% 

(156/15,869) was An. arabiensis. The frequency of An. gambiae s.s. decreased towards 

the end of the rainy season (December) while that of An. arabiensis increased slightly 
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(Trends Chi square = 90.57; p < 10-4) (Table 4). Significant monthly variation in the 

relative frequencies of the two species was observed (p < 10-6). The overwhelming 

majority (95.09%; 14,942/15,713) of the An. gambiae s.s. collected in 2001 were the 

S molecular form (Table 4). This high frequency of the S molecular form was observed 

in all of the study villages (data not shown). 

 

Table 4 

Monthly variation in the relative frequencies of Anopheles gambiae complex 
members and the molecular forms of Anopheles gambiae sensu stricto in 2001 

  An. gambiae complex members An. gambiae ss molecular forms 

  
  An. 
gambiae ss 

  
  An. 
arabiensis 

  
 M 
Form 

  
 S 
Form 

  

Months N (%) N (%) N (%) N (%)

July 3,895 99.7 12 0.3 195 5 3,700 95 

August 4,859 99.5 24 0.5 233 4.8 4,626 95.2

September 4,480 98.6 63 1.4 211 4.7 4,269 95.3 

October 1,895 98.4 31 1.6 80 4.2 1,815 95.8

November 521 95.8 23 4.2 31 6 490 94

December 63 95.5 3 4.5 21 33.3 42 66.7 

Total 15,713 99.02 156 0.98 771 4.91 14,942 95.09

S Form = An. gambiae Form Bamako or Savannah; M Form = An. gambiae Form 
Mopti. 

 

 

Vector infection rates and transmission pattern 

Both An. gambiae and An. funestus complexes were found to be harboring infective 

larvae during the two years of study (2001 and 2002). In July and August, 100% of the 

infective W. bancrofti larvae were recovered from An. gambiae complex (Figure 1). 
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An. funestus complex harbored infective larvae with increasing rates from September 

to November. No infective mosquito was recovered in December 2001 (Table 2). In 

both 2001 and 2002, the An. funestus complex became increasingly more important in 

LF transmission from September through November (Table 2 and and 3). 

 

 

Figure 1 

Species contribution to the overall monthly infectivity rates in 2001 and 2002. The 

black represents the contribution of Anopheles gambiae complex and the white the 

contribution of Anopheles funestus complex. 

 

Overall, infection rates were comparable between An. gambiae and An. funestus 

complexes with 4% versus 4.9% (Chi2 = 2.90; p = 0.09) in 2001 (Table 2) and 4.5% 

versus 5.1% (Chi2 = 1.31; p = 0.25) in 2002 (Table 3). In 2001, An. funestus complex 

was found to be carrying W. bancrofti larvae from September to November with 

monthly infection rates ranging from 2.7% to 6.5% while infected An. gambiae 
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complex was recovered each month from July to December with rates ranging from 

2.8% to 6.8% (Table 2). In 2002, both An. funestus and An. gambiae complexes were 

found infected from July to December with monthly rates ranging respectively from 

4.3% to 14.3% and 1.1% to 16.7% (Table 3). Whereas infection and infectivity rates 

were similar in 2001 and 2002 for An. funestus complex (4.9% versus 5.1% infection; 

Chi2 = 0.04, p = 0.82 and 2% versus 2.2% infectivity; Chi2 = 0.06, p = 0.80), the 

infectivity rate for An. gambiae complex significantly decreased in 2002 following 

MDA (1.3% versus 2.3% infectivity in 2001; Chi2 = 37.86, p < 10-3), despite a small 

increase in infection rate (4.5% versus 4.0% infection in 2001; Chi2 = 4.54, p = 0.03). 

In 2001, the overall monthly EIR was more than 10 fold higher for An. gambiae 

complex than An. funestus complex. The An. gambiae complex was responsible for 0 

to 35.53 infective bites per human per month. The An. funestus complex was 

responsible of 0 to 4.2 infective bites per human per month. In November 2001, the 

An. funestus complex was responsible for more infective bites than the An. gambiae 

complex (2.4 versus 1.8) but no infective bite was recorded in December (Table 2). In 

2002, there was a dramatic decrease in the overall EIR for An. gambiae complex as 

compared to 2001 (from 12.55 to 3.79 infective bites per person during the 

transmission season). In contrast, for An. funestus complex, the overall EIR in 2001 

(1.2 infective bite/person) (Table 2) was similar to that recorded in 2002 (1.03 

infective bite/person) (Table 3). 

Discussions 

The baseline entomological data collected in this longitudinal study confirmed 

measurable transmission of W. bancrofti in the 6 study villages in Sikasso prior to the 

initiation of MDA. As had been reported previously in Mali, An. gambiae and An. 
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funestus complexes were the predominant vectors [2,8]. In keeping with the high 

prevalence of human infection in these villages, the recorded vector densities were 

higher, especially for An. gambiae complex, than those reported in Banambani (Sudan 

savannah area) in Mali, where W. bancrofti is endemic but the prevalence of infection 

is lower [8]. Other Anopheles species (An. pharaoensis, An. nili, An. rufipes) were 

collected but not systematically processed during this study because of their very low 

relative frequencies, precluding an epidemiologically significant role in the 

transmission of LF, and the fact that they have not been recognized as vectors of W. 

bancrofti in Mali and other neighboring West African countries [2,9]. 

Among the An. gambiae complex members examined by PCR for specific species 

identification, the S form of Anopheles gambiae s.s. was predominant. A 

predominance of the S form of An. gambiae s.s among vectors of LF has also been 

observed in Ghana [10]. Although the PCR identification of An. gambiae complex 

species and An. gambiae s.s. molecular forms was not performed on all the collected 

mosquitoes for logistical reasons, at least 76% of the mosquitoes collected each month 

were dissected to ensure that the samples tested were temporally and geographically 

representative. Mosquitoes were sent for PCR analyses without identity numbers that 

could link them to the dissection results precluding the determination of infection rates 

for the different molecular forms. 

Overall, the highest monthly vector relative frequencies for An. gambiae complex were 

found in July and August (at least 99% of the vectors collected in the month), while 

those of An. funestus complex were observed in November and December (at least 

33% of the vectors collected in the month). Similar variations in the relative 

frequencies of the two vectors were reported in Banambani [8] and are related to 
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differences in environmental conditions during the transmission season and the 

breeding preferences of each species (An. funestus complex prefers shadowed and 

vegetated breeding sites while An. gambiae complex prefers sunny breeding sites with 

limited vegetation) [2,8]. The frequencies of An. gambiae s.s. and An. arabiensis, two 

members of the An. gambiae complex, also showed differing patterns during the 

transmission season. 

Due to the low infection and infectivity rates, processing of pools of Anopheles vectors 

for W. bancrofti infection is the recommended strategy for following vector 

transmission rates during MDA [11,12]. A recently developed L3 specific RT-PCR 

allows infective pools to be distinguished from infected pools and provides a more 

accurate determination of the transmission potential for W. bancrofti[9,13]. In the 

present study, the infection and infectivity profiles of the two morphologically distinct 

Anopheles species complexes (An. gambiae s.l. and An. funestus) were quite different, 

suggesting that the two species complexes should be processed for PCR in separate 

pools if detailed information regarding their relative contributions to monthly 

transmission is desired. Nonetheless, in the setting of post MDA assessment, where 

human-vector contact is the main factor of interest, An. gambiae and An. funestus 

complexes can be processed in the same pool [11,13]. 

In 2002 (post MDA), the number of mosquitoes caught was approximately half that in 

2001 (before MDA). This effect was most dramatic for An. gambiae complex where 

the number captured decreased by almost 50%. Potential reasons for this decrease in 

mosquito numbers include changes in climate, increased awareness of the study area 

population with respect to the role of mosquitoes in disease transmission (resulting in 

less breeding sites and increased use of insecticide treated nets), and the effect of 
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ivermectin on mosquito survivorship. Examination of the rainfall, temperature and 

humidity records for the region did not show any major differences between 2001 and 

2002, suggesting that climate did not play a major role in the decreased number of 

mosquitoes. Although decreases in mosquito numbers following the initiation of MDA 

[14] and an effect of ivermectin on mosquito survivorship [15,16] have both been 

described, these factors were not directly addressed in the present study. 

Whereas the decreased vector numbers in 2002 (post-MDA) clearly contributed to the 

overall decrease in EIR observed for the An. gambiae complex, infectivity also 

declined significantly in 2002, suggesting that multiple factors may have played a role 

in the observed decrease in transmission including the decrease of the mf prevalence 

and loads consecutive to the MDA [14]. The fact that a similar decrease in EIR was 

not seen for An. funestus complex may have been due to the low overall numbers of 

An. funestus complex mosquitoes captured, although a higher degree of facilitation by 

An. funestus complex as compared to An. gambiae complex cannot be excluded. 

Unfortunately, the study was not designed to address this issue, and published data 

comparing facilitation between the two species are limited [17,18]. 

Despite the fact that the overall mosquito infection rates were relatively stable during 

the six months of collection in each of the two transmission seasons, the EIR for W. 

bancrofti varied considerably over the course of the seasons as a result of the large 

differences in vector densities and HBR [11]. This has important implications for the 

timing of MDA for LF in this region, since drug administration conducted at the 

beginning of the rainy season would be predicted to be most effective in decreasing 

transmission due to maximal reduction in mf prevalence and loads at the precise time 

that vector density and biting rates are beginning to rise. 
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Ethical approval for this study was obtained from WHO and University of Bamako. 

At the time that the study was performed, Human Landing Catch was considered an 

ethically acceptable method of mosquito collection. The collectors in this study were 

adult village residents normally exposed to mosquito bites. The collectors were not 

given antimalarial prophylaxis, but were provided access to a health practitioner 

(nurse) during the study in the event of malaria infection as recommended for adult 

subjects living in malaria endemic area. Since the goal of HLC is to collect the 

mosquito before it bites, the risk of infective bite is actually quite low. Although HLC 

is still used in some settings, research is actively ongoing in our center and others to 

find a comparable method that does not involve human bait [19-21]. 

Conclusion 

In conclusion, the entomological data from the present study confirmed the district of 

Sikasso as an area of high W. bancrofti transmission. This led to the selection of this 

area as the site of a multi-national study on the effects of MDA on LF transmission by 

anopheline vectors and as the first region in Mali for implementation of MDA with 

ivermectin and albendazole to eliminate transmission of LF. Comparison of the vector 

transmission parameters prior to and immediately following the first round of MDA 

demonstrated a significant decrease in overall transmission after institution of MDA. 

Importantly, the dramatic variability in EIR over the transmission season suggests that 

the efficacy of MDA can be maximized by delivering drug at the beginning of the 

rainy season (just prior to the peak of transmission). 
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Appendix 4. Chapter 4 related published paper in American Journal of Tropical 
Medicine and Hygiene 

 

The Impact of Six Annual Rounds of Mass Drug Administration on Wuchereria 
bancrofti Infections in Humans and in Mosquitoes in Mali 

Yaya I. Coulibaly,* Benoit Dembele, Abdallah Amadou Diallo, Siaka 
Konaté, Houseini Dolo, Siaka Yamoussa Coulibaly, Salif Seriba Doumbia, Lamine 
Soumaoro, Michel Emmanuel Coulibaly, Moses J. Bockarie, David 
Molyneux, Thomas B. Nutman, Amy D. Klion, Yeya T. Toure, and Sekou F. Traore 

Abstract 

Wuchereria bancrofti prevalence and transmission were assessed in six endemic 

villages in Sikasso, Mali prior to and yearly during mass drug administration (MDA) 

with albendazole and ivermectin from 2002 to 2007. Microfilaremia was determined 

by calibrated thick smear of night blood in adult volunteers and circulating filarial 

antigen was measured using immunochromatographic card test in children < 5 years 

of age. Mosquitoes were collected by human landing catch from July to December. 

None of the 686 subjects tested were microfilaremic 12 months after the sixth MDA 

round. More importantly, circulating antigen was not detected in any of the 120 

children tested, as compared with 53% (103/194) before the institution of MDA. The 

number of infective bites/human/year decreased from 4.8 in 2002 to 0.04 in 2007, and 

only one mosquito containing a single infective larva was observed 12 months after 

the final MDA round. Whether this dramatic reduction in transmission will be 

sustained following cessation of MDA remains to be seen.  

 

 

 

Introduction 
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Lymphatic filariasis (LF) caused by Wuchereria bancrofti is endemic throughout West 

Africa,1,2 where the predominant vectors are species of the Anopheles 

gambiae and Anopheles funestus complexes.1 One of the key questions that has 

emerged as the Global Program for the Elimination of Lymphatic Filariasis (GPELF) 

has grown globally since 20003–5 is the impact that annual mass drug administration 

(MDA) of albendazole and ivermectin (Mectizan®) has had on the transmission of 

the W. bancrofti infection in different epidemiological settings in Africa. 

Whereas the long-term impact of combination albendazole/diethylcarbamazine 

(ALB/DEC) on transmission of LF has been demonstrated in multiple epidemiologic 

settings,6–8 only a few studies have examined the impact of repeated annual 

administration of albendazole/ivermectin (ALB/IVER), the regimen used throughout 

West Africa because of the overlapping geographic distributions of LF and 

onchocerciasis.9–11 To evaluate the effect of ALB/IVER on W. bancrofti transmission 

in varied epidemiologic settings in Africa, a multi-country study was initiated in 2001 

in Mali and Ghana (West Africa) and Kenya (East Africa). Regular assessments of 

prevalence in the human population (circulating filarial antigen and microfilarial 

levels), and in the Anopheles vector population (annual transmission potential [ATP]) 

were conducted prior to and during six annual MDA using ALB/IVER. We report here 

the results of the portion of the study conducted in a highly endemic area of Mali. 

 

Methods 

Study sites. 

The study was undertaken in six villages of the district of Sikasso: Dozanso, Gondaga, 

Missasso, N'Torla, Niantanso, and Zanadougou. The total population of the study area 

was 5,120 in 2008, according to demographic information available from the Sikasso 
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Regional Directorate responsible for planning and statistics. The administrative region 

of Sikasso covers 76,480 km2 in the southern Sudan savannah area. The region has a 

total population of 2.45 million, the highest population density in the country with 32 

inhabitants per km2 in 2008. Prior to this study, there had been no MDA implemented 

in this area. The study villages have previously been described.12 The mean distance 

between the villages is approximately 15 km occupied by cotton fields, backwaters, 

and typical Sudan savanna vegetation. During the study period, the rainfall ranged 

from 1,000 to 1 500 mm/year with the rainy season extending from July to December. 

 

Study design. 

To assess the impact of six consecutive annual MDA rounds on W. bancroftiinfection 

and transmission in these six villages of Sikasso District, a monthly cross-sectional 

entomological survey was undertaken from July to December each year, as well as a 

parasitological assessment in July each year just prior to the MDA and the 

entomological survey, from 2002 to 2008. All six villages received MDA for 6 years. 

During the seventh year (2008), ALB/IVER was not distributed in two villages with 

no evidence of ongoing transmission to provide preliminary data in anticipation of 

stopping MDA in the remaining villages the following year. 

 

Study population. 

A complete census, including the name, age, sex, and profession of every inhabitant, 

was performed in the study villages every year before the parasitological assessment. 

All subjects ≥ 2 years of age who presented for evaluation were included in the study. 

 

Parasitological and clinical assessment. 
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Each year, before starting the mosquito collection, a parasitological assessment was 

performed. Sixty microliters of night blood were obtained by fingerprick from adult 

volunteers (15 years and above) for preparation of three thick smears. The slides were 

stained with Giemsa for identification and quantification of W. bancrofti microfilariae. 

The adult volunteers as well as children ≤ 5 years of age were tested for W. 

bancrofti circulating antigen using immunochromatographic card test during the first 

year (at baseline) and after the sixth MDA. The clinical assessment consisted of a brief 

interview and physical exam focusing on characteristic manifestations of LF, namely 

lymphedema and hydrocele. Any clinical stage of lymphedema (from reversible pitting 

edema to elephantiasis) or hydrocele (small, big, unilateral, or bilateral) was 

considered as a case and recorded without additional information. 

 

Mass drug administration. 

ALB/IVER was administered to all eligible subjects (not pregnant or breastfeeding 

within a week of delivery, taller than 90 cm, and aged 5 years and above) in 

collaboration with the district and community health care staff using the health workers 

as drug distributors. MDA coverage rates were calculated based on the number of 

eligible subjects. 

 

Entomological studies. 

Villagers were trained to collect mosquitoes from 6:00 pm to 6:00 am using the human 

landing catch (HLC) method. A 12-day monthly entomological survey was carried out 

concomitantly by different teams in each of the six villages to determine village-

wide W. bancrofti transmission potential. The parameters assessed included the human 

biting rate (HBR), infection rate, infectivity rate, ATP, and the entomological 
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inoculation rate (EIR) during the study period. From July to December each year, 

mosquitoes were collected by two collectors per room in four different rooms in each 

village at night. The first collection team worked from 6:00 pm to midnight and the 

second from midnight to 6:00 am in each room. The collector caught the mosquitoes 

as they tried to land using a mouth aspirator connected to a paper cup as the storage 

container, as developed by Coluzzi and Petrarca. The mosquitoes that were collected 

during night were kept in ideal conditions (temperature, relative humidity using wet 

wipes) and dissected early the following morning. 

 

Laboratory analysis. 

Mosquito samples were sorted by species (An. gambiae s.l. and An. funestus) on the 

basis of morphology.13 Members of the An. gambiae complex were identified in a 

sample of dissected mosquitoes by polymerase chain reaction (PCR) assays in 2002 

(at baseline) as described by Favia and others.14 

During the dissection, the head and thorax were dissected separately for each 

mosquito, and recovered parasite larval stages were categorized into L1, L2, and L3. 

Parity status was determined by dissecting the ovaries and observing the tracheal 

coils.15 

Multiple entomological parameters were calculated as previously described12,13,16: 

1) Infection rate: proportion of mosquitoes found infected after dissection with any W. 

bancrofti larval stage (L1–L3) 

2) Infectivity rate: proportion of mosquitoes found infected with one or more infective 

larvae (L3) 
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3) HBR: number of mosquitoes caught during the HLC × 30/(total number of 

collectors used per collection × number of collection in the month) 

4) EIR: HBR × infectivity rate. The results of the monthly HBR (from all night HLC) 

multiplied by the W. bancrofti infectivity rate for a given species give an estimate of 

the number of infective bites of W. bancrofti received per human per month. 

5) ATP: the sum of the monthly EIR over the year. 

 

Data management and analysis. 

All data were recorded on standard data sheets and entered into the computer using 

SPSS version 12 (Statistical Package for Social Sciences, SPSS Inc., Chicago, IL) and 

GraphPad Prism version 5. The χ2 test or Fisher's exact test was used as appropriate 

for the comparison of proportions. The confidence level was set at 95% for all 

statistical tests. 

A collective village-wide oral consent was obtained from the villages' elders as well 

as a signed individual written consent form from all study participants and/or 

guardians. Both the Institutional Review Board of the World Health 

Organization/Tropical Diseases Research and the Ethics committee of the Faculty of 

Medicine of Bamako in Mali approved the protocol and the consent forms. 

 

Results 

Clinical, parasitological, and MDA. 

A total of 1,333 subjects from six villages aged 2 years and above have been included 

in the analysis. Females represented 57.8% of this population. Lymphedema and 

hydrocele had prevalences of 0.3 and 2.8%, respectively (Table 1). Cross-sectional 

assessment of the human microfilaremia prevalence rate showed a dramatic decrease 

in the prevalence of W. bancrofti microfilaremia over the course of the study (P < 10−4) 
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from 21.4% (244/1139) in 2002 (Table 1) before the first MDA to 0.2% (2/856) in 

2007 and 0.0% (0/760) in 2008 after the sixth MDA round (data not shown). The 

geometric mean microfilaria (mf) densities in microfilaria-positive individuals also 

decreased from 103 mf/mL in 2002 to 63 mf/mL in 2006, 17 mf/mL in 2007 and to 0 

mf/mL in 2008 (data not shown). Subjects aged 45 and above had the highest W. 

bancrofti microfilaremia prevalence (41.6%) and geometric mean microfilaria density 

(137 mf/mL) (Figure 1). The antigen carriage rate in children also decreased during 

this period from 53.09% (103/194) in 2002 to 0.0% (0/120) in 2008 (P < 10−4) (Table 

2). 

 

 

 
Figure 1. 
Geometric mean prevalence of Wuchereria bancrofti and microfilaremia prevalence 
by age over the six consecutive mass drug administration rounds in the study area. 
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Table 1 

Baseline characteristics of the study population 

  
  Male Female Lymphedema Hydrocele Mf+ Cag+ 

Total % % % % % % 
Age group 2–5 
years 

   

219 47.9 52.1 0 0 ND 2.2
6–7 years 81 56.8 43.2 0 0 4.5 7.1
8–13 years 231 47.2 52.8 0 0 6.1 20.3
14–15 years 50 60 40 0 0 2 4.4
16– 44 years 596 33.9 66.1 0.2 1.7 60.2 52.3
45 years and 156 53.2 46.8 1.3 14.1 26.2 13.7

above   

Total 1,333 42.2 57.8 0.3 2.8 21.4 46.6
Villages*   

Dozanso 120 54.2 45.8 1.7 7.7 40 61.7
Missasso 207 35.3 64.7 0 11 20.3 36.9
Gondaga 212 45.8 54.2 0 6.2 15.1 43.4
Niantanso 202 42.1 57.9 0.5 7.1 29.7 81.8
N’Torla 196 50.5 49.5 0 3 13.8 40.3
Zanadougou 202 30.7 69.3 0 6.5 17.3 24.6

Cag+= circulating filarial antigen; Mf+= microfilaremia, ND =not done. 

 
 
Table 2 
Variation in the Wuchereria bancrofti circulating antigen carriage rate among 

individuals of 5 years and older in 2002 and 2008 

  Baseline (2002) Post 6 MDA (2008) 

Localities No. tested Pos %   No. tested Pos % 

Dozanso 120 48 40      86 0 0 
Missasso 207 42 20.2 138 0 0 
Gondaga 212 32 15.1 167 0 0 

Niantanso 202 60 24.8  129 0 0 

N’Torla 196 27 13.7 141 0 0 

Zanadougou 202 35 17.3      99 0 0 

Total 1139 244 21.4   760 0 0 
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The coverage rate for the eligible population varied from 67% to 78% during the first 

five MDA. In the four villages treated in 2008, coverage remained high at 89.6% 

(3201/3574). Mild adverse events were reported by 0.6% (13/2135) of the subjects in 

2002 and the frequency decreased over time with only a few cases of mild headache 

reported in 2008 (data not shown). No severe adverse events were recorded during the 

study. 

 

Entomology patterns. 

An. gambiae complex members represented 90.1% of the vector fauna at baseline. 

Their mean infectivity rate was 2.3 (372/16,230) whereas An. funestus complex 

members had an infectivity rate of 2.3% (372/16,230). The annual transmission 

potential was 76 and 8 infective bites per human per year, respectively, for An. 

funestus and An. gambiae complexes (Table 3). Among the 15,869 An. 

gambiaecomplex members examined by PCR for specific species identification, 

99.02% (15,713/15,869) were An. gambiae s.s. and 0.98% (156/15,869) 

were Anopheles arabiensis. The most common sibling species of An. gambiae s.s. in 

all localities were the Bamako/Savannah molecular form (S form), which comprised 

95.09% (14,942/15,713) of the mosquitoes examined, followed by the Mopti 

molecular form (M form), which accounted for 3.8% (data not shown). 
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Table 3 

Baseline vector characteristics in the study area prior to the MDA 

Species No. of 

collected 

No. of 

dissected

No. of 

infected (%)

No. of 

infective (%)

HBR EIR ATP 

Anopheles 
gambiae 

s.l. 

20957 
(90.1) 

16230 646 (4.0) 372 (2.3) 545.8 12.6 76 

Anopheles 
funestus 

2308 
(9.9) 

1471 72 (4.9) 30 (2.0) 60.1 1.2 8 

Overall 23265 17701 718 (4.1) 402 (2.3) 605.9 13.9 84 
 

The annual vector HBR decreased over time from 605.9 bites per human per year in 

2001 (Table 3) to 203.96 bites per human per year in 2007 (Table 4). The vector 

infection rate (An. gambiae s.l. and An. funestus) also decreased dramatically (by more 

than 98.11%) from 4.1% (718/17701) in 2001 (Table 3) to 0.04% (2/4680) in 2007, 12 

months after the sixth MDA (Table 4). Of the two infected An. gambiaecomplex 

mosquitoes, one harboured a single infective L3 larva and the second one, a single 

non-infective L2 larva. Thus, the mosquito infectivity rate in 2007 was 0.02% 

(1/4,680) (Table 4). Due to the combination of a decrease in mosquito biting rates and 

lower numbers of infective mosquitoes, the EIR (number of infective bites per human 

per year) decreased by 99.7% from 4.8 in 2001 to 0.05 in 2006 and to 0.04 in 2007, 12 

months after the sixth MDA (Table 4). 
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A similar effect was noted on the ATP, which decreased by 99.95% (Table 4). For An. 

funestus complex, the EIR (1.2 infective bites per person per month) and the ATP 

(seven infective bites per person per year) decreased by 100% by the end of sixth MDA 

evaluation while for An. gambiae complex, the EIR (12.6 infective bites per person 

per month) and the ATP (75.3 infective bites per person per year) decreased, 

respectively, to 0.04 and 0.2 (Supplemental Tables 1 and 2). 

	

Table 4 

Annual variation of the Anopheles gambiae and Anopheles funestus LF transmission 

level over the six MDA rounds 

  
Years 

Number 
of 

mosquito 
collected

Number 
of 

mosquit
o HBR 

Infection rate  
(L1/L2 pos) 

Infectivity rate 
(L3 pos) 

EIR
AT
P % ( positive/ N) 

% ( 
positive/N)

Befor
e 

(2001 23265 17701 605.9 4.1 (718/17701) 
2.3 

(402/17701) 
13.

9 84
MDA 

1 
(2002 12986 12986 338.2 4.6 (597/12986) 

1.4 
(181/12986) 4.8 28.1

MDA 
2 

(2003 18394 18394 479 1.2 (222/18394) 0.2 (44/18394) 1.1 6.9
MDA 

3 
(2004 13021 13021 339 1.1 (143/13021) 0.1 (16/13021) 0.4 2.5
MDA 

4 
(2005 10622 9578 

276.6
1 0.17 (16/9578) 0.05 (5/9578) 

0.1
4 0.9

MDA 
5 

(2006 10604 10604 276.1 0.06 (6/10604) 0.02 (2/10604) 
0.0

5 0.3
MDA 

6 
(2007 7832 4680 

203.9
6 0.04 (2/4680) 0.02 (1/4680) 

0.0
4 0.3
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Of note, the two infected mosquitoes were found in two different villages, Dozanso 

and Niatanso, resulting in average infection rates of 0.11% (N = 916) and 0.28% (N = 

362), respectively. Thus, despite an average EIR of 0.04 infective bites per person 

during the study period, the EIR in 2007 was 0 in all of the villages except Dozanso, 

where it was 0.28 (data not shown). 

 

Discussion 

Consistent with the data from other studies,9–11 six rounds of MDA with albendazole 

and ivermectin were extremely effective in reducing the prevalence of W. 

bancrofti microfilaremia in residents of a highly endemic area of Mali. Although 

testing for microfilaremia was limited to 53.02% (604/1139) of the total population 

eligible for MDA in the six villages, it is unlikely that the infection rate in the 

remaining population was substantially higher than that in the tested subjects. Thus, 

the observed impact of MDA on W. bancrofti microfilaremia in the present study is 

compatible with the long-term objective of the GPELF to interrupt transmission using 

MDA alone. 

As previously reported in the baseline study,12 the dominant vector, An. gambiae s.l., 

continued to account for more than 90% of the mosquito vectors collected in this area 

over the 7 years of the study, followed by An. funestus (data not shown). The overall 

trend in any given year was characterized by a high frequency of An. gambiae s.l. early 

in the rainy season followed by a gradual decrease in An. gambiae s.l. and a gradual 

increase in the abundance of An. funestus toward the end of the rainy season.12 These 

changes are related to the climatic conditions over the year and not a result of MDA.13 
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In addition to seasonal variation, the vector density, and consequently the HBR, 

showed significant yearly variation from 2001 to 2008. The dramatic decrease in HBR 

following the first MDA in the study area has previously been reported and was most 

likely due to increased awareness of the study area population with respect to the role 

of mosquitoes in disease transmission (resulting in less breeding sites and increased 

use of insecticide-treated nets) and the effect of ivermectin on mosquito 

survivorship.12 Long-lasting insecticide-treated nets (LLITNs) were provided for free 

only to mothers just after delivery at the community health center from 2002 to 2004. 

Beginning in 2005, LLITN availability in the six villages increased because of the free 

distribution campaigns for vector control related to malaria prevention. Although 

yearly variations in HBR are not unusual in Mali and have been observed in the 

neighboring sites of Pimperena (unpublished data), this would not be expected to have 

a significant effect on EIR without a concomitant change in the vector infectivity rate. 

Despite high levels of transmission prior to the institution of MDA, the vector infection 

and infectivity rates decreased to a very low, but detectable, level in 2007. Only two 

captured mosquitoes were infected with W. bancrofti, of which only one was infective, 

representing a more than 99% reduction in the infectivity rate. No differences were 

apparent between the two villages that continued to have infected mosquitoes and the 

four other villages with respect to overall compliance with the program or distance to 

non-MDA villages. 

The mean EIR and ATP were also reduced by more than 99% after six MDA rounds. 

Although persistence of transmission despite low levels of microfilaremia in the 

human population has been reported with Culexspecies that exhibit limitation 

(decreasing yield of infective larvae per mf as the number of ingested mf 

increases), An. gambiae and An. funestus complexes demonstrate facilitation 



 281

(increasing yield of infective larvae per mf as the number of ingested mf 

increases).17,18 Consequently, the dramatic reduction in transmission intensity (only 

one infective larvae recovered and an infectivity rate of the anopheles vectors of 0.02% 

(the cutoff of 0.03% has been proposed) is likely sufficient to interrupt transmission in 

this rural area of Sikasso district19 as sexual reproduction is required in the human 

host to produce microfilaria. 

Nevertheless, caution should be exercised in stopping MDA as there be might be 

variation in the efficiency of the different sibling species within the An. gambiae group 

of mosquitoes; thus continued close surveillance for resurgence of transmission will 

be essential. In this regard, a staggered approach to stopping, as undertaken in this 

study, may be most prudent. 

In summary, the data to date suggest that six rounds of MDA with albendazole and 

ivermectin may be sufficient to interrupt transmission in a highly endemic region of 

Mali where Anopheles is the main vector. Annual evaluation of the human and vector 

populations for evidence of W. bancrofti infection continues in the study villages 

following cessation of MDA and will be essential to validate this conclusion. Although 

the effects of vector control measures, such as impregnated mosquito bed nets, were 

not assessed in this study, such interventions may provide additional benefit, 

particularly in the maintenance of transmission interruption after MDA is stopped, and 

should be explored in future studies. 
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Supplemental Table 1 

Annual variation of the Anopheles gambiae LF transmission level over the six MDA rounds 
 

Years 

Number 
of 

mosquito 
collected 

Number 
of 

mosquito 
dissected 

HBR 
% 

(positive/N ) 
% 

(positive/N) 
EIR ATP 

Before 20957 16230 545.8 4 
(646/16230)

2.3 
(372/16230)

12.6 75.3 

MDA 1 11190 11190 291.4 4.5 
(505/11190) 

1.3 
(141/11190) 

3.8 22.7 

MDA2 17825 17825 464.2 1.2 
(213/17825) 

0.2 
(42/17825) 

0.9 5.6 

MDA 3 11818 11818 307.8 1.1 
(128/11818) 

0.1 
(15/11818) 

0.3 1.8 

MDA 4 10072 9080 262.29 0.15 (14/9080) 0.04 
(4/9080) 

0.1 0.6 

MDA 5 10514 10514 273.8 0.06 (6/10514) 0.02 
(2/10514) 

0.05 0.3 

MDA 6 7755 4624 201.95 0.04 (2/4624) 0.02 
(1/4624) 

0.04 0.2 

 
ATP = annual transmission potential; EIR = entomological inoculation rate; HBR = human biting rate; LF = lymphatic filariasis; MDA = mass 

drug administration; pos = positive. 
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Supplemental Table 2 

Annual variation of the Anopheles funestus LF transmission level over the six MDA rounds 

ATP = annual transmission potential; EIR = entomological inoculation rate; HBR = human biting rate (monthly); LF = lymphatic filariasis; 
MDA = mass drug administration; pos = positive.  

  Number 
of 

mosquito 
collected 

Number of 
mosquito 
dissected HBR 

Infection rate 
(L1/L2 pos)   

Infectivity rate 
(L3 pos) 

     EIR ATP

Years 
% ( positive/ 

N)   % ( positive/N) 

Before 2308 1471 
6

0.1 
4.9 (72/1471)  2 (30/1471) 10.2 7

MDA 1 1796 1796 
4

6.8 
5.1 (92/1796)  2.2 (40/1796) 10.03 6.2

MDA 2 569 569 
1

4 
1.6 (9/569)  0.4 (2/569) 00.06 0.3

MDA 3 1203 1203 
3

1.3 
1.2 (15/1203)  0.1 (1/1203) 00.03 0.2

MDA 4 550 498 
1

4.32 
0.4 (2/498)  0.2 (1/498) 00.03 0.2

MDA 5 90 90 2.3 0 (0/90)  0 (0/90)              0 0

MDA 6 77 56 2.01 0 (0/56)   0 (0/56)             0 0
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  Abstract 

 

Background: After seven annual rounds of mass drug administration (MDA) in six 

Malian villages highly endemic for Wuchereria bancrofti (overall prevalence rate of 

42.7%), treatment was discontinued in 2008. Surveillance was performed over the ensuing 

5 years to detect recrudescence. 

Methods: Circulating filarial antigen (CFA) was measured using 

immunochromatographic card tests (ICT) and Og4C3 ELISA in 6–7 year-olds. Antibody 

to the W. bancrofti infective larval stage (L3) antigen, Wb123, was tested in the same 

population in 2012. Microfilaraemia was assessed in ICT-positive subjects. Anopheles 

gambiae complex specimens were collected monthly using human landing catch (HLC) 

and pyrethrum spray catch (PSC). Anopheles gambiae complex infection with W. 

bancrofti was determined by dissection and reverse transcriptase polymerase chain 

reaction (RT-PCR) of mosquito pools. 
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Results: Annual CFA prevalence rates using ICT in children increased over time from 0% 
(0/289) in 2009 to 2. 7% (8/301) in 2011, 3.9% (11/285) in 2012 and 4.5% (14/309) in 2013 

(trend χ2 = 11.85, df =3, P = 0.0006). Wb123 antibody positivity rates in 2013 were similar 
to the CFA prevalence by ELISA (5/285). Although two W. bancrofti-infected Anopheles 
were observed by dissection among 12,951 mosquitoes collected by HLC, none had L3 larvae 
when tested by L3-specific RT-PCR. No positive pools were detected among the mosquitoes  
collected  by  pyrethrum  spray  catch.  Whereas  ICT  in  6–7  year-olds  was  the  major  surveillance  
tool, ICT positivity was also assessed in older children and adults (8–65 years old). CFA 
prevalence decreased in this group from 4.9% (39/800) to 3.5% (28/795) and 2.8% (50/1,812) 

in 2009, 2011 and 2012, respectively (trend χ2 = 7.361, df =2, P = 0.0067). Some ICT-
positive individuals were microfilaraemic in 2009 [2.6% (1/39)] and 2011 [8.3% (3/36)], but 
none were positive in 2012 or 2013.  

Conclusion: Although ICT rates in children increased over the 5-year surveillance period, 
the decrease in ICT prevalence in the older group suggests a reduction in transmission 
intensity. This was consistent with the failure to detect infective mosquitoes or 
microfilaraemia. The threshold of ICT positivity in children may need to be re-assessed and 
other adjunct surveillance tools considered. 
 

Keywords: Wuchereria bancrofti, Transmission assessment survey, Anopheles gambiae 

complex, Mass drug administration, Post-MDA surveillance 
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Background 

Lymphatic filariasis (LF) is a public health problem in 71 countries and is associated 

administration (MDA) to all eligible residents of the endemic communities and 

morbidity management [2]. MDA is aimed at interrupting LF transmission through 
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clearing of peripheral blood microfilariae that prevent human-to-human vector-borne 

transmission [2]. 

As Bancroftian filariasis was found to be endemic in all eight administrative districts 

of Mali, ranging from 1% in Timbuktu (northern part of Mali) to > 18% in Sikasso 

(southern part of the country) [3], annual MDA using ivermectin and albendazole was 

initiated sequentially starting from the most highly endemic district in the country [3]. 

Sentinel sites were established in Sikasso as part of a multi-country initiative to assess 

LF transmission during and after stopping MDA. The baseline data and the impact of 

six rounds of MDA on human infection and potential transmission in this sentinel site 

have been previously reported [4]. 

 

The current study reports data collected to assess transmission after MDA was stopped 

in 2007 (after seven rounds of MDA). Although this study was initiated prior to the 

formal WHO recommendations for transmission assessment surveys (TAS), which 

require demonstration of an infection rate of < 1% in > 400 children aged 6–7 years 

using the immunochromatographic card test (ICT) to document interruption of 

transmission [5], a similar approach was taken using ICT testing of children aged 6–7 

years. ICT testing of a cohort of children ≥ 8 years old and adults and entomological 

assessment of LF transmission were performed. Finally, the use of several additional 

methods (Og4C3 ELISA; Polymerase Chain Reaction (PCR) targeting Wuchereria 

bancrofti DNA; and W. bancrofti infective larval stage specific antigen Wb123-based 

IgG4 immunoassays) to assess transmission interruption in this previously highly LF-

endemic region (Sikasso) of Mali was explored. Our data support an integrated 

approach to surveillance. 
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Methods 

Study sites 

The study area comprised 6 villages in Sikasso district: Gondaga, Dozanso, Missasso, 

N’torla, Niatanso and Zanadougou. These villages are located in the rural commune 

of Kolokoba that is located 332 km southeast of Bamako the capital city. Wuchereria 

bancrofti infection prevalence as assessed by the detection of CFA using ICT prior to 

MDA was 46% [4]. This area is also endemic for Mansonella perstans, but not 

Onchocerca volvulus infection. Based on 2012 undergone 7 annual rounds of MDA 

prior to its cessation in 2008, at which time the CFA prevalence had decreased to 0/760 

children tested and the Anopheles gambiae complex mosquitoes showed an infection 

rate of 0.04% and an infectivity rate of 0.02% that were felt to be incompatible with 

active LF transmission [6]. There was a mean programmatic coverage rate based on 

the total population of 75.6% that varied from 67 to 78% [6]. A year after cessation of 

MDA (in 2009), no infected 6–7 year-old children were found among the 120 tested 

in the 6 villages.  

 

Study design  

As post-MDA surveillance, a yearly cross-sectional parasitological assessment of all 

children 6–7 years of age and all eligible older volunteers aged 8 years and above was 

performed in July from 2009 to 2012. In addition, a monthly entomological assessment 

of LF transmission (from July to December) was conducted in the six study villages in 

2009, 2011 and 2013. In 2013, only children aged 6–7 years were tested with the ICT, 

along with a thick smear from night blood. Infective stage W. bancrofti larvae (L3) 

were assessed in mosquitoes using an L3-specific reverse transcriptase PCR (RT-PCR) 

technique as previously described [7]. The study design is illustrated in Fig. 1. EVAL 
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refers to the ensemble of surveillance testing performed in any given year.  

Parasitological and serological assessments  

Infection status was assessed using the ICT card test for the detection of circulating W. 

bancrofti antigen (Allere, Portland, ME, USA). Dried blood spots were collected for 

additional laboratory analyses. Microfilaraemia was assessed by finger prick at night 

(between 22:00 and 02:00 h) among ICT-positive volunteers using a calibrated thick 

smear. Yearly parasitological studies were conducted in July, at the beginning of the 

transmission period, except in 2009 when, for logistical reasons, this assessment was 

performed in October. Because of the concern of potential transmission, additional 

diagnostic tests were performed on eluted blood spots from the 6–7 year-old children 

in 2012, namely the Og4C3 ELISA (Tropbio Townsville, Australia) and ELISA testing 

for antibodies to Wb123 as previously described [8].  

2002    2003   2004   2005    2006    2007    2008    2009   2010     2011   2012     2013  
 

MDA1  MDA2  MDA3   MDA4  MDA5  MDA6 MDA7  EVAL1 EVAL2 EVAL4 EVAL3 

ICT  +  +  +  + 

CFA ELISA   +    +   

MF  +  +  +  + 

Wb blood PCR                                                             +     

WB123 An body     +   

HLC Vector Collec on/Dissec on   +  +  +  + 

PSC/RT‐PCR       +   

 Figure 1: Time line of treatment, EVAL, and monitoring.  The years in which MDA and  EVAL surveys were performed are shown by the 

arrows and times at which monitoring tools in support of EVAL are shown by the + sign . 

  



292 
 

Entomological assessment  

Each month, a 12-day entomological survey was conducted in the six villages to assess 

the village wide W. bancrofti transmission patterns during the LF transmission period 

in Mali from July to December [4]. Two human landing catch (HLC) sessions were 

organized per month and per village. Two collectors worked inside each of four 

collection rooms per session.  

Because An. gambiae is endophilic, collections were performed indoors to maximize 

yield. A total of 72 collection rounds were undertaken with the HLC. The collection 

was done from 18:00 to 06:00 h, and for ethical reasons, the collectors were replaced 

at midnight at each collection site. 

All An. gambiae and An. funestus complexes collected were freshly dissected for parity 

status based on techniques previously described [9, 10] and for infection (any larval 

stage) and infectivity (L3 stage) status by individual mosquito dissection as previously 

described [11].  

In 2012, the PSC (Pyrethrum Spray Catch) was used to collect mosquito vectors in 

addition to the HLC using Premium®, a pyrethrinoid-based insecticide, in 30 

randomly selected rooms per village in each of the six collection months. During each 

of the 36 PSC collection rounds, the number of persons sleeping in each visited room 

was recorded on the mosquito collection sheet. The collected mosquitoes during the 

PSC were pooled (1 to 20 mosquitoes) in the field and stored in tubes containing RNA 

later and sent to Smith College for W. bancrofti RNA detection by RT-PCR as 

previously described [7].  

For PSC, the monthly biting rate was determined by dividing the number of fed and 
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half-gravid female Anopheles collected in a room by the number of sleepers in the 

room the night before the collection multiplied by 30 [12]. The annual biting rate 

(ABR) was the sum of all the monthly biting rates calculated over the year [12]. From 

HLC-collected Anopheles, the parameters were determined as previously reported [12, 

13].  

 

Sampling 

The present study predated the official WHO guidelines for TAS [5]. Because the 

evaluation unit was small (<300 children aged 6-7 years), all of the available eligible 

children were screened. 

 

Data analysis 

The collected data were entered using Microsoft Access 2007 and analysed using 

Graph Pad prism version 5 and Statistical Package for Social Sciences (SPSS) version 

20. To compare the infection prevalences between villages or mosquito species, we 

used the Pearson χ2 or the Fisher’s exact test, if necessary. The trend χ2 was used to 

test the statistical significance of any frequency or proportion’s trend over time.  

 

Results  

Study demographics  

We assessed 289 children aged 6–7 years in 2009, 301 in 2011, 285 in 2012 and 309 

in 2013. Concomitantly, available older children and adults were assessed in 2009 (n 

= 800), 2011 (n = 795), and 2012 (n = 1,812) (Tables 1, 2). In 2013, testing of older 
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children and adults was restricted to those who were positive by ICT in 2012 (n = 50). 

Although the sizes of the 6 study villages differed, the study populations within the 

villages were quite well balanced in terms of gender within both the 6 to 7 year-old 

children and the ≥ 8 year-olds throughout the study period (Table 2).  

 

CFA and Wb123 antibody prevalence assessment over the surveillance period  

The CFA prevalence in 6–7 year-old children increased significantly over the 

surveillance period, from 0% (0/289) in 2009 to 2.7% (8/301) in 2011 and 4.5% 

(14/309) in 2013 (Trend χ2 = 12.80, df = 3, P = 0.0003) (Table 3). In contrast, there 

was a significant decrease in CFA positivity over the study period in the ≥ 8 year-olds, 

from 4.9% (39/800) in 2009 to 3.5% (28/795) in 2011, to 2.8% (50/1,812) in 2012 

(Trend χ2 = 697.8, df = 2, P = 0.0001). Whereas none of the ICT-positive 6-7 year-

olds had detectable microfilaraemia, 1 of 39 (2.6%) individuals in the older group was 

microfilaraemic in 2009, and 3/36 (8.3%) were microfilaraemic in 2011. In 2012, none 

of the 50 ICT-positive older subjects was microfilaraemic (Table 3). Forty-four of the 

previously ICT-positive older subjects, as well as 6 of the 6-7 year-olds who were ICT-

positive and 8 years old at the time of the 2013 survey, were reassessed in 2013. None 

of the 28 subjects who remained ICT-positive in 2013 had detectable microfilaraemia 

(data not shown). Positivity rates for both the Og4C3 ELISA for CFA and testing for 

antibodies to the W. bancrofti-specific antigen, Wb 123, were similar to the results 

obtained using the ICT tests (χ2=3.52, df = 2, P = 0.173).  

 

Entomological assessment  

The number of mosquitoes collected using the HLC over the study period is detailed 
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in Table 4. The highest ABR using the HLC was 374 bites per person in 2012 and the 

lowest was in 2011 with 155 bites per person. Among the dissected mosquitoes, the 

parity rates were significantly different between the 3 yearly entomological surveys 

with 84% (3,675/4,380) in 2009, 84% (2,406/2,853) in 2011 and 88% (5,032/5,718) 

in 2012 (χ2 = 40.76, df = 2, P <10-4). In 2009, two (0.05%) filaria-infected Anopheles 

females were detected (Table 4) without any infective larval stage recovered. In 2011 

and 2012, no W. bancrofti larvae were found in the dissected mosquitoes (data not 

shown). With the PSC method during the 6 months of collection in 2012, 1,907 

mosquitoes were collected and the ABR was 100 bites per person per year. The number 

of mosquitoes collected with the PSC technique was 3.75 times less than that collected 

with the HLC in 2012. Moreover, both the infection and infectivity of the PSC-

collected mosquitoes were 0 (Table 4). Of note, An. gambiae complex was the most 

frequent vector comprising more than 99 % of the active vector fauna each year as 

compared to An. funestus complex (data not shown). 

We observed the highest vector density (12 mosquitoes per person per night) in 2012 

with 7,165 mosquitoes collected by 576 collectors. This density was 2.4 times higher 

than that in 2011 (2,962 mosquitoes) and 1.6 times more than that in 2009 (4,448 

mosquitoes). Of the 2,962 and 7,165 mosquitoes collected in 2011 and 2012, 

respectively, the frequencies of An. pharaoensis varied from 1.31% in 2011 to 0.32% 

in 2012 while the frequencies of An. rufipes varied from 0.30% in 2011 to 0.01% in 

2012. These species were very rare during the previous collection years in this area 

and were never found to be infected with W. bancrofti (Table 4).  

 

Discussion  

The current study investigated the LF transmission patterns following cessation of 
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MDA during the surveillance period from 2009 to 2013 in six neighbouring previously 

highly LF endemic villages in the Sikasso region in Mali. In 2008, after seven rounds 

of MDA, the W. bancrofti microfilaraemia and ICT positivity in children (6–7 years) 

was reduced to 0%. By 2011 and 2012, the prevalence of ICT-positivity in 6–7 year-

old children showed an increase, although microfilaraemia was not detected. Despite 

a steady increase in CFA prevalence in 6–7 year-old children, there was a marked 

decrease in CFA prevalence rates over the same five year period among those ≥ 8 years 

of age (trend χ2 = 7.361, df = 3, P = 0.0067). This decrease is consistent with attrition 

over time of established worms. Despite the increasing CFA prevalence in children, 

our data are most consistent with interruption of LF transmission infective Anopheles, 

and the decreased CFA prevalence in the older age group. Nonetheless, close 

monitoring in areas of previously high transmission is necessary to detect early 

resurgence of transmission and to generate data that may guide and improve the 

elimination process. 

When prevalence was estimated using different tools (Og4C3 ELISA and Wb123 

immunoassays) at a single time point (2012), ICT consistently gave a higher 

prevalence rate compared to the two other tests, although the differences in prevalence 

were not statistically significant. Higher prevalences using ICT compared to Og4C3 

ELISA was also observed in Togo during a school-based TAS conducted three years 

after stopping MDA [14], although the reasons for this are unclear. Loa loa 

microfilaraemia has been shown to be associated with ICT-positivity at both the 

community and individual levels [15, 16]; however, the same studies showed no 

association between ICT-positivity and the prevalence of M. perstans, the only other 

filarial parasite endemic in the study area [17].  
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Re-emergence of infection after just a few years of surveillance has been reported in 

Nigeria in some but not in all districts [18]. In India after 10 years following MDA 

implementation, new infection among children was also reported [19]. Using 6–7 year-

old children as the sentinel population makes sense in the Malian context because this 

group remains in the villages, whereas many adults travel from place to place because 

of seasonal migration for agriculture and may acquire infection in areas that have not 

yet started MDA [20].  

The approach to post-MDA surveillance is still being perfected. Antibody testing (e.g. 

Wb123) has been proposed as a potential better tool than antigen testing for the early 

identification of on-going transmission, as antibody positivity typically occurs months 

prior to positivity in adult antigen-based circulating antigen testing [21–23]. As there 

was good concordance between Wb123 prevalence and that of the CFA testing in the 

children (see Table 1) and with both tests now being point of care (POC) [8, 24], it is 

possible that the Wb123 rapid diagnostic test may be considered as a major 

surveillance tool in the near future. 

Although screening of vector populations for the presence of infective larvae has been 

one of the 2 pillars of assessing transmission interruption in onchocerciasis [25, 26], 

its widespread use in LF has not taken hold to date. However, using both standard 

(dissection) and molecular techniques on both HLC and PSC collected mosquitoes (n 

= 9,072) only a few positives were found (and only just after the cessation of MDA). 

This is probably due to the drastic reduction of microfilaraemia prevalence after the 

seven consecutive MDA treatments and to the relatively low number of mosquitoes 

collected and the low sensitivity of the dissection [7]. Since RT-PCR, a more sensitive 

method to detect infective stage L3 larvae in the vector, is available [7], screening of 

larger numbers of mosquitoes and pool screen-based molecular techniques will need 
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to be assessed. 

The observation that An. pharaoensis and An. rufipes were more frequently biting 

humans and their identification as secondary vectors of W. bancrofti in West Africa 

[27], raises the possibility that transmission can be sustained by a number of vectors 

other than the most prevalent (An. gambiae complex). The rain pattern in 2012 

(frequency and abundance) likely played a role in the increased vector density, as well 

as in the increase in An. pharaoensis and An. rufipes frequencies [28, 29]. However, 

what is needed is an adequately designed prospective study of W. bancrofti 

transmission dynamics and vector control in this region of Mali. In addition, HLC was 

much more effective at collecting Anopheles than PSC; because of potential ethical 

issues related to HLC [30], better collection methods are needed. With very low human 

infection and vector infectivity rates, there is no evidence that W. bancrofti 

transmission has re-emerged in the study villages in the present study [5, 12]. 

Nevertheless, new entomological studies are needed to understand transmission 

dynamics in the context of post MDA surveillance. Mosquito vectors transmit W. 

bancrofti in two primary patterns, limitation and facilitation. Limitation is typically 

exhibited by Culex species and allows more efficient L3 development when 

microfilaraemia loads are low. Conversely, facilitation (usually exhibited by 

Anopheles species) leads to decreased numbers of developing L3 when 

microfilaraemia loads are low. Because limitation of An. gambiae (sensu stricto) has 

been observed in Ghana [31], it should also be assessed in other geographic locations 

(e.g. Mali) given the possibility of adaptation or specific mutation that can modify 

mosquito’s transmission pattern [32]. From our previous studies, in the same area, 

WHO criteria were met but the mosquitoes were still infective (infectivity rate of 

0.02%) when the MDA was stopped [6]. Taking into account the entomological data 
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and determining a threshold could be beneficial to be able to safely stop MDA in highly 

LF endemic. 

Despite a dramatic and stable decrease in the prevalence of infection in the older age 

groups and in mosquitoes five years following the cessation of MDA in six villages 

previously highly endemic for LF, a significant increase in the prevalence of LF 

antigenemia as assessed by ICT occurred among 6–7 year-old children. Although the 

ICT prevalence in this age group met WHO criteria for restarting MDA (> 2% ICT-

positive) [5], the prevalence using the Og4C3 ELISA and Wb123 antibody ELISA 

were below the threshold. Furthermore, the observed prevalence increase within this 

group contrasted with the entomological data that showed an absence of LF 

transmission and the absence of microfilaraemia in all individuals tested. 

 

Conclusions 

Using a set of LF testing methods (ICT, Wb123, Og4C3 ELISA, and vector 

surveillance), we demonstrated differences among the various techniques considered 

important for post-MDA assessments. Our data suggest, nevertheless, that an 

integrated assessment strategy that combines serologic- and vector-based techniques 

may be useful in the assessment of transmission interruption following cessation of 

MDA in LF-endemic areas. 
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Table 1 Sampling according to different activities per year 

  Study Human Sample Mosquito Collection 

Year 
Total 

population 

6-7 years 

old 
≥8 years 

Number 

Collected 

Technique 

used 

Number 

of 

collection 

rounds 

2009 4,431 289 800 4,448 HLC 72 

2011a 4,761 301 795 2,962 HLC 72 

2012 5,044 285 1,812 7,168/1,907 HLC/PSC 72/36b 

2013c 5,225 309 50 nd nd nd 

a= in 2011, a random sample of 92 subjects from the 6 villages was tested with Wb123 

ELISA.  

b= In 2012, the 6 villages were visited once a month from July to December (collection 

in 30 rooms per visit per village);  

c = in 2013 the 50 subjects ≥8 years tested were the ones found positive using ICT in 

2012  

nd = Not Done 
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Table 2 Characteristics of the study population per village throughout the surveillance 

period in the 6 study villages of the Sikasso district 

Village 6–7 years  8 years and above Overall 

M/F Total M/F Median age 
(Range) 

Total 

Survey 1 in 2009 

Dozanso 20/29 49 60/73 34 (12–79) 133 182 

Missasso 26/20 46 64/94 40 (15–76) 158 204 

Gondaga 22/21 43 55/64 33 (12–75) 119 162 

Niatanso 30/24 54 91/106 31 (12–69) 197 251 

N'Torla  23/16 39 50/49 37 (12–72) 99 138 

Zanadougou 28/30 58 31/63 37.5 (13–77) 94 152 

Total 149/140 289 351/449 35 (12–79) 800 1,089 

Survey 2 in 2011 

Dozanso 21/17 38 42/71 32 (15–82) 113 151 

Missasso 22/31 53 51/99 35 (15–86) 150 203 

Gondaga 21/17 38 58/73 29 (15–84) 131 169 

Niatanso 25/29 54 73/60 31 (15–82) 133 187 

N'Torla 35/26 61 53/80 31 (15–88) 133 194 

Zanadougou 26/31 57 49/86 31 (15–89) 135 192 

Total 150/151 301 326/469 38 (15–89) 795 1,096 

Survey 3 in 2012 

Dozanso 20/16 36 95/137 32 (15–82) 232 268 

Missasso 21/27 48 101/171 33 (15–79) 272 320 

Gondaga 27/21 48 100/177 28 (15–85) 277 325 

Niatanso 26/25 51 134/182 28 (15–83) 316 367 

N'Torla 22/15 37 127/208 30 (15–89) 335 372 

Zanadougou 34/31 65 137/243 30 (15–80) 380 445 

Total 150/135 285 694/1,118 30 (15–89) 1,812 2,097 

Survey 4 in 2013 

Dozanso 24/24 48 8/15 41 (8–75) 23 73 

Missasso 26/21 47 1/4 38 (31–68) 5 52 

Gondaga 30/25 55 0/5 28 (8–58) 5 60 

Niatanso 32/23 55 1/3 25.5 (8–63) 4 60 

N'Torla 18/24 42 1/6 46 (24–66) 7 49 

Zanadougou 31/31 62 4/2 29 (8–58) 6 68 

Total 161/148 309 15/35 38 (8–75) 50 359 

M/F= male/female 
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Table 3 Circulating filarial antigen (CFA) and microfilaraemia prevalence rates within 

6–7 year-old children and those of 8 years and above from 2009 to 2013 
 

Survey 1 (2009) Survey 2 (2011) Survey 3 (2012)a Survey 4 (2013) 

Sample 
size 
and 
target 

Targeted sample size 1,107 1,107 2,530 372 
Total population 4,431 4,761 5,044 5,225 
Number tested (n) 1,089 1,096 2,097 359 

ICT ≥ 8 years % 
Positive(n/N)  

4.9% (39/800) 3.5% (28/795)  2.8% (50/1,812)  

 [95% CI] [3.53–6.67] [2.40–5.12] [2.08–3.65] –  

6–7 years % Positive 
(n/N)  

0% (0/289)  2.7% (8/301)  3.9% (11/285)  4.5% 
(14/309) 

 [95% CI] [0.00–1.64] [1.24–5.37] [2.04–7.00] [2.60–
7.66] 

Mf ≥ 8 years % Positive 
(n/N)b 

2.6% (1/39) 10.7% (3/28)  0% (0/50)   

[95% CI] [0.06–13.48] [2.81–29.37] [0.00–8.89] – 

6–7 years % Positive 
(n/N)b  

0 0% (0/8)  0% (0/11)  0% 
(0/14)  

 [95%  CI]  [0.00–40.23] [0.00–32.15] [0.00–
26.76]

PCR ≥ 8 years % Positive 
(n/N) 

5.13% (2/39)  np np np 

[95% CI] [0.89–18.63] 

6–7 years % Positive 
(n/N)  

0 np np np 

 [95% CI]     

Wb123 ≥ 8 years %Positive 
(n/N) 

np np 4.7% (2/43) nd 
 

[95% CI] [0.81–17.06]  

6–7 years % Positive 
(n/N)  

np np 1.8% (5/285)  nd 

 [95% CI]   [0.65–4.27]  

Og4C3 ≥ 8 years ICT % 
Positive (n/N)  

np np 4% (2/50) np 

[95% CI] [0.70–14.86] 

6–7 years % Positive 
(n/N)  

np np 1.8% (5/285)  np 

 [95 % CI]   [0.65–4.27]  

aIn 2012, the ELISA test was done on all the children and the 50 ICT positive adults 

bOnly the ICT positive subjects were tested for Mf  

Abbreviations: ELISA, Enzyme-Linked Immuno-Sorbent Assay; ICT, 

Immunochromatographic Card Test; ICT+, ICT positive; Mf, microfilaraemia; n, 
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number positive; N, number examined; nd, not done; np, not planned; PCR, 

polymerase chain reaction; Wb123, filarial antibody test 
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Table 4 Annual variation of mosquito densities and biting rates over the surveillance 

period from 2009 to 2012 

Collection 
method 

Years Species No. of 
mosquitoes 
collected 

No. of 
mosquitoes 
dissected 
Frequency 
[95% CI] 

ABR Parity  
Frequency [95% 
CI] 

Infection 
Frequency 
[95% CI] 

HLC 2009 GA 4,443 4,375  232 3,671 2 

  98.47  

[98.05–98.8] 

 83.9  

[82.78–84.98] 

0.05 

[0.01–0.18] 

FU 5 5  0 4 0 

  100 [46.29–
100] 

 80 [29.88–98.94]  

PH 0 0 0 0 0 

RU 0 0 0 0 0 

2011 GA 2,911 2,803 152 2,364 0 

  96.29 [95.52–
96.93] 

 84.34 [82.92–85.65]  

FU 3 3 0 3 0 

  100 [31.00–
100] 

 100 [31.00–100]  

PH 39 38 2 30 0 

  97.44 [84.92–
99.87] 

 78.95 [62.22–89.86]  

RU 9 9 1 9 0 

  100 [62.88–
100] 

 100 [62.88–100]  

2012 GA 7,138 5,691 368 5,006 0 

  79.82 [78.86–
80.74] 

 88.9 [88.05–89.70]  

FU 3 3 0 3 0 

  100 [31.00–
100] 

 100 [31.00–100]  

PH 23 23 1 22 0 

  100 [77.08–
100] 

 94.1 [69.23–99.69]  

RU 1 1 0 1 0 

  100 [5.46–
100] 

 100 [5.46–100]  

PSC 2009 nd nd nd nd nd 

2011 nd nd nd nd nd 

2012 An. spp. 1,907 115a 12b nd 0 

aNumber of pools of 20 mosquitoes tested with the RT-PCR 
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bThe number of half gravid and blood fed mosquitoes divided by the number of sleepers in the 

rooms visited the night before the collection 

Abbreviations: An. spp., Anopheles species; HLC, HBR, human biting rate; Human landing 

catch; FU, Anopheles funestus; GA, Anopheles gambiae; PH, Anopheles pharaoensis; PSC, 

Pyrethrum spray catch; RU, Anopheles rufipes; nd, not done 

 


