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ABSTRACT
Parity games play an important role in model checking and synthesis.
In their paper, Calude et al. have recently shown that these games can
be solved in quasi-polynomial time. We show that their algorithm
can be implemented efficiently: we use their data structure as a
progress measure, allowing for a backward implementation instead
of a complete unravelling of the game. To achieve this, a number of
changes have to be made to their techniques, where the main one is
to add power to the antagonistic player that allows for determining
her rational move without changing the outcome of the game. We
provide a first implementation for a quasi-polynomial algorithm, test
it on small examples, and provide a number of side results, including
minor algorithmic improvements, a quasi bi-linear complexity in
the number of states and edges for a fixed number of colours, and
matching lower bounds for the algorithm of Calude et al.

CCS CONCEPTS
•Theory of computation → Logic and verification; •Hardware
→ Logic synthesis; Model checking;
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1 INTRODUCTION
Parity games are two-player zero-sum games played on a finite
graph. The two players, named even and odd, move a token around
the graph until a cycle is formed. Each vertex is labelled with an
integer colour, and the winner is determined by the parity of the
largest colour that appears on the cycle: player even wins if it is an
even colour, and player odd wins otherwise.

Parity games have been the focus of intense study [2–6, 8, 10, 11,
18–20, 22–25, 27, 29, 30, 33, 35, 37], in part due to their practical
applications. Solving parity games is the central and most expensive
step in many model checking [1, 7, 9, 10, 21, 36], satisfiability
checking [21, 31, 34, 36], and synthesis [16, 26, 32] algorithms.

,

Parity games have also attracted attention due to their unusual
complexity status. The problem of determining the winner of a
parity game is known to lie in UP ∩ co-UP [17], so the problem
is very unlikely to be NP-complete. However, despite much effort,
no polynomial time algorithm has been devised for the problem.
Determining the exact complexity of solving a parity game is a
major open problem.

Three main classes of algorithms have been developed for solving
parity games in practice. The recursive algorithm [24, 37], which
despite being one of the oldest algorithms has been found to be
quite competitive in practice [14]. Strategy improvement algorithms
use a local search technique [35], similar to the simplex method
for linear programming and policy iteration algorithms for solving
Markov decision processes. Progress measure algorithms define a
measure that captures the winner of the game, and then use value
iteration techniques to find it [18]. Each of these algorithms has
inspired lines of further research, all of which have contributed to
our understanding of parity games. Unfortunately, all of them are
known to have exponential worst case complexity.

Recently, Calude et al. [5] have provided a quasi-polynomial time
algorithm for solving parity games that runs in time O (n dlog(c )+6e ),
where c denotes the number of priorities used in the game. Previ-
ously, the best known algorithm for parity games was a deterministic
sub-exponential algorithm [20], which could solve parity games in
nO (
√
n) time, so this new result represents a significant advance in

our understanding of parity games.
Their approach is to provide a compact witness that can be used

to decide whether player even wins a play. Traditionally, one must
store the entire history of a play, so that when the players construct
a cycle, we can easily find the largest priority on that cycle. The key
observation of Calude et al. [5] is that a witness of poly-logarithmic
size can be used instead. This allows them to simulate a parity game
on an alternating Turing machine that uses poly-logarithmic space,
which leads to a deterministic algorithm that uses quasi-polynomial
time and space.

This new result has already inspired follow-up work. Jurdziński
and Lazić [19] have developed an adaptation of the classical small-
progress measures algorithm [18] that runs in quasi-polynomial
time. Their approach is to provide a succinct encoding of a small-
progress measure, which is very different from the succinct encoding
developed by Calude et al. [5]. The key advantage of using progress
measures as a base for the algorithm is that it avoids the quasi-
polynomial space requirement of the algorithm of Calude et al.,
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instead providing an algorithm that runs in quasi-polynomial time
and near linear space.

Our contribution. In this paper, we develop a progress-measure
based algorithm for solving parity games that uses the succinct
witnesses of Calude et al. [5]. These witnesses were designed to
be used in a forward manner, which means that they are updated
as we move along a play of the game. Our key contribution is to
show that these witnesses can also be used in a backwards manner,
by processing the play backwards from a certain point. This allows
us to formulate a value iteration algorithm that uses (backwards
versions of) the witnesses of Calude et al. [5] directly.

The outcome of this is to provide a second algorithm for parity
games that runs in quasi-polynomial time and near linear space.
We provide a comprehensive complexity analysis of this algorithm,
which is more detailed than the one given Calude et al. [5] for
the original algorithm. In particular, we show that our algorithm
provides

(1) a quasi bi-linear running time for a fixed number of colours,
O (mn log(n)c−1);

(2) a quasi bi-linear FPT bound, e.g. O (mna(n)log logn ), where
any other quasi-constant function can be used to replace
the inverse Ackermann function a; and

(3) an improved upper bound for a high number of colours,
O (m · h · nc1.45+log2 (h) )

for parity games with m edges, n vertices, and c colours, where
h = d1 + c/ log(n)e and the constant c1.45 = log2 e < 1.45. We also
provide an argument that parity games with O (logn) colours can be
solved in polynomial time.

The complexity bounds (1) of our algorithm only match the
bounds for the algorithm of Jurdziński and Lazić [19], while (2)
and (3) are new. Moreover, we believe that it is interesting that the
witnesses of Calude et al. [5] can be used in this way. The history
of research into parity games has shown that ideas from the varying
algorithms for parity games can often spur on further research. Our
result and the work of Jurdziński and Lazić show that there are two
very different ways of succinctly encoding the information that is
needed to decide the winner in a parity game, and that both of them
can be applied in value iteration algorithms. Moreover, implement-
ing our progress measure is easier, as standard representations of the
colours can be used. We have implemented our algorithm, and we
provide some experimental results in the last section.

Finally, we present a lower bound for our algorithm, and for the
algorithm of Calude et al. [5]. We derive a family of examples
upon which both of the algorithms achieve their worst case—quasi-
polynomial—running time. These are simple single player games.

2 PRELIMINARIES
N denotes the set of positive natural numbers {1, 2, 3, . . .}. Parity
games are turn-based zero-sum games played between two players—
even and odd, or maximiser and minimiser—over finite graphs. A
parity game P is a tuple (Ve ,Vo ,E,C,ϕ), where (V = Ve ∪Vo ,E) is
a finite directed graph with the set of vertices V partitioned into a
set Ve of vertices controlled by player even and a set Vo of vertices
controlled by player odd, E ⊆ V ×V is the set of edges, C ⊆ N is
a set of colours, and ϕ : V → C is the colour mapping. We require
that every vertex has at least one outgoing edge.

A parity game P is played between the two players, even and
odd, by moving a token along the edges of the graph. A play of
such a game starts by placing a token on some initial vertex v0 ∈ V .
The player controlling this vertex then chooses a successor vertex
v1 such that (v0,v1) ∈ E and the token is moved to this successor
vertex. In the next turn the player controlling the vertex v1 chooses
the successor vertex v2 with (v1,v2) ∈ E and the token is moved
accordingly. Both players move the token over the arena in this
manner and thus form a play of the game. Formally, a play of a
game P is an infinite sequence of vertices 〈v0,v1, . . .〉 ∈ Vω such
that, for all i ≥ 0, we have that (vi ,vi+1) ∈ E. We write PlaysP (v )
for the set of plays of the game P that start from a vertex v ∈ V
and PlaysP for the set of plays of the game. We omit the subscript
when the arena is clear from the context. We extend the colour
mapping ϕ : V → C from vertices to plays by defining the mapping
ϕ : Plays→ Cω as 〈v0,v1, . . .〉 7→ 〈ϕ (v0),ϕ (v1), . . .〉.

A play 〈v0,v1, . . .〉 is won by player even if lim supi→∞ ϕ (vi ) is
even, by player odd if lim supi→∞ ϕ (vi ) is odd.

A strategy for player even is a function σ : V ∗Ve → V such that(
v,σ (ρ,v )

)
∈ E for all ρ ∈ V ∗ and v ∈ Ve . A strategy σ is called

memoryless if σ only depends on the last state (σ (ρ,v ) = σ (ρ ′,v )
for all ρ, ρ ′ ∈ V ∗ and v ∈ Ve ). A play 〈v0,v1, . . .〉 is consistent with
σ if, for every initial sequence ρn = v0,v1, . . . ,vn of the play that
ends in a state of player even (vn ∈ Ve ), σ (ρn ) = vn+1 holds.

It is well known that the following conditions are equivalent:
Player even wins the game starting at v0 if she has a strategy σ that
satisfies that

(1) all plays 〈v0,v1, . . .〉 consistent with σ satisfy
lim supi→∞ ϕ (vi ) (i.e. the highest colour that occurs
infinitely often in the play) is even;

(2) all plays 〈v0,v1, . . .〉 consistent with σ contain a win-
ning loop vi ,vi+1, . . . ,vi+k , that satisfies vi = vi+k and
ϕ (vi ) ≥ ϕ (vi+j ) for all natural numbers j ≤ k;

(3) as (1), and σ must be memoryless; or
(4) as (2), and σ must be memoryless.

We use different criteria in the technical part, choosing the one
that is most convenient.

3 QP ALGORITHMS
We discuss a variation of the algorithm of Calude et al. [5].

In a nutshell, the algorithm keeps a data structure, the witnesses,
that encodes the existence of sequences of “good” events. This
intuitively qualifies witnesses as a measure of progress in the con-
struction of a winning cycle. This intuition does not fully hold, as
winning cycles are not normally identified immediately, but it gives
a good intuition of the guarantees the data structure provides.

In [5], witnesses are used to track information in an alternating
machine. As they are quite succinct (they have only logarithmically
many entries in the number of vertices of the game, and each entry
only requires logarithmic space in the number of colours), this entails
the quasi-polynomial complexity.

We have made this data structure accessible for value iteration,
using it in a similar way as classical progress measures. This requires
a—simple—argument that witnesses can be used in a backward
analysis of a run just as well as in a forward analysis. This, in turn,
requires a twist in the updating rule that allows for rational decisions.
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For this, we equip the data structure with an order, and show that
the same game is still won by the same player if the antagonist can
increase the value in every step.

i-Witnesses. Let ρ = v1,v2, . . . ,vm be a prefix of a play of
the parity game. An i-witness is a sequence of (not necessarily
consecutive) positions of ρ

p1,p2,p3, . . . ,p2i ,

of length exactly 2i , that satisfies the following properties:

• Position: Each pj specifies a position in the play ρ, so each
pj is an integer that satisfies 1 ≤ pj ≤ m.

• Order: The positions are ordered. So we have pj < pj+1
for all j < 2i .

• Evenness: All positions other than the final one are even.
Formally, for all j < 2i the colour ϕ (vpj ) of the vertex in
position pj is even.

• Inner domination: The colour of every vertex between pj
and pj+1 is dominated by the colour of pj , or the colour
of pj+1. Formally, for all j < 2i , the largest colour of any
vertex in the subsequence vpj ,v(pj )+1, . . . ,vp(j+1) is less

than or equal to max
{
ϕ (vpj ),ϕ (vpj+1 )

}
.

• Outer domination: The colour of p2i is greater than or
equal to the colour of every vertex that appears after p2i in
ρ. Formally, for all k in the range p2i < k ≤ m, we have
that ϕ (vk ) ≤ ϕ (vp2i ).

Witnesses. We define C = C ∪ { } to be the set of colours aug-
mented with the symbol. A witness is a sequence

bk ,bk−1, . . . ,b1,b0,

of length k + 1—we will later see that k = blog2 (e )c is big enough,
where e is the number of vertices with an even colour—where each
element bi ∈ C , and that satisfies the following properties.

• Witnessing. There exists a family of i-witnesses, one for
each element bi with bi , . We refer to such an i-witness
in the run ρ. We will refer to this witness as

pi,1, pi,2, . . . , pi,2i .

• Dominating colour. For each bj , , we have that bj =
ϕ (vpi,2i ). In other words, bj is the outer domination colour
of the i-witness.

• Ordered sequences. The i-witness associated with bi
starts after j-witness associated with bj whenever i < j.
Formally, for all i and j with i < j, if bi , and bj , , then
pj,2j < pi,1.

It should be noted that the i-witnesses associated with each position
bi are not stored in the witness, but in order for a sequence to be a
witness, the corresponding i-witnesses must exist.

Observe that the dominating colour property combined with the
ordered sequences property imply that the colours in a witness are
monotonically increasing, since each colour bj (weakly) dominates
all colours that appear afterwards in ρ.

Forwards and backwards witnesses. So far, we have described
forwards witnesses, which were introduced in [5]. In this paper,

we introduce the concept of a backwards witnesses, and an or-
dering over these witnesses, which will be used in our main re-
sult. For each play ρ = v1,v2, . . . ,vm , we define the reverse play
←−ρ = vm ,vm−1, . . . ,v1. A backwards witness is a witness for←−ρ , or
for an initial sequence of it.

Order on witnesses. We first introduce an order � over the set
C that captures the following requirements: even numbers are better
than odd numbers, and all numbers are better than . Among the
even numbers, higher numbers are better than smaller ones, while
among the odd numbers, smaller numbers are better than higher
numbers. Formally, b � c if either c = ; or if c is odd and b is either
odd and b ≤ c holds, or b is even; or c is even and b is even and
b ≥ c holds.

Then, we define an order w over witnesses. This order compares
two witnesses lexicographically, starting from bk and working down-
wards, and for each individual position the entries are compared
using �. We also define a special witness won which is w than any
other witness.

The value of a witness. An even chain of lengthm is a sequence
of positions p1 < p2 < p3 < . . . < pm (with 0 ≤ p0 and pm ≤ n) in
ρ that has the following properties:

• for all j ≤ m, we have that ϕ (vpj ) is even, and
• for all j < m the colours in the subsequence de-

fined by pj and pj+1 are less than or equal to ϕ (pj )
or ϕ (pj+1). More formally, we have that all colours
ϕ (vpj ),ϕ (v(pj )+1), . . . ,ϕ (vp(j+1) ) are less than or equal to

max
{
ϕ (vpj ),ϕ (vpj+1 )

}
.

For each witness b = bk ,bk−1, . . . ,b0, we define the function
even(b, i ) = 1 if bi , and bi is even. Then we define the value of
the witness b to be value(b) =

∑k
i=0 2

i · even(b, i ). We can show
that the value b corresponds to the length of an even chain in ρ that
is witnessed by b.

LEMMA 3.1. If b is a (forward or backward) witness of ρ, then
there is an even chain of length value(b) in ρ.

PROOF. Let i be an index such that even(b, i ) = 1. By definition,
the i-witness pi,1,pi,2, . . . ,pi,2i is an even chain of length 2i in
ρ. This holds irrespective of whether b is a forward or backward
witness.

Then, given an index j > i such that even(b, j ) = 1, observe that
the outer domination property ensures that ϕ (pi,2i ) ≥ ϕ (vl ) for all l
in the range pi,2i ≤ l ≤ pj,1. So, when we concatenate the i-witness
with the j-witness we still obtain an even chain. Thus, ρ must contain
an even chain of length value(b). �

Let e = |{v ∈ V : ϕ (v ) is even }| be the number of vertices with
even colours in the game. Observe that, if we have an even chain
whose length is strictly greater than e, then ρ must contain a cycle,
since there must be a vertex with even colour that has been visited
twice. Moreover, the largest priority on this cycle must be even, so
this is a winning cycle for player even. Thus, for player even to win
the parity game, it is sufficient for him to force a play that has a
witness whose value is strictly greater than e.

LEMMA 3.2. If, from an initial state v0, player even can force
the game to run through a sequence ρ, such that ρ has a (forwards or
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backwards) witness b such that value(b) is greater than the number
of vertices with even colour, then player even wins the parity game
starting at v0.

3.1 Updating forward witnesses
We now show how forward witnesses can be constructed incremen-
tally by processing the play one vertex at a time. Throughout this
subsection, we will suppose that we have a play ρ = v0,v1, . . . ,vm ,
and a new vertex vm+1 that we would like to append to ρ to create
ρ ′. We will use d = ϕ (vm+1) to denote the colour of this new vertex.
We will suppose that b = bk ,bk−1, . . . ,b1,b0 is a witness for ρ, and
we will construct a witness c = ck , ck−1, . . . , c1, c0 for ρ ′.

We present three lemmas that allow us to perform this task.

LEMMA 3.3. Suppose that there exists an index j such that bi
is even for all i < j, and that bi ≥ d or bi = for all i > j. If we
set ci = bi for all i > j, c j = d, and ci = for all i < j, then c is a
witness for ρ ′.

PROOF. For the indices i > j, observe that since bi > d , the outer
domination of the corresponding i-witnesses continues to hold. For
the indices i < j, since we set ci = there are no conditions that
need to be satisfied.

To complete the proof, we must argue that there is a j-witness that
corresponds to c j . This witness is obtained by concatenating the i-
witnesses corresponding to the numbers bi for i < j, and then adding
the vertex vm+1 as the final position. This produces a sequence
of length 1 +

∑j−1
i=0 2

i = 2j as required. Since all bi with i < j
were even, the evenness condition is satisfied. For inner domination,
observe that the outer domination of each i-witness ensures that the
gaps between the concatenated sequences are inner dominated, and
the fact that b0 dominates sequence vp0,1 , . . . ,vm ensures that the
final subsequence is also dominated by b0 or d . Outer domination is
trivial, since vm+1 is the last vertex in ρ ′. So, we have constructed a
j-witness for ρ ′, and we have shown that c is a witness for ρ ′. �

Note that, differently from Calude et al. [5], we also allow this
operation to be performed in the case where d is odd.

LEMMA 3.4. Suppose that there exists an index j such that bj , ,
d > bj , and, for all i > j, either bi = or bi ≥ d hold. Then setting
ci = bi for all i > j, setting c j = d, and setting ci = for all i < j
yields a witness for ρ ′.

PROOF. For all i > j, we set ci = bi . Observe that this is valid,
since bi ≥ d , and so the outer domination property continues to hold
for the i-witness associated with bi . For all i < j, we set ci = , and
this is trivially valid, since this imposes no requirements upon ρ ′.

To complete the proof, we must argue that setting c j = d is
valid. Observe that in ρ, the j-witness associated with bj ends at a
certain position p = pj,2j . We can create a new j-witness for ρ ′ by
instead setting pj,2j = m + 1, that is, we change the last position
of the j-witness to point to the newly added vertex. Note that inner
domination continues to hold, since d > bj = ϕ (vp ) and since vp
outer dominated ρ. All other properties trivially hold, and so c is a
witness for ρ ′. �

LEMMA 3.5. Suppose that for all j ≤ k either bj = or bj ≥ d.
If we set ci = bi for all i ≤ k , then c is a witness for ρ ′.

PROOF. Since d ≤ bj for all j, the outer domination of every
i-witness implied by b is not changed. Moreover, no other property
of a witness is changed by the inclusion of vm+1, so by setting c = b
we obtain a witness for ρ ′. �

When we want to update a witness upon scanning another state
vm+1, we find the largest witness that (according to v) can be ob-
tained by applying Lemmas 3.3 through 3.5. The largest such witness
is quite easy to find: first, there are at most 3k to check, but the rule
is simply to update the leftmost position in a witness that can be
updated.

For a given witness b and a vertex vm+1, we denote with

• ru(b,vm+1) the raw update of the witness to c, as obtained
by the update rules described above.

• up(b,vm+1) is either ru(b,vm+1) if value
(
ru(b,vm+1)

)
≤

e (where e is the number of vertices with even colour), or
up(b,vm+1) = won otherwise.

4 BASIC UPDATE GAME
With these update rules, we define a forward and a backward basic
update game. The game is played between player even and player
odd. In this game, player even and player odd produce a play of the
game as usual: if the pebble is on a position of player even, then
player even selects a successor, and if the pebble is on a position of
player odd, then player odd selects a successor.

Player even can stop any time she likes and evaluate the game
using b0 = , . . . , as a starting point and the update rule bi+1 =
up(bi ,vi ). For a forward game, she would process the partial play
ρ+ = v0,v1,v2, . . . ,vn from left to right, and for the backwards
game she would process the partial play ρ− = vn ,vn−1, . . . ,v0. In
both cases, she has won if bn+1 = won.

THEOREM 4.1. If player even has a strategy to win the (forward
or backward) basic update game, then she has a strategy to win the
parity game.

PROOF. By definition, we can only have bn+1 = won if at some
point we created a witness whose value was more than the total
number of even colours in the game. As we have argued, such a
witness implies that a cycle has been created, and that the largest
priority on the cycle is even. Since player even can achieve this
no matter what player odd does, this implies that player even has a
winning strategy for the parity game. �

5 THE DATA-STRUCTURE FOR THE
PROGRESS MEASURE

Recall that there are two obstacles in implementing the algorithm
of Calude et al. [5] as a value iteration algorithm. The first (and
minor) obstacle is that it uses forward witnesses, while value iteration
naturally uses backward witnesses. We have already addressed this
point by introducing the same measure for a backward analysis.

The second obstacle is the lack of an order over witnesses that
is compatible with value iteration. While we have introduced an
order in the previous sections, this order is not a natural order. In
particular, it is not preserved under update, nor does it agree with
the order over values. As a simple example consider the following
two sequences:
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• b = , 4, 2, and
• c = 9, 8, .

While value(b) = 3 > value(c) = 2, c A b. In particular, c2 � b2
and c1 � b1 hold. Yet, when using the update rules when traversing
a state with colour 6, b is updated to b′ = 6, , ,, while c is updated
to c′ = 9, 8, 6. While c A b held prior to the update, b′ A c′ holds
after the update. Value iteration, however, needs a natural order that
will allow us to choose the successor with the higher value.

We overcome this problem by allowing the antagonist in our game,
player odd, an extra move: prior to executing the update rule for a
value b, player odd may increase the witness b in the v ordering.
The corresponding antagonistic update is defined as follows.

au(b,v ) = minv
{
up(c,v ) | c w b

}

Obtaining au(b,v ) is quite simple: If up(b,v ) does not use
Lemma 3.3, then au(b,v ) is the same as up(b,v ). The only problem
arises in the case where up(b,v ) must use Lemma 3.3, i.e. when it
updates a position bj with bj = or bj > ϕ (v ) while, for all i < j, bi
is even. In this case, if there is a smallest position i with 0 < i < j
such that increasing bi by 2 creates a well formed witness, then we
fix the smallest such i, and obtain c by setting ch = bh for all h > i,
ci = bi + 2, and ch = for all h < i. (Otherwise we have c = b.)

Observe that if b v b′ then au(b,v ) v au(b′,v ), because the
minimum used in au(b′,v ) ranges over a smaller set.

6 ANTAGONISTIC UPDATE GAME
The antagonistic update game is played like the basic update game,
but uses the antagonistic update rule. I.e. player even and odd play
out a play of the game as usual: if the pebble is on a position of
player even, then player even selects a successor, and if the pebble is
on a position of player odd, then player odd selects a successor.

Player even can stop any time she likes and evaluate the game
using b0 = , . . . , as a starting point and the update rule bi+1 =
au(bi ,vi ). For a forward game, she would process the partial play
ρ+ = v0,v1,v2, . . . ,vn from left to right, and for the backwards
game she would process the partial play ρ− = vn ,vn−1, . . . ,v0. In
both cases, she has won if bn+1 = won.

THEOREM 6.1. If player even has a strategy to win the (forward
or backward) antagonistic update game, then she has a strategy to
win the parity game.

PROOF. We first look at the evaluation of a play ρ+ =

v0,v1,v2, . . . ,vn or ρ− = vn ,vn−1, . . . ,v0 in a forward or back-
wards game, respectively. In an antagonistic game, this will
lead to a sequence a0, a1, . . . , an+1, while it leads to a sequence
b0, b1, . . . , bn+1 when using the basic update rule. We show by
induction that bi w ai holds.

For an induction basis, b0 = a0 = , . . . , .
For the induction step, if bi w ai , then

ai+1 = au(ai ,vi ) = min
v

{
up(c,vi ) | c w ai

}

v up(ai ,vi )

vIH up(bi ,vi ) = bi+1.

Thus, when player even wins the (forward or backward) antagonistic
update game, then she wins the (forward or backward) basic update
game using the same strategy. �

It remains to show that, if player even has a strategy to win the
parity games, then she has a strategy to win the antagonistic update
game. For this, we will use the fact that she can, in this case, make
sure that the highest number that occurs infinitely often on a run is
even. We exploit this in two steps. We first introduce a ↓x operator,
for every even number x , that removes all but possibly one entry with
numbers smaller than x , and adjust the one that possibly remains
to x − 1. We then argue that, when there are no higher numbers
than x , this value of the witnesses obtained after this operator are
non-decreasing w.r.t. w, and increase strictly with every occurrence
of x .

Formally we define, for a witness b = bk ,bk−1, . . . ,b0 and an
even number x , the following.

• b ↓x to be b if, for all i ≤ k, bi = or bi ≥ x holds.
• Otherwise, let i = max{s ≤ k | bs , and bs < x }. We

define b ↓x= b ′k ,b
′
k−1, . . . ,b

′
0 with b ′j = bj for all j > i,

b ′i = x − 1, and b ′j = for all j < i.

LEMMA 6.2. The ↓x operator provides the following guarantees:
(1) b A a ⇒ b ↓xw a ↓x
(2) ϕ (v ) < x ⇒ up(b,v ) ↓xw b ↓x
(3) ϕ (v ) < x ⇒ au(b,v ) ↓xw b ↓x
(4) ϕ (v ) = x ⇒ up(b,v ) ↓xA b ↓x
(5) ϕ (v ) = x ⇒ au(b,v ) ↓xA b ↓x

PROOF. For (1), let i ≤ k be the highest position with bi , ai ,
and thus with bi � ai (as b A a). If bi � x or x + 1 � ai , the
claim follows immediately (and we have b ↓xA a ↓x ). For the case
x � bi � ai � x + 1, this position would be replaced by x − 1 and all
smaller positions by by the ↓x operator (and we have b ↓x= a ↓x ).

For (2), the highest position i ≤ k for which a = up(b,v ) and b
differ (if any) satisfies ai < x and bi ≺ x (the latter holds because
otherwise v does not overwrite position i by this update rule). If
bi ≺ x + 1, then we get up(b,v ) ↓xA b ↓x ; otherwise we get
up(b,v ) ↓x= b ↓x .

(3) follows from (1) and (2).
For (4), a = up(b,v ) and b differ in some highest position i ≤ k,

and for that position, x = ai � bi holds. Thus, up(b,v ) ↓xA b ↓x .
(5) follows with (1) and (4). �

This almost immediately implies the correctness.

THEOREM 6.3. If player even can win the parity game from a
positionv, then she can win the (forward and backward) antagonistic
update game from v.

PROOF. Player even can play such that the highest colour that
occurs in a run infinitely many times is even. She can thus in
particular play to make sure that, at some point in the run, an even
colour x has occurred more often that the size of the image of ↓x
after the last occurrence of a priority higher than x . By Lemma 6.2,
evaluating the forward or backward antagonistic update game at this
point will lead to a win of player even. �

These results directly provide the correctness of all four games
described.

COROLLARY 6.4. Player even can win the forward and back-
ward antagonistic and basic update game from a position v if, and
only if, she can win the parity game from v.



, , Fearnley, Jain, Schewe, Stephan & Wojtczak

7 VALUE ITERATION
The antagonistic update game offers a direct connection to value
iteration. For value iteration, we use a progress measure, a function
ι : V → W, where W denotes the set of possible backwards wit-
nesses. That is, a progress measure assigns a backwards witness to
each vertex.

Let bv = maxv{au(ι (s ),v ) | (v, s ) ∈ E} for v ∈ Ve and bv =
minv{au(ι (s ),v ) | (v, s ) ∈ E} for v ∈ Vo . We say that ι can be lifted
at v if ι (v ) @ bv . When ι is liftable at v, we define by li�(ι,v )
the function ι′ with ι′(v ) = bv and ι′(v ′) = ι (v ′) for all v ′ , v.
We extend the lift operation to every non-empty set V ′ ⊆ V of
liftable positions, where ι′ = li�(ι,V ′) updates all values v ∈ V ′

concurrently.
A progress measure is called consistent if it cannot be lifted at

any vertex v ∈ V . The minimal consistent progress measure ιmin is
the smallest (w.r.t. the partial order in the natural lattice defined by
pointwise comparison) progress measure that satisfies

• for all v ∈ Ve that ι (v ) w maxv{au(ι (s ),v ) | (v, s ) ∈ E},
and

• for all v ∈ Vo that ι (v ) w minv{au(ι (s ),v ) | (v, s ) ∈ E}.
As au(b,v ) is monotone in b by definition and the state space is

finite, we get the following.

LEMMA 7.1. The minimal consistent progress measure ιmin is
well defined.

PROOF. First, a consistent progress measure always exists: the
function that maps all states to won is a consistent progress measure.

Second if we have two consistent progress measures ι and ι′, then
the pointwise minimum ι′′ : v 7→ minv{ι (v ), ι′(v )} is a consistent
progress measure. To see this, we assume w.l.o.g. that ι (v ) v ι′(v ).

For v ∈ Ve we get ι′′(v ) = ι (v ) w maxv{au(ι (s ),v ) | (v, s ) ∈
E} w maxv{au(ι′′(s ),v ) | (v, s ) ∈ E}, using that ι′′(s ) v ι (s ) holds
for all s ∈ V .

Likewise, we get for v ∈ Vo that ι′′(v ) = ι (v ) w

minv{au(ι (s ),v ) | (v, s ) ∈ E} w minv{au(ι′′(s ),v ) | (v, s ) ∈ E},
using again that ι′′(s ) v ι (s ) holds for all s ∈ V .

As the state space is finite, we get the minimal consistent progress
measure as a pointwise minimum of all consistent progress measures.

�

Moreover, we can compute the minimal consistent progress mea-
sure by starting with the initial progress measure ι0, which maps all
vertices to the minimal witness , . . . , , and iteratively lifting.

LEMMA 7.2. The minimal consistent progress measure ιmin can
be obtained by any sequence of lift operations on liftable positions,
starting from ι0.

PROOF. We show that, for any sequence ι0, ι1, . . . , ιn of progress
measures constructed by a sequence of lift operations, for all v ∈ V ,
and for all i ≤ n, ιi (v ) v ιmin (v ) holds.

For the induction basis, ι0 (v ) is the minimal element for allv ∈ V ,
such that ι0 (v ) v ιmin (v ) holds trivially. For the induction step, let
Vi ⊆ V be a set of liftable position for ιi and ιi+1 = li�(ιi ,Vi ). We
now make the following case distinction.

• For v ∈ Vi ∩ Ve , we have ιi+1 (v ) = maxv{au(ι (s ),v ) |
(v, s ) ∈ E} vIH maxv{au(ιmin (s ),v ) | (v, s ) ∈ E} v
ιmin (v ).

• For v ∈ Vi ∩ Vo , we have ιi+1 (v ) = minv{au(ι (s ),v ) |
(v, s ) ∈ E} vIH minv{au(ιmin (s ),v ) | (v, s ) ∈ E} v
ιmin (v ).

• For v < Vi , we have ιi+1 (v ) = ιi (v ) vIH ιmin (v ).
This closes the induction step.

While we have proven that the value of the progress measures can-
not surpass the value of ιmin at any vertex, each liftable progress mea-
sure ιi is succeeded by a progress measure ιi+1, which is nowhere
smaller, and strictly increasing for some vertices. Thus, this se-
quence terminates eventually by reaching a non-liftable progress
measure. But non-liftable progress measures are consistent.

Thus, we eventually reach a consistent progress measure ιn which
is pointwise no larger than ιmin; i.e. we eventually reach ιmin. �

It is simple to get from establishing that ιmin (v ) = won holds to
a winning strategy of player even in the antagonistic update game.

LEMMA 7.3. If ιmin (v ) = won, then player even has a strategy
to win the antagonistic update game when starting from v.

PROOF. We can construct the strategy in the following way: start-
ing in state vn = v, where n is the length of the play we will create,
player even selects for a state vi ∈ Ve with i > 0 a successor vi−1
such that ιi (vi ) v au(ιi−1 (vi−1),vi ). Note that such a successor
must always exist. Note also that, if vi ∈ Vo with i > 0, then
ιi (vi ) v au(ιi−1 (vi−1),vi ) holds for all successors vi−1 of vi by
definition.

Assume that player even selects a successor from her vertices as
described above, and vn ,vn−1, . . . ,v0 is a play created this way. Let
b0 = , . . . , be the minimal element ofW, and bi+1 = au(bi ,vi+1).
Then we show by induction that bi w ιi (vi ).

For the induction basis, we have b0 = ι0 (v0) by definition. For
the induction step, we have ιi+1 (vi+1) v au(ιi (vi ),vi+1) vIH

au(bi ,vi+1) = bi+1.
Thus, we get bn w ιn (vn ) = won, and player even wins the

antagonistic update game. �

At the same time, player even cannot win from any vertex v with
ιmin (v ) , won, and ιmin provides a witness strategy for player odd
for this.

LEMMA 7.4. Player even cannot win from any vertex v with
ιmin (v ) , won, and ιmin provides a witness strategy for player odd.

PROOF. We recall that the construction of ιmin by Lemma 7.2
provides

• ιmin (v ) v maxv{au(ιmin (s ),v ) | (v, s ) ∈ E} for v ∈ Ve ,
and

• ιmin (v ) v minv{au(ιmin (s ),v ) | (v, s ) ∈ E} for v ∈ Vo .
The latter provides the existence of some particular successor s of v
with ιmin (v ) v au(ιmin (s ),v ). The witness strategy of player odd is
to always choose such a vertex.

Let ρ = vn ,vn−1,vn−2, . . . ,v1 be a sequence obtained by any
strategy of player even from a starting vertex vn with ιmin (vn ) ,
won, such that player even chooses to evaluate the backward antag-
onistic update game after ρ, and ρ,v0 an extension in line with the
strategy of player odd.

We first observe that ιmin (vi+1) v au(ιmin (vi ),vi+1) holds for all
i < n, either by the choice of the successor of vi+1 of player odd if



Parity Games , ,

vi+1 ∈ Vo , or by ιmin (vi+1) v maxv{au(ιmin (s ),vi+1) | (vi+1, s ) ∈
E} v au(ιmin (vi ),vi+1) if vi+1 ∈ Ve . With ιmin (vn ) , won, this
provides ιmin (vi ) , won for all i ≤ n.

Let b0 = , . . . , be the minimal element of W, and bi+1 =
au(bi ,vi+1). Then b0 v ιmin (v0), and the monotonicity of au in the
first element inductively provides bi v ιmin (vi ) for all i ≤ n. Thus
bn , won, and player even loses the update game. �

8 COMPLEXITY
We use natural representation for the set of colours as integers written
in binary, encoding the as 0. The first observation is that the number
of individual lift operations is, for each vertex, limited to |W|.

LEMMA 8.1. For each vertex the number of lift operations is
restricted to |W|. The overall number of lift operations is restricted
to |V | · |W|. The number of lift operations an edge (or: source or
target vertex of an edge, respectively) is involved in is restricted
to |W|. Summing up over all edges and over the number of lift
operations their target or source vertex is involved in amounts to
O ( |E | · |W|).

A simple implementation can track, for each vertex, the informa-
tion which position in the witness is the next one that would need
to be updated to trigger a lift along an edge, and, using a binary
representation in line with <, which bit in the representation of this
position has to change to consider triggering an update. (Intuitively
the most significant bit that separates the current value from the next
value that would trigger an update.)

Obviously, the most expensive path to ιmin is for each position to
go through all values of |W| in this case. But in this case, tracking the
information mentioned in the previous section reduces the average
cost of an update to O (1). The information that we store for this is,
for each vertex, the current witness that represents its current value
before and after executing the antagonistic update, and the next value
that would lead to a lift operation on the antagonistic value.

For each incoming edge, the position and bit that need to be
increased to trigger the next lift operation for this vertex are also
stored.

Example 8.2. We look at a vertex v with one outgoing edge to its
successor vertex s. We have 7 different colours, 2 through 8. Vertex
v has colour 2.

We use a representation that follows the < order and thus maps 0
to 0, 7 to 1, 5 to 2, 3 to 3, 2 to 4, 4 to 5, 6 to 6, 8 to 7.

Assume that s has currently a witness b = b2,b1,b0 = 6, 0, 2
attached to it, represented as b̃ = b̃2, b̃1, b̃0 = 6, 0, 4.

To obtain a witness for v, we calculate c = au(b,v ) = 6, 5, 2,
which is represented as c̃ = c̃2, c̃1, c̃0 = 6, 2, 4. The next higher value
a A b such that au(a,v ) A au(b,v ) is ã = ã2, ã1, ã0 = 6, 2, 4.

The lowest position i with ãi > b̃i is for position i = 1, and the
difference occurs in the middle bit (ã1 = 2 = 0102 and b̃1 = 0 =
0002).

For the edge from v to s, we can store after the update that we
only need to consider an update from s if it increases at least the
position b1 of the witness for s. If b1 is changed, we only have to
consider the change if the update is at least to the value represented
as 2 (b̃ ′1 ≥ 2), and thus b ′1 < 5. For all smaller updates of the witness
of s, no update of the witness of v needs to be considered.

THEOREM 8.3. For a parity game with n vertices andm edges,
the algorithm can be implemented to run in O (m · |W|) time and
O (n · log |W| +m log log |W|) space.

Note that the log log |W| information per edge is only required to
allow for a discounted update cost of O (1). It can be traded for a
log |W| increase in the running time. This leaves the estimation of
|W|.

To improve the complexity especially in the relevant lower range
of colours, we first look into reducing the size ofW, and then look
into keeping the discounted update complexity low. We make three
observations that can be used to reduce the size ofW; they can be
integrated in the overall proof, starting with the raw and basic update
steps.

The first observation is that, if the highest colour is the odd
colour omax, then we do not need to represent this colour: if ϕ (v ) =
omax and b , won, then up(b,v ) contains only and omax entries.
Moreover, and omax entries behave in exactly the same way. This
is not surprising: omax is the most powerful colour, and a state with
colour omax cannot occur on a winning cycle.

The second observation is that, if the lowest colour is the odd
colour omin, then we can ignore it during all update steps without
violating the correctness arguments. (In fact, this colour cannot
occur at all when using the update rules suggested in Calude et
al. [5].)

Finally, we observe that, for the least relevant entry b0 of an
witness b, it does not matter if this entry contains or an odd value.
We can therefore simply not use odd values at this position. (Using
the third observation has no impact on the complexity of the problem,
but still approximately halves the size ofW, and is therefore useful
in practice.)

We call the number of different colours, not counting the maximal
and minimal colour if they are odd, the number r of relevant colours.

LEMMA 8.4. For a parity game with r relevant colours and e
vertices with even colour, and thus with length l = dlog2 (e + 1)e of

the witnesses, |W| ≤ 1 +
l∑

i=0

(
l
i

)
·

(
i + r − 1
r − 1

)
.

PROOF. The 1 refers to the dedicated value won. For the other
witnesses, the values can be obtained by considering the number

i of integer entries. For i integer entries, there are
(
l
i

)
different

positions in the witnesses that could hold these i integer values.

Fixing these positions, there are
(
i + r − 1
r − 1

)
ways to assign non-

increasing values from the range of relevant colours. (E.g. these
can be represented by a sequence of i white balls and r − 1 black
balls. The number of white balls prior to the first black ball is the
number of positions assigned the highest relevant colour, the number
of white balls between the first and second black ball is the number
of positions assigned the next lower colour, etc.) �

This allows for two easy estimations of the size of |W|: If the
number c of colours is small (especially if c is constant), then we

can use the coarse estimate |W| ∈ O
(
e ·

(
l + r − 1

l

))
.

In particular, we get the following complexity for a constant
number of colours.
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THEOREM 8.5. A parity game with r relevant colours, n vertices,
m edges, and e vertices with even colour can be solved in time
O

(
e ·m · (log(e ) + r )r−1/(r − 1)!

)
and space O

(
n · log(e ) · log(r ) +

m · log(log(e ) · log(r ))
)
.

We use that the length l = dlog2 (e + 1)e of the witnesses is
logarithmic in e.

This also provides us with a strong fixed parameter tractability
result: when we fix the number of colours to some constant c, we
maintain a quasi bi-linear complexity in the number of edges and the
number of vertices. If we fix, e.g., a monotonously growing quasi
constant function qc (like the inverse Ackermann function), then The-
orem 8.5 shows that, as soon qc(n) ≥ c, and thus almost everywhere
and in particular in the limit, have (l +r )r−1/(r −1)! ≤ (log2 n)qc(n) ,
or (l + r )r−1/(r − 1)! ≤ qc(n)log2 (log2 (n)) if log2 (qc(n) ≥ c ).

COROLLARY 8.6. Parity games are fixed parameter tractable,
using the number of colours as their parameter, with complexity
O

(
m · n · qc(n)log logn

)
for an arbitrary quasi constant qc, wherem

is the number of edges and n is the number of states.

For a “high” number of colours, we can improve the estimation:
if r ≥ l2, then the case i = l dominates the overall cost, such that

|W| ∈ O
(( l + r − 1

l

))
.

THEOREM 8.7. For a parity game with r relevant colours, m
edges, and e vertices with even colour, and thus length l = dlog2 (e +
1)e of the witnesses, andh =

⌈
1+ r−1l

⌉
, one can solve the parity game

in time O (m ·h · e1+c1.45+log2 (h) ), and in time O (m ·h · ec1.45+log2 (h) )
if r > l2.

We use the constant c1.45 = limh→∞ log2 (1 + 1/h) · h = log2 e <
1.45, where e ≈ 2.718 is the Euler number; using that (1+ 1/h)h < e
and thus log2 (1 + 1/h) · h < c1.45 holds for all h ∈ N.

PROOF. To estimateW, we again start with analysing the size of(
l + r − 1

l

)
.

We note that l + r − 1 ≤ h · l , such that we can estimate this value
by drawing l out of h · l .

The number of all ways to choose l = dlog(e + 1)e out of h · l
numbers can, by the Wikipedia page on binomial coefficients and
the inequality using the entropy in there (also can be found in [28]),
be bounded by

2(log2 (e )+1) ·h ·((1/h) ·log2 (h)+((h−1)/h) ·log2 (h/(h−1)))

= 2(log2 (e )+1) ·(log2 (h)+log2 (1+1/(h−1)) ·(h−1))

= (2e )log2 (h)+(log2 (1+1/(h−1))) ·(h−1))

≤ (2e )c1.45+log2 (h) ∈ O
(
h · ec1.45+log2 (h)

)
.

The estimation uses that log(1+ 1/(h − 1)) · (h − 1) < c1.45 holds
for all h ∈ N.

Theorem 8.3 now provides O (m · h · e1+c1.45+log2 (h) ) time bound.
If the number of colours is high (r > l2), then we observe that

|W| ≤ 1 +
∑l
i=0

(
l
i

)
·

(
i + r − 1

i

)
∈ O

(( l + r − 1
l

))
holds, as

the sum is dominated by
(
l
l

)
·

(
l + r − 1

l

)
. This allows for the

1

2

3

4

Figure 1: The lower bound example for n = 2.

second estimate O (m · h · ec1.45+log2 (h) ) of the running time when
r > l2 holds. �

This allows for identifying a class of parity games that can be
solved in polynomial time.

COROLLARY 8.8. Parity games where the number c of colours
is logarithmically bounded by the number e of vertices with even
colour (c ∈ O (log e )) can be solved in polynomial time.

9 LOWER BOUNDS
In this section, we introduce a family of examples, on which the
the basic update game from [5] is slow. (Recall that these original
rules restrict the use of Lemma 3.3 to even colours. Adjusting the
example is not hard, but effectively disallows to make effective use
of b0.)

The example is a single player game, which is drawn best as a
ring. In this example, the losing player, player odd, can draw out
his loss. The vertices of the game have name and colour 1, . . . , 2n.
They are all owned by player odd. There is always an edge to the
next vertex (in the modulo ring). Additionally, there is an edge back
to 1 from all vertices with even name (and colour).

Obviously, all runs are winning for player even. We show how
player odd can, when starting in vertex 1, produce a play, such
that forward updates produce all witnesses that use only and even
numbers.

We first observe that every value 2i − 1 is overwritten after the
next move in a play by 2i in a witness b.

The strategy of player odd to create a long path is simple. We
consider three cases.

If, in the current witness b = bk , . . . ,b0, we have b0 = and the
token is at a position 2i, then moving to 1, and thus next to 2, results
in the next larger witness without odd entries than b.

If b0 , , then we have that b0 = 2i, and b has no smaller entries
than 2i. If all of these entries are consecutively on the right of b,
then we obtain the next larger witness without odd entries than b
by going through 2i + 1 to 2i + 2. Player odd therefore chooses to
continue by moving the token to vertex 2i + 1 in this case.

Otherwise, there is a rightmost bj = , such that right of it are
only entries 2i (for all h < j, bh = 2i), and there is also a 2i value
to the left (for some h > j, bh = 2i). Then the next larger witness
without odd entries than b is obtained by replacing bj by 2 and all
entries to its right by . This can be obtained by going to vertex
1 and, subsequently, to vertex 2. Player odd therefore chooses to
continue by moving the token to vertex 1 in this case.
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10 IMPLEMENTATION
We implemented our algorithm in C++ and tested its performance
on Mac OS X with 1.7 GHz Intel Core i5 CPU and 4 GB of RAM.
We then compared it with the small progress measure algorithm [18],
Zielonka’s recursive algorithm [37], the classic strategy improve-
ment algorithm [35] as implemented in the PGSOLVER VERSION

4.0 [15? ], and the implementation [? ] of an alternative recently
developed succinct progress measure algorithm from [19]. We tested
their performance, with timeout set to two minutes, on around 250
different parity games of various sizes generated using PGSOLVER.
These examples include the following classes.

• Friedmann’s trap examples [12], which show exponential
lower bound for the classic strategy improvement algo-
rithm;

• random parity games of sizes, s, ranging from 100 to
10000 that were generated using PGSOLVER’s command
steadygame s 1 6 1 6 (for each s we generated ten
instances);

• recursive ladder construction [13] generated using PG-
SOLVER’s command recursiveladder.

PGSOLVER implements several optimisation steps before the
algorithm of choice is invoked. These include SCC decomposition,
detection of special cases, priority compression, and priority prop-
agation as described in [15]. To illustrate this, the small progress
measures algorithm in PGSOLVER was able to solve all Friedmann’s
trap examples in 0.01 seconds when using these optimisations. How-
ever, without these optimisations, it failed to terminate within the
set timeout of two minutes. As our aim was to compare different
algorithms and not the heuristics or preprocessing steps involved,
we invoked PGSOLVER with options “-dgo -dsd -dlo -dsg”
to switch off some of these optimisation steps. We believe this gives
a better and fairer picture of the relative performance of these algo-
rithms. Some of these optimisations are embedded in the algorithms
themselves and cannot be switched off. For example, the small
progress measure algorithm implemented in PGSOLVER starts off
with the computation of maximal values that may ever need to be
considered [15]. In future, we plan to include these optimisation
preprocessing techniques into our tool as well.

The more interesting results of our tests are presented in Table 1.
As expected, our algorithm is outperformed by strategy improvement
and recursive algorithm on randomly generated examples. Our
algorithm is very fast on Friedmann’s trap examples, because player
odd wins from all nodes and a fixed point is reached very quickly
using a small number of entries in the witnesses. Finally, we tested
the algorithms on the recursive ladder construction, which is a class
of examples for which the recursive algorithm runs in exponential
time. As expected, the small progress measure and the recursive
algorithm fail to terminate for examples as small as 250 nodes. Our
algorithm as well as the classic strategy improvement solved these
instances very quickly. Interestingly, the worst performing algorithm
is [19], which currently has the best theoretical upper bound on its
running time. The most likely reason for this is that their single
step of the value iteration is a lot more complicated than ours. As a
result, even if less such steps are required to reach a fixed point, the
algorithm performs badly as each step is a lot slower. In conclusion,
our algorithm complements quite well the existing well-established

algorithms for parity games and can be faster than any of them
depending on the class of examples being considered.

The implementation of our algorithm along with all the examples
that we used in this comparison are available at https://cgi.csc.liv.ac.
uk/∼dominik/parity/.
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[19] Marcin Jurdziński and Ranko Lazić. 2017. Succinct progress measures for solving
parity games. In Proc. of LICS.
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[35] Jens Vöge and Marcin Jurdziński. 2000. A Discrete Strategy Improvement

Algorithm for Solving Parity Games. In Proceedings of the CAV. Springer-Verlag,
202–215.

[36] Thomas Wilke. 2001. Alternating Tree Automata, Parity Games, and Modal
µ-Calculus. Bull. Soc. Math. Belg. 8, 2 (May 2001).

[37] Wiesław Zielonka. 1998. Infinite games on finitely coloured graphs with ap-
plications to automata on infinite trees. Theor. Comput. Sci. 200, 1-2 (1998),
135–183.


	Abstract
	1 Introduction
	2 Preliminaries
	3 QP Algorithms
	3.1 Updating forward witnesses

	4 Basic Update Game
	5 The Data-structure for the Progress Measure
	6 Antagonistic Update Game
	7 Value Iteration
	8 Complexity
	9 Lower Bounds
	10 Implementation
	References

