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Energy Consumption Scheduling of HVAC
Considering Weather Forecast Error through

Distributionally Robust Approach
Y. F. Du, L. Jiang, Member, IEEE, C. Duan, Y. Z. Li, and J. S. Smith

Abstract—In this paper, the distributionally robust optimiza-
tion approach (DROA) is proposed to schedule the energy con-
sumption of the heating, ventilation and air conditioning (HVAC)
system with consideration of the weather forecast error. The
maximum interval of the outdoor temperature is partitioned into
subintervals, and the proposed DROA constructs the ambiguity
set of the probability distribution of the outdoor temperature
based on the probabilistic information of these subintervals of
historical weather data. The actual energy consumption will
be adjusted according to the forecast error and the scheduled
consumption in real time. The energy consumption scheduling of
HVAC through the proposed DROA is formulated as a nonlinear
problem with distributionally robust chance constraints. These
constraints are reformulated to be linear and then the problem
is solved via linear programming. Compared with the method
that takes into account the weather forecast error based on
the mean and the variance of historical data, simulation results
demonstrate that the proposed DROA effectively reduces the
electricity cost with less computation time, and the electricity
cost is reduced compared with the traditional robust method.

Index Terms—Distributionally robust optimization, HVAC,
energy consumption scheduling, demand response.

NOMENCLATURE

U i
t The ith subinterval of the outdoor temperature

at time slot t.
Um
t The maximum interval of the outdoor temperature

at time slot t.
Bi

t The ith sub-zone of the outdoor temperature
and the effect of users’ activities at time slot t.

Bm
t The maximum zone of the outdoor temperature

and the effect of users’ activities at time slot t.
P0
t The set of all the probability distributions of

uncertain variables.
P1
t ,P2

t The ambiguity set of the probability distribution
of the outdoor temperature.

P3
t The ambiguity set of the probability distribution

of the outdoor temperature and the effect of
users’ activities.

Pt The probability distribution of uncertain variables.

Y. F. Du, L. Jiang, C. Duan and J. S. Smith are with the Department of
Electrical Engineering and Electronics, University of Liverpool, Liverpool L69
3GJ, U.K. (e-mail: duanchao@liv.ac.uk). C. Duan is also with the Department
of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China.

Y. Z. Li is with the State Key Laboratory of Advanced Electromagnetic En-
gineering and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China.

t Index of time slot.
i Index of subinterval of the maximum interval of

the outdoor temperature.
m The total number of temperature subintervals.
ξt The actual outdoor temperature.
µt The forecast outdoor temperature.
σ2
t The variance of the outdoor temperature.

lit The lower bound of U i
t .

ui
t The upper bound of U i

t .
pit The probability of ξt ∈ U i

t .
C Thermal capacity of HVAC.
R Thermal resistance.
η Coefficient of performance of HVAC.
θt The indoor temperature at time slot t.
θmin The lower bound of the indoor temperature.
θmax The upper bound of the indoor temperature.
θbest Users’ preferred indoor temperature.
κ The penalty factor of the deviation of users’

preferred temperature.
w1 The importance factor of Cost

(electricity cost).
w2 The importance factor of Num VioTem (number

of violations of comfortable temperatures).
w3 The importance factor of Time

(computation time).
∆t The time period in a time slot.
qt The real-time power consumption of HVAC.
qref
t The reference power consumption of HVAC.
qmax The upper bound of power consumption

of HVAC.
et The electricity price at time slot t.
T The scheduling horizon.
ε The violation probability of the bounds

of power consumption of HVAC.
se Index of scenario of the electricity price.
Se The total number of scenarios of

the electricity price.
φt The effect of users’ activities on the

indoor temperature.
ϕt The forecast effect of users’ activities on

the indoor temperature.
φmax
t The maximum effect of users’ activities on

the indoor temperature.
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φmin
t The minimum effect of users’ activities on

the indoor temperature.
β, h, y
y, λi, λ
τ0, τ1

Auxiliary variables.

I. INTRODUCTION

DEMAND response (DR) aims to schedule the energy con-
sumption of appliances in response to varying electricity

prices over time, or to incentive payments, or when the system
reliability is jeopardized [1] [2]. DR can help improve the
efficiency and the reliability of the power system [3]. Among
the main potential DR resources are heating, ventilation and
air conditioning (HVAC) systems because of their relatively
large energy consumption. The energy consumption of HVAC
accounts for about 40% of the energy consumption in a
building [4] and can be up to 60% [5]. Moreover, its energy
consumption has direct impact on the indoor temperature
and thus significantly affects the users’ comfort. The energy
consumption scheduling of HVAC in DR is to minimize the
electricity cost according to electricity prices with the indoor
temperature maintained in a comfortable zone [6].

The energy consumption of HVAC is usually scheduled
based on the forecast outdoor temperature [6]. The forecast
error is one of the main factors which affect the indoor temper-
ature and may cause the violation of the comfortable tempera-
ture zone [7]. Many studies have been carried out to deal with
the forecast error in the energy consumption scheduling of
HVAC [8]–[10]. The forecast error of the outdoor temperature,
i.e. the uncertainty of the outdoor temperature is considered
through the stochastic optimization approach (SOA) with a
certain probability distribution in [10] and through the robust
optimization approach (ROA) with a temperature interval in
[9]. The SOA requires the exact probability distribution of
the uncertain variable [11]. However, since the probability
distribution of the outdoor temperature can only be estimated,
the distribution itself is uncertain. The deviation between the
actual distribution and the adopted distribution by the SOA
may result in suboptimal solutions [12]. Though the ROA does
not require the probability distribution [13] [14], it may be
overly conservative since only the maximum forecast error
is considered [15]. The distributionally robust optimization
approach (DROA) combines the advantages of both the SOA
and the ROA [16]. It does not require the exact probability
distribution of the uncertain variable and its conservativeness
is reduced with the probabilistic information observed from
historical data [16]. With the mean and the variance extracted
from historical data, this approach has been currently applied
in the reserve scheduling problem in the power system [16].
The uncertainty of renewable energy is considered and the
reserve scheduling problem is solved based on semidefinite
programming (SDP) [16].

In this paper, a newly proposed DROA based on the proba-
bilistic information of subintervals of the outdoor temperature
is adopted to schedule the energy consumption of HVAC.
Different from the DROA based on the mean and the variance,
more information is extracted from historical weather data.
The proposed DROA partitions the maximum interval of the

outdoor temperature into subintervals, and it constructs the
ambiguity set of the probability distribution of the outdoor
temperature taking into account the probabilistic information
of historical data within these subintervals. To eliminate the
effect of the deviation between the actual outdoor temper-
ature and the forecast one, the actual energy consumption
of HVAC is proposed to be adjusted in real time based on
the scheduled consumption and the forecast error. With the
consideration of the ambiguity set of the outdoor temperature,
the energy consumption scheduling of HVAC is formulated
as a nonlinear problem with distributionally robust chance
constraints. These constraints are reformulated to be linear
and the energy consumption scheduling of HVAC is obtained
through linear programming (LP). The proposed DROA based
on the probabilities of subintervals is compared with the
DROA based on the mean and the variance and the ROA in
the electricity cost, the users’ comfort and the computation
time.

The rest of this paper is organized as follows. The problem
formulation of the energy consumption scheduling of HVAC
based on the proposed DROA is presented in Section II.
Section III proposes the solution theorem to reformulate the
distributionally robust chance constraints to be linear so that
the problem can be solved by LP. Simulation results are
presented in Section IV which compare the proposed DROA
with the other methods. Finally, conclusions are presented in
Section V.

II. PROBLEM FORMULATION

In this section, the energy consumption scheduling of HVAC
based on the proposed DROA is formulated. Firstly, the
weather forecast error is modeled, and the distributionally
robust chance constraints of the energy consumption of HVAC
are introduced. Then the complete optimization model of the
energy consumption scheduling of HVAC with consideration
of the forecast error is presented.

A. Model of weather forecast error

The weather forecast predicts an outdoor temperature but
the actual temperature may be different from this forecast.
The proposed DROA partitions the maximum interval of the
outdoor temperature into nested subintervals as follows

U i
t = {ξt ∈ R | lit ≤ ξt ≤ ui

t}, i = 1, · · · ,m
U1
t ⊆ · · · ⊆ Um

t
(1)

where ξt denotes the outdoor temperature at time slot t, Um
t

denotes its maximum interval, and m denotes the number
of temperature intervals. The lower and upper bounds of
subintervals are represented as

lm−i
t = lmt + i · um

t −lmt
2m−1

um−i
t = um

t − i · um
t −lmt
2m−1 , i = 1, 2, · · · ,m− 1.

(2)

The example of temperature intervals with m = 3 is shown
in Fig. 1. Based on the historical weather data, the ambiguity
set of the probability distribution of the outdoor temperature
is constructed with the consideration of the maximum interval
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Fig. 1. Nested temperature intervals with m = 3

TABLE I
PARAMETERS OF HVAC SYSTEM

Parameter Units Description
C kWh/◦F Thermal capacity of HVAC
R ◦F/kW Thermal resistance
η none Coefficient of performance of HVAC.

This value is positive for cooling and
negative for heating.

of the outdoor temperature and the probabilistic information
of subintervals

P1
t =

{
Pt ∈ P0

t (U
m
t )

EPt{ξt} = µt

Pt{ξt ∈ U i
t} = pit, i = 1, · · · ,m

U1
t ⊆ · · · ⊆ Um

t , pmt = 1

}
(3)

where µt denotes the forecast temperature, and pit denotes the
probability of ξt ∈ U i

t and its value is obtained from historical
weather data. Pt denotes the probability distribution of ξt and
P0
t (U

m
t ) denotes the set of all the probability distributions

supported on Um
t .

B. Distributionally robust chance constraints

To eliminate the effect of the weather forecast error, the
energy consumption of HVAC is proposed to be adjusted in
real time according to the deviation of the actual outdoor
temperature from the forecast one, and the energy consumption
is scheduled with the consideration of this adjustment through
distributionally robust chance constraints. Based on the model
of HVAC system, the indoor temperature is [6] [10]

θt = θt−1 −
∆t

C ·R
· (θt−1 − ξt−1 + η ·R · qt−1) (4)

where θt denotes the indoor temperature at time slot t, qt−1

denotes the power of the energy consumption of HVAC at time
slot t − 1 and ∆t denotes the time period. The parameters
C,R and η of HVAC system are summarized in Table I [6].
The indoor temperature will remain the same when the energy
consumption power of HVAC is adjusted in real time according
to the forecast error of the outdoor temperature

qt = qref
t +

1

η ·R
· (ξt − µt) (5a)

Pt{qt ≥ 0} ≥ 1− ε,∀Pt ∈ P1
t (5b)

Pt{qt ≤ qmax} ≥ 1− ε,∀Pt ∈ P1
t (5c)

where qref
t denotes the reference power of energy consumption,

i.e. the energy consumption schedule, which is proposed in
advance. How the reference energy consumption of HVAC is
determined will be introduced in the next section. qmax denotes
the maximum power of HVAC. The distributionally robust
chance constraints (5b) and (5c) show that both probabilities of

the power consumption satisfying the upper limit and the lower
limit should be no smaller than 1 − ε for all the probability
distributions of the outdoor temperature in the ambiguity set
P1
t .

C. Complete optimization model

Based on the electricity price and the users’ predefined com-
fort zone for the indoor temperature, the energy consumption
of HVAC is scheduled aiming to minimize the electricity cost
with users’ satisfaction of the indoor temperature, which is
formulated as

min
qref
t

E{
T∑

t=1

(et · qt ·∆t)} (6a)

qt = qref
t +

1

η ·R
· (ξt − µt) (6b)

θt = θt−1 −
∆t

C ·R
· (θt−1 − ξt−1 + η ·R · qt−1) (6c)

θmin ≤ θt ≤ θmax (6d)
Pt{qt ≥ 0} ≥ 1− ε,∀Pt ∈ P1

t (6e)
Pt{qt ≤ qmax} ≥ 1− ε,∀Pt ∈ P1

t (6f)

where et denotes the electricity price at time slot t and T
denotes the scheduling horizon. θmin and θmax denote the
lower bound and the upper bound of the comfortable tempera-
ture zone, respectively. The energy consumption is scheduled
taking into account the weather forecast error based on the
nested intervals of the outdoor temperature, and the effect of
the weather forecast error is eliminated through the real-time
adjustment of the energy consumption with the consideration
of the distributionally robust chance constraints.

This energy consumption model can be applied to the HVAC
system with only on-off control action, i.e. the power of HVAC
can be either qmax or 0. Firstly, the power of HVAC’s energy
consumption is obtained based on the proposed system model
and this power will last for ∆t. Note that the effect of energy
consumption on the indoor temperature is the same when the
energy consumption of HVAC in ∆t is the same. When the
HVAC system with only on-off control action is adopted, the
time when HVAC is on can be adjusted to satisfy the same
energy consumption in ∆t, i.e. the time when HVAC is on is
qt·∆t
qmax .

III. SOLUTION APPROACH

In this section, the distributionally robust chance constraints
(6e) and (6f) are reformulated to be tractable and linear
based on the theorem proposed below, and then the energy
consumption scheduling of HVAC based on the proposed
DROA can be solved through LP. For convenience, these two
constraints are presented in a uniform form

Pt{at · ξt ≤ bt} ≥ 1− ε,∀Pt ∈ P1
t (7)

where at and bt for (6e) and (6f) are specified in Table II. It
has been proved in [17] that

Pt-CVaRε(at · ξt − bt) ≤ 0 ⇒ Pt{at · ξt ≤ bt} ≥ 1− ε

Pt-CVaRε(at · ξt − bt)
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TABLE II
EXPRESSIONS OF at AND bt

Constraint at bt
(6e) − 1

η·R qref
t − 1

η·R · µt

(6f) 1
η·R qmax

t − qref
t + 1

η·R · µt

= inf
β∈R

{
β +

1

ε
EPt{(at · ξt − bt − β)+}

}
(8)

where (x)+ = max(x, 0), and CVaR denotes conditional value
at risk and it is introduced based on value at risk (VaR). VaR is
the value satisfying the probability that at ·ξt−bt is above VaR
is at most ε, and CVaR is defined as the mean of at ·ξt−bt on
the tail distribution exceeding VaR [18]. More about CVaR can
be found in [18]. According to (8), constraint (7) is satisfied
if

Pt-CVaRε(at · ξt − bt) ≤ 0, ∀Pt ∈ P1
t . (9)

Theorem 1: When the ambiguity set P1
t is constructed, the

distributionally robust constraint (9) is satisfied if and only if
there exist y, β and λi, i = 1, · · · ,m, such that

β +
1

ε
· (µt · y +

m∑
i=1

λi · pit) ≤ 0 (10a)

∀i = 1, · · · ,m :

y · lit +
m∑
j=i

λj ≥ 0 (10b)

y · ui
t +

m∑
j=i

λj ≥ 0 (10c)

y · lit +
m∑
j=i

λj − (at · lit − bt − β) ≥ 0 (10d)

y · ui
t +

m∑
j=i

λj − (at · ui
t − bt − β) ≥ 0 (10e)

Proof: First note that constraint (9) is equivalent to

sup
Pt∈P1

t

inf
β∈R

{
β +

1

ε
EPt{(at · ξt − bt − β)+}

}

= inf
β∈R

{
β +

1

ε
sup

Pt∈P1
t

EPt{(at · ξt − bt − β)+}

}
≤ 0 (11)

where the interchangeability of sup and inf is guaranteed
by a stochastic saddle point theorem [19]. To reformulate
constraint (11), the following worst-case expectation needs to
be evaluated

sup
Pt∈P1

t

EPt{(at · ξt − bt − β)+}. (12)

Note that the probability distribution of the outdoor tempera-
ture is not known and there are infinitely many possible distri-
butions which form an ambiguity set. The infinite dimensional
linear optimization problem (12) is equivalent to

sup
Pt∈P0

t (U
m
t )

∫
Um

t

(at · ξt − bt − β)+Pt(dξt) (13a)

s.t.
∫
Um

t

ξtPt(dξt) = µt (13b)∫
Um

t

IUi
t
Pt(dξt) = pit, i = 1, · · · ,m (13c)

where IUi
t

= 1 when ξt ∈ U i
t , otherwise IUi

t
= 0. By

introducing dual variables y and λi, (13) is reformulated as

inf
y,λ

µt · y +
m∑
i=1

λi · pit (14a)

s.t. y ∈ R, λi ∈ R, i = 1, · · · ,m (14b)

inf
ξt∈Um

t

{
y · ξt +

m∑
i=1

λi · IUi
t
− (at · ξt − bt − β)+

}
≥ 0.

(14c)

Now the problem has been reformulated to a finite dimensional
optimization problem. Since Um

t can be partitioned into m mu-
tually disjoint sets R1

t = U1
t , Ri

t = U i
t \U i−1

t , i = 2, · · · ,m,
(14c) is equivalent to

inf
ξt∈Ri

t

y · ξt +
m∑
j=i

λj − (at · ξt − bt − β)+

 ≥ 0,

∀i = 1, · · · ,m (15)

which can be further equivalently converted to

inf
ξt∈Ui

t

y · ξt +
m∑
j=i

λj − (at · ξt − bt − β)+

 ≥ 0,

∀i = 1, · · · ,m (16)

considering that U i
t ⊇ Ri

t, and that the infimum of (16) is
attained on the boundary of U i

t and Ri
t contains the boundary

of U i
t . Constraint (16) is satisfied if and only if ∀i = 1, · · · ,m,

y · lit +
m∑
j=i

λj ≥ 0 (17a)

y · ui
t +

m∑
j=i

λj ≥ 0 (17b)

y · lit +
m∑
j=i

λj − (at · lit − bt − β) ≥ 0 (17c)

y · ui
t +

m∑
j=i

λj − (at · ui
t − bt − β) ≥ 0 (17d)

By substituting (14) into (11) together with (17), the proposed
theorem is proved.

The CVaR approximation is the first step of our method
and our main contribution focuses on the reformulation of the
constraint after the CVaR approximation. In this reformulation,
it is noted that the probability distribution of the outdoor
temperature is unknown and there are infinitely many possible
distributions which form an ambiguity set, and we propose a
method which immunizes the solution of the problem against
all possible distributions after the CVaR approximation. Since
the constraint (9) is more conservative than the distributionally
chance constraint (7), the electricity cost will be higher after
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TABLE III
TIME OF USE ELECTRICITY PRICES

Time 12am-2am 2am-6am 6am-10am 10am-12pm
Price($/kWh) 0.00493 0.00493 0.05040 0.05040

Time 12pm-2pm 2pm-8pm 8pm-10pm 10pm-12am
Price($/kWh) 0.05040 0.09761 0.05040 0.00493

the CVaR approximation. Although the CVaR constraint brings
conservatism when approximating (7), it is superior to the
original constraint from other aspects. Firstly, as shown in
Theorem 1, the distributionally robust CVaR constraint admits
tractable convex reformulation. Secondly, the CVaR constraint
imposes higher penalties on larger constraint violations [20].
Therefore, the CVaR constraint confines both the probability
and the severity of constraint violations.

IV. SIMULATION RESULTS

This section presents the simulation results to verify the
effectiveness of the proposed DROA in the scheduling of H-
VAC’s energy consumption. The parameters of HVAC system
C,R and η are assumed to be 0.33 kWh/◦F, 13.5 ◦F/kW and
2.2, respectively [6] [9]. The maximum power of HVAC is
assumed to be 1.75 kW [6] and the scheduling period ∆t
is 30 minutes [10]. The energy consumption is scheduled 12
hours ahead with T = 24. The electricity price based on the
time of use, as shown in Table III, is adopted from the Austin
Energy Company [21]. The outdoor temperature in Austin
from 12 pm August 6th 2013 to 12pm August 9th 2013 is
assumed to be the forecast outdoor temperature [22]. Based
on the normal distribution with the forecast temperature as the
mean and 2.5 as the standard deviation [9], 10000 samples
are taken to simulate the historical data and to construct the
ambiguity set P1

t . It is noted that the DROA does not require
the probability distribution of the outdoor temperature and
the normal distribution is used to generate historical data. In
practice, the forecast and the actual temperature values are
both recorded as the historical data and P1

t is constructed
based on these historical weather data. All the simulations
are implemented in MATLAB with YALMIP [23] as the
modelling tool and SeDuMi [24] as the solver running on an
Intel Core-i3 3.3-GHz personal computer with 8 GB RAM.
In practice, the energy consumption scheduling of HVAC is
solved by a controller in DR and this controller is with enough
computation power.

For convenience, the proposed DROA together with the
other two methods are listed and referred to as M1-M3 as
shown below. Firstly, the proposed DROA is compared with
other two methods in the electricity cost, the users’ comfort
and the computation time. Then the impacts of m, ε and
the comfortable temperature zone on the performance of the
proposed DROA are investigated, respectively. Furthermore,
the proposed DROA is extended to take into account more
uncertainties.

• M1: Based on the proposed DROA considering the prob-
abilistic information of subintervals of the outdoor tem-
perature, the problem of energy consumption scheduling

is reformulated to be LP through the proposed Theorem
1.

• M2: The energy consumption is scheduled based on
the DROA considering the mean and the variance of
historical data, which is formulated as the same as (6)
except that the ambiguity set P1

t is replaced by

P2
t =

{
Pt ∈ P0

t (U
m
t )

EPt{ξt} = µt

Pt{ξt ∈ Um
t } = 1,

EPt{(ξt − µt)
2} = σ2

t

}
(18)

where σ2
t denotes the variance of the outdoor temperature

obtained from historical weather data. Then the problem
of energy consumption scheduling is reformulated to be
SDP based on the theorem below.
Theorem 2 [25]: When the ambiguity set P2

t is construct-
ed, the distributionally robust constraint (9) is satisfied if
and only if there exist y, β, h, λ, τ0 and τ1, such that

β +
1

ε
· (h+ µt · y + λ · σ2

t + λ · µ2
t ) ≤ 0 (19a)

τ0 ≥ 0, τ1 ≥ 0 (19b)
M+ τ0 ·W ≽ 0 (19c)
M+ τ1 ·W −H ≽ 0 (19d)

M =

[
λ y

2
y
2 h

]
,W =

[
1 − lmt +um

t

2

− lmt +um
t

2 lmt · um
t

]
(19e)

H =

[
0 at

2
at

2 −bt − β

]
(19f)

The proof of Theorem 2 is shown in Appendix. Note that
M2 based on the mean and the variance of the outdoor
temperature reformulates the problem to be SDP, which
is more computationally expensive than LP based on the
proposed M1.

• M3: The energy consumption is scheduled based on the
ROA, which is formulated as the same as (6) except that
constraints (6e) and (6f) are replaced by conventional
robust constraints

qt ≥ 0, ∀ξt ∈ Um
t (20a)

qt ≤ qmax, ∀ξt ∈ Um
t . (20b)

Note that the reference energy consumption is proposed
taking into account the weather forecast error and that the
actual energy consumption will be adjusted in real time based
on the reference energy consumption and the weather forecast
error as shown in (5a). The actual energy consumption is set
to be qmax and 0 under the circumstances where the adjusted
energy consumption exceeds these two values, respectively.

A. Comparison between the proposed DROA and the other
methods

In this section, the proposed DROA is compared with the
other two methods with m = 15, ε = 0.005, [60◦ F, 70◦

F] as the comfortable temperature zone and 70 ◦F as the
start indoor temperature. Firstly, the simulation results in a
scheduling cycle from 12 pm to 12 am on August 6th 2013
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Fig. 2. Energy consumption schedule and indoor temperature based on M1

are demonstrated, then the simulation results in consecutive
cycles from 12 pm August 6th 2013 to 12pm August 9th 2013
are presented.

1) In a scheduling cycle: The energy consumption schedule
and the performances of this energy consumption schedule
under one test sample of the outdoor temperature and 10000
test samples are presented.

• Energy consumption schedule:
Fig. 2-4 show the energy consumption schedule and

the indoor temperature based on M1, M2 and M3, re-
spectively. From 1pm to 3pm, it can be seen from Fig.
2-4 that the energy consumption of HVAC is largely
scheduled in periods with low electricity price to pre-cool
the indoor temperature. Then the energy consumption
can be saved in periods with high electricity price. Fig.
5 summarizes the energy consumption schedules based
on the different methods and the dash line presents
the maximum power consumption of HVAC qmax. Fig.
5 shows that M3 considers the maximum error of the
weather forecast and its maximum and minimum energy
consumptions are far from qmax and 0, respectively. It can
be seen from Fig. 5 that M3 is the most conservative and
M1 is less conservative than M2.

• Test with a sample of the outdoor temperature:
Based on the normal distribution with the forecast

temperature as the mean and 2.5 as the standard deviation,
a sample of the outdoor temperature, as shown in Fig. 6,
is taken to test the energy consumption schedules in Fig.
5. Fig. 7 and Fig. 8 show the adjusted energy consump-
tion and the indoor temperature under this test outdoor
temperature based on the three methods, respectively. The
adjusted energy consumption is obtained based on (5a).
For all the methods, the adjusted energy consumption
is within the limits and it is the same as the actual
energy consumption. The electricity costs of the actual
energy consumption are $0.809, $0.811 and $0.815 for
M1-M3, respectively, and the electricity cost of M1 is
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Fig. 3. Energy consumption schedule and indoor temperature based on M2
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Fig. 4. Energy consumption schedule and indoor temperature based on M3

reduced compered with M2 and M3. Fig. 8 shows that
the actual indoor temperature is following the reference
indoor temperature based on M1, M2 and M3 and the
indoor temperature is within the comfortable temperature
zone. The reference indoor temperature is the indoor
temperature that is obtained with the reference energy
consumption 12 hours ahead. Based on M1, M2 and M3,
the weather forecast error is considered in the schedul-
ing process and its effect on the indoor temperature is
eliminated through the real-time adjustment of energy
consumption, and the electricity cost of the proposed M1
is smallest.

• Test with 10000 samples of the outdoor temperature:
Based on the normal distribution with the forecast

temperature as the mean and 2.5 as the standard deviation,
10000 samples of the outdoor temperature are taken to
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Fig. 5. Energy consumption schedules based on different methods
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Fig. 6. The outdoor temperature

test the three methods. Note that 10000 samples are used
as historical data to construct the ambiguity set and the
new 10000 samples are taken for testing. It is remarkable
that the DROA does not require the prior knowledge
about the distribution of the outdoor temperature, and the
probability information in the ambiguity set is extracted
from historical data. Any probability distribution can
be used to test the DROA only if the data employed
in the ambiguity set construction and the performance
evaluation is sampled from the same distribution. The
average electricity cost of the actual energy consumption
(Cost), the number and the maximum of violations from
the comfortable temperature zone (Num VioTem and
VioTem), and the computation time (Time) are summa-
rized in Table IV for the three methods. It can be seen
from Table IV that the indoor temperature is always
within the comfortable zone for M3 while M3 pays the
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highest electricity cost. In comparison with M2, it is
noted that the proposed M1 takes less time to obtain the
optimal energy consumption schedule of HVAC and the
electricity cost of M1 is also less. The computation time
is 0.5110 seconds for M1 and it is 5.7651 seconds for M2.
With the probabilistic information of subintervals taken
into account and the reformulation of the problem as LP,
the proposed M1 helps reduce the electricity cost with
less computation time compared with M2 based on the
mean and the variance of historical weather data and the
reformulation of the problem as SDP.

Table V shows numbers of situations (Num VioEneL
and Num VioEneH) where the adjusted energy con-
sumption violates the lower and upper limits of the
energy consumption of HVAC within T = 24 un-
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TABLE IV
PERFORMANCES OF THE THREE METHODS IN A SCHEDULING CYCLE

Method Cost ($) Num VioTem VioTem (◦F) Time (s)
M1 0.793 22 0.3579 0.5110
M2 0.796 3 0.0593 5.7651
M3 0.799 0 0 0.1494

TABLE V
VIOLATIONS OF ENERGY CONSUMPTION LIMITS

Method M1 M2
Num VioEneL 5 1
Prob VioEneL 0.0021% 0.0004%
Num VioEneH 22 5
Prob VioEneH 0.0092% 0.0021%

der 10000 tests for M1 and M2. The probabilities
of deviations of the lower and upper limits per time
slot and per test (Prob VioEneL and Prob VioEneH)
can be estimated as Num VioEneL/(24×10000) and
Num VioEneH/(24×10000), respectively. The estimated
probabilities are all less than ε = 0.005, which shows
that the distributionally robust chance constraints (6e) and
(6f) are satisfied based on M1 and M2.

2) In consecutive scheduling cycles: The performance of
the proposed DROA is tested under consecutive cycles from
12 pm August 6th 2013 to 12pm August 9th 2013 with 70 ◦F
as the start indoor temperature, and the indoor end temperature
of the previous cycle will be the indoor start temperature of
the next cycle. The simulation results are shown in Table VI.
It can be seen from Table VI that the electricity cost is reduced
through the proposed M1 and the computation time of M1 is
largely decreased compared with M2.

B. The proposed DROA with different parameters

In this section, the impacts of m, ε and the comfortable
temperature zone on the performance of the proposed DROA
are investigated, respectively, in the scheduling cycle form 12
pm to 12 am on August 6th 2013.

1) With different m: M1 with different m is tested with
10000 samples of the outdoor temperature under the condition
of ε = 0.005 and [60◦ F, 70◦ F] as the comfortable temperature
zone. The performances of M1 with different m are summa-
rized in Table VII. It can be seen from Table VII that the indoor
temperature is mostly within the comfortable zone. With the
increase of m, i.e. with more probabilistic information of the
outdoor temperature taken into account, the electricity cost is
decreasing and the computation time is increasing.

2) With different ε: M1 with different ε is tested with 10000
samples of the outdoor temperature under the condition of
m = 15 and [60◦ F, 70◦ F] as the comfortable temperature
zone. The performances of M1 with different ε are summarized
in Table VIII. It can be seen from Table VIII that with
the increase of ε, the electricity cost is decreasing and the
probability of the violation of the comfortable temperature
zone is increasing.

3) With different comfortable temperature zone: M1 with
different comfortable temperature zones is tested with 10000
samples of the outdoor temperature under the condition of

m = 15 and ε = 0.005. The performances of M1 with
different comfortable temperature zones are summarized in
Table IX. It can be seen from Table IX that the electricity cost
increases when the comfortable temperature zone is narrowed.

With the consideration of the cost, the number of violations
of the comfortable temperature zone and the computation time,
genetic algorithm (GA) can be used to find the optimal com-
bination of m, ε and the comfortable temperature zone. GA
mimics the process of natural selection. After evaluating the
fitness of each individual in generation, selecting individuals
with high fitness, crossover and mutation, the new generation
with better fitness is obtained, and the above process cycles
until the individual with the satisfactory fitness is found [26].
To find the optimal combination of parameters, a random
combination of m, ε and the comfortable temperature zone
indicates an individual of GA, and the sum of the cost, the
number of violations and the computation time with their
corresponding importance factors indicates the fitness of GA,
i.e. w1 ·Cost+w2 ·Num VioTem+w3 ·Time is the objective
function of GA, where w1, w2 and w3 are the importance
factors. With m between 5 and 25, ε between 0.005 and
0.080, the lower limit of the comfortable temperature zone
between 60◦F and 68◦F, and the upper limit of the comfortable
temperature zone with the fixed 70◦F, m = 8, ε = 0.013
and 67.5◦F as the lower limit of the temperature zone is
the optimal combination of parameters obtained through GA
for the situation where the cost, the number of violations
divided by 100 and the computation time are with the same
importance. The number of violations is divided by 100 due
to the magnitude difference among the number of violations,
the cost and the computation time. The Cost, Num VioTem,
VioTem, Prob VioEneL, Prob VioEneH and Time are $0.799,
2, 0.0438◦F, 0, 0.0008% and 0.1336s, respectively, for the
optimal combination of parameters.

C. The extension of the proposed DROA

In this section, the proposed DROA is extended to take into
account uncertainties of the electricity price and the effect of
users’ activities on the indoor temperature and the deviation of
users’ preferred temperature. All the simulations are conducted
in the scheduling cycle form 12 pm to 12 am on August 6th
2013.

1) Considering the uncertainty of the electricity price:
The uncertainty of the electricity price is taken into account
through Monte Carlo method with its probability distribution
known, which is formulated as the same as (6) except that the
objective function is changed to

min
qref
t

E{ 1

Se

Se∑
se=1

T∑
t=1

(et · qt ·∆t)}. (21)

The proposed DROA with m = 15, ε = 0.005 and [60◦ F,
70◦ F] as the comfortable temperature zone is tested under
10000 samples of the outdoor temperature and the electricity
price. The uncertainty of the electricity price is considered
based on the normal distribution with the TOUP as the mean
and 0.0003 as the standard deviation. The Cost, Num VioTem,
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TABLE VI
PERFORMANCES OF THE THREE METHODS IN CONSECUTIVE SCHEDULING CYCLES

Cycle Method Cost ($) Num VioTem VioTem (◦F) Prob VioEneL Prob VioEneH Time (s)
M1 0.793 22 0.3579 0.0021% 0.0092% 0.5110

1 M2 0.796 3 0.0593 0.0004% 0.0021% 5.7651
M3 0.799 0 0 0 0 0.1494
M1 0.139 21 0.1713 0.0196% 0.0067% 0.4586

2 M2 0.152 0 0 0 0 8.7290
M3 0.159 0 0 0 0 0.1433
M1 0.802 14 0.1741 0.0013% 0.0058% 0.3636

3 M2 0.804 1 0.0093 0.0008% 0.0004% 4.4855
M3 0.808 0 0 0 0 0.2590
M1 0.135 7 0.0943 0.0229% 0.0025% 0.4945

4 M2 0.146 0 0 0.0004% 0 7.8860
M3 0.156 0 0 0 0 0.0977
M1 0.806 20 0.2444 0.0017% 0.0083% 0.3278

5 M2 0.812 0 0 0 0 9.0289
M3 0.812 0 0 0 0 0.1411
M1 0.121 27 0.1907 0.0267% 0.0038% 0.4658

6 M2 0.128 0 0 0.0025% 0 5.9540
M3 0.149 0 0 0 0 0.1499

TABLE VII
PERFORMANCES OF M1 WITH DIFFERENT m

m Cost ($) Num VioTem VioTem (◦F) Prob VioEneL Prob VioEneH Time (s)
5 0.794 7 0.1208 0.0008% 0.0029% 0.2823
10 0.794 6 0.2635 0.0004% 0.0042% 0.3141
15 0.793 22 0.3579 0.0021% 0.0092% 0.5110
20 0.793 21 0.1892 0.0025% 0.0088% 0.5658
25 0.793 33 0.2328 0.0029% 0.0138% 0.5897

TABLE VIII
PERFORMANCES OF M1 WITH DIFFERENT ε

ε Cost ($) Num VioTem VioTem (◦F) Prob VioEneL Prob VioEneH Time (s)
0.005 0.793 22 0.3579 0.0021% 0.0092% 0.5110
0.020 0.792 97 0.3535 0.0079% 0.0404% 0.4095
0.040 0.792 147 0.3210 0.0138% 0.0621% 0.2490
0.060 0.791 290 0.3957 0.0292% 0.1229% 0.2109
0.080 0.791 363 0.3692 0.0383% 0.1563% 0.2111

TABLE IX
PERFORMANCES OF M1 WITH DIFFERENT COMFORTABLE TEMPERATURE ZONES

Temperature Zone (◦F) Cost ($) Num VioTem VioTem (◦F) Prob VioEneL Prob VioEneH Time (s)
[60-70] 0.793 22 0.3579 0.0021% 0.0092% 0.5110
[62-70] 0.793 14 0.2327 0.0021% 0.0058% 0.4985
[65-70] 0.794 9 0.1765 0.0017% 0.0037% 0.5576
[68-70] 0.801 6 0.0827 0 0.0025% 0.3451

VioTem, Prob VioEneL, Prob VioEneH and Time are $0.793,
21, 0.2501◦F, 0.0013%, 0.0088% and 0.4064s, respectively.

2) Considering the uncertainty of users’ activities: The
effect of users’ activities on the indoor temperature as well
as the uncertainty of the outdoor temperature is taken into
account in the energy consumption scheduling of HVAC,
which is formulated as

min
qref
t

E{
T∑

t=1

(et · qt ·∆t)} (22a)

qt = qref
t +

1

η ·R
· (ξt − µt) +

C

η ·∆t
· (φt − ϕt) (22b)

θt = θt−1 −
∆t

C ·R
· (θt−1 − ξt−1 + η ·R · qt−1) + φt−1

(22c)
θmin ≤ θt ≤ θmax (22d)

Pt{qt ≥ 0} ≥ 1− ε,∀Pt ∈ P3
t (22e)

Pt{qt ≤ qmax} ≥ 1− ε,∀Pt ∈ P3
t (22f)

P3
t =

{
Pt ∈ P0

t (B
m
t )

EPt{ωt} = ρt

ωt = (ξt, φt)
T,ρt = (µt, ϕt)

T

Pt{ωt ∈ Bi
t} = pit, i = 1, · · · ,m

Bi
t = {ωt ∈ R2|

lit ≤ ξt ≤ ui
t

φmin
t ≤ φt ≤ φmax

t }
B1

t ⊆ · · · ⊆ Bm
t , pmt = 1

}

(22g)

where φt−1 is the effect of users’ activities during t− 1 time
slot on the indoor temperature, and ϕt is the forecast effect
of users’ activities. (22b) is obtained based on θt−1 − ∆t

C·R ·
(θt−1 − µt−1 + η · R · qref

t−1) + ϕt−1 = θt−1 − ∆t
C·R · (θt−1 −

ξt−1 + η · R · qt−1) + φt−1. Therefore, the forecast errors of
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both the outdoor temperature and the effect of users’ activities
can be eliminated. Taking into account two uncertainties, the
uniform form of distributionally robust chance constraints is
changed to

Pt-CVaRε(a
T
tωt ≤ ct) ≤ 0, ∀Pt ∈ P3

t (23)

where at is a column vector with two elements. (23) can be
reformulated to be linear based on the theorem below and the
proof is similar to the proof of Theorem 1.

Theorem 3: When the ambiguity set P3
t is constructed, the

distributionally robust constraint (23) is satisfied if and only if
there exist y ∈ R2, β ∈ R, and λi ∈ R, i = 1, · · · ,m, such
that

β +
1

ε
· (ρT

ty +
m∑
i=1

λi · pit) ≤ 0 (24a)

∀i = 1, · · · ,m :

(lit, φ
min
t )y +

m∑
j=i

λj ≥ 0 (24b)

(lit, φ
max
t )y +

m∑
j=i

λj ≥ 0 (24c)

(ui
t, φ

min
t )y +

m∑
j=i

λj ≥ 0 (24d)

(ui
t, φ

max
t )y +

m∑
j=i

λj ≥ 0 (24e)

(lit, φ
min
t )y +

m∑
j=i

λj − ((lit, φ
min
t )at − ct − β) ≥ 0 (24f)

(lit, φ
max
t )y +

m∑
j=i

λj − ((lit, φ
max
t )at − ct − β) ≥ 0 (24g)

(ui
t, φ

min
t )y +

m∑
j=i

λj − ((ui
t, φ

min
t )at − ct − β) ≥ 0 (24h)

(ui
t, φ

max
t )y +

m∑
j=i

λj − ((ui
t, φ

max
t )at − ct − β) ≥ 0 (24i)

The proposed DROA with m = 15, ε = 0.005 and [60◦ F,
70◦ F] as the comfortable temperature zone is tested under
10000 samples of the outdoor temperature and the effect of
users’ activities. The effect of users’ activities is sampled
based on the normal distribution and the uniform distribution
between φmin and φmax, respectively, i.e. the proposed DROA
is tested under two distributions of users’ activities. Any
probability distribution can be used to test the DROA only
if the data employed in the ambiguity set construction and the
performance evaluation is sampled from the same distribution,
and the normal distribution and the uniform distribution are
illustrated to test the performance of the proposed DROA.
φmin and φmax are assumed to be [0.5, 0.5, 0.4, 0.4, 0,
0, 0, 0, 0.3, 0.3, 0.6, 0.6, 0.8, 0.8, 0.8, 0.8, 0, 0, 0, 0,
0, 0, 0, 0] and [1.3, 1.3, 0.8, 0.8, 0.4, 0.4, 0.2, 0.2, 0.5,
0.5, 1, 1, 1.2, 1.2, 1, 1, 0.6, 0.6, 0.2, 0.2, 0.2, 0.2, 0.2,
0.2] in the scheduling horizon for both distributions. The
Cost, Num VioTem, VioTem, Prob VioEneL, Prob VioEneH

and Time are $0.931, 1, 0.0057◦F, 0, 0.0004% and 0.9070s,
respectively, for the normal distribution, and they are $0.931,
5, 0.1215◦F, 0, 0.0021% and 0.8426s, respectively, for the
uniform distribution.

3) Considering the deviation of users’ preferred tempera-
ture: Users may not only require the indoor temperature within
the comfortable temperature zone but also have their preferred
indoor temperature. The deviation of the indoor temperature
from the preferred temperature is taken into account in the
energy consumption scheduling of HVAC, which is formulated
as the same as (6) except that the objective function is changed
to

min
qref
t

E{
T∑

t=1

et · qt ·∆t+ κ · (θt − θbest)2} (25)

where κ penalizes the deviation of the preferred indoor tem-
perature and θbest denotes users’ preferred temperature.

The proposed DROA with m = 15, ε = 0.005, [60◦ F, 70◦

F] as the comfortable temperature zone and θbest = 65◦ F is
tested under 10000 samples of the outdoor temperature. The
Cost, Num VioTem, VioTem, Prob VioEneL, Prob VioEneH
and Time are $0.924, 0, 0, 0.0029%, 0.0121% and 0.7458s,
respectively.

V. CONCLUSION

In this paper, the DROA based on the probabilistic infor-
mation of subintervals of the outdoor temperature is proposed
to schedule the energy consumption of HVAC. The simulation
results have demonstrated that the proposed DROA helps re-
duce the electricity cost with less computation time compared
with the DROA based on the mean and the variance of the
outdoor temperature. The electricity cost is reduced as well
compared with the traditional robust method. By increasing
the number of temperature subintervals, i.e. by taking into
account more information about the weather forecast error,
the electricity cost of the proposed DROA is decreasing.
The proposed DROA has proved effective in the energy
consumption scheduling of HVAC with consideration of the
weather forecast error.

APPENDIX
Proof of Theorem 2

Proof: The first two transformations are the same as (11)
and (12) except that P1

t is replaced by P2
t . (12) with Pt ∈ P2

t

is equivalent to

sup
Pt∈P0

t (U
m
t )

∫
Um

t

(at · ξt − bt − β)+Pt(dξt) (26a)

s.t.
∫
Um

t

ξtPt(dξt) = µt (26b)∫
Um

t

Pt(dξt) = 1 (26c)∫
Um

t

(ξt − µt)
2Pt(dξt) = σ2

t (26d)

Through Theorem 3.7 in [25] with dual variables y, h and λ
introduced, Theorem 2 is proved.
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