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We study the performance of cost-sharing protocols in a selfish scheduling setting with load-dependent cost

functions. Previous work on selfish scheduling protocols has focused on two extreme models: omnipotent

protocols that are aware of every machine and every job that is active at any given time, and oblivious

protocols that are aware of nothing beyond the machine they control. The main focus of this paper is on a

well-motivated middle-ground model of resource-aware protocols, which are aware of the set of machines

that the system comprises, but unaware of what jobs are active at any given time. Apart from considering

budget-balanced protocols, to which previous work was restricted, we augment the design space by also

studying the extent to which overcharging can lead to improved performance.

We first show that, in the omnipotent model, overcharging enables us to enforce the optimal outcome

as the unique equilibrium, which largely improves over the Θ(logn)-approximation of social welfare that

can be obtained by budget-balanced protocols, even in their best equilibrium [32]. We then transition to the

resource-aware model and provide price of anarchy (PoA) upper and lower bounds for different classes of

cost functions. For concave cost functions, we provide a protocol with PoA of 1 + ϵ for arbitrarily small ϵ > 0.

When the cost functions can be both convex and concave we construct an overcharging protocol that yields

PoA≤ 2; a spectacular improvement over the bounds obtained for budget-balanced protocols, even in the

omnipotent model. We complement our positive results with impossibility results for general increasing cost

functions. We show that any resource-aware budget-balanced cost-sharing protocol has PoA of Θ(n) in this

setting and, even if we use overcharging, no resource-aware protocol can achieve a PoA of o(
√
n).

CCS Concepts: • Theory of computation→ Quality of equilibria;

Additional Key Words and Phrases: cost-sharing; price of anarchy; resource-aware protocols

1 INTRODUCTION
We consider a very basic resource allocation setting from a game theoretic point of view. There is a

collection ofm available machines and a set of n users, each of which needs access to one of the

machines in order to process some task. For each user i there is a weightwi associated with his

task, that may represent its duration or its complexity; the higher the weight of a task, the higher

the cost incurred by the machine that processes it. More precisely, each machine j is described by a

cost function c j that is weakly increasing in the total weight of the jobs assigned to it, and each

machine’s users need to cover the processing costs of their jobs.
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From the perspective of a user in this setting, the goal is to minimize the cost that he needs to

cover (be it monetary payment, delay, or some other type of inconvenience) for processing his job.

Therefore, the decision of each user regarding which machine to utilize depends directly on how

the induced cost of each machine is shared among its users, and different approaches regarding how

the cost is to be shared may lead to vastly different outcomes. A cost-sharing protocol in this setting

provides the rules regarding how the cost of each machine is to be shared among its users. Given

such a protocol, the users strategically select which machine to use, taking both the protocol and the

anticipated congestion into consideration. This forms a non-cooperative game whose equilibria can

be quite inefficient, even for very natural cost-sharing protocols and extremely simple instances [2].

The focus of this paper is on the design of cost-sharing methods aiming to maximize the efficiency

of the equilibria.

Motivated by the observation that such protocols can have a significant impact on the quality of

the outcome, Chen et al. [8] were the first to address cost-sharing design questions. They focused

on network cost-sharing, i.e., the case when the players can choose multiple machines but the

cost functions are all constant. They gave a characterization of protocols that satisfy some natural

axioms and they thoroughly studied their worst-case performance. Building on top of this work,

von Falkenhausen and Harks [32] focused on the case where each player needs to choose a single

machine or a matroid of machines, but allowed general cost functions as we also do in this work.

One essential way in which our work deviates from this previous work has to do with the

informational constraints applied to the cost-sharing protocol. The information that the protocol is

assumed to have access to plays a very important role in the extent to which efficient outcomes

can be achieved. For instance, can the decisions of the protocol regarding how to distribute the

cost of a machine depend on which other machines exist in the system? Can it depend on the set of

users that are populating the system at each time? The more information the protocol possesses,

the higher its power to reach high quality outcomes. Previous work focused on the following two

informational assumptions.

• Omnipotent protocols1. The protocol of each machine has full knowledge of the instance.
The cost-sharing decisions on that machine can depend arbitrarily on the state of the

system: on the set of available machines and their cost functions, as well as on the set of

active users and their weights.

• Oblivious protocols2. The protocol of each machine has no knowledge of the instance,
except the set of users who chose to utilize that particular machine.

These assumptions lie at two extremes of the information spectrum. The former applies to a

very static, or centralized, system where each machine always has access to up-to-date information

regarding the users and the machines. The latter, on the other hand, is very pessimistic, assuming

that the cost-sharing decisions of each machine need to be oblivious to the state of the system.

Aiming for a middle-ground, we study a compromise between these extremes which is much

more reasonable for many settings. Following the “adversarial” model of [12], we maintain the

assumption that the cost-sharing protocol of a machine is aware of the other machines that are

available in the system, but we restrict it to depend only on the particular machine’s users.

• Resource-aware protocols. The protocol of each machine knows the set of available

machines and their cost functions, but is aware only of the set of users who chose to utilize

that particular machine.

1
Previous work has also referred to these protocols as “non-uniform” protocols.

2
Previous work has also referred to these protocols as “uniform” protocols.
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This model is more realistic than the oblivious one when the machines of the system do not

change often, which is the case in many scenarios. In that case, this information can be taken into

consideration when designing or updating the cost-sharing protocol. For instance, if the machines

correspond to computers in a static network, the designer could take the structure of the network

into consideration when selecting which protocol to use. On the other hand, the set of active users

in a system may change more often, as users arrive and depart. In fact, even if the machines had

access to up-to-date information on the whole set of active users, protocols that depend on such

dynamic information would complicate the user’s decision, and could thus be less stable.

Hence, knowing the set of machines and their cost functions, the designer wishes to design a

protocol that defines how the cost of each machine is to be shared among the users that utilize it,

depending only on this particular set of users. In designing such protocols, the goal is to ensure that

the worst-case equilibria of the induced game approximate the optimal social welfare within some

small factor. We measure the performance of these protocols using the worst-case price of anarchy

(PoA) measure, i.e., the ratio of the social welfare in the worst equilibrium over that in the optimal

solution. Essentially, once the designer selects the protocol on each machine, then an adversary

chooses the requested subset of players so that the PoA of the induced game is maximized.

Overcharging. A second important way in which our work deviates from previous work is the

fact that we do consider protocols that use overcharging. Specifically, Chen et al. [8] and von

Falkenhausen and Harks [32] restricted themselves to budget-balanced protocols, i.e., protocols

such that the costs of the users using some machine add up to exactly the cost of the machine.

Similarly to the framework of “coordination mechanisms” [9], we relax this assumption and seek

to optimize the welfare via overcharging: although we maintain the restriction that the users

need to pay at least as much as the cost that they create, in total, our protocols can also choose

to charge the users additional costs in order to better align their incentives. It is important to

note that, once we introduce increased costs in our protocols, we compare the performance of

the equilibria in the induced game with the increased costs to the original optimal solution with

the initial cost functions. Therefore, using this technique requires a careful trade-off between the

benefit of improved incentives and the drawback of penalties suffered.

1.1 Our Results
We begin with a simple observation that demonstrates the power of overcharging for omnipotent

protocols (Sec. 3). We show that, using overcharging, the designer can achieve the optimal outcome.

In fact, no user actually suffers these extra charges in equilibrium, so this approach yields a PoA of

1 for arbitrary cost functions. This is in contrast to the Ω(logn) bound obtained by budget-balanced
omnipotent protocols, even for the best possible equilibria (price of stability) in [32].

We then move on to study resource-aware protocols, where our main results are the following.

• (Sec. 4) We provide a budget-balanced resource-aware cost-sharing protocol that achieves

the optimal outcome, i.e., a PoA of 1, for functions with decreasing marginals (strictly

concave functions). In contrast, we show that the PoA for oblivious protocols is lower

bounded by Ω(n) for the same class of functions.

• (Sec. 5) We construct an overcharging resource-aware protocol that yields a PoA of at most 2

for the much more challenging case when both convex and concave cost functions appear in

the system. This result holds only for unweighted players. For this class of functions, budget-

balanced protocols, even omnipotent ones, are known to yield an Ω(logn) approximation

in their best equilibrium.

• (Sec. 6) We complement our positive results by proving lower bounds for resource-aware

protocols. We show that, no policy can achieve a o(
√
n) PoA, even by the use of overcharging.
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In the case of budget-balanced protocols we show that the respective bound is Θ(n). We

stress that showing lower bounds for resource-aware mechanisms that allow overcharging

is much more involved than the corresponding proofs for budget-balanced mechanisms,

since the design space is considerably larger.

All our lower bounds hold for the unweighted case, so they immediately carry over to the

weighted case. We should also point out that the lower bounds for resource-aware protocols hold

also for oblivious protocols (but not vice versa). Finally, in Sec. 7 we provide results for the special

case of two machines with general cost functions and unweighted players. We propose a protocol

which does not fall into the class of the generalized weighted Shapley mechanisms [17], but still

always possesses pure Nash equilibria. This protocol achieves a PoA of 2. We also show a PoA lower

bound of 1.36 for all resource-aware protocols (with overcharging). Note that this lower bound

applies also to the case of both convex and concave functions of Sec. 5, for which we achieved a

PoA of 2.

1.2 Related Work
Cost-sharing protocols for resource selection games have been the focus of a lot of recent work [16,

17, 20, 24]. Harks andMiller [20] study the performance of several cost-sharing methods in a slightly

modified setting, where each player declares a different demand for each resource. Marden and

Wierman [24] studied various cost-sharing methods in a utility maximization model for the players,

while Gopalakrishnan et al. [17] characterized the space of admissible cost-sharing methods as the

set of generalized weighted Shapley values. Gkatzelis et al. [16] explored the space of cost-sharing

methods and identified the Shapley value as the optimal one with respect to the price of anarchy

for a class of general resource selection games.

Christodoulou et al. [10] studied network design games with constant cost functions under

the Bayesian setting, where the position of the players’ sources on the graph is drawn from a

distribution over all vertices. They considered overcharging, where they could use any non-budget-

balanced policy under the restriction of preserving budget-balance in all equilibria. In contrast

to the scheduling games we study here, where the costs are functions of the machines’ loads, in

[10] the costs are functions of the set of players using a resource. Therefore, it turns out that their

overcharging scheme is equivalent to the one that defines new cost (set) functions and then uses a

budget-balanced protocol, similarly to our scheme.

An interesting family of resource selection games is the class of weighted congestion games.

There has been a long line of work on these games focusing on the proportional sharing method,

according to which the players share their joint cost in proportion to the size of their demands,

[3, 6, 15, 18, 19, 25, 26, 31]. Proportional sharing does not always guarantee the existence of a pure

Nash equilibrium, except for special cases, such as when the costs are quadratic or exponential

functions of the load [14, 18]. Kollias and Roughgarden [23] were the first to propose the use of

Shapley value based methods in congestion games in order to restore stability.

The impact of cost-sharing methods on the quality of equilibria has also been studied in other

models: Moulin and Shenker [30] focused on participation games, while Moulin [29] and Mosk-

Aoyama and Roughgarden [27] studied queueing games. Also, very closely related in spirit is

previous work on coordination mechanisms, beginning with Christodoulou et al. [9] and subse-

quently in [1, 4, 5, 7, 11, 13, 21, 22]. Most work on coordination mechanisms concerns scheduling

games and how the price of anarchy varies with the choice of local machine policies (i.e., the order

in which to process jobs assigned to the same machine).
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2 PRELIMINARIES
The games that we study comprise a set N = {1, . . . ,n} of players, and a set M = {1, . . . ,m} of

available machines. Each player i needs to schedule a job to one of the machines and he can choose

which machine to schedule it on; hence, the set of strategies corresponds to the setM . We consider

“weighted” instances, where each agent may have a different weightwi ≥ 1, as well as “unweighted”

instances, where wi = 1 for every i . We denote the total weight of the players in the game by

W =
∑

i ∈N wi . Each machine j is characterized by a cost function c j (·) which is increasing in the

total load on the machine and satisfies c j (0) = 0.

Given a strategy profile (or schedule) s = (s1, s2, ..., sn), let S j (s) = {i ∈ N : si = j} be the set of
players scheduling their jobs on machine j , and let ℓj (s) =

∑
i ∈Sj (s)wi be the load on machine j . The

cost of j in this schedule is c j (ℓj (s)), and this cost needs to be covered by the set of players using

this machine, S j (s). In this paper we design cost-sharing methods, i.e., protocols that decide how the

cost of each machine will be distributed among its users. A cost-sharing protocol Ξ defines, at each

schedule s, a cost share ξi j (s) for each i ∈ N and j ∈ M . Since the machine that i uses, i.e., si , is
implicitly part of s, we may also denote this cost share as ξi (s).
Our goal is to design policies that yield efficient outcomes in all games within a broader class.

Formally, a class of scheduling games G = (N ,M,C,Ξ) comprises a universe of players N , a

universe of machines M, whose cost functions are chosen from the set C, and a cost sharing

protocol Ξ. A gameG ∈ G then consists of a setM ⊆ M of machines with cost functions from C, a

set of agents N ⊆ N , and the cost sharing protocol Ξ.
Based on the information that the cost sharing protocol can depend on, previous work has

focused on two extreme protocol design domains. On one extreme is the class of oblivious protocols,
in which the cost shares ξi j (s) for a machine j can depend only on the cost function c j (·) of that
machine and on the set S j (s) of players using j in s. In other words, two machines with the same cost

function are identical in terms of the way they share the cost, and their cost sharing is independent

of what other machines or players are participating in the game at hand. On the other extreme,

in an omnipotent protocol the cost shares ξi j (s) for machine j can depend on any information

regarding the game at hand. That is, apart from the set S j (s), the protocol is also aware of the set of
participating players, N , the set of machines,M , and the cost functions of all these machines. In

this paper we propose the class of resource-aware protocols that strike a balance between these two

extremes. In particular, apart from the set of jobs S j (s), these protocols allow ξi j (s) to depend on

the set of machinesM and their cost functions. They cannot, however, depend on the set of other

jobs, N \ S j (s), that participate in the specific game.

A change of the cost-sharing protocol leads to a different class of games and, hence, to possibly

very different outcomes. As a result, the efficiency of a game crucially depends on the choice of

the protocol. In evaluating the performance of a cost-sharing protocol, we measure the quality of

the pure Nash equilibria that arise in the games that it induces. A strategy vector s is a pure Nash
equilibrium (PNE) of a game G if for every player i ∈ S j (s), and every other strategy s ′i ∈ M

ξi (s) = ξi (si , s−i ) ≤ ξi (s
′
i , s−i ).

As a measure of efficiency of a schedule s, we use the total cost C(s) =
∑

j ∈M c j (ℓj (s)), and we

quantify the performance of the cost-sharing protocol using the price of anarchy metric. Given a

cost sharing protocol Ξ, the price of anarchy (PoA) of the induced class of games G = (N ,M,C,Ξ)
is the worst-case ratio of equilibrium cost to optimal cost over all games in G. That is, if E(G) is the
set of pure Nash equilibria of the game G, and F (G) the set of schedules of G, then

PoA(G) = sup

G ∈G

maxs∈E(G )C(s)
mins∗∈F (G)C(s∗)

.
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We say that a cost sharing protocol is budget-balanced if the cost that it distributes to the users

of each machine adds up to exactly the cost of the machine, i.e., ∀j ∈ M , c j (ℓj (s)) =
∑

i ∈Sj (s) ξi j (s).
A protocol is stable within a class of games G that it induces, if every G ∈ G always possesses at

least one PNE. In this paper, we restrict our attention to protocols that are stable.

If the mechanism is not budget-balanced, it may define cost functions such that ĉ j (ℓ) > c j (ℓ) for

some loads ℓ. As a result, the social cost of a given schedule s may be increased from C(s) to Ĉ(s).
In these mechanisms, we measure the quality of the equilibria using the new costs, but we compare

their performance to the optimal solutions based on the original cost functions. If Ĝ is the game

induced by the new cost functions ĉ j (ℓ), and E(Ĝ) is the set of pure Nash equilibria of Ĝ,

PoA(G) = sup

G ∈G

maxs∈E(Ĝ )
Ĉ(s)

mins∗∈F (G)C(s∗)
.

Some of our results focus on the games induced by specific classes of functions C. In particular,

a large part of this paper focuses on convex functions (exhibiting non-decreasing marginal costs),

concave cost functions (exhibiting non-increasing marginal costs), or combinations of the two.

Apart from these functions, a class of functions that plays an important role is that of capacitated
constant cost functions. That is, functions such that c(ℓ) = c1 when ℓ ≤ c2 and c(ℓ) = ∞ when

ℓ > c2, for positive constants c1 and c2. These functions correspond to a machine whose cost is

constant as long as the load does not exceed its capacity. It is important to point out that these

functions are not concave, since our cost functions satisfy c j (0) = 0. In fact, as we show, this class

of functions poses significant obstacles to cost-sharing protocols.

2.1 Related Results for Machines with Convex Functions
We now briefly consider the class of games where all the cost functions are convex, and we present a

simple oblivious protocol proposed by Moulin [28]. In Section 5 we use this protocol as a component

of our own protocol for the larger class of instances that include both convex and concave functions.

Moulin’s incremental cost-sharing protocol, like many of the known cost-sharing protocols in the

related work, uses a global ordering over the universe of players in deciding how to distribute the

cost. Some of our mechanisms use this ordering as well, so we provide a definition below.

Definition 2.1. For a class of games G = (N ,M,C,Ξ), the global ordering π is an ordering of all

the players in N in a non-increasing order with respect to their weight.

Definition 2.2. Given a schedule s and a machine j, the prior load, ℓ<ij (s), for a player i ∈ S j (s) is
the load on j in s due to jobs that precede i in π , i.e.,

ℓ<ij (s) =
∑

k ∈Sj (s):π (k)<π (i)

wk .

In games with convex cost functions and unweighted jobs the optimal assignment can be

computed via a greedy algorithm that assigns each job to the machine where it causes the smallest

marginal contribution to the cost function. The incremental cost-sharing protocol charges each

user its marginal contribution with respect to the prior load.

Definition 2.3. The incremental cost-sharing protocol defines the cost-share of each i ∈ S j (s) to be

its marginal contribution if only players preceding it in π were using machine j.

ξi j (s) = c j (ℓ<ij (s) +wi ) − c j (ℓ
<i
j (s))

The incremental cost-sharing protocol is oblivious, budget-balanced, and stable [28]. Furthermore,

when the players are unweighted, it achieves a PoA of 1.
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Theorem 2.4. [28] For convex cost functions and unweighted jobs, the incremental cost-sharing
protocol induces games with PoA = 1.

Although the equilibria of this protocol are optimal when the players are unweighted, for

weighted jobs, the incremental cost-sharing protocol induces games with unbounded PoA [32].

3 OMNIPOTENT PROTOCOLS
In this section, we demonstrate the power of overcharging for omnipotent protocols. We show that

overcharging can dramatically decrease the PoA of the game. In particular, even for unweighted

instances, no budget-balanced omnipotent mechanism can achieve a PoA better than the harmonic

number Hn = Ω(logn). In fact, this bound applies even to the best equilibria of the induced games

(the price of stability). However, a simple overcharging scheme enables us to reach a PoA of 1 for

weighted instances.

Given any problem instance, using an optimal schedule s∗, following the approach of [32], we

define the set of “foreign” players of machine j in an outcome s as the subset of players using j in s
but not in s∗. We then define an efficient omnipotent protocol that overcharges foreign players.

Definition 3.1. The set of foreign players of j in s is Fj (s) := {i ∈ S j (s) \ S j (s∗)}.

Definition 3.2. Given some large constant D >
∑

j ∈M c j (W ) and the players’ ordering π , the
omnipotent overcharging protocol defines themodified costs ĉ j (·) of the machines and the cost shares

ξi j (·) as follows:

ĉ j (ℓ) =

{
c j (ℓ), if ℓ ≤

∑
i ∈Sj (s∗)wi ;

D, otherwise,

and

ξi j (s) =


wi∑
k∈Sj (s)wk

ĉ j (ℓj (s)), if Fj (s) = ∅;

ĉ j (ℓj (s)), if Fj (s) , ∅ and i = argmink {π (k)|k ∈ Fj (s)};
0, otherwise.

This protocol keeps the costs of each machine unaffected, unless the total load on this machine

exceeds its total load in s∗, in which case the cost jumps up to some large constant D. If there are
no foreign players on a machine j, its cost is divided among its users in a proportional manner.

Otherwise, all of its cost, which need not be D, is charged to a single foreign player (the one that

appears earliest in π ) and every other user suffers no cost.

The next lemma shows that this protocol is stable and that every equilibrium corresponds to an

optimal schedule. Furthermore, we show that, despite the extra charges this protocol introduces,

no charges are used in any equilibrium, leading to a PoA of 1.

Lemma 3.3. The omnipotent overcharging protocol is stable and it has PoA 1.

Proof. We first show that (i) s∗ is a Nash equilibrium of the game induced by the omnipotent

overcharging protocol, and (ii) for any other Nash Equilibrium s̃, it is Ĉ(s̃) ≤ C(s∗).
To show (i) note that, since there are no foreign players on any machine j at s∗, then ĉ j (ℓj (s∗)) =

c j (ℓj (s∗)). Hence, in s∗, the cost of every player is ξi (s∗) ≤ c j (ℓj (s∗)) ≤ D. If some player i can
improve his cost by unilaterally deviating from s∗i to some other machine j , his new cost should be

less than D. But, this deviation makes i the only foreign player on that machine, since every other

player i ′ is still using s∗i′ . The cost for this machine after this deviation is ĉ j (ℓj (s∗) +wi ) = D, and
all of this cost is charged to i , i.e., ξi (j, s∗−i ) = D, proving that s∗ is a Nash equilibrium.

To see (ii), let s̃ be a Nash equilibrium of the induced game. If there is a machine with ℓj (s̃) > ℓj (s∗),
then clearly there is a “foreign” player i using this machine that pays a cost of D. But, if i were to
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deviate to machine j ′ = s∗i , his cost would be less than D, contradicting that s̃ is an equilibrium. To

verify this fact note that if Fj′(s̃) , ∅, then i would suffer a cost of 0 and if Fj′(s̃) = ∅, then i would
suffer a cost of ξi (j

′, s̃−i ) ≤ c j′(s∗) < D. Therefore, for any equilibrium s̃ and every machine j, the

loads are ℓj (s̃) ≤ ℓj (s∗), which implies Ĉ(s̃) ≤ Ĉ(s∗) = C(s∗). �

4 MACHINES WITH CONCAVE COST FUNCTIONS
In Section 2 we showed that, for the class of convex cost functions, there exists a simple oblivious,

stable, and budget-balanced mechanism with PoA of 1. We begin this section by showing that this

is far from true when it comes to concave functions. In particular, Theorem 4.1 shows that the PoA

of any oblivious, stable, and budget-balanced mechanism grows linearly with n, even for strictly

concave functions. We then complement this result with a resource-aware, stable, and budget-

balanced mechanism that achieves a PoA of 1 for strictly concave cost functions. We conclude this

section by showing how we can apply a negligible amount of overcharging in order to extend our

positive result to general (non-strictly) concave cost functions. In particular, we use overcharging

to transform the function into a strictly concave one and then apply our resource-aware protocol

over the new cost functions, leading to a PoA of 1 + ε for an arbitrarily small constant ε > 0.

4.1 Oblivious Budget-Balanced Protocols
Theorem 4.1. Any oblivious, stable, and budget-balanced cost-sharing policy has PoA of at least n,

even for the class of strictly concave cost functions and in the unweighted setting.

Proof. Aiming for a contradiction, assume that there exists some oblivious, stable, and budget-

balanced policy with PoA of at most n − δ for some constant δ > 0. Consider the outcomes of

this policy for an instance comprising n unweighted agents and n machines with cost functions

c j (ℓ) = ℓ + ε − ε/ℓ, for some arbitrarily small constant ε > 0.

Since this policy is stable, it is guaranteed to possess an equilibrium for this instance. We show

that in any such equilibrium s, every player needs to pay a cost of at most 1. If, in s, each agent is

matched to a different machine, this is obvious, since the policy is budget-balanced, and c j (1) = 1.

Also, if more than one agent use some machine j in s, the cost share of each one of these agents

should be at most 1, otherwise, any agent with a cost share greater than 1 would benefit from

a unilateral deviation to one of the “empty” machines (there is always one, since the number of

machines and agents is the same).

Now, consider the outcomes of this same policy in an instance where, apart from the same set of

jobs and same set of machines, we introduce an extra machine n + 1 with cost cn+1(ℓ) = 1 + ε − ε/ℓ.
Since the protocol is oblivious, the cost functions of the oldmachines are not affected by the existence

of this new machine, and any equilibrium s of the previous instance, remains an equilibrium in

the new instance. To verify this fact, note that the cost of the new machine is at least 1 and, as we

showed above, the cost of every player in s is at most 1. But, any such equilibrium has social cost

at least n − ε , when the optimal solution would be for all agents to use the last machine with social

cost of at most 1 + ε . Hence, for small enough values of ε , this protocol’s PoA is greater than n − δ ,
leading to a contradiction. �

4.2 Resource-Aware Budget-Balanced Protocol
We now present the main result of this section, which is an efficient resource-aware protocol that is

both stable and budget-balanced. We begin by assuming that the cost functions are strictly concave

and then also address the general concave functions case.

The result of Theorem 4.1 implies that, in order to achieve a good PoA, a resource-aware protocol

would need to take advantage of the additional information that it has access to, compared to
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an oblivious protocol. In particular, this protocol will need to use the information regarding the

available machines and their cost functions in such a way that the agents are incentivized to avoid

inefficient outcomes. But, what information regarding the machines of the system should such a

protocol use, and how can we describe such a protocol that works for all possible instances, in
a concise way? Also, note that the protocol is not going to be aware of what subset of agents is

active, so it needs to work for any such subset. Before presenting our protocol, we begin with a few

definitions and observations.

Definition 4.2. Given a schedule, s, and a global ordering of the players, π , the highest priority
player of some non-empty machine j in s, denoted by hj (s), or simply hj , is the player i ∈ S j (s)
with the highest priority in π , i.e.,

hj (s) = arg min

i′∈Sj (s)
{π (i ′)}.

The following definition provides the information regarding the set of machines in the system

that our resource-aware protocol uses in order to outperform any oblivious protocol.

Definition 4.3. Given a set of machines and some load ℓ, let ϕ(ℓ) = minj ∈M c j (ℓ) be the smallest

cost over all the machines for serving this load, and note that this function ϕ : R+ → R+ is concave
as minimum of concave functions. Also, let Xmin(ℓ) be the set of machines with the smallest cost

when their load is ℓ, i.e., Xmin(ℓ) = argminj ∈M {c j (ℓ)}.

Remark 4.4. If the total load in the game isW , then an optimal allocation assigns all the load to a
machine j∗ ∈ Xmin(W ). To verify this fact note that, due to the concavity of ϕ(·), for any profile s,∑

j ∈M

c j (ℓj (s)) ≥
∑
j ∈M

ϕ(ℓj (s)) ≥ ϕ

(∑
j ∈M

ℓj (s)

)
= ϕ(W ) = c j∗ (W ).

We now define the concave cost-sharing protocol. In its description, for notational simplicity we

have dropped the dependence of hj (s) on s, thus replacing it with hj .

Definition 4.5. According to the concave cost-sharing protocol, given a machine j and a schedule s,
the cost share of player i ∈ S j (s) is

ξi j (s) =


c j (ℓj (s)) if j < Xmin(ℓj (s)) and i = hj
0 if j < Xmin(ℓj (s)) and i , hj
ϕ(wi ) if j ∈ Xmin(ℓj (s)) and i = hj
wi

c j (ℓj (s))−ϕ(whj )

ℓj (s)−whj
if j ∈ Xmin(ℓj (s)) and i , hj

Note that, according to Remark 4.4, the optimal solution can change radically, depending on the

set of jobs that are active in the system. Being unaware of which jobs are active, a resource-aware

cost-sharing mechanism is therefore unable to guess which machine it should be incentivizing the

players to use. In the absence of this information, our cost-sharing policy essentially treats the

players that use a machine j as if they are the only active ones in the system. Hence, if the load of

this machine is ℓj (s), but j < Xmin(ℓj (s)), then s should not be permitted as an equilibrium, and the

protocol incentivizes the hj (s) to leave the machine by charging the whole cost to him.

Of course, this high level intuition does not go far enough in explaining why the protocol actually

works. For instance, one could come up with schedules s such that two (or more) different machines

j1 and j2 have positive loads that satisfy j1 ∈ Xmin(ℓj1(s)) and j2 ∈ Xmin(ℓj2(s)). In such schedules,

the myopic view of the protocol for each one of these machines is that s may as well be optimal.

Therefore, the most interesting part of this protocol is the way in which it distributes the costs
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in these circumstances, using the ϕ(wi ) function, which ensures that such “locally optimal” but

globally inefficient schedules will not be equilibrium outcomes.

Since the protocol depends only on the cost functions of the machines, but not on the total

number of agents and their weights, it is a valid resource-aware protocol. As we show below, it is

also budget-balanced, stable, and its PoA is 1.

Lemma 4.6. The concave cost-sharing protocol is budget-balanced.

Proof. Given some problem instance, we show that for any schedule s and any machine j, the
sum of the cost shares of the players in S j (s) adds up to exactly c j (ℓj (s)). If j < Xmin(ℓj (s)), then
every player i , hj (s) has a cost of 0, and player hj (s) suffers the whole cost c j (ℓj (s)). On the other

hand, if j ∈ Xmin(ℓj (s)), the cost of hj (s) is ϕ(whj ), while the total cost of all the other players is∑
i ∈Sj (s)\{hj }

wi
c j (ℓj (s)) − ϕ(whj )

ℓj (s) −whj
= (ℓj (s) −whj )

c j (ℓj (s)) − ϕ(whj )

ℓj (s) −whj
= c j (ℓj (s)) − ϕ(whj ).

�

Lemma 4.7. The concave cost-sharing protocol is stable.

Proof. To prove the stability of this protocol, we show that for any problem instance, the

schedule s in which every player uses the same machine j ∈ Xmin(W ) is a Nash equilibrium.

In this schedule, the cost share of the highest priority player i = hj (s) isϕ(wi ). Also, by Lemma 4.8,

the cost share of every other player i is strictly less than ϕ(wi ). Therefore, every player i’s cost in s
is at most ϕ(wi ). But, if some player i were to deviate to another machine j ′, his new cost would be

c j′(wi ) ≥ ϕ(wi ), so nobody has an incentive to deviate. �

The following lemma will help to prove the PoA bound of Theorem 4.9. It argues that for any

machine j with load ℓ and j ∈ Xmin(ℓ), the cost-share of any agent i , hj (s) using j is strictly less

than ϕ(wi ).

Lemma 4.8. At any profile s and every machine j ∈ Xmin(ℓj (s)), the concave cost-sharing protocol
assigns to every i ∈ S j (s) \ {hj (s)} a cost share ξi j (s) < ϕ(wi ).

Proof. Since j ∈ Xmin(ℓj (s)), the cost on j satisfies c j (ℓj (s)) = ϕ(ℓj (s)). Therefore, for every
player i who is not highest priority on j, i.e., i , hj ,

ξi j (s) = wi
c j (ℓj (s)) − ϕ(whj )

ℓj (s) −whj
= wi

ϕ(ℓj (s)) − ϕ(whj )

ℓj (s) −whj
≤ wi

ϕ(ℓj (s) −whj )

ℓj (s) −whj
.

Note that the denominator ℓj (s) −whj is always positive, since there is at least one more job i , hj
using machine j in s. In fact, ℓj (s) −whj ≥ wi so, using the fact that the cost functions are strictly

concave, the previous inequality implies

ξi j (s) ≤ wi
ϕ(ℓj (s) −whj )

ℓj (s) −whj
< ϕ(wi ).

�

Theorem 4.9. The concave cost-sharing protocol has PoA = 1.

Proof. According to Remark 4.4, the schedule s in which all the players use a machine j ∈

Xmin(W ) is optimal. We now show that the social cost of any Nash equilibrium also equals c j (W ).

Aiming for a contradiction, assume that there exists some Nash equilibrium s′ with cost greater

than c j (W ).
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If, in s′, every player uses the same machine j ′ < Xmin(W ), then the total cost is c j′(W ) > c j (W ).

If i is the highest priority player among them, then he pays a share equal to c j′(W ). But, if this

player deviated to machine j , his cost would become c j (wi ) ≤ c j (W ) < c j′(W ), so this cannot be an

equilibrium.

If, on the other hand, two or more machines are being used in s′, let a and b be two of these

machines, and let α and β be the corresponding highest priority players in s′. Without loss of

generality, assume that α has higher global priority than β , i.e., π (α) < π (β). According to the

definition of the protocol, if b ∈ Xmin(ℓb (s′)), the cost share of β in s′ is ξβ (s′) = ϕ(wβ ) and, if

b < Xmin(ℓb (s′)) it is
ξβ (s′) = cb (ℓb (s′)) ≥ cb (wβ ) ≥ ϕ(wβ ).

Therefore, in both cases, ξβ (s′) ≥ ϕ(wβ ). But, if player β deviates to machine a, he is not the highest
priority player on that machine (player α is), so his cost is less than ϕ(wβ ). To verify this fact, we

consider two different scenarios depending on whether, after this deviation, a ∈ Xmin(ℓa(s′)+wβ ) or

a < Xmin(ℓa(s′)+wβ ). In the former case, Lemma 4.8 implies that the cost of β after the deviation is

less than ϕ(wβ ). In the latter, according to the definition of the protocol, the cost of β is 0. Therefore

this cannot be an equilibrium either, which conclude the proof. �

4.3 General Concave Cost Functions
Since the positive result of the previous section focused on strictly concave functions, we now show

how we can leverage overcharging in order to transform any weakly concave cost function into a

strictly concave one. This way, we reduce this problem to the one we solved above and, as we show,

the loss in PoA can be arbitrarily small. In particular, by overcharging, we define a cost-sharing

protocol with PoA = 1 + ε , where ε > 0 is an arbitrarily small constant.

The main observation is that we can implement this transformation by updating each c j (ℓ) to
ĉ j (ℓ) = c j (ℓ) + ε/ℓ. Once we have done this, the ĉ j (ℓ) is strictly concave, and the cost difference

between ĉ j (ℓ) and c j (ℓ) is no more than ε . Although this overcharging may affect the set of

equilibrium outcomes, the social cost of the optimal schedule will not be affected by more than

some insignificant constant. Therefore, the PoA of this game will be arbitrarily close to 1, as ϵ goes

to zero.

5 MACHINES WITH A MIX OF CONCAVE AND CONVEX COST FUNCTIONS
Unlike the previous two sections, the rest of the paper focuses exclusively on instances with

unweighted jobs. We now consider the case where the cost function of each machine is either a

concave or a convex function. If we focus on budget-balanced cost-sharing policies, the price of

stability is known to be Ω(logn) even for omnipotent protocols [32]. In stark contrast to this fact,

we propose a non-budget-balanced resource-aware policy whose PoA is at most 2. Once again,

this demonstrates the power of overcharging. In Section 7.2 we complement this positive result

by proving that no resource-aware protocol can achieve a PoA better than 1.36 even for instances

with just two machines with convex and concave cost functions, and even if overcharging is used.

5.1 Budget-Balanced Cost-Sharing
As shown in [32], even in the omnipotent case, where the designer has full knowledge of the

instance, and even the best Nash equilibrium can be a Ω(logn) factor away of the optimal cost. We

describe here the lower bound for completeness.

Lower bound for budget balanced protocols. Consider the load balancing game ofm + 1 machines,

such that each machine j of the firstm has a cost function c j (ℓ) with c j (1) = 1/j and c j (ℓ) = ∞ for

ℓ > 1. The last machine has a cost of cm+1(ℓ) = 1 + ε for all ℓ. Letm be the number of agents that
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require to be served (we can even assume that this is known to the designer). Suppose now that

m′ ≥ 1 of agents are served by the last machine. By budget-balance, there is at least one with share

more that 1/m′
, whereas from the firstm machines there should be at least one empty with cost at

most 1/m′
(there arem −m′ + 1 machines with cost at most 1/m′

). So, such an outcome cannot be

stable. Therefore, the only outcome that may be stable with bounded cost is for every agent to use

a distinct machine from them first. This results to a PoA and PoS of Ω(logm) .

5.2 Cost-Sharing with Overcharging
LetMv ,Mc be the subset of machines with convex and concave cost functions, respectively. Also,

let ξ v denote the incremental cost-sharing protocol defined in Sec. 2.1 for convex functions and ξ c

denote the protocol of Sec. 4 for concave functions. We now define a protocol that combines them.

Definition 5.1 (Convex-Concave (VC) cost-sharing protocol). Using the global order π of the players,

we define the Ξvc
as follows:

ξ vci j (s) =
{
ξ vi j (s) if j ∈ Mv

ξ ci j (s) if j ∈ Mc

where for ϕ and Xmin (used to define ξ c) are defined only over the set of concave functions.

Lemma 5.2. The Convex-Concave cost-sharing protocol is stable.

Proof. Let ϕ(ℓ) = minj ∈Mc c j (ℓ) be the minimum cost incurred by load ℓ, over all concave
machines. Without loss of generality we assume that the identity of each player matches her

position according to π , i.e. π (i) = i .
We define a profile s which is a pure Nash equilibrium. The first k (possibly zero) players with

respect to the global ordering π , use only convex functions fromMv . The condition that needs to

be satisfied is that k is the maximum integer such that ξvk (s) ≤ ϕ(1). The rest of the players use the
concave machine with the minimum cost for n − k load, i.e. machine Xmin(n − k).

If k = 0 (all players use concave machines), then as shown in Section 4, each player pays a share

of at most ϕ(1), while for any j ∈ Mv c j (1) > ϕ(1). If k = n, (all players use convex machines), s is
an equilibrium by the analysis of Section 2.1. Notice that each player pays share of at most ϕ(1) (by
definition of k), so no player will deviate to a concave machine.

It is clear why a player will not switch from a convex to a convex and from a concave to a

concave machine, by analysis similar to Sections 2.1 and 4. Now, observe that a player that uses

a convex machine precedes, according to π , any player using a concave machine. Therefore, if

she switches to any concave machine, she will pay at least ϕ(1). Moreover, recall that each player

that uses the concave machine Xmin(n − k), pays a share of at most ϕ(1), while if she deviates to a

convex machine, she will be the last according to π , and will pay the next marginal cost, which

exceeds ϕ(1), by definition of k . �

The following Lemma reveals a useful structural property of optimal schedules when the cost

functions are either convex or concave. Due to space constraints, the proof of this Lemma is deferred

to the full version of the paper.

Lemma 5.3. If for n players some optimal schedule assigns nc > 0 agents to concave machines and
nv agents to convex machines, then for n′ > n players there is an optimal schedule such that the
number of players assigned to convex machines is at most nv .

Using the VC cost-sharing protocol, which is budget-balanced, we now define the VC-Overcharing

protocol, which combines the VC protocol with appropriate overcharging to circumvent the limita-

tions of budget-balanced protocols shown above. Given a set of machines, let nmax
be the maximum
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number of players such that, when n ≤ nmax
, there is no optimal scheduleOPT (n) of n unweighted

jobs to these machines that uses a concave machine. Also, let nmax

j be the number of players assigned

to machine j ∈ Mv in the OPT (nmax) allocation.

Definition 5.4 (VC-Overcharging cost-sharing protocol). Apply the VC cost-sharing protocol to

cost functions ĉ j (ℓ) such that ĉ j (ℓ) = c j (ℓ), unless j ∈ Mv and ℓ ≥ nmax
j , in which case

ĉ j (ℓ) = max

{
max

j′∈Mc
c j′(1) , c j (ℓ)

}
.

Remark 5.5. The minimum number of players for which at least one concave machine is used by
the optimum allocation is nmax + 1. Moreover, by Lemma 5.3 for any n > nmax there is an optimal
schedule that assigns at most nmax players in total to convex machines. Therefore the optimal cost
is not affected by the overcharging of the VC-Overcharging protocol. Furthermore, the arguments of
Lemma 5.2 can be applied to show that the VC-Overcharging protocol is stable as well.

Theorem 5.6. For instances with concave and convex cost functions the VC-Overcharging protocol
yields PoA at most 2.

Proof. Recall thatMc ,Mv are the sets of concave and convex machines respectively. Further,

let ϕc (ℓ) and ϕv (ℓ) be the cost of optimally assigning ℓ players to only concave or only convex

machines, respectively. Observe that ϕc , and ϕv are concave and convex respectively.

Let s be any Nash equilibrium, and s∗ be the optimal allocation with at most nmax
players in

convex machines; the existence of such an optimal allocation is guaranteed by Remark 5.5. Let

nc =
∑

j ∈Mc
ℓj (s), and nv =

∑
j ∈Mv

ℓj (s) be the total number of players using concave and convex

machines, respectively, in the Nash equilibrium, and n∗c ,n
∗
v the same numbers w.r.t s∗.

Claim 5.7. The total number of players using concave machines in s∗ is at least as high as in s, i.e.,
n∗c ≥ nc , and hence n∗v ≤ nv .

Proof. Aiming for a contradiction, assume that n∗c < nc and n
∗
v > nv . By optimality of n∗c , n

∗
v ,

ϕv (n
∗
v ) − ϕv (nv ) < ϕc (nc ) − ϕc (n

∗
c ). (1)

Let i∗ be the smallest player w.r.t π that uses a concave machine in s, and let j∗ be the index of
that machine (recall that all players that use concave machines, are assigned to j∗). Notice that
there is such a player since by assumption nc > n∗c .
The share of i∗ is ξi∗ (s) = ξi∗ j∗ (s) = ϕc (1). Using Inequality (1), the fact that nv < n∗v , as well as

convexity and concavity of ϕv and ϕc , respectively, we get

ϕv (nv + 1) − ϕv (nv ) ≤
ϕv (n

∗
v ) − ϕv (nv )

n∗v − nv
<

ϕc (nc ) − ϕc (n
∗
c )

nc − n∗c
≤ ϕc (1) = ξi∗ (s).

So, player i∗ has a reason to deviate to a convex machine, which contradicts the assumption that

s is a Nash equilibrium. �

If n ≤ nmax
, then the the optimal cost is ϕv (n), i.e. n

∗
v = n, based on the definition of nmax

. By

Claim 5.7 it is n = n∗v ≤ nv , so trivially, n = nv , and the PoA is 1.

Otherwise, based on the definition of nmax
and on the VC-Overcharging cost-sharing protocol,

both the optimal allocation and the Nash equilibrium assign at most nmax
players to the convex

machines. Therefore,

C(s) = ϕc (nc ) + ϕv (nv ) ≤ ϕc (nc ) + ϕv (n
∗
v ) + ϕc (nv − n∗v )

= ϕc (nc ) + ϕv (n
∗
v ) + ϕc (n

∗
c − nc ) ≤ ϕc (n

∗
c ) + ϕv (n

∗
v ) + ϕc (n

∗
c ) ≤ 2C(s∗),
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c1(ℓ) . . . cm(ℓ) cm+1(ℓ)

ℓ = 0 0 0

ℓ = 1 1 1

2 ≤ ℓ ≤ m ∞ 1

ℓ ≥ m + 1 ∞ ∞

Table 1. The lower bound construction for budget-balanced resource-aware cost-sharing protocols

where for the first inequality, observe that if there were only nv players, the optimal cost would

be ϕv (nv ), since nv ≤ nmax
. This means that, since by Claim 5.7 nv ≥ n∗v , it holds that ϕv (nv ) ≤

ϕv (n
∗
v ) + ϕc (nv − n∗v ). �

6 MACHINES WITH GENERAL COST FUNCTIONS
In this section we show that the positive results of the previous sections do not carry over to

general increasing cost functions. Remarkably, the instances that we construct in our PoA lower

bounds use just capacitated constant cost functions, a seemingly mild extension beyond convex

and concave functions.

We first focus on budget-balanced protocols and show that the PoA of any budget-balanced

resource-aware cost-sharing protocol is Ω(n), even for unweighted players. It is not hard to check

that the PoA is guaranteed to beO(n) for any budget-balanced resource-aware cost-sharing protocol,
with unweighted players,

3
so this bound is tight.

Theorem 6.1. Every stable budget-balanced resource-aware cost-sharing mechanism has a PoA of
Ω(n) for the class of capacitated constant cost functions.

Proof. Consider a class of games comprising a set ofm + 1 machines with costs as in Table 1. A

resource-aware cost-sharing protocol for each one of these machines can depend arbitrarily on all

this information, so even the firstm machines can have a different protocol, although they have

the same cost function. However, the cost-sharing cannot depend on the number, n, of jobs that are
participating in the game.

First, assume that the number of jobs in the game is n = 2m. In this case, an optimal schedule

assigns exactly one player to each of the firstm machines and the remainingm players are assigned

to the last machine. This allocation results in a total cost ofm + 1, and any other allocation would

lead to an infinite total cost. Since the cost-sharing protocol is stable, this game has at least one

Nash equilibrium and, if any sub-optimal schedule is an equilibrium, then the PoA is unbounded.

Otherwise, if an optimal schedule is an equilibrium, let S be the set ofm players using the firstm
machines in this equilibrium. Then, none of them can decrease their cost by deviating to any other

one of the firstm machines.

Now, consider the different game from the same class where only the set S of players participate,

i.e., n =m. Then, assigning them to the same machines that they were assigned to in the equilibrium

of the previous game, would have to be an equilibrium for the new game: they do not want to

deviate to each other’s machines, and they also do not want to deviate to the unused machine since

3
If the allocation in the pure Nash equilibrium is different from the optimal allocation, there should exist a machine j with
nj and n∗

j players in the equilibrium and in the optimal allocation, respectively, such that nj < n∗
j . The cost of any player in

machine j is upper bounded by c j (nj ) ≤ c j (n∗
j ) and the cost of any other player is upper bounded by c j (nj + 1) ≤ c j (n∗

j ),

because she has no benefit to deviate to j . c j (n∗
j ) is trivially upper bounded by the cost of the optimal allocation and by

summing up over all players the O (n) bound follows.
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their cost would remain the same, due to budget-balance. However, the optimal schedule in the

new game would assign them all to the last machine, achieving a social cost of 1 instead of n. �

We now prove that the PoA of any resource-aware, not necessarily budget-balanced, cost-sharing

protocol is Ω(
√
n) even for unweighted players.We should emphasize that showing lower bounds for

resource-aware mechanisms that allow overcharging is much more involved than the corresponding

proofs for budget-balanced mechanisms, since the design space is considerably larger. In particular,

we would like to direct the reader’s attention to the second half of the following proof, which

provides some intuition regarding the difficulty involved.

Theorem 6.2. Every stable resource-aware cost-sharing mechanism has a PoA of Ω(
√
n) for the

class of capacitated constant cost functions.

Proof. In the instances that we consider, n = Θ(m), so we just prove the bound as a function of

m, and the same bound as a function of n is implied.

Consider the following family of problem instances involvingm + 1 machines. The first group

containsm machines that have a cost function c j (ℓ), such that c j (1) = 1 and c j (ℓ) = ∞ for ℓ > 1. The

second group contains a single machine with a cost of cm+1(ℓ) =
√
m for ℓ ≤ m and cm+1(ℓ) = ∞ for

ℓ > m. The resource-aware protocol can change the cost functions by increasing the induced costs

that need to be shared among the agents, but the following case analysis shows that, no matter

how the designer changes the shared costs, the price of anarchy of the induced game is Ω(
√
m).

Let m′
be the number of machines from the first group whose, possibly overcharged, cost

functions are ĉi (1) <
√
m and therefore, there existm + 1 −m′

machines with cost at least

√
m.

Ifm′ < m/2, consider the instance in which the number of agents that are active is n = 2m. In

this case, the only equilibrium is the one in whichm players are matched to the firstm machines,

and the remainingm players are assigned to the last machine, leading to a social cost of at least

m′ + (m + 1 −m′)
√
m ∈ Ω(m

√
m). The same assignment prior to the overcharging costs though

would yield a cost ofm +
√
m, which implies that the price of anarchy would be Ω(

√
m).

If, on the other handm′ ≥ m/2, then consider the instance in which the number of agents that

arrive at the system is n =m′
. If all these agents were matched, in equilibrium, to one of them′

machines whose cost is less than

√
m, then this would also lead to a PoA of Ω(

√
m). To verify this

fact, note that the total cost of this assignment would be at leastm′
, while the social optimum cost

would be

√
m, if all of them chose the last machine. Therefore the price of anarchy for any such

setting would be at leastm′/
√
m ∈ Ω(

√
m).

However, why this assignment of them′
agents to them′

machines of the first group would

be an equilibrium is unclear. It is true that the cost of each player in this assignment would be

at most

√
m, i.e., less than any other machine that is not occupied by another player. But, we

cannot exclude the possibility of at least one of these players has an incentive to deviate to one

of the otherm′ − 1 occupied machines. Such a deviation would lead to a cost of infinity on that

machine, but the protocol could just charge all of this cost to the existing occupant, thus charging

the new occupant 0! Such a cost-sharing protocol would then incentivize this player to deviate,

in turn forcing the previous occupant to move to another machine. In fact, each machine could

have a different ordering over which players to give higher priority to aiming to prevent any such

equilibrium from arising.

So, how can we prove that for any stable resource-aware protocol there exists a set ofm′
players

such that the assignment described above is an equilibrium? We consider what would happen if

n = 2m agents arrived instead. The crucial observation is that, since the protocol is stable, it must
possess an equilibrium in this instance as well. The only equilibrium that may exist is the one in

whichm players are matched to the firstm machines, and the remainingm players are assigned to
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the last machine. Since this assignment is an equilibrium, the agents occupying them′
“cheaper”

machines of the first group have no incentive to deviate to another one of these m′
machines.

Hence, if we remove everyone else, except thesem′
players, the remaining assignment needs to be

an equilibrium. In particular, it needs to be an equilibrium because the protocol is resource-aware,

so its cost sharing cannot depend on whether the other 2m −m′
players exist or not. �

7 COST-SHARING FOR TWOMACHINES
We finally focus on the special case of instances comprising two machines and unweighted jobs.

We show that for general cost-functions, there is a budget-balanced cost-sharing protocol with

PoA = 2. Notably, this mechanism does not belong to the class of generalized weighted Shapley

mechanisms [8], yet we show that it always induces Nash equilibria. Then we show a lower bound

of 1.36 for resource-aware protocols with overcharging.

7.1 Budget-Balanced Cost-Sharing
Let α(s) = argmini {π (i)|i ∈ S1(s)} and β(s) = argmaxi {π (i)|i ∈ S2(s)} be the first player of the
first machine and the last player of the second machine in s, with respect to the global ordering π .

Definition 7.1 (Increasing-Decreasing protocol). For any profile s, player α(s) is charged the whole

cost of the first machine and player β(s) is charged the whole cost of the second. The rest of the

players are charged 0:

ξi j (s) =


c j (ℓj (s)), if j = 1 and i = α(s)
c j (ℓj (s)), if j = 2 and i = β(s)
0, otherwise.

Theorem 7.2. For instances with two machines, unweighted jobs, and general cost functions, the
Increasing-Decreasing protocol is stable and it yields a PoA of 2.

Proof. We verify that this protocol is stable by constructing a pure Nash equilibrium. Starting

from a schedule where all the jobs are assigned to the first machine, while the first player (w.r.t. π )
using machine 1 prefers to deviate to machine 2 we let him do so, until this is not the case. It is

easy to verify that this schedule s is an equilibrium with n1 jobs on the first machine and n2 on the

second, such that c1(n1) ≤ c2(n2 + 1) and c2(n2) ≤ c1(n1 + 1). The only two players suffering a cost

are the last player to deviate (and he preferred to do so) and the first player who did not want to

deviate (who also preferred not to). The only alternative choice of these two players is to deviate

and suffer the full cost of the other machine.

Now, assume that the optimal allocation assigns n∗
1
and n∗

2
players to machines 1 and 2, respec-

tively. The case of n∗
1
= n1 and n

∗
2
= n2, trivially results in a PoS of 1. Without loss of generality, let

n∗
1
> n1 and n

∗
2
< n2. Then PoA ≤ 2 since,

c1(n1) + c2(n2) ≤ c1(n
∗
1
) + c1(n1 + 1) ≤ 2c1(n

∗
1
) ≤ 2(c1(n

∗
1
) + c2(n

∗
2
)).

The example of Figure 1, with two players and two machines, shows that this bound is tight.

Assume that π (1) = 1 and π (2) = 2. Then, the allocation where player 1 uses machine 2 and player

2 uses machine 1 is a Nash equilibrium. Indeed, if player 1 deviates to machine 1, he should pay 1,

whereas he currently pays 1 − ε . If player 2 deviates to machine 2, he should pay 2, whereas he

currently pays 1. The optimal schedule would assign both players to machine 1, with a total cost 1.

Hence, the PoA is at least 2 − ε . For an arbitrarily small ε > 0. �
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c1(ℓ) c2(ℓ)

ℓ = 0 0 0

ℓ = 1 1 1 − ε
ℓ = 2 1 2

Fig. 1. Tight lower bound on the PoA of the Increasing-Decreasing protocol.

7.2 Cost-Sharing with Overcharging
We conclude by demonstrating that we cannot avoid losing a constant factor in games with just

two machines, even if we used overcharging.

Theorem 7.3. There is no stable overcharging resource-aware cost-sharing protocol that achieves
PoA ≤ (1+

√
3)/2 ≈ 1.36, even for instances with two machines with concave and convex cost functions.

Proof. Consider two machines with the cost functions as shown in the Figure 2, where c ∈

(0, 1/2) is some constant to be defined later.

c1(ℓ) c2(ℓ)

ℓ = 0 0 0

ℓ > 0 1 2(ℓ − 1) + c

Fig. 2. Lower bound on the PoA of any resource-aware protocol, after overcharging. 0 < c < 1/2.

Assume that two players appear and consider any budget-balanced protocol. Observe that the

profile where both players choose the second machine is not a Nash equilibrium, since the cost

would be more than 2 and, hence, at least one of the players would be paying more than 1. The

profile where both players choose the first machine is not a Nash equilibrium either, since at least

one of the players would be paying at least
1

2
, giving him reason to deviate to the second machine.

Therefore, the only Nash equilibrium is the schedule where one player chooses the first machine

and the other one chooses the second machine. The PoA then is 1 + c .
The only way to achieve a better PoA for this case is to force the player that chooses the second

machine to move to the first machine. In order to achieve this, the cost of the second machine for

ℓ = 1 should be raised at least to the value of
1

2
. But then, for instances where only one player

appears the PoA becomes
1/2

c . Choosing the value of c that satisfies the equality 1 + c = 1

2c , the

PoA cannot be better than 1 + c = 1+
√
3

2
even with overcharging. �
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