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We study the mechanism design problem of allocating a set of indivisible items without monetary transfers.

Despite the vast literature on this very standard model, it still remains unclear how do truthful mechanisms

look like. We focus on the case of two players with additive valuation functions and our purpose is twofold.

First, our main result provides a complete characterization of truthful mechanisms that allocate all the items to

the players. Our characterization reveals an interesting structure underlying all truthful mechanisms, showing

that they can be decomposed into two components: a selection part where players pick their best subset among

prespeci�ed choices determined by the mechanism, and an exchange part where players are o�ered the chance

to exchange certain subsets if it is favorable to do so. In the remaining paper, we apply our main result and

derive several consequences on the design of mechanisms with fairness guarantees. We consider various

notions of fairness, (indicatively, maximin share guarantees and envy-freeness up to one item) and provide

tight bounds for their approximability. Our work se�les some of the open problems in this agenda, and we

conclude by discussing possible extensions to more players.

Additional Key Words and Phrases: mechanism design without money; fair division of indivisible items;

maximin share fairness; envy-freeness up to one item

1 INTRODUCTION
We study a very elementary and fundamental model for allocating indivisible goods from a mecha-

nism design viewpoint. Namely, we consider a set of indivisible items that need to be allocated

to a set of players. An outcome of the problem is an allocation of all the items to the players, i.e.,

a partition into bundles, and each player evaluates an allocation by his own additive valuation

function. Our primary motivation originates from the fair division literature, where such models

have been considered extensively. However, the same se�ing also appears in several domains,

including job scheduling, load balancing and many other resource allocation problems.

�e focus of our work is on understanding the interplay between truthfulness and fairness in this

se�ing. Hence, we want to identify the e�ects on fairness guarantees, imposed by eliminating any

incentives for the players to misreport their valuation functions. �is type of questions has been

posed already in previous works and for various notions of fairness, such as envy-freeness, or for

the concept of maximin shares (see, among others, Amanatidis et al. 2016; Caragiannis et al. 2009;

Lipton et al. 2004). However, the results so far have been rather scarce in the sense that a) in most
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cases, they concern impossibility results which are far from being tight and b) the proof techniques

are based on constructing speci�c families of instances that do not enhance our understanding

on the structure of truthful mechanisms, with the exception of Caragiannis et al. (2009) which,

however, is only for two players and two items.

In order to comprehend the trade-o�s that are inherent between incentives and fairness, we �rst

take a step back and focus solely on truthfulness itself. As is quite common in fair division models,

we will not allow any monetary transfers, so that a mechanism simply outputs an allocation of

the items. Hence, the question we want to begin with is: what is the structure of truthful allocation
mechanisms?

�ere has been already a signi�cant volume of works on characterizing truthful allocation

mechanisms for indivisible items, yet there are some important di�erences from our approach. First,

a typical line of work studies this question under the additional assumption of Pareto e�ciency or

related notions (Ehlers and Klaus 2003; Klaus and Miyagawa 2002; Pápai 2000). �e characterization

results that have been obtained show that the combination of truthfulness together with Pareto

e�ciency tends to make the class of available deterministic mechanisms very poor; only some

types of dictatorship survive when imposing both criteria. Second, in some cases the analysis is

carried out without any restrictions on the class of valuation functions, which again o�en results

in a very limited class of mechanisms (see, e.g., Pápai 2001). When moving to a speci�c class, such

as the class of additive functions which is usualy assumed in fair division, it is conceivable that we

can have a much richer class of truthful mechanisms. �e results above indicate that the known

characterizations of truthful mechanisms are also dependent on further assumptions, which may

be well justi�ed in various scenarios, but they are not aligned with the goal of fair division.

1.1 Contribution
Our main result is a characterization of deterministic truthful mechanisms that allocate all the

items to two players with additive valuations. In doing so, we identify some important allocation

properties that every truthful mechanism should satisfy. One such crucial property is the notion of

controlling items (De�nition 3.10); we say that a player controls an item, whenever it is possible to

report values that will guarantee him this item, regardless of the other player’s valuation function.

We show that truthfulness implies that every item is controlled by some player. Exploiting this

property further, greatly helps us in understanding how a mechanism operates. Consequently, our

analysis and the characterization we eventually obtain reveals an interesting structure underlying

all truthful mechanisms; they can all be essentially decomposed into two components: (i) a selection
part where players pick their best subset among prespeci�ed choices determined by the mechanism,

and (ii) an exchange part where players are o�ered the chance to exchange certain subsets if it is

favorable to do so. Hence, we call them picking-exchange mechanisms.
Next, we apply our main result and derive several consequences on the design of mechanisms

with (approximate) fairness guarantees. We consider various notions of fairness in Section 4,

starting our discussion with the more standard ones such as proportionality and envy-freeness, and

explaining why such concepts cannot be a�ained—even approximately—by truthful mechanisms.

We then focus on more recently studied relaxations of either envy-freeness or proportionality

where positive algorithmic results have been obtained (e.g., �nding allocations that are envy-free

up to one item, or achieve approximate maximin share guarantees). For these notions, we provide

tight bounds on the approximation guarantees of truthful mechanisms, se�ling some of the open

problems in this area (Amanatidis et al. 2016; Caragiannis et al. 2009). Interestingly, our results

also reveal that the best truthful approximation algorithms for fair division are achieved by ordinal
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mechanisms, i.e., mechanisms that exploit only the relative ranking of the items and not the cardinal

information of the valuation functions.

�e heart of our approach for obtaining lower bounds on the approximability of fairness criteria,

is a necessary condition for fairness in view of our notion of control, which we call no control of pairs.
It states that no player should control more than one item. We show how this condition summarizes

minimum requirements for various fairness concepts previously studied in the literature. Although

this condition does not o�er an alternative fairness criterion, it is a useful tool for showing lower

bounds.

Finally, in Section 5 we provide a general class of truthful mechanisms for the case of multiple

players. �is class generalizes picking-exchange mechanisms in a non-trivial way. As indicated

by our mechanisms, there is a much richer structure in the case of multiple players. In particular,

the notion of control does not convey enough information anymore. Instead, there seem to exist

several di�erent levels of control.

1.2 Related Work
�e only work we are aware of, in which a full characterization is given for truthful mechanisms

with indivisible items, additive valuations, and no further assumptions is by Caragiannis et al. (2009).

However, this is only a characterization for two players and two items. Apart from characterizations,

there have been several works that try to quantify the e�ects of truthfulness on several concepts of

fairness. For the performance of truthful mechanisms with respect to envy-freeness, see Caragiannis

et al. (2009) and Lipton et al. (2004), whereas for max-min fairness see Bezakova and Dani (2005).

Coming to more recent results and along the same spirit, Amanatidis et al. (2016) and Markakis and

Psomas (2011) study the notion of maximin share allocations, and a related notion of worst-case

guarantees respectively. �ey obtain separation results, showing that the approximation factors

achievable by truthful mechanisms are strictly worse than the known algorithmic (nontruthful)

results. Obtaining a be�er understanding for the structure of truthful mechanisms and how they

a�ect fairness has been an open problem underlying all the above works. For a be�er and more

complete elaboration on fairness and the numerous fairness concepts that have been suggested, we

refer the reader to the books (Brams and Taylor 1996; Moulin 2003; Robertson and Webb 1998) and

the recent surveys (Bouveret et al. 2016; Procaccia 2016).

�ere has been a long series of works on characterizing mechanisms with indivisible items

beyond the context of fair divison. Many works characterize the allocation mechanisms that arise

when we combine truthfulness with Pareto e�ciency (see, e.g., Ehlers and Klaus 2003; Klaus and

Miyagawa 2002; Pápai 2000). Typically, such mechanisms tend to be dictatorial, and it is also well

known that economic e�ciency is mostly incompatible with fairness (see, e.g., Bouveret et al. 2016).

Another assumption that has been used is nonbossiness, which means that one cannot change the

outcome without a�ecting his own bundle. For instance, Svensson (1999) assumes nonbossiness

in a se�ing where each player is interested in acquiring only one item. For general valuations,

this also leads to dictatorial algorithms (Pápai 2001). In most of these works ties are ignored by

considering strict preference orders over all subsets of the items, while in some cases it is also

allowed for the mechanism not to allocate all the items.

�ere have also been relevant works for the se�ing of divisible goods (see, among others, Chen

et al. 2013; Cole et al. 2013). We note that for additive valuation functions, a mechanism for divisible

items can be interpreted as a randomized mechanism for indivisible items. �is connection is

already discussed and explored in Aziz et al. (2016); Guo and Conitzer (2010). In our work, we do

not study randomized mechanisms, however it is an interesting question to have characterization
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results for such se�ings as well. Along this direction, see Mennle and Seuken (2014) where a relaxed

notion of truthfulness is studied.

Related to our work is also the literature on exchange markets. �ese are models where players

are equipped with an initial endowment, e.g., a house or a set of items. For the case where players

can have multiple indivisible items as their initial endowment, see Pápai (2003) and (2007). Exchange

markets provide an example where the existing characterizations go well beyond dictatorships and

are closely related to the exchange component of our mechanisms.

Finally, for se�ings with payments, the work of Dobzinski and Sundararajan (2008), and inde-

pendently of Christodoulou et al. (2008), provided a characterization of truthful mechanisms with

two players and additive valuations when all items are allocated. However, their characterization

does not apply to our se�ing because they make an additional assumption, namely decisiveness. It

roughly requires that each player should be able to receive any possible bundle of items, by making

an appropriate bid. �eir motivation is the characterization of truthful mechanisms with bounded

makespan (maximum �nishing time) for the scheduling problem, and in their case decisiveness

is necessary in order to achieve bounded guarantees. In our case, our motivation is fairness, and

decisiveness is a very strong assumption which has the opposite e�ects of what we need; e.g.,

assigning the full-bundle to a player is unacceptable in terms of fairness. Finally, Christodoulou

and Kovács (2011) give a global characterization of envy-free and truthful mechanisms for se�ings

with payments, when there are multiple players but only two items.

2 PRELIMINARIES AND NOTATION
With the exception of Section 5, we consider a se�ing with two players and a set ofm indivisible

items, M = {1, . . . ,m} = [m], to be allocated to the players. We assume that each player i has an

additive valuation function vi over the items, so that for every S ⊆ M , vi (S ) =
∑

j ∈S vi ({j}). For

j ∈ M , we write vi j instead of vi ({j}).
We say that (S1,S2, . . . ,Sk ) is a partition of a set S , if

⋃
i ∈[k]

Si = S , and Si ∩ S j = ∅ for any

i, j ∈ [k] with i , j. Note that we do not require that Si , ∅ for all i ∈ [n]. An allocation of M to

the players is a partition in the form S = (S1,S2). ByM we denote the set of all allocations of M .

�e setVm of all possible pro�les is Rm+ × R
m
+ , i.e., we assume that vi j > 0 for every i ∈ {1,2}

and j ∈ M . For some statements we need the assumption that the players’ valuation functions are

such that no two sets have the same value. So, letV,m denote the set of such pro�les, i.e.,

V,m =

{
(v1,v2) ∈ Vm

���� ∀S ,T ⊆ [m] with S , T , and ∀i ∈ {1,2},
∑
j ∈S

vi j ,
∑
j ∈T

vi j

}
.

A deterministic allocation mechanism with no monetary transfers, or simply a mechanism, for

allocating all the items in M = [m], is a mapping X from Vm to M. �at is, for any pro�le v,

the outcome of the mechanism is X (v) = (X1 (v),X2 (v)) ∈ M, and Xi (v) denotes the set of items

player i receives.

A mechanism X is truthful if for any instance v = (v1,v2), any player i ∈ {1,2}, and any v ′i :

vi (Xi (v)) ≥ vi (Xi (v
′
i ,v−i )).

Since we will repeatedly argue about intersections of Xi (v) with various subsets of M , we use

X S
i (v) as a shortcut for Xi (v) ∩ S , where S ⊆ M .
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2.1 Fairness concepts1

Several notions have emerged throughout the years as to what can be considered a fair allocation.

We de�ne below the concepts that we will examine in Section 4. Although all concepts can be

clearly de�ned for any number of players, we provide the de�nitions for two players, since this is

the focus of the paper.

We start with two of the most dominant solution concepts in fair division, namely proportionality

and envy-freeness.

De�nition 2.1. An allocation S = (S1,S2) is

(1) proportional, if vi (Si ) ≥
1

2
vi (M ), for i ∈ {1,2}.

(2) envy-free, if v1 (S1) ≥ v1 (S2), and v2 (S2) ≥ v2 (S1) .

Proportionality was considered in the very �rst work on fair division by Steinhaus (1948). Envy-

freeness was suggested later by Gamow and Stern (1958), and with a more formal argumentation

by Foley (1967) and Varian (1974).

Envy-freeness is a stricter notion than proportionality, but even for the la�er existence cannot

be guaranteed under indivisible goods. One can also consider approximation versions of these

problems as follows: Given an instance I , let E (I ) be the minimum possible envy that can be

achieved at I , among all possible allocations. We say that a mechanism achieves a ρ-approximation,

if for every instance I , it produces an allocation where the envy between any pair of players is at

most ρE (I ). Similarly for proportionality, suppose that an instance I admits an allocation where

every player receives a value of at least
c (I )

2
vi (M ) for some c (I ) ≤ 1. �en a ρ-approximation would

mean that each player is guaranteed a bundle with value at least
ρc (I )

2
vi (M ).

Apart from the approximation versions, the fact that we cannot always have proportional or

envy-free allocations gives rise to relaxations of these de�nitions, with the hope of obtaining

more positive results. We describe below three such relaxations, all of which admit either exact or

constant-factor approximation algorithms (not necessarily truthful) in polynomial time.

�e �rst such relaxation is the concept of envy-freeness up to one item, where each person may

envy another player by an amount which does not exceed the value of a single item in the other

player’s bundle. Formally:

De�nition 2.2. An allocation S = (S1,S2) is envy-free up to one item, if there exists an item a1 ∈ S1,

and an item a2 ∈ S2, such that vi (Si ) ≥ vi (S j \ {aj }), for i, j ∈ {1,2}.

It is quite easy to achieve envy-freeness up to one item, e.g., a round-robin algorithm that

alternates between the players and gives them in each step their best remaining item su�ces. Other

algorithms are also known to satisfy this criterion (see Lipton et al. 2004).

A more interesting relaxation from an algorithmic point of view, comes from the notion of

maximin share guarantees, recently proposed by Budish (2011). For two players, the maximin

share of a player i is the value that he could achieve by being the cu�er in a discretized form of the

cut and choose protocol. �is is a guarantee for player i , if he would partition the items into two

bundles so as to maximize the value of the least valued bundle. We de�ne below the approximate

version of this notion.

De�nition 2.3. Given a set of items [m], the maximin share of a player i ∈ {1,2}, is

µi = max

S ∈M
min{vi (S1),vi (S2)} .

1
�e material of this subsection is needed in the sequel only within Section 4.
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For ρ ≤ 1, an allocation S = (S1,S2) is called a ρ-approximate maximin share allocation if vi (Si ) ≥
ρ · µi , for i ∈ {1,2}.

For two players maximin share allocations always exist and even though they are NP-hard to

compute, we have a PTAS by reducing this to standard job scheduling problems. Hence each

player can receive a value of at least (1 − ϵ )µi . For a higher number of players, constant factor

approximation algorithms also exist (see Amanatidis et al. 2015; Procaccia and Wang 2014).

Finally, a related approach was undertaken by Hill (1987). �is work examined what is the

worst case guarantee that a player can have as a function of the total number of players and the

maximum value of an item across all players. For two players, the following function was identi�ed

precisely as the guarantee that can be given to each player. Note that the total value of the items is

normalized to 1 in this case.

De�nition 2.4. Let V2 : [0,1]→ [0,1/2] be the unique nonincreasing function satisfying V2 (α ) =
1/2 for α = 0, whereas for α > 0:

V2 (α ) =



1 − kα if α ∈ I (2,k )

1 −
(k+1)

2(k+1)−1
if α ∈ NI (2,k )

where for any integer k ≥ 1, I (2,k ) =
[

k+1

k (2(k+1)−1) ,
1

2k−1

]
and NI (2,k ) =

(
1

2(k+1)−1
, k+1

k (2(k+1)−1)

)
.

Markakis and Psomas (2011) proved that for two players, there always exists an allocation such

that each player i receives at least V2 (αi ), where αi = maxj ∈[m]vi j . �e approximation version of

this notion would be to construct allocations where each player receives a value of at least ρV2 (αi ).
Recently, a stricter variant of this guarantee has been provided by Gourvès et al. (2015) (also see

Remark 4.9).

3 CHARACTERIZATION OF TRUTHFUL MECHANISMS
We present our main characterization result in this section. We start in subsection 3.1 with the

main de�nitions and illustrating examples, and then we state our result in subsection 3.2 along

with a road map of the proof. To avoid repetition, when referring to a truthful mechanism X, we

mean a truthful mechanism for allocating all the items in M to two players with additive valuation

functions.

3.1 A Non-Dictatorial Class of Mechanisms
�e main result of this section is that every truthful mechanism is a picking-exchange mechanism

(�eorem 3.9). Before we make a precise statement, we formally de�ne the types of mechanisms

involved and provide illustrating examples.

Picking Mechanisms. We start with a family of mechanisms where players make a selection out

of choices that the mechanism o�ers to them. Given a subset S of items, we de�ne a set of o�ers O
on S , as a nonempty collection of proper subsets of S that exactly covers S (i.e.,

⋃
T ∈O T = S), and

in which there is no common element that appears in all subsets (i.e.,

⋂
T ∈O T = ∅).

De�nition 3.1. A mechanism X is a picking mechanism2
if there exists a partition (N1,N2) of M ,

and sets of o�ers O1 and O2 on N1 and N2 respectively, such that for every pro�le v,

Xi (v) ∩ Ni ∈ arg max

S ∈Oi
vi (S ).

2
Picking mechanisms are a generalization of truthful picking sequences for two players (see (Bouveret and Lang 2014)).
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Technical nuances aside, such a mechanism can be implemented by �rst le�ing player 1 choose

his best o�er from O1 and giving what remains from N1 to player 2. �en it lets player 2 choose his

best o�er from O2 and gives what remains from N2 to player 1. �e following example illustrates a

picking mechanism.

Example 3.2. Consider the following mechanism X on a set M = {1, . . . 6}, which �rst partitions

M into N1 = {1,2,3,4},N2 = {5,6} and then constructs the o�er sets O1 = {{1,2}, {2,3}, {4}},O2 =

{{5}, {6}}. On input v, X �rst gives to player 1 his best set—with respect to v1—among {1,2}, {2,3}
and {4}, and then gives what remains from N1 to player 2. Next, X gives to player 2 his best

set—according to v2—among {5} and {6}, and then gives what remains from N2 to player 1. X

resolves ties lexicographically, e.g., in case of a tie, {1,2} is preferred to {4}.

It is not hard to see that X is truthful. For the following input v , the circles denote the allocation.

v = *
,

3 5 5 10 4 2

2 3 6 1 5 3

+
-
.

Exchange Mechanisms. We now move to a quite di�erent class of mechanisms. Let X ,Y be two

disjoint subsets of M . We call the ordered pair (X ,Y ) an exchange deal. Moreover, we say that an

exchange deal (X ,Y ) is favorable with respect to v if v1 (Y ) > v1 (X ) and v2 (Y ) < v2 (X ), while it is

unfavorable with respect to v ifv1 (Y ) < v1 (X ) orv2 (Y ) > v2 (X ). Let S andT be two disjoint subsets

of items and let S1,S2, . . . ,Sk and T1, . . . ,Tk be two collections of nonempty and pairwise disjoint

subsets of S andT respectively. We say then that the set of exchange deals D = {(S1,T1), (S2,T2), . . . ,
(Sk ,Tk )} on (S ,T ) is valid.

De�nition 3.3. A mechanism X is an exchange mechanism3
if there exists a partition (E1,E2)

of M , and a valid set of exchange deals D = {(S1,T1), . . . , (Sk ,Tk )} on (E1,E2), such that for every

pro�le v, there exists a set of indices I = I (v) ⊆ [k] for which

X1 (v) =
(
E1

⋃
i ∈I

Si

)
∪

⋃
i ∈I

Ti , X2 (v) = M \ X1 .

Moreover, I contains the indices of every favorable exchange deal with respect to v, but no indices

of unfavorable exchange deals.

On a high level, an exchange mechanism initially partitions the items into endowments for the

players, and then examines a list of possible exchange deals. Every exchange that improves both

players is performed, while every exchange that reduces the value of even one player is avoided.

�e mechanism may also perform other exchanges where one player is indi�erent and the other

player can be either indi�erent or improved. Whether such exchange deals are materialized or not

is up to the tie-breaking rule employed by the mechanism. �e following example illustrates an

exchange mechanism.

Example 3.4. Let M = {1, . . . 5}, and consider the following mechanism Y , with E1 = {1,2,3},
E2 = {4,5}, and a valid set of exchange deals D = {({2,3}, {4})} on (E1,E2): One can think of such

a mechanism as if Y initially reserves the set E1 for player 1 and the set E2 for player 2. �en

it examines whether exchanging {2,3} with {4} strictly improves both players, and performs the

exchange only if the answer is yes. Mechanism Y is an example of an exchange mechanism with

only one possible exchange deal. Again, one can see that no player has an incentive to lie.

3
If we think about E1, E2 as �xed a priori, then exchange mechanisms are a generalization of �xed deal exchange rules in

general exchange markets for two players, see (Pápai 2007).
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For the following input v , the circles denote the allocation produced.

v = *
,

6 2 3 7 1

1 6 1 4 7

+
-
.

Picking-Exchange Mechanisms. Finally, we de�ne the class of picking-exchange mechanisms

which is a generalization of both picking and exchange mechanisms.

De�nition 3.5. A mechanism X is a picking-exchange mechanism if there exists a partition

(N1,N2,E1,E2) of M , sets of o�ers O1 and O2 on N1 and N2 respectively, and a valid set of ex-

change deals D = {(S1,T1), . . . , (Sk ,Tk )} on (E1,E2), such that for every pro�le v, Xi (v) ∩ Ni ∈

arg maxS ∈Oi vi (S ) and X1 (v) ∩ (E1 ∪ E2) = (E1

⋃
i ∈I Si ) ∪

⋃
i ∈I Ti , where I = I (v) ⊆ [k] contains

the indices of all favorable exchange deals, but no indices of unfavorable exchange deals.

It is helpful to think that a picking-exchange mechanism runs independently a picking mechanism

on N1 ∪ N2 and an exchange mechanism on E1 ∪ E2, like in Example 3.6. Although this is true

under the assumption that the players’ valuation functions are such that no two sets have the same

value, it is not true for general additive valuations. �e reason is that the tie-breaking for choosing

the o�ers from O1 and O2 may not be independent from the decision of whether to perform each

exchange that is neither favorable nor unfavorable.

�e following example illustrates a picking exchange mechanism.

Example 3.6. Let M = {1, . . . ,11}, and consider the mechanismZ that partitions M into N1 =

{1,2,3,4},N2 = {5,6}, E1 = {7,8,9} and E2 = {10,11}, and is the combination of X and Y from the

previous two examples: On input v,Z runs X on N1 ∪ N2 and Y on E1 ∪ E2. It outputs the union

of the outputs of X and Y .

For the following input v , the circles denote the �nal allocation.

v = *
,

3 5 5 10 4 2 6 2 3 7 1

2 3 6 1 5 3 1 6 1 4 7

+
-
.

3.2 Truthfulness and Picking-Exchange Mechanisms
Essentially, we show that a mechanism is truthful if and only if it is a picking-exchange mechanism.

We begin with the easier part of our characterization, namely that under the assumption that each

valuation function induces a strict preference relation over all possible subsets, every picking-

exchange mechanism is truthful. Recall that the set of such pro�les is denoted byV,m .

Theorem 3.7. When restricted toV,m , every picking-exchange mechanism X for allocatingm items
is truthful.

Remark 3.8. For simplicity, �eorem 3.7 is stated for a subclass of additive valuation functions.

However, it holds for general additive valuations as long as the mechanism uses a sensible tie-

breaking rule (e.g., label-based or welfare-based).
4

We are now ready to state the main result of this work.

Theorem 3.9. Every truthful mechanism X can be implemented as a picking-exchange mechanism.

�e rest of this subsection is a road map to the proof of �eorem 3.9. �e proof is long and

technical, so for the sake of presentation, it is broken down to several lemmata. In order to illustrate

the high-level ideas, the proofs of those lemmata are deferred to the full version of the paper.

4
Describing all such tie-breaking rules seems to be an interesting, nontrivial question for future work, but not our main

focus here.
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For the rest of this subsection we assume a truthful mechanism X for allocating all the items

in M = [m] to two players with additive valuation functions. Every statement is going to be with

respect to this X.

3.2.1 The Crucial Notion of Control. We begin by introducing the notions of strong desire and of

control, which are of key importance for our characterization. We say that player i strongly desires
a set S if each item in S has more value for him than all the items of M S combined, i.e., if for

every x ∈ S we have vix >
∑
y∈M S viy .

De�nition 3.10. We say that player i controls a set S with respect to X, if every time he strongly

desires S he gets it whole, i.e., for every v = (v1,v2) in which player i strongly desires S , then we

have that S ⊆ Xi (v) .

Clearly, given X, any set S can be controlled by at most one player.

�e following is a key lemma for understanding how truthful mechanisms operate. �e lemma

together with Corollary 3.12 below show that every item is controlled by some player under any

truthful mechanism.

Lemma 3.11 (Control Lemma). Let S ⊆ M . If there exists a pro�le v = (v1,v2) such that both
players strongly desire S , and S ⊆ Xi (v) for some i ∈ {1,2}, then player i controls every T ⊆ S with
respect to X.

Proof. Let v = (v1,v2) be a pro�le such that both players strongly desire S and S ⊆ X1 (v) (the

case where S ⊆ X2 (v) is symmetric). We �rst prove the statement for T = S . Let v′ = (v ′
1
,v ′

2
) be

any pro�le in which player 1 strongly desires S , i.e., v ′
1x >

∑
y∈M S v

′
1y ,∀x ∈ S . Initially, consider

the intermediate pro�le v∗ = (v1,v
′
2
). If S ∩ X2 (v∗) , ∅ then player 2 would deviate from pro�le

v to v∗ in order to strictly improve his total utility. So by truthfulness we derive that S ⊆ X1 (v∗).
Similarly, in the pro�le v′, if S ∩ X2 (v′) , ∅ then player 1 would deviate from v′ to v∗ in order to

strictly improve. �us by truthfulness we have S ⊆ X1 (v′). We conclude that player 1 controls S .

Now, suppose that v′′ = (v ′′
1
,v ′′

2
) is any pro�le in which player 1 strongly desires T ( S . If

T * X1 (v′′) then player 1 could strictly improve his utility by playing v ′
1

from before (i.e., he

declares that he strongly desires S) and ge�ing S ) T . �us, by truthfulness, T ⊆ X1 (v′′), and we

conclude that player 1 controls T . �

Notice here that the existence of sets that are controlled by some player is always guaranteed.

Speci�cally, each singleton {x } is always controlled (only) by one of the players. Indeed, when

both players strongly desire {x }, it is always the case that {x } ⊆ Xi (v) for some i ∈ {1,2}. �is is

summarized in the following corollary.

Corollary 3.12. Let X be a truthful mechanism for allocating the items inM to two players with
additive valuations. For every x ∈ M there exists i ∈ {1,2} such that only player i controls {x } with
respect to X.

Aside from its use in the current proof, the corollary has implications on fairness, that will be

explored in Section 4.

3.2.2 Identifying the Components of a Mechanism. Our goal now is to determine the “exchange

component” and the “picking component” of mechanism X. Every picking-exchange mechanism is

completely determined by the seven sets N1, N2, O1, O2, E1, E2, and D mentioned in De�nition 3.5

(plus a deterministic tie-breaking rule). Below we try to identify these sets. Later we show that the

mechanism’s behavior is identical to that of a picking-exchange mechanism de�ned by them.
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To proceed, we will need to consider the collection of all maximal sets controlled by each player.

For i ∈ {1,2}, let

Ai = {S ⊆ M | player i controls S and for any T ) S , i does not control T } .

Clearly, every set controlled by player i is a subset of an element of Ai . According to Lemma 3.11,

if we consider the set Ci =
⋃

S ∈Ai S , i.e., the union of all the sets in Ai , this is exactly the set of

items that are controlled—as singletons—by player i .

Corollary 3.13. �e sets C1 and C2 de�ne a partition ofM .

Using theAi s and theCi s, we de�ne the sets of interest that determine the mechanism. We begin

with Ei =
⋂

S ∈Ai S for i ∈ {1,2}. As we are going to see eventually in Lemma 3.21, the “exchange

component” of X is observed on E1 ∪ E2.

De�ning the corresponding valid set of exchange deals D is trickier, and we need some terminol-

ogy. Recall that X S
i (v) = Xi (v) ∩ S . For S ⊆ E1 andT ⊆ E2, we say that (S ,T ) is a feasible exchange,

if there exists a pro�le v, such that X E1∪E2

1
(v) = (E1 S ) ∪ T . In such a case, each of S and T is

called exchangeable. An exchangeable set S is called minimally exchangeable if any S ′ ( S is not

exchangeable. Finally, a feasible exchange (S ,T ) is a minimal feasible exchange, if at least one of S
and T is minimally exchangeable. Now let

D = {(S ,T ) | (S ,T ) is a minimal feasible exchange with respect to X} .

Of course, at this point it is not clear whether D is well de�ned as a valid set of exchange deals,

and this is probably the most challenging part of the characterization.

Next, we de�ne Ni = Ci Ei and Oi = {S Ei | S ∈ Ai } for i ∈ {1,2}. As shown in Lemmata 3.14

and 3.15, we identify the “picking component” of X on N1 ∪ N2, and Oi will correspond to the set

of o�ers.

Note that by Corollary 3.13 and the above de�nitions, (N1,N2,E1,E2) is a partition of M . �e

intuition behind breaking Ci into Ni and Ei is that player i has di�erent levels of control on those

two sets. �e fact that Ei is contained in every maximal set controlled by player i will turn out to

mean that X gives the ownership of Ei to player i . On the other hand, the control of player i on Ni
is much more restricted as shown below.

3.2.3 Cracking the Picking Component. �e �rst step is to show that the Ois de�ned above,

greatly restrict the possible allocations of the items of N1 ∪ N2. In particular, whatever player i
receives from Ni must be contained in some set of Oi .

Lemma 3.14. For every pro�le v and every i ∈ {1,2}, there exists S ∈ Oi such that XNi
i (v) ⊆ S .

�e idea behind the proof of Lemma 3.14 is that by receiving some XNi
i (v) not contained in

any set of Oi , player i is able to extend his control to subsets not contained in Ci , thus leading to

contradiction. �e proof, as many of the proofs of the remaining lemmata, includes the careful

construction of a series of pro�les, where in each step one has to argue about how the allocation

does or does not change.

Given the restriction implied by Lemma 3.14, next we can prove that the subset of Ni that player

i receives must be the best possible from his perspective, hence the mechanism behaves as a picking

mechanism on each Ni . Intuitively, suppose that player 1 receives a subset S of N1 which is not

an element of O1. By Lemma 3.14, S is contained in an element S ′ of O1. Since player 1 controls

S ′, this means that he gave up part of his control to gain something that he was not supposed to.

Actually, it can be shown that it is the case where player 2 also gave part of his control (either on

N2 or E2). �is mutual transfer of control, combined with truthfulness, eventually leads to pro�les

where some of the items must be given to both players at the same time, hence a contradiction.
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Lemma 3.15. For every pro�le v and every i ∈ {1,2} we have XNi
i (v) ∈ arg maxS ∈Oi vi (S ).

Now we know that X behaves as the “right” picking-exchange mechanism on N1 ∪ N2. For most

of the rest of the proof we would like to somehow ignore this part of X and focus on E1 ∪ E2.

3.2.4 Separating the Two Components. As mentioned right a�er De�nition 3.5, there is some

kind of independence between the two components of a picking-exchange mechanism, at least

when restricted onV,m . �is independence should be present in X as well; in fact we are going to

exploit it to get rid of N1 ∪ N2 until the last part of the proof.

Lemma 3.16. Let v = (v1,v2),v′ = (v ′
1
,v ′

2
) ∈ V,m such that vi j = v ′i j for all i ∈ {1,2} and

j ∈ E1 ∪ E2. �en X E1∪E2

1
(v) = X E1∪E2

1
(v′).

�e lemma states that assuming strict preferences over all subsets, the allocation of E1 ∪ E2 does

not depend on the values of either player for the items in N1 ∪ N2. What allows this separation is

the complete lack of ties in the restricted pro�le space.

Without loss of generality we may assume that E1 ∪ E2 = [`]. We can de�ne a mechanism XE
for allocating the items of [`] to two players with valuation pro�les inV,

`
as

XE (v) = (X E1∪E2

1
(v′),X E1∪E2

2
(v′)), for every v ∈ V,` ,

where v′ is any pro�le inV,m with vi j = v
′
i j for all i ∈ {1,2} and j ∈ [`]. �is new mechanism is

just the projection of X on E1 ∪ E2 restricted on a domain where it is well-de�ned. �e truthfulness

of XE onV,
`

follows directly from the truthfulness of X onV,m . Moreover, it is easy to see that

player i controls Ei with respect to XE , for i ∈ {1,2}.
�e plan is to study XE instead of X, show that XE is an exchange mechanism, and �nally sew

the two parts of X back together and show that everything works properly for any pro�le inVm .

One issue here is that maybe the set of feasible exchanges with respect to XE is greatly reduced, in

comparison to the set of feasible exchanges with respect to X, because of the restriction on the

domain. In such a case, it will not be possible to argue about exchanges in D that are not feasible

anymore. It turns out that this is not the case; the set of possible allocations (of E1 ∪ E2) is the same,

whether we consider pro�les inVm or inV,m .

Lemma 3.17. For every pro�le v ∈ Vm there exists a pro�le v′ ∈ V,m such that X (v) = X (v′).

In particular, the set of feasible exchanges on E1 ∪ E2 is exactly the same for X and XE , and thus

we will utilize the following set of exchanges.

D = {(S ,T ) | (S ,T ) is a minimal feasible exchange with respect to XE } .

3.2.5 Cracking the Exchange Component. In the a�empt to show that XE is an exchange mecha-

nism, the �rst step is to show that D is indeed a valid set of exchange deals.

Lemma 3.18. D is a valid set of exchange deals on (E1,E2).

�e above lemma involves three main steps. First we show that each minimally exchangeable

set is involved in exactly one exchange deal. �en, we guarantee that minimally exchangeable sets

can be exchanged only with minimally exchangeable sets, and �nally, we show that minimally

exchangeable sets are always disjoint. �ere is a common underlying idea in the proofs of these

steps: whenever there exist two feasible exchanges that overlap in any way, we can construct a

pro�le where both of them are favorable but the two players disagree on which of them is best. On

a high level, each player can “block” his least favorable of the con�icting exchanges, and this leads

to violation of truthfulness.
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Lemma 3.18 implies that every exchangeable set S ⊆ E1 can be decomposed as S =W ∪
⋃

i ∈I Si ,
whereW = S

⋃
i ∈I Si does not contain any minimally exchangeable sets. Ideally, we would like

two things. First, the setW in the above decomposition to always be empty, i.e., every exchangeable

set should be a union of minimally exchangeable sets. Second, we want every union of minimally

exchangeable subsets of E1 to be exchangeable only with the corresponding union of minimally

exchangeable subsets of E2, and vice versa. It takes several lemmas and a rather involved induction

to prove those. A key ingredient of the inductive step is a carefully constructed argument about

the value that each player must gain from any exchange.

Lemma 3.19. For every exchangeable set S ⊆ E1, there exists some I ⊆ [k] such that S =
⋃

i ∈I Si .
Moreover, S is exchangeable with T =

⋃
i ∈I Ti and only with T .

Finally, we have all the ingredients to fully describe XE as an exchange mechanism on E1 ∪ E2

and set of exchange deals D.

Lemma 3.20. Given any pro�le v ∈ V,
`
, each exchange in D is performed if and only if it is

favorable, i.e., X E1∪E2

1
(v) = (E1

⋃
i ∈I Si ) ∪

⋃
i ∈I Ti , where I ⊆ [k] contains exactly the indices of all

favorable exchange deals in D.

3.2.6 Pu�ing the Mechanism Back Together. As a result of Lemma 3.20 (combined, of course,

with Lemmata 3.15 and 3.16), the characterization is complete for truthful mechanisms de�ned

onV,m . For general additive valuation functions, however, we need a li�le more work. �is is to

counterbalance the fact that in the presence of ties the allocations of N1 ∪ N2 and E1 ∪ E2 may not

be independent.

By Lemmata 3.17 and 3.19, we know that for any v ∈ Vm , X E1∪E2

1
(v) is the result of some

exchanges of D taking place. �ere are two things that can go wrong: X performs an unfavorable

exchange, or it does not perform a favorable one. In either of these cases it is possible to construct

some pro�le inV,m that leads to contradiction. Hence we have the following lemma.

Lemma 3.21. Given any pro�le v ∈ Vm , X E1∪E2

1
(v) = (E1

⋃
i ∈I Si ) ∪

⋃
i ∈I Ti , where I ⊆ [k]

contains the indices of all favorable exchange deals in D, but no indices of unfavorable exchange deals.

Clearly, Lemma 3.21, together with Lemma 3.15 concludes the proof of �eorem 3.9.

3.3 Immediate Implications of Theorem 3.9
As mentioned in Section 1.2, there are several works characterizing truthful mechanisms in combi-

nation with other notions, such as Pareto e�ciency, nonbossiness, and neutrality (these results are

usually for unrestricted, not necessarily additive valuations). Pareto e�ciency means that there is

no other allocation where one player strictly improves and none of the others are worse-o�. Non-

bossiness means that a player cannot a�ect the outcome of the mechanism without changing his

own bundle of items. Finally, neutrality refers to a mechanism being consistent with a permutation

on the items, i.e., permuting the items results in the corresponding permuted allocation.

Although such notions are not our main focus, the purpose of this short discussion is twofold.

On one hand, we illustrate how our characterization immediately implies a characterization for

mechanisms that satisfy these extra properties under additive valuations, and on the other hand

we see how these properties are either incompatible with fairness or irrelevant in our context.

To begin with, nonbossiness comes for free in our case, since we have two players and all the

items must be allocated. Neutrality and Pareto e�ciency, however, greatly reduce the space of

available mechanisms. Note that it makes more sense to study neutral mechanisms when the

valuation functions induce a strict preference order over all sets of items.
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Corollary 3.22. Every neutral, truthful mechanism X onV,m can be implemented as a picking-
exchange mechanism, such that

(1) there exists i ∈ {1,2} such that Ei = [m], or

(2) there exists i ∈ {1,2} such that Ni = [m] and Oi = {S ⊆ [m] | |S | = κ} for some κ < m.

Corollary 3.23. Every Pareto e�cient, truthful mechanism X can be implemented as a picking-
exchange mechanism, such that

(1) there exists i ∈ {1,2} such that Ei = [m], or

(2) there exists j ∈ [m] such that Ei1 = {j}, Ei2 = [m] {j}, where {i1,i2} = {1,2}, and D =
{(E1,E2)}, or

(3) there exists i ∈ {1,2} such that Ni = [m] and Oi = {S ⊆ Ni | |S | =m − 1}.

It is somewhat surprising that the resulting mechanisms are a strict superset of dictatorships,

even when we impose both properties together. Pareto e�ciency, however, allows only mechanisms

that are rather close to being dictatorial, and thus cannot guarantee fairness of any type. On the

other hand, most of the mechanisms de�ned and studied in Section 4 are neutral, yet neutrality is

not implied by the fairness concepts we consider, nor the other way around.

4 A NECESSARY FAIRNESS CONDITION AND ITS IMPLICATIONS
In this section, we explore some implications of �eorem 3.9 on fairness properties, i.e., on the

design of mechanisms where on top of truthfulness, we would like to achieve fairness guarantees.

In Section 4.1 we show that the Control Lemma implies that truthfulness prevents any bounded

approximation for envy-freeness and proportionality. �en, we move on describing a necessary

fairness condition, in terms of our notion of “control”, that summarizes a common feature of several

relaxations of fairness and provide a restricted version of our characterization that follows this

fairness condition. �is will allow us, in Section 4.2, to examine what this new class of mechanisms

can achieve in each of these fairness concepts.

4.1 Implications of the Control Lemma.
4.1.1 Control of singletons. �e basic restriction that truthfulness imposes to every mechanism

(leading to poor results for some fairness concepts) comes from Corollary 3.12, an immediate

corollary of the Control Lemma, stating that every single item is controlled by some player.

We begin by studing how the above corollary a�ects two of the most researched notions in the

fair division literature, namely proportionality and envy-freeness. It is well known that even without

the requirement for truthfulness, it is impossible to achieve any of these two objectives, simply

because in the presence of indivisible goods, envy-free or proportional allocations may not exist.
5

�is leads to the de�nition of approximation versions of these two concepts for se�ings with

indivisible goods. For example, one could try to construct algorithms such that for every instance,

an approximation to the minimum possible envy admi�ed by the instance is guaranteed. Similarly,

approximate proportionality can be considered, i.e., �nd allocations that achieve an approximation

to the best possible value that an instance can guarantee to all agents. See also the discussion in

Section 2 on de�ning the approximation versions of these problems. Note that if time complexity is

not an issue, we can always identify the allocation with the best possible envy or with the best

possible proportionality, achievable by a given instance.

5
Consider, for instance, a pro�le where both players desire only the �rst item and have a negligible value for the other

items. �en one of the players will necessarily remain unsatis�ed and receive a value close to zero, no ma�er what the

allocation is.
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We are now ready to state our �rst application, showing that truthfulness prohibits us from

having any approximation to the minimum envy or to proportionality. �is greatly improves the

conclusions of Lipton et al. (2004) and Caragiannis et al. (2009) that truthful mechanisms cannot

a�ain the optimal minimum envy allocation.

Application 4.1. For any truthful mechanism that allocates all the items to two players with
additive valuations, the approximation achieved for either proportionality or the minimum envy is
arbitrarily bad (i.e., not lower bounded by any positive function ofm).

So far, the conclusion is that even approximate proportionality or envy-freeness are quite

stringent and incompatible with truthfulness because of the Control Lemma. �e next step would

be to relax these notions. �ere have been already a few approaches on relaxing proportionality

and envy-freeness under indivisible goods, leading to solutions such as the maximin share fairness,

envy-freeness up to one item (Budish 2011), as well as the type of worst-case guarantees proposed

by Hill (1987) (recall De�nitions 2.2, 2.3 and 2.4 in Section 2). �e fact that a truthful mechanism

X yields control of singletons does not seem to have such detrimental e�ects on these notions.

However, if even a single pair of items is controlled by a player, the same situation arises.

4.1.2 Control of pairs. We propose the following necessary (but not su�cient) condition that

captures a common aspect of all these relaxations of fairness. �is allows us to treat all the above

concepts of fairness in a uni�ed way.

De�nition 4.2. We say that a mechanism X yields control of pairs if there exists i ∈ {1,2} and

S ⊆ [m] with |S | = 2, such that player i controls S with respect to X.

�e following lemma states that in order to obtain impossibility results for the above concepts, it

is enough to focus on mechanisms with control of pairs.

Lemma 4.3. In order to achieve (either exactly or within a bounded approximation) the above
mentioned relaxed fairness criteria, a truthful mechanism that allocates all the items to two players
with additive valuations cannot yield control of pairs.

So now we are ready to move to a complete characterization of truthful mechanisms that do

not yield control of pairs. Of course such mechanisms are picking-exchange mechanisms, but our

fairness condition allows only singleton o�ers, and the exchange part is completely degenerate.

De�nition 4.4. A mechanism X for allocating all the items in [m] to two players is a singleton
picking-exchange mechanism if it is a picking-exchange mechanism where for each i ∈ {1,2} at

most one of Ni and Ei is nonempty, |Ei | ≤ 1, and

Oi =



{{x } | x ∈ Ni } when Ni , ∅

{∅} otherwise

i.e., the sets of o�ers contain all possible singletons.

Hence, typically, in a singleton picking-exchange mechanism player i receives from Ni ∪ Ei only

his best item. Moreover, form ≥ 3, no exchanges are allowed.
6

Lemma 4.5. Every truthful mechanism for allocating all the items to two players with additive
valuation functions that does not yield control of pairs can be implemented as a singleton picking-
exchange mechanism.
6
�e only exceptions—and the only such mechanisms where both E1 and E2 are nonempty—are two mechanisms for

the degenerate case of m = 2, e.g., N1 = N2 = ∅, O1 = O2 = {∅}, E1 = {a }, E2 = {b } and D = {( {a }, {b }) }, where

{a, b } = {1, 2}.
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It is interesting to note that, in contrast to Application 4.1, proving Lemma 4.5 without �eorem

3.9 is not straightforward. In fact, it requires a partial characterization which (on a high level) is

similar to characterizing the picking component of general mechanisms.

4.2 Applications to Relaxed Notions of Fairness
It is now possible to apply Lemma 4.5 on each fairness notion separately, and characterize every

truthful mechanism that achieves each criterion.

Envy-freeness up to one item. We start with a relaxation of envy-freeness. Below we provide a

complete description of the mechanisms that satisfy this criterion.

Application 4.6. Form ≤ 3, every singleton picking-exchange mechanism achieves envy-freeness
up to one item. Form = 4 every singleton picking-exchange mechanism with |N1 | = |N2 | = 2 achieves
envy-freeness up to one item. Finally, form ≥ 5 there is no truthful mechanism that allocates all the
items to two players and achieves envy-freeness up to one item.

Maximin share fairness and related notions. For maximin share allocations a truthful mechanism

was suggested by Amanatidis et al. (2016) for any number of items and any number of players.

For two players, their mechanism is the singleton picking-exchange mechanism with N1 = [m]

and produces an allocation that guarantees to each player a
1

bm/2c
-approximation of his maximin

share. It was le� as an open problem whether a be�er truthful approximation exists. Here we show

that this approximation is tight; in fact, almost any other singleton picking-exchange mechanism

performs strictly worse. Note that the best previously known lower bound for two players was 1/2.

Application 4.7. For anym there exists a singleton picking-exchange mechanism that guarantees
to player i a bmax{2,m}/2c−1-approximation of µi , for i ∈ {1,2}. �ere is no truthful mechanism that
allocates all the items to two players and achieves a be�er guarantee with respect to maximin share
fairness.

Regarding now allocations that guarantee an approximation of the function V2 (αi ) de�ned by

Hill (1987) (recall the de�nition in Section 2), the singleton picking-exchange mechanism with

N1 = [m] was also suggested by Markakis and Psomas (2011) as a
1

bm/2c
-approximation of V2 (αi ).

7

�is comes as no surprise, since there exists a strong connection between maximin shares and the

functionVn , especially for two players. �is is illustrated in the following corollary, where both the

positive and the negative results coincide with the ones for the maximin share fairness.

Application 4.8. For anym there exists a singleton picking-exchange mechanism that guarantees
to player i a bmax{2,m}/2c−1-approximation of V2 (αi ), for i ∈ {1,2}, where αi = maxj ∈[m]vi j . �ere
is no truthful mechanism that allocates all the items to two players and achieves a be�er guarantee
with respect to the V2 (αi )s.

Again, the best previously known lower bound for two players was constant, namely 2/3
due to Markakis and Psomas (2011). In Applications 4.7 and 4.8, it is stated that there exists a

1

bm/2c
-approximate singleton picking-exchange mechanism. It is interesting that any singleton

picking-exchange mechanism does not perform much worse. Following the corresponding proofs,

we have that even the worst singleton picking-exchange mechanism achieves a
1

m−1
-approximation

in each case.

Remark 4.9. Gourvès et al. (2015) introduced a variant of Vn , calledWn , and showed that there

always exists an allocation such that each player i receivesWn (αi ) ≥ Vn (αi ) (where the inequality

7
�e approximation factor in (Markakis and Psomas 2011) is expressed in terms of V2 (1/m), but it simpli�es to bm/2c−1

.
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is o�en strict). Since the de�nition of Wn is rather involved even for n = 2, we defer a formal

discussion about it to the full version of the paper. However, it is not hard to show that for every

valuation function vi we have V2 (αi ) ≤W2 (αi ) ≤ µi and thus the analog of Application 4.8 holds.

Remark 4.10. Amanatidis et al. (2016) made the following interesting observation: every single

known truthful mechanism achieving a bounded approximation of maximin share fairness is ordinal,
in the sense that it only needs a ranking of the items for each player rather than his whole valuation

function. Finding truthful mechanisms that explicitly take into account the players’ valuation

functions in order to achieve be�er guarantees was posed as a major open problem. Note that,

weird tie-breaking aside, all singleton picking-exchange mechanisms are ordinal! �erefore, from

the mechanism designer’s perspective, it is impossible to exploit the extra cardinal information

given as input and at the same time maintain truthfulness and some nontrivial fairness guarantee.

5 TRUTHFUL MECHANISMS FOR MANY PLAYERS
We introduce a family of non-dictatorial, truthful mechanisms for any number of players. Our

mechanisms are de�ned recursively; in analogy to serial dictatorships, the choices of a player de�ne

the sub-mechanism used to allocate the items to the remaining players. Here, however, this serial

behavior is observed “in parallel” in several sets of a partition of M .

A generalized deal between k players is a collection of (up to k (k − 1)) exchange deals between

pairs of players. A set D of generalized deals is called valid if all the sets involved in all these

exchange deals are nonempty and pairwise disjoint. Given a pro�le v = (v1,v2, . . . ,vn ) we say that

a generalized deal is favorable if it strictly improves all the players involved, while it is unfavorable
if there exists a player involved whose utility strictly decreases.

De�nition 5.1. A mechanism X for allocating all the items in [m] to n players is called a serial
picking-exchange mechanism if

(1) when n = 1, X always allocates the whole [m] to player 1.

(2) when n ≥ 2, there exist a partition (N1, . . . ,Nn ,E1, . . . ,En ) of [m], sets of o�ers Oi on Ni
for i ∈ [n], a valid set D of generalized deals, and a mapping f from subsets of M to serial

picking-exchange mechanisms for n− 1 players, such that for every pro�le v = (v1, . . . ,vn )
we have for all i ∈ [n]:

• XNi
i (v) ∈ arg maxS ∈Oi vi (S ),

• X E
i (v), where E =

⋃
j ∈[n]

Ej , is the result of starting with Ei and performing some of

the deals in D, including all the favorable deals but no unfavorable ones,

• the items of Ni XNi
i (v) are allocated to players in [n] {i} using the serial picking-

exchange mechanism f
(
Ni XNi

i (v)
)
.

Clearly, serial picking-exchange mechanisms are a generalization of picking-exchange mecha-

nisms studied in Section 3. �e following example illustrates how such a mechanism looks like for

three players.

Example 5.2. Suppose that we have three players with additive valuations. For simplicity, assume

that each player’s valuation induces a strict preference over all possible subsets of items. Let

M = [100] be the set of items, and consider the following relevant ingredients of our mechanism:

• N1 = {1,2, . . . ,20}, O1 = {{1,2,3},N1 {1}}

• N2 = {21,22, . . . ,50}, O2 = {S ⊆ N2 | |S | = 6}

• N3 = {51,52, . . . ,70}, O3 = {{51, . . . ,60}, {61, . . . ,70}}

• E1 = {71, . . . ,80}, E2 = {81, . . . ,90}, E3 = {91, . . . ,100}

• D =
{ [
({75,79}, {83})1,3

]
,

[
({71}, {88})1,2, ({72,80}, {95})1,3, ({85}, {99,100})2,3

] }
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• f is a mapping from subsets of M to picking-exchange mechanisms (for 2 players)

�e above sets are the analog of the corresponding sets of a picking-exchange mechanism. �e deals,

however, are a bit more complex. For instance, by

[
({71}, {88})1,2, ({72,80}, {95})1,3, ({85}, {99,100})2,3

]

we denote the deal in which:

– player 1 gives item 71 to player 2 and items 72, 80 to player 3

– player 2 gives item 88 to player 1 and item 85 to player 3

– player 3 gives item 95 to player 1 and items 99, 100 to player 2

�e mapping f suggests which truthful mechanism should be used every time there are items le�

to be allocated to only two players.

We are ready to describe our mechanism X:

(1) �e mechanism gives endowments E1,E2,E3 to the three players and then performs each

exchange deal that strictly improves all the players involved.

(2) �en, for each i ∈ {1,2,3}, the mechanism gives to player i his best set in Oi , say Si .
(3) Finally, for each i ∈ {1,2,3}, X uses mechanism f (Ni Si ) to allocate the items of Ni Si to

players in {1,2,3} i .

Like picking-exchange mechanisms, serial picking-exchange mechanisms are truthful, given an

appropriate tie-breaking rule (e.g., a label-based tie-breaking rule). To bypass a general discussion

about tie-breaking, however, we may assume that each player’s valuation induces a strict preference

over all subsets ofM . We denote byV,n,m the set of pro�les that only include such valuation functions.

Following almost the same proof, however, we have that for general additive valuations every serial

picking-exchange mechanism is truthful when using label-based tie-breaking.

Theorem 5.3. When restricted toV,n,m , every serial picking-exchange mechanism X for allocating
m items to n players is truthful.

6 DISCUSSION
We obtained a nontrivial characterization for truthful mechanisms, that has immediate implications

on fairness. A natural question to ask is whether our characterization can be extended for more than

two players. Characterizing the truthful mechanisms without money for any number of additive

players is, undoubtedly, a fundamental open problem. However, as indicated by De�nition 5.1,

there seems to be a much richer structure when one a�empts to describe such mechanisms, even

though serial picking-exchange mechanisms are only a subset of nonbossy truthful mechanisms. In

particular, the notion of control that was crucial for identifying the structure of truthful mechanisms

for two players does not convey enough information anymore. Instead, there seem to exist several

di�erent levels of control, and understanding this structure still remains a very interesting and

intriguing question.
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