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SUMMARY 23 

Non-tuberculous mycobacterial isolates from gold miners were speciated using standard 24 

biochemical testing (SBT) and 16s rDNA sequencing. Of 237 isolates tested, SBT identified 25 

126 compared with all 237 identified by sequencing. Of 111 isolates unspeciated by SBT but 26 

identified by sequencing, 38 (34.2%) were identified as Mycobacterium gordonae and 8 27 

(7.2%) were new species. Of 126 isolates speciated by both methods, 37 were discordant, 28 

with 14/17 M. gordonae isolates incorrectly identified as M. scrofulaceum using SBT.  The 29 

majority of these were the potentially pathogenic strain D M gordonae: sequencing is 30 

preferable where available to guide treatment. 31 

 32 

33 
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Identifying non-tuberculous mycobacteria (NTM) is important, especially where HIV is 34 

prevalent; to distinguish potential pathogens. In South African gold mines, use of liquid 35 

mycobacterial culture media has increased both the yield of positive cultures and the 36 

proportion of NTM isolated [1]. 37 

 38 

Conventionally, NTM are speciated using standard biochemical testing (SBT). 16S ribosomal 39 

ribonucleic acid (rRNA) gene sequence determination (16S rDNA sequencing) provides 40 

faster, accurate speciation and can identify new species [2]. 41 

 42 

We compared the spectrum of NTM identified by SBT versus sequencing in a gold-mining 43 

population and linked a subgroup of isolates to clinical data. This is the one of the larger 44 

clinical studies of NTM reported. 45 

 46 

METHODS 47 

This work was part of a sub-study [1] of “Thibela TB”, a cluster-randomised trial of 48 

community-wide isoniazid preventive therapy (IPT). At pre-IPT screening and follow-up 49 

visits, [1] and at routine mine health facilities (restricted to those without prior tuberculosis), 50 

we recruited individuals with suspected tuberculosis, between July 2006 and December 2007. 51 

Participants gave one sputum specimen; all isolates with results from both SBT and 52 

sequencing were included. 53 

 54 

Following decontamination, specimens were cultured using both BACTEC MGIT 960 55 

system (BD Diagnostics, Sparks MD) and Löwenstein-Jensen media [1]. Mycobacterium 56 

tuberculosis complex was distinguished from NTM by detection of MPB64 antigen (Capilia 57 

TB, Japan). Phenotypic identification was based on growth rate at 25
0
C, 37

0
C, 42

0
C, 45

0
C 58 
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and with p-nitrobenzoic acid; pigmentation and colony morphology in light and dark 59 

conditions at 37
0
C. SBT included Tween hydrolysis; nitrate reduction and the catalase test. 60 

For sequencing, heat-killed culture lysates were subjected to 5’-16s rDNA amplification; 61 

sequenced [2] and referred to the RIDOM and NCBI GenBank sequence databases for 62 

identification [3,4]. GyrB genes of heat killed lysates were sequenced to confirm the absence 63 

of M. tuberculosis, identify other members of MTB complex and confirm M. kansasii 64 

identification.  65 

 66 

Where SBT and sequencing results were discrepant, sequencing was repeated. SBT was 67 

repeated for isolates identified as M. scrofulaceum using SBT and M. gordonae using 68 

sequencing. For a subgroup with discrepant identification, because of uncertainty regarding 69 

pathogenicity, routine clinical data were collected retrospectively using a standardised case 70 

report form. 71 

 72 

RESULTS  73 

237 isolates were included. Dominant species identified using SBT included M. kansasii 74 

(51isolates), M. avium complex (47) and M. scrofulaceum (17); and using sequencing, 75 

M.gordonae (62), M. kansasii/M. gastri (53), M. avium complex (38) and M. 76 

parascrofulaceum (20).   28/237 isolates (11.8%) contained mixed NTM species on 77 

sequencing but none had mixed NTM/MTB. 111 isolates were not identifiable by SBT, but 78 

sequenced as follows:  M. gordonae (38 isolates), M. fortuitum (17), M. parascrofulaceum 79 

(10), M. avium complex (7), M. kansasii/M. gastri (5), other NTM species (22), new 80 

mycobacterial species (8) or non-mycobacterial species (4).  81 
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Among 126 isolates successfully speciated by both methods, 38 (30%) were discordant on 82 

initial testing (table 1). Among 17 isolates identified as M. scrofulaceum using SBT, most 83 

(14/17) were identified as M. gordonae by sequencing.  84 

 85 

Figure 1 shows a portion of the 16S rRNA sequence of M. scrofulaceum and M. gordonae 86 

strains (positions 392 to 446), indicating one of the few major differences between these 87 

species. Differences are visible at positions 411 to 427, including a three base-pair 88 

insertion/deletion.  Only two minor variations within M. gordonae strains are observed 89 

among these 10 isolates at position 412 (TC or CC) and position 426 (GC or AT). The 90 

sequences of 14 isolates, biochemically identified as M. scrofulaceum, are identifiable as M. 91 

gordonae strains by sequencing.  In 9/13 strains (one was not re-sequenced fully), TC 92 

replaces CC in position 412.  93 

 94 

On repeat SBT, successful for 11/14 isolates originally identified as M. scrofulaceum, 10 95 

were M. gordonae and one retained the initial identification of M. scrofulaceum. Among 38 96 

isolates for which SBT and sequencing were discordant, repeat sequencing produced the 97 

same result for 28; one isolate initially identified as M. szulgai was identified as M. 98 

parascrofulaceum on repeat sequencing; the remaining nine isolates had poor and 99 

uninterpretable results. 100 

 101 

Clinical data were available for 8/10 M. gordonae strain D isolates, identified by SBT as M. 102 

scrofulaceum. Six individuals were recruited at Thibela TB study sites and two at routine 103 

health services. 3/8 had a history of previous tuberculosis; all were smear negative; 2/8 104 

reported cough, with one additionally reporting weight loss. An HIV test result was recorded 105 

for 1/8, who was HIV negative. 3/8 had cavitation on chest radiograph, only one of whom 106 
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had previous tuberculosis. 1/8 (HIV negative with chest cavitation and no prior tuberculosis) 107 

was given standard tuberculosis treatment.   108 

 109 

DISCUSSION 110 

M. gordonae identified in sputum is generally considered to be non-pathogenic and has 111 

frequently been isolated from tap water, whereas M. scrofulaceum is considered to cause 112 

disease [5]. In nine of our M. gordonae isolates, a polymorphism (TC replacing CC at 113 

position 412) was shown that is associated with M. gordonae rpoB cluster D, which may be 114 

more pathogenic than other strains [6]. We note that M. gordonae can be pathogenic in the 115 

immunocompromised [7, 8] and may be causing disease in some individuals in this 116 

population, although relatively low numbers make it difficult to be certain. Accurate 117 

distinction between species is therefore important in populations with high HIV prevalence, 118 

such as this. 119 

 120 

The dominant NTM species were M. kansasii, M. gordonae, M. parascrofulaceum and 121 

members of M. avium and M. fortuitum complexes.  M. kansasii is known to be prevalent 122 

among miners [9]. In previous studies of NTM in miners, SBT was used to identify species 123 

mostly cultured on LJ [9, 10]; our data suggest that some M. gordonae strains could have 124 

been misidentified by SBT as M. scrofulaceum, some being associated with features of 125 

disease. The importance of this observation lies in the perceived pathogenicity of these two 126 

organisms and in our understanding of NTM species distribution in this population. 127 

 128 

CONCLUSIONS 129 

Some M. gordonae strains can be misclassified by SBT as M. scrofulaceum. 130 

Misidentification of NTM may lead to suboptimal clinical management, particularly in 131 
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settings with HIV prevalence.  Sequencing should be used where available to accurately 132 

identify NTM and where SBT is used, the possibility of misidentification should be 133 

considered. 134 

135 
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Figure Legend: 181 

Figure 1: 16S rRNA sequence alignment of M. gordonae and M. scrofulaceum. Sequences of 182 

Mycobacterium type strains are shown in row 1-12. M. scrofulaceum type strain sequences 183 

(ATCC 19981 and DSM 43992) are shown in row 1-2, while row 3-12 show M. gordonae 184 

type strain sequences (ATCC 14470, DSM 44160, agha3, Tropicalis, NIPHL050404TB, 185 

M138, M120, M223, Tropicalis-2 and Tropicalis-3).  Rows 13-15 are examples of clinical 186 

isolates from our study that were identified as M. scrofulaceum on initial standard 187 

biochemical testing and M. gordonae on sequencing. Two of these clinical isolates (rows 14-188 

15) show TC instead of a CC at position 412.  189 

 190 

191 
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Tables 192 

Table 1: Identification of non-tuberculous mycobacteria using standard biochemical testing 193 

and 16S rDNA sequencing: discordant results on initial testing 194 

Standard biochemical 

testing  

n 16S rDNA sequencing N 

M. scrofulaceum  17 M. gordonae 14 

M. szulgai  2 

M. fortuitum   1 

M. avium complex 16 M. parascrofulaceum  9 

M. paraffinicum  3 

M. fortuitum   1 

M. kyorinense  1 

M. palustre   1 

New mycobacterial species  1 

M. kansasii  3 M. gordonae  1 

M. parascrofulaceum  1 

M. szulgai  1 

M. gordonae  1 M. asiaticum  1 

M. flavescens  1 M. gordonae 1 

Total 38 Total  38 

 195 
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