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Abstract

The model of population protocols refers to the growing in popularity theoretical framework
suitable for studying pairwise interactions within a large collection of simple indistinguishable
entities, frequently called agents. In this paper the emphasis is on the space complexity in fast
leader election via population protocols governed by the random scheduler, which uniformly at
random selects pairwise interactions within the population of n agents.

The main result of this paper is a new fast and space optimal leader election protocol.
The new protocol utilises O(log?n) parallel time (which is equivalent to O(nlog?n) sequential
pairwise interactions), and each agent operates on O(loglogn) states. This double logarithmic
space usage matches asymptotically the lower bound % loglogn on the minimal number of states
required by agents in any leader election algorithm with the running time o(m), see [6].

Our solution takes an advantage of the concept of phase clocks, a fundamental synchronisation
and coordination tool in distributed computing. We propose a new fast and robust population
protocol for initialisation of phase clocks to be run simultaneously in multiple modes and in-
tertwined with the leader election process. We also provide the reader with the relevant formal
argumentation indicating that our solution is always correct, and fast with high probability.
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1 Introduction

The model of population protocols adopted in this paper was introduced in the seminal paper of
Angluin et al. [2]. Their model provides a universal theoretical framework for studying pairwise
interactions within a large collection of anonymous (indistinguishable) entities, very often referred
to as agents, equipped with limited communication and computation abilities. The agents are
modelled as finite state machines. When two agents engage in a direct interaction they mutually
access the contents of their local states and, on the conclusion of the encounter their states are
modified according to the transition function that is an integral part of the population protocol.
In the probabilistic variant of population protocols, considered in [2] and adopted in this paper,
in each step the random scheduler selects a pair of agents uniformly at random. In this variant
on the top of the space complerity determined by the maximum number of distinct states used by
each agent, one is also interested in the time complezity of the proposed solutions. In more recent
work on population protocols the emphasis is on parallel time defined as the total number of
pairwise interactions leading to stabilisation divided by the size, in our case n, of the population.
A population protocol terminates with success if the whole population eventually stabilises
(arrives at and stays indefinitely) in the final configuration of states reflecting the desired prop-
erty of the solution. For example, in protocols targetting majority in the population, the final
configuration corresponds to each agent being in the unique state representing the colour of the
majority, see, e.g., [3 5, 29} [30L [38]. In leader election, however, in the final configuration exactly
one agent must conclude in the leader state and all others must stabilise in the follower state.
The leader election problem received in recent years greater attention in the context of popu-
lation protocols thanks to several important developments in closely related problems [I8] 22].
In particular, the results from [I8] 22] laid foundation for the proof that leader election cannot
be solved in sublinear time with agents operating on a fixed number of states [24]. In further
work [7], Alistarh and Gelashvili studied the relevant upper bound, and they proposed a new
leader election protocol stabilising in time O(log® n) assuming O(log®n) states at each agent.
In a very recent work Alistarh et al. [6] consider a general trade-off between the number
of states used by agents versus the time complexity of the stabilisation process. In particular,
the authors provide a separation argument distinguishing between slowly stabilising population
protocols which use o(loglogn) states and rapidly stabilising protocols requiring O(logn) states
at each agent. This result nicely coincides with another fundamental observation by Chatzi-
giannakis et al. [17] which states that population protocols operating on o(loglogn) states can
only cope with semilinear predicates while O(log n) states allow to compute symmetric predicates.

Our results In this paper we show that the lower bound on the space complexity in fast leader
election proved in [6] is asymptotically tight. The lower bound states that any leader election
algorithm with the time complexity o(poly?m) requires %log logn states per agent. Here we
present a new fast leader election algorithm which stabilises in time O(log2 n) in populations
with agents operating on cloglogn states, for a small positive constant c.

Our algorithm utilises a fast and low on space reduction of potential leaders (candidates)
in the population. The reduction process is intertwined with a robust initialisation and further
utilisation of phase clocks, a synchronisation tool developed and explored by the self-stabilising
community [34]. This includes the seminal work on clock synchronisation by Arora et al. [§],
further extension by Dolev and Welsh [21] to distributed systems prone to Byzantine faults, and
related study on pulse synchronisation by Daliot et al. [23]. Our variant of the phase clock refers
directly to the work of Angluin et al. [4] in which the authors propose efficient simulation of a
virtual register machine supporting basic arithmetic operations. The simulation in [4] assumes
availability of a single leader which coordinates the relevant exchange of information. In the
same paper, the authors provide also some intuition behind the phase clock coordinated by a
junta of n® leaders, for some small positive constant . In this work we formally prove that the
phase clock based on junta of cardinality n¢, for any £ < 1, allows to count O(logn) time units



assuming a constant number of states at each agent. We also consider an extension of the phase
clock allowing to compute time ©(log®n), for any integer constant ¢. Our main result is based
on rapid computation of junta of leaders followed by fast selection of a single leader, all in time
O(log?n) and O(loglogn) states available at each agent.

Related work Leader election is one of the fundamental problems in distributed computing on
par with other core problems in the field including broadcasting, mutual-exclusion, consensus,
see an excellent text book by Attiya and Welch [I1]. The problem was originally considered in
networks with nodes having distinct labels [36], where an early work focuses on the ring topology
in both in synchronous [26] [35] and asynchronous [16], 40] models. Also, in networks populated by
mobile agents the leader election was studied first in networks with labeled nodes [33]. However,
very often leader election is used also as a symmetry breaking mechanism enabling feasibility and
coordination of more complex protocols in systems based on uniform (indistinguishable) entities.
There is a large volume of work [I], 9, 10}, [14), (15| 411 [42] on leader election in anonymous networks.
In [411,142] we find characterisation of message-passing networks in which leader election is feasible
when nodes are anonymous. In [41], the authors study the problem of leader election in general
networks under the assumption that node labels are not unique. In [25], the authors study
feasibility and message complexity of leader election in rings with possibly non-unique labels,
while, in |20], the authors provide solutions to a generalized leader election problem in rings with
arbitrary labels. The work in [28] focuses on space requirements for leader election in unlabeled
networks. In [27], the authors investigate the running time of leader election in anonymous
networks where time is expressed in terms of multiple network parameters. In [19], the authors
study feasibility of leader election among anonymous agents that navigate in a network in an
asynchronous way. An interesting study on trade-offs between the time complexity and knowledge
available in anonymous trees can be found in recent work of Glacet et al. [32].

Finally, a good example of recent extensive studies on the exact space complexity in related
models refers to plurality consensus. In particular, in [I3] Berenbrink et al. proposed a plurality
consensus protocol for C' original opinions converging in O(log C' - loglogn) synchronous rounds
using only log C' + (loglog C) bits of local memory. They also show a slightly slower solution
converging in O(logn-loglogn) rounds using only log C'+4 bits of local memory. This disproved
the conjecture by Becchetti et al. [12] implying that any protocol with local memory log C' 4+
O(1) has the worst-case running time Q(k). In [3I] Ghaffari and Parter propose an alternative
algorithm converging in O(log C'log n) rounds while having message and local memory sizes based
on log C'+ O(1) bits. In addition, some work on the application of the random walk in plurality
consenus protocols can be found in [12] 29].

2 Preliminaries

We consider population protocols defined on the complete graph of interactions where the random
scheduler picks uniformly at random pairs of agents drawn from the population of size n. The
agents are anonymous, i.e., they don’t have identifiers. The protocol assumes all agents start
in the same initial state. Our protocol utilises the classical model of population protocols [2] 4]
where consecutive interactions refer to ordered pairs of agents (responder, initiator). On the
conclusion of each interaction the two participating agents change their states (a, b) into (a’, )
according to a fized deterministic transition function denoted by (a,b) — (a’, ).

We focus here on two complexity measures: (1) the space complexity defined as the number of
states required by each agent, and (2) the time complexity reflecting the number of interactions
needed to stabilise the protocol. Similarly to other recent work on population protocols, the
emphasis here is on parallel time of the solution defined as the total number of interactions divided
by the size of the population. In general terms, we aim at protocols formed of O(n - poly logn)
interactions translating to the running time O(poly logn).

Our leader election algorithm is always correct and it runs fast with high probability (whp)



which we define as follows. Let n be a parameter with an arbitrary value meeting our needs.
An event occurs with negligible probability if it occurs with probability at most n~". An event
occurs with high probability (whp) if it occurs with probability at least 1 —n~"7. We say that an
algorithm succeeds with high probability if we can incorporate the parameter n in the algorithm,
s.t., it succeeds with probability at least 1 —n~". In the case we refer to more specific maximum
probability of failure p different from n~", we say whp 1 — p. Our results are of asymptotic
nature, i.e., we assume n is large enough to validate the results.

Throughout the paper in the analysis of the intermediate results and studied protocols we
utilise several standard probabilistic tools including the Union bound, the Chernoff bound, the
Markov’s inequality and the Bayes rule which definitions can be found in any probability theory
text book.

2.1 One-way epidemics

In our solution we adopt the notion of one-way epidemic introduced in [4]. One-way epidemic
refers to the population protocol with the state space {0,1} and the transition rule z,y —
max{x,y),y. One interprets 0’s as susceptible agents and 1’s as infected ones. This protocol
corresponds to a simple epidemic in which transmission of the infection occurs if and only if the
initiator is infected and the responder is susceptible. We will use the following theorem from [4].

Theorem 1 ([4]) In order to conclude one-way epidemic (infect all agents) one needs ©(nlogn)
pairwise interactions with high probability.

3 Phase clock revisited

In paper [4] Angluin et al. proposed the notion of and analysed phase clocks capable of count-
ing approximately time ©(logn), when each agent participating in the population protocol is
equipped with a constant number of states. However, the phase clocks from [4] work under the
assumption of having already selected unique leader in the population. In the same paper, the
authors argue (without a formal proof) that phase clocks should also work when a single leader
is replaced by a junta of n® leaders, for some unspecified constant €.

In this section we propose and analyse a slightly modified version of the phase clock capable
of counting approximately time ©(logn), when each participating agent operates on a constant
number of states and the junta of leaders is of cardinality n'~¢, for any constant € : 0 < ¢ < 1.
Without loss of generality and for a technical reasons we take ¢ = %ﬁ, for a positive integer k.

The states of agents controlling the phase clock protocol are structured in pairs (x,b). The
entry b has value leader for leaders in the junta and follower for all other agents. The entry
x represents (the number of) a phase of an agent drawn from the set Z,, = {0,1,2,...,m — 1},
for some constant integer m. The phases can be interpreted as hours on a dial of an analogue
clock. The periodic increment of phases is computed using the arithmetic modulo m which we
denote here by +,,. We also define the maximum of two phases z,y in set Z,, as:

max{z,y} if |z —y| < m/2
min{z, y} if |z —y| > m/2

maxp {2, y} = {

Finally we define the circular order (which is not partial) on Z,, as x <, y iff max,,{z,y} = v.
Now we are ready to formally define the transition function in our version of the phase clock

(z,follower), (y,b) — (max,,{z,y},follower), (y,b)

and
(z,leader), (y,b) = (maxp,{z,y +m 1},leader), (y,b)

In this paper we study phase clocks which operate in two modes: the ordinary mode and the
external mode. These two modes differ in choosing pairwise interactions to the phase clock. In



the ordinary mode all interactions contribute to the actions of the phase clock. In the other mode
interactions are chosen more selectively and they are arranged into series of n interactions in
which every agent acts as the responder exactly once. In this mode we consider only meaningful
interactions and we ignore others. The detail of how the meaningful interactions are chosen is
provided after Theorem In each subsequent series the initiators are chosen (by the random
scheduler) at random and the order in which agents appear as responders is random too. For
any of the two modes, we say the phase clock passes through 0 whenever its phase x is reduced
in absolute terms (e.g., passes from phase 5 to phase 3).

Before we prove Theorem [2] which is the main result of this section, we consider several
intermediate lemmas. In the proofs for the ordinary mode we utilise Theorem [I| showing that
one-way epidemic protocol concludes after ©(nlogn) whp. In the proofs for the external mode
we need some analogue of this theorem in which interactions for phase clock operations are
chosen such that they form random series of n interactions and in each series each agent acts as
the responder exactly once.

Lemma 1 One-way epidemic applied in the external mode requires O(nlogmn) meaningful inter-
actions whp.

Proof: Let v be the first infected agent. By the Chernoff bound, for any constant ¢; > 0 the
number of meaningful interactions agent v needs to infect directly c; log n agents is bounded by
O(nlogn) whp 1 —n~""1. Thus the number of infected agents after O(nlogn) interactions is at
least c¢1 logn whp 1—n~""1. Also by the Chernoff bound, there exists a constant ¢ > 0 such that
if the number of infected agents before a series of n interactions is A, where calogn < A < n/2,
then on the conclusion of the series the number of infected agents is at least % -Awhp 1—n=""1,
Thus if we take ¢; > ¢y thanks to the exponential growth the number of infected agents after
O(nlogn) meaningful interactions is at least n/2 whp 1 —O(n~""!logn). Further, by taking an
extra O(nlogn) pairwise interactions each uninfected (yet) agent interacts cslogn times, where
one can choose a constant cg, s.t., the probability of not getting infected during these interactions
is at most n =772, Finally, by the Union bound the probability of failure in one of these series of
interactions is at most n=7" 1 + O(n"""tlogn) +n-n"""2 < n7". [ |

For the simplicity of presentation we assume in the next few lemmas that the agents start
in phase 0. The purpose of these lemmas is to bound from above the sizes of sets of agents in
phases 1,2, 3, ... on the conclusion of O(nlogn) interactions. There are separate lemmas for the
ordinary and the external modes. We assume also € = ﬁ and k < m/4.

Lemma 2 Assume j < k and interactions of the phase clock are performed in the ordinary
mode. Assume also that at some point the number of agents in phase x >, i is at most A-n'~%,
foralli=0,1,...,j and some value A € [1,n/3]. Then after n/4 interactions the number of
agents in phase >, i is at most 3A-n'"%, for alli =0,1,...,j and whp at least 1 — 2jn~10.

Proof: We prove this lemma by induction on j. For j = 0 the thesis holds since the number of
agents in phase x >,, 0 is at most n < 34 - n'~0¢ with probability 1. Assume now the thesis is
true for j — 1. By the inductive assumption after n/4 interactions the number of agents in phase
T >, i is bounded from above by 3A-n'~% foralli =0,1,...,5—1whp 1 —2(j — 1)n"1%. Two
types od agents can enter phase x >,, j during these n/4 interactions.

The first type refers to leaders. A leader can enter phase x >,, j if it acts as the responder in
the interaction with some initiator in phase y >,, 7 — 1. The number of such potential initiators
is at most 3A - n'~U~1 whp. And if this bound holds, during each of n/4 interactions ¢ the
probability p, that a new leader enters phase x >,, j in ¢ is at most 34 - nl_(j_l)anl_s/n2 =
3A-n77¢. We attribute a binary 0-1 sequence o of length n /4 with these interactions. Initially o
is empty and during each interaction ¢ we pad o with one bit as follows. If a new leader in phase
T >pm j occurs, we add 1 to o. If no new leader in phase x >,, j is selected, 1 is inserted to o



but only with probability (34 -n77¢ —p,)/(1 —p,) and 0 otherwise. This way all entries of o are
independently equal to 1 with probability 3An~7¢. If the number of 1s in ¢ is smaller or equal to
A -n'77 the number of new leaders in phase = >,, j is not larger than A-n'=7¢. The expected
number of 1s in o is %A -n'7J¢ < nf/3. By the Chernoff bound, the probability this number

is larger than A - n'=7¢ is negligible and smaller than e~n?/2T < n~19, for sufficiently large n.
Thus the number of new leaders in phase x >,, j is not larger than A -n'=7¢ whp 1 —n=19.
The second type of new agents in phase x >,, j refers to followers. A follower enters phase
x >m j, if it is a responder to an initiator in phase y >,, j. Also here we attribute a 0-1 sequence
p of length n/4 to the relevant interactions. Prior to these n/4 interactions p is empty. Each
interaction ¢ extends p by a single bit. Let p, be the probability of getting a new follower in
phase 2 >,, j in a subsequent interaction ¢. If p, > 3A - n7%, then 1 is inserted to p with
probability 34 - n77¢ and 0 otherwise. If p, < 34 - n7¢ and a new follower in phase x >, j
occurs, 1 is added to p. If p, < 34 -n77¢ and no new follower in phase  >,, j appears, then 1 is
added to p with probability (34n7¢ — p,)/(1 — p,) and 0 otherwise. Note that until more than
A -n'=7% new followers appear in phase x >, j, p, < 34 -n'77¢/n = 3A - n=7%. If the number
of 1s in p is smaller or equal to A - n'=7¢, the number of new followers in phase = >,, j is not
larger than A - n'=7¢. The expected number of 1s in p is %A -n'=i¢ < /3. By the Chernoff
bound the probability that this number is larger than A - nl=7¢
e~n?/2T < n~ 10, for sufficiently large n. Thus the number of new followers in phase = >,, j is
not larger than A - n'=7¢ whp at least 1 — n =19, This concludes the proof that the number of
agents in phase x >,, i is at most 34 -n'~% for alli =0,1,...,j whp at least 1 — 2jn~10. W

is negligible and smaller than

We prove now the analogous lemma for the external mode.

Lemma 3 Assume that the interactions of the phase clock are performed in the external mode.
Assume also that for some integer t and a value A € [1, n5/3] Just after interaction t - n/8 of the
phase clock, the number of agents in phase x >, i is at most A-n'"%, for all i = 0,1,...,k.
Then after the next n/8 interactions the number of agents in phase x >, i is at most 3A -nl =%
for alli=0,1,...,k, and whp at least 1 — 20k - n~10.

Proof: We assume that after ¢-n/8 interactions of the phase clock the number of agents in phase
x >, 0 is at most A-n'=% foralli=0,1,...,k Let us perform a series of n/4 interactions of
the ordinary mode instead of n/8 interactions of the external mode. By Lemma [2] applied with
j = k after n/4 interactions of the ordinary mode, the probability of having i € {0,1,...,k}, s.t.,
the number of agents in phase x >, i exceeds A - n'~% is negligible and smaller than 2kn=19.
The probability that a particular agent does not act as a responder in any of these n/4
interactions is (1 —1/n)™* < e~1/4. Thus the expected number of agents that are not responders
in these interactions is smaller than ne~1/4. The probability that the number of these responders
is smaller than n/8 is the same as the probability that the number of agents not being responders

is larger than %n. By the Markov inequality this probability is at least 1 — "?;/1;4 > 1/10.
Let event B happen when there are at least n/8 responders during these (ordinary mode)

interactions. We just proved that Pr(B) > 1/10. Let event C occur when after n/4 interactions

of the ordinary mode there exists ¢ € {0,1,...,k}, s.t., the number of agents in phase x >,, i
exceeds A - n'=%. Let event D occur when after n/8 interactions of the external mode there
exists i € {0,1,...,k} such that the number of agents in phase x >,, i exceeds A -n'~*. We

have Pr(D) < Pr(C|B), since from n/4 interactions of the ordinary mode one can choose the first
n/8 interactions with different responders. During the n/8 interactions propagation of agents in
each phase x >,, i is weaker comparing to all n/4 interactions. By the Bayes rule we get

% -Pr(D) < Pr(B) Pr(C|B) + Pr(B) Pr(C|B) < 2kn 0.

Thus we can conclude Pr(D) < 20kn=10, |



The following lemmas apply to both the ordinary and external modes of the phase clock.

Lemma 4 Assume all agents start in the clock phase 0. The probability that after nlogn

3k+2)
interactions (in either of the phase clock modes) there are at least n2/Bk+2) ggents in phase
x >, k is at most 20(¢/3)klogn - n~10,

Proof: In the beginning the number of agents in phase x >,, i is at most 34 - n' =%, for all
1 =0,1,...,k and A = 1. To conclude the proof we apply Lemma [2| (or Lemma [3| respectively

to the mode) 3k 5 logn times for the series of mnlogn subsequent interactions. |

Lemma 5 Assume all agents start in the clock phase 0. The probability that on the conclusion

of sn:«‘}ziz interactions (in either of the phase clock modes) there are some agents in clock phase

T > k4145 O(n~=/3logn).

Proof: The clock phase x = k + 1 can be entered only by a leader which acts as the responder
in the interaction with an agent in a clock phase x = k. Since the number of agents in clock
phase z = k is at most n%¢/3, the probability of having such interaction is at most n'~¢/3. By the
Union bound the probablhty of having such interaction during -~ Sk +Z) subsequent interactions
is O(n=%/3logn). [ |

Lemma 6 Assume all agents start in the clock phase x = 0 and d is a positive constant. Then
there exists an integer constant K < m/2, such that the first agent enters phase x = K before
interaction t + dnlogn with negligible probability at most n=", for sufficiently large n .

Proof: Assume K = kk. We can divide all phases z = 1,2,... K into k consecutive chunks
having k phases each. Let t;, for all i = 0,1,2,...,k — 1, be the first interaction in which an
agent enters phase i -k + 1, where ty = 0. By Lemma [5| the probability that ¢; —t; 1 < % is
smaller than en=¢/3logn, for some constant ¢ > 0. The probability, that for ' different values i
we have t; — t;_1 < o8 ”) is by the binomial distribution smaller than

3(3k-+2)
() ()’

Now take k" > 3n/e and k — k' > d8(3k + 2). For sufficiently large n we obtain t, < dnlogn
with probability at most n=". |

Lemma 7 For any constant d there is another constant K, s.t., if K < m/4 and after interaction
t there is an agent in phase i and all other agents are in phases x : 1 — K <,,, x <, 1, then whp

e the first interaction t' when an agent enters phase i + K satisfies t' >t + dnlogn, and

e during interaction t' all agents are in phases x, such that i <., x <,, i + K.

Proof: By Theorem [I| and Lemma (1| there exists a positive constant d’, s.t., one way epidemic
succeeds within d’ - nlogn interactions whp. By Lemma |§| for a constant D = max{d,d'} there
is K, s.t., all agents starting in phase ¢ move to phase at most i + K after Dnlogn interactions
whp. Thus ¢’ > Dnlogn > dnlogn whp. Since one way epidemic initiated by an agent in phase
i during interaction ¢ succeeds whp, all agents after interaction ¢’ are in phase z >,, ¢« whp. W



Consider now the interactions in which phase clocks in different agents pass through 0. We
say that passes through 0 of two agents are equivalent if they occur during a period in which all
agents are in phases x : 3m/4 <,, © <, m/4. This notion defines an equivalence relation which
is reflexive, symmetric and transitive, and in turn passes of agents through 0 form equivalence
classes. This allow us to use argumentation similar to the one proposed in [4], however this time
for the junta of leaders rather than for a single leader.

Theorem 2 Assume all agents start the phase clock protocol from the initial phase 0 when n'—¢

leaders and n — n'=¢ followers are already selected. For any fized ,m,dy,ds > 0, there exists a
constant m, such that, the finite-state phase clock with parameter m completes n' passes through
0, s.t., the following conditions are satisfied with high probability 1 —n~", for sufficiently large n.

o The passes through 0 form equivalence classes for all agents and the number of interactions
between closest passes through 0 in different equivalence classes is at least diynlogn.

o The number of interactions between two subsequent passes through 0 in any agent is smaller
than donlogn whp.

Proof: If d = d;, by Lemma [7] there exists K, s.t., or m = 5K the thesis of this Lemma holds.
We consider five subsets Ag, A1, Ag, A3, Ay of Zsk defined as A; = {iK,iK +1,...,iK +,, K}.
By Lemma phases of all agents progress whp from A; to A;1.1 (modulo 5) in at least dynlogn
interactions whp. This implies that agents’ passes through 0 form equivalence classes whp and
the number of interactions between closest passes through 0 in different equivalence classes is at
least dinlogn whp. Since one way epidemic is done in O(nlogn) interactions whp each agent
increments its phase in O(nlogn) interactions. Thus the number of interactions between two
subsequent passes through 0 in any agent is smaller than donlogn whp. |

As indicated, we run the phase clock in the ordinary and the external modes simultaneously.
This is to run two time loops: the external, controlled by the external mode, and the internal,
controlled by the ordinary mode. In the leader election protocol we will use ©(logn) iterations of
the external loop coresponding to ©(log n) executions of multi-broadcast to the whole population.
Each execution is implemented via ©(nlogn) interactions controlled by the ordinary mode of
the phase clock. A meaningful interaction in the external mode happens after an agent whose
ordinary clock passes or just passed through 0 interacts for the first time as the responder with
an agent with phase in {0,1,2,...,[m/2]}. These passes through 0 form further equivalence
classes of agents.

Now consider set Ay from the proof of Theorem 2| for the ordinary mode (internal loop). An
agent starting in phase in As at some point interacts for the first time with an agent with clock
in phase in Ag. After this interaction the follower moves to phase x >,, 0, and the leader moves
to phase x >,, 1. The order in which agents are picked for these interactions is random. Once
an agent experiences such interaction, its next interaction as the responder will be meaningful
for phase clock operation in the external mode. This way phase clock in the external mode can
associate O (logn) iterations of the internal loop of the phase clock run in the ordinary mode.

In conclusion, we formulate two useful facts related to phase clocks. Fact [1| states that if
some leaders become followers during the phase clock protocol, then the phase clock can only
slow down, but the upper bound on the number of interactions remains O(nlogn). Fact [2| states
that any unsuccessful interactions can only slow down the phase clock.

Fact 1 The reduction of the number of leaders during the execution of the phase clock protocol
can only slow down phase progression of agents on their clocks. And if at least one agent remains
the leader the number of interactions between two subsequent passes through 0 in any agent is
still bounded by O(nlogn) whp.

Fact 2 If some interactions of the phase clock are faulty, i.e., they do not result in progression,
then the phases of all agents do not become larger comparing to the protocol without faults.



4 Forming a junta

In this section we describe a protocol Forming junta which purpose is to elect from n identical
agents a junta of O((nlogn)'/?) leaders assuming O(loglogn) states at each agent. This junta
of leaders will be used to support phase clocks and eventually selection of a unique leader.

The states of agents are represented as pairs (I,a) where a € {0,1}. The value [ is a non-
negative integer which we refer to as level. During execution of the protocol agents with a = 0
do not update their states. However, any agent v with value a = 1 increments its level [ by 1 or
changes its value a to 0 during all interactions v participates in. The protocol stabilizes when
all agents conclude with a = 0. The transition function is defined, s.t., on the conclusion of
this protocol there are O((nlogn)'/?) agents holding the highest computed value I whp. These
agents form the desired junta of leaders.

In the beginning all agents start in the same state (I,a) = (0,1). As agents in states ({,0) do
not get updated, we only need to specify how agents in states (I, 1) are changed during pairwise
interactions. The transition function at level [ = 0 differs from [ > 0. If an agent in state (0, 1)
interacts with another agent in state (0, 1), the final state of the initiator is (1,1) and (0,0) of
the responder

(0,1),(0,1) — (0,0), (1, 1).

If an agent v in state (0,1) interacts with any agent in state (I,a), for levels [ > 0, or with an
agent in state (0,0), then the resulting state of v is (0,0). If an agent v in state (I,1) for I > 0
interacts, its state changes only if v acts as the responder. If the initiator is in state (I, a) such
that [ < U’, then the responder’s state becomes (I + 1,1). If the initiator is in state (I',a), such
that [ > I, then the responder’s state becomes (I, 0).

Denote by B; the number of agents which reach level [ during execution of the protocol
Forming_junta. The actual value of B; depends on the particular execution thread of the
protocol. We first prove an upper bound on Bj.

Lemma 8 For n large enough 1 < By < n/2.

Proof: During an interaction between two agents in states (0, 1) exactly half of the participat-
ing agents increase their level [ to 1. The remaining half ends up in state (0,0) which becomes
their final state. During any other interaction in which an agent v in state (0, 1) participates,
v changes its state to (0,0). So at least half of the agents end up in state (0,0). Finally, since
the first interaction of the protocol is between two agents in states (0, 1), so at least one agent
results in a state with [ > 0. ]

Due to the reduction property of the protocol we have By > By > B3 > B4 > .... And in
particular there exists the last L for which value By, > 0. As our aim is to prove L = O(loglogn)
and in turn By, = O(y/nlogn), we get there by limiting values of By, for all [ > 1.

Lemma 9 Assumen Y3 < A< 1 and By < A-n, then Bi1q < %AQ -n whp 1 — e~ /300

Proof: An agent v contributing to value B results in state (I,1) as soon as it gets to level [
during the relevant interaction ¢. Consider the first interaction ¢ succeeding ¢ in which v acts
as the responder. With probability p, < B;/n < A during this interaction the initiator is on
level I’ > [. Thus v moves to level [ + 1 with probability at most A as otherwise the responder
would end up in state (I,0) and would not contribute to Bj;1. Consider now the sequence of all
By interactions ¢, in which agents in state ([, 1) act as responders. We can attribute to this se-
quence a binary 0-1 sequence o of length By, s.t., if during interaction ¢ an agent ends up in state
(I4+1,1), the respective entry in o becomes 1. Otherwise, this entry becomes 1 with probability
(1-A)/(1—p,) and 0 with probability A/(1—p,). Thus the probability of each entry being 1 is in-
dependently equal to A and the number of 1s in ¢ is at least B;y1. The expected number of these
Isis A-B; < A?n. By the Chernoff bound By, > %AQ -n with probability at most e—An/300 m



Lemma 10 If B; < n'/? we get Biq > 0 with probability at most n~1/3.

Proof: If B; < n'/3, the probability for any agent on level | to get to level [ is at most n=2/3,

Thus by the Union bound the probability of some agent getting to level [ is at most n=/3.

Lemma 11 There exists a positive constant ¢, s.t., if By > cy/nlogn then the probability of
B = 0 is negligible.

Proof: Consider a group of cy/nlogn/2 agents which move to level [ after this level is already
reached by cy/nlogn/2 other agents. Any agent in this group moves to level [+1 with probability
at least cy/logn/4n. Since all these agents advance to level [ 4+ 1 independently, the probability
that Bj41 = 0 is at most

(1 — cy/log n/4n>c rloen/2 < e~¢loan/d o p-c?/4

This last value is smaller than n~", for ¢ large enough. |

Theorem 3 In protocol Forming junta the largest level L for which By > 0 satisfies L =
O(loglogn) and By, = (v/nlogn) whp.

Proof: By Lemma |8 we have By < n/2. By Lemma |§| we conclude By < % -4 whp e~ /300

Furthermore Bz < (1%)3 - 55 Whp 2¢~"/390  And in general B; < (%)21_1 -n2! whp le="/300,
Thus for some L' = O(loglogn) we get By, < n'/3, an by Lemma (10| the value B}, where
L’=L+c, equals 0 for some constant ¢ whp 1 — n~7~!. By Lemma on the last level L for

which By, > 0 we have By, = (v/nlogn) whp 1—n~7~1. Thus both conditions hold whp 1-n""7. B
The last lemma bounds from above the running time of protocol Forming junta.

Lemma 12 The protocol Forming junta stabilizes in O(nlogn) iteractions whp.

Proof: Recall from Lemma [§|that By < n/2 and the number of agents with the final state (0,0)
is at least n/2. Each agent in this group ends up in this state during its first interaction. Since
every agent interacts at least once during the first O(nlogn) interactions of the protocol whp,
all agents ending up in state (0,0) they do so during this time. One can show that an agent does
not experience an interaction during the first c¢nlnn interactions with probability

cenlnn
<1 — 2) < n72%,
n

Thus there exists a positive constant ¢ for which after cnlnn interactions each agent experiences
its first interaction whp 1 —n~""!. Any agent that interacts as the responder with an agent in
state (0,0) sets its value a to 0 which concludes the transition process. After at least n/2 agents
are in state (0, 0), the probability that the current interaction is one of such interactions w.r.t. a
particular responder is at least ﬁ. Thus the probability that a given agent does not have a = 0

after ¢'nlnn iterations is
1 cdnlnn ,
(1 — 4) <n~c/
n

And for ¢ big enough n=¢/* < —n — 1. Thus the number of interactions needed to obtain a = 0
in all agents is O(nlogn) whp. [ |
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Finally we prove a Corollary stating that “spoiling” (for the definition check below) protocol
Forming_junta does not affect validity of statements of Theorem [3] and LemmgdI2] Using the
notion of a spoiled protocol instead of the flawless one is needed to bound the total number of
states in the leader election protocol to O(loglogn). Let spoiled Forming junta protocol be
any protocol obtained by changing some states spontaneously from (I, a) to (0,0), where [ is not
the highest level reached so far in the population. We denote the total numbers of agents that
reach level [ in this spoiled protocol by B;. And we denote the highest level for which B > 0
by L*. Observe that in the spoiled protocol all agents at level L* never go through state (0,0).

Corollary 1 Level L* satisfies the condition L* = O(loglogn) and Bj. = O(y/nlogn) whp.
Also spoiled Forming junta protocol stabilizes after O(nlogn) interactions whp.

Proof: The numbers of agents B} reaching level [ in the spoiled protocol are not larger respec-
tively than numbers B; from the flawless protocol, thus L* = O(loglogn). Also Lemma [11] still
bounds from above Bj. by O(y/nlogn) whp. Thus the running time of the spoiled protocol is
not larger than the flawless one. ]

5 Leader election

In this section we describe how to combine protocols described in the two previous sections to
derive a fast population protocol for leader election. This new leader election protocol operates
in time O(log?n) on populations with agents equipped with ©(loglogn) states.

The new leader election protocol assumes that at the beginning there is a non-empty subset
(possibly the whole population) of agents which are candidates for leaders, and this subset is
gradually reduced to a singleton. The protocol consists of ©(logn) iterations of the external
loop, each formed of ©(nlogn) interactions controlled by the ordinary mode of the phase clock.
During each iteration every candidate picks independently at random a bit 0 or 1 by tossing a
fair coin. In real terms, the coin tossing process relies on the initiator vs responder selection
performed by the random scheduler. The candidates which pick 1 broadcast message "1" to
all other agents. And when a candidate with chosen 0 receives message "1" it stops being a
candidate for the leader.

Theorem 4 The protocol proposed above selects a unique leader during ©(logn) iterations whp.

Proof: If the number of candidates is at least 2, the probability that in the relevant iteration
at least half of the candidates draw 0 is at least 1/2. Consider a series of clogn consecutive
iterations and form a binary 0-1 sequence o of length clogn, in which the entries correspond to
these iterations. If prior to an iteration only one candidate remains, the entry in o is chosen uni-
formly at random by a single coin toss. If there are more candidates and more draw 1s than 0Os,
then the relevant entry becomes 1. If there is more than one candidate and at least half of them
draw 0, en extra random selection is triggered, s.t., the probability of choosing 0 is exactly 1/2.
Note, that if the sequence has at least logn 1s, then exactly one leader remains. By the Chernoff
bound the probability, that o contains less than logn 1s is smaller than e~(1=1/ ¢)*clogn/ 2 and in
turn smaller than n~", for a constant c¢ large enough. |

The main problem with utilisation of the protocol described above is the need of implementing
a counter of ©(logn) iterations with the help of a small memory. We also need to implement
multi-broadcast of 1s which takes ©(nlogn) interactions whp. The multi-broadcast can be
implemented via one way epidemic described in section [2, The two processes can be controlled
by the phase clock run in both the external and the ordinary modes respectively, using a constant
number of states. This is conditioned by forming a junta of at most n'~¢ leaders. In section
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we described the relevant Forming junta protocol which reduces the number of leaders to
O(y/nlogn) and operates on ©(loglogn) states at each agent. Our leader election protocol
starts with a single execution of protocol Forming junta which is followed by application of the
leader reduction mechanism in order to reduce the size of junta to a single leader.

Each agent enters the leader election protocol in the same state, where the current state of
an agent is represented by a vector (I, a,b, x,y, z). A non-negative integer [ refers to the number
of levels bounded by O(loglogn). Other positions contain small integer constants a € {0, 1},
b € {leader, follower}, which refer to the leadership status, and x,y € Z,, are utlised for the
phase clock’s ordinary and external modes respectively. The remaining state overheads imposed
by our protocol are encoded in z which is limited to a constant number of values, and will not
be discussed explicitly here. Thus the number of states utilised by our protocol is O(loglogn).

Each agent starts the leader election protocol in state (I,a,b, x,y) = (0,1, leader,0,0). It
runs the protocol Forming_junta in state (I, a), for as long as b = leader. As soon as b gets value
follower, which is irreversible, the state of this agent for the purpose of protocol Forming_junta
becomes (0,0). This happens only when [ is not at the highest level in the population, so the
protocol Forming_junta gets occasionally spoiled this way. Once value a becomes 0, the agent
starts its phase clock on level [ as the leader with parameters x = y = 0. If an agent at level [
interacts with an agent with the phase clocks on a higher level I’ > [, then its state is rewritten
(I,a,b,2,y) + (I',0,follower,0,0). This way the agent aligns its phase clocks in phase 0 on
level I’ and ends up in state (0,0) in the spoiled protocol Forming_junta. The level of the phase
clock can be incremented this way many times until it attains the maximum level L* ever reached
by the population. Thus in the end all agents together run the phase clock on level L. Agents
that advance to level L* in spoiled Forming_junta protocol are the leaders of the phase clocks
and other agents are the followers.

We run the phase clock in the ordinary mode and in the external mode simultaneously
to implement the two loops described on page [§ (below Theorem . The phase clock in the
ordinary mode is driven by all interactions in which the responder has value a = 0. If the
responder interacts with an initiator on a higher level it advances its clock level as described in
the previous paragraph. If the responder has the same clock level as the initiator, they both
perform one interaction in the ordinary mode. If the responder interacts with the initiator on a
lower level or having a = 1, then this interaction is void in the ordinary mode. The phase clock
operates in the ordinary mode until it passes through 0 for the first time. And it counts for each
agent the first O(nlogn) iteractions by Fact

According to Corollary [T each agent should conclude spoiled Forming_junta protocol in the
first ©(nlogn) interactions whp. Then each remaining leader v chooses randomly 0 or 1 during
the first interaction with a non-leader after the phase (in the ordinary mode of the clock) v is
in passed through 0. If the non-leader is the initiator, v chooses 1 otherwise v chooses 0. This
gives a truly random value to each leader, and since there are O(y/nlogn) leaders this process is
completed whp during a constant number of interactions. After choosing 0 or 1 at random, leaders
multi-broadcast 1s to the whole population via one-way epidemic. The ©(nlogn) interactions
required by multi-broadcast are counted with the help of the phase clock in the ordinary mode.
In order to obtain a unique leader whp, this process is iterated O(logn) times by the external
loop and controlled by the phase clock in the external mode. The protocol concludes at each
agent, when its external clock attains phase m — 1. The following theorem holds.

Theorem 5 The protocol described above finds a unique leader in O(n log? n) interactions whp.

Now we formulate a Las Vegas type variant of our algorithm to match the existing lower
bound Q(loglogn) on the number of states in fast leader election [6].

Theorem 6 For agents equipped with O(loglogn) states, there ezists a leader election protocol
which always gives the correct answer and works in parallel time O(log2 n) whp.
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Proof: In the Las Vegas type protocol the external clock utilises the set of transitions defined
as before, however, we can replace max,, by the standard maximum as we assume that the
clock stops after reaching phase m — 1. We also allow an agent v to utilise in its external clock
all subsequent interactions as meaningful after v in a very unlikely event interacts with any
other agent with a distant ordinary phase clock value. This happens when the relevant phase
clock values = and = +,, a satisfy m/5 < a < 4m/5. In addition, after an agent starts using
all interactions as meaningful (in the external clock), it also infects with this setting all other
agents it interacts with subsequently. By Theorem [5| we can construct a fast leader election
protocol with the clock phases drawn from Z,,, s.t., a single leader is elected and the external
phase clocks in all agents conclude in phase m — 1 during the first O(n log? n) interactions whp
1 —n 10 Thanks to Lemma [7| used in the proof of correctness of the relevant clock construction
we can derive an extra observation that no two agents can have distant ordinary phase clock
values during execution of the protocol whp 1 — n=19.

If a leader enters phase m — 1 in the fast protocol we have just described, it can no longer be
eliminated by this protocol. Independently, all agents run from the beginning a slow two-state
leader election protocol which works with the expected number of interactions O(n?logn) [24].
In this slow protocol, whenever two leader candidates interact directly, the initiator eliminates
the responder. If a leader candidate of this slow protocol reaches phase m — 1 in the external
clock, it stops being a candidate for the leader, unless it is still a leader in the fast protocol.
Leaders reaching phase m — 1 in the external clock eliminate other leaders in the fast protocol
in direct pairwise interactions according to the slow protocol principle.

Note that all agents complete Forming_junta protocol in the expected number of O(nlogn)
interactions. Assume this part of leader election is already completed. Let E be the expected
number of interactions in the leader election algorithm. We have

E<(1—-n"1%"cnlog’n+n ""max{E E"}

In this formula E’ and E” are the expected numbers of interactions if we start from the worst
case configurations respectively not containing (E’) and containing (E”) distant ordinary clock
phases. If we start from the configuration not containing distant ordinary clock phases, the
external phase clock reaches phase m — 1 in all agents or all leaders disappear in O(nlog2 n)
interactions whp 1 — n~19 unless an interaction between agents with distant ordinary clock
phases occurs at some point. This can be proved using Lemma [6] using the argument analogous
to the proof of Lemma In the latter case the external clock reaches phase m — 1 whp in
O(nlogn) interactions (after this distant interaction takes place) unless all leaders in the fast
protocol disappear. When the fast leader election protocol fails, i.e., it either produces multiple
leaders or all candidates for leaders disappear, the leader election process is completed during
O(n?logn) interactions of the slow leader election protocol.

E'<(1-n"1"cn*logn+n " max{E E"}

If B > E" we get E', E" = O(n?logn) from this inequality. When we start in the worst case
configuration in which there are two agents with distant ordinary phase clock values, they meet
in the first interaction of the protocol with probability at least n~2. And when this happens,
the external clock reaches phase m — 1 in O(nlogn) interactions whp and also in this case the

unique leader is selected whp during O(n?logn) interactions of the slow protocol. Thus
E"<n™?.cn?logn+ (1 —n"%)(max{E', E"} + 1)

If B” > E', we get E', E” = O(n?logn) from this inequality. And since E', E” = O(n?logn) we
conclude E = O(nlog?n). [ |
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6 Conclusion

We studied in this paper fast and space efficient leader election in population protocols. Our
new protocol stabilises in (parallel) time O(log? n) when each agent is equipped with O(loglogn)
states. This double logaritmic space utilisation matches asymptotically the lower bound % loglogn
on the minimal number of states required by agents in any leader election algorithm with the
running time o(m), see [6]. For the convenience of the reader we provide below the logical
structure of the full argument in the form of a diagram, see Figure
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Figure 1: The structure of the argument

OM ordinary mode
EM external mode

There are several interesting unanswered questions left for further consideration. For example,
whether one can select whp a unique leader in time o(log? n) with O(loglogn) states available
at each agent. Another interesting direction is the design of a fast O(loglogn)-space majority
population protocol, which would provide a natural complement to the results in [6] and this
paper. Also, the exact space complexity of majority as well as plurality consensus in deterministic
population protocols considered recently, e.g., in [30] still require better understanding.
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