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Abstract

This thesis mainly deal with control problems for nonlinear dynamic systems with the

application in actuarial science. Research in this field concerning with different classes

of nonlinear systems is motivated by theoretical use and possible application. Although

it has fruitful literature, there still remains many open problems worthy of thoughtful

study.

As an extension of the previous literature in linear time-varying systems, some con-

ventional results of the linear time-varying system can be validated in the commutative

class of nonlinear time-varying systems. Next the delay-range-dependent observer de-

sign methodology has been developed for the one-sided Lipschitz nonlinear system.

Especially delay-range-dependent conditions are formulated and deduced for the sys-

tem incorporating features of time-varying delays in states and output as well as output

nonlinear dynamics with delay-range and delay-derivative bound. Further, we extend

the design methodology for controller and observer, through a unified linear matrix

inequalities approach, to the one-sided Lipschitz nonlinear time-varying system. The

corresponding results for the one-sided Lipschitz nonlinear discrete-time stochastic sys-

tem are refined and applied in the premium-reserve P-R) modelling in the context of

the actuarial science. Thereby the robust H∞ controller is designed for the premium-

reserve system in order to stabilize the accumulated reserve process.

In each chapter, sufficient conditions presenting in tractable way are derived to

solve the proposed sub-problems. Several numerical examples are given to illustrate

the applicability of the theoretical findings.
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Chapter 1

Introduction

1.1 Research problem and Motivation

In recent years various controllability problems for different types of semi-linear and

nonlinear dynamical systems have been considered in many publications and mono-

graphs. This is clearly related to the wide variety of theoretical results and possible

applications.

The problem of controllability and observability for continuous-time and discrete-

time linear dynamical systems has been extensively investigated in many papers (see

e.g. [42, 43, 44] ). This is not true for the nonlinear dynamical systems especially

with different types of delays in control and state variables in whatever deterministic

or stochastic settings. Similarly, numerous papers concern the design of controller and

observer for continuous-time or discrete-time nonlinear dynamical systems. It should

be pointed out, that in the proofs of obtained results for nonlinear and semi-linear

dynamical systems linearization methods and generalization of open mapping theorem

[45, 49] are extensively used.

In the thesis we are motivated to explore the validation of well-known properties of

the linear time-varying systems in some special case of nonlinear dynamical systems.

Moreover, we extend the observer synthesis methodology for classes of nonlinear system

subject to time-varying delays in both states and outputs. The derivation is mathemat-

ically simpler in the sense that abstract linear algebra is avoided and only elementary

matrix manipulations and linear independence are essential. Further, the results rep-

resented in linear matrix inequalities would be tractable and applicable for utilitarian
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purpose. In terms of realistic application, that control theory in systems starts to play

its role in finance and insurance rather than limited in such traditional areas as in-

dustrial and chemical process control, reactor control and aerospace engineering. This

thesis will also present stabilisation methods for the nonlinear premium-reserve model

in the context of actuarial science.

1.2 Main objectives and contributions

In Chapter 3, we assess the fundamental properties of one commutative class of nonlin-

ear time-varying systems. By simplifying the procedure in [19], our work generalise the

results proposed by [89] for linear systems and derive feedback stability and stabilisation

criteria for this special class of nonlinear time-varying systems .

In Chapter 4, we extend the delay-range-dependent approach for observer design of

one-sided Lipschitz nonlinear system incorporating different time-varying state delays,

output measurement vector delays in states and output nonlinearities. To further

reduce computational complexities in the design of the delay-range-dependent observer,

we introduce new algorithm to solve the design problem in Linear-Matrix-Inequality

(LMI) form.

In Chapter 5, we present main design conditions for LMI-based dynamical observer

and controller strategies for the one-sided Lipschitz nonlinear time-varying system in a

unified framework.

In Chapter 6, we study robust stability, stabilization analysis and H∞ controller

design for the quadratic bounded time-varying nonlinear discrete-time stochastic sys-

tem. Moreover, application of nonlinear stochastic discrete-time control in a non-life

insurance problem is discussed in Chapter 7, which extend the research result of this

classic problem in non-life insurance.

1.3 Structure of thesis

Chapter 2 firstly introduces the reader some basic notions from the control theory.

The relevant work is reviewed with previous results listed as a theoretical basis for this

thesis. The history of applying control theory in actuarial literature is also examined

to provide the context for the generation of the premium-reserve models in this thesis.
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Chapter 3 considers a commutative class of nonlinear time-varying systems. In the

form of the pseudo-linear representation analysis, we obtain sufficient conditions for the

global controllability and observability through assessing the simple algebraic criteria

of rank condition. This condition also allows for the Kalman canonical decomposition.

And the general analysis for the global asymptotic stability is explored, which leads

to some sufficient conditions for nonlinear state-feedback controller and observer de-

sign. Some numerical examples are used to reflect and validate the effectiveness of the

theorems, especially compared with the previous outcomes.

In Chapter 4, a novel delay-range-dependent technique is explored for one-sided

Lipschitz nonlinear observer design along with time-varying delays in state and out-

put measurement vector. A Lyapunov-Karasovskii (LK) functional is employed whose

derivative is estimated by incorporating Jensens inequality to derive stability condi-

tions for observer design using delay-range-dependent scheme. Matrix inequality based

stability criteria is established, by exploiting one-sided Lipschitz condition, Schur com-

plement and congruence transformation, guaranteeing asymptotic convergence of state

estimation error to the origin. But the consequence of the methodology leads to solve

the optimization problem which enhances the solution to the computationally com-

plexed problem. Thus a new algorithm involving the generalised inverse is introduced

to convert the delay-range-dependent observer design to the existence of linear matrix

inequalities.

In Chapter 5, the same LMI-based design conditions for full-order and reduced-

order observer are proved for the general one-sided Lipschitz nonlinear time-varying

system. In a unified framework, observer-based stabilisation strategies are also worked

out. Thus far the concerning systems are assumed to be deterministic with continuous

time. In Chapter 6 we would transform the relevant results in discrete time situation

subject to stochastic process. Especially, the results obtained in Chapter 6 can be

applied in an insurance model in Chapter 7. Firstly, we derive easily testing criteria

for stochastic stability and stochastic stabilizability are obtained via non-strict linear

matrix inequalities (LMIs). Then a robust H∞ state feedback controller is designed

such that the concerned system not only is internally stochastically stabilizable but

also satisfies robust H∞ performance. Moreover, the previous results of the nonlinearly

perturbed discrete stochastic system are generalized to the system with state, control,

and external disturbance dependent noise simultaneously.
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In Chapter 7, the control problem of Premium-Reserve (P-R) model in non-life

insurance is extend. We first describe some basic assumptions and define a new pre-

mium rating rule and accumulated reserves process in nonlinear stochastic framework.

Then, the control problem of the nonlinear P-R model is investigated under two types

of nonlinear assumption: Lipschitz-type nonlinear condition and quadratic bounded

nonlinear condition respectively. The result could provide us the solution of robust H∞

controller for nonlinear stochastic discrete time P-R system.

Chapter 8 is the last chapter, which provides the concluding remarks for the con-

tribution of this thesis as well as some feasible further research directions on the topics

in this thesis.

1.4 Notation

Throughout this thesis, the symbol ∗ is used to denote the transposed elements in

the symmetric positions of a matrix. The matrices are assumed to have compatible

dimensions. The superscript T stands for the matrix transposition. tr(M) stands for

the trace of matrix M . diag{· · · } stands for a block-diagonal matrix. For a symmetric

matrix P > 0 (< 0) means P is positive (negative) definite. I represents identity matrix

and 0 denotes zero matrix. Rm denotes the m dimensional Euclidean space. N is the

set of natural numbers. E(·) denotes the expectation operator.
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Chapter 2

Literature Review and

Preliminary Results

2.1 Pseudo-linear Representation methodology

Around 1990s, Banks in [9] and [10] formally introduced the pseudo-linear representa-

tion for a class of nonlinear systems, known as the form of state-dependent coefficient

(SDC):

ẋ(t) = A(x)x(t), x(0) = x0 ∈ Rn, (2.1.1)

where A : Rn → Rn2
is assumed continuously differentiable. This pseudo-linear repre-

sentation is able to express a general class of nonlinear systems, for example,

ẋ(t) = f(x(t)), f(0) = 0, (2.1.2)

The introduction of the type of equation (2.1.1) is intended to conjecture that the

fundamental properties of the nonlinear system can be derived from its correspond-

ing linear representation, as pointed by Kalman [39]. Later in [19], some sufficient

conditions for the controllability of nonlinear time-varying system with control:

ẋ(t) = A(t, x)x(t) +Bu(t), x(0) = x0 ∈ Rn, (2.1.3)

are obtained through fixed point theorem, under which the calculation of the Grammian

matrix is required and much effort has been taken to ease the computation. It is of

interest to study the nonlinear time-varying systems in the same manner as that of a
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linear time-varying systems. The stability criterion of the free system has also been

explored, contrast to the linear system, the negative eigenvalues of A(x) is not sufficient

of the stability of system (2.1.1) in Banks & Mhana [9] . They also assume the upper

triangularity of A(x) in addition to the hypothesis on situation of its eigenvalues, which

implies the solvable Lie algebra generated by the range of A(x) by the use of Lie algebra

theorem. But a simple counter example ([86] and [53]) has been proposed with finite

escape time. The reason of the conflict may lie in the existence of the global solution to

the system which is not guaranteed by the claim in [9]. Langson & Alleyne [53] noticed

the problem and tried to fix it by imposing the exponential boundedness on A(x) i.e.

∀x ∈ Rn, || exp[A(x(t))t]|| ≤ M, for some real M > 0. This endeavour which is not

trivial, however, turns out to be not right by a counter example in [60] as the solution

to system (2.1.1) may not be expected to be like x∗(t) = exp(A(x)t)x0 without any

restriction on the system coefficient matrix. In other words, the further boundedness

condition cannot generally contribute to the conclusion on stability.

2.2 Observer design methodology for Lipschitz and one-

sided Lipschitz nonlinear systems

The topic on control and state estimation of nonlinear systems satisfying a Lipschitz

condition has been studied for almost four decades, resulting in abundant amount

of literature. Especially for the observer synthesis problem on Lipschitz nonlinear

system, it is often accomplished by using pseudo-linear techniques which is based on the

Lipschitz continuity assumption providing a norm-based form of a nonlinear inequality

substituted into the observer error dynamics and the observer error dynamics turning

out in a numerically tractable format that is determined by a linear term. For example,

in [85] and [76], the authors have obtained sufficient conditions to ensure asymptotic

stability of the observer error dynamics. The same conditions in [76] can assure the

existence of a reduce-order observer which has been shown in [106]. The proposed

design method above is dependent on the solution of a Riccati equation. While the

linear matrix inequality (LMI) technique could be seen in [102] and [57] for Lipschitz

discrete-time systems and Lipschitz descriptor systems.

Both approaches intend to choose the proper output injection term in the observer

dynamics so that the linear part of the observer error dominates the nonlinear terms.
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Generally, in the process of utilising the Lipschitz property, this would generate results

in significant degree of conservativeness. On the other hand, the nature of Lipschitz

continuity condition also hampers the practical use of related results since the Lipschitz

is usually region-based and the Lipschitz condition is seldom satisfied in the global sense

[21].

Hence the implicit idea behind them are then motivated to look for a less restrictive

system satisfying the one-side Lipschitz condition which encompasses the Lipschitz con-

tinuity condition as a special case. It’s first introduced in [32] and [33], where sufficient

conditions are gained for asymptotical stability of the error dynamics within one-sided

Lipschitz systems. Following this result, the observer design problem has been analysed

by several other researchers such as reduced- order observers for such systems given in

[93] and a design scheme in terms of Riccati inequalitys shown in [97]. More recently,

proposed by [1], the linear matrix inequality (LMI) conditions which can be converted

into LMI provide a useful analysis tool and address the fundamental design problem as

well. Improved results based on both the Riccati equation and the LMI approaches can

be found in [100] and [101]. And the corresponding problem in the discrete-time version

has been carried out in [96]. Time delays, varying in an interval and appearing in state,

input, and output variables as well as in state derivatives, are frequently encountered in

engineering and physical systems. Recently, the delay-dependent observer-design tech-

niques have been developed for one-sided Lipschitz systems in [26] and [15], which can

be effectively reformulated for monitoring and control of complex forms of engineering

systems.

2.3 Control Theory in Insurance

In spite of its popularity in many other areas, control theory has not been intensively

implemented in actuarial science until recent decades. In Non-Life insurance area, the

first application of control theory involved in actuarial publications could probably date

back to the famous papers by [20] and [13]. They propose for the classical risk theory

problem a control action based on a pre-defined level of the surplus (accumulated)

reserve, see Figure 2.1. In their papers, both suggest a premium refund action whenever

the surplus exceeds a certain limiting level. Under this arrangement, the premium for

7



Figure 2.1: De Finetti’s approach to control of surplus.

the tth year Pt is determined by the following equation:

Pt+1 = (1 + θ)E[claims] + 1(RΠ−Rt),

where 1 > θ > 0 is the loading factor; E [claims] is the expected claims of current year,

Rt is the reserve value at the end of the tth time period, ”RΠ ≥ 1” is the pre-defined

limiting (barrier) level of reserve and

1(RΠ−Rt) =


RΠ −Rt,when RΠ −Rt < 0

0, when RΠ −Rt > 0.

After De Finetti several control theoretical articles have appeared in actuarial pub-

lications. The models in these articles have employed both deterministic and stochastic

techniques, however, most of them have been linear. Some actuarial works along this

line include [78, 11, 7, 8, 58, 59, 73, 74, 75, 87, 107, 108] and [30]. Most of these focus

on studying the properties of a given control rule, though some also explore optimal

solutions.

Among these works, [7, 8, 58, 59] have tried successfully to implement control theory

for solving this interesting actuarial problem. They propose a smooth control action

for the determination of the premium which is applied periodically and accordingly to

the available information of the surplus process.

Thus, according to their research work, the proposed premium equation has finally

received the following form:

Pt+1 = (1 + θ)E[claims]− εRt−1. (2.3.1)

8



Moreover, Balzer and Benjamin [7] also discuss the effect of the delay on the stability

of the system and the optimal choice for the feedback factor ε when using equation

(2.3.1) with the surplus value with 1 year time delay.

Balzer and Benjamin [8] study further with 4 year time delay. In that paper, a

full extension of this kind of investigation is achieved by considering the delay factor

as a free parameter τ and by calculating the respective general conditions of stability

and optimality for the feedback factor ε. Their result show the linear system becomes

unstable when integer time-delay τ is great than 4. So, the premium equation (2.3.1)

becomes,

Pt+1 = (1 + θ)E[claims]− εRt−τ . (2.3.2)

Vandebroek and Dhaene [87] prove that the premium equation (2.3.2) is the opti-

mal linear feedback controller for the premium pricing in the case that we require to

minimize the probability of ruin along with a smooth pattern for the development of

the premiums and reserves. For solving this problem, they use dynamic programming

techniques.

Zimbidis and Haberman [108] consider a modelling structure with a discrete-time

equation to describe the development of the accumulated reserve process for an insur-

ance system.

Their approach says that the development of the accumulated reserve Rt, at the

end of each year, assuming also an accumulation factor 1 + r and r > 0 which is the

respective rate of the investment return of the surplus reserve, is given by

Rt+1 = (1 + r)Rt + e(Ĉt+1 − εRt−τ )− Ct+1, (2.3.3)

where e is the parameter for the administration expenses and the desired profit margin,

which can be expressed as (1− e) of the respective premium.

In their paper, the classical Root-Locus (see [81]) method is used for the investigation

of the stability of the system and an appropriate feedback factor ε is calculated using a

specific premium decision function. Due to the limitation of their method, the analysis

of the stability of a P-R process was based on time-invariant parameters and constant

delay factors without considering any type of uncertainty.

Recently, [65] - [67] and [94] introduce time-varying delays and uncertainties in their

P-R systems under different frameworks. In [66], they propose a P-R system model like

9



system (2.3.4) for different dependent insurance products in a insurance company. This

model considers a negative feedback mechanism for the accumulated surplus, it invests

the surplus in short-term risk-free assets, and it assumes the accumulated reserves

follow a linear stochastic, discrete-time framework considering also a set of different

norm-bounded parameter uncertainties ∆Jt, ∆Et, ∆Zt involved in the model.
Rt+1 = {[J + ∆Jt]− e[Z + ∆Zt]K}Rt(1 + v(t))− e[E + ∆Et]Rt−τt(1 + v(t)) + wt+1,

Rt = ϕ
t

for t ∈ [−τmax, 0],

(2.3.4)

In their papers, the stability of the discrete-time P-R systems with norm-bounded

parameter uncertainties and time-varying delay are investigated in a deterministic [65],

Markovian regime switching [94] and stochastic framework [66], respectively. They

propose H∞ criteria to be used for the determination of the premium control rule.

Most of these papers focus on studying the properties of a given control rule, though

some of them also explore feasible solutions to a specific problem employing different

optimality criteria. These papers [65]-[67] and [94] are based on discrete time linear

approach.

2.4 Concepts of controllability and observability

A systematic study of control theory was started at the beginning of sixties in the last

century. Controllability (or stabilizability) and observability (or detectability) are basic

concepts describing the qualitative properties of dynamical control systems and are of

paramount importance in the mathematical control theory; see e.g., [35, 36, 37, 38, 39].

They appear as necessary and sometimes as sufficient conditions for the existence of a

solution to most control problems.

It is worthwhile mentioning that in the literature there are many different definitions

of controllability and observability, which strongly depend on a class of dynamical

control systems and on the other hand on the form of admissible controls. So different

are the exposition of the subject and the derivation of criteria and proofs. But the

definitions are various in approach rather than content as they are motivated by the

intention to serve different purposes by developing the concepts of controllability and

observability.
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The theory of controllability is mainly based on the description in the form of state

space for both time-invariant and time-varying linear control systems. To the end, we

focus on state-space models of dynamical systems, which provide a robust and universal

method for studying controllability of various classes of nonlinear systems.

Definition 2.1. [51, 52] A system is defined to be completely state controllable at time

t0, if for any t0 ≥ 0 each initial state x(t0) in the controllability domain D ⊂ Rn can

be transferred to any final state x(tf ) in a finite time tf > t0 in D under some control

u(t). If D is the whole state space Rn, the controllability’s said to be global. If D is

not the whole state space Rn, thus we have the local controllability.

The word ”completely” emphasizes that the choice of the initial and final states in

D is arbitrary. The dependence on a particular interval [t0, tf ] can be eliminated by

introducing the following definition.

Definition 2.2. [51, 52] A system is defined to be totally state controllable in the

controllability domain D ⊂ Rn, if it’s completely state controllable in D on every

interval [t0, tf ], tf > t0 under some control u(t). If D is the whole state space Rn, the

controllability’s said to be global. If D is not the whole state space Rn, thus we have

the local controllability.

From the definitions above, the problem of controllability is to show the existence

of a control function, which steers the solution of the system from its initial state to

final state, where the initial and final states may vary over the entire space.

The complete controllability is generally a necessary condition for the existence of

a solution to a control problem where tf is undefined. While the total controllability

was found to be a necessary and sufficient condition for the uniqueness of the solution

to certain optimal control problems [51].

The concept of ”observability” could be quickly dismissed, as is done in [35, 36, 37],

by defining it as the dual (in an abstract algebraic sense) of state-controllability. The

results obtained for controllability then carry over to observability by a ”dualizing”

procedure.

Definition 2.3. [51, 52] An unforced system is said to be completely observable on

[t0, tf ], if for given given t0 and tf every state x(t0) in the domain D can be determined

from the knowledge of y(t) on [t0, tf ]. If the above is true for every t0 and some finite

tf > t0, the system is said simply to be completely observable. If the above is true for
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every t0 and every tf > t0, the system is said simply to be totally observable.

Essentially, the controlled system is completely controllable if every desired transi-

tion of the system’s state can be effected in finite time by some unconstrained control

inputs. A system is completely observable if every transition of the plants state even-

tually affects some of the plants outputs. Mathematically speaking, these concepts are

a matter of linear independence of certain scalar or vector time functions.

There are various important relationships between controllability, stability and sta-

bilizability of linear both finite-dimensional and infinite-dimensional control systems.

Controllability is also strongly related to the theory of realization and so called min-

imal realization and canonical forms for linear time-invariant control systems such as

the Kalmam canonical form, the Jordan canonical form or the Luenberger canonical

form.

2.5 Lipschitz and one-sided Lipschitz nonlinear systems.

2.5.1 System description and observer design

In this thesis, we consider the class of nonlinear systems described by the following set

equations:

ẋ = Ax+ f(x, u) y = Cx, (2.5.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp are the state vector, control input vector and the output

vector. The linear constant matrices of the dynamic system are represented by A,C of

appropriate dimensions and the pair (A,C) is assumed to be observable.

Definition 2.4. [1] A nonlinear function f(x, u) is said to be Lipschitz in a region D

enclosing the origin if there exists a scalar l ∈ R such that the relation

‖f(x, u)− f(x, u)‖ ≤ l‖x− x‖, (2.5.2)

holds ∀x, x ∈ D, where l is the Lipschitz constant.

Definition 2.5. [1] A nonlinear function f(x, u) is said to be one-sided Lipschitz in a
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region D enclosing the origin if there exists a scalar ρ ∈ R such that the relation

〈f(x, u)− f(x, u), x− x〉 ≤ ρ‖x− x‖2, (2.5.3)

holds ∀x, x ∈ D, where ρ is the one-sided Lipschitz constant.

Definition 2.6. [1] A nonlinear function f(x, u) is said to satisfy the quadratic inner-

boundedness condition in a defined region D, if there exist scalars β, α ∈ R, such that

(f(x, u)−f(x, u))T (f(x, u)−f(x, u)) ≤ β‖x−x‖2−α〈x−x, f(x, u)−f(x, u)〉 (2.5.4)

is satisfied for all x, x ∈ D.

The one-sided Lipschitz and quadratic inner-boundedness conditions extrapolate

the definitive Lipschitz theory to a more ecumenical category of nonlinear systems and

have inbuilt advantages in observer synthesis. For a given function f(x, u) satisfying

one-sided Lipschitz conditions in Definitions (2.5)-(2.6), whereas the reverse is not true

(see details in [1], [100], [101]). Further, the one-sided Lipschitz constant ρ and the

quadratic inner-boundedness parameter β can be any real numbers, unlike the Lipschitz

constant, which needs to be always positive.

Consider the following classical Luenberge observer:

˙̂x = Ax̂+ f(x̂) + L(y − Cx̂) (2.5.5)

where x̂ represents the estimate of x and L is to be designed so that the estimation

error e = x− x̂ asymptotically converges towards zero. The dynamic of the estimation

error can be described by

ė = (A− LC)e+ ∆f (2.5.6)

where ∆f = f(x)− f(x̂).

Next, we present some known results for this class of nonlinear systems. To clarify

the comparisons that we will provide in this thesis, we consider only the methods that

use the observer form in equation (2.5.5) and the quadratic Lyapunov function

V (e) = eTPe, with P = P T > 0, (2.5.7)
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based on which the following section will disclose the existing results for stability and

stabilization of the Lipschitz nonlinear system.

2.5.2 State of the art on existing methods for the Lipschitz nonlinear

system

Standard LMI approach

Theorem 2.1. [70, 76] The estimation error is asymptotically stable if there exist

matrices P = P T > 0 and R of adequate dimensions so that the following LMI condition

holds: ATP + PA−RTC − CTR+ In P

P − 1
γ2
f
In

 < 0. (2.5.8)

Then the gain stabilizing the estimation error will be given by L = P−1RT . For

more details on this approach, we refer the reader to [76] where other previous results

related to this approach have been discussed, namely the pioneering work of [71] and

[85].

Riccati equation based approach

Theorem 2.2. [70, 71] The estimation error is asymptotically stable if there exist

scalars ε > 0, β ∈ R and a matrix P = P T > 0 of adequate dimension so that the

following Riccati equation holds:

ATP + PA+ εγ2
fIn +

1

ε
PP − β2CTC < 0. (2.5.9)

Then the gain stabilizing the estimation error can be chosen as:

L =
β2

2
P−1CT . (2.5.10)

S-procedure lemma based approach

The approach we recall here is based on the use of the well-known S-procedure lemma.

This technique was firstly developed in [14] and has been highlighted recently in [70].

Before stating the synthesis condition, we first recall the S-procedure lemma.

Lemma 2.1. [3, 14, 68, 70, 71, 85]. Let V0(ζ) and V1(ζ) be two arbitrary quadratic
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forms over R. Then V0(ζ) is a consequence of V1(ζ) < 0 if and only if there exists

τ > 0 such that

V0(ζ) ≤ τV1(ζ), ∀ζ ∈ R− {0}

Based on the Lemma above, the authors in [14] and [70] gave the following theorem.

Theorem 2.3. [14, 68, 70, 71, 85] The estimation error is asymptotically stable if

there exist a scalar τ > 0 and matrices P = P T > 0 and R of adequate dimensions so

that the following LMI condition holds:

ATP + PA−RTC − CTR+ τγ2
fIn P

P −τIn

 < 0. (2.5.11)

The gain stabilizing the estimation error is given by: L = P−1RT .

Comparison and discussion in [70] has shown the observer design technique in The-

orem 2.3 with less conservatism. Notice that LMIs may be obtained easily by using the

Lipschitz property, Youngs relation and Schur complement lemma.

2.5.3 Linear Matrix Inequality techniques in stability analysis of delay

systems

In this section, LMI techniques in deriving delay dependent stability conditions will be

reviewed.

The time delay is often a source of the generation of oscillation and a source of

instability of control systems [50]. Therefore, the problem of stability analysis and

control of time-delay systems has attracted much attention during the past years, which

is of both practical and theoretical importance.

Many results have been reported using a variety of approaches and techniques.

However, much of the focus has been laid on the use of the Lyapunov-Krasovskii theory

to derive sufficient stability conditions in the form of linear matrix inequalities.

In the literature, various approaches have been proposed to obtain delay-dependent

stability conditions, among which the linear matrix inequality (LMI) approach is the

most popular and has played an important role due to the fact that LMIs can be cast

into a convex optimisation problem which can be handled efficiently by resorting to

recently developed numerical algorithms for solving LMIs [14]. Another reason that
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makes LMI conditions appealing is their frequent readiness to solve the corresponding

synthesis problems once the stability (or other performances) conditions have been

established, especially when state feedback is employed.

For simplicity, we will review the LMI techniques in deriving stability results for

the single-delay case. However, the LMI techniques presented in the following can be

extended to the multiple-delay case in a straightforward manner. In this section, two

classes of time-delay systems will be considered, which are,

Σ1 =


ẋ(t) = Ax(t) +A1x(t− h)

x(t) = φ(t), ∀t ∈ [−h, 0]
(2.5.12)

and

Σ2 =


ẋ(t) = Ax(t) +A1x(t− h(t))

x(t) = φ(t), ∀t ∈ [−h̄, 0]
(2.5.13)

where x(t) ∈ Rn is the state; φ(t) is the continuous initial condition. The scalar

h > 0 is the constant delay of system (Σ1), while h(t) is the time-varying delay of

system (Σ2), which is assumed to be continuous and satisfies

0 < h(t) ≤ h̄. (2.5.14)

In both the time-delay systems (Σ1) and (Σ2), A and A1 are known real constant

matrices. It is noted that stability results on (Σ1) obtained by the method of Lyapunov-

Krasovskii functional can be easily extended to systems with differentiable time-varying

delays. It will be developed later in chapter 4.

At the end of this section, we list some helpful lemma as follows.

Lemma 2.2. Schur complement lemma: For a given matrix A =

A11 A12

AT12 A22

 with

A11 and A12 are symmetric, then the following conditions are equivalent:

1. A < 0

2. A11 < 0, A22 −AT12A
−1
11 A12 < 0

3. A22 < 0, A11 −A12A
−1
22 A

T
12 < 0
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Lemma 2.3. Young’s inequality: ∀a, b ∈ Rn and ε > 0, ∀R > 0

2aT b ≤ εaTRa+
1

ε
bTR−1b

Lemma 2.4. Jensen’s inequality: For any constant matrix M ∈ Rm×m, M = MT >

0, scalar γ > 0, vector function ω : [0, γ] → Rm such that the integrations concerned

are well defined, then

γ

∫ γ

0
ωT (β)Mω(β)dβ ≥

(∫ γ

0
ω(β)dβ

)T
M

(∫ γ

0
ω(β)dβ

)
(2.5.15)

2.5.4 Delay-dependent stability conditions

Newton-Leibniz formula

By using the Newton-Leibniz formula and noting system (2.5.12), we have

x(t− h) = x(t)−
∫ t

t−h
ẋ(α)dα

= x(t)−
∫ t

t−h
[Ax(α) +A1x(α− h)]dα. (2.5.16)

This together with system (2.5.12) gives

ẋ(t) = (A+A1)x(t)−A1

∫ t

t−h
[Ax(α) +A1x(α− h)]dα. (2.5.17)

Note that the asymptotic stability of the time-delay system in equation (2.5.17) implies

that of the system in (Σ1). For this reason, we now turn to study the stability of

system in equation (2.5.17). To this end, we choose a Lyapunov-Krasovskii functional

candidate as follows:

V (t, xt) = x(t)TP−1x(t)+

∫ 0

−h

∫ t

t+θ

x(α)TAT1Q
−1
1 A1x(α)dαdθ+

∫ 0

−h

∫ t

t−h+θ
x(α)TAT1Q

−1
2 A1x(α)dαdθ,

(2.5.18)

where P > 0, Q1 > 0 and Q2 > 0. Then, the stability condition for (2.5.17) is obtained

in the following theorem.

Theorem 2.4. [16] The time delay system in eq(2.5.17) is asymptotically stable for

any delay h satisfying 0 < h ≤ h̄ if there exist matrices P > 0, Q1 > 0 and Q2 > 0
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such that 
Ω h̄PAT h̄PAT1

h̄AP −Q1 0

h̄A1P 0 −Q2

 < 0, (2.5.19)

where Ω = (A+A1)P + P (A+A1)T +A1(Q1 +Q2)AT1 .
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Chapter 3

Controllability and stabilization

of a commutative class of

nonlinear time-varying systems

3.1 Introduction

In this chapter, we consider the nonlinear time-varying system (2.1.3), let A(t, x) be

written as

A(t, x) =
m∑
i=1

ai(t, x(t))Aix(t), (3.1.1)

where Ai’s are assumed to be mutually commutative i.e. Ai’s satisfy the following

conditions:

AiAj = AjAi, ∀i, j = 1, 2, . . . ,m. (3.1.2)

Its worth mentioning that, as a special case, of the corresponding linear system have

been studied in Wu [89], Zhu [105], Leiva & Zambrano [55] and Date & Gashi [18].


ẋ(t) = A(t)x(t) +Bu(t) =

m∑
i=1

ai(t)Aix(t) +Bu(t),

y(t) = Cx(t),

(3.1.3)

Ai ∈ Rn×n, B ∈ Rn×l and Ai are commutative matrices of each other. Particularly, suf-

ficient conditions for controllability and stability of the system 3.1.3 have been proposed

in Wu [89].

19



In order to gain more insight into the controllability, the stability and the observ-

ability problems of the nonlinear system, we thereby attempt to resolve in (2.1.3) by

the means of 1) the boundedness on the A(x) to ensure the existence of the global

solution to the pesudo-linear dynamics by transforming into a fixed-point problem for

constructing a proper mapping on an invariant subset 2) the commutativity on matrix

A(x) ensures the state transition matrix expressed in a explicit and closed form.

From the mutual commutativity of constant matrices Ai’s and the bounded scalar

function ai(t, x), the computation of the state transition matrix of a nonlinear time-

variant system can be done in the same way as that of a linear time-variant system and

yield more explicit information on eigenvalues of A(t, x). With the aid of pseudo-linear

dynamics by resolving a fixed-point problem, we would provide sufficient conditions

for the globally complete controllability of the system through simple algebraic rank

criteria. It helps to avoid falling into difficult calculation of the determinant of the

controllability Grammian matrix based on procedure from [19]. Furthermore, as the

Kalman canonical decomposition can be derived, we have gained feedback stability

criterion and stabilisation criterion of controller design for the system (2.1.3).

3.2 Controllability

Consider the nonlinear time-varying system with control:


ẋ(t) =

m∑
i=1

ai(t, x(t))Aix(t) +Bu(t),

y(t) = Cx(t),

(3.2.1)

where Ai ∈ Rn×n, B ∈ Rn×l and Ai are commutative matrices of each other ,

i = 1, ...,m. The state x is an n-vector and the control input u is an m-vector. The

coefficient functions ai : [0,+∞) × Rn → R, i = 1, ...,m are piecewise continuous

functions of t and continuous functions of x.

The corresponding pseudo-linear form of system (3.2.1) would be:


ẋz(t) =

m∑
i=1

ai(t; z)Aixz(t) +Bu(t),

xz(t0) = x0,

(3.2.2)
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for a specified function z(·) ∈ CnT , denoting the Banach space of continuous Rn-valued

functions on T = [t0, tf ]. For each fixed z(·) ∈ CnT , system (3.2.2) is linear. The

complete solution is given by

xz(t) = φ(t, t0; z)x0 +

∫ t

t0

φ(t, s; z)Bu(s)ds (3.2.3)

Lemma 3.1. The state transition matrix of system (3.2.3) is denoted as:

φ(t, t0; z) = exp

[
m∑
i=1

∫ t

t0

ai(s; z)dsAi

]

which can be represented in the form as follows:

φ(t, t0; z) =

nm−1∑
k=0

n−1∑
k1=0

· · ·
n−1∑
km=0

gk(t, t0; z)(Ak1
1 · · ·A

km
m ) (3.2.4)

where gk(t, t0; z) are scalar functions.

Proof. Similarly in [72], by the virtue of the Cayley-Hamilton theorem and community

of matrices Ai’s,

φ(t, t0; z) = exp

[∫ t

t0

a1(s; z)dsA1

]
· · · exp

[∫ t

t0

a1(s; z)dsA1

]

=

 n−1∑
k1=0

gk1(t, t0; z)Ak1
1

 · · ·
 n−1∑
km=0

gkm(t, t0; z)Akmm


=

nm−1∑
k=0

n−1∑
k1=0

· · ·
n−1∑
km=0

gk(t, t0; z)(Ak1
1 · · ·A

km
m )

The following theorem gives conditions under which the nonlinear system is global

controllable.

Theorem 3.1. The system (3.2.1) is globally completely (totally) controllable at tf , if

the conditions below are satisfied:

(a) The integrator |
∫ t
t0
ai(s, x(s))ds| ≤ M all x(·) ∈ CnT , t ∈ T , i = 1, 2...m, here

M is positive real constant.

(b) The coefficient functions gk(t, t0; z) in (3.2.4) is assumed to be linearly indepen-

dent from each other for all t0 and for some (all) finite tf > t0.
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(c) The collection of vectors

Ak1
1 A

k2
2 ...A

km
m bi k1, ..., km = 0, 1, ..., n− 1

spans n dimensions. The bi are m columns of the matrix B.

Proof. Based on the similar procedure by Davison & Kunze in [19] , we then design

the controller:

u(t0, t, tf ; z) = BTφT (t0, t; z)G
−1(t0, tf ; z)

{
φ−1(tf , t0; z)xf − x0

}
, (3.2.5)

with which the system can be steered from x0 to the pre-set final state xf . And the

controllability Gramian matrix is denoted by

G(t0, t; z) =

∫ t

t0

φ(t0, s; z)BB
TφT (t0, s; z)ds,

which is positive definite since the system is completely controllable if and only if the

rows of the matrix φ(t, t0; z)B for t ∈ T are linearly independent functions [52]. The

elements of the inverse of Gramian matrix G−1(t0, t; z) are denoted as gij(t0, tf ; z).

By inserting the controller to this solution to the system (3.2.2):

xz(t) = φ(t0, t; z)x0 +

∫ t

t0

φ(t, s; z)Bu(s)ds. (3.2.6)

We now formulate nonlinear operator explicitly:

P (z)(t) = φ(t, t0; z)
{
x0 +G(t0, t; z) ·G−1(t0, tf ; z)

[
φ−1(tf , t0; z)xf − x0

]}
. (3.2.7)

Define norm of matrix A ∈ Rn×n |A| = max
j

∑n
i=1 |A|ij and the norm of z(t) in CnT

||z|| = max{
∑n

i=1 zi(t) : t ∈ T}

Thus,

||Pz(t)|| ≤

{
C|x0|+ (C − 1) exp

[
mM

m∑
i

|Ai|

]
|xf |

}
exp

[
mM

m∑
i

|Ai|

]
= K
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where

C = 1+exp

[
mM

m∑
i

|Ai|

]
×exp

[
mM

m∑
i

|ATi |

]
×|B|×|BT |×(tf−t0)

[
nmax

j

n∑
i=1

|gij(t0, tf ; z(s))|

]
,

Therefore, the domain set of the operator could be :

Φ = {z|z ∈ CnT ; ||z|| ≤ K}

where K is the same constant as the upper bound of the operator P (z)(t). Let Ω =

{x|x = P (z); z ∈ Φ} be its image set. Hence, from the above discussion, the nonlinear

operator P (z)(t) mapping is continuous and invariant from the closed convex subset

Φ into Ω. Besides the compactness of the image set Ω can be demonstrated due to

the Arzela-Ascoli theorem [77]. So we can conclude, in application of the Schauder’s

theorem applies, the nonlinear operator P (z)(t) is proved to have (at least) a fixed

point namely z∗ which is the very solution of (3.2.2) and (3.2.3) evaluating at z∗.

On the other hand, there isn’t any non-zero vector P ∈ Rn so that P Tφ(t, t0; z)B =

0 for all t ∈ T , otherwise the system (3.2.2) is not completely controllable at tf .

P Tφ(t, t0; z)B = P Tφ(t, t0; z)B = P T
nm−1∑
k=0

n−1∑
k1=0

· · ·
n−1∑
km=0

gk(t, z)(A
k1
1 ...A

km
m )B (3.2.8)

Due to the assumption of independence of coefficient functions gk(t, z), there doesn’t

exist any non-zero vector P ∈ Rn so that P T
∑n−1

k1=0 · · ·
∑n−1

km=0(Ak1
1 ...A

km
m )B = 0 for all

t ∈ T . Consequently, the collection of vectors Ak1
1 A

k2
2 ...A

km
m bi will span a n-dimensional

subset of Rn, k1, ..., km = 0, 1, 2, ..., n− 1; i = 1, . . . , l .

Remark 3.1. With the aid of this result, we can infer that the system is controllable

immediately if the controllability matrix

C̄ = [B,A1B, ...A1A2B, ..., (A1A2...Am)B, ..., (A1A2...Am)n−1B]

has full column rank.

We have fortune to see that the rank condition for testing the complete controlla-

bility from linear theories is still valid in nonlinear analysis. Conversely, the theorem

can also be available for linear time-variant systems which is regarded as special cases
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of nonlinear systems, but limited in the sense of sufficiency.

3.3 Observability

The concept of observability could be defined as the dual of state controllability. The

results obtained for controllability would be transferred for the observability by a du-

alizing procedure.

Consider the unforced nonlinear time-varying system:


ẋ(t) =

m∑
i=1

ai(t, x(t))Aix(t),

y(t) = Cx(t),

(3.3.1)

Theorem 3.2. The unforced system (3.3.1) is globally completely (totally) observable

at tf , if the conditions below are satisfied:

(a)The integrator |
∫ t
t0
ai(s, x(s))ds| ≤ M all x(·) ∈ CnT , t ∈ T , i = 1, 2...m, here

M is positive real constant.

(b) The coefficient functions gk(t, t0; z) in equation (3.2.4) is assumed to be linearly

independent from each other for all t0 and for some (all) finite tf > t0.

(c) The collection of vectors

[Ak1
1 A

k2
2 ...A

km
m ]T ci k1, ..., km = 0, 1, ..., n− 1

spans n dimensions. The ci are m columns of the matrix CT .

Proof. The procedure proceeds in the same way as shown in the proof of Theorem

3.1. The solution to the unforced system equations (3.3.1), in terms of the state x and

output y, is given by

xz(t) = φ(t, t0; z)x0 (3.3.2)

yz(t) = Cxz(t) = Cφ(t, t0; z)x0 (3.3.3)

The sufficient and necessary condition for complete observability is the columns

of Cφ(t, t0; z) are linearly independent on [t0, tf ]. Therefore, there isn’t any non-zero

vector P ∈ Rn so that P Tφ(t, t0; z)B = 0 for all t ∈ T , otherwise there’s certain
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initial state such that y(t) ≡ 0 on [t0, tf ]. The condition of linear independence can be

expressed by

Cφ(t, t0; z)P = Cφ(t, t0; z)P = C

nm−1∑
k=0

n−1∑
k1=0

· · ·
n−1∑
km=0

gk(t, z)(A
k1
1 ...A

km
m )P (3.3.4)

Due to the assumption of independence of coefficient functions gk(t, z), there doesn’t

exist any non-zero vector P ∈ Rn so that C
∑n−1

k1=0 · · ·
∑n−1

km=0(Ak1
1 ...A

km
m )P = 0 for all

t ∈ T . Consequently, the collection of vectors Ak1
1 A

k2
2 ...A

km
m ci will span a n-dimensional

subset of Rn, i = 1, . . . , l, k1, ..., km = 0, 1, 2, ..., n− 1.

Remark 3.2. The condition (c) in Theorem 3.2 is simply equivalent to that the com-

posite matrix

Ō = [CT , AT1 C
T , ...(A1A2)TCT , ..., (A1A2...Am)TCT , ..., [(A1A2...Am)n−1]TCT ]

is of rank n.

3.4 Canonical Structure

The controllability and observability are invariant under similarity transformation.

From Theorem 3.1, the system (3.2.1) is uncontrollable when the controllability matrix

is of rank k < n i.e. rank(C̄) = k < n. Hence for the nonlinear system, it’s possible to

obtain Kalman canonical decomposition which illuminate the basic structure for this

system [104].

Lemma 3.2. There exists a time invariant transformation matrix U ∈ Rn×n that

decomposes the system into the completely controllable and uncontrollable parts for all

t > 0.

Define U = [q1, q2...qk, qk+1...qn], in which q1...qk are linear independent columns of

C̄ and qk1 ...qn are selected from any linear independent vectors such that U is invertible.

Then

UB =

Bc
0
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Notice that Aiqi, i = 1, ..., k is linear combination of q1...qk due to the Cayley-Halmilton

theorem.

UAiU
−1 =

Ai1 Ai2

0 Ai3

 ,
for some matrix Ai1 with dimension k × k.

As each UAiU
−1 is still commutable, UAkii U

−1, ki = 0, · · · , n− 1 is supposed have

the form :

UAkii U
−1 =

Akii1 Ap2

0 Akii3

 ,

U(Ak1
1 A

k2
2 · · ·A

km
m )U−1 = UAk1

1 U
−1...UAkmm U−1 =

Ak1
11A

k2
21 · · ·A

km
m1 Āp2

0 Ak1
13A

k2
23 · · ·A

km
m3

 ,
for some matrix Ai1 with dimension k × k. Therefore, the controllability matrix C̄

under transformation

Ĉ = U−1C̄ = U−1

Bc A11Bc ... Am1Bc ... (A11A21...Am1)n−1Bc

0 0 ... 0 ... 0

 .
As Ani1, n ≥ k, is a linear combination of Aii1, i = 0, 1, ..., k − 1 and rank (C̄) = k, we

have

rank[Bc, A11Bc, ..., Am1Bc, ..., (A11A21...Am1)k−1Bc] = k.

Therefore, by introducing the state transformation x(t) = Uz(t), where z(t) =

[zT1 (t), zT2 (t)]T the state equation of system (3.2.1) is transformed into:


ż1(t) =

∑m
i ai(t, x)Ai1z1(t) +

∑m
i ai(t, x)Ai2z2(t) +Bcu(t)

ż3(t) =
∑m

i ai(t, x)Ai3z3(t)

(3.4.1)

Remark 3.3. The state z1(t) is completely controllable while the state z2(t) is clearly

uncontrollable. If the state z2(t) is asymptotically stable, then the system (3.4.1) is

stabilisable.

By duality, we have the following decomposition if the system is not completely

observable.

Lemma 3.3. There exists a time invariant transformation matrix U ∈ Rn×n that

decomposes the system into the completely observable and unobservable parts.

26



Proof. Using the same arguments, there’s an invertible matrix U such that

CU−1 =
[
Co 0

]
and

UAiU
−1 =

Ai1 0

A2i Ai3.


Then, the observability matrix Ō under transformation

Ô = ŌU =

CTo AT11C
T
o ... ATm1C

T
o ... (A11A21...Am1)n−1TCTo

0 0 ... 0 ... 0



3.5 Criteria for stability and feedback stabilisation

Consider the free system of (3.2.1) :


ẋ(t) =

∑m
i=1 ai(t, x(t))Aix(t),

x(0) = x0

(3.5.1)

where Ai ∈ Rn×n and the state vector x(·) ∈ Cn[0,+∞), the Banach space of continuous

Rn-valued functions on [0,+∞). The function ai : [0,+∞) × Rn → R is continuous

with respect to the state x and t.

Denote σ as the spectrum of the matrix A i.e. the collection of eigenvalues of A

and Re(σ(A)) < 0 as all of the eigenvalues of A have negative real part.

Theorem 3.3. The system (3.5.1) is globally asymptotically stable if the following

conditions hold:

1) |
∫ t
t0
ai(s, x(s))ds| ≤M all x ∈ CnT , t ∈ T , i = 1, 2...m, here M ∈ R+.

2a) If there’s lim
t→∞

∫ t
t0
ak(s, x(s))ds = +∞ for some 1 ≤ k ≤ m such that

lim
t→∞

∫ t
t0
ai(s,x(s))ds∫ t

t0
ak(s,x(s))ds

= ci and Re(σ(
∑

i ciAi)) < 0, ci is a constant, i = 1, 2...m.

2b) or If there’s lim
t→∞

∫ t
t0
ak(s, x(s))ds = −∞ for some 1 ≤ k ≤ m such that
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lim
t→∞

∫ t
t0
ai(s,x(s))ds∫ t

t0
ak(s,x(s))ds

= ci and Re(σ(
∑

i ciAi)) > 0, ci is a constant, i = 1, 2...m.

Proof. (1) Due to the assumption of commutative matrix Ai and the boundedness of

|
∫ t
t0
ai(s, x)|, the Schauder’s fixed-point principle still validate the following equation:

x(t) = φ(t, 0; z(t)x0) = exp

[
m∑
i=1

∫ t

t0

ai(s, x(s))dsAi

]
x0, t ∈ T (3.5.2)

For the convenience of notation, denote gk(t;x) =
∫ t
t0
ak(s, x(s))ds. Under the assump-

tion that lim
t→∞

gk(t;x) = +∞,∀x(·) ∈ Cn([0,∞]), gk(t;x) will become positive beyond

a certain time t1.

So we have for t > t1

x(t) = exp

[
gk(t;x)(

∑
i

gi(t;x)

gk(t;x)
Ai)

]
x0. (3.5.3)

When the time t approaches infinity,

lim
t→∞

x(t) = exp

[
gk(t;x)(

∑
i

ciAi)

]
x0 = 0. (3.5.4)

The last equation holds as there exists some some positive constant D such that

‖ exp

[
gk(t;x)(

∑
i

ciAi)

]
‖≤ D exp

[
gk(t;x)Re(σ(

∑
i

ciAi))

]
. (3.5.5)

IfRe(σ(
∑

i ciAi)) < 0 and lim
t→∞

gk(t;x(t)) = +∞ orRe(σ(
∑

i ciAi)) > 0 and lim
t→∞

gk(t;x(t))

= −∞, thus exp[gk(t)Re(σ(
∑

i ciAi))]→ 0 as t→∞.

Remark 3.4. The work done by Langson & Alleyne [54] presenting a computable

estimation of the Region of Attraction (ROA) for global stability analysis, it has serious

difficulty in the application of the assessment of stability. Theorem 3.3 guarantees the

global asymptotical stability by imposing conditions as listed above. The decision rule

is very clear when the essential information is accessible.

Corollary 1. The system 3.5.1 is globally asymptotically stable if the following condi-

tions hold:

1) |
∫ t
t0
ai(s, x(s))ds| ≤M all x ∈ CnT , t ∈ T , i = 1, 2...m, here M > 0.
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2) If there’s lim
t→∞

∫ t
t0
ak(s, x(s))ds = +∞ for some 1 ≤ k ≤ m such that

lim
t→∞

∫ t
t0
ai(s,x(s))ds∫ t

t0
ak(s,x(s))ds

= ci and ciRe(σ(Ai)) < 0, ci is a constant, i = 1, 2...m.

or

If there’s lim
t→∞

∫ t
t0
ak(s, x(s))ds = −∞ for some 1 ≤ k ≤ m such that

lim
t→∞

∫ t
t0
ai(s,x(s))ds∫ t

t0
ak(s,x(s))ds

= ci and ciRe(σ(Ai)) > 0, ci is a constant, i = 1, 2...m.

Proof. (1) Proceeding in the same way as that of Theorem 3.3 and because of the

community of matrix Ai, there’s certain positive constants Di such that

‖ exp[gk(t;x)(
∑
i

ciAi)] ‖≤
∏
i

‖ exp [gk(t;x)(ciAi)] ‖≤
∏
i

Di exp [gk(t;x)ciRe(σ(Ai))] .

(3.5.6)

If ciRe(σ(
∑

iAi)) < 0 and lim
t→∞

gk(t;x(t)) = +∞ or ciRe(σ(
∑

iAi)) > 0 and lim
t→∞

gk(t;x(t))

= −∞, then lim
t→∞

x(t) = exp [gk(t;x)(
∑

i ciAi)]x0 = 0 as t→∞.

Combining Theorem 3.3 and Lemma 3.2, the results of stabilisation of system (3.2.1)

by means of nonlinear time-varying state-feedback are concluded in the following the-

orem.

Theorem 3.4. Suppose for the system (3.2.1) with rank(C̄) < n is stabilisable if the

following conditions hold:

1) |
∫ t
t0
ai(s, x)ds| ≤M all x ∈ CnT , t ∈ T , i = 1, 2...m, here M > 0.

2a) If there’s lim
t→∞

∫ t
t0
ak(s, x)ds = +∞ for some 1 ≤ k ≤ m such that

lim
t→∞

∫ t
t0
ai(s,x)ds∫ t

t0
ak(s,x)ds

= ci, Re[σ(
∑

i ci(Ai1 + BcKi1)] < 0, and Re(σ(
∑

i ciAi3)) < 0,

i 6= k

or

2b) If there’s lim
t→∞

∫ t
t0
ak(s, x)ds = −∞ for some 1 ≤ k ≤ m such that

lim
t→∞

∫ t
t0
ai(s,x)ds∫ t

t0
ak(s,x)ds

= ci, Re[σ(
∑

i ci(Ai1 + BcKi1)] > 0 and Re(σ(
∑

i ciAi3)) > 0,

,i 6= k.

Proof. Design the stabilising feedback controller as

u(t) = K(t, x)x(t). (3.5.7)

29



The state equation turns out to be:

ẋ(t) = [
m∑
i=1

ai(t, x)Ai +BK(t, x)]x(t). (3.5.8)

Using the transformed state equation (3.4.1):


ż1(t) =

∑m
i ai(t, x)Ai1z1(t) +

∑m
i ai(t, x)Ai2z2(t) +BcK(t, x)x(t)

ż2(t) =
∑m

i ai(t, x)Ai3z2(t)

, (3.5.9)

Selecting such a nonlinear time-varying state feedback gain: K(t, x) =
∑m

i ai(t, x)Ki1z1(t),

the equation (3.5.9) becomes:

ż(t) =
m∑
i

ai(t, x)Āiz(t) (3.5.10)

where

Āi =

Ai1 +BcKi1 Ai2

0 Ai3

 . (3.5.11)

Due to the condition 1 and 2a, Re(σ(
∑

i ciĀi)) > 0. So the system (3.5.8) is

asymptotically stable. The condition 1 and 2b would generate the same result according

to the similar proof.

With lemma 3.3 and theorem 3.4, we would have the following theorem immediately:

Theorem 3.5. Suppose for the system (3.5.1) is detectable and the observability matrix

O has rank k < n if the following conditions hold:

1) |
∫ t
t0
ai(s, x)ds| ≤M all x ∈ CnT , t ∈ T , i = 1, 2...m, here M > 0.

2a) If there’s lim
t→∞

∫ t
t0
ak(s, x)ds = +∞ for some 1 ≤ k ≤ m such that

lim
t→∞

∫ t
t0
ai(s,x)ds∫ t

t0
ak(s,x)ds

= ci, Re[σ(
∑

i ci(Ai1 − Li1Co)] < 0 and Re(σ(
∑

i ciAi3)) < 0,

i 6= k.

or

2b) If there’s lim
t→∞

∫ t
t0
ak(s, x)ds = −∞ for some 1 ≤ k ≤ m such that
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limt→∞

∫ t
t0
ai(s,x)ds∫ t

t0
ak(s,x)ds

= ci, Re[σ(
∑

i ci(Ai1 − Li1Co)] > 0 and Re(σ(
∑

i ciAi3)) > 0,

i 6= k.

Proof. Consider the following nonlinear time-varying Luenberger-like observer:


˙̃x(t) =

∑m
i=1 ai(t, x)Aix̃(t) + L(t, x)(y − ỹ)

ỹ = Cx̃

, (3.5.12)

Let the state estimation error be e(t) = x(t)− x̃. So the equation of the error is

ė(t) =

m∑
i=1

ai(t, x)Aie(t)− L(t, x)Ce(t) (3.5.13)

Combining lemma 3.2 with a similar change of coordinates

Ue(t) =

e1(t)

e2(t)

 (3.5.14)

and partition L(t, x) in the form of [LT1 (t, x), LT2 (t, x)]T , the system (3.5.13) becomes


ė1(t) =

∑m
i ai(t, x)Ai1e1(t)− L1(t, x)Coe1(t)

ė2(t) =
∑m

i ai(t, x)A2ie1(t) +
∑m

i ai(t, x)Ai3e2(t)− L2(t, x)Coe1(t)

. (3.5.15)

Then the observer parameter L1(t, x), L2(t, x) are determined to be in the nonlinear

time-varying form of
∑m

i ai(t, x)Li1e1(t)and
∑m

i ai(t, x)Li2e1(t) respectively. Using

the same arguments as that in the Theorem 3.4,

ė(t) =

m∑
i

ai(t, x)Âie(t) (3.5.16)

where

Âi =

Ai1 − Li1Co 0

A2i − Li2Co Ai3

 . (3.5.17)

Under the condition 1 and 2a, the system (3.5.13) is asymptotically stable. The condi-

tion 1 and 2b would generate similar results.

Next we would present that for the system consisting of the controller that feeds

back the state of the observer, is also asymptotically stable.
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We now focus on the design of the following nonlinear time-varying Luenberger

observer for the system (3.2.1):


˙̃x(t) =

∑m
i=1 ai(t, x)Aix̃(t) +Bu(t) + L(t, x)(y − ỹ),

ỹ = Cx̃

. (3.5.18)

Let the state estimation error be e(t) = x(t)− x̃. So the equation of the error is

ė(t) = [

m∑
i=1

ai(t, x)Ai − L(t, x)C]e(t) (3.5.19)

Let the controller be chosen based on the estimated state as:

u(t) = K(t, x)x̃ = K(t, x)[x(t)− e(t)]. (3.5.20)

The state equation turns out to be:

ẋ(t) = [

m∑
i=1

ai(t, x)Ai +BK(t, x)]x(t)−BK(t, x)e(t).

Denoting by s(t) = [xT (t), eT (t)]T , we have that


ṡ(t) = H(t)s(t),

where H(t) =

∑m
i=1 ai(t, x)Ai +BK(t, x) −BK(t, x)

0
∑m

i=1 ai(t, x)Ai − L(t)C

 .
(3.5.21)

Suppose K(t, x), L(t, x) are given as in Theorem 3.4 and Theorem 3.5, of which

assumptions are satisfied, thus the whole system (3.5.21) is asymptotically stable.

Remark 3.5. As we know, separation principle is available for linear systems in the

design of controller. For nonlinear systems, the observer-based control problem becomes

quite difficult. But here, this useful principle the observer-based stabilisation has been

justified for this specified class of nonlinear time-varying systems.
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3.6 Some numerical examples

We illustrate the obtained results about controllability and stability through several

examples. Note that these conditions are sufficient for both properties. So it’s straight-

forward for us to verify the effectiveness of the conclusion by the classical instances

proposed in recent literature.

Example 1 (For globally complete controllability from example 6.1 in [19])

Consider the system:

ẋ1 = x2 + sin[g(x1, x2, t)]u,

ẋ1 = −x1 + sin[g(x1, x2, t)]u
(3.6.1)

sin[g(x1, x2, t)] is a continuous function of x1, x2 and a piecewise continuous function

of t and satisfies the following inequality:

0 < ε ≤ g(x1, x2, t) ≤ π − ε for all x1, x2 ∈ Cn[t0, tf ], t ∈ [t0, tf ].

In this case, we can rewrite the system in matrix form firstly:

ẋ =

 0 1

−1 0

x+ sin[g(x1, x2, t)]

1

1

u. (3.6.2)

After fulfilling first two conditions of the Theorem 3.1, it’s easy to establish the

rank test on the controllability matrix :

C̄ =

1 1

1 −1

 , rank(C̄) = 2.

The controllability matrix C̄ has full rank, and the system 3.6.1 is therefore globally

completely controllable, which coincides with the conclusion in that paper.

Example 2 (For stability from Example 4.5 in [27] and [60])

In this example, a nonlinear system in the SDC form is constructed as:

ẋ1

ẋ2

 =

 a b− c(x1, x2)

−b− c(x1, x2) a

x1

x2

 , x0 = x(0), (3.6.3)

where a.b ∈ R and c(x1, x2) is assumed to be a smooth function: R2 → R.

It’s shown in [60] that although the parameters a = −0.1, b = 3 and scalar function
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c(x1, x2) = − 8
π2 tan−1 x1 tan−1 x2 are chosen to meet the assumption of [54], the state

of the system is gradually far away from the origin described by the integral curve with

certain initial condition. And the portrait of the flow of the system is given in Figure

3.1.

Figure 3.1: Phase portrait of the example in [60]

As pointed by Ghane & Menhaj [27] , the eigenstructure-based analysis fails to

access the correct information about qualitative behaviour of this system. Hereby

we take a = −9, b = 0 and c(x1, x2) = − 8
π2 tan−1 x1 tan−1 x2 in accordance to the

conditions of Theorem 3.2 leading to the conclusion of global asymptotical stable of

the system, depicted by the Figure 3.2.

From Figure 3.2, it’s seen that all the arrows are in the direction toward the origin.

So the numerical depicted result of the system dynamics is in agreement with the

theoretical conclusion.

3.7 Summary

We have derived basic results for the commutative class of nonlinear time-varying sys-

tems. These are: an algebraic criterion for complete controllability, canonical decom-

position of the system and design approach to stabilising controllers and observers.

The results are very explicit and have a strong link with the rich theory of linear
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Figure 3.2: Phase portrait of the parameter-altered example

time-varying systems. It would be interesting to investigate if more general nonlinear

time-varying systems can be approximated by or transformed into this class of systems.
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Chapter 4

Observer design for one-sided

Lipschitz nonlinear systems with

time-varying output and state

delays

4.1 Introduction

In this chapter, we design the observer for for one-sided Lipschitz nonlinear systems with

time-varying output and state delays.Consider a class of one-sided Lipschitz nonlinear

dynamical systems with time-varying output delays, given by

ẋ(t) = Ax(t) +Adx(t− τ) + f(x, u) + ψ(t, y),

y(t) = Cx(t) + Cdx(t− τ),
(4.1.1)

where x ∈ Rn u ∈ Rm, y ∈ Rp and ψ(t, y) ∈ Rn are the state vector, the control

input, the output, and the nonlinear dynamics of the system, respectively. The linear

constant matrices of the dynamical system are represented by A, Ad, Cand Cd, and the

nonlinear function is denoted by f(x, u) ∈ Rn. The system given by (4.1.1) is assumed

to be an observable system. The function f(x, u) belongs to the one-sided Lipschitz

nonlinearities owing to the equation (2.5.3) in Definition 2.5 and the equation (2.5.3)

in Definition 2.6. Another concept employed for the observer design is quadratic inner-

boundedness.
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The continuous time-varying differentiable function τ refers to the time delay at the

state and output, satisfying

0 ≤ h1 ≤ τ ≤ h2,

τ̇ ≤ µ.
(4.1.2)

The time delays, belonging to an interval, appearing in both state and output variables

reformulate control problem in complex forms of engineering systems. The Lyapunov

function used in the developed delay-dependent techniques ignores the lower bound of

the time delay, conservatism remains; therefore, the range should be incorporated to es-

tablish less restricted results. And the delay-range-dependent techniques based on vari-

ous Lyapunov-Krasovskii (LK) approaches have been proposed for nonlinear time-delay

systems in [2]. It is motivated by the cutting-edge delay-range-dependent observer-

design strategy and one-sided Lipschitz nonlinear observer construction methodologies

to explore for the one-sided Lipschitz nonlinear systems with both measurement and

state time-varying delays.

The aim of the present study is to propose and compare observer-design methodolo-

gies for a dynamic one-sided Lipschitz nonlinear system (4.1.1) subject to time-varying

state and output delays varying in an interval.

4.2 Delay-range-dependent nonlinear observer design

Consider a Luenberger-like observer for a delayed one-sided Lipschitz nonlinear system

(4.1.1) formulated as

˙̂x(t) = Ax̂(t) +Adx̂(t− τ) + f(x̂, u) + ψ(t, y) + L((y(t)− ŷ(t))),

ŷ(t) = Cx̂(t) + Cdx̂(t− τ),
(4.2.1)

where L ∈ Rn×m is the observer gain matrix. The state estimation error is given by

e = x− x̂. (4.2.2)

From (4.1.1) and (4.2.1)− (4.2.2), we have the error dynamics:

ė(t) = (A−LC)e(t) +f(x, u)−f(x̂, u)−L((y(t)− ŷ(t))) + (Ad−LCd)e(t− τ), (4.2.3)
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which reduce further to

ė(t) = (A− LC)e(t) + Φ(x, x̂, u) + (Ad − LCd)e(t− τ), (4.2.4)

by substitution of

Φ(x, x̂, u) = f(x, u)− f(x̂, u). (4.2.5)

Now, we provide an LMI-based sufficient condition to test the state-estimation

ability of an observer (4.2.1) for a given observer gain matrix L. Note that the observer

gain matrix obtained by using the traditional observer-design methodologies in [6, 97,

100, 101], etc. do not include time delays. Now delay-range-dependent technique is

proposed to establish condition for asymptotic stability of system (4.1.1).

Theorem 4.1. Consider the one-sided Lipschitz nonlinear system (4.1.1) satisfying

the time-delay bounds given by condition (4.1.2), the one-sided Lipschitz condition

eq(2.5.3), and the quadratic inner-boundedness criterion eq(2.5.4). Suppose there exist

symmetric matrices P ∈ Rn×n, Qi ∈ Rn×n and Zj ∈ Rn×n for i = 1, 2, 3 and j = 1, 2,

and scalars ε1 and ε2, such that the LMIs

P > 0, Qi > 0, Zj > 0, ε1 > 0, ε2 > 0, ∀i = 1, 2, 3 j = 1, 2 (4.2.6)



Y1 + ρε1I + βε2I P Ād Z1 0 P − ε1I

2
+
αε2I

2
h1Ā

TZ1 h12Ā
TZ2

∗ −Λ1 Z2 Z2 0 h1Ā
T
d Z1 h12Ā

T
d Z2

∗ ∗ −Λ2 0 0 0 0

∗ ∗ ∗ −Λ3 0 0 0

∗ ∗ ∗ ∗ −ε2I h1Z1 h12Z2

∗ ∗ ∗ ∗ ∗ −Z1 0

∗ ∗ ∗ ∗ ∗ ∗ −Z2


< 0

(4.2.7)
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are satisfied for a given matrix L, where

Y1 = PĀ+ ĀTP +
3∑
i=1

Qi − Z1,

Λ1 = (1− µ)Q3 + 2Z2,

Λ2 = Q1 + Z1 + Z2,

Λ3 = Q2 + Z2,

Ā = A− LC,

Ād = Ad − LdCd,

h12 = h2 − h1.

(4.2.8)

Then, there exists a Luenberger-type observer (4.2.1) such that the state-estimation

error e asymptotically converges to the origin.

Proof. Define an LK functional candidate ([16, 80, 91]) as

V (e, t) = eTPe+
2∑
i=1

∫ t

t−hi
eT (α)Qie(α)dα+

∫ t

t−τ
eT (α)Q3e(α)dα

+

∫ 0

h1

∫ t

t+s
h1ė

T (α)Z1ė(α)dαds+

∫ h1

h2

∫ t

t+s
h12ė

T (α)Z2ė(α)dαds

(4.2.9)

Acquiring the time derivative of (4.2.9) yields

V̇ (e, t) ≤ 2eTP ė+
2∑
i=1

{eTQie− eT (t− hi)Qie(t− hi)}+ eTQ3e

−(1− µ)eT (t− τ)Q3e(t− τ) + ėT (h2
1Z1 + h2

12Z2)ė

−
∫ t

t−hi
h1ė

T (α)Z1ė(α)dα−
∫ t−h1

t−h2

h12ė
T (α)Z2ė(α)dα. (4.2.10)

Employing (4.2.4) and (4.2.10) and rearranging the terms, the upper bound on V̇ (e, t)
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is obtained as

V̇ (e, t) ≤ 2eTP (Āe+ Φ(x, x̂, u) + Āde(t− τ)) +
3∑
i=1

eTQie

−
2∑
i=1

eT (t− hi)Qie(t− hi)− (1− µ)eT (t− τ)Q3e(t− τ)

−
∫ t

t−hi
h1ė

T (α)Z1ė(α)dα+ (Āe+ Φ(x, x̂, u) + Āde(t− τ))T

×(h2
1Z1 + h2

12Z2)× (Āe+ Φ(x, x̂, u) + Āde(t− τ))−
∫ t−h1

t−h2

h12ė
T (α)Z2ė(α)dα.

(4.2.11)

Applying Jensen’s inequality reveals

−
∫ t

t−hi
h1ė

T (α)Z1ė(α)dα ≤ −
(∫ t

t−hi
ė(α)dα

)T
Z1

(∫ t

t−hi
ė(α)dα

)
≤ −(e(t)− e(t− h1))TZ1(e(t)− e(t− h1)).

(4.2.12)

Similarly, we have

−
∫ t−h1

t−h2

h12ė
T (α)Z2ė(α)dα

= −
∫ t−τ

t−h2

h12ė
T (α)Z2ė(α)dα−

∫ t−h1

t−τ
h12ė

T (α)Z2ė(α)dα

≤ −
(∫ t−τ

t−h2

ė(α)dα

)T
Z2

(∫ t−τ

t−h2

ė(α)dα

)
−
(∫ t−h1

t−τ
ė(α)dα

)T
Z2

(∫ t−h1

t−τ
ė(α)dα

)
≤ −(e(t− τ)− e(t− h2))TZ2(e(t− τ)− e(t− h2))

−(e(t− h1)− e(t− τ))TZ2(e(t− h1)− e(t− τ)) (4.2.13)
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Combining the results of (4.2.11)-(4.2.13), we have

V̇ (e, t)

≤ eT

[
PĀ+ ĀTP +

3∑
i=1

Qi + ĀT (h2
1Z1 + h2

12Z2)Ā− Z1

]
e

+2eT
[
PĀd + ĀT (h2

1Z1 + h2
12Z2)Ād

]
e(t− τ) + 2eTZ1e(t− h1)

+eT (t− τ)×
[
−(1− µ)Q3 − 2Z2 + ĀTd (h2

1Z1 + h2
12Z2)Ād

]
× e(t− τ)

2eT (t− τ)Z2e(t− h1) + 2eT (t− τ)Z2e(t− h2) + eT (t− h1)(−Q1 − Z1 − Z2)e(t− h1)

+eT (t− h2)(−Q2 − Z2)e(t− h2) + 2eT
[
P + ĀT (h2

1Z1 + h2
12Z2)

]
Φ(x, x̂, u)

+ΦT (x, x̂, u)(h2
1Z1 + h2

12Z2)Φ(x, x̂, u)− 2eT (t− τ)[ĀTd (h2
1Z1 + h2

12)]Φ(x, x̂, u).

(4.2.14)

From (4.2.14),

V̇ (e, t) ≤ ΨT
1 Υ1Ψ1, (4.2.15)

where ΨT
1 =

[
eT eT (t− τ) eT (t− h1) eT (t− h2) ΦT (x, x̂, u)

]
,

Υ1 =



Y1 + ĀTY4Ā P Ād + ĀTY4Ād Z1 0 Y2

∗ −(1− µ)Q3 − 2Z2 + Y3Ād Z2 Z2 Y3

∗ ∗ −Q1 − Z1 − Z2 0 0

∗ ∗ ∗ −Q2 − Z2 0

∗ ∗ ∗ ∗ Y4


< 0

(4.2.16)

Y2 = P + ĀT (h2
1Z1 + h2

12),

Y3 = ĀTd (h2
1Z1 + h2

12),

Y4 = (h2
1Z1 + h2

12).

(4.2.17)

The one-sided Lipschitz condition given by eq(2.5.3) is equivalent to ρeT e − eTΦ ≥ 0.
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For a positive scalar ε1, the expression can be written as

ΨT
1



ρε1I 0 0 0 −ε1I
2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−ε1I
2 0 0 0 0


Ψ1 ≥ 0. (4.2.18)

The quadratic inner-boundedness condition eq(2.5.4) implies ΦTΦ ≤ βeT e − αeTΦ

which for a positive scalar ε2 results in

ΨT
1



βε2I 0 0 0 α ε2I2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

α ε2I2 0 0 0 −ε2I


Ψ1 ≥ 0. (4.2.19)

Merging (4.2.17), (4.2.18), and (4.2.19) and using the S-procedure entails



Y1 + ĀTY4Ā+ ρε1I + βε2I P Ād + ĀY4Ād Z1 0 Y2 − ε1I
2 + α ε2I2

∗ −(1− µ)Q3 − 2Z2 + Y3Ād Z2 Z2 Y3

∗ ∗ −Q1 − Z1 − Z2 0 0

∗ ∗ ∗ −Q2 − Z2 0

∗ ∗ ∗ ∗ Y4 − ε2I


< 0

(4.2.20)

Applying the Schur complement lemma to inequality (4.2.20) produces LMI (4.2.7),

which implies that V̇ (e, t) ≤ ΨT
1 Υ1Ψ1 < 0; That is, the error e asymptotically converges

to the origin. This finishes the proof of Theorem 4.1.

Theorem 4.1 ensures state estimation by means of an observer for a given gain

matrix L. If a guess for the observer gain matrix L is unobtainable, the following

Theorem 4.2 provides a solution in form of matrix inequalities.

Theorem 4.2. Consider the one-sided Lipschitz nonlinear system (4.1.1) satisfying the

time-delay bounds given by (4.1.2), the one-sided Lipschitz condition (2.5.3), and the
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quadratic inner-boundedness criterion (2.5.4). Suppose there exist symmetric matrices

P ∈ Rn×n, Qi ∈ Rn×n and Zj ∈ Rn×n for i = 1, 2, 3 and j = 1, 2, matrix X ∈ Rn×m,

and scalar ε1 and ε2 such that

P > 0, Qi > 0, Zj > 0, ε1 > 0 ε2 > 0, ∀i = 1, 2, 3 j = 1, 2

Y1 + ρε1I + βε2I −XC Z1 0 P − ε1I

2
+
αε2I

2
h1A

TP h12A
TP

∗ −Λ1 Z2 Z2 0 −h1C
TXT −h12C

TXT

∗ ∗ −Λ2 0 0 0 0

∗ ∗ ∗ −Λ3 0 0 0

∗ ∗ ∗ ∗ −ε2I h1P h12P

∗ ∗ ∗ ∗ ∗ −T1 0

∗ ∗ ∗ ∗ ∗ ∗ −T2


< 0

(4.2.21)

are satisfied, where T1 = PZ−1
1 P and T2 = PZ−1

2 P . Then, there exists a Luenberger-

type observer (4.2.1) such that the state estimation error e asymptotically converges to

the origin.

Proof. Employing the congruence transform using diag(I, I, I, I, I, PZ−1
1 , PZ−1

2 ) to the

inequality (4.2.7) and defining X = PL and Ti = PZ−1
1 P for i = 1, 2, we obtain LMI

(4.2.21). This completes the proof of Theorem 4.

Remark 4.1. Note that the observer conditions in Theorem 4.2 for delay-range-

dependent systems are difficult to convert into LMIs as the constraints include nonlinear

terms diag(−T1,−T2), where T1 = PZ−1
1 P and T2 = PZ−1

2 P. To solve this problem,

the cone complementary linearization technique has been adopted in [34] and [23]. But

this certainly cause massive computations and extra time due to their iterative nature.

Hence, we would provide an alternative algorithm which’s easily tractable and com-

putable to address the complexity of nonlinearity through the LMIs in the following

section.
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4.3 One-sided Lipschitz nonlinear system subject to state

time-varying delays

Consider a class of one-sided Lipschitz nonlinear dynamical systems with time-varying

output delays, given by


ẋ(t) = Ax(t) +Bx(t− τ) + f(x, u),

y(t) = Cx(t− τ),
(4.3.1)

where x ∈ Rn u ∈ Rm, y ∈ Rp are the state vector, the control input, the output

of the system, respectively. The linear constant matrices of the dynamical system are

represented by A ∈ Rn×n, B ∈ Rn×n and C ∈ Rp×n, and the nonlinear function is

denoted by f(x, u) ∈ Rn. The system given by (4.3.1) is assumed to be an observable

system. A continuous time-varying differentiable function τ refers to the time delay at

the output, satisfying

0 ≤ h1 ≤ τ ≤ h2,

τ̇ ≤ µ
(4.3.2)

The function f(x, u) is assumed to the one-sided Lipschitz nonlinearities owing to the

equation (2.5.3). Another concept employed for the observer design is quadratic inner-

boundedness condition like (2.5.4).

We design the following observer for the time delay one-sided Lipschitz nonlinear

system (4.3.1)


˙̂z(t) = Fz(t) + Ez(t− τ) +Gy(t) + Tf(K+w, u),

w(t) = z(t) +Ny(t),
(4.3.3)

where z(t) ∈ Rr, 0 < r ≤ n representing the state vector of the observer and w(t)

denotes the estimate of Kx(t). K
+

denotes the generalised inverse of K. K ∈ Rr×n

are known constant matrix. F ∈ Rr×r, E ∈ Rr×r, G ∈ Rr×p, T ∈ Rr×n and N ∈ Rr×p

are unknown to be determined. Let the error be

e(t) = w(t)−Kx(t), (4.3.4)

Then the dynamics of the error would be
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ė(t) = ż(t)− (K −NC)ẋ(t), (4.3.5)

and plug system (4.3.1) and (4.3.3) into (4.3.5) to obtain

ė(t) = Fe(t) + Ee(t− τ)− [F (K −NC) +GC − (K −NC)A]x(t)

+[E(K −NC)− (K −NC)B]x(t− τ) + Tf(K+w, u)− (K −NC)f(x, u).

(4.3.6)

If the matrix F,E,G, T,N can be selected to satisfy the conditions as:

K −NC = T, (4.3.7)

FT +GC = TA, (4.3.8)

ET − TB = 0, (4.3.9)

then the system (4.3.5) becomes

ė(t) = Fe(t) + Ee(t− τ)T∆f. (4.3.10)

in which ∆f = f(K+w, u)− (K −NC)f(x, u).

Rewrite (4.3.7) and (4.3.8) as

[
N T

]C
In

 = K, (4.3.11)

[
F G

]T
C

 = TA. (4.3.12)

In equation (4.3.11), the solution for N and T exist, because

rank


C

In

K

 = rank

C
In

 = n. (4.3.13)
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The equation (4.3.12) has a solution of F,G, if and only if

rank


T

C

TA

 = rank

T
C

 = n. (4.3.14)

Theorem 4.3. Consider the one-sided Lipschitz nonlinear system (4.3.1) satisfying the

time-delay bounds given by (4.3.2), the one-sided Lipschitz condition (2.5.3), and the

quadratic inner-boundedness criterion (2.5.4). The observer estimation error (4.3.4)

is asymptotically stable, if there exist symmetric matrices X, P ∈ Rn×n, Qi ∈ Rn×n

and Zj ∈ Rn×n for i = 1, 2, 3 and j = 1, 2, and scalars ε1 and ε2 as well as N,E, T ∈

such that (4.3.7) - (4.3.9) and (4.3.14) hold, given a full column rank matrix K and

are satisfied and the following matrix inequality is feasible:

P > 0, Qi > 0, Zj > 0, ε1 > 0 ε2 > 0, ∀i = 1, 2, 3 j = 1, 2 (4.3.15)



Y1 + ρε1ΓT Γ + βε2ΓT Γ PE Z1 0 P − ε1ΓT

2
+
αε2ΓT

2
h1(M1 +XN1)TZ1 h12(M1 +XN1)TZ2

∗ −Λ1 Z2 Z2 0 h1E
TZ1 h12E

TZ2

∗ ∗ −Λ2 0 0 0 0

∗ ∗ ∗ −Λ3 0 0 0

∗ ∗ ∗ ∗ −ε2I h1Z1 h12Z2

∗ ∗ ∗ ∗ ∗ −Z1 0

∗ ∗ ∗ ∗ ∗ ∗ −Z2


< 0,

(4.3.16)

Y1 = P (M1 +XN1) + (M1 +XN1)TP +

3∑
i=1

Qi − Z1,

Λ1 = (1− µ)Q3 + 2Z2,

Λ2 = Q1 + Z1 + Z2,

Λ3 = Q2 + Z2,

h12 = h2 − h1.

Γ = W
[
Ir 0

]T
Y, W ∈ Rn×n, Y ∈ Rr×r

(4.3.17)
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Proof. As shown in Theorem 4.2 Define an LK functional candidate as

V (e, t) = eTPe+
∑∫ t

t−hi
eT (α)Qie(α)dα+

∫ t

t−τ
eT (α)Q3e(α)dα

+

∫ 0

h1

∫ t

t+s
h1ė

T (α)Z1ė(α)dαds+

∫ h1

h2

∫ t

t+s
h12ė

T (α)Z2ė(α)dαds

(4.3.18)

Acquiring the time derivative of eq(4.3.18) yields

V̇ (e, t) ≤ 2eTP ė+
2∑
i=1

{eTQie− eT (t− hi)Qie(t− hi)}+ eTQ3e

−(1− µ)eT (t− τ)Q3e(t− τ) + ėT (h2
1Z1 + h2

12Z2)ė

−
∫ t

t−hi
h1ė

T (α)Z1ė(α)dα−
∫ t−h1

t−h2

h12ė
T (α)Z2ė(α)dα. (4.3.19)

Employing (4.3.10) and (4.3.19) and rearranging the terms, the upper bound on V̇ (e, t)

is obtained as

V̇ (e, t) ≤ 2eTP [Fe+ T∆f + Ee(t− τ)] +
3∑
i=1

eTQie

−
2∑
i=1

eT (t− hi)Qie(t− hi)− (1− µ)eT (t− τ)Q3e(t− τ)

−
∫ t

t−hi
h1ė

T (α)Z1ė(α)dα+ [Fe+ T∆f + Ee(t− τ)]T

×(h2
1Z1 + h2

12Z2)× [Fe+ T∆f + Ee(t− τ)]−
∫ t−h1

t−h2

h12ė
T (α)Z2ė(α)dα.

(4.3.20)

Applying Jensen’s inequality reveals

−
∫ t

t−hi
h1ė

T (α)Z1ė(α)dα ≤ −
(∫ t

t−hi
ė(α)dα

)T
Z1

(∫ t

t−hi
ė(α)dα

)
≤ −(e(t)− e(t− h1))TZ1(e(t)− e(t− h1)).

(4.3.21)
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Similarly, we have

−
∫ t−h1

t−h2

h12ė
T (α)Z2ė(α)dα

= −
∫ t−τ

t−h2

h12ė
T (α)Z2ė(α)dα−

∫ t−h1

t−τ
h12ė

T (α)Z2ė(α)dα

≤ −
(∫ t−τ

t−h2

ė(α)dα

)T
Z2

(∫ t−τ

t−h2

ė(α)dα

)
−
(∫ t−h1

t−τ
ė(α)dα

)T
Z2

(∫ t−h1

t−τ
ė(α)dα

)
≤ −(e(t− τ)− e(t− h2))TZ2(e(t− τ)− e(t− h2))

−(e(t− h1)− e(t− τ))TZ2(e(t− h1)− e(t− τ)). (4.3.22)

Combining the results of (4.3.20)-(4.3.22), we have

V̇ (e, t)

≤ eT

[
PF + F TP +

3∑
i=1

Qi + F T (h2
1Z1 + h2

12Z2)F − Z1

]
e

+2eT
[
PE + F T (h2

1Z1 + h2
12Z2)E

]
e(t− τ) + 2eTZ1e(t− h1)

+eT (t− τ)×
[
−(1− µ)Q3 − 2Z2 + ET (h2

1Z1 + h2
12Z2)E

]
× e(t− τ)

2eT (t− τ)Z2e(t− h1) + 2eT (t− τ)Z2e(t− h2) + eT (t− h1)(−Q1 − Z1 − Z2)e(t− h1)

+eT (t− h2)(−Q2 − Z2)e(t− h2) + 2eT
[
P + F T (h2

1Z1 + h2
12Z2)

]
T∆f

+T∆f(h2
1Z1 + h2

12Z2)T∆f − 2eT (t− τ)[ET (h2
1Z1 + h2

12)]T∆f, u).

(4.3.23)

Simplifying (4.3.23),

V̇ (e, t) ≤ ΨT
1 Υ1Ψ1, (4.3.24)

where ΨT
1 =

[
eT eT (t− τ) eT (t− h1) eT (t− h2) T∆f

]
,

Υ =



PF + F TP +
∑3

i=1Qi − Z1 PE Z1 0 PT

∗ −(1− µ)Q3 − 2Z2 Z2 Z2 0

∗ ∗ −Q1 − Z1 − Z2 0 0

∗ ∗ ∗ −Q2 − Z2 0

∗ ∗ ∗ ∗ 0
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+
[
F E 0 0 I

]T
(h2

1Z1 + h2
12Z2)

[
F E 0 0 I

]
(4.3.25)

Given C and A, when T is chosen such that equation (4.3.14) is satisfied, there

exits matrices F and G for (4.3.8). Denote

Cd =

T
C

 . (4.3.26)

Let

C†d =
[
TG CG

]
(4.3.27)

be any generalized inverse of Cd satisfying CdC
†
dCd = Cd, where TG ∈ Rn×q and

CG ∈ Rn×p. Then the general solution to (4.3.8) is given by

[
F G

]
= (TA)C†d +X(Ir+p − CdC†d), (4.3.28)

for some X ∈ Rr×r+p. 

M1 = (TA)C†d

Ir
0

 ,
N1 = (Ir+p − CdC†d)

Ir
0

 ,
M2 = (TA)C†d

 0

Ip

 ,
N2 = (Ir+p − CdC†d)

 0

Ip

 .

(4.3.29)

F = M1 +XN1, G = M2 +XN2 (4.3.30)

Since rank(K) = r, there’s invertible matrices Y ∈ Rr×r and W ∈ Rn×n such that

K† = Y −1
[
Ir 0

]
W−1. (4.3.31)

Notice that K has full column rank, its unique Penrose inverse would be

K† = KT (KKT )−1 (4.3.32)
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Thus we find

K(K†w − x) = w −Kx, (4.3.33)

and

K†w − x = W

Ir
0

Y (w −Kx). (4.3.34)

The one-sided Lipschitz condition given by eq(2.5.3) suggests

ρeTY T
[
Ir 0

]
W TW

Ir
0

Y e−∆fW

Ir
0

Y e ≥ 0.

With a positive scalar ε1, the expression can be written in matrix form

ΨT
1



ρε1ΓTΓ 0 0 0 −ε1ΓT

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−ε1Γ
2 0 0 0 0


Ψ1 ≥ 0, (4.3.35)

where Γ = W

Ir
0

Y .

The quadratic inner-boundedness condition eq(2.5.4) implies

βeTΓTΓe+ αeTΓT∆f −∆fT∆f ≥ 0

which for a positive scalar ε2 results in

ΨT
1



βε2ΓTΓ 0 0 0 α ε2ΓT

2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

α ε2Γ
2 0 0 0 −ε2I


Ψ1 ≥ 0. (4.3.36)

Merging eq(4.3.29), eq(4.3.30) eq(4.3.25), eq(4.3.35), and eq(4.3.36), then using the

S-procedure entails
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Y1 + (M1 +XN1)TY4(M1 +XN1) + ρε1ΓTΓ + βε2ΓTΓ PE + FY4E

∗ −(1− µ)Q3 − 2Z2 + Y3E

∗ ∗

∗ ∗

∗ ∗

Z1 0 Y2 − ε1ΓT

2 + α ε2ΓT

2

Z2 Z2 Y3

−Q1 − Z1 − Z2 0 0

∗ −Q2 − Z2 0

∗ ∗ Y4 − ε2I


< 0, (4.3.37)

Y1 = P (M1 +XN1) + (M1 +XN1)TP +
3∑
i=1

Qi − Z1

Y2 = P + (M1 +XN1)T (h2
1Z1 + h2

12),

Y3 = ET (h2
1Z1 + h2

12),

Y4 = (h2
1Z1 + h2

12).

(4.3.38)

Applying the Schur complement produces (4.3.16), which implies that V̇ (e, t) ≤ ΨT
1 Υ1Ψ1 <

0. That is,when the time t goes to the infinity, the error e(t) asymptotically converges

to the origin and w(t) asymptotically converges to Kx(t).

Theorem 4.4. Given K ∈ Rr×n and C ∈ Rp×n, if there exits matrix Z ∈ Rr×(r+p) so

that T = J2 +ZF2 is of full column rank, then there always exist matrix parameters N

and T satisfying (4.3.7) and (4.3.9).

Proof. Denote

Sd =

C
In

 . (4.3.39)

So eq(4.3.13) becomes

rank
[
Sd

]
= rank

Sd
K

 = n. (4.3.40)
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Then the general solution to (4.3.7) is given by

[
N T

]
= KS†d + Z(In+p − SdS†d). (4.3.41)



J1 = (TC†d)

Ip
0

 ,
F1 = (Ip+n − CdC†d)

Ip
0

 ,
J2 = (TC†d)

 0

In

 ,
F2 = (Ip+n − CdC†d)

 0

Ip

 .

(4.3.42)

Thus,

N = J1 + ZF1, (4.3.43)

T = J2 + ZF2. (4.3.44)

With Z ∈ Rr×r+p such that

rank(T ) = rank(J2 + ZF2) = r. (4.3.45)

Hence we can find the unique Penrose inverse of T as T † = T T (TT T )−1.

From (4.3.9), then

E = TBT †. (4.3.46)

Remark 4.2. From Theorem 4.3 and 4.4, a computational algorithm to design delay-

range-dependent observer (4.3.3) is summarised as follows.

Step1: Given the matrix K, compute J1, J2, F1, F2 according to (4.3.42) and obtain

(4.3.43), (4.3.44) in which Z is arbitrarily chosen with the dimension of Rr×(r+p).

Step 2: If (4.3.14) holds with the chosen Z in Step 1, continue to the next. Other-

wise, return the last step to adjust Z.

Step 3: If (4.3.45) holds with the chosen Z in Step 1, continue to the next. Other-
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wise, return the step 1 to adjust Z.

Step 4: Calculate E by 4.3.44 and 4.3.46. Compute M1,M2, N1, N2 by using 4.3.29.

Step 5: Solve the LMI in Theorem 4.3 by using the LMI toolbox.

Step 6: From Step 5, obtain F,G through 4.3.30.

4.4 Numerical Example

For a one-sided Lipschitz nonlinear system like (4.3.1) satisfying the time-delay bounds

given by (4.3.2), the one-sided Lipschitz condition (2.5.3), and the quadratic inner-

boundedness criterion (2.5.4), we assume

A =


−10 1 1 −10

10 −10 10 1

1 −20 12 10

10 20 −10 −50



B =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



C =

1 0 0 0

0 1 0 0



Φ =
[
1 21.6sin(t) 0 −x4

]T
,

For the parameters in the one-sided Lipschitz condition (2.5.3), and the quadratic

inner-boundedness criterion (2.5.4), we assume ρ = −0.5, β = 10, α = 9.

We set K =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , so the observer (4.3.3) is full-order observer. Thus,
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assuming Z =


1 −0.5 0 2 0 1

1 0 2 0 1 0

1 0 0 1 0 1

1 0 −0.8 0 1 1

, we can design the observer according to

Theorem 4.3 and Theorem 4.4. Following the algorithm in Theorem 4.3 and Theorem

4.4, we can get feasible solution for LMI (4.3.16) and parameters for observer (4.3.3)

as below

ε1 = 49.4272, ε2 = 4.6958

Z1 =


0.6423 0.1029 −0.5388 −0.1938

0.1029 1.1286 0.1573 −0.0889

−0.5388 0.1573 0.5437 0.1682

−0.1938 −0.0889 0.1682 0.0781

 , Z2 =


0.0856 0.0146 −0.0723 −0.0262

0.0146 0.1526 0.0207 −0.0122

−0.0723 0.0207 0.0723 0.0224

−0.0262 −0.0122 0.0224 0.0101



Q1 =


6.7180 −0.0523 0.2160 0.0812

−0.0523 6.4905 −0.0608 0.0408

0.2160 −0.0608 4.0179 0.4450

0.0812 0.0408 0.4450 7.1261

 , Q2 =


6.9437 −0.0072 0.0341 0.0124

−0.0072 6.9110 −0.0097 0.0059

0.0341 −0.0097 4.2026 0.5047

0.0124 0.0059 0.5047 7.1568



Q3 =


12.5740 −0.5559 −2.8055 −0.4546

−0.5559 11.1365 0.8006 −0.3130

−2.8055 0.8006 6.1847 0.9793

−0.4546 −0.3130 0.9793 7.3306

 , P =


10.2696 −1.8395 −3.8555 −0.1397

−1.8395 4.3872 1.0602 −0.1497

−3.8555 1.0602 1.7254 0.2742

−0.1397 −0.1497 0.2742 1.0328



E =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



F =


−196.7007 −128.9196 12.5000 1.2500

114.3143 13.0423 −4.5000 −5.5000

−574.7510 −294.5811 16.5000 15.5000

173.0819 66.5234 −10.9000 −41.0000
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G =


−93.6377 105.1378

−21.6205 182.1033

−213.0542 495.4939

18.9773 −196.7834

 , N =


1 −1.25

−0.5 0.5

0.5 −0.5

0.9 0

 , T =


0 1.25 0 0

0.5 −0.5 0 0

−0.5 0.5 1 0

−0.9 0 0 1


.

4.5 Summary

A delay-range-dependent approach to the nonlinear observer-design dilemma for non-

linear systems subject to delayed output measurements and states was extended in this

section. By application of Jensens inequality, LK functional, LMI tools, and appropriate

matrix transformations, the delay-range-dependent conditions for observer synthesis of

one-sided Lipschitz nonlinear systems with time-varying output delays, were derived.

But the conditions converting into available LMIs require the cone complementary lin-

earization algorithm at the cost of extra time and computation complexity. For this

reason, we come up with more flexible and easily solvable algorithm to the nonlinear

observer-design construction. The resultant observer-synthesis approach can be also

applied and generalised to the estimation of the states of industrial nonlinear systems

with fast time-varying delays in the system dynamics and outer disturbances.

55



Chapter 5

Controller and observer design

for one-sided Lipschitz nonlinear

time-varying system

5.1 Introduction

As seen in the last chapter, several observer-design problems for one-sided Lipschitz

nonlinear systems have been investigated. The basic state observer-design scheme relies

on the Lyapunov function for obtainment of simple linear matrix inequality (LMI)

conditions for asymptotic stability of state estimation error was carried out.

Through this approach, the analysis and deduction problem in a unified LMI

framework, which provides the condition for existence of a nonlinear state observer,

is addressed by incorporating the one-sided Lipschitz the concept of quadratic inner-

boundedness.

It should be noted that most of the above-mentioned references are focused on the

same type of nonlinear system separated into two parts: time-invariant linearity and

the nonlinearity. The influence of the nonlinearity is interpreted by the one-side Lips-

chitz condition. Then the system as a whole still complies with the one-side Lipschitz

condition. One more challenging problem arises when the linear part becomes time

variant. This would result in a more general system as it may not be one-side Lipschitz

any more. Thus in this chapter, for the generalised system, based on Lyapunov stability

theory, we study sufficient conditions for the existence of observers and resolve observer
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design problem with the Luenberger-type observer through the LMIs conditions and

Riccati-type equations.

5.2 Preliminaries

Consider a class of nonlinear time-varying dynamical systems described by


ẋ = A(t)x+ f(x, u)

y = Cx

(5.2.1)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ Rp is the output and C ∈ Rp×n. The

elements ajk(t) of A(t) j, k = 1, 2, ...n are piecewise continuous functions with respect

to time t and f(x, u) is nolinear function satisfying the one-sided Lipschitz condition

eq(2.5.3)and quadratic inner-bounded condition eq(2.5.4).

Hereby we set up a full-order Luenberger-like state observer with the time-varying

gain matrix design for systems (5.2.1):

˙̃x = A(t)x̃+ f(x̃, u) + L(t)(y − Cx̃) (5.2.2)

The time-varying matrix A(t) can be decomposed as:

A(t) = A0 +
m∑
i=1

ai(t)Ai = A0 +
m∑
i=1

[a+
i (t) + a−i (t)]Ai (5.2.3)

in which matrices Ai are constant, the scalar coefficients a+
i > 0 and a−i < 0 for any

t > 0.

The Luenberger-like gain matrix would be:

L(t) = L0 +

m∑
i=1

[a+
i (t) + a−i (t)]Li, (5.2.4)

where Li is constant matrix with compatible dimensions.

The error dynamics is given by e := x− x̃,

ė = [Ā0 +
m∑
i=1

[a+
i (t) + a−i (t)]Āi]e+ f − f̃ , (5.2.5)

where Ā0 = A0 − L0C, Āi := Ai − LiC, i = 1, · · · ,m f := f(x, u) and f̃ := f(x̃, u).
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For error dynamics (5.2.5), consider the Lyapunov function V (t) = eT (t)Pe(t).

Then

V̇ (t) = eT (t)

{
[Ā0 +

m∑
i=1

[a+
i (t) + a−i (t)]Āi]P + P [Ā0 +

m∑
i=1

[a+
i (t) + a−i (t)]Āi]

}
e(t)+2eT (t)P (f−f̃)

(5.2.6)

5.3 Full-order observer design

In this section, we first formulate conditions for the existence of observer design in 5.2.2

of the nonlinear time-varying system 5.2.1 and the following theorem will present them.

We now construct a new scalar function, called the Hamiltonian, is defined as

H = V̇ + ε1C1 + ε2C2 + ε3C3 + C4 (5.3.1)

where ε1, ε1 and ε3 are small positive integer and C1, C2 and C3 are the cost functions

given by (obtained by squaring and rearranging equation (2.5.3 & 2.5.4))

C1 =

m∑
i=1

(a+
i (t)− a−i (t))[ρe(t)T e(t)− (f − f̃)T e(t)] (5.3.2)

C2 =
m∑
i=1

(a+
i (t)− a−i (t))[βe(t)T e(t)− (f − f̃)T (f − f̃) + γe(t)T (f − f̃)] (5.3.3)

C3 = [ρe(t)T e(t)−(f− f̃)T e(t)]+[βe(t)T e(t)−(f− f̃)T (f− f̃)+γe(t)T (f− f̃)] (5.3.4)

C4 =

m∑
i=1

(a+
i (t)− a−i (t))[(f − f̃)TP (f − f̃)] (5.3.5)

such that

V̇ = H − ε1C1 − ε2C2 − ε3C3 − C4 (5.3.6)

where the terms ε1C1, ε2C2, ε3C3 and C4 are always non-negative. The S-Procedure

implies that if it can be proved H is negative definite, then V̇ < 0 is ensured.

Theorem 5.1. Consider the nonlinear system 5.2.1 and the state observer holds the

form of 5.2.2. The error dynamics 5.2.5 is asymptotically stable if there exists constants

ε1 > 0, ε2 > 0, ε3 > 0and matrices P > 0, R such that the following LMIs are feasible
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for 1 ≤ i ≤ m:

Ξi < 0, Ωi < 0, Θ < 0, (5.3.7)

where

Ξi =

AiTP + PAi − CTRi −RTi C + (ε1ρ+ ε2β)I
γε2 − ε1

2
I

∗ P − ε2I

 ,

Ωi =

−(Ai
TP + PAi − CTRi −RTi C) + (ε1ρ+ ε2β)I

γε2 − ε1

2
I

∗ P − ε2I

 ,

Θ =

(A0
TP + PA0 − CTR0 −RT0 C) + ε3(ρ+ β)I P +

γε3 − ε3

2
I

∗ −ε3I

 .
The gain Li, L0 can be selected as Li = P−1RTi and L0 = P−1RT0

Proof. By writing in matrix form, the equality (5.2.6) is equivalent to

V̇ (t) =

 e(t)

f − f̃

T ∑m
i=1[(Āi

T
P + PĀi)a

+
i (t) + (Āi

T
P + PĀi)a

−
i (t)] P

∗ 0

 e(t)

f − f̃


(5.3.8)

From (5.3.2 to 5.3.5), ε1C1 is equivalent to

m∑
i=1

a+
i (t)ε1

 e(t)

f − f̃

T ρI −1

2

∗ 0

 e(t)

f − f̃

 ≥ 0, (5.3.9)

and

−
m∑
i=1

a−i (t)ε1

 e(t)

f − f̃

T ρI −1

2

∗ 0

 e(t)

f − f̃

 ≥ 0. (5.3.10)

ε2C2 is equivalent to

m∑
i=1

a+
i (t)ε2

 e(t)

f − f̃

T βI γ

2
I

∗ −I

 e(t)

f − f̃

 ≥ 0 (5.3.11)
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and

−
m∑
i=1

a−i (t)ε2

 e(t)

f − f̃

T βI γ

2

∗ I

 e(t)

f − f̃

 ≥ 0. (5.3.12)

Then ε3C3 equals to

 e(t)

f − f̃

T ε3(ρ+ β)I
γε3 − ε3

2
I

∗ −ε3I

 e(t)

f − f̃

 ≥ 0.

And C4 equals to

m∑
i=1

(a+
i (t)− a−i (t))

 e(t)

f − f̃

T 0 0

∗ P

 e(t)

f − f̃

 ≥ 0.

Hence, the Hamiltonian function H yields

H =

 e(t)

f − f̃

T { m∑
i=1

[a+
i (t)Ξi − a−i (t)Ωi] + Θ

} e(t)

f − f̃

 (5.3.13)

in which

Θ =

A0
TP + PA0 − CTLT0 P − PL0C + ε3(ρ+ β)I P +

γε3 − ε3

2
I

∗ −ε3I

 , (5.3.14)

Ξi =

AiTP + PAi − CTLTi P − PLiC + (ε1ρ+ ε2β)I
γε2 − ε1

2
I

∗ −ε2I

 , (5.3.15)

Ωi =

−(Ai
TP + PAi − CTLTi P − PLiC) + (ε1ρ+ ε2β)I

γε2 − ε1

2
I

∗ −ε2I

 . (5.3.16)

In order to gain H < 0, it’s sufficient to have that Ξi < 0,Ωi < 0 and Θ < 0. But

the inequalities seem to be nonconvex since each contains the product of two variables

P and Li. Thus a simple change of variables separating Li from P needs to be done.

Let Ri = LTi P. So the inequalities (5.3.15) (5.3.16) becomes

Ξi =

AiTP + PAi − CTRi −RTi C + (ε1ρ+ ε2β)I
γε2 − ε1

2
I

∗ P − ε2I

 < 0, (5.3.17)
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and

Ωi =

−(Ai
TP + PAi − CTRi −RTi C) + (ε1ρ+ ε2β)I

γε2 − ε1

2
I

∗ P − ε2I

 < 0. (5.3.18)

Searching for P and Li satisfying the above inequalities 5.3.17 and 5.3.18 is equivalent

to that of P and Ri for 5.3.15 and 5.3.16. Once a feasible set of P and Ri is found, Li

can be computed as Li = P−1Ri. Due to that P is invertible (P > 0) and that there

exists a one to one mapping from Ri to Li for a given P . Similarly, let L0 = P−1R0.

Then

Θ =

A0
TP + PA0 − CTR0 −RT0 C + ε3(ρ+ β)I P +

γε3 − ε3

2
I

∗ −ε3I

 < 0. (5.3.19)

The proof is completed.

Remark 5.1. This theorem investigate the full-order observer design for one-sided

Lipschitz nonlinear time-varying system by LMIs. A Riccati-type sufficient condition

is proposed in the corollary below.

Corollary 2. Consider the nonlinear system 5.2.1 and the state observer holds the

form of 5.2.2. The error dynamics 5.2.5 is asymptotically stable if there exists constants

ε1 > 0, ε2 > 0, ε3 > 0 and σi > 0, σ0 > 0 such that the following Riccati-type inequality

has a symmetric positive definite solution P :

Ai
TP +PAi−σiCTC+ (ε1ρ+ ε2β)I− (

γε2 − ε1

2
)(P − ε2I)−1(

γε2 − ε1

2
) < 0, (5.3.20)

−[Ai
TP+PAi−σiCTC]+(ε1ρ+ε2β)I−(

γε2 − ε1

2
)(P−ε2I)−1(

γε2 − ε1

2
) < 0, (5.3.21)

A0
TP + PA0 − σ0C

TC + ε3(ρ+ β)I +
1

ε3
[P +

γε3 − ε3

2
I]2 < 0. (5.3.22)

The observer gain can then be chosen as Li =
σi
2
P−1CT and L0 = P−1RT0 .

Proof. As shown in Theorem 2, Ξi < 0 and Ωi > 0 with Li = P−1RTi and L0 = P−1RT0 .
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Now replacing with Li =
σ

2
P−1CT to Ξi, Ωi and L0 = P−1RT0 thus

Ξi =

AiTP + PAi − σiCTC + (ε1ρ+ ε2β)I P +
γε2 − ε1

2
I

∗ −ε2I

 < 0, (5.3.23)

Ωi =

−(Ai
TP + PAi − σiCTC) + (ε1ρ+ ε2β)I P +

γε2 − ε1

2
I

∗ −ε2I

 < 0, (5.3.24)

Θ =

A0
TP + PA0 − σ0C

TC + ε3(ρ+ β)I P +
γε3 − ε3

2
I

∗ −ε3I

 . (5.3.25)

Via Schur Complement, the conditions (5.3.23, 5.3.24, 5.3.25) equal to inequalities

(5.3.20, 5.3.21, 5.3.22). Then the proof is finished.

5.4 Reduced-order observer design

This part will show that the very conditions under which the full-order observer exists

would also guarantee the existence of a reduced-order observer. The state vector is

partitioned into two sub-states: x =


x1

...

x2

 such that x1 = x̃1 = y = Cx where

C = [Ip, 0]. We then decompose Ai and P into block matrices like

Ai =

Ai11 Ai12

Ai21 Ai22

 , P =

P1 P2

P T2 P3,

 , (5.4.1)
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where Ai11 , P1 ∈ Rp×p and Ai22 , P3 ∈ R(n−p)×(n−p). The reduced-order can be design in

the form of:

ż2 =
m∑
i=0

ai(t)(Ai22 + LAi12)ẑ2 +
m∑
i=1

ai(t)[L(Ai11 −Ai12L) +Ai21 −Ai22L]y

+
(
L In−p

)
f

 y

ẑ2 − Ly

 , u


ẑ1 = x̂1 = y

x̂2 = ẑ2 − Ly
(5.4.2)

where L = P−1
3 P T2 ∈ R(n−p)×p, a0(t) = 1.

Theorem 5.2. Let C = [Ip, 0]. If there exist P > 0 and scalars ε1 > 0, ε2 > 0 and

ε3 > 0 such that the inequalities 5.3.20, 5.3.21, 5.3.22 are satisfied, then (5.4.2) is a

reduced-order observer for the system (5.2.1).

Proof. Let ωi = (Ai22 + LAi12)TP3 + P3(Ai22 + LAi12), ω0 = (A022 + LA012)TP3 +

P3(A022 + LA012) where L = P−1
3 P T2 ∈ R(n−p)×p, i = 1, · · · ,m.

From Theorem 6.1, (P − ε2I) < 0. We can decompose the inverse of (P − ε2I).

(P − ε2I)−1 =

p1 p2

pT2 p3

 .
The block in the intersection of the second row and the second column in 5.3.20,

5.3.21 and 5.3.22 are

ωi + (ε1ρ+ ε2β)In−p − p−1
3 (

γε2 − ε1

2
)2 < 0, (5.4.3)

− ωi + (ε1ρ+ ε2β)In−p − p−1
3 (

γε2 − ε1

2
)2 < 0, (5.4.4)

ω0 + ε3(ρ+ β)In−p +
P T2 P2

ε3
+

1

ε3
(P3 +

γε3 − ε3

2
In−p)

2 < 0. (5.4.5)

Take a coordinate transformation of z = Tx, where T =

Ip 0

L In−p

. Let z =z1

z2

, where z1 = y ∈ Rp and z2 ∈ Rn−p. Then, from (5.2.1), z2 satisfies the following
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equation:

ż2 =
m∑
i=0

ai(t)(Ai22 + LAi12)z2 +
m∑
i=0

ai(t)[L(Ai11 −Ai12L) +Ai21 −Ai22L]y

+
(
L In−p

)
f

 y

z2 − Ly

 , u

 . (5.4.6)

Subtracting the first equation of (5.4.2) from (5.4.6), the error z̃2 = z2 − ẑ2 is then

governed by

˙̃z2 =
m∑
i=0

ai(t)(Ai22 +
m∑
i=0

ai(t)LAi12)z̃2 +
(
L In−p

)
∆f, (5.4.7)

where

∆f = f

 y

z2 − Ly

 , u

− f
 y

z̃2 − Ly

 , u

 . (5.4.8)

Consider the Lyapunov function candidate

V2(t) = z̃T2 P3z̃2, (5.4.9)

then its time derivative along the trajectories of (5.4.9) is

V̇2(t) =

m∑
i=0

ai(t)z̃
T
2

[
(Ai22 + LAi12)TP3 + P3(Ai22 + LAi12)

]
z̃2 + 2z̃T2 P3

(
L In−p

)
∆f

=
m∑
i=0

ai(t)z̃
T
2

[
(Ai22 + LAi12)TP3 + P3(Ai22 + LAi12)

]
z̃2 + 2z̃T2

(
P T2 , P3

)∆f1

∆f2



=


z̃2

∆f1

∆f2


T 

ω0 +
∑m

i=1 ωi[(a
+
i (t) + a−i (t))] P T2 P3

P2 0 0

P3 0 0



z̃2

∆f1

∆f2

 ,
(5.4.10)

where ∆f1 ∈ Rp, ∆f2 ∈ Rn−p. Using the one-sided Lipschitz condition (2.5.3), we

have

〈
∆f,

 0

z̃2

〉 ≤ ρ‖
 0

z̃2

 ‖2, (5.4.11)
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The above inequality implies that ∆fT2 z̃2 ≤ ρz̃T2 z̃2. Therefore, for any positive

scalar ε1, we have

m∑
i=1

a+
i (t)ε1


z̃2

∆f1

∆f2


T 

ρIn−p 0 − In−p

2

0 0 0

(− In−p

2 )T 0 0



z̃2

∆f1

∆f2

 ≥ 0, (5.4.12)

−
m∑
i=1

a−i (t)ε1


z̃2

∆f1

∆f2


T 

ρIn−p 0 − In−p

2

0 0 0

(− In−p

2 )T 0 0



z̃2

∆f1

∆f2

 ≥ 0. (5.4.13)

On the other hand, from the condition (2.5.4) of quadratic inner-boundedness, we

get

∆fT∆f ≤ β‖

 0

z̃2

 ‖2 + γ

〈 0

z̃2

 ,∆f〉 , (5.4.14)

which implies that

∆fT1 ∆f1 + ∆fT2 ∆f2 ≤ βz̃T2 z̃2 + γz̃T2 ∆f2, (5.4.15)

Thus, for any positive scalar ε2, we have

m∑
i=1

a+
i (t)ε2


z̃2

∆f1

∆f2


T 

βIn−p 0
γIn−p

2

0 −Ip 0

(
γIn−p

2 )T 0 −In−p



z̃2

∆f1

∆f2

 ≥ 0. (5.4.16)

−
m∑
i=1

a−i (t)ε2


z̃2

∆f1

∆f2


T 

βIn−p 0
γIn−p

2

0 −Ip 0

(
γIn−p

2 )T 0 −In−p



z̃2

∆f1

∆f2

 ≥ 0. (5.4.17)

Besides, to combine 5.4.11 and 5.4.14

ε3


z̃2

∆f1

∆f2


T 

(ρ+ β)In−p 0
(γ−1)In−p

2

0 −Ip 0

(
(γ−1)In−p

2 )T 0 −In−p



z̃2

∆f1

∆f2

 ≥ 0. (5.4.18)
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Also we have

∆fT2 (−p−1
3 + ε2In−p)∆f2 ≥ 0, (5.4.19)

m∑
i=1

[a+
i (t)− a−i (t)]


z̃2

∆f1

∆f2


T 

0 0 0

0 0 0

0 0 −p−1
3 + ε2In−p



z̃2

∆f1

∆f2

 ≥ 0. (5.4.20)

Adding the left terms of (5.4.12), (5.4.13), (5.4.16) and (5.4.17) to the right-hand side

of (5.4.10) yields

V̇2(t) ≤ ε2


z̃2

∆f1

∆f2


T [

m∑
i=1

a+
i (t)Ξi −

m∑
i=1

a−i (t)Ωi + Θ

]
z̃2

∆f1

∆f2

 . (5.4.21)

For V̇2(t) ≤ 0, it suffices to have

Ξi =


ωi + (ε1ρ+ ε2β)In−p 0 γε2−ε1

2 In−p

0 −ε2Ip 0

γε2−ε1
2 In−p 0 −p−1

3

 < 0, (5.4.22)

Ωi =


−ωi + (ε1ρ+ ε2β)In−p 0 γε2−ε1

2 In−p

0 −ε2Ip 0

γε2−ε1
2 In−p 0 −p−1

3

 < 0, (5.4.23)

Θ =


ω0 + ε3(ρ+ β)In−p P T2 P3 + γε3−ε3

2 In−p

P2 −ε3Ip 0

P3 + γε3−ε3
2 In−p 0 −ε3In−p

 < 0. (5.4.24)

By Schur complement lemma, the condition (5.4.22) - (5.4.24) are equivalent to Ξ < 0

and Ω < 0. Therefore, according to the standard Lyapunov stability theory, the error

dynamics (5.4.7) is asymptotically stable. This indicates that (5.4.2) is an reduced-

order observer of system (5.2.1) with the dimension of n− p.
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5.5 Controller Design

Consider a class of nonlinear time-varying systems described by
ẋ(t) = A(t)x(t) +Bu(t) + f(t, x)

y(t) = Cx(t)
(5.5.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y ∈ Rp are the state vector, the control input, and

the measured output of the system, respectively. The matrices B ∈ Rn×m, and C ∈

Rp×n are the known constant matrices. The vector-valued function f(t, x) : (R,Rn)→

Rn represents the nonlinearity of the system. The system (5.5.1) is assumed to be

controllable. Throughout this section, without loss of generality, we assume that f(0) =

0, which implies that the unforced system (i.e. u(t) ≡ 0) has the origin as an equilibrium

point. f(t, x) is also assumed to satisfy (2.5.3) and (2.5.4) in Definition 2.4, 2.5. The

time-varying matrix A(t) can be rewritten as:

A(t) = A0 +
m∑
i=1

ai(t)Ai = A0 +
m∑
i=1

[a+
i (t) + a−i (t)]Ai (5.5.2)

in which matrices Ai ∈ Rn×n are constant, the scalar coefficients a+
i > 0 and a−i < 0

for i = 1, · · · ,m. The system is to be stabilized by a state feedback law of the form:

u(t) = K(t)x(t). (5.5.3)

The time-varying controller gain K(t) is chosen as:

K(t) = K0 +

m∑
i=1

[a+
i (t) + a−i (t)]Ki. (5.5.4)

Then the closed-loop system becomes

ẋ(t) = A0 +K0 +

m∑
1

[a+
i (t) + a−i (t)](Ai +Ki)X(t) + f(t, x). (5.5.5)

Theorem 5.3. If there exist scalars ε1 > 0, ε2 > 0 and ε3 > 0 and matrices Y and
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Q = QT > 0 such that the LMIs given by

ηi −Q Q

Q −[(ε1ρ+ ε2β)I +Q− (γε2−ε12 )2(P − ε2I)−1]−1

 < 0

−ηi −Q Q

Q −[(ε1ρ+ ε2β)I +Q− (γε2−ε12 )2(P − ε2I)−1]−1

 < 0

η0 + (γ − 1)Q+ 1
ε3
Q Q

Q −[ε3(ρ+ β)I + 1
ε3

(
γε3 − ε3

2
)2I]−1

 < 0



(5.5.6)

the term ηi is given by QATi + AiQ + Y T
i B

T + BYi and η0 is given by QAT0 + A0Q +

Y T
0 B

T + BY0. Then the controller K0 = Y0Q
−1 Ki = YiQ

−1, i = 1, · · · ,m stabilizes

the nonlinear system given by (5.5.1).

Proof. We again proceed by differentiating Lyapunov function V = xTPx and substi-

tuting it in the Hamiltonian expression

H = V̇ + ε1C1 + ε2C2 + ε3C3, (5.5.7)

C1 =

m∑
i=1

(a+
i (t)− a−i (t))[ρx(t)Tx(t)− fTx(t)], (5.5.8)

C2 =
m∑
i=1

(a+
i (t)− a−i (t))[β2x(t)Tx(t)− fT f + γx(t)T f ], (5.5.9)

C3 = [ρx(t)Tx(t)− fTx(t)] + [β2x(t)Tx(t)− fT f + γx(t)T f ]. (5.5.10)

And we obtain

H =
m∑
i=1

x
f

T [a+
i (t)Πi − a−i (t)Λi + Θ]

x
f

 (5.5.11)

where
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Θ =

A0
TP + PA0 +KT

0 B
TP + PBK0 + ε3(ρ+ β)I P +

γε3 − ε3

2
I

∗ −ε3I


Πi =

AiTP + PAi +KT
i B

TP + PBKi + (ε1ρ+ ε2β)I
γε2 − ε1

2
I

∗ P − ε2I


Λi =

−(Ai
TP + PAi +KT

i B
TP + PBKi) + (ε1ρ+ ε2β)I

γε2 − ε1

2
I

∗ P − ε2I




(5.5.12)

Obviously for stability of the closed loop system (5.5.5) it is necessary for the

inequalities (5.5.12) to be negative definite, which implies Θ,Πi,Λi to be negative

definite.

However, inequalities (5.5.12) are nonconvex, since they include the unknowns

K0,Ki and P . It is essential to convexify the inequalities in order to convert it into

LMIs via a change of variables.

Substituting P = Q−1 in (5.5.12), and pre- and post-multiplying by

Q 0

0 I

 (5.5.13)

we get ηi +Q(ε1ρ+ ε2β)Q
γε2 − ε1

2
Q

∗ P − ε2I

 < 0, (5.5.14)

−ηi +Q(ε1ρ+ ε2β)Q
γε2 − ε1

2
Q

∗ P − ε2I

 < 0, (5.5.15)

η0 +Qε3(ρ+ β)Q I +
γε3 − ε3

2
Q

∗ −ε2I

 < 0, (5.5.16)

where ηi is QATi +AiQ+QKT
i B

T +BKiQ and η0 is given by QAT0 +A0Q+QKT
0 B

T +

BK0Q.

Taking Schurs complement of (5.5.14) – (5.5.16), we

ηi +Q(ε1ρ+ ε2β)Q−Q+Q−Q(
γε2 − ε1

2
)2(P − ε2I)−1Q < 0, (5.5.17)
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− ηi +Q(ε1ρ+ ε2β)Q−Q+Q−Q(
γε2 − ε1

2
)2(P − ε2I)−1Q < 0, (5.5.18)

η0 + ε3(ρ+ β)I − [
1

ε3
Q(
γε3 − ε3

2
)2Q+ (

γε3 − ε3

ε3
)Q+

1

ε3
I] < 0. (5.5.19)

Substituting KiQ = Yi and K0Q = Y0, ηi is now given by QATi +AiQ+ Y T
i B

T +BYi

and η0 is −(QAT0 +A0Q+ Y T
0 B

T +BY0)

ηi +Q(ε1ρ+ ε2β)Q−Q+Q−Q(
γε2 − ε1

2
)2(P − ε2I)−1Q < 0, (5.5.20)

− ηi +Q(ε1ρ+ ε2β)Q−Q+Q−Q(
γε2 − ε1

2
)2(P − ε2I)−1Q < 0, (5.5.21)

η0 +Qε3(ρ+ β)Q− [
1

ε3
Q(
γε3 − ε3

2
)2Q+ (

γε3 − ε3

ε3
)Q+

1

ε3
I] < 0. (5.5.22)

(5.5.20) – (5.5.22) are quadratic matrix inequalities (QMIs) because of the term Q(ε1ρ+

ε2β)Q + Q(γε2−ε12ε2
)Q. Applying Schur complement again, (5.5.20) – (5.5.22) turn out

to be (5.5.6)

Therefore, the system (5.5.1) can be stabilized by a state feedback controller (5.5.4)

if the set of LMIs given by (5.5.6) are feasible.

5.6 Observer-based stabilization design

In the design of feedback control systems, the knowledge of system state plays a key role.

However, in engineering practice it may be quite difficult, sometimes even impossible,

to directly measure all the system state variables through sensors.1 In those situations,

a state observer is usually needed, and then the so-called observer-based control can be

carried out using the estimated state. For linear systems, the observer-based control is

readily achieved due to the separation principle. However, for nonlinear systems, the

observer-based control problem becomes quite difficult. In fact, for a general nonlinear

system, the state estimation by itself is still an open problem. In this section, we

address the observer-based stabilization problem for one-sided Lipschitz time-varying

systems.

Consider a class of continuous-time nonlinear systems described by
ẋ(t) = A(t)x(t) +Bu(t) + f(t, x)

y(t) = Cx(t)
(5.6.1)
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where x ∈ Rn, u ∈ Rm and y ∈ Rp are the state vector, the control input, and the

measured output of the system, respectively. The matrices B ∈ Rn×m, and C ∈ Rp×n

are the known constant matrices. The vector-valued function f(t, x) : (R,Rn) → Rn

represents the nonlinearity of the system. System (5.6.1) is controllable and observable.

As we assume before in section 5.5 that f(0) = 0 and f(t, x) satisfy conditions (2.5.3)

and (2.5.4) in Definition 2.4, 2.5.

The time-varying matrix A(t) can be decomposed to be:

A(t) = A0 +
m∑
i=1

ai(t)Ai = A0 +
m∑
i=1

[a+
i (t) + a−i (t)]Ai (5.6.2)

in which matrices A0 ∈ Rn×n and Ai ∈ Rn×n, i = 1, · · ·m are constant, and the scalar

coefficients a+
i > 0 and a−i < 0 for i = 1, · · · ,m

As usual, we first employ the known Luenberger-like observer to estimate the state

and then use the estimated state to design a linear time-varying output feedback. More

precisely, we propose an observer-based controller as follows


˙̂x(t) = A(t)x̂(t) +Bu(t) + f(t, x̂) +K(t)(y − Cx̂(t))

u(t) = F (t)x̂(t), x(0) = x̂0

(5.6.3)

where x̂ ∈ Rn is the estimate of x, x̂(0) = x̂0 is the initial value of the estimate. Here,

K(t) and F (t) are chosen as:

K(t) = K0 +
m∑
i=1

[a+
i (t) + a−i (t)]Ki, (5.6.4)

F (t) = F0 +
m∑
i=1

[a+
i (t) + a−i (t)]Fi. (5.6.5)

{K0 Ki, F0 Fi} ∈ Rn×n, for i = 1, · · ·m are the constant matrices to be determined

later.

Denote the estimation error by e(t) := x(t) − x̂(t). From equations (5.6.1) and

(5.6.3), we have

ė(t) = (A0 −K0C)e(t) +

m∑
i=1

[a+
i (t) + a−i (t)](Ai −KiC)e(t) + f − f̂ (5.6.6)

where f := f(t, x) and f̂ := f(t, x̂). Moreover, system (5.6.1) becomes
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ẋ = (A0 +BF0)x+
m∑
i=1

[a+
i (t) +a−i (t)](Ai +BFi)x−BF0e−

m∑
i=1

[a+
i (t) +a−i (t)]BFie+ f

(5.6.7)

The closed-loop system can be rewritten as

˙︷︸︸︷x
e


=

(A0 +BF0) +
∑m

i=1[a+
i (t) + a−i (t)](Ai +BFi) −BF0 −

∑m
i=1[a+

i (t) + a−i (t)]BFi I 0

0 (A0 −K0C) +
∑m

i=1[a+
i (t) + a−i (t)](Ai −KiC) 0 I



×


x

e

f

f̃

 (5.6.8)

where f̃ := f − f̂ . For system (5.6.8), let us consider the following Lyapunov

function candidate

V (x, e) =

x
e

T P 0

0 R

x
e

 = xTPx+ eTRe (5.6.9)

Consequently, calculating the derivative of V along the state trajectories of equation

(5.6.8) gives

V̇ (x, e)

=


x

e

f

f̃



T 
Σ11 −PBF0 −

∑m
i=1[a+i (t) + a−i (t)]PBFi P 0

−
∑m
i=1[a+i (t) + a−i (t)](PBFi)

T − (PBF0)T Σ22 0 R

P 0 0 0

0 R 0 0



×


x

e

f

f̃

 (5.6.10)
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where

Σ11 = (A0 +BF0)TP +P (A0 +BF0)+
m∑
i=1

[a+
i (t)+a−i (t)][(Ai+BFi)

TP +P (Ai+BFi)]

Σ22 = (A0−K0C)TP+P (A0−K0C)+

m∑
i=1

[a+
i (t)+a−i (t)][(Ai−KiC)TR+R(Ai−KiC)]

Notice that V̇ (x, e) ≤ 0 if the matrix inequality Σ holds. However, the matrix inequality

Σ ≤ 0 is a BMI since it involves the PBF term. As previously mentioned, up to now

there is no efficient numerical algorithm to solve the BMI problem. We try to overcome

this problem in the following theorem.

Theorem 5.4. For the system (5.6.1), let the observer-based output feedback controller

be constructed in the form of equation (5.6.3). Then the closed-loop system (5.6.8) is

asymptotically stable if there exist matrices Q > 0, R > 0, K̂0, F̂0, K̂i, and F̂i for

i = 1, · · ·m with appropriate dimensions and scalars ε1 > 0 ε2 > 0 ε3 > 0 ε4 > 0 and

φ1 > 0 such that ∆̄i S2

ST2 W

 < 0 (5.6.11)

Ῡi S2

ST2 W

 < 0 (5.6.12)

 Ψ̄ S2

ST2 W

 < 0 (5.6.13)

where

∆̄i =


Σ̂i11 −Q+ 1

α1
I 0 0 0

0 Σi22 + 2(ε3ρ+ ε4β)I 0 (ε4γ − ε3)I

0 0 −2ε2I 0

0 ∗ 0 −2ε4I
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Ῡi =


−Σ̂i11 −Q+ 1

α1
I 0 0 0

0 −Σi22 + 2(ε3ρ+ ε4β)I 0 (ε4γ − ε3)I

0 0 −2ε2I 0

0 ∗ 0 −2ε4I



Ψ̄ =


Σ̂011 − 2ε5(ρ+ β)I 0 I 0

0 Σ022 + 2ε6(ρ+ β)I 0 R+ ε6(γ − 1)I

0 0 −2ε5I 0

0 ∗ 0 −2ε6I



S2 =


−BF̂i

T
0 Q 0

0 I 0 0

0 0 0 I

0 0 0 0

 (5.6.14)

W = diag{−Q
φ1
,−φ1Q,−ψ(ε1, ε2)I,−ζ(ε1, ε2)I} (5.6.15)

ψ(ε1, ε2) =
1

[(2ρ− 1)ε1 + (2β + γ)ε2]

ζ(ε1, ε2) =
1

(ε2γ − ε1)

Σ̂011 = (A0 +BF̂0)TP + P (A0 +BF̂0)

Σ̂i11 = QAT +AQ+ F̂iB
T +BF̂i

T

Σ022 = AT0 R+RA0 − CT K̂0 − K̂0
T
C

Σi22 = ATi R+RAi − CT K̂i − K̂i
T
C
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Furthermore, the resulting observer gain matrix K and the output feedback gain

matrix F are, respectively, given by K0 = R−1K̂T
0 and F0 = F̂ T0 Q

−1, Ki = R−1K̂T
i

and Fi = F̂ Ti Q
−1 for i = 1, · · ·m.

Proof. To begin with, let the Lyapunov function candidate V (x, e) be defined in the

form of equation (5.6.9). Notice that f(0) = 0. Then from conditions (2.5.3) and

(2.5.4), for any positive scalars ε1 and ε2, we can obtain

ε1C1 =
m∑
i=1

(a+
i (t)− a−i (t))ε1


x

e

f

f̃



T 
2ρI 0 −I 0

0 0 0 0

−I 0 0 0

0 0 0 0




x

e

f

f̃

 ≥ 0 (5.6.16)

and

ε2C2 =
m∑
i=1

(a+
i (t)− a−i (t))ε2


x

e

f

f̃



T 
2βI 0 γI 0

0 0 0 0

γI 0 −2I 0

0 0 0 0




x

e

f

f̃

 ≥ 0. (5.6.17)

Similarly in Theorem 6.3, we get

ε3C3 =

m∑
i=1

(a+
i (t)− a−i (t))ε3


x

e

f

f̃



T 
0 0 0 0

0 2ρI 0 −I

0 0 0 0

0 −I 0 0




x

e

f

f̃

 ≥ 0 (5.6.18)

and

ε4C4 =

m∑
i=1

(a+
i (t)− a−i (t))ε4


x

e

f

f̃



T 
0 0 0 0

0 2βI 0 γI

0 0 0 0

0 γI 0 −2I




x

e

f

f̃

 ≥ 0 (5.6.19)
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where ε3 and ε4 are the two positive scalars.

ε5C5 = ε5


x

e

f

f̃



T 
(2ρ+ 2β)I 0 (γ − 1)I 0

0 0 0 0

(γ − 1)I 0 −2I 0

0 0 0 0




x

e

f

f̃

 ≥ 0 (5.6.20)

ε6C6 = ε6


x

e

f

f̃



T 
0 0 0 0

0 (2ρ+ 2β)I 0 (γ − 1)I

0 0 0 0

0 (γ − 1)I 0 −2I




x

e

f

f̃

 ≥ 0 (5.6.21)

ε7C7 =

m∑
i=1

(a+
i (t)− a−i (t))ε7


x

e

f

f̃



T 
0 0 0 0

0 0 0 0

0 0 P 0

0 0 0 P




x

e

f

f̃

 ≥ 0. (5.6.22)

Consequently, adding the left sides of equations (5.6.16) (5.6.17) (5.6.18) (5.6.19)

(5.6.20) (5.6.21) (5.6.22) to the right side of equation (5.6.9) gives

Ḣ =


x

e

f

f̃



T 
Σ11 + η1I Σ̄21 P + η2I + ε5(γ − 1)I 0

∗ Σ̄22 + ε6(2ρ+ 2β)I 0 R+ η3I + ε6(γ − 1)I

∗ 0 −2ε2I − 2ε5I 0

0 ∗ 0 −2ε4I − 2ε6I


︸ ︷︷ ︸

Σ̄


x

e

f

f̃


(5.6.23)

where

Σ̄21 = −PBF0 −
m∑
i=1

[a+
i (t) + a−i (t)]PBFi

Σ̄22 =
m∑
i=1

[a+
i (t)+a−i (t)](ATi R+RAi−CT K̂i−K̂i

T
C)+

m∑
i=1

[a+
i (t)−a−i (t)]2(ε3ρ+ε4β)I)

K̂i = KT
i R, η1 =

m∑
i=1

[a+
i (t)− a−i (t)]2(ε1ρ+ ε2β) + ε5(2ρ+ 2β)

76



η2 =

m∑
i=1

[a+
i (t)− a−i (t)](ε2γ − ε1), η3 =

m∑
i=1

[a+
i (t)− a−i (t)](ε4γ − ε3)

Reorganise equation(5.6.23) we get

H =
m∑
i=1

[
a+
i (t)∆i − a−i (t)Υi + Ψ

]
(5.6.24)

∆i =


Σi11 + 2(ε1ρ+ ε2β)I −PBFi (ε2γ − ε1)I 0

∗ Σi22 + 2(ε3ρ+ ε4β)I 0 (ε2γ − ε1)I

∗ 0 −2ε2I 0

0 ∗ 0 −2ε4I


(5.6.25)

Υi =


−Σi11 + 2(ε1ρ+ ε2β)I −PBFi (ε2γ − ε1)I 0

∗ −Σi22 + 2(ε3ρ+ ε4β)I 0 (ε2γ − ε1)I

∗ 0 −2ε2I 0

0 ∗ 0 −2ε4I


(5.6.26)

Ψ =


Σ011 + ε5(2ρ+ 2β)I −PBF0 P + ε5(γ − 1)I 0

∗ Σ022 + ε6(2ρ+ 2β)I 0 R+ ε6(γ − 1)I

∗ 0 −2ε5I 0

0 ∗ 0 −2ε6I


(5.6.27)

where

Σi11 = (Ai +BFi)
TP + P (Ai +BFi)

Σi22 = ATi R+RAi − CT K̂i − K̂i
T
C

and

Σ011 = (A0 +BF0)TP + P (A0 +BF0)

Σ022 = AT0 R+RA0 − CT K̂0 − K̂0
T
C

From equation (5.6.24), we know that V̇ < 0 if the condition ∆i < 0, Υi < 0,

Ψ < 0 hold. Let us define Q : P−1. Pre- and post- multiplying ∆i, Υi, Ψ by matrix

diag(Q, I, I, I) yields
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∆̃i =


Σ̃i11 + 2Q(ε1ρ+ ε2β)Q −BFi (ε2γ − ε1)Q 0

∗ Σi22 + 2(ε3ρ+ ε4β)I 0 (ε2γ − ε1)I

∗ 0 −2ε2I 0

0 ∗ 0 −2ε4I

 < 0

(5.6.28)

where

F̂i = QF Ti , Σ̃i11 = (Ai +BF̂i)
TP + P (Ai +BF̂i).

Consequently, by developing ∆̃i < 0, we get

∆̃i = ∆̂i +
1

2


Q

0

0

0




I

0

0

0



T

+
1

2


I

0

0

0




Q

0

0

0



T

+ 2(ε1ρ+ ε2β)


Q

0

0

0




Q

0

0

0



T

+


−BF̂i

0

0

0

Q
−1


0

I

0

0



T

+


0

I

0

0

Q
−1


−BF̂i

0

0

0



T

+ (ε2γ − ε1)


Q

0

0

0




0

0

I

0



T

+ (ε2γ − ε1)


0

0

I

0




Q

0

0

0



T

< 0

(5.6.29)

where

∆̂i =


Σ̂i11 −Q 0 0 0

0 Σi22 + 2(ε3ρ+ ε4β)I 0 (ε4γ − ε3)I

0 0 −2ε2I 0

0 ∗ 0 −2ε4I


Σ̂i11 = QAT +AQ+ F̂iB

T +BF̂i
T
.
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Using the Young’s relation, we get the following inequality

∆̃i ≤ ∆̂i +


−BF̂Ti

0

0

0

 (φ1Q)


−BF̂Ti

0

0

0



T

+


0

I

0

0


1

φ1
Q−1


0

I

0

0



T

+ [2(ε1ρ+ ε2β) + α1]


Q

0

0

0




Q

0

0

0



T

+
1

α1


I

0

0

0




I

0

0

0



T

+ (ε2γ − ε1)


Q

0

0

0




Q

0

0

0



T

+ (ε2γ − ε1)


0

0

I

0




0

0

I

0



T

< 0

(5.6.30)

where φ1, α1 are positive scalar.

Reorganising from equation (5.6.30) we get the following inequality

∆̃i ≤ ∆̄i −


−BF̂i

T

0

0

0

 (−φ1Q)


−BF̂i

T

0

0

0



T

−


0

I

0

0

 (
1

φ1
)Q−1


0

I

0

0



T

−[−(2ρ− 1)ε1 − (2β + γ)ε2 − α1]


Q

0

0

0




Q

0

0

0



T

− (−ε2γ + ε1)


0

0

I

0




0

0

I

0



T

< 0

(5.6.31)

where

∆̄i =


Σ̂i11 −Q+ 1

α1
I 0 0 0

0 Σi22 + 2(ε3ρ+ ε4β)I 0 (ε4γ − ε3)I

0 0 −2ε2I 0

0 ∗ 0 −2ε4I

 .
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Similarly,

Υ̃i ≤ Ῡi −


−BF̂i

T

0

0

0

 (−φ1Q)


−BF̂i

T

0

0

0



T

−


0

I

0

0

 (
1

φ1
)Q−1


0

I

0

0



T

−[−(2ρ− 1)ε1 − (2β + γ)ε2 − α1]


Q

0

0

0




Q

0

0

0



T

− (−ε2γ + ε1)


0

0

I

0




0

0

I

0



T

< 0

(5.6.32)

Ῡi =


−Σ̂i11 −Q+ 1

α1
I 0 0 0

0 −Σi22 + 2(ε3ρ+ ε4β)I 0 (ε4γ − ε3)I

0 0 −2ε2I 0

0 ∗ 0 −2ε4I


and

Ψ̃ ≤ Ψ̄−


−BF̂0

T

0

0

0

 (−φ1Q)


−BF̂0

T

0

0

0



T

−


0

I

0

0

 (
1

φ1
)Q−1


0

I

0

0



T

−[−(2ρ− 1)ε1 − (2β + γ)ε2]


Q

0

0

0




Q

0

0

0



T

− (−ε2γ + ε1)


0

0

I

0




0

0

I

0



T

< 0

(5.6.33)
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Ψ̄ =


Σ̂011 − 2ε5(ρ+ β)I 0 I 0

0 Σ022 + 2ε6(ρ+ β)I 0 R+ ε6(γ − 1)I

0 0 −2ε5I 0

0 ∗ 0 −2ε6I


F̂0 = QF T0 , Σ̂011 = (A0 +BF̂0)TP + P (A0 +BF̂0).

Apply Schur complement to (5.6.31), (5.6.32) and (5.6.34), we obtain the conditions

(5.6.11), (5.6.12) and (5.6.13) in Theorem 5.4.

Remark 5.2. It should be mentioned that equation (5.6.15) is not a strict LMI form

because in its blocks there exist some terms like Q
φ1

and φ1Q. We will employ additional

constrains of φ and Q in order to transform to LMIs, which is Q > cI and I
φ1
≤

−(2 − φ1)I. Therefore, equation (5.6.11 –5.6.13) can be formulated into an LMI with

respect to c and d := cφ1, where c is a positive scalar. In fact, we have

− Q

φ1
≤ −(2− φ1)Q ≤ −(2− φ1)cI = −(2c− d)I (5.6.34)

and

− φ1Q ≤ −φ1cI = −dI. (5.6.35)

Hence, by equations (5.6.34) and (5.6.35), (2c− d)I, dI can replace the blocks Q
φ1

, φ1Q

in (5.6.15), and 2c− d > 0, d > 0

5.7 Summary

In this chapter. the system under consideration is an extension of the general family

of nonlinear functions, known as one-side Lipschitz functions. For such system, suffi-

cient conditions for the existence of observers are discussed and we also construct the

full-order and reduced order Luenberger-type observer through the standard LMI ap-

proach and Riccati equation based approach respectively. Further, the observer-based

output feedback stabilization problem is investigated. Consequently, one solution to

the controller problem is established in the numerically efficient form of linear matrix

inequalities.
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Chapter 6

Robust H∞ control of class of

time-varying nonlinear discrete

time stochastic systems

6.1 Introduction

The stability analysis of both continuous and discrete-time stochastic systems has at-

tracted many researchers in system science area for decades. Stochastic systems arise

in a wide area of applications in control engineering such as filtering, adaptive systems

and identification, and learning etc. Meanwhile, control theory for stochastic system

is very significant and could be widely applied to the economic and financial problems

such as development and planning of production and inventory, growth models and

portfolio selections [4, 40]. Most of these application is in short run stabilisation and

uses discrete time models [40].

The problem of robust quadratic stabilization of systems under nonlinear pertur-

bation was studied for continuous time systems in [82] and for discrete time systems

in [83]. The solutions provided in [82, 83] are for quadratically bounded nonlinear per-

turbations but only available for deterministic systems. Attempts have been made in

Yaz et al. [95], Sathananthan et al. [79] and Zhang et al. [99] for nonlinear stochastic

discrete-time systems. Although a larger foundation has been laid out for stability and

stabilization of discrete time stochastic systems, the problem of robust stabilization of

discrete time stochastic systems under nonlinear perturbation should be given more
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attention.

The research of Chapter 3, 4, 5 in the thesis focus on continuous time deterministic

system. So in Chapter 6, we intend to do some investigation on the system control

problem of discrete time stochastic system with bounded time-varying nonlinear per-

turbation origin from one-sided Lipschitz property. Our results are different from the

results in the literature (Sathananthan et al. [79] and Zhang et al. [99]), because of the

fact that a more general nonlinear uncertainties structure is proposed in this chapter.

The objective of this chapter is to show how a control law that stabilizes such complex

stochastic system can be solved. Unlike the results in (Sathananthan et al. [79] and

Zhang et al. [99]), problem is solved by solving the nonconvex feasibility problem.

6.2 System Descriptions and Definitions

Consider the time-varying nonlinear discrete stochastic system described by the follow-

ing equation:
xt+1 = Axt + h1(t, xt) +But + (Cxt + h2(t, xt) +Dut) vt,

x(0) = x0 ∈ Rn, t ∈ N,
(6.2.1)

where xt ∈ Rn is the n-dimensional state vector and ut ∈ Rm is the control input.

Now, we assume that vt is a sequence of one-dimensional independent white noise

processes defined on the complete filtered probability space (Ω,F , {Ft}t≥0,P), where

Ft = σ{v0, v1, v2, . . . , vt}. We assume that

E{vt} = 0, E{vtvj} = δtj . (6.2.2)

where δtj is a Kronecker function defined by δtj = 0 for t 6= j and δtj = 1 for t = j.

Assumption 6.1. The time-varying nonlinear functions h1(t, xt), h2(t, xt) describe

uncertainties of the system and satisfy the following quadratic inequalities:

hT1 (t, xt)xt ≤ ρ1x
T
t xt, (6.2.3)

hT1 (t, xt)h1(t, xt) ≤ β1x
T
t xt + γ1x

T (t)h1(t, xt), (6.2.4)

hT2 (t, xt)xt ≤ ρ2x
T
t xt, (6.2.5)
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hT2 (t, xt)h2(t, xt) ≤ β2x
T
t xt + γ2x

T (t)h2(t, xt). (6.2.6)

for all t ∈ N , where βi, γi, ρi are constants related to the function hi for i = 1, 2.

βi, γi, ρi are constant defining structure of hi. Assumption 6.1 can be regarded as a type

of one-sided Lipschitz condition (2.5.3) and quadratic boundedness condition (2.5.4).

As the generalized version of the system in (Sathananthan [79], Zhang [99]), the

system state, control input, and uncertain terms in the system (6.2.1) depend on noise

simultaneously, which makes this typy of nonlinear system more useful in describing

many practical phenomena.

In the following sections, we give our main results on stochastic stability, stochastic

stabilization, and robust control via LMI based approach. Firstly, we introduce the

following lemma which will be used in the proof of our main results.

Lemma 6.1. [99] For any real matrices U , N = NT > 0 and W with appropriate

dimensions, we have

UTNW +W TNU ≤ UTNU +W TNW. (6.2.7)

6.3 Robust Stability Criteria

Consider the following stochastic discrete time system:
xt+1 = Axt + h1(t, xt) + (Cxt + h2(t, xt)) vt,

x0 = x0 ∈ Rn, t ∈ N,
(6.3.1)

where h1(t, xt) and h2(t, xt) are satisfied (6.2.6) and (6.2.5). We have the defintion of

robust stochastic stability as below:

Definition 6.1. The unforced system (6.3.1) is said to be robustly stochastically stable

with margins ρ1, ρ2, β1, β2, γ1, γ2 if there exists a constant δ(x0, ρ1, ρ2, β1, β2) such

that

E

[ ∞∑
t=0

xT (t)xt

]
≤ δ(x0, ρ1, ρ2, β1, β2). (6.3.2)

The following theorem gives a sufficient condition of robust stochastic stability for

system (6.3.1)
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Theorem 6.1. System (6.3.1) with margins ρ1, ρ2, β1, β2 is said to be robustly stochas-

tically stable, if there exists a symmetric positive definite matrix Q > 0 and real scalar

ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0 such that the following conditions (6.3.3) are satisfied.


−Q+ 2I + 2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I ATQ CTQ

∗ −1
2Q 0

∗ ∗ −1
2Q

 < 0. (6.3.3)

 2Q− 2ε2I ε2γ1I − ε1I

ε2γ1I − ε1I −I.

 < 0, (6.3.4)

 2Q− 2ε4I ε4γ2I − ε3I

ε4γ2I − ε3I −I

 < 0. (6.3.5)

Proof. If (6.3.3), (6.3.4), (6.3.5) hold, we set V (xt) = xTt Qxt as a Lyapunov function

candidate of system (6.3.1). Note that xt and vt are independent, so the difference

generator is

E∆V (xt) = E
[
V (xt+1)− V (xt)

]
≤ E[V (xt+1)− V (xt) + xTt (2ε1ρ1I + 2ε2β1I + 2ε3ρ2I + 2ε4β2I)xt

+xT (t)2(ε2γ1 − ε1)Ih1(t, xt) + xT (t)2(ε4γ2 − ε3)Ih2(t, xt)

−2ε2h1(t, xt)
Th1(t, xt)− 2ε4h2(t, xt)

Th2(t, xt)]

= E{xTt [ATQA+ CTQC −Q+ 2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I]xt

+xTt [ATQ+ (ε2γ1 − ε1)I]h1(t, xt) + hT1 (t, xt)[QA+ (ε2γ1 − ε1)I]]xt

+hT2 (t, xt)[QC + (ε4γ2 − ε3)I]xt + xTt [CTQ+ (ε4γ2 − ε3)I]h2(t, xt)

+hT1 (t, xt)(Q− 2ε2I)h1(t, xt) + hT2 (t, xt)(Q− 2ε4I)h2(t, xt)}.

(6.3.6)
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Applying Young’s inequality, Using lemma 6.1, we have

xTt A
TQh1(t, xt) + hT1 (t, xt)QAxt

≤ xTt A
TQAxt + hT1 (t, xt)Qh1(t, xt).

xTt (ε2γ1 − ε1)Ih1(t, xt) + hT1 (t, xt)(ε2γ1 − ε1)Ixt

≤ xTt xt + hT1 (t, xt)(ε2γ1 − ε1)2Ih1(t, xt).

xTt C
TQh2(t, xt) + hT2 (t, xt)QCxt

≤ xTt C
TQCxt + hT2 (t, xt)Qh2(t, xt). (6.3.7)

xTt (ε4γ2 − ε3)Ih2(t, xt) + hT2 (t, xt)(ε4γ2 − ε3)Ixt

≤ xTt xt + hT2 (t, xt)(ε4γ2 − ε3)2Ih2(t, xt).

We achieve that, by substituting above inequalities in (6.3.7) into (6.3.6)

E∆V (xt)

≤ E{xTt
(
2ATQA+ 2CTQC −Q+ 2I + 2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I

)
xt

+hT1 (t, xt)[2Q+ (ε2γ1 − ε1)2I − 2ε2I]h1(t, xt)

+hT2 (t, xt)[2Q+ (ε4γ2 − ε3)2I − 2ε4I]h2(t, xt)}. (6.3.8)

By Schur’s complement, if we let

Ω1 = 2ATQA+ 2CTQC −Q+ 2I + 2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I, (6.3.9)

and

Ω2 = 2Q+ (ε2γ1 − ε1)2I − 2ε2I < 0

Ω3 = 2Q+ (ε4γ2 − ε3)2I − 2ε4I < 0,

then, Ω1 < 0 is equivalent to


−Q+ 2I + 2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I ATQ CTQ

∗ −1
2Q 0

∗ ∗ −1
2Q

 < 0.

86



Ω2 < 0 is equivalent to

 2Q− 2ε2I ε2γ1I − ε1I

ε2γ1I − ε1I −I.

 < 0,

Ω3 < 0 is equivalent to

 2Q− 2ε4I ε4γ2I − ε3I

ε4γ2I − ε3I −I

 < 0

which are hold by LMI (6.3.3), (6.3.4), (6.3.5). We denote λmax(Ω) and λmin(Ω) to be

the largest and the minimum eigenvalues of the matrix Ω, respectively; then inequality

(6.3.8) yields

E∆V (xt) ≤ λmax(Ω1)E‖xt‖2+λmax(Ω2)E‖h1(t, xt)‖2+λmax(Ω3)E‖h2(t, xt)‖2 (6.3.10)

We sum up both side of (6.3.10) from t = 0 to t = T0 > 0, we get

E[V (xT0
)]− V (x0) = E

[
T0∑
t=0

∆V (xt)

]
.

≤ λmax(Ω1)E

[
T0∑
t=0

xTt xt

]
+ λmax(Ω2)E

[
T0∑
t=0

h1(t, xt)
Th1(t, xt)

]

+λmax(Ω3)E

[
T0∑
t=0

h2(t, xt)
Th2(t, xt)

]
. (6.3.11)

Therefore,

λmin(−Ω1)E

[
T0∑
t=0

xTt xt

]
+ λmin(−Ω2)E

[
T0∑
t=0

h1(t, xt)
Th1(t, xt)

]

+λmin(−Ω3)E

[
T0∑
t=0

h2(t, xt)
Th2(t, xt)

]
≤ V (x0), (6.3.12)

which leads to

E

[
T0∑
t=0

xTt xt

]
≤ δ(x0, ρ1, ρ2, β1, β2) =

V (x0)

λmin(−Ω1)
. (6.3.13)

Hence, letting T →∞, we have
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E

[ ∞∑
t=0

xTt xt

]
≤ δ(x0, ρ1, ρ2, β1, β2). (6.3.14)

Then, system (6.3.1) is robust stochastic stable.

6.4 Robust Stabilization of system
xt+1 = Axt + h1(t, xt) +But + (Cxt + h2(t, xt) +Dut) vt,

x0 = x0 ∈ Rn, t ∈ N
(6.4.1)

Theorem 6.2. System (6.4.1) with given constant ρ1, ρ2, β1, β2, γ1, γ2 is robustly

stochastically stabilizable if there exist real matrices Y , X > 0, Q > 0 and real scalars

ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0, κ1 > 0, κ2 > 0, κ3 > 0, κ4 > 0 such that the following

conditions hold:



−X X X X X X (AX +BY )T (CX +DY )T

∗ −1
2I 0 0 0 0 0 0

∗ ∗ − κ1
2ρ1
I 0 0 0 0 0

∗ ∗ ∗ − κ2
2β1

I 0 0 0 0

∗ ∗ ∗ ∗ − κ3
2ρ2
I 0 0 0

∗ ∗ ∗ ∗ ∗ − κ4
2β2

I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −1
2X 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −1
2X



< 0.

(6.4.2)

Ω2 =

 2Q− 2ε2I ε2γ1I − ε1I

ε2γ1I − ε1I −I.

 < 0, (6.4.3)

Ω3 =

 2Q− 2ε4I ε4γ2I − ε3I

ε4γ2I − ε3I −I

 < 0, (6.4.4)

and

QX = I, κ1I × ε1I = I, κ2I × ε2I = I, κ3I × ε3I = I, κ4I × ε4I = I. (6.4.5)
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In this case, ut = Kxt = Y X−1(t) is a robustly stochastically stabilizing control

law.

Proof. We consider synthesizing a state feedback controller ut = Kxt to stabilize sys-

tem (6.4.1). Substituting ut = Kxt into system (6.4.1) yields the closed loop system

described by 
xt+1 = Āxt + h1(t, xt) +

(
C̄xt + h2(t, xt)

)
vt,

x0 = x0 ∈ Rn, t ∈ N,
(6.4.6)

with Ā = A + BK and C̄ = C + DK. By theorem 6.1, system (6.4.6) is robustly

stochastically stable if there exists a matrix Q such that the following LMIs

Ω̄1 =


−Q+ 2I + 2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I ĀTQ C̄TQ

∗ −1
2Q 0

∗ ∗ −1
2Q

 < 0, (6.4.7)

and

Ω2 = 2Q+ (ε2γ1 − ε1)2I − 2ε2I < 0

Ω3 = 2Q+ (ε4γ2 − ε3)2I − 2ε4I < 0

holds.

Ω2 < 0 is equivalent to

2Q− 2ε2I ε2γ1 − ε1

ε2γ1 − ε1 −I.

 < 0, (6.4.8)

Ω3 < 0 is equivalent to

2Q− 2ε4I ε4γ2 − ε3

ε4γ2 − ε3 −I

 < 0. (6.4.9)

Let Q−1 = X and set K = Y X−1, then pre and post multiply

diag[X,X,X]
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on both sides of inequality (6.4.7), and apply schur complement. It yields



−X X X X X X (AX +BY )T (CX +DY )T

∗ −1
2I 0 0 0 0 0 0

∗ ∗ − 1
2ε1ρ1

I 0 0 0 0 0

∗ ∗ ∗ − 1
2ε2β1

I 0 0 0 0

∗ ∗ ∗ ∗ − 1
2ε3ρ2

I 0 0 0

∗ ∗ ∗ ∗ ∗ − 1
2ε4β2

I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −1
2X 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −1
2X



< 0.

(6.4.10)

We combine (6.4.10) and κ1I = 1
ε1
I, κ2I = 1

ε2
I, κ3I = 1

ε3
I, κ4I = 1

ε4
I, then

conditions (6.4.2) are obtained. The proof is completed.

Remark 6.1. It should be noted that although the resulting conditions (6.4.2),(6.4.3),(6.4.4)

and (6.4.5) in Theorem 6.2 are not strict LMI conditions due to (6.4.5). We can cope

with this nonconvex feasibility problem using the cone complementary linearization

algorithm developed in El Ghaoui et al. (1997) [23] and Zhang et al. (2008) [98].

First, we transform the nonconvex feasibility problem in Theorem 6.2 into the fol-

lowing nonlinear minimisation problem subject to LMI constraints.


Minimise

Trace (QX + κ1Iε1I + κ2Iε2I + κ3Iε3I + κ4Iε4I) ,

subject to conditions(6.4.2), (6.4.3), (6.4.4)and(6.4.12).

(6.4.11)

Q I

I X

 ≥ 0,

κ1I I

I ε1

 ≥ 0,

κ2I I

I ε2

 ≥ 0,

κ3I I

I ε3

 ≥ 0,

κ4I I

I ε4

 ≥ 0.

(6.4.12)

Then as illustrated in Zhang et al. (2008) [98], if the solution of the above minimisation

problem is 5n, that is

Tr (QX + κ1Iε1I + κ2Iε2I + κ3Iε3I + κ4Iε4I) = 5n,

then the conditions of Theorem 6.2 are solvable. Although it is yet not always possible
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to find the global optimal solution, the proposed nonlinear minimisation problem is

easier than the original nonconvex feasibility problem. In fact, we can modify algorithm

in Zhang et al. (2008) [98] to solve the above nonlinear problem as follows:

Step 1: Find a feasible set (Q,X, Y, ε1, ε2, ε3, ε4, κ1, κ2, κ3, κ4)0 satisfying (6.4.2),(6.4.3),(6.4.4)

and (6.4.12). Set k = 0.

Step 2: Solve the following LMI problem

Minimise Tr[QkX +QXk + κ1kI ∗ ε1I + κ1I ∗ ε1kI + κ2kI ∗ ε2I + κ2I ∗ ε2kI

+κ3kI ∗ ε3I + κ3I ∗ ε3kI + κ4kI ∗ ε4I + κ4I ∗ ε4kI] (6.4.13)

subject to conditions(6.4.2), (6.4.3), (6.4.4)and(6.4.12)

Step 3: Substitute the obtained variables (Q,X, Y, ε1, ε2, ε3, ε4, κ1, κ2, κ3, κ4) into (6.4.8)(6.4.9)(6.4.10).

If conditions (6.4.8)(6.4.9)(6.4.10) are satisfied with

|Tr[QX + κ1Iε1I + κ2Iε2I + κ3Iε3I + κ4Iε4I]− 5n| ≤ δ

for some sufficiently small scalar δ > 0, then output the feasible

solutions (Q,X, Y, ε1, ε2, ε3, ε4, κ1, κ2, κ3, κ4), exit, else Step 4.

Step 4: If k > N , where N is the maximum number of iterations allowed, exit, else Step

5.

Step 5: Set k = k+1, (Q,X, Y, ε1, ε2, ε3, ε4, κ1, κ2, κ3, κ4)k = (Q,X, Y, ε1, ε2, ε3, ε4, κ1, κ2, κ3, κ4),

and go to Step 2.

The algorithm above aims to find a feasible solution of desired controller for

system (6.4.1) with given constant.

6.5 H∞ control

In this section, we will describe the result about robust H∞ control.

For system (6.2.1), if there exists the external disturbance wt in it. Then it will
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becomes 

xt+1 =Axt +A0wt + h1(t, xt) +But

+ (Cxt + C0wt + h2(t, xt) +Dut) vt,

zt =

 Lxt
Mwt


x0 =x0 ∈ Rn, t ∈ N,

(6.5.1)

where wt ∈ Rq is the outside disturbance and is independent of vt. zt ∈ Rp is the

controlled output.

Definition 6.2. For a given disturbance attenuation level γ > 0, ut = Kxt is an H∞

controller of system (6.5.1), if (i). system (6.5.1) is internally stochastically stabilizable

for ut = Kxt in the absence of external disturbance wt;

(ii). The H∞ norm of system (6.5.1) is less than γ > 0 with zero initial condition

x0 = 0, which is

‖H‖ = sup
w∈l2w(N,Rq),wt 6=0

‖zt‖l2w(N,Rq)

‖wt‖l2w(N,Rq)

= sup
w∈l2w(N,Rq),wt 6=0

(∑∞
t=0 E‖zt‖2

) 1
2

(
∑∞

t=0 E‖wt‖2)
1
2

< γ

Theorem 6.3. For system (6.5.1) with given constant ρ1, ρ2, β1, β2, γ1, γ2, if there

exist real matrices Y , X > 0, Q > 0 and real scalars ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0,

κ1 > 0, κ2 > 0, κ3 > 0, κ4 > 0 such that the following conditions hold:
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−X 0 LT 0 (AX +BY )T (CX +DY )T

∗ −γ2I 0 MT A0 C0

∗ ∗ −I 0 0 0

∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ −X 0

∗ ∗ ∗ ∗ ∗ −X

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

(AX +BY )T (CX +DY )T 0 0 X X X X

0 0 AT0 CT0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−X 0 0 0 0 0 0 0

∗ −X 0 0 0 0 0 0

∗ ∗ −X 0 0 0 0 0

∗ ∗ ∗ −X 0 0 0 0

∗ ∗ ∗ ∗ − κ1
2ρ1
I 0 0 0

∗ ∗ ∗ ∗ ∗ − κ2
2β1

I 0 0

∗ ∗ ∗ ∗ ∗ ∗ − κ3
2ρ2
I 0

∗ ∗ ∗ ∗ ∗ ∗ 0 − κ4
2β2

I



< 0,

(6.5.2)

 3Q− 2ε2I ε2γ2I − ε1I

ε2γ2I − ε1I −I.

 < 0, (6.5.3)
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 3Q− 2ε4I ε4γ2I − ε3I

ε4γ2I − ε3I −I

 < 0, (6.5.4)

QX = I, κ1I ∗ ε1I = I, κ2I ∗ ε2I = I, κ3I ∗ ε3I = I, κ4I ∗ ε4I = I. (6.5.5)

Then system(6.5.1) is H∞ controllable for the given γ > 0, and the robust H∞

controller U t = Kxt = Y X−1xt for t ∈ N .

Remark 6.2. K is parametrised by Y X−1 so that we can implement Schur complement

to generate LMI (6.5.2). Matrix X and Y are the feasible solution of LMI (6.5.2).

Proof. Since LMI (6.5.2) implies LMI (6.4.2), system (6.5.1) is stablizable through

controller ut = Kxt by theorem 6.2 when wt = 0 . Then, we only need to show

‖H‖ < γ. Take ut = Kxt and choose the Lyapunov function V (xt) = xTt Qxt.


xt+1 = Āxt +A0(t)wt + h1(t, xt) +

(
C̄xt + C0(t)wt + h2(t, xt)

)
vt,

x0 = x0 ∈ Rn, t ∈ N,
(6.5.6)

with Ā = A+BK and C̄ = C +DK. Since we have xt and wt independent of vt, then

we can derive

E∆V (xt)

= E
[
V (xt+1)− V (xt)

]
≤ E

[
xTt+1Qxt+1 − xTt Qxt

]
+ xTt [2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I]xt

+xT (t)2(ε2γ1 − ε1)Ih1(t, xt) + xT (t)2(ε4γ2 − ε3)Ih2(t, xt)

−2ε2h1(t, xt)
Th1(t, xt)− 2ε4h2(t, xt)

Th2(t, xt)

= E{xTt [ĀTQĀ+ C̄TQC̄ −Q+ 2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I]xt

+xTt [ĀTQ+ (ε2γ1 − ε1)I]h1(t, xt) + xTt [C̄TQ+ (ε4γ2 − ε3)I]h2(t, xt)

+xTt
[
ĀTQA0 + C̄TQC0

]
wt + hT1 (t, xt)[QĀ+ (ε2γ1 − ε1)I]xt

+hT1 (t, xt)[Q− 2ε2I]h1(t, xt) + hT1 (t, xt)QA0wt + hT2 (t, xt)[QC̄ + (ε4γ2 − ε3)I]xt

+hT2 (t, xt)[Q− 2ε4I]h2(t, xt) + hT2 (t, xt)QC0wt + wT (t)(AT0 QA0 + CT0 QC0)wt

+wTt (AT0 QĀ+ CT0 QC̄)xt + wTt A
T
0 Qh1(t, xt) + wTt C

T
0 Qh2(t, xt)}. (6.5.7)
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With the zero initial condition, for any wt ∈ l2w(N,Rq),

‖zt‖2 − γ2‖wt‖2

= E
T0∑
t=0

[
xTt L

TLxt + wTt M
TMwt − γ2wTt wt + ∆V (xt)

]
− xTT0

QxT0

≤ E
T0∑
t=0

{xTt LTLxt + wTt M
TMwt − γ2wTt wt + wTt (AT0 QA0 + CT0 QC0)wt

+xTt [ĀTQĀ+ C̄TQC̄ −Q+ 2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I]xt

+xTt [ĀTQ+ (ε2γ1 − ε1)I]h1(t, xt) + xTt [C̄TQ+ (ε4γ2 − ε3)I]h2(t, xt)

+xTt
[
ĀTQA0 + C̄TQC0

]
wt + hT1 (t, xt)[QĀ+ (ε2γ1 − ε1)I]xt

+hT1 (t, xt)[Q− 2ε2I]h1(t, xt) + hT1 (t, xt)QA0wt + hT2 (t, xt)[QC̄ + (ε4γ2 − ε3)I]xt

+hT2 (t, xt)[Q− 2ε4I]h2(t, xt) + hT2 (t, xt)QC0wt + wTt (AT0 QA0 + CT0 QC0)wt

+wTt (AT0 QĀ+ CT0 QC̄)xt + wTt A
T
0 Qh1(t, xt) + wTt C

T
0 Qh2(t, xt)}. (6.5.8)

Applying Young’s inequality, Using lemma 6.1, we have

xTt Ā
TQh1(t, xt) + hT1 (t, xt)QĀxt

≤ xTt Ā
TQĀxt + hT1 (t, xt)Qh1(t, xt). (6.5.9)

xTt (ε2γ1 − ε1)Ih1(t, xt) + hT1 (t, xt)(ε2γ1 − ε1)Ixt

≤ xTt xt + hT1 (t, xt)(ε2γ1 − ε1)2Ih1(t, xt). (6.5.10)

xTt C̄
TQh2(t, xt) + hT2 (t, xt)QC̄xt

≤ xTt C̄
TQC̄xt + hT2 (t, xt)Qh2(t, xt). (6.5.11)

xTt (ε4γ2 − ε3)Ih2(t, xt) + hT2 (t, xt)(ε4γ2 − ε3)Ixt

≤ xTt xt + hT2 (t, xt)(ε4γ2 − ε3)2Ih2(t, xt). (6.5.12)

hT1 (t, xt)QA0wt + wT (t)AT0 Qh1(t, xt)

≤ hT1 (t, xt)Qh1(t, xt) + wT (t)AT0 QA0wt, (6.5.13)
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hT2 (t, xt)QC0wt + wT (t)CT0 Qh2(t, xt)

≤ hT2 (t, xt)Qh2(t, xt) + wT (t)CT0 QC0wt. (6.5.14)

Substituting inequalities in (6.5.9)-(6.5.14) into inequality (6.5.8) , it yields

‖zt‖2 − γ2‖wt‖2

≤ E
T0∑
t=0

{xTt [−Q+ 2ĀTQĀ+ 2C̄TQC̄ + LTL+ 2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I]xt

+xTt [ĀTQA0 + C̄TQC0]wt + wT (t)[AT0 QĀ+ CT0 QC̄]xt

+wTt (2AT0 QA0 + 2CT0 QC0 − γ2I +MTM)wt

+hT1 (t, xt)[3Q+ (ε2γ1 − ε1)2I − 2ε2I]h1(t, xt)

+hT2 (t, xt)[3Q+ (ε4γ2 − ε3)2I − 2ε4I]h2(t, xt)}

= E
T0∑
t=0

xt
wt

T Ξ1

xt
wt

+ E
T0∑
t=0

[
hT1 (t, xt)Ξ2h1(t, xt)

]
+ E

T0∑
t=0

[
hT2 (t, xt)Ξ3h2(t, xt)

]
(6.5.15)

where

Ξ1 =

Ξ11 Ξ12

∗ Ξ22

 , (6.5.16)

Ξ2 = 3Q+ (ε2γ2 − ε1)2I − 2ε2I, (6.5.17)

Ξ3 = 3Q+ (ε4γ2 − ε3)2I − 2ε4I. (6.5.18)

with

Ξ11 = −Q+ 2ĀTQĀ+ 2C̄TQC̄ + LTL+ 2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I,

Ξ12 = ĀTQA0 + C̄TQC0, (6.5.19)

Ξ22 = 2AT0 QA0 + 2CT0 QC0 − γ2I +MTM.

Let T →∞ in (6.5.15); then we have

‖zt‖2 − γ2‖wt‖2 ≤ E
∞∑
t=0

xt
wt

T Ξ

xt
wt

 . (6.5.20)
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Ξ < 0 is satisfied when Ξ1 < 0,Ξ2 < 0 and Ξ3 < 0. By Schur complement, Ξ1 < 0

is equivalent to



−Q+ 2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I 0 LT 0 ĀT C̄T

∗ −γ2I 0 MT A0 C0

∗ ∗ −I 0 0 0

∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ −Q−1 0

∗ ∗ ∗ ∗ ∗ −Q−1

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

ĀTQ C̄TQ 0 0

0 0 AT0 Q CT0 Q

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−Q 0 0 0

∗ −Q 0 0

∗ ∗ −Q 0

∗ ∗ ∗ −Q



< 0. (6.5.21)

Ξ2 < 0 is equivalent to

 3Q− 2ε2I ε2γ2I − ε1I

ε2γ2I − ε1I −I.

 < 0. (6.5.22)
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and Ξ3 < 0 is equivalent to

 3Q− 2ε4I ε4γ2I − ε3I

ε4γ2I − ε3I −I

 < 0. (6.5.23)

In order to derive the matrix K, we set Q−1 = X and pre- and post multiply

diag[X I I I I I X X X X] on both side of (6.5.21). Then we have



−X + 2X(ε1ρ1 + ε2β1)IX + 2X(ε3ρ2 + ε4β2)IX 0 LT 0 XĀT XC̄T

∗ −γ2I 0 MT A0 C0

∗ ∗ −I 0 0 0

∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ −X 0

∗ ∗ ∗ ∗ ∗ −X

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

XĀT XC̄T 0 0

0 0 AT0 CT0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−X 0 0 0

∗ −X 0 0

∗ ∗ −X 0

∗ ∗ ∗ −X



< 0, (6.5.24)

Then, using Schur complement we can derive LMI
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−X 0 LT 0 XĀT XC̄T

∗ −γ2I 0 MT A0 C0

∗ ∗ −I 0 0 0

∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ −X 0

∗ ∗ ∗ ∗ ∗ −X

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

XĀT XC̄T 0 0 X X X X

0 0 AT0 CT0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−X 0 0 0 0 0 0 0

∗ −X 0 0 0 0 0 0

∗ ∗ −X 0 0 0 0 0

∗ ∗ ∗ −X 0 0 0 0

∗ ∗ ∗ ∗ − 1
2ε1ρ1

I 0 0 0

∗ ∗ ∗ ∗ ∗ − 1
2ε2β1

I 0 0

∗ ∗ ∗ ∗ ∗ ∗ − 1
2ε3ρ2

I 0

∗ ∗ ∗ ∗ ∗ ∗ 0 − 1
2ε4β2

I



< 0. (6.5.25)

We combine (6.5.25) and κ1I = 1
ε1
I, κ2I = 1

ε2
I, κ3I = 1

ε3
I, κ4I = 1

ε4
I, then

conditions (6.5.2) are obtained. The proof is completed.

Remark 6.3. It should be noted that although the resulting conditions (6.5.2),(6.5.3)

and (6.5.4) in Theorem 6.3 are not strict LMI conditions due to (6.5.5), we can cope with
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this nonconvex feasibility problem using similar algorithm introduced in the previous

section.

First, we transform the nonconvex feasibility problem in Theorem 6.2 into the fol-

lowing nonlinear minimisation problem subject to LMI constraints.


Minimise

Trace (QX + κ1Iε1I + κ2Iε2I + κ3Iε3I + κ4Iε4I) ,

subject to conditions(6.5.2), (6.5.3)(6.5.4)and(6.5.27).

(6.5.26)

Q I

I X

 ≥ 0,

κ1I I

I ε1

 ≥ 0,

κ2I I

I ε2

 ≥ 0,

κ3I I

I ε3

 ≥ 0,

κ4I I

I ε4

 ≥ 0.

(6.5.27)

If the solution of the above minimisation problem is 5n, that is

Tr (QX + κ1Iε1I + κ2Iε2I + κ3Iε3I + κ4Iε4I) = 5n

then the conditions of Theorem 6.2 are solvable. As discussed in Remark 6.1, although

it is yet not always possible to find the global optimal solution, the proposed nonlinear

minimisation problem is easier than the original nonconvex feasibility problem. Then,

we follow similar method in Remark 6.1 to solve the above nonlinear problem as follows:

Step 1: Find a feasible set (Q,X, Y, ε1, ε2, ε3, ε4, κ1, κ2, κ3, κ4)0 satisfying (6.5.22),(6.5.23),(6.5.25)

and (6.5.27). Set k = 0.

Step 2: Solve the following LMI problem

Minimise Tr[QkX +QXk + κ1kI ∗ ε1I + κ1I ∗ ε1kI + κ2kI ∗ ε2I + κ2I ∗ ε2kI

+κ3kI ∗ ε3I + κ3I ∗ ε3kI + κ4kI ∗ ε4I + κ4I ∗ ε4kI] (6.5.28)

subject to conditions(6.5.2), (6.5.3)(6.5.4)and(6.5.27)

Step 3: Substitute the obtained variables (Q,X, Y, ε1, ε2, ε3, ε4, κ1, κ2, κ3, κ4) into (6.5.22),(6.5.23),(6.5.25).

If conditions (6.5.22),(6.5.23) and (6.5.25) are satisfied with

|Tr[QX + κ1Iε1I + κ2Iε2I + κ3Iε3I + κ4Iε4I]− 5n| ≤ δ

100



for some sufficiently small scalar δ > 0, then output the feasible

solutions (Q,X, Y, ε1, ε2, ε3, ε4, κ1, κ2, κ3, κ4), exit, else Step 4.

Step 4: If k > N , where N is the maximum number of iterations allowed, exit, else Step

5.

Step 5: Set k = k+1, (Q,X, Y, ε1, ε2, ε3, ε4, κ1, κ2, κ3, κ4)k = (Q,X, Y, ε1, ε2, ε3, ε4, κ1, κ2, κ3, κ4),

and go to Step 2.

The algorithm above aims to find a feasible solution of desired robust H∞ con-

troller for system (6.5.1) with given constant.

6.6 Summary

In this chapter, we have investigated the stabilisation problem of stochastic discrete-

time quadratic bounded time-varying nonlinear system. The algorithm in Remark 6.3

could provide a feasible robust H∞ controller. In the next chapter, we will apply results

in this chapter in a non-life insurance problem.
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Chapter 7

Robust H∞ control for classes of

time-varying nonlinear discrete

time stochastic P-R systems

7.1 Introduction

In this chapter, we intend to further investigate the problem of P-R system which has

been discussed in paper Pantelous and Yang (2014) [66] and Yang et al. (2016) [94].

Previous developments of control theory in P-R system are largely focused in the linear

discrete time framework. All linear control methods are based on the assumption that

the system to be controlled can be accurately described or approximated by linear

discrete time system with or without uncertainties. In Pantelous and Yang (2014)

[66] and Yang et al. (2016) [94], the P-R systems are modelled by a linear discrete

time system. The P-R system in Pantelous and Yang (2014) [66] considers a linear

stochastic P-R system with admissible parameter uncertainties. In practice, serveral

factors may make nonlinear effect on the process of accumulated reserve. For example,

the investment return generated by accumulated reserve could obey some nonlinearity

due to taxation and decreasing marginal investment rate, if accumulated reserve exceed

a limit. Therefore, the linear model for P-R system could not be an accurate description

of the real system. And under nonlinear modelling framework, the properties of P-R

systems will be better described.

In this chapter, the P-R system will be modelled by a nonlinear uncertain system
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with Lipschitz-type and quadratic bounded conditions respectively. The parameter

uncertainties and model uncertainties can follow specified nonlinear conditions. Then,

we have to consider the consequential impact of these nonlinear uncertainties on the

stability of P-R system.

In other words, in this chapter, we will present first a time-varying nonlinear dis-

crete stochastic P-R systems subject to Lipschitz-type condition. Then the problem of

stabilization and controlability is investigated for a general class of discrete time non-

linear stochastic P-R systems. A H∞ controller for the P-R system is designed which

guarantees the stability of system, and methodology for the designing of a stabilizing

feedback controller for discrete-time nonlinear stochastic system with structured pa-

rameter uncertainties is proposed. In the second part, we will present a P-R system

subject to Lipschitz-type condition. We will investigate the stablity and H∞ controller

design for one-sided Lipschitz-type nonlinear P-R system based on the theorem we

derived in Chapter 6.

7.2 Model formulation

7.2.1 The Reserve Process

Rt = (R1,tR2,t · · ·Rm,t)T is the vector of the accumulated reserves, where Ri,t is the

accumulated reserve of ith product at time t. The accumulated reserve Rt is defined by

Rt+1 = JRt + h1(t, Rt) + eP t+1 − Ct+1 + [JRt + h1(t, Rt)]vt, (7.2.1)

where J is the base investment return matrix. Now, we assume that vt is a sequence

of one-dimensional independent white noise processes defined on the complete filtered

probability space (Ω,F , {Ft}t≥0,P), where Ft = σ{v0, v1, v2, . . . , vt}. vt is used to

model different types of financial uncertainties such as inflation, taxation policy etc.

We assume that

E{vt} = 0, E{vtvj} = δtj , (7.2.2)

where δtj is a Kronecker function defined by δtj = 0 for t 6= j and δtj = 1 for t = j.

Moreover, we assume that the investment strategy is to invest all of accumulated

reserves to risk-free asset, and J could be a risk-free interest rate. In insurance industry,

it’s a common practice for insurer to invest majorities of accumulated reserves of short
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term insurance product to some short term fixed income investment such as bonds with

duration at most 6 month (Pantelous and Yang (2014) [66])

7.2.2 The Premium Rating Rule

In this chapter, the premium rating rule is designed to be a feedback mechanism. the

premium process is formulated as follows:

P t+1 = Ĉt+1 − ZU t(1 + v(t)). (7.2.3)

U t is the controller element to premium.

where Ĉ is the ’claim estimator’, which is proposed in Zimbidis and Harberman

(2001)[108] and will be explained in more details in the next section 7.2.3. U t ∈ Rm is

the control input that has been added in the original system. However, for simplicity,

without loss of generality, the state feedback controller is considered to be U t = KRt,

where the matrix K should be determined. In practice, we can assume Z is an identity

matrix such that the controller is derived and have impact on the premium directly.

As we can see in equation(7.2.3), the stochastic parameter vt can be implemented

similar with that in Pantelous and Yang (2014)[66]. As it becomes clearer later in

this chapter, the appropriate robust stabilizing controllers U t for the P-R process are

constructed by solving appropriate LMI or non-strict LMI problems.

In this model, the insurer can control its financial position. A suitable control of

premiums can lead to a stable and realistic evolution of the accumulated reserve as well

as solvency margin.

7.2.3 Claim’s Estimator

The claims have been incurred by the end of the accounting year. Since usually a

substantial part of the incurred claims is unknown when the balance sheet is compiled,

their total value has to be estimated. This estimate is for the claims incurred which

is subject to a considerable degree of errors. Meanwhile, the amount of claims in one

year would be cleared not until many years in the future, in some insurance lines or

cases even in one decade.

The premium Pt+1 for the (t + 1) year is calculated by claim estimator Ĉt+1. As

in Zimbidis and Haberman (2001) [108] Ĉt+1 is determined by the inflation-weighted
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average of the most recent available claim experience of the f years [Ct−τt−f ,Ct−τt−f+1,

· · · ,Ct−τt ] and a feedback mechanism using the past reserve value of Rt−τ .

Ĉt+1 =
1

Me
[(1 + j)f+τtCt−τt−f + (1 + j)f+τt−1Ct−τt−f+1 + · · ·+ (1 + j)τtCt−τt ,

M =

f∑
k=0

(1 + j)f+τt−k.

where j is the inflation rate. An inaccurate claims estimation is misleading in many

ways and can have fatal consequences. For instance, an underestimation of the claims

incurred can result in unprofitable premium level. Underestimation of the claims also

lead to a higher probability of insolvency, which can delay corrective action by the

management. In this paper, wt+1 is one of the disturbance to system which is caused

by the error between estimated claim value and actual incurred value.

wt+1 = eĈt+1 − Ct+1 ∈ le2([N;Rm),

Ct = (C1,t, C2,t · · ·Cm,t)T for t ∈ N is the vector of the incurred claims which is assumed

to follow a stochastic process.

As described in Zimbidis and Haberman (2001) [108], Pantelous and Papageorgiou

(2013) [65], Pantelous and Yang (2014) [66] and Yang et al. (2016) [94], the relationship

among the administration expenses, the relative operation costs, the desired profit

margin and corresponding premium can be expressed by the equation:

Operation Costs + Profit Margin = (1− e)Pt

7.2.4 P-R system

In this chapter, the P-R system is developed into a nonlinear stochastic, discrete-time

framework. And the case that the system is affected by external disturbances wt+1 is

also considered as well. In P-R systems, the existence of external disturbance wt+1 6= 0

means actual incurred claims are not exactly the same with the claim estimator. The

P-R systems is described by a class of Lipschitz-type or one-sied Lipschitz-type time-

varying nonlinear system, which makes significant difference from Pantelous and Yang
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(2014)[66] research work. In their paper, the P-R systems are assumed to be a linear

discrete time system with an admissible parameter uncertainties. Therefore, theorems

in Pantelous and Yang (2014) [66] are extended.

In practice, it is often difficult and unnecessary to obtain a precise linear relation-

ships for the dynamics of accumulated reserves in P-R system. And a premium which

is sufficient enough to cover the expected claims and to keep the derived reserves (sur-

plus) stable is always required. Therefore, the nonlinear discrete stochastic accumulated

reserve process described by the following equation:
Rt+1 = JRt + h1(t, Rt) + eP t+1 − Ct+1 + [JRt + h2(t, Rt)]vt,

Rt = ϕ
t

for t ∈ [−τmax, 0].
(7.2.4)

After substituing eq.(7.2.3) into eq.(7.2.4), we derive the time-varying nonlinear

discrete stochastic P-R system which is:

Θ1 :


Rt+1 = JRt + h1(t, Rt)− eZU t + [JRt + h2(t, Rt) +−eZU t]vt + wt+1

zt = Rt

Rt = ϕ
t
for t ∈ [−τmax, 0],

(7.2.5)

where wt+1 = eĈt+1 − Ct+1 ∈ le2(N ;Rm) and z(t) ∈ Rp is the controlled output.. We

denote the above system as Θ1. The stochastic disturbance parameter v(t) is defined

by eq. (7.3.6).

Also, substituting the control input U t = KRt, our new closed loop system becomes


Rt+1 = [J − eZK]Rt + h1(t, Rt) + {[J − eZK]Rt + h2(t, Rt)}vt + wt+1

zt = Rt

Rt = ϕ
t
for t ∈ [−τmax, 0],

(7.2.6)

with initial conditions Rt = ϕt for t ∈ [−τmax, 0]. We denote the above system

with feedback controller U t as Θ1.
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7.3 Lipschitz-type time-varying nonlinear P-R system

In this section, we will focus on P-R systems with Lipschitz-type time-varying nonlinear-

ity. First, we will give the specific expression of Lipschitz-type time-varying condition

which is assumed to hold throughout section 7.3.

Lipschitz-type nonlinear condition: The nonlinear functions h1(t, Rt), h2(t, Rt)

describe uncertainties of the system and satisfy the following quadratic inequalities:

hT1 (t, Rt)h1(t, Rt) ≤ α2
1R

T
t H

T
1 H1Rt, (7.3.1)

hT2 (t, Rt)h2(t, Rt) ≤ α2
2R

T
t H

T
2 H2Rt, (7.3.2)

for all t ∈ N , where αi is a constant related to the function hi for i = 1, 2. Hi is a

constant matrix reflecting structure of hi.

We note that inequalities (7.3.1) and (7.3.2) can be written as a matrix form:


Rt

h1

h2


T 
−α2

1H
T
1 H1 − α2

2H
T
2 H2 0 0

0 I 0

0 0 I



Rt

h1

h2

 ≤ 0. (7.3.3)

7.3.1 Robust stability of the system

Considering the following basic P-R system Θ2 without disturbance and controller,

Θ2 :


Rt+1 = JRt + h1(t, Rt) + {JRt + h2(t, Rt)}vt,

Rt = ϕ
t

for t ∈ [−τmax, 0],
(7.3.4)

Definition 7.1. The Lipschitz-type time-varying nonlinear P-R system Θ2 is said to

be robustly stochastically stable with margins α1 > 0 , α2 > 0 if there exists a constant

δ(x0, α) such that

E

[ ∞∑
t=0

RTt Rt

]
≤ δ(x0, α1 > 0, α2). (7.3.5)

We can derive the following theorem about the system stability.

Theorem 7.1. System Θ2 with margins α1 > 0 and α2 > 0 is said to be robustly

stochastically stable, if there exists a symmetric positive definite matrix Q > 0 and a
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scalar α > 0 such that
−Q+ 2α2

1αH
TH + 2α2

2αH
TH ATQ CTQ 0

∗ −1
2Q 0 0

∗ ∗ −1
2Q 0

∗ ∗ ∗ Q− αI

 < 0. (7.3.6)

Proof. Lipschitz-type time-varying nonlinear P-R system Θ2 is the special case of non-

linear system (6.3.1). The proof of Theorem 7.1 can refer to Theorem 6.1 and the result

in Zhang et al. (2016)[99].

7.3.2 Robust Stabilization of the system

So far we gave the sufficient condition for the robust stability of the P-R system Θ1

with wt+1 = 0 and U t = KRt = 0. In practice, it is possible that the P-R process can

be unstable; however it can be stabilized eventually with the appropriate choice of the

premium strategy.

Consequently, the nonlinear P-R system Θ1 with wt+1 = 0 is considered. The new

system has an additional input controller U t = KRt. In order to confirm that the new

closed-loop system is robust stochastically stable, the previous feedback controller is

developed and discussed.

Θ3 :


Rt+1 = [J − eZK]Rt + h1(t, Rt) + {[J − eZK]Rt + h2(t, Rt)}vt,

Rt = ϕ
t
for t ∈ [−τmax, 0].

(7.3.7)

Now, we can derive the following theorem:

Theorem 7.2. System Θ3 with margins α1 > 0 and α2 > 0 is said to be robustly

stochastically stabilizable, if there exists matrics Y and X > 0 and a real scalar β > 0
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such that 

−X α1XH
T α2XH

T AT AT 0

∗ −1
2βI 0 0 0 0

∗ ∗ −1
2βI 0 0 0

∗ ∗ ∗ −1
2X 0 0

∗ ∗ ∗ ∗ −1
2X 0

∗ ∗ ∗ ∗ ∗ βI −X


< 0. (7.3.8)

holds, where where A = JX − eZY

In this case, U t = KRt = Y X−1Rt is a robustly stochastically stabilizing controller.

Proof. Lipschitz-type time-varying nonlinear P-R system Θ3 is the special case of non-

linear system (6.4.1). The proof of Theorem 7.2 can refer to Theorem 6.2 and the result

in Zhang et al. (2016)[99].

7.3.3 Robust H∞ control

In previous sections, the external disturbance of the nonlinear P-R system is assumed

to be zero. In Pantelous and Yang (2014)[66], the disturbance is first time assumed

to be non-zero, i.e. wt 6= 0. Here, since we focus a more general nonlinear P-R

system in this chapter, the state feedback controller U t = KRt is determined such that

the resulting closed-loop system Θ1 is robust stochastically stable with disturbance

attenuation level γ which is a given constant performance level. For nonlinear P-R

system, the disturbance attenuation γ is a parameter which measures the accumulated

impact of the outside disturbance on the system output. In the insurance industry, as

indicated by Pantelous and Yang (2014) [66], we can consider γ as a parameter which

measures the influence of the disturbance in the market for the accumulated reserve.

Definition 7.2. For a given disturbance attenuation level γ > 0, U t = KRt is an H∞

controller of system Θ1,

if (i). System Θ1 is internally stochastically stabilizable for U t = KRt in the absence

of external disturbance wt;

(ii). The H∞ norm of system Θ1 is less than disturbance attenuation constant level
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γ > 0 with zero initial condition R0 = 0, which is

‖H‖ = sup
w∈l2w(N,Rq),wt 6=0

‖zt‖l2w(N,Rq)

‖wt‖l2w(N,Rq)

= sup
w∈l2w(N,Rq),wt 6=0

(∑∞
t=0 E‖zt‖2

) 1
2

(
∑∞

t=0 E‖wt‖2)
1
2

< γ.

Theorem 7.3. For the given γ > 0, system Θ1 with margins α1 > 0 and α2 > 0 is

said to be H∞ controllable, if there exists matrics Y and X > 0 and a real scalar β > 0

such that the following LMI is satisfied,



−X I α2
1XH

T
1 α2

2XH
T
2 AT AT 0 0

∗ −I 0 0 0 0 0 0

∗ ∗ −1
3βI 0 0 0 0 0

∗ ∗ ∗ −1
3βI 0 0 0 0

∗ ∗ ∗ ∗ −X 0 0 0

∗ ∗ ∗ ∗ ∗ −X 0 0

∗ ∗ ∗ ∗ ∗ ∗ −γ2I I

∗ ∗ ∗ ∗ ∗ ∗ ∗ −X

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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0 0 AT AT 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 I 0 0

0 0 0 0 0

−X 0 0 0 0

∗ I 0 0 0

∗ ∗ −X 0 0

∗ ∗ ∗ −X 0

∗ ∗ ∗ ∗ βI −X



< 0, (7.3.9)

where A = JX − eZY and the robust H∞ controller U t = KRt = Y X−1Rt for

t ∈ N . Then, a robust stabilizing state feedback controller is given by

U t = KRt = Y X−1Rt.

Proof. The proof of Theorem 7.3 can refer to Theorem 6.3 and the result in Zhang et

al. (2016)[99].

7.3.4 Numerical Application

In this section, a numerical application for illustrating the applicability of the theoretical

results for an insurance company is formulated. We assume that it runs three different

insurance lines which are mutually correlated. Then, we use the LMI sufficient condition

from the result in Theorem 7.3 to find out the H∞ controller for the P-R system Θ1

with Lipschitz-type nonlinear condition (7.3.1, 7.3.2). Then we apply Theorem 7.2 to

stabilise system Θ3 without outside disturbance, and present the result in two figures.

• To design the H∞ controller, we first assume the value of the reserve accounts at
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t = 0 is given by the following zero value matrix,

R0 =


R0(1)

R0(2)

R0(3)

 =


0

0

0

 ,

i.e. at time t = 0, we assume that the reserve account for each insurance lines is

£ 0 pounds, respectively.

• The uncertainties of the system are formulated by the nonlinear function and

is satisfied the inequalities (7.3.1),(7.3.2). We assume the constant a1, a2 and

constant matrix H1, H2 defining the structure of nonlinear functions are:

a1 = 0.3, a2 = 0.4

H1 = H2 =


1 0 0

0 1 0

0 0 1

 . (7.3.10)

• In our model, it is assumed that the insurer can invest the reserve in risk-free

investments (T-bills). We assume that the corresponding rate of income is given

from the following matrix:

J =


1.021 ∗ 0.86 1.021 ∗ 0.10 1.021 ∗ 0.08

1.021 ∗ 0.07 1.021 ∗ 0.87 1.021 ∗ 0.09

1.021 ∗ 0.07 1.021 ∗ 0.03 1.021 ∗ 0.83

 .
• The weight ratios wnm which demonstrates the solvency relation between each

line have the following values:

w1,1 = 0.86, w1,2 = 0.10 and w1,3 = 0.08,

w2,1 = 0.07, w2,2 = 0.87 and w2,3 = 0.09,

w3,1 = 0.07, w3,2 = 0.03 and w3,3 = 0.83.
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Figure 7.1: Accumulated Reserves for 3 products: with controller; without external
disturbance

• For the parameter e, we let e = 0.8, which means that 1− 0.8 = 0.2 (or 20%) of

the premium revenue is used to cover the administration and operating cost and

give to the company a reasonable profit margin.

• γ = 2. This is the given value (not optimal) which measures the maximum impact

level of the disturbance on the reserves.

Here, the performance of system under different markovian switching signals is

presented. The simulation results are provided for the time-period of t = 52 weeks.

By applying the result of the Theorem 7.3, the H∞ controller is derived, and we

get the feedback controller for nonlinear P-R system are as below:

K =


0.5248 0.0425 0.0426

0.0609 0.5309 0.0182

0.0487 0.0548 0.5066

 .
We provide the simulation results for the time-period of t = 52, and the Figures 7.1

and Figures 7.2 are derived.

Figure 7.1 shows the trajectory of the accumulated reserves with initial state values

R0 = [R1,0 R2,0 R3,0]T = [1, 500 2, 000 − 2, 500]T . By using Theorem 7.2 to

derive the feedback controller U t for the P-R system Θ3 ((7.3.7) with wt = 0, the

accumulated reserve process can be stabilized. We can see the value of 3 accumulated

reserve accounts converge the a fixed (zero) level after several time periods.
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Figure 7.2: Accumulated Reserves for 3 products: with external disturbance

Figure 7.2 shows the movement of the accumulated reserve for each dependent

insurance product with the effect of outside disturbance wt. In this case, the stability of

the system can be achieved by using the robust H∞ tool to generate the state feedback

controller U t, even though the system disturbance wt 6= 0 exist. Compared Figure

7.2 to Figure 7.1, we can see the disturbance wt affect significantly the trajectory of

accumulated reserves. However, the state feedback controller U t ensure the fluctuation

of the accumulated reserves are bounded with a certain level γ and stable.

To calculated the most suitable feasible solution to complex LMI (7.3.8) & (7.3.9)

, we use the feasp algorithm in LMI toolbox in Matlab, see Gahinet et al. (1995) [25]).

With proper setting, this toolbox will directly give us the feasible solution when it does

exists feasible solution.

7.4 One-sided Lipschitz-type time-varying nonlinear P-R

system

The following is assumed to hold throughout section 7.4.

One-sided Lipschitz-type time-varying nonlinear condition: The nonlinear

functions h1(t, Rt), h2(t, Rt) describe parameter uncertainty of the system and satisfy
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the following quadratic inequalities:

hT1 (Rt)Rt ≤ ρ1R
T
t Rt, (7.4.1)

hT1 (Rt)h1(Rt) ≤ β1R
T
t Rt + γ1R

T
t h1(Rt), (7.4.2)

hT2 (Rt)Rt ≤ ρ2R
T
t Rt, (7.4.3)

hT2 (Rt)h2(Rt) ≤ β2R
T
t Rt + γ2R

T
t h2(Rt). (7.4.4)

for all t ∈ N , where βi, γi, ρi are constants related to the function hi for i = 1, 2.

βi, γi, ρi are constant defining structure of hi.

7.4.1 Robust stability of the system

Considering the following basic P-R system Θ2 without disturbance and controller,

Θ2 :


Rt+1 = JRt + h1(t, Rt) + {JRt + h2(t, Rt)}vt,

Rt = ϕ
t
for t ∈ [−τmax, 0].

we can first define the definition of stability of P-R system Θ2 and then derive the

following theorem about the system stability.

Definition 7.3. The one-sided Lipschitz-type time-varying nonlinear P-R system Θ2

is said to be robustly stochastically stable with margins ρ1, ρ2, β1, β2, γ1, γ2 if there

exists a constant δ(x0, ρ1, ρ2, β1, β2) such that

E

[ ∞∑
t=0

RTt Rt

]
≤ δ(x0, ρ1, ρ2, β1, β2). (7.4.5)

The following theorem gives a sufficient condition of robust stochastic stability for

system Θ2.

Theorem 7.4. One-sided Lipschitz-type time-varying nonlinear P-R system Θ2 with

margins ρ1, ρ2, β1, β2 is said to be robustly stochastically stable, if there exists a sym-

metric positive definite matrix Q > 0 and real scalar ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0

such that the following conditions are satisfied.
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−Q+ 2I + 2(ε1ρ1 + ε2β1)I + 2(ε3ρ2 + ε4β2)I JTQ JTQ

∗ −1
2Q 0

∗ ∗ −1
2Q

 < 0. (7.4.6)

 2Q− 2ε2I ε2γ1I − ε1I

ε2γ1I − ε1I −I.

 < 0, (7.4.7)

 2Q− 2ε4I ε4γ2I − ε3I

ε4γ2I − ε3I −I

 < 0. (7.4.8)

Proof. The One-sided Lipschitz-type time-varying nonlinear P-R system Θ2 is the spe-

cial case of system (6.3.1), and it has a same nonlinear property with system (6.3.1).

So the proof of Theorem 7.4 can refer to Theorem 6.1.

7.4.2 Robust H∞ control

For the nonlinear discrete stochastic P-R system with disturbance wt and controller U t

which is:

Θ1 :


Rt+1 = JRt + h1(t, Rt)− eZU t + [JRt + h2(t, Rt) +−eZUt]vt + wt+1

zt = Rt

Rt = ϕ
t
for t ∈ [−τmax, 0],

where wt+1 = eĈt+1 − Ct+1 ∈ le2(N ;Rm).

If it follows one-sided Lipschitz-type time-varying nonlinear condition, then we can

possibly design a robust H∞ controller based on theorem for this P-R system.

Theorem 7.5. For system Θ1 with given one-sided Lipschitz-type time-varying non-

linear condition constant ρ1, ρ2, β1, β2, γ1, γ2, if there exist real matrices Y , X > 0,

Q > 0 and real scalars ε1 > 0, ε2 > 0, ε3 > 0, ε4 > 0, κ1 > 0, κ2 > 0, κ3 > 0, κ4 > 0

such that the following conditions hold:
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−X 0 I (JX − eZY )T (JX − eZY )T

∗ −γ2I 0 I I

∗ ∗ −I 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ −X 0

∗ ∗ ∗ ∗ −X

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

(JX − eZY )T (JX − eZY )T 0 0 X X X X

0 0 I I 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−X 0 0 0 0 0 0 0

∗ −X 0 0 0 0 0 0

∗ ∗ −X 0 0 0 0 0

∗ ∗ ∗ −X 0 0 0 0

∗ ∗ ∗ ∗ − κ1
2ρ1
I 0 0 0

∗ ∗ ∗ ∗ ∗ − κ2
2β1

I 0 0

∗ ∗ ∗ ∗ ∗ ∗ − κ3
2ρ2
I 0

∗ ∗ ∗ ∗ ∗ ∗ 0 − κ4
2β2

I



< 0,

(7.4.9)

 3Q− 2ε2I ε2γ2I − ε1I

ε2γ2I − ε1I −I.

 < 0, (7.4.10)
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 3Q− 2ε4I ε4γ2I − ε3I

ε4γ2I − ε3I −I

 < 0, (7.4.11)

QX = I, κ1I ∗ ε1I = I, κ2I ∗ ε2I = I, κ3I ∗ ε3I = I, κ4I ∗ ε4I = I. (7.4.12)

Then system Θ1 is H∞ controllable for the given γ > 0, and the robust H∞ controller

U t = Kx(t) = Y X−1x(t) for t ∈ N .

Proof. The one-sided Lipschitz-type time-varying nonlinear P-R system Θ1 is the spe-

cial case of system (6.5.1), and it has a same nonlinear property with system (6.5.1).

So the proof of Theorem 7.5 can refer to Theorem 6.3.

Remark 7.1. The conditions to be solved in Theorem 7.5 construct a nonconvex feasi-

bility problem. This nonconvex feasibility problem using similar algorithm introduced

in the Remark 6.3.

7.4.3 Numerical Application

In this sub-section, we extend the numerical example that has been presented previ-

ously in section 7.3 to show how the robust H∞ technique can be used in the one-

sided Lipschitz-type time-varying nonlinear stochastic discrete time P-R system pro-

cess. Thus, the portfolio we simulate is the same with the portfolio assumed in section

7.3. However, we should give values to some new parameters involved.

• The uncertainties of the system are formulated by the nonlinear functions and

are satisfied the inequalities (7.4.1), (7.4.2), (7.4.3) and (7.4.4). We assume the

one-sided Lipschitz-type time-varying nonlinear condition constant ρ1, ρ2, β1, β2,

γ1, γ2 defining the structure of nonlinear functions h1(t, Rt), h2(t, Rt) are:

ρ1 = 1.5; ρ2 = 1.6; β1 = 2.3; β2 = 3; γ1 = −1.2; γ2 = −2;

• Since the algorithm described in Remark 6.3 is used to solve nonconvex feasi-

bility problem in Theorem 7.5, we assume the following parameter value in the

algorithm:

The maximum number of iterations allowed is N = 3;

The sufficient small positive scalar δ = 0.3

118



Figure 7.3: Accumulated Reserves for 3 products: with external disturbance

Figure 7.4: Accumulated Reserves for 3 products: with controller; without external
disturbance

Here, the performance of system under different markovian switching signals is

presented. The simulation results are provided for the time-period of t = 52 weeks.

By applying the result of the Theorem 7.5 and the algorithm in Remark 6.3, the

H∞ controller is derived, and we get the feedback controller for nonlinear P-R system

are as below:

K =


0.4577 0.0722 0.0606

0.0568 0.4661 0.0612

0.0543 0.0296 0.4354

 .
We provide the simulation results for the time-period of t = 52, and the Figures 7.3,

Figures 7.4 and Figures 7.5 are derived. Figure 7.4 shows the trajectory of the accumu-

lated reserves process with the effect of controller when external disturbance doesn’t
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Figure 7.5: Accumulated Reserves for 3 products: without controller; with external
disturbance

exist. The initial state values R0 = [R1,0 R2,0 R3,0]T = [1, 500 2, 000 − 2, 500]T .

The process of accumulated reserves converge to zero in this case.

Figure 7.3 shows the trajectory of the accumulated reserves with zero initial state

values. Figure 7.5 shows a situation when system doesn’t have controller which could

be derived by theorem 7.5. In Figure 7.5, we can see path of the accumulated resevers

are more volatile and the level of accumulated reservers are beyond our desired bound

at some points.

By using Theorem 7.5 to derive the feedback controller U t for the P-R system Θ3

((7.3.7) with wt 6= 0, the accumulated reserve process can be stabilized. Obviously, the

reason that the reserve can not exactly converge into zero level is the effect of external

random disturbances on the system. However, as we can also obtain the state feedback

controller U t to restrict the impact of the disturbance and eventually stabilizes the

system.

7.4.4 Summary

In Chapter 7, the nonlinear control theory is applied in the classic non-life P-R system

in insurance. By using the theorem derived in Chapter 6, the P-R system is furthur

developed to a time-varying nonlinear discrete stochastic system. In this chapter, the

uncertainties of P-R systems are modelled by Lipschitz-type time-varying nonlinear

condition in section 7.3 and one-sided Lipschitz-type time-varying nonlinear condition

in section 7.4. Then, we provide the method to generate robust H∞ controller for these

nonlinear P-R systems and present numerical examples respectively.
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Chapter 8

Conclusion and future research

The objective of this thesis is to study control theory for classes of nonlinear systems

with application in the non-life reserve management and premium rating policy dis-

cussed in the end. As an extension of previous literature, we have shown the beautiful

properties of the linear time-varying system holding for the commutative class of non-

linear time-varying system as well. However, quite different from linear systems, it is

very difficult to obtain the precise physical model for nonlinear system and more dis-

tinct structural models can be chosen. To serve certain purpose, it is classified based

on description of some of its properties. So we solve the problem of observer design

and feedback stabilization for linear time-varying systems under One-sided Lipschitz

nonlinear perturbation. The corresponding results for stochastic discrete-time systems

have been worked out so as to present in more comprehensive structure of the the-

sis, together with application in premium-reserve model. The applicability of those

theorems is demonstrated by numerical examples. In numerical examples, we assume

an insurance company runs a non-life insurance portfolio containing multiple prod-

ucts, which may be exposed to outside financial and economic disturbances, parameter

uncertainties, etc.

Much effort in this area has been relied mainly on improving the bounding tech-

niques for example and Jensens Inequality for use in guaranteeing the negative definite-

ness of the derivative of the Lyapunov-Krasovskii functionals. While the introducing of

slack variables can also significantly increase the computational complexity. Therefore,

how to develop new methods in order to further reduce the conservatism in existing sta-

bility results while keeping a reasonably low computational complexity is an important
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issue to be investigated in the future. On the other hand, by comparing the stabil-

ity results obtained through the use of various Lyapunov-type functions or functionals

, there exists invariant trade-off between theoretical conservatism and computational

complexity. Much of the research has been focussed on reducing the conservatism of

the stability conditions.

In future, we plan to extend the results in Chapter 4 and 5 for one-sided Lipschitz

nonlinear time-varying system incorporating time delays in controls.

The essence of those theorems is based on sufficient LMI criteria. It should be noted

that the robust controller is designed without any constraint and the P-R system do

not consider the effect of time delays. Therefore we can do further research on the

robust guaranteed cost control approach and could possibly incorporate different time

delays in this nonlinear system.

In Chapter 6 and 7, we give an attempt to consider classes nonlinear system in

discrete-time stochastic framework and their application in non-life P-R model.

During the last two decades, applications of regime switching models in finance and

macroeconomics have received a great attention among researchers and particularly,

market practitioners. Thus, we could further think about how a nonlinear system with

regime switching in discrete-time could be used to model the medium- and long- term

reserves and the premiums of an insurer.

Last but importantly, as pointed in previous researcher (see e.g. Kendrick [40], Yang

et al. [94]), when we try to apply the models to solve real world problems such as P-R

system process, we should always keep in mind that we need to translate the real world

problem in an appropriate way. That not only means we should give a reasonable

approach to define the practical meaning and determine specific value of uncertain

parameters, but also a thorough understanding of the mathematical ramifications of

these concepts enables one to formulate a theoretical control problem meaningfully and

to make the necessary assumptions at the outset of the analysis.
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