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Abstract

Relapsing C. difficile disease in humans is linked to a pathological imbalance within the intestinal microbiota, termed
dysbiosis, which remains poorly understood. We show that mice infected with epidemic C. difficile (genotype 027/BI)
develop highly contagious, chronic intestinal disease and persistent dysbiosis characterized by a distinct, simplified
microbiota containing opportunistic pathogens and altered metabolite production. Chronic C. difficile 027/BI infection was
refractory to vancomycin treatment leading to relapsing disease. In contrast, treatment of C. difficile 027/BI infected mice
with feces from healthy mice rapidly restored a diverse, healthy microbiota and resolved C. difficile disease and
contagiousness. We used this model to identify a simple mixture of six phylogenetically diverse intestinal bacteria, including
novel species, which can re-establish a health-associated microbiota and clear C. difficile 027/BI infection from mice. Thus,
targeting a dysbiotic microbiota with a defined mixture of phylogenetically diverse bacteria can trigger major shifts in the
microbial community structure that displaces C. difficile and, as a result, resolves disease and contagiousness. Further, we
demonstrate a rational approach to harness the therapeutic potential of health-associated microbial communities to treat C.
difficile disease and potentially other forms of intestinal dysbiosis.
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Introduction

Clostridium difficile is an anaerobic, Gram-positive bacterium that

is the major cause of antibiotic-associated diarrhea and a

significant healthcare-associated pathogen [1]. C. difficile challenges

hospital infection control measures by exploiting an infection cycle

involving the excretion of highly transmissible and resistant spores

that act as an environmental transmission reservoir [2–4].

Antibiotic treatment of hospitalized patients is the major risk

factor for C. difficile colonization and disease that are characterized

by a toxin-mediated neutrophil response [5] and a spectrum of

outcomes from asymptomatic carriage, severe diarrhea, fulminant

pseudomembranous colitis, toxic megacolon and occasionally

death [6]. First line treatments for C. difficile disease are

vancomycin or metronidazole, although in 20–35% of these cases

a recurrent disease (relapse or re-infection) follows cessation of

antibiotic therapy [7]. More recently, a narrow-spectrum antibi-

otic, Fidaxomicin, has been shown to cause less damage to the

microbiota and lower rates of recurrence compared to vancomycin

[8,9]. This has led to the proposal that C. difficile disease is linked to

a general imbalance of the intestinal microbiota, often referred to

as dysbiosis [10,11]. Alternatively, probiotic-based approaches that

restore intestinal homeostasis are viewed as promising therapies for

recurrent C. difficile infection [12,13].

During the past decade distinct genetic variants of C. difficile

have emerged that are responsible for epidemics within North

America and Europe and continue to disseminate globally

[14,15]. Most notable is the ‘‘epidemic’’ variant, genotypically

referred to as PCR-ribotype 027 or REA group BI, which is

associated with high-level toxin production [16](Figure S1), high

rates of recurrence and mortality, and severe hospital outbreaks

[17–19]. We have recently used whole genome sequencing to

demonstrate that isolates within the epidemic C. difficile 027/BI

clade are genetically distinct from other human virulent C.

difficile, such as the 017/CF and 012/R variants that are

endemic in many hospitals throughout Europe [20], and have

likely emerged and spread globally within the past decade [21–

23]. Although the epidemic C. difficile 027/BI variant is now the

most common type causing disease in many parts of the world

[24] it is not known how this particular variant transmits so

effectively and outcompetes other C. difficile disease-causing

variants [25].
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The recent description of C. difficile murine infection models that

mimic many aspects of asymptomatic carriage, disease and spore-

mediated transmission in humans [26,27] has facilitated experi-

mental investigations into the molecular basis of C. difficile disease

[28–31] and transmission [32–34]. Here we use a murine infection

model to demonstrate that animals infected via natural transmis-

sion with epidemic C. difficile 027/BI, but not other human virulent

C. difficile variants, develop chronic infection and a highly

contagious state that persists for months. Persistent infection is

linked to intestinal dysbiosis that can be resolved by restoring a

diverse intestinal microbiota with bacteriotherapy using a defined,

simplified mixture of intestinal bacteria.

Results

Epidemic C. difficile 027/BI causes chronic, contagious
disease in mice

We infected groups of healthy C57BL/6 mice separately with C.

difficile PCR ribotypes 012 (strain 630 [23]), 017 (strain M68 [21])

or 027 (strain BI-7 [21]) via spore-mediated transmission and

subsequently treated the infected groups with a clinically relevant

dose of clindamycin for 7 days. Each of these C. difficile variants

was isolated from hospital patients with C. difficile disease and is

resistant to high levels of clindamycin (MIC of .256 mg/L). This

mode of infection mimics natural transmission and reproducibly

results in high-level excretion of C. difficile (.108 CFU/gram feces)

(Figure 1a (i)). Mice that shed C. difficile at this level are highly

contagious (Figure 1a (i)); Figure S2), which we refer to as

‘‘supershedders’’ [35], and must be housed under stringent

conditions to contain spore-mediated transmission [27,33].

Mice infected with C. difficile 017/M68 and 012/630 reproduc-

ibly (100% for 012, n = 50; .97% for 017, n = 240) lost the

supershedder state by 10–14 days post-clindamycin treatment

leading to a non-contagious carrier state (,102 CFU/gram

feces)(Figure 1a; Figure S2) and resolution of intestinal pathology

[27]. In contrast, the majority (.70%, n = 300) of mice infected

with epidemic C. difficile 027/BI-7 remained as persistent super-

shedders for months, even in the absence of continued clindamy-

cin treatment (Figure 1a). Persistent supershedders of C. difficile

027/BI-7 displayed significant signs of chronic intestinal disease

(Figure 1b i–ii) and harbored microcolonies and biofilm-like

structures containing C. difficile on the intestinal mucosal surface

(Figure 1b iii–iv). The cecal tissue of mice infected with epidemic

C. difficile 027/BI-7 also exhibited a significant up-regulation of

pro-inflammatory genes, particularly those known to promote

neutrophil infiltration (Figure S3 and Table S1), similar to the

human immune response [5].

Thus, epidemic C. difficile 027/BI-7 induces a persistent

supershedder state, characterized by intestinal disease and a

prolonged contagious period in mice, whereas infection with other

disease causing variants results in a self-limiting infection leading

to a non-contagious carrier state.

Enhanced transmissibility of epidemic C. difficile 027/BI
We hypothesized that since persistent supershedders excrete

epidemic C. difficile into the environment for a prolonged period

compared to other C. difficile infected mice, this would increase the

transmission of epidemic C. difficile in a population of susceptible

hosts. To test this hypothesis we housed mice supershedding C.

difficile 027/BI-7, 017/M68 or 012/630 together with naı̈ve mice

for 30 days and then determined the proportion of mice infected

with each C. difficile variant. After exposure to supershedders, all

naı̈ve mice became colonized by C. difficile (Figure 1c). Signif-

icantly, the majority of naı̈ve recipient mice (12/14) were infected

with the epidemic C. difficile 027/BI-7 and a minority (2/14) were

colonized by C. difficile 017/M68 whereas the donor mice

remained infected with only the original infecting strain

(Figure 1c). Therefore, the ability of epidemic C. difficile 027/BI-

7 to induce a persistent supershedder state within hosts provides

this variant with a competitive advantage over other variants

within a susceptible host population.

Epidemic C. difficile 027/BI induces intestinal dysbiosis
Recurrent C. difficile disease in humans is associated with a

general reduction in intestinal bacterial diversity [10]. We

therefore hypothesized that the persistent supershedder state in

mice caused by C. difficile 027/BI-7 is linked to alterations in the

structure of the co-inhabiting bacterial community. To address this

hypothesis we analyzed the composition of the intestinal micro-

biota from mice using 16S rRNA gene sequence profiling of

bacterial DNA isolated from fresh fecal pellets.

First we assessed the global community structure from

individual mice over time by determining the Shannon Diversity

Index (SDI), which takes into account species richness (number of

species) and evenness (distribution of species). As expected, the

intestinal microbiota of naı̈ve, untreated mice was characterized as

a diverse bacterial community (,60 phylotypes/250 clones/

mouse), free of C. difficile, that was very stable over 50 days and

dominated by anaerobic species from the Bacteroidetes and Firmicutes

phyla (Figure 2a). Seven days of clindamycin treatment signifi-

cantly reduced the SDI of both naı̈ve mice and C. difficile (027/BI

or 017/CF) infected mice and caused an increase in the

proportional abundance of facultative anaerobes such as members

of the Enterobacteriaceae family and enterococci (Figure 2a). Clin-

damycin treatment reduced the diversity to 9–12 phylotypes/250

clones/mouse, regardless of C. difficile infection, and C. difficile

clones represented 26.7% (66.8) of the clone library from infected

mice (n = 10)(Figure S4). Interestingly, the SDI and phylum-level

compositional structure from naı̈ve mice and C. difficile 017/M68

infected mice consistently recovered to pre-clindamycin levels and

no C. difficile clones were detected from infected mice by 49 days

post-clindamycin treatment (Figure 2a). In contrast, infection with

epidemic C. difficile 027/BI-7 altered the recovery pattern of the

intestinal microbiota and instead the species diversity remained

very low (10–12 phylotypes/250 clones; n = 15 mice) and C. difficile

represented 6.8% (65.2) of the clone libraries at 49 days post-

clindamycin treatment (Figure 2a and Figure S4).

We were next interested in defining the supershedder micro-

biota at the phylotype-level (.98% identity of 16S rRNA gene

across variable regions 2–5) so we compared the bacterial

communities from mice infected with C. difficile 027/BI-7 or

Author Summary

Pathological imbalances within the intestinal microbiota,
termed dysbiosis, are often associated with chronic
Clostridium difficile infections in humans. We show that
infection of mice with the healthcare pathogen C. difficile
leads to persistent intestinal dysbiosis that is associated
with chronic disease and a highly contagious state. Using
this model we rationally designed a simple mixture of
phylogenetically diverse intestinal bacteria that can disrupt
intestinal dysbiosis and as a result resolve disease and
contagiousness. Our results validate the microbiota as a
viable therapeutic target and open the way to rationally
design bacteriotherapy to treat chronic C. difficile infec-
tions and potentially other forms of persistent dysbiosis.

Bacteriotherapy Treatment of Epidemic C. difficile
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Figure 1. Epidemic C. difficile 027/BI causes persistent infection with enhanced transmissibility compared to other virulent variants.
a) Representative fecal shedding patterns from C57BL/6 mice (n = 5 mice per group) simultaneously treated with clindamycin and exposed to human
virulent C. difficile spores to mimic natural transmission. Mice were infected with C. difficile ribotype 027 (strain BI-7; n = 300), 017 (strain M68; n = 240)

Bacteriotherapy Treatment of Epidemic C. difficile
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017/M68 as well as the appropriate naı̈ve and clindamycin

treatment controls (Figure 2b). Interestingly, the intestinal

microbiota from persistent supershedders associated with epidemic

C. difficile 027/BI-7 infection was consistently simplified in

structure (SDI 2.060.3 (n = 15) vs. SDI 3.660.2 for healthy/

naı̈ve mice (n = 17); Figure S4) and, importantly, was distinct in

composition from the microbiota of mice undergoing clindamycin

treatment, mice that recovered from clindamycin treatment, naı̈ve

mice and low-level carriers of 027/BI-7 or 017/M68 (Figure 2b).

The emergence of the supershedder microbiota was very robust

since it occurred in mice of distinct genetic backgrounds, including

C57BL/6, C3H/HeN, C3H/HeJ and in certain C57BL/6 gene

knock out mice such as those harboring mutations in the p40

subunit of interleukin 12 (Figure 2b) (Table S2). We noted that the

supershedder microbiota consistently contained 16S rRNA gene

clones derived from Blautia producta and regularly included 16S

rRNA gene sequences representative of recognized human

opportunistic pathogens, including Klebsiella pneumoniae, Escherichia

coli, Proteus mirabilis, Parabacteroides distasonis and Enterococcus faecalis.

We subsequently confirmed the presence of each organism by

direct culture and sequence analysis of their 16S rRNA genes

(unpublished data). Interestingly, all of these bacterial species have

also been identified within the microbiota of humans with C.

difficile disease using culture dependent [36] and culture indepen-

dent [10] methods.

Short chain fatty acids (SCFA) are the end products of bacterial

fermentation in the intestines and serve as important nutrients for

the host [37]. Imbalances in SCFA levels, particularly butyrate

and 012 (strain 630; n = 50). Mice supershedding high-levels of C. difficile (.108 CFU/gram fresh feces) are highly contagious (i and iii) whereas mice
shedding low-levels of C. difficile (ii; ,102 CFU/gram fresh feces) are non-contagious (Figure S3). Broken horizontal line indicates culture detection
limit of 50 CFU/gram feces. b) i–ii) hematoxylin and eosin staining to compare cecal pathology of i) healthy, clindamycin treated mice to ii) persistent
C. difficile 027/BI-7 supershedders (day 49 post-infection; C57BL/6) that display signs of hyperplasia, edema and immune cell filtrate. Scale bars
represent 100 mm. iii–iv) Scanning electron micrographs of illustrating the presence of C. difficile microcolonies (iii) and biofilm-like structures (iv) on
the intestinal mucosal surface of persistent supershedders. Scale bars shown in bottom right corner. c) C. difficile 027/BI-7 outcompetes C. difficile 012/
R and 017/CF within susceptible host populations. Shown is the summary of two independent experiments that included 6 C. difficile infected donor
mice (2 donors infected individually with either C. difficile ribotype 012, 017 or 027) housed with 14 naı̈ve recipient mice for 30 days. The transmission
rate of C. difficile 027/BI-7 infected mice is significantly higher (p,1.1e24) than that of C. difficile 012/630 (p,0.02) or 017/M68 (p,0.22) infected
mice.
doi:10.1371/journal.ppat.1002995.g001

Figure 2. Epidemic C. difficile 027/BI-7 induces intestinal dysbiosis in mice. a) Temporal changes in the Shannon Diversity Indices (SDI) of the
intestinal microbiota from naı̈ve C57BL/6 mice, clindamycin treated (7 days) naı̈ve C57BL/6 mice or clindamycin treated C57BL6 mice infected with C.
difficile 027/BI-7 or 017/M68 (n = 2 mice/group). Fecal samples were collected for DNA extraction two days before clindamycin treatment/infection, 7
days post-treatment/post-infection and 49 days post-treatment/post-infection. b) Analysis of 16S rRNA gene sequences (variable regions 2–5) derived
from fecal pellets of naı̈ve mice (n = 17), C. difficile carriers (n = 5; 35–49 days post-infection), mice undergoing clindamycin treatment (n = 12), mice
recovered from clindamycin treatment (n = 4; 42 days after cessation of treatment) and persisting supershedders of C. difficile 027/BI-7 (n = 15; 35–49
days post-infection). SS, supershedder; car, carrier; clin recov, mice treated with clindamycin for 7 days and then sampled 42 days later; naı̈ve clin,
naı̈ve mice treated with clindamycin for 7 days and then sampled; 027 clin (017 clin), mice infected with C. difficile 027/BI-7 (017/M68) and treated
with clindamycin for 7 days and then sampled. Community diversity patterns were determined using the Bray Curtis calculator on 336 OTUs (12,316
clones) sharing 98% identity and the Shannon Diversity Index calculated as described. Various murine genetic backgrounds were tested including,
C57BL/6, C57BL/6 p402/2, C3H/HeN and C3H/HeJ, as indicated. c) Short chain fatty acid (SCFA) profiles of the intestinal microbiota from naı̈ve C57BL/
6 mice, clindamycin-treated C57BL/6 mice that had been allowed to recover for 49 days prior to sampling and C. difficile 027/BI-7 supershedding
C57BL/6 mice (n = 5 mice/group).
doi:10.1371/journal.ppat.1002995.g002

Bacteriotherapy Treatment of Epidemic C. difficile
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and acetate, have been associated with chronic intestinal diseases

[38]. To investigate the functional consequence of the simplified

intestinal community of persistent supershedders we next profiled

the SCFAs present within the large intestine of mice. Interestingly,

the microbiota from supershedder mice produced less SFCAs

(69.4 mmol/gram cecal contents) compared to that from naı̈ve

mice (140.8 mmol/gram) and naı̈ve mice that were given

clindamycin and then allowed to recover for 49 days

(138.0 mmol/gram). Further, the supershedder microbiota was

associated with an altered SCFA profile compared to naı̈ve and

clindamycin treated mice that was characterized by a substantial

proportional reduction in butyrate and acetate and an increase in

succinate levels (Figure 2c), correlating with an increase in the

levels of P. distasonis (succinate producer) [39]. Thus, we

demonstrate that epidemic C. difficile 027/BI-7 maintains intestinal

dysbiosis in mice after clindamycin treatment that is characterized

by a simplified intestinal bacterial community, the presence of

opportunistic bacteria and markedly altered SCFA production.

Fecal transplantation resolves relapsing C. difficile 027/BI
disease and contagiousness

Next we attempted to clear C. difficile 027/BI-7 from persisting

supershedders with a 10-day treatment of oral vancomycin. We

found that vancomycin treatment of supershedders rapidly

suppressed C. difficile excretion to below the culture detection

limit (Figure 3a), as expected because C. difficile 027/BI-7 is

susceptible to vancomycin. However, cessation of vancomycin

treatment was followed within 5–7 days by a relapse (by the same

strain) to high-level C. difficile shedding (.108 CFU/gram) in all

mice (n = 120)(Figure 3a). Relapse occurred even after mice were

aseptically moved to individual sterile cages to reduce host-to-host

transmission and re-colonization by environmental spores. Inter-

estingly, the SDI of the intestinal microbiota from relapsed mice

remained low (2.1–2.2) and the resident bacteria included

opportunistic species (i.e. E. faecalis, E. coli and B. producta)(data

not shown).

Fecal transplantation, the administration of homogenized feces

from a healthy donor, is a promising alternative therapy for

recurrent C. difficile disease in humans [40–42], so we therefore

tested the ability of bacteriotherapy to suppress the C. difficile

supershedding state. Remarkably, a single treatment via oral

gavage of C. difficile 027/BI-7 supershedding mice with homog-

enized feces from a healthy donor rapidly suppressed C. difficile

shedding levels to below the detection limit within 5–7 days and, in

contrast to vancomycin therapy, this lasted for months (Figure 3a).

Using this protocol we consistently found that fecal transplantation

was highly effective and indeed suppressed the supershedder state

in 23 out of 25 attempts.

Suppression of C. difficile shedding levels was associated with a

significant loss of contagiousness as demonstrated by the inability

of treated mice to transmit C. difficile to other naı̈ve mice

(Figure 3b). Further, fecal transplantation was consistently

associated with a resolution of intestinal pathology and a reduction

in the expression of proinflammatory genes (Figure 3c). Therefore,

intestinal dysbiosis caused by epidemic C. difficile is refractory to

vancomycin therapy but can be suppressed with feces of a healthy

individual leading to resolution of disease and contagiousness.

Rational design of a simple, defined bacteriotherapy
Principal component analysis (PCA) further confirmed that

distinct intestinal microbiota profiles are associated with either

‘‘healthy/naı̈ve’’ mice, ‘‘persistent supershedders’’ or mice under-

going ‘‘clindamycin treatment’’ (Figure 4a). Suppression of C.

difficile shedding levels after fecal transplantation shifted the

recipients’ microbiota to a composition similar to that of the

healthy input bacterial community (Figure 4a; brown shaded dots

and star) and this was closely linked to a rapid increase in species

diversity (Figure S5). In comparison, treatment of supershedders

with PBS, autoclaved feces, fecal filtrate, SCFAs or laboratory E.

coli had a negligible effect on C. difficile shedding levels (Figure S6).

Consequently, we reasoned that there are key bacteria within

the microbiota of healthy mice that are responsible for suppressing

the C. difficile 027/BI supershedder state. To identify candidate

bacteria we passaged healthy feces overnight in nutrient broth at

37uC to reduce the community complexity (Figure S7) and to

enrich for readily culturable bacteria. Treatment of supershedder

mice with cultured fecal derivatives serially passaged twice

(Passage 1 and 2) effectively suppressed the supershedder state

(Figure S8) and shifted their microbiota composition towards a

healthy microbiota profile (Figure 3a). However, a third passage

(Passage 3) was dominated by Enterococcus spp. and Enterobacteriaceae

spp. and generally resulted in a loss of the protective effects of the

fecal derivative against the C. diffiicile 027/BI supershedder state.

These results confirm the presence of specific culturable bacteria

within the microbiota of healthy mice that can suppress C. difficile

027/BI infection as effectively as whole fecal bacteriotherapy.

Next, we cultured a diverse collection of 18 bacterial species

from the Passage 1 fecal derivative, including representatives of the

four phyla that constitute the majority of the mammalian intestinal

microbiota (Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria;

Table S3). Since the supershedders’ microbiota contained a

skewed profile of dominant bacterial phyla (Table S2), we

reasoned that inoculation of supershedders with a phylogenetically

diverse bacterial mixture could potentially trigger recovery of the

intestinal ecosystem and disrupt the stability of the supershedder

microbiota. Therefore, we treated supershedders with different

combinations of phylogenetically diverse bacterial mixtures

(mixtures summarized in Table S3). Many of the combinations

failed (see below) but we ultimately identified a mixture of six

bacteria that effectively and reproducibly (20/20 mice) suppressed

the C. difficile 027/BI supershedder state (‘‘MixB’’; Figure 4b).

Significantly, treatment of supershedders with the MixB bacteria

shifted the recipients’ intestinal microbiota to the profile of a

healthy profile (Figure 4a) and triggered an increase in bacterial

diversity (Figure 4c) that was associated with resolution of

intestinal disease and contagiousness. Analysis of 16S rRNA gene

sequences, and of cultured isolates, derived from treated mice

confirmed the presence of five of the six MixB bacteria in the feces

during days 6–14 post-treatment (Table S2). Much of the

increased diversity, however, was derived from commensal

bacteria that were present at low levels pre-treatment (Table S2),

suggesting that the MixB bacteria had disrupted colonization by C.

difficile 027/BI and the other members of the supershedder

microbiota by triggering an expansion of the suppressed health-

associated bacteria and a re-distribution of the microbiota to a

healthy composition.

Significantly, and in contrast to the results with MixB,

treatment of mice with further subdivisions of this bacterial

mixture, including the MixB bacteria administered individually,

or mixtures containing six or seven other cultured bacterial

strains had a negligible impact on the supershedder state

(Figure 4b). To further illustrate the particular effectiveness of

our MixB collection of strains, treatment of supershedders with a

Bacteroides/Lactobacillus mixture, representative of more traditional

probiotic bacterial groups [43,44], failed to resolve the super-

shedder state and restore the recipients’ microbiota to a healthy

profile (Figure 4a and Figure S9). Thus, we rationally defined a

novel, simple mixture consisting of six phylogenetically diverse

Bacteriotherapy Treatment of Epidemic C. difficile
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intestinal bacterial strains that can resolve C. difficile 027/BI

infection in mice.

Dominant supershedder and bacteriotherapy bacteria
are phylogenetically distinct

Next we wanted to fully define the identity of the six bacterial

strains present in MixB (Table S3) and to discern their relationship

to the dominant members of the supershedder microbiota. To do

so we sequenced the genomes of the six MixB bacteria (and their

closest equivalent human-derived species) and performed a

phylogenetic comparison to the dominant members of the

supershedder microbiota and reference intestinal bacterial ge-

nomes representative of the mammalian microbiota (Figure 5 and

Table S4). Based on this analysis we determined that MixB

includes three previously described species, Staphylococcus warneri,

Enterococcus hirae, Lactobacillus reuteri, and three novel species,

Anaerostipes sp. nov., Bacteroidetes sp. nov. and Enterorhabdus sp.

nov. (Table S3). This mix of bacteria is therefore phylogenetically

diverse, including both obligate and facultative anaerobic species,

and represents three of the four predominant intestinal microbiota

phyla. Importantly, these species appear to be common inhabi-

tants of the mouse intestine in health and they are phylogenetically

distinct from the dominant members of the supershedder

microbiota (Figure 5). Given the demonstrated ineffectiveness of

autoclaved feces, fecal filtrates, SFCAs and individual bacterial

strains it therefore appears that displacement of C. difficile and the

supershedder microbiota may require competition from a phylo-

genetically diverse and physiologically distinct collection of living

bacteria.

Figure 3. Fecal transplantation resolves relapsing epidemic C. difficile 027/BI-7 disease and host contagiousness. a) C. difficile shedding
patterns from mice (average shedding from 5 mice/cage) demonstrating that epidemic C. difficile infection is refractory to vancomycin treatment
(van) and results in a relapsing supershedder state. Fecal transplantation suppresses high-level C. difficile 027/BI-7 shedding (brown) whereas PBS
administration had no impact on C. difficile 027/BI-7 shedding levels (black). Toxins were detected in the feces of supershedders but not in the feces
of carriers using the ToxA/B Quikchek (Techlab, Blackburg, VA, USA). Broken horizontal line indicates culture detection limit of 50 CFU/gram feces. b)
Supershedder mice efficiently transmit C. difficile to naive mice whereas mice treated with feces and transformed to carriers become poor donors of
infection to naive mice. Transmission efficiency refers to the percentage of naı̈ve recipient mice (n = 10/group) that became infected with C. difficile
027/BI-7. c) Quantitative RT-PCR of RNA extracted from supershedder mice cecal tissue showing high-level expression of the proinflammatory genes
IL-6, iNOS and Ly6G, which were suppressed to levels comparable to naive mice after fecal transplantation. Cytokine expression was normalized to
Gapdh and is shown as relative values.
doi:10.1371/journal.ppat.1002995.g003
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Figure 4. Effective bacteriotherapy re-establishes a healthy, diverse microbiota profile in epidemic C. difficile 027/BI supershedder
mice. a) Principal component analysis of the 16S rRNA gene sequences demonstrates that distinct microbiota profiles (circled) are associated with
‘‘healthy/naı̈ve’’ mice, mice undergoing ‘‘clindamycin treatment’’ and ‘‘persisting supershedders’’ of C. difficile 027/BI-7. PC1 and PC2 account for 38%
of the variation. Each symbol represents one microbiota (dot) or treatment (star) community. Treatment of supershedder mice with feces from
healthy mice, the cultured fecal derivative or mixtures of defined, cultured bacteria are as indicated: brown - shading for healthy feces, blue - shading
for fecal derivatives culture passaged once, green - shading for mixture of six suppressive bacteria (MixB) and grey - shading for Bacteroides/
Lactobacillus mixture. The symbol representing the Bacteroides/Lactobacillus treatment is based on culturing counts and modified to reflect the
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Discussion

We demonstrate that epidemic C. difficile 027/BI effectively

maintains intestinal dysbiosis after clindamycin treatment, altering

the intestinal ecosystem to outcompete health-associated intestinal

bacteria. In contrast, neither C. difficile 017/CF nor 012/R

induced persistent dysbiosis, presumably because they are less

virulent in mice. There are large differences between the genomes

of the C. difficile 027, 012 and 017 lineages [21–23] that could

account for such differences, including the presence of a binary

toxin in the 027/BI lineage [28], that warrant further investiga-

tion. As a result, epidemic C. difficile 027 is shed into the

environment for a greater period compared to other human

virulent variants, increasing its likelihood of infecting a susceptible

host. This model explains how epidemic variants, like the C. difficile

027/BI-7 clade [21,22], can quickly become the dominant variant

within a host population. Below we propose a model to explain the

establishment of persistent dysbiosis by epidemic C. difficile 027/BI

and the successful resolution of C. difficile infection by bacterio-

therapy (Figure 6).

Antibiotic perturbation of the intestinal microbiota is one of the

major risk factors for C. difficile colonization and disease [45]. We

show that in the absence of C. difficile infection clindamycin

treatment initially reduces the complexity of the murine

relative abundance of each organism in the mixture. Next to the shading: pre = pre-treatment; 3 = 3 days post-treatment; 4 = 4 days post-treatment;
6 = 6 days post-treatment; 14 = 14 days post-treatment. Grey background arrows indicate the shifts in the microbiota profiles of treated mice over a
14-day period. b) Fecal shedding profiles from supershedder mice (n = 5/group) that were treated with MixA, MixB or MixC (Table S3). c) Shannon
Diversity Indices of the intestinal microbiota of supershedders pre- and post-treatment (day 3, 6 and 14) with MixB and that of the corresponding
input community.
doi:10.1371/journal.ppat.1002995.g004

Figure 5. Whole genome (maximum likelihood) phylogeny of intestinal bacteria demonstrating the phylogenetic placement of
disease-resolving bacteriotherapy bacteria (MixB) and the dominant members of the supershedder microbiota. Maximum likelihood
phylogeny produced using FastTree from the concatenated protein sequence of 44 common genes (See methods). Species names marked in green
indicate members of the suppressive MixB mixture, names marked in red indicate species that were commonly detected in the feces of
supershedding mice, names in black are reference genomes from common intestinal bacteria that were included to provide phylogenetic context to
the tree. Taxonomic designations are given at the relevant branch nodes. Adjacent pictures are transmission electron micrographs of sectioned
bacterial strains that constitute MixB. Methods for sample processing and imaging have been described [33]. Scale bars are shown below bacteria.
doi:10.1371/journal.ppat.1002995.g005
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microbiota (Figure 6 b and c) before the diversity recovers to a

level comparable to the original community by 2–3 weeks post-

treatment (Figure 6 d and a) [27]. The majority of studies in

humans [46,47] and mice [27,48–51] have also shown that the

diversity of the microbiota is initially diminished by a variety of

antibiotic treatments before the microbiota diversity re-establishes.

However, there is variability in diversity recovery time and this is

likely due to differences in the initial microbiota composition, the

host’s genetics/immune system status, the spectrum and dose of

the antibiotic used [51] and the presence of bacteria in local

environment that can potentially re-colonize the host [48].

After antibiotic treatment there is a transient period where

colonization resistance is reduced and the host is very susceptible

to infection by such pathogens as C. difficile [30,52] or S.

Typhimurium [50,51,53](Figure 6e). The antibiotic-induced sus-

ceptible period allows environmental C. difficile spores to colonize

[32–34] or intestinal C. difficile to expand from a low-level carrier

state [27]. We show that after colonization by environmental

spores (Figure 6 e) epidemic C. difficile induces a strong neutrophil

response compared to other human virulent variants of C. difficile

(Figure 6f), possibly due to strain differences in toxin production/

activity [16,54] or other genetic differences [21,22]. The ability of

epidemic C. difficile 027/BI to induce an inflammatory response

promoted the emergence of a distinct microbiota that contained

low diversity and recognized human opportunistic pathogens

(Figure 6f). The dysbiotic microbiota also produced less SCFAs in

tandem with a marked proportional reduction in butyrate and

acetate. Butyrate is the major energy source for enterocytes and

thereby indirectly supports host response mechanisms [38]. Thus,

by limiting the energy resources available to the mucosal

epithelium it is possible that the supershedder microbiota may

be promoting it’s own stability.

Restoration of a healthy microbiota with fecal transplantation is

viewed as a promising alternative treatment for recurrent C. difficile

disease and other forms of intestinal dysbiosis [12,55], but it is not

widely used because of the time required to identify a suitable

donor, the risk of introducing opportunistic pathogens as well as a

general patient aversion [56]. Thus, the development of a murine

model that recapitulates many features of fecal transplantation in

humans with recurrent C. difficile disease provides a valuable

surrogate to understand the basic mechanisms of successful fecal

transplantation and also as a basis to develop standardized

Figure 6. Proposed model for establishment of C. difficile-mediated dysbiosis and successful bacteriotherapy. Intestinal homeostasis
(a) is characterized by lack of pathology and a diverse, stable microbiota that produces SCFA via fermentation. Antibiotic perturbation (b–c) kills
susceptible bacteria resulting in a simplified community structure (and reduced SCFA production) and a loss of colonization resistance. In the absence
of opportunistic infection, the microbiota generally rebounds in diversity and SCFA production (d) to re-establish homeostasis and colonization
resistance (a). However, exposure to C. difficile (e) after antibiotic perturbation (b) can lead to persistent dysbiosis (f) that is characterized by a
pathogenic microbial community, reduced SCFA and pathology. Bacteriotherapy disrupts dysbiosis (g) leading to the clearance of C. difficile (h) and
re-establishment of intestinal homeostasis (a).
doi:10.1371/journal.ppat.1002995.g006
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treatment mixtures (i.e. bacteriotherapy). Using our model we

rationally identified a simple mixture of six phylogenetically

diverse bacteria that can trigger the expansion of health-associated

commensals that appear to be suppressed during persistent

dysbiosis (Figure 6 g) and the subsequent displacement of epidemic

C. difficile, and the supershedder microbiota, to resolve intestinal

disease and contagiousness (Figure 6 h and d). Tvede and Rask-

Madsen [36] previously demonstrated that a mixture of ten

different facultatively aerobic and anaerobic bacteria was able to

resolve C. difficile infection in a small number of human patients.

However, this initial success does not appear to have been

maintained and, at present, defined bacteriotherapy mixtures with

proven efficacy are sorely lacking.

Our results highlight the malleability and therapeutic potential

of health-associated microbial communities and suggest that the

administration of a phylogenetically diverse mixture of bacteria is

a critical early trigger for the recovery of the suppressed

microbiota. Indeed, isolates within ‘‘MixB’’ failed to trigger a

response when administered individually, suggesting that diversity

is important. Species composition appears to be equally significant

since other defined mixtures of strains failed to resolve disease.

Crucially however, by identifying the persistent supershedder

microbiota, we were able to guide our strain selection by avoiding

the use of species that appear to be associated with C. difficile

during supershedding infection. Following these principles we

believe that it is likely that many distinct combinations of bacterial

strains will have the potential to treat recalcitrant or recurring C.

difficile infection. These observations open the way to rationally

harness the therapeutic potential of health-associated microbial

communities to treat recurrent C. difficile disease and transmission

in humans, and potentially other forms of disease-associated

dysbiosis.

Materials and Methods

Ethics statement
All animal procedures were performed in accordance with the

United Kingdom Home Office Inspectorate under the Animals

(Scientific Procedures) Act 1986. Ethical approval for these

procedures were granted by the Wellcome Trust Sanger Institute’s

Ethical Review Committee.

Bacterial culturing
C. difficile strains BI-7 (genotype 027/BI; clindamycinR,

thiamphenicolR, erythromycinS, tetracyclineS, ciprofloxacinR,

vancomycinS), M68 (genotype 017/CF; clindamycinR, thiamphe-

nicolS, erythromycinR, tetracyclineR, ciprofloxacinR, vancomy-

cinS) and 630 (genotype 012/R; clindamycinR, thiamphenicolS,

erythromycinR, tetracyclineR, ciprofloxacinS, vancomycinS) have

been described [21,27]. The BI-7 culturing of C. difficile for

infections and from feces was described previously [27]. To isolate

the intestinal bacteria from mouse feces or passaged fecal

derivatives, the samples were serially diluted in sterile PBS, plated

on a panel of nutrient agar plates; Luria Bertani, Brain Heart

Infusion, Man Rogosa Sharpe, Fastidious anaerobic media,

Columbia base media supplemented with 10% defribrinated horse

blood, Wilkins-Chalgren anaerobic media (all media from Becton,

Dickinson, Oxford, UK) and grown either aerobically or

anaerobically at 37uC for 24–72 hours. Distinct colony types were

isolated, culture purified and genomic DNA was isolated to

sequence the 16S rRNA gene using broad range primers as

described in the microbiota section below. 16S rRNA gene

sequences were compared to the GenBank and RDP databases to

identify the bacterial species.

TcdA ELISA
C. difficile cultures were grown in Wilson’s broth [27] with

shaking for 30 h, pelleted by centrifugation and supernatant was

removed for TcdA quantification. Microtitre plates (96 well) were

coated with capture antibody by adding 50 ml/well of a 2 mg/ml

solution of anti-TcdA (TGCBiomics GmbH, Mainz, Germany) in

PBS, and incubating overnight at 4uC. Plates were then washed

three times in 0.05% Tween20 in PBS (PBS-T) and blocked with

200 ml 1% BSA (bovine serum albumin) in PBS for 2 h at room

temperature. Purified TcdA from C. difficile strain VPI10463

(TGCBiomics GmbH, Mainz, Germany) was diluted in 1% BSA-

PBS (50 ml/well) and used to construct a standard curve. Culture

filtrates were diluted as above in order to generate readings within

the linear range of the standard curve. Plates were then incubated

at room temperature for 2 h, followed by washing in PBS-T as

above. The detection antibody (rabbit anti-Clostridium difficile toxin

A; antibodies-online GmbH, Aachen, Germany) was diluted

1:5000 in 1% BSA-PBS, added to wells (50 ml/well) and incubated

for 2 h at room temperature. After washing, polyclonal swine anti-

rabbit IgG conjugated to horseradish peroxidase (Dako, Cam-

bridgeshire, UK) was diluted 1:1000 in 1% BSA-PBS, added to the

wells (50 ml/well) and incubated for 2 h at room temperature.

Finally, plates were washed and 100 ml 3,39,5,59-tetramethylben-

zidine (TMB; Sigma Aldrich, Dorset, UK) substrate was added for

30 min at room temperature in the dark. 50 ml 0.5 M H2SO4 was

added to stop the reaction. Absorbance was then measured at

450 nm on a FLUOStar Omega (BMG Labtech, Bucks, UK).

Mouse infections
Female mice between 5–9 weeks of age and from the genetic

backgrounds C57BL/6, C57BL/6 p402/2, C3H/HeN and

C3H/HeJ were routinely used. Mice to be used as C. difficile

spore donors were infected with 105 C. difficile cells via oral gavage

and immediately clindamycin (250 mg/L; Apollo Scientific Ltd,

Chesire, UK) was added to the drinking water for 1 week to induce

high-level spore excretion. To infect experimental mice, one petri

dish of contaminated bedding was removed from spore donor

cages, placed into recipient mice cages and clindamycin (250 mg/

L) was added to the drinking water for 1 week to induce the

supershedder phenotype. To infect germ-free C3H/HeN mice,

the feces of supershedder mice was collected, diluted in serial PBS

and inoculated into mice via oral gavage. To suppress infection,

vancomycin (300 mg/L; Sigma Aldrich, York, UK) was added to

the drinking water for 10 days. To assess impact of infection, mice

were sacrificed at indicated times and cecal tissue was aseptically

collected and fixed for pathology as described [27], or fixed for

RNA extractions by immersing samples in RNA-later (Applied

Biosystems, Warrington, UK).

Bacteriotherapy treatment
To prepare input for bacteriotherapy, 1 gram of fresh feces was

collected from 5 naı̈ve mice, homogenized in 5 ml of sterile PBS

and centrifuged for 30 seconds at 14,000 RPM to pellet the

particulate matter. The supernatant slurry was collected and

200 ml was gavaged into each mouse within 30 minutes of

excretion. To create the defined bacterial mixtures, individual

bacteria were grown in Wilkins-Chalgren broth (Lactobacillus in

Man Rogosa Sharpe broth) for 48–72 hours under anaerobic

conditions at 37uC. Bacteria were harvested by centrifugation and

re-suspending the pellet in 2 mls of sterile, pre-reduced PBS.

Approximately 1010 of each bacterium was gavaged into each

mouse in a 200 ul volume. To passage healthy feces, two fecal

pellets (,50 mg) were collected aseptically and immediately

placed into 20 ml of standing Wilkins-Chalgren Anaerobic broth
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or Luria broth that was pre-warmed to 37uC under aerobic or

anaerobic conditions. Fecal pellets were physically disrupted within

the broth using a sterile pipette tip and subsequently incubated

standing for 16 hours. For serial passage, 200 ul of the fecal

derivative was inoculated into fresh broth and grown as described.

For inoculations, the 20 ml cultures were pelleted and then re-

suspended into 2 ml of sterile PBS pre-warmed to 37uC under

aerobic or anaerobic conditions. Based on visual counts, approx-

imately 46108 (anaerobic passage) and 86108 (aerobic passage)

bacteria were gavaged into each mouse in a 200 ml volume.

Microarrays
RNA purification from cecal mucosal tissue was performed

using a Qiagen RNeasy mini kit (Qiagen, Austin, TX, USA)

according to the manufacturer’s protocol. Quality control and

quantification were performed using Bioanalyzer 2100 (Agilent

Technologies, Palo Alto, CA, USA) and Nanodrop ND100

(Nanodrop Technologies, Wilminton, DE). RNA samples were

then amplified and labelled using the Illumina TotalPrep 96 kit

(Ambion, Austin, TX, USA) and hybridized onto Illumina Mouse

WG-6-V2 Beadchips (Illumina, San Diego, CA, USA). The chips

were scanned on an Illumina BeadArray Reader and raw

intensities were extracted using Illumina BeadStudio Gene

Expression Module.

Normalization and analysis of the microarrays were performed

using GeneSpring X software (Agilent Technologies, Berkshire,

UK). Normalization procedures utilized were quantile normaliza-

tion and median of all samples baseline correction. For each

comparison, differentially expressed genes were defined as having

a fold change $2 and a FDR (false discovery rate) corrected p-

value#0.05. Adjusted p-values were calculated using the Benja-

mini and Hochberg method [57].

RT-PCR
Quantitative expression analysis was performed by real-time

TaqMan RT-PCR on the ABI PRISM 7900HT Sequence

Detection System (Applied Biosystems, Warrington, UK) as

described previously [58]. Expression of IL-6, iNOS and Ly6G

was normalized to Gapdh mRNA. TaqMan primers and probes

were designed to span exon junctions or to lie in different exons to

prevent amplification of genomic DNA, as described [58]. Primer

and probe sequences are shown in Table S3. Probes were labelled

with the reporter dye FAM at the 59- and the quencher dye

TAMRA at the 39-end.

Transmission experiments
Protocols to test the contagiousness of infected donors (super-

shedders or carriers) have been described [27]. To compare the

contagiousness of different C. difficile strains mice infected with

either C. difficile 012 (strain 630), 017 (strain M68) and 027 (strain

BI-7) (immediately after cessation of 7 days of clindamycin

treatment) were co-housed with 7 naı̈ve recipient mice for 30 days.

Experiments were repeated for a total of 14 naı̈ve mice. To

determine if recipient mice were infected with C. difficile they were

individually placed (aseptically) in sterile cages for 3 days and given

clindamycin in their drinking water for 4 days [27]. Afterwards,

feces was collected from individual mice and C. difficile enumerated

by standard methods [27]. Antibiotic resistance profiles were used

to determine which C. difficile strain had infected mice.

Analysis of microbiota
Fecal DNA extraction, clone library construction and sequenc-

ing were carried out as described previously [27,59]. Briefly, DNA

was extracted from fecal samples using the FastDNA SPIN Kit for

Soil and FastPrep machine (MP Biomedicals, Solon, OH) and 16S

rRNA genes amplified using primers 7F (59–AGA GTT TGA

TYM TGG CTC AG-39) and 1510R (59-ACG GYT ACC TTG

TTA CGA CTT-39). The 16S rRNA genes were then cloned into

E. coli using pGEM-T Easy Vectors (Promega UK, Southampton,

UK) and 284 clones per sample were picked for sequencing

(covering regions V2–V5) using an ABI 3730. Sequences were

aligned using the RDP aligner [60] and these alignments were

manually curated in the ARB package [61] before further analysis.

Otherwise, sequences were checked and classified as described

previously [62]. In total 19,991 sequences were generated and

these were deposited in GenBank (accession numbers JF241944–

JF260864 and HE605382–HE608150).

The species diversity in each sample was measured by

calculating the Shannon Diversity Index, which takes into account

both species richness and relative proportional abundance

(evenness), using the mothur software package [63]. Rarefaction

curves and Chao1 estimates of total bacterial diversity were also

calculated in mothur [63].

Cluster dendrograms and PCA plots were based on a master

alignment, which was built using the RDP aligner and subjected to

manual curation. Using this alignment a distance matrix, with

Felsenstein correction, was created using ARB. The distance

matrix was then used as an input for DOTUR [64] using a 98%

identity cut-off under the default furthest-neighbor setting.

Sequences with .98% phylogenetic similarity were regarded as

belonging to the same OTU. These OTUs were then used to

calculate cluster dendrograms, using the Bray Curtis calculator, in

the mothur package [63]. 336 OTUs (12,308 clones) contributed

to this analysis. Cluster dendrograms, with added bar charts

showing the microbial composition of each sample and Shannon

Diversity Indices, were visualized using the iTOL web package

[65]. For the PCA plot OTUs were generated as above but with a

97% identity cut-off. PCA decomposition was performed on the

(symmetric) matrix of pairwise sample similarity, where the

similarity metric was based on the sum of absolute differences in

OTU frequency. 344 OTUs (16,154 clones) contributed to the

analysis, which was insensitive to the removal of low frequency

OTUs.

To determine the SCFA profile, the cecal contents from 5 mice

per group were pooled and then resuspended in sterile PBS at a

concentration of 500 mg/ml, homogenized and centrifuged at

14,000 rpm for 10 minutes. Supernatant was collected, acidified

and following conversion to t-butyldimethylsilyl derivatives were

analyzed by gas chromatography [66].

Whole genome sequencing and phylogenetic analysis of
intestinal bacteria

We sequenced the genomes (and their closest equivalent

human-derived species) using the MiSeq platform, and performed

de novo assembly using Velvet {[67] and gene prediction using

GLIMMER3 [68]. We then identified the genes that were

ubiquitous between the 6 MixB species, and reference intestinal

bacterial genomes sourced from the MetaHIT project, the HGMI

project, and the Human Microbiome Project (Table S5). 44

Common genes were identified using TBLASTN [69] searches

against the complete dataset of the reference and assembled

genomes for 80 bacteria (Table S5). Although the ‘‘true’’ core

genome amongst these samples may be higher – we were limited

by the fact that in several cases only draft assemblies were

available, and so some genes which may have been expected to be

present in the ‘‘core’’ group, were in fact not present, due to their

absence in one or more of the draft genome sequences used. A
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gene was classified as being ‘present’ if it had a minimum percent

amino acid identity across the entire gene of 30% compared to the

reference. The reference genes used for querying were taken from

the strain of Staphylococcus warneri derived from MixB. The common

genes so identified were manually checked, translated, extracted,

and concatenated together. We then used FastTree 2.1 [70], with

its default settings (BLOSUM45 and the Jones-Taylor-Thorton

CAT model, with 20 rate categories), to generate a maximum

likelihood phylogeny from the concatenated protein sequence, in

order to place the bacteria into their correct context and to

distinguish species.

Supporting Information

Figure S1 Toxin A production by C. difficile 027/BI-7,
012/630 and 017/M68. C. difficile 027/BI produced TcdA at

200.3 ng/ml, C. difficile 630/012 produced TcdA at 21.5 ng/ml and

C. difficile M68/017 does not produce TcdA. Data are from 3

independent experiments with triplicate determinants in each.

(EPS)

Figure S2 C. difficile supershedders are highly con-
tagious. Donor mice (from Figure 1) infected with the

indicated C. difficile variant were housed for 1 hour in sterile

cages without bedding and then feces was removed and cages

were left overnight so that only spore contamination remained.

The next day naı̈ve recipient mice were aseptically placed in

cages for 1 hour and then aseptically removed and housed

individually in sterile cages and given clindamycin in their

drinking water. After 4 days the recipient mice were sampled

to determine if they were infected with C. difficile. The

transmission efficiency represents the percentage of recipient

mice that became infected with C. difficile. Experiments were

repeated at least twice and included 10 recipient mice per

experiment. n.d = not determined.

(EPS)

Figure S3 Expression microarray using cecal tissue of
C57BL/6 mice supershedding either C. difficile 027/BI-
7 or 017/M68 at 5 days post-infection. Red indicates

upregulation and green indicates downregulation of genes

compared to naı̈ve, clindamycin treated control mice. Summary

of data in Table S1.

(EPS)

Figure S4 Distinct intestinal microbiota community
structures from healthy/naı̈ve mice (n = 17), clindamy-
cin supershedders (C. difficile 027/BI-7 infected mice on
clindamycin; n = 10) and persisting supershedders (C.
difficile 027/BI-7 infected mice not on clindamycin;
n = 17). a) Plot illustrating the percentage of C. difficile 16S rRNA

gene clones in libraries of healthy/naı̈ve mice (n = 4,926 clones),

clindamycin supershedders (n = 4,433 clones) and persisting

supershedders(n = 2,956 clones). b) Comparison of SDI for the

intestinal microbiota of healthy/naı̈ve mice, clindamycin super-

shedders and persisting supershedders. Wilcoxon rank sum test

was used to compare differences between groups.

(EPS)

Figure S5 Fecal bacteriotherapy suppresses C. difficile
intestinal colonization and diversifies the intestinal
bacterial community of supershedder mice. a) High-level

excretion of C. difficile is rapidly suppressed after oral inoculation of

supershedder mice with homogenized feces from a healthy mouse

(input feces). Plotted red line represents average shedding levels of

5 mice and error bars indicate standard deviation. Black vertical

arrow indicates day 58 when healthy feces was administered and

green arrowheads indicate the times when fecal DNA was

extracted for 16S rRNA gene analysis. b) Composition of intestinal

bacterial community of supershedder mice (n = 2) shifts to reflect

that from the healthy donor mouse after bacteriotherapy. c)

Diversity of intestinal microbiota of supershedder mice increases

after bacteriotherapy as indicated by an increase in the Shannon

Diversity Index scores.

(EPS)

Figure S6 Impact of various oral treatments on epi-
demic C. difficile 027/BI supershedder state in mice.
Fecal shedding profile from supershedder mice (n = 5/group) that

were treated with feces or fecal derivatives. Standard treatments

with a) feces and b) PBS are the same as in Figure 2. The following

treatments were administered into supershedder mice via oral

gavage with a 200 ml volume. c) Equivalent feces was autoclaved

using standard conditions and then resuspended in sterile PBS for

a final concentration of 100 mg/ml. d) To produce fecal filtrate,

feces was homogenized in sterile PBS at a concentration of

100 mg/ml and then centrifuged at 14,000 rpm for 10 minutes to

separate the bacteria/particulate matter from the soluble fraction

which was then filtered through a 0.22 mm filter. This was referred

to as the fecal filtrate. e) SCFA indicates a mixture of

acetate:propionate:butyrate in a ratio of 6:1:2 at a concentration

of 100 mM that was at pH 6.5. f) Lab adapted E. coli strain C600

(nalidixic acid resistant) was gavaged into mice at a dose of

108 CFU. E. coli colonization was confirmed by culturing feces of

supershedder mice. The broken horizontal line indicates the

detection limit.

(EPS)

Figure S7 Rarefaction curves demonstrating observed
bacterial diversity of feces from healthy, naı̈ve mice and
its serially passaged derivatives. In addition, the Chao1

calculator estimated the total community diversity (OTU defined

at $98% similarity) for the healthy feces as 142 phylotypes (95%

confidence interval 105–225), passage 1 as 30 phylotypes (95%

confidence interval 27–46), passage 2 as 6 phylotypes (95%

confidence interval 5–18) and passage 3 as 4 phylotypes (95%

confidence interval 4-4). Together, these results demonstrate that

serial passage of healthy feces in nutrient broth progressively

reduced the complexity of the bacterial community.

(EPS)

Figure S8 Simplified fecal derivatives enriched for
easily culturable components effectively suppress the
epidemic C. difficile supershedder 027/BI state in mice.
a) Fecal shedding profiles from supershedder mice (n = 5/group)

that were treated with healthy feces, a Bacteroides/Lactobacillus

mixture (Bacteroides acidifaciens, Bacteroides vulgatus, Lactobacillus

murinus and Lactobacillus reuteri), feces cultured in Wilkins-Chalgren

Anaerobic broth at 37uC either aerobically or anaerobically. Pie

charts illustrate the composition of the input treatments based on

16S rRNA gene clone libraries for healthy feces, aerobic passaged

and anaerobic passaged inputs or based on culturing for the

Bacteroides/Lactobacillus mixture. b) Shannon Diversity Indices of

the intestinal microbiota of supershedders pre- and post-treatment

(day 3, 4, 6 and 14) and that of the corresponding input

community.

(EPS)

Table S1 Differential gene expression between C.
difficile 027/BI7 and 017/M68 infected cecal tissues.
Host gene expression was assessed on mice infected with either C.

difficile 027/BI7 or C. difficile 017/M68 for 5 days or clindamycin-
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treated uninfected controls. Genes differentially expressed between

the two infected groups are shown in the table.

(XLS )

Table S2 Summary of 16S rRNA gene clone library data
used in this study. 19,991 sequences, generated from a total of

87 samples, were included in the study.

(XLS)

Table S3 Bacterial species isolated from cultured fecal
derivative.
(DOC)

Table S4 Summary of data used whole genome phylog-
eny of intestinal bacteria presented in Figure 5.
(XLSX)

Table S5 Primers used for RT-PCR experiments shown
in Figure 3.
(DOCX)
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