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Abstract

Mucosa-associated adherent, invasive Escherichia coli (AIEC), found in increased number in
Crohn’s disease (CD) ileal and colonic mucosae, can survive and replicate within underlying
host immune competent cells (e.g. macrophages and dendritic cells) without triggering host
cell death. The intra-macrophage environment plays an essential role in bacterial killing
where engulfed bacteria are exposed to a hostile environment of low pH, high levels of
proteolytic/lysosomal enzymes, high nitrosative and high oxidative stress, and the activation
of a respiratory burst with generation of superoxide ions. Although a few stress response
genes have been identified that likely support the paradigm ileal AIEC isolate LF82 to
survive and replicate within the macrophage, the key molecular mechanisms involved in
supporting Crohn’s disease (CD) mucosa-associated AIEC to resist killing by host mucosal
macrophages within harsh environment of the phagolysosome still remains largely unclear.
Here we aimed to compare the ability of a number of E. coli strains to survive and replicate
inside macrophages, including a number of clinical isolates (from CD, colorectal cancer
(CRC) and ulcerative colitis (UC) patients and other infective or non-inflamed sources), and
this to toleration of growth in chemical-induced stress conditions mimicking the intra-
phagolysosome environment. In addition, a focus was to further understand the molecular
mechanisms responsible for acid tolerance of the paradigm CD isolates and examine their
replication within macrophages defective in NF-kB pathway signalling. Finally, to also assess
whether CD AIEC possess ability to alter host oxidative stress response gene expression in

macrophages to support their survival/replication.

Both ileal and colonic CD isolates (AIEC) were found to possess ability to either survive
and/or replicate within murine macrophages (i.e. J774-Al cell-line and wild-type (WT)
C57BL/6 bone marrow derived macrophages [BMDM]) and to tolerate all stress conditions
mimicking those within the phagolysosome, e.g. low nutrient, high acid, high nitrosative,
high oxidative stress including exposure to superoxide ions. Interestingly pathogenic E. coli
isolates from urinary tract infection (UTI) and some healthy-mucosa associated E. coli strains
behaved similarly. Crohn’s AIEC were unable to survive and replicate inside NfichI” and
Nficb2- BMDM, whilst they survived/replicated within WT and c-Rel”~ BMDM. Thus

Crohn’s AIEC survival and replication appears dependent on host NF«B signalling within the



macrophage. Conversely, all CRC and UC isolates tested and the majority of laboratory E.
coli strains studied were unable to survive inside murine J774-Al macrophage
phagolysosomes and they were also intolerant to most stress conditions, in particular
superoxidative stress. Colonic CD AIEC isolate HM605 showed higher initial levels of
expression of acid response genes gadA and gadB that may support adaptation to the intra-
macrophage phagolysosome niche. Adaptation to an intra-macrophage lifestyle appeared not
to be through any ability to alter host macrophage oxidative stress response to infection as no
differential changes were observed in the expression of 84 host genes related to oxidative

stress to that seen with non-replicating laboratory E. coli strain.

Overall this study provides new insight into how CD mucosa-associated E. coli isolates resist
killing by mucosal macrophages through adaptation to the acidic, high oxidative environment
within the macrophage phagolysosome. The data may support future development of new
therapeutic strategies that target the fundamental pathology of CD, in particular support a
reduction in bacterial persistence/increased Killing of intra-macrophage E. coli in CD patient

mucosae.
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Chapter 1

Introduction



1.1 Definition and epidemiology of inflammatory bowel disease

Crohn’s disease (CD) is a chronic relapsing immunologically mediated inflammatory
disorder, affecting the bowel and along with ulcerative colitis (UC), they form the two major
groups of inflammatory bowel disease (IBD). Significant overlap in the clinical features of
both CD and UC is evident, although the immune response in CD is different from that seen
in UC. CD may affect any part of the gastrointestinal tract from mouth to anus, but
commonly affects the terminal ileum at which the precise reasoning remains unexplained [1].
Crohn’s patients usually suffer from abdominal pain, diarrhoea, tenesmus and significant
weight loss which may be associated with extra-intestinal manifestations such as skin rashes
(e.g. erythema nodosum and pyoderma gangrenosum), eye inflammation (episcleritis and
uveitis), venous thromboembolism, arthritis and renal stones [2, 3]. Meta-analysis also
showed a positive association between IBD and the risk of stroke (7 studies for CD and 6
studies for UC) [4]; Extraintestinal manifestations of CD are illustrated in Figure 1.1. CD
patients may have symptoms for many years before diagnosis, because the clinical
manifestations of CD are more variable than UC [5, 6]. The diagnosis of CD is usually
established with the imaging studies and endoscopic findings in a patient with a compatible

clinical history.

The intestinal pathological findings in CD are characterised by transmural inflammation
(inflammation in all layers from mucosa to serosa), deep mucosal ulcers, increased goblet
cells, abscesses, fissures and granuloma formation; see Figure 1.1 [7]. These chronic
inflammatory lesions are proposed to develop due to a disrupted intestinal barrier, Paneth cell
dysfunction and a disturbed innate immune response, resulting in the accumulation antigen-
presenting cells, such as dendritic cells and macrophages, lymphocytes and plasma cells
within the intestinal mucosal layer [1, 8]. Pathological characteristics resemble the mucosal
lesions and intestinal inflammation seen in response to classic enteric infection, with gut
pathogen such as Shigella, Yersinia and Salmonella species (spp.) [9]. Whilst in UC, there is
no inflammation beyond the submucosal level and inflammatory cells such as neutrophils are
present in the lamina propria, with forming crypt abscesses and associated depletion of goblet

cells (and mucins) from the epithelium is evident [10].



Males and females are equally affected in CD and has classically been described to have a
bimodal incidence with the highest rates seen in adolescents and young adults and a second
peak in later years[11, 12]. The CD concordance rate in monozygotic twins is estimated to be
in the region of 20 to 50%, meanwhile in dizygotic twins, brought up in the same
environment, it is below 10% [13]. The concordance rate of UC in monozygotic twins has
been reported at around 16% and that in dizygotic twins, around 4% [14]. When it comes to
the epidemiology, CD is more common in Europe and North America than observed in
Africa and Asia [15]. For example, CD affects more than 115,000 people in the UK [16], and
the frequency of onset and relapse in IBD showed seasonality in CD with a peak in July and
August, but this has not been established for UC [17]. However, incidence rate of CD is
rapidly increasing worldwide particularly in developing and developed nations adopting a
western-style diet [15], as seen in Japan [18]. Likewise, those emigrating from poor and
developing nations to the West, within a few years of moving are at increased risk of
developing CD presumably due to a key change in their lifestyle and environment [19].
Animal studies in support of this include experiments in mice which have established that
maternal high-fat diet (HFD) and resultant obesity promotes the early onset of severe CD-like
ileitis in genetically susceptible offspring [20]. CD is associated with very considerable
morbidity, disrupting ability to work and study and family life, and also confers a small
increase in mortality, with a standardised mortality ratio of 1.52 [21, 22]. Two meta-analyses
also concluded that mortality in CD did not decrease over time, despite changes in patient
management [21, 23]. Historically, nearly 80% of CD cases need surgery at some time during
lifetime [24]. However, the use of immunosuppressants and biologics is associated with a

reduction in risk of major surgery [25].



Normal Mouth

Stomatitis
Aphthous ulcers

Cobblestoning \ F ?_t-'wragp!ng

Eyes
Episcleritis

Uveitis

Steatosis

Biliary tract

Fissure i Kidneys Gallstones
Thickened well Stones Sclerosing cholangitis
- (nephrolithiasis)
Hydronephrosis
Fistulae > Joints B
Urinary tract Spondylitis
infection < Sacroiliitis
Peripheral arthritis
Skin
Erythema nodosum
Pyoderma
grangrenosum

Circulation
Phlebitis

Figure 1.1 Crohn’s disease manifestations.

(A) The appearance of intestinal mucosa of a healthy individual and a Crohn’s patient. (B) The diagram
illustrates  extraintestinal manifestations of Crohn’s disease, adapted from http://www.physio-
pedia.com/Crohn's Disease (accessed 08-12-2016).
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1.2 Factors involved in Crohn’s disease pathogenesis:

1.2.1 Defective mucosal barrier function and alteration in the gut

microbiota

The intestinal epithelium, as well as it established absorptive and digestive functions, is an
efficient barrier against encroachment of the resident commensal microbiota and
opportunistic enteric gut pathogens. There are a number of contributing factors involved in
mucosal defence including the mucus layer, intestinal peristalsis, innate antibacterial factors
such as lactoferrin and lysozyme, and hydrophobic antibacterial peptides produced by Paneth
cells present at the base (crypts) of the small intestine. The intestinal mucosa also possesses

specific immunological protection strongly facilitated by secretion of immunoglobulin A
(19A) [26].

Human gut microbiota plays an essential role in the shaping of the intestinal immune
response in the healthy individuals [27]. Gut microbiome is established during the first 2
weeks of life and usually remains stable thereafter [28]. All human gut microbiome consists
of around 1150 species, and each individual hosts approximately 160 species in which

anaerobes of the Firmicutes and Bacteriodetes phyla are predominant [29].

In order to broaden insight into the pathogenesis of CD, multiple studies have been intensely
carried out on CD intestinal microbiota over the last decade. Based on a number of previous
human and animal experimental studies, the microbiota has been proposed to be involved in
chronic inflammatory lesions formation particularly in two ways: first, a low-grade infection
by a persistent pathogen, either traditional or opportunistic; and second, an imbalance

between the beneficial commensals and the potentially harmful microbiota [30].

Results confirm a decrease in ‘protective’ bacterial phyla beneficial to gut health, including
Firmicutes and Bacteriodetes (containing Gram-positive bacteria species) as compared to the

microbiota of healthy controls, and the increase in abundance of Proteobacteria, including



potentially harmful Gram-negative intestinal bacteria, including Escherichia coli (E. coli)
[31, 32]. E. coli which are known to be numerically dominant inhabitants of the healthy
human gut microbiota and play an essential role for maintaining normal intestinal
homeostasis and the stability of luminal microbiota via, for example involvement in
synthesizing vitamin B and K as well as metabolizing bile acids [33]. However, there are
virulent E. coli strains that are likely to cause a variety of intestinal and extra-intestinal
diseases; this imbalance in the gut microbial population is referred to as 'dysbiosis'. Studies of
faecal and gut mucosal-associated microbiota in patients with UC, demonstrated quantitative

and qualitative changes in the composition, suggestive of dysbiosis [34-36].

Reduced diversity of other micro-organisms is also recently been described in IBD patients,
including fungal microbiota (mycobiome) [37-39] and viruses (virome) [40, 41] and

suggested to play a possible role in disease pathogenesis.

The correlations between CD and dysbiosis have been established to be more clearly marked
in the mucosal biopsies (mucosa—associated bacteria populations) than bacterial communities
from the intestinal lumen (faecal samples) [42-46]. In addition, the significant shift of normal
gut microbial community is associated with intestinal inflammation in both experimental
colitis and human IBD [47]. Even though CD pathogenesis is still poorly understood and the
exact aetiology is still unknown, there is clear evidence suggestive that a number of lifestyle
factors contribute to the dysbiosis of gut microbiota, including environmental triggers such as
smoking [48, 49], ‘adolescent’ diet (notably a ‘westernised’ diet, high in fat and refined
sugar, low in intake of fruit and vegetable fibre [50, 51]. For example, recent studies report
that Western-style diet alters the microbiota composition within 1 day [52], and can result in
increase in gut colonisation of a Crohn’s associated E. coli in transgenic CEABAC10 mice,
expressing human CEACAMs, including CEACAMBG, a receptor for CD-mucosa-associated
ileal E. coli strains [53]. A result from a meta-analysis study indicated that the intake of
dietary fibre, particularly fruit fibre, was significantly associated with a decreased risk of
inflammatory bowel disease [54, 55]. It was also reported that supplementation of some types
of dietary fibre may prolong remission and reduce the intestinal mucosa lesions during the
course of the disease [56]. Avoidance of fibre was found to be associated with a greater risk

of CD flare within a period of 6 months [57]. In addition, other studies , have revealed that
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acute ileitis promotes dysbiosis, especially increased mucosa association of E. coli in mice,
and colonic inflammation (colitis) induced in rats can drive dysbiosis and lead to barrier

disruption of the intestinal mucosa [58, 59].

Smoking has been proven to increase the risk of CD development and is associated with a
higher rate of recurrence post-operation for CD patients [60]. It has also been proven to play
a role in the pathogenesis of CD in children who are exposed to passive smoking, [61].
Smoking alters the gut microbial community (dysbiosis) and also results in dysfunction of
mucosal macrophages to handle gut pathogens [62, 63]. Conversely for UC, the protective
effects of smoking are well described with a reduction in the relapse rate among smokers
with UC [64, 65].

Other key predisposing factors include genetic susceptibility (see section 1.2.2) and an
inappropriate innate and adaptive immun