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Abstract

The generalized risk-sensitive control problem is analized in this thesis. If the cost

weighting matrices for the state and the control are allowed to be indefinite, then

we call the stochastic risk-sensitive control is indefinite. In this thesis we consider

both finite and infinite versions of the indefinite generalised risk-sensitive control

problem. The change of measure and the completion of squares methods are used

in solving this problem. In the infinite cases for both fully and partially observed

systems, we introduce a coefficient function into the cost functional, from which the

conditions on the controller could be weakened and the limitations of the method

are also reduced compared with other relevant papers on similar topics. A group of

optimal controllers is obtained in an explicit closed-form for both finite and infinite

time horizons in each case. To illustrate the theory, an example of the application in

finance is presented to illustrate the theory.

We introduce a risk-sensitive version of the classical H2/H∞ robust control

method for linear stochastic systems with additive noise. Two criteria of exponential-

quadratic form are employed instead of the usual quadratic criteria. Under the

assumption of linear state-feedback controllers, the solutions are found for both the

finite and the infinite horizon formulations.

In this thesis we also investigate the risk-sensitive(RS) problem and linear-

quadratic(LQ) problem with delays in the control system for a linear stochastic

continuous time state. We use a combination of methods,changing measure and

v



completion of squares methods to find an explicit solution for each case. We also

generalised the linear system by adding a delay term in both state and the cost

functional, and present several forms of Riccati differential equations. The last

chapter contains some preliminary results that we obtained. Further research need

to be done in the future.
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Chapter 1

Introduction

1.1 Introduction

In this introductory chapter we present a short history of the problem of risk-sensitive

control, the robust control and delay system, describe the main contributions of the

thesis, and give a brief synopsis of each of the following chapters.

1.2 The problem of risk-sensitive control and robust

control

Let (Ω,F , (F(t), t ≥ 0),P) be a complete probability space. Define (W (t), t ≥ 0) is a

d-dimensional standard Brownian motion. We assume that F(t) is the augmentation

of σ{W (s)|0 ≤ s ≤ t} by all the P-null sets of F .

Considering the linear stochastic control system:

dx(t) = [Ax(t) +Bu(t)]dt+ Cdw1(t),

dy(t) = Hx(t)dt+D
1
2dw2(t),

x(0) = x0,

y(0) = 0,

(1.2.1)

We assume thatA(·) ∈ L∞(0, T ;Rn×n), B(·) ∈ L∞(0, T ;Rn×m), C(·) ∈ L∞(0, T ;Rn×d),

H(·) ∈ L∞(0, T ;Rq×n), D(·) ∈ L∞(0, T ;Rq×q), and D(t) > 0,∀t ∈ [0, T ], where

L∞(0, T ;Rn×n) is the set of all Rn×n-valued uniformly bounded functions. We
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further assume that the F(t)-adapted control process u(·) is such that (1.2.1) has a

unique strong solution.

We are given W (t) = [w′1(t), w
′
2(t)]

′, where, w1(t) and w2(t) are orderd p and q.

And we assume that x0 and W (t) are independent, and x0 is a Gaussian random

variable with mean µ0 and variance σ0.

The risk-sensitive control problem is to minimize:

J̄(u(·)) := γE
{

exp

[
γ

2
x′(T )Sx(T ) +

γ

2

∫ T

0

[
x′(t)Qx(t) + u′(t)Ru(t)

]
dt

]}
,(1.2.2)

where γ ∈ R, γ 6= 0, is given. And Q(·) ∈ L∞(0, T ;Rn×n), R(·) ∈ L∞(0, T ;Rm×m),

are given matrices with Q(t) ≥ 0, R(t) > 0, ∀t ∈ [0, T ].

Finding an optimal u(·) to minimize (1.2.2) when (1.2.1) holds was first intro-

duced by Jacobson in [34]. He found the complete solution to the fully observed

system problem, i.e. H = 0, and D = 0 in (1.2.1). The optimal controller u(·)
is found to be in a linear state-feedback form, which is very similar to the linear-

quadratic control problem solution (see [80]). But in a risk-sensitive case, optimal

u(t) depends on C, which means the controller is related to the intensity of noise.

Whittle [78](see also [79]) solved the discrete case of the general partially ob-

served risk-sensitive control. And the continuous case was first completely settled by

Bensoussan and Van Schuppen [5] in 1985. They transferred the partial observation

case into the full observation case, and made the problem easily solvable. This

method is the most general way to solve all the different partial observation cases in

a control problem.

In two recent papers Date and Gashi [17], Date and Gashi [16], a generalization

of the cost functional has been introduced as follows:

J(u(·)) = γE
{

exp

[
γ

2
x′(T )Sx(T ) +

γ

2

∫ T

0
[x′(t)Qx(t) + u′(t)Ru(t)]dt

+
γ

2

∫ T

0
[x′(t)Q1 + u′(t)R1]dW (t)

]}
,

for some constant vectors Q1 and R1 of proper dimensions. The novelty here is

that a noise dependent penalty has been introduced. An important feature of this
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generalised risk-sensitive control problem is that it admits an explicit closed-form

solution in terms of a certain Riccati type equation.

With more than forty years of development, several related topics concerning

the risk-sensitive control problem have been analyzed. Considering the indefinite

stochastic control, the linear-quadratic control problem was first found in Chen, Li

and Zhou [14].

However, the stochastic Riccati equation in [14] may not be capable handling

certain indefinite problems. A lot of research has been undertaken in the indef-

inite linear-quadratic control area, such as [55], [62], [81], [46], and [54], [86] for

the discrete-time case. However, anindefinite risk-sensitive control has not been

previously considered for the risk-sensitive control problem, particularly for the

partially observed risk-sensitive control problem.

Let us turn our attention to the robust control problem. The H2/H∞ problem

has been a popular research topic in recent years.

Consider the linear time-varying system to be:

dx(t) = [A(t)x(t) +B2(t)u(t) +B1(t)v(t)]dt

z(t) =

[
C(t)x(t)

D(t)u(t)

]
x(0) = x0,

(1.2.3)

the entries of A(t), B1(t), B2(t), C(t), and D(t) are continuous functions of time,

and D′(t)D(t) = I.

The cost function is given as:

J1(u, v) =

∫ T

0
z′(t)z(t)dt,

(1.2.4)

and

J2(u, v) =

∫ T

0
(γ2v′(t)v(t)− z′(t)z(t))dt.
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(1.2.5)

The earliest method used to solve this problem was entropy minimization (see [28], [50], [58],

[6], [20] and [85]), until Limebeer, Anderson and Hendel (see [52]) first completely

solved the mixed H2/H∞ problem by treating the H2 and H∞ criteria separately

and using a two-player Nash game. And the solutions are found to be state-feedback.

The idea of solving the H2/H∞ problem is to use two performances to reflect an H∞

constraint and an H2 optimality requirement. This research was the first to generate

the H2, and H∞ as two special cases of the two-player linear-quadratic problem,

from which a link between H2, H∞ and mixed H2/H∞ theories was established

in [51] and Sweriduk’s research [71].

After the research of Limebeer, Anderson and Hendel, the H2/H∞ problem has

been widely developed to various fields. However, few results had been obtained

until Chen and Zhang [12] who were the first to generate the stochastic mixed

state-dependent H2/H∞ control problem with Itô’s differential systems.

It has been shown that for both finite and infinite horizons, the stochastic H2/H∞

control problem is closely related to a pair of coupled DREs(finite) or AREs(infinite).

The H2/H∞ problem has be developed a lot, but it still seems there is considerable

scope when the cost functions are given in exponential form.

The last review comes about the delay system, which is also named dead-time.

The linear-quadratic systems with delays has been studied from different viewpoints

for many years, with some important papers, such as Ichikawa ( [32], [33]), Kwong

and Willsky ( [41], [42]), R. H. Kwong ( [44], [40], [43]), Koivo and Lee, etc. ( [36]),

adding to the fundamental theories of the delay problem.

Most of the authors in the early period of research on this topic, solved the

delay problem using state-space techniques with different approaches. For example,

in Ichikawa’s paper, a finite number of pure delays occured in a family of evolution

equations; Kwong and Willsky focused on a less general control operator with differ-

ential delay equations. However the state-space technique can be used only for a

special delay structure that contains a finite number of delays and is not generally

applied.

Some results have been obtained in the delayed control problem over the last
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few decades. For example, a very general case of the linear-quadratic delay problem

was solved in the paper of Chen and Wu [13] as follows:

consider the following LQ system:
dx(t) = [Ax(t) +A1x(t− δ) +Mtu(t) +M1

t u(t− δ)]dt

+ [Cx(t) + C1x(t− δ) +Dtu(t) +D1
t u(t− δ]dw(t)

x(t) = φ(t), u(t) = η(t), t ∈ [−δ, 0].

(1.2.6)

where, φ, η(t) ∈ C[−δ, 0]n is deterministic functions, satisfying
∫ 0
−δ α

2(s)ds <

+∞, α = φ, η. Giving the cost functional as:

J(u(·)) =
1

2
E

[∫ T

0
x′(t)Qx(t) + u′(t)Ru(t)dt+ x(T )Sx(T )

]
.

(1.2.7)

They encountered the backward stochastic differential equations:{
−dY (t) = f(t, Y (t), Z(t), Y (t+ δ(t)), Z(t+ ζ(t)))dt− Z(t)dB(t), t ∈ [0, T ],

Y (t) = ξ(t), Z(t) = η(t), t ∈ [T, T +K],

(1.2.8)

where δ(·) and ζ(t) are R+-valued functions defined on [0,T]. (See Peng and Yang [60])

for the optimization problem. Using the backward stochastic differential equation

method, this paper gives the feedback regulator in terms of the conditional expectation

of future information as follows:

u(t) = −R−1
[
M τ
t y(t) +Dτ

t z(t)

+EFt
(
(M1

t+δ)
τy(t+ τ) +

(
D1
t+δ

)τ
z(t+ δ)

) ]
, t ∈ [0, T ].

This paper solved a very general case of the LQ delay problem, however, the

result they found about the optimal controller is not explicit and difficult to be

applied in practice.

The research on delay systems has developed rapidly in recent years, since the

stochastic delay differential equations could be applied to a lot of fields, including

finance, engineering and physics. The robust control time-delay problem and H∞
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control problem were solved in Tadmor ( [72]- [76]), Zhou [84], Uchida [77], Nagpal [59].

There have been achieved alot if results on the study of time delay systems in various

research fields. Some important results in linear-quadratic delay systems have been

achieved in recent years, but only a few studies looked at risk-sensitive control. The

only paper we could find where authors attempted to solve the exponential cost

functional is by Yoneyama [82]. Yoneyama used a change of measure technique to

solve the risk-sensitive control problem with delay system of partial observation .

However, the delay term in the state system only occurred on the controller u(t)

and can not be generally applied. From the results of Yoneyama, we can see that

the solutions of the delay system are quite complicated. When a delay state system

is combined with a cost functional which involves an exponential expression, it is

even more difficult to find an explicit solution. In the respective chapter in this

thesis, we are going to be dealing with this delayed-risk-sensitive control problem as

a challenge.

1.3 The main contributions

The main contributions of this thesis are as follows:

• The solution for the indefinite optimal control problems of minimizing the

generalized form of Jacobson’s [34] and Bensoussan’s [5] cost functional. We

solved both finite and infinite of the full and partial observation cases. Notably

for the infinite case, by introducing a coefficient function into the cost functional,

we could solve the problems under weaker conditions. The solutions are found

using a combination of the change of measure and the completion of squares

methods. It is worth mentioning that, the indefinite case analysis has never

been done before even for the finite risk-sensitive control.

• The H2/H∞ problem has been extensively developed, but it still seems to be

a blank when the cost functions are given in exponential form. This thesis

focuses on the combination of the stochastic H2/H∞ control problem with

the risk-sensitive criteria. It is shown that, the H2/H∞ control has a pair of

controllers which depend on the corresponding Riccati equations solution.

• In this thesis we analyzed the delay system in two different ways: combined

with linear-quadratic control problem; and focusing on the exponential criteria:

risk-sensitive control. In the linear-quadratic case, we found an explicit solution

for the problem rather than a sweeping form of expectation which could not

be directly applied. Compared with existed delay models of the risk-sensitive
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control, we generalised the state system by adding the delay terms in both

observable state variables and in the controller.

The following is a short introduction to the chapters.

Chapter 2

In this chapter we review some basic results of stochastic control theory to which

we refer later in the thesis. In addition we show the methods from some important

papers, that have been used to solve the risk-sensitive control, indefinite control,

H2/H∞ control and delay systems.

Chapter 3

In this chapter, we analized the indefinite generalised risk-sensitive control problem

with a fully observed state system in both finite and infinite versions. In each case,

the solutions are found in an explicit closed-form. The change of measure and the

completion of squares methods are used for this purpose.At the end of the chapter,

we give an example that illustrate the theory developed, applied to finance.

Chapter 4

This chapter is concerned with the indefinite generalized risk-sensitive control problem

with partially observed system. By introducing two matrices and changing of

measure, we transformed the partial observation to a classic full observation problem.

Using a similar method, as described in the previous chapter, a group of optimal

controllers is obtained for both finite and infinite time horizons. In the infinite

case we introduce a new coefficient function to the original cost function, whereby

reducing the assumptions and conditions as compared with other relevant papers on

similar topics.

Chapter 5

In this chapter we discuss robust control, which is a combination of H2/H∞ control

and risk-sensitive control of stochastic linear systems. Two criteria of exponential-

quadratic form are employed instead of the usual quadratic criteria. Under the

assumption of linear state-feedback controllers, the solutions are found for both the

finite and the infinite time horizon formulations.

Chapter 6
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In this chapter we investigate the risk-sensitive problem and the linear-quadratic

problem with delay in control system, for a stochastic linear continuous time state.

We then generalise the LQ system by adding a delay term in both the state and the

cost functionals.

Chapter 7

In the final chapter we summarize the main contributions of the thesis and dentify

some interesting open questions for future research.



Chapter 2

Preliminaries

2.1 Introduction

In this chapter we review some basic results of stochastic optimal control theory.

These include risk-sensitive control, partially observable stochastic systems, gen-

eralized risk-sensitive control, indefinite linear-quadratic control, Robust control,

stochastic delay system and Riccati equations. Where applicable we hightlight any

new contributions we make with this thesis within the context of the well-known

theory.

2.2 Risk-sensitive control

The optimal risk-sensitive control problem was introduced by Jacobson in [34]. He

fould the complete solution of the full observation case of the problem in continuous

time. Let (Ω,F ,P) be a complete probability space, (w(t), t ≥ 0) is defined as a

(p+ q)-dimensional standard Brownian motion.

Considering the linear stochastic control system:{
dx(t) = [A(t)x(t) +B(t)u(t)]dt+ C(t)dw(t),

x(0) = x0,
(2.2.1)

where A(t), B(t), C(t) are time dependent variables. The risk-sensitive control

problem is the optimal control problem to minimise:

J̄(u(·)) ≡ γE
{

exp

[
γ

2
x′(T )Sx(T ) +

γ

2

∫ T

0

[
x′(t)Qx(t) + u′(t)Ru(t)

]
dt

]}
,

(2.2.2)
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where Q(t) ≥ 0, R(t) > 0 and S ≥ 0, ∀t ∈ [0, T ]. The optimal control of finding

optimal u(·) to minimize (2.2.2) when (2.2.1) holds is found to be in the following

form:

u∗(x, t) = −R−1B′Px(t), t ∈ [0, T ],

where P is the solution of the following Riccati equation:
−Ṗ (t) = Q(t) + P (t)A(t) +A′(t)P (t)

− P (t)(B(t)R−1(t)B′(t)− γC(t)C ′(t))P (t),

P (T ) = S.

The discrete-time version of the problem has also been done by Jacobson. The results

of risk-sensitive control are related to C which is vey different from the LQ problem

2.3 Partially observed risk-sensitive control

For partial observation, Bensoussan and Van Schuppen ([5]) provide the first complete

solution to this problem. Given the linear stochastic control system:

dx(t) = [F (t)x(t) +B(t)u(t)]dt+G(t)dw,

dy(t) = Hxdt+R
1
2db,

x(0) = x0,

y(0) = 0,

(2.3.1)

where x(t) is the state of the system with dimension n, u(t) is the control process

with dimensiona m, w and b are standard Wiener processes, F (·), B(·), G(·), H(·),
R(·) are given matrices, and R(t) > 0, ∀t ∈ [0, T ]. The cost functional is:

J̄(u(·)) ≡ γE
{

exp

[
γ

2
x′(T )Mx(T ) +

γ

2

∫ T

0

[
x′(t)Qx(t) + u′(t)Nu(t)

]
dt

]}
,

(2.3.2)
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where γ 6= 0, is given. M(·), Q(·) and N(·) are given matrices with M(t) ≥ 0,

Q(t) ≥ 0, N(t) > 0, ∀t ∈ [0, T ]. Finding optimal u(·) to minimize (2.3.2) when

(2.3.1) holds.

Assumption 1. If there exists a ν ∈ (0,∞) such that

E

[
exp

(
ν

∫ T

0
‖ u ‖2 dt

)]
<∞. (2.3.3)

We define the preliminary set of admissible controls as follows:

U1 = {u ∈ Ly(0, T ;Rm) | ∃ν ∈ (0,∞)} (2.3.4)

such that (2.3.3) equation holds.

(Notation: for any t ∈ T, vt = f(y(·)) depends only on y before time t.)

Assumption 2.

U2 = {u ∈ U1 | J(u(·)) <∞)} (2.3.5)

it is called the class of admissible controls.

Definition 1. For any u ∈ U2 let us introduce the following variables:

r : Ω× T → Rn

dr = [F − PH ′R−1H + γPQ]rdt+Budt+ PH ′R−1dy, r0 = γ. (2.3.6)

P is the solution of a filter type Riccati differential equation

Ṗ − FP − PF ′ + P (H ′R−1H − γQ)P −GG′ = O,P (0) = P0, (2.3.7)

πu : Ω×Rn × T → R

πu(x, t) = exp

(
1

2
(x− r)′P−1(t)(x− r)

+

∫ T

0
R−1Hrdy − 1

2

∫ T

0
r′H ′R−1Hrdt

+
γ

2

∫ T

0
(r′Qr + u′Nu)dt+

γ

2

∫ T

0
tr(PQ)dt(2π)

n
2 | P (t) |

1
2

)
.

(2.3.8)
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K(u(·)) = E

[
γ

∫
exp

(γ
2
x′Mxπu(x, t)dx

)]
. (2.3.9)

Σ : T → Rn×n

Σ̇− ΣGG′Σ + FΣ + ΣF ′ − γQ+H ′R−1 = 0, Σ(t) = −γM. (2.3.10)

Assumption 3.

(1) H ′R−1H − γQ ≥ 0;

(2) P (t) ≥ c1I for some c1 ∈ (0,∞) and for all t;

(3) P−1(t) + Σ(t) > 0 for all t.

Theorem 2.3.1. Assume that Assumption 3 holds and the Riccati equation (2.3.10)

has a symmetric bounded solution. For any control u in the class of admissible

controls U2 one has the equality:

J(u(·)) = K(u(·)) (2.3.11)

where J(u(·)) is defined by (2.3.2) and K(u(·)) by (2.3.9).

Minimizing K(u(·)) by the state equation of dr is a fully observed stochastic

control problem. Using this method, the partial observation problem is easily solved.

Theorem 2.3.2. Consisting the stochastic state system (2.3.1) and the cost func-

tional (2.3.2), the optimal control is given by:

u = −N−1(t)B′(t)S(t)r,

(2.3.12)

under certain definite conditions. Here S is the solution of a control type Riccati

differential equation:
Ṡ + S(F + γPQ) + (F ′ + γQP )S +Q− S(BN−1B′ − γPH ′R−1HP )S = 0,

S(T ) =
1

2
[(I + γMP (T ))−1M +M(I + γP (T )M)−1].

2.4 Generalized risk-sensitive control

In Date and Gashi’s research, they analized the optimal control problems for both

of the full and partial state observations, and generalised the risk-sensitive cost
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functional. The problem is as follows:

Let (Ω,F ,P) be a complete probability space, given a Brownian motion term W (t) =

[w′1(t), w′2(t)], with order p and q. Considering the same state system as Bensoussan

and Van Schuppen:

dx(t) = [Ax(t) +Bu(t)]dt+ Cdw1(t),

dy(t) = Hx(t)dt+ F
1
2dw2(t),

x(0) = x0,

y(0) = 0,

(2.4.1)

Introduce noise dependent penalties, a generalization of this cost functional becomes:

J(u(·)) = γE
{

exp

[
γ

2
x′(T )Sx(T ) +

γ

2

∫ T

0
[x′(t)Qx(t) + u′(t)Ru(t)]dt

+
γ

2

∫ T

0
[x′(t)Q1 + u′(t)R1]dW (t)

]}
,

for some constant vectors Q1 and R1 of proper dimensions.

Assumption 4. Coefficients R and R1 are such that

R+
γ

4
R1R

′
1 > 0 (2.4.2)

Definition 2. Introduce the following matrices:

Ā ≡ A+
γ

2
CQ′1 −

(
B +

γ

2
CR1

) [
R+

γ

4
R1R

′
1

]−1 γ
4
R1Q

′
1,

B̄ ≡ B +
γ

2
CR′1,

R̄ ≡
[
R+

γ

4
R1R

′
1

]−1
.

Assumption 5. For the full observation case, they used two methods: completion

of squares and changing of measure to find the solution (see [17]). There is a unique
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solution to the following Riccati equation:

Q+ Ṗ + PA+A′P +
γ

4

(
2PC +Q1

)(
2PC +Q1

)′
−

[
γPB

+
γ2

4

(
2PC +Q1

)
R′1

](
R+

γ

4
R1R

′
1

)−1[
γPB +

γ2

4

(
2PC +Q1

)
R′1

]′
= 0,

P (T ) = S.

Theorem 2.4.1. Let the Assumptions 4 and 5 hold. There then exists a unique

solution to the problem. And the optimal control and the corresponding optimal cost

are:

u∗ = −R̄−1
(
B̄′P +

γ

4
R1Q

′
1

)
x(t),

J∗ = γE

[
γ

2
p(0) + x(0)P (0)x(0)

]
.

respectively. Here, p(t) is the solution to the following ordinary differential equation:
ṗ(t) + tr[C ′P (t)C] = 0,

p(T ) = 0.

For the partially observed case, they applied Bensoussan and Van Schuppen’s

results and transferred the partial case to full case. The following are the results for

the generalized partial observed risk-sensitive control:

Assumption 6. There must be at least one differentiable symmetric solution G :

[0, T ]→ Rn×n to the equation:

2GB +
γ

2
(Q1 + Ĝ)R′1 = 0, a.e.t ∈ [0, T ], (2.4.3)

where Ĝ ≡ [2GC, 0n×p].

Definition 3. Introduce the following matrices:

Ŝ ≡ S −G(T ),
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Q̂ ≡ Q+ Ġ+GA+A′G+
γ

4
(Q1 + Ĝ)(Q1 + Ĝ)′,

R̂ ≡ R+
γ

4
R1R

′
1.

Assumption 7. The matrices R and R1 are such that R̂ > 0.

In the following matrix partitions, matrices M1 and N1 are of dimension q × n
and q ×m, respectively:

γ

2
(Q′1 + Ĝ′) =

[
M1

M2

]
,

γ

2
R′1 =

[
N1

N2

]
.

Definition 4. Introduce the following variables:

Â ≡ A+ CM1,

B̂ ≡ B + CN1,

Ĥ ≡ H + F
1
2M2.

and introduce a variable r(t) satisfy:

dr(t) =

[(
Â− P̂ Ĥ ′F̂−1Ĥ + γP̂ Q̂

)
r̂(t) +

(
B̂ − P̂ ĤF̂

1
2N2

)
u(t)

]
dt

+ P̂ Ĥ ′F̂−1dy(t),

r̂(0) = µ(0).

Assumption 8. The following Riccati equations have unique global solutions re-

spectively: 
˙̂
P − ÂP̂ − P̂ Â′ + P̂ (Ĥ ′F̂−1Ĥ − γQ̂)P̂ − CC ′ = 0,

P̂ (0) = P0
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˙̂
U+(Â′ + γQ̂P̂ )Û+Û(Â+ γP̂ Q̂)−Û(B̂R̂−1B̂′ − γP̂ Ĥ ′F̂−1ĤP̂ )Û + Q̂ = 0,

Û(T ) =
1

2

[
(I − γŜP̂ (T ))−1Ŝ + Ŝ(I − γP̂ (T )Ŝ)−1

]
.

Theorem 2.4.2. Let the Assumptions 6, 7 and 8 hold. There exist a unique solution

to the partial observation problem as follows:

u∗(t) = R̂−1B̂′Ûr(t), (2.4.4)

the corresponding cost function is:

J∗ = γ exp

[
γ

2
µ′0Û(0)µ0 +

γ

2

∫ T

0
tr(P̂ Q̂+ Û P̂ Ĥ ′F̂−1ĤP̂ )dt

]
|[I + γŜP̂ (T )]|−

1
2 .

(2.4.5)

The novelty here is that a noise dependent penalty has been introduced. An

important feature of this generalised risk-sensitive control problem is that it admits

an explicit closed-form solution in terms of a certain Riccati type equation. It has

been proved by the theorem of Bensoussan and Van Schuppen that both the full and

partial state observation problems can be transformed into standard risk-sensitive

control problems, the problem can then be solved easily.

2.5 Indefinite control

In 2001, Rami, Moore and Zhou [63] identified the generalised(differential) Riccati

equation. They derived the generalized form of the optimal controls via the Riccati

equation solutions.

Let us state some useful known results on the Moore-Penrose pseudoinverse and

matrix equations (see [61]):

Lemma 2.5.1. (a) If M ∈ Rm×n, then there exists a unique M † ∈ Rm×n, called

the Moore-Penrose pseudoinverse, such that

(i) MM †M = M, M †MM † = M †,

(ii) (MM †)′ = MM †, (M †M)′ = M †M,
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(iii) if M is symmetric, then MM † = M †M.

(b) If L, M , and N are given matrices, then the matrix equation

LXM = N, (2.5.1)

has a solution X if and only if

LL†NM †M = N.

In this case, any solution to (2.5.1) can be represented as

X = L†NM † + S − L†LSMM †,

for some S of proper dimensions.

Recalling the linear-quadratic control problem of [63], consider the linear stochas-

tic control system:
dx(t) = [A(t)x(t) +B(t)u(t)]dt+ [C(t)x(t) +D(t)u(t)]dW (t),

x(s) = y.

(2.5.2)

where (s, y) ∈ [0, T )×Rn are the initial time and initial state. The Brownian motion

is one-dimensional. The cost function is given as

J(u(·)) = E
{∫ T

s
[x′(t)Q(t)x(t) + u′(t)R(t)u(t)]dt+ x′(T )Hx(T )

}
. (2.5.3)

The optimal control problem is minimizing the cost functional J(s, y;u(·)), for a

given (s, y) ∈ [0, T )×Rn, over all u(·) ∈ Uad.

Rami et.al. introduce the generalized (differential) Riccati equation(GRE)as
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follows:

Ṗ + PA+A′P − (PB + C ′PD)(R+D′PD)†(B′P +D′PC) +Q = 0

(R+D′PD)(R+D′PD)†(B′P +D′PC)− (B′P +D′PC) = 0,

(R+D′PD) ≥ 0, a.e.t ∈ [0, T ]

P (T ) = H.

(2.5.4)

Theorem 2.5.2. The set of all the optimal controls is as follows:

u(Y, z)(t) = −
{

[R+D′PD]†[B′P +D′PC] + Y (t)

−[R+D′PD]†[R+D′PD]Y (t)
}
x(t)

+z(t)− [R+D′PD]†[R+D′PD]z(t). (2.5.5)

where Y (·) ∈ L2
F (s, T ;Rnu×n) and z(·) ∈ L2

F (s, T ;Rnu). The optimal value is:

V (s, y) ≡ inf
u(·)∈Uad

J(s, y;u(·)) = y′P (s)y. (2.5.6)

They also proved that if (2.5.4) admits a solution, it must be in the linear

feedback control form, with Y (t) ≡ 0 and z(t) ≡ 0 in (2.5.5), which means, the

solvability of the GRE is sufficient and necessary for the existence of the optimal

control for the linear-quadratic problem.

Theorem 2.5.3. Assume there exists P (·) such that the following equations hold

Ṗ + PA+A′P − (PB + C ′PD)(R+D′PD)†(B′P +D′PC) +Q = 0

(R+D′PD)(R+D′PD)†(B′P +D′PC)− (B′P +D′PC) = 0, a.e.t ∈ [s, T ]

P (T ) = H,

then P must satisfy

(R+D′PD) ≥ 0, a.e.t ∈ [0, T ].
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The detailed proof is given in [63].

2.6 Robust control

(1) Definition of generalized H2/H∞ control:

A generalised H2/H∞ problem, sometimes called ”mixed H2/H∞ problem”, is defined

as ”finding a controller that minimizes an upper bound in the worst case overshoot

of a controlled output in response to arbitrary but bounded energy exogenous inputs,

subject to an inequality constraint on the H∞ norm of another closed loop transfer

function” by Rotea [64]. A typical control problem that combines H2 and H∞-design

objectives is described in Figure 2.1:

Figure 2.1: A mixed H2/H∞ configuration

Here G is the plant and C denotes the controller. w0 and w1 are exogenous input

vectors, and z0, z1 denote the output vectors. u is the input and y is the measured

output. G is a state-feedback model defined as follows:

G =



ẋ = Ax+B1w +B2u,

zi = Cx+Du, (i = 0, 1)

y = x.

All matrices in the above equation are real, with proper dimensions.

Given γ, we wish to minimize the following functions:

J = sup
w1∈P

{‖z‖2p − γ2‖w1‖2p}
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here ‖ · ‖p is the power semi-norm (see[20]).

‖z‖2p = lim
T→∞

1

T

∫ T

−T
z′(t)z(t)dt. (2.6.1)

(2) The Necessary and Sufficient Conditions For the Existence of Linear

Controls:

Theorem 2.6.1. Given the system:

dx(t) = [A(t)x(t) +B1(t)w(t) +B2(t)u(t)]dt,

z(t) =

[
C(t)x(t)

D(t)u(t)

]
,

D′D = I,

(2.6.2)

there exist Nash equilibrium strategies

u∗(t, x) ∈ Ω

w∗(t, x) ∈ Ω

such that

J1(u
∗, w∗) ≤ J1(u∗, w)∀w(t) ∈ Ω

J2(u
∗, w∗) ≤ J1(u,w∗)∀u(t) ∈ Ω

where and

J1(u,w) =

∫ T

0
(γ2w′(t)w(t)− z′(t)z(t))dt. (2.6.3)

and

J2(u,w) =

∫ T

0
z′(t)z(t)dt, (2.6.4)
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if and only if the coupled Riccati differential equations

−Ṗ1(t) = A′P1(t) + P ′1(t)A− C ′C

− [P1(t) P2(t)]

[
γ−2B1B

′
1 B2B

′
2

B2B
′
2 B2B

′
2

][
P1(t)

P2(t)

]
,

P1(T ) = 0.

(2.6.5)



−Ṗ2(t) = A′P2(t) + P ′2(t)A+ C ′C

− [P1(t) P2(t)]

[
0 γ−2B1B

′
1

γ−2B1B
′
1 B2B

′
2

][
P1(t)

P2(t)

]
,

P2(T ) = 0.

(2.6.6)

have solutions Pl(t) ≤ 0 and P2(t) ≤ 0 on [0, T ]

The detailed proof is given in [52].

2.7 Riccati equation

In solving optimal control problems we encounter the Riccati differential and algebraic

equations. In this section, we present some results that show the existence and

uniqueness of solutions to above equations. One version of the Riccati differential

equation which appears in the derivation of the solution to the stochastic linear-

quadratic regulator with state and control dependent noise (see e. g. Wonham [80]),

is as follows:

Ṗ (t) +A(t)′P (t) + P (t)A(t) + Π[t, P (t)]

− P (t)B(t)N−1(t)B′(t)P (t) + C ′(t)C(t) = 0, t0 ≤ t ≤ T,

P (T ) = PT ≥ 0.

(2.7.1)

Here A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rp×n, N(t) ∈ Rm×m, N(t) > 0 are given

continuous functions of time. P (t) ∈ Rn×n, and Π is a positive linear map into itself

of symmetric n× n matrices. The algebraic form of (2.7.1), which appears in the

derivation of the solution to the infinite horizon, also see e. g. Wonham [80], is given
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as

A′P − PA+ Π(P )− PBR−1BP + C ′C = 0. (2.7.2)

Here A, B,C, R are all constants. The following are the main results that show the

existence and uniqueness of the solution to the Riccati equation:

Theorem 2.7.1. Matrix P (t) has the following properties:

(i)P (t) is absolutely continuous on [t0, T ] and satisfies (2.7.1) almost everywhere.

(ii)P (t) ≥ 0, t0 ≤ t ≤ T , and P (t) is the unique solution of (2.7.1).

Theorem 2.7.2. If

inf
K

∣∣∣∣∣
∫ ∞
0

et(A−BK)′Π(I)et(A−BK)dt

∣∣∣∣∣ < 1.

then (2.7.2) has at least one solution.

The proof is given in Wonham [80]. The relationship between the solution of

the Riccati equation and the optimal control problem can be found in Anderson and

Moore’s book [1].

2.8 Summary

In this chapter we have presented some fundamental theorems and important results

of stochastic optimal control, and delay systems, to which we refer later in the thesis.

We have also highlighted the results that will be used in the later chapters.



Chapter 3

Indefinite risk-sensitive control

with fully observed system

3.1 Introduction

Let (Ω,F , (F(t), t ≥ 0),P) be a complete probability space on which a d-dimensional

standard Brownian motion (W (t), t ≥ 0) is defined. We assume that F(t) is the

augmentation of σ{W (s)|0 ≤ s ≤ t} by all the P-null sets of F . Consider the linear

stochastic control system:
dx(t) = [A(t)x(t) +B(t)u(t)]dt+ C(t)dW (t),

x(0) = x0 ∈ Rn, is given.

(3.1.1)

We assume thatA(·) ∈ L∞(0, T ;Rn×n), B(·) ∈ L∞(0, T ;Rn×m), C(·) ∈ L∞(0, T ;Rn×d),

where L∞(0, T ;Rn×n) denotes the set of all Rn×n-valued uniformly bounded func-

tions. We further assume that the F(t)-adapted control process u(·) is such that

(3.1.1) has a unique strong solution.

The exponential-quadratic criterion is defined as:

I(u(·)) := γE
{

exp

[
γ

2

∫ T

0
[x′(t)Q(t)x(t) + u′(t)R(t)u(t)]dt+

γ

2
x′(T )Sx(T )

]}
,(3.1.2)

where γ ∈ R. The weighting matrices in (3.1.2) satisfy the following definiteness
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properties: 

0 ≤ Q(·) ∈ L∞(0, T ;Rn×n),

0 < R(·) ∈ L∞(0, T ;Rm×m),

0 ≤ S ∈ Rn×n.

(3.1.3)

The risk-sensitive control problem is defined as:
min
u(·)∈A

I(u(·)),

s.t. (3.1.1),

for some suitably defined admissible set A. This problem was introduced and solved

by Jacobson [34]. The solution turns out to be unique and of a linear state-feedback

form, and with a great similarity with the linear-quadratic (LQ) regulator of deter-

ministic control [1]. A feature unique to the risk-sensitive optimal control law is that

it depends on the noise intensity C(·), which is not the case with the LQ control of

(3.1.1).

After this pioneering work, the partial observation problem was considered

by [38], [39], [68], [69], and complete solution obtained in [5]. The discrete-time

partial observation problem was solved by Whittle in [78] (see also [79]). For infi-

nite horizon criterion in a Markovian setting, the reader can consult [4], [10], [11].

An important relation with robust controllers was found in [26], [27], whereas the

risk-sensitive maximum principle was studied in [48], [49], [31], [66]. A more general

version of linear exponential quadratic control, where x(t) evolves in an infinite

dimensional Hilbert space is discussed in [22]. The optimal investment problem

is particularly suitable for the application of risk-sensitive control; see for exam-

ple [8], [18], [29].

In two recent papers [16], [17], Date and Gashi generalised the cost functional

(3.1.2) by introducing noise dependent penalties on the state and control variables.

They consider the cost functional

J(u(·)) := γE
{

exp

[
γ

2

∫ T

0

[
x′(t)Q(t)x(t) + u′(t)R(t)u(t)

]
dt+

γ

2
x′(T )Sx(T )
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+
γ

2

∫ T

0

[
x′(t)Q1(t) + u′(t)R1(t)

]
dW (t)

]}
, (3.1.4)

and the optimal control problem:
min
u(·)∈A

J(u(·)),

s.t. (3.1.1),

(3.1.5)

where Q1(·) ∈ L∞(0, T ;Rn×p) and R1(·) ∈ L∞(0, T ;Rm×p). The motivations for

considering this kind of a criterion are: it preserves the explicit closed form solvability

as a linear state-feedback control law; it appears naturally when dealing with the

cost functional that has a cross product term between the state x(t) and the control

u(t) under the assumption of partial observation; and it also has an application in

optimal investment. One of the assumptions of [16], [17], is that

R(t) +
γ

4
R1(t)R

′
1(t) > 0, a.e. t ∈ [0, T ]. (3.1.6)

This in particular means that it is no longer necessary for R(t) > 0 as in (3.1.3),

and it can also be indefinite. The cost functionals with indefinite cost matrices

also appear in stochastic linear-quadratic control with multiplicative noise and its

application to optimal investment with a mean-variance criterion (see, for exam-

ple, [63], [62], [14], [15], [46], [47], [45]).

In this chapter, we weaken condition (3.1.6) even further by assuming

R(t) +
γ

4
R1(t)R

′
1(t) ≥ 0, a.e. t ∈ [0, T ]. (3.1.7)

A consequence of this is that we no longer have a unique and linear optimal control

law, but rather a parametrised family of affine state feedback laws. This feature

is shared with the indefinite LQ control of [63]. Moreover, the derivation of the

solution is more involved as compared to [16], [17], which is reflected by less explicit

assumptions. In section 3.2, we find all solutions to the optimal control problem

(3.1.5) under assumption (3.1.7). As an application, we find the solution to an

optimal investment problem with a stochastic interest rate in section 3.4.
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As our second contribution, we introduce an infinite horizon cost functional:

J∞(u(·)) : = lim
T→∞

γ

f(T )
logE

{
exp

[
γ

2

∫ T

0

[
x′(t)Qx(t) + u′(t)Ru(t)

]
dt

(3.1.8)

+
γ

2

∫ T

0

[
x′(t)Q1 + u′(t)R1

]
dW (t)

]}
,

where f(T ) is some given positive function. This is clearly the infinite horizon version

of (3.1.4) of an average type. A new feature of this criterion is the function f(T ),

which is not necessarily equal to T . This enables the solution of the corresponding

optimal control problem under weaker assumptions with regards to the stability

of the system. In section 3.3, we find all solutions to the optimal control problem

with criterion J∞(u(·)). We emphasize that in [16], [17] only the finite horizon

risk-sensitive control problems are considered.

3.2 Finite horizon

Here we are interested in finding all solutions to the risk-sensitive control problem

(3.1.5), under some weaker assumptions as compared to [16], [17]. As already men-

tioned, the following is one of our main assumptions (throughout this section we

suppress the argument t where appropriate for notational simplicity).

The following Riccati differential equation appears naturally in the proof of

Theorem 3.2.1:

Ṗ + PA+A′P +
γ

4
(2PC +Q1)(2PC +Q1)

′ +Q

−
[
PB +

γ

4
(2PC +Q1)R

′
1

] (
R+

γ

4
R1R

′
1

)† [
PB +

γ

4
(2PC +Q1)R

′
1

]′
= 0,

(
R+

γ

4
R1R

′
1

)(
R+

γ

4
R1R

′
1

)† [
PB +

γ

4

(
2PC +Q1

)
R′1

]′
−
[
PB + γ

4

(
2PC +Q1

)
R′1

]′
= 0,

P (T ) = S.

(3.2.1)

The Riccati differential equation (3.2.1) has a unique solution, which has been
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proved in [1], and we also give an example in Appendix of the thesis.

We now focus in defining the appropriate admissible set of controls A. Let U
denote the set of all F(t)-adapted processes u(t) such that the state equation (3.1.1)

has a unique strong solution. For each u(·) ∈ U we define:

θ′u(t) := −γ
2

[2x′(t)PC + x′(t)Q1 + u′(t)R1],

Zu(t) := exp

[
−
∫ t

0
θ′u(τ)dW (τ)− 1

2

∫ t

0
θ′u(τ)θu(τ)dτ

]
,

Zu := Zu(T ),

P̃u(α) :=

∫
α
Zu(ω)dP̃(ω), ∀α ∈ F .

In order to ensure that P̃u is a probability measure, we assume that θu(t) satisfies

the Novikov condition, i.e. for some positive β the following holds:

E
[
e(β/2)

∫ T
0 θ′u(τ)θu(τ)dτ

]
<∞. (3.2.2)

We can now define the admissible set of controls as:

A := {u(·) ∈ U such that (3.2.2) holds}.

As it will become clear from the proof of Theorem 3.2.1, for any u(·) ∈ A we have

J(u(·)) <∞. The assumption of (3.2.2) appears to be stronger than the assumption

of the finiteness of J(u(·)), but it is required by our method of solution. Note that for

any u(·) ∈ A the probability measures P̃u and P are equivalent, which in particular

means that if X is an F(T )-measurable random variable, then:

E[ZX] = Ẽu[X], (3.2.3)

Here Ẽu denotes the expectation under P̃u.

Let Y (·) be an Rm×n-valued F(t)-adapted process, z(·) an Rm-valued F(t)-

adapted process, and define:

KY (t) := −(R+
γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1]
′
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+ Y (t)− (R+
γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)Y (t),

Kz(t) := z(t)− (R+
γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)z(t).

We confine the processes Y (·) and z(·) to the following set

K := {(Y (·), z(·)) : KY (·)x(·) +Kz(·) ∈ A}.

In other words, the processes Y (·) and z(·) must be such that the control uK(t) :=

KY (t)x(t) +Kz(t) is admissible.

Theorem 3.2.1. All solutions to (3.1.5) are given by:

u∗(t) = KY (t)x(t) +Kz(t), (3.2.4)

with (Y (·), z(·)) ∈ K. The optimal cost is:

J∗ := J(u∗(·)) = γ exp

[
γ

2
x′(0)P (0)x(0) +

γ

2

∫ T

0
tr(C ′PC)dt

]
.

(3.2.5)

Proof. The proof is a combination of a certain completion of squares and change of

measure methods, and the approach of [63]. The differential of the quadratic form

x′(t)P (t)x(t) is:

d[x′(t)Px(t)] = {x′(t)Ṗ x(t) + 2x′(t)P [Ax(t) +Bu(t)] + tr(C ′PC)
}
dt+ 2x′(t)PCdW (t).

Integrating both sides from 0 and T , and rearranging the resulting expression, gives:

0 = −x′(T )Sx(T ) + x′(0)P (0)x(0) +

∫ T

0
2x′(t)PCdW

+

∫ T

0
{x′(t)Ṗ x(t) + 2x′(t)P [Ax(t) +Bu(t)] + tr(C ′PC)}dt.

The cost functional J(u(·)) can now be written as:

J(u(·)) = γE
{

exp

[
γ

2
x′(0)P (0)x(0) +

γ

2

∫ T

0
[x′(t)(Q+ Ṗ )x(t) + u′(t)Ru(t)]dt

+
γ

2

∫ T

0
{2x′(t)P [Ax(t) +Bu(t)] + tr(C ′PC)}dt
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+
γ

2

∫ T

0
[2x′(t)PC + x′(t)Q1 + u′(t)R1]dW (t)

]}
Due to (3.2.3), for any u(·) ∈ A, the above expression becomes:

J(u(·)) = γẼu
{

exp

[
γ

2
x′(0)P (0)x(0) +

γ

2

∫ T

0
tr(C ′PC)dt

+
γ

2

∫ T

0
x′(t)[Q+ Ṗ + PA+A′P +

γ

4
(2PC +Q1)(2PC +Q1)

′]x(t)dt

γ

2

∫ T

0
{u′(t)(R+

γ

4
R1R

′
1)u(t) + 2x′(t)[PB +

γ

4
(2PC +Q1)R

′
1]u(t)}dt

]}
For any (Y (·), z(·)) ∈ K, let us introduce the processes:

L1(t) := Y (t)− (R+
γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)Y (t),

L2(t) := z(t)− (R+
γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)z(t),

which, due to the properties of the Moore-Penrose pseudoinverse (see Lemma 2.5.1

(a)), have the property

(R+
γ

4
R1R

′
1)Li(t) = (R+

γ

4
R1R

′
1)
†Li(t) = 0, i = 1, 2. (3.2.6)

Using this property, as well as other properties of the Moore-Penrose pseudoinverse

given in Lemma 2.5.1 (a), we can write J(u(·)) as:

J(u(·)) = γẼu
{

exp

[
γ

2
x′(0)P (0)x(0) +

γ

2

∫ T

0
tr(C ′PC)dt

+
γ

2

∫ T

0
x′(t){Ṗ +Q+ PA+A′P +

γ

4
(2PC +Q1)(2PC +Q1)

′

−[PB +
γ

4
(2PC +Q1)R

′
1]
′(R+

γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1]}x(t)dt

+
γ

2

∫ T

0
[u(t) + ((R+

γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1] + L1)x(t) + L2]

′

×(R+
γ

4
R1R

′
1)[u(t) + ((R+

γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1] + L1)x(t) + L2]

′dt
]}

.
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Due to the Riccati differential equation 3.2.1, the term containing x(t) is zero. This

simplifies the cost functional into:

J(u(·)) = γẼu
{

exp

[
γ

2
x′(0)P (0)x(0) +

γ

2

∫ T

0
tr(C ′PC)dt

+
γ

2

∫ T

0
[u(t) + ((R+

γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1] + L1)x(t) + L2]

′ (3.2.7)

×(R+
γ

4
R1R

′
1)[u(t) + ((R+

γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1] + L1)x(t) + L2]

′dt
]}

.

Since (R+ γ
4R1R

′
1) ≥ 0, for all u(·) ∈ A, the following inequality holds:

J(u(·)) ≥ γ exp

[
γ

2
x′(0)P (0)x(0) +

γ

2

∫ T

0
tr(C ′PC)dt

]
.

This lower bound is achieved if:

u(t) = −((R+
γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1] + L1)x(t) + L2,

which becomes (3.2.4) after substituting the expressions for L1(t) and L2(t).

We now focus in proving that any admissible optimal control must be of the

form (3.2.4). Let u(·) ∈ A be any optimal control. From (3.2.8) it follows that it is

necessary to have

(R+
γ

4
R1R

′
1)

1
2 [u(t) + ((R+

γ

4
R1R

′
1)
†(PB +

γ

4
(2PC +Q1)R

′
1)
′ + L1)x(t) + L2] = 0,

which after multiplication from the right by (R+ γR1R
′
1/4)

1
2 becomes

(R+
γ

4
R1R

′
1)[u(t) + ((R+

γ

4
R1R

′
1)
†(PB +

γ

4
(2PC +Q1)R

′
1)
′ + L1)x(t) + L2] = 0.

Due to (3.2.6), this equation can be written as

(R+
γ

4
R1R

′
1)u(t)+(R+

γ

4
R1R

′
1)(R+

γ

4
R1R

′
1)
†(PB+

γ

4
(2PC+Q1)R

′
1)
′x(t)=0.

(3.2.8)
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This is an equation of the type (2.5.1) with u(t) as the unknown. If we define

L := (R+
γ

4
R1R

′
1),

M := 1,

N := −(R+
γ

4
R1R

′
1)(R+

γ

4
R1R

′
1)
†(PB +

γ

4
(2PC +Q1)R

′
1)
′x(t)

then, due to the solution of the Riccati differential equation (see the second equation

in (3.2.1)), we know that the condition

−(R+
γ

4
R1R

′
1)(R+

γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)(R+

γ

4
R1R

′
1)
†(PB +

γ

4
(2PC +Q1)R

′
1)
′x(t)

= −(R+
γ

4
R1R

′
1)(R+

γ

4
R1R

′
1)
†(PB +

γ

4
(2PC +Q1)R

′
1)
′x(t),

is satisfied. From Lemma 2.5.1 (b) we know that this is a necessary and sufficient

condition for the equation (3.2.8) to have a solution. Therefore, there exists a process

S(t) such that the solution to (3.2.8) is

u(t) = −(R+
γ

4
R1R

′
1)
†(PB +

γ

4
(2PC +Q1)R

′
1)
′x(t) + S(t)

−(R+
γ

4
R1R

′
1)(R+

γ

4
R1R

′
1)
†S(t),

which corresponds to (3.2.4) with Y (t) = 0 and z(t) = S(t). Therefore, we have

proved that any optimal control must be of the form (3.2.4).

3.3 Infinite horizon

Here we consider the infinite horizon optimal control problem:
min

u(·)∈A∞
J∞(u(·)),

s.t. (3.1.1),

(3.3.1)

where A∞ is a suitable admissible set of controls to be defined below. The solution

to this problem proceeds in a similar way as to the finite horizon, but we require

more assumptions, in particular with regards to the stability of the system.
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Assume the matrices A,B,C,Q,R,Q1, R1, are constant and

R+
γ

4
R1R

′
1 ≥ 0.

The following Riccati algebraic equation appears naturally in the proof of Theo-

rem 3.3.1:

PA+A′P +
γ

4
(2PC +Q1)(2PC +Q1)

′ +Q

−
[
PB +

γ

4
(2PC +Q1)R

′
1

] (
R+

γ

4
R1R

′
1

)† [
PB +

γ

4
(2PC +Q1)R

′
1

]′
= 0,

(
R+

γ

4
R1R

′
1

)(
R+

γ

4
R1R

′
1

)† [
PB +

γ

4

(
2PC +Q1

)
R′1

]′
−
[
PB + γ

4

(
2PC +Q1

)
R′1

]′
= 0,

(3.3.2)

The Riccati algebraic equation (3.3.2) has a solution, which has also been proved

in the book of Anderson and Moore [1].

Let us define that the given function f : (0,∞)→ R is such that:

lim
T→∞

γ2[tr(C ′PC)T + x′(0)Px(0)]

2f(T )
= H, (3.3.3)

for some H ∈ R.

Let U denote the set of all F(t)-adapted processes u(t) such that the state

equation (3.1.1) has a unique strong solution. For each u(·) ∈ U we define:

θ′u(t) := −γ
2

[2x′(t)PC + x′(t)Q1 + u′(t)R1],

Zu(t) := exp

[
−
∫ t

0
θ′u(τ)dW (τ)− 1

2

∫ t

0
θ′u(τ)θu(τ)dτ

]
,

Zu := Zu(T ),

P̃u(α) :=

∫
α
Zu(ω)dP̃(ω), ∀α ∈ F .

In order to ensure that P̃u is a probability measure, we assume that θu(t) satisfies the



3.3 Infinite horizon 33

Novikov condition, i.e. for some positive β and all T ∈ (0,∞) the following holds:

E
[
eβ

∫ T
0 θ′u(τ)θu(τ)dτ/2

]
<∞. (3.3.4)

Different from the finite horizon, here we further require that the controls satisfy the

following stability condition:

lim
T→∞

γ

f(T )
log Ẽu

[
e−γx

′(T )Px(T )/2
]

= G, (3.3.5)

for some G ∈ R.

The admissible set of controls can now be defined as:

A∞ := {u(·) ∈ U such that (3.2.2) and (3.3.5) hold}.

Let Y (·) be an Rm×n-valued F(t)-adapted process, z(·) an Rm-valued F(t)-adapted

process, and define:

K∞Y (t) := −(R+
γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1]
′

+ Y (t)− (R+
γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)Y (t),

K∞z (t) := z(t)− (R+
γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)z(t).

We confine the processes Y (·) and z(·) to the following set

K∞ := {(Y (·), z(·)) : K∞Y (·)x(·) +K∞z (·) ∈ A∞}.

Theorem 3.3.1. All solutions to (3.3.1) are given by:

u∗∞(t) = K∞Y (t)x(t) +K∞z (t), (3.3.6)

with (Y (·), z(·)) ∈ K∞. The optimal cost is:

J∗∞ := J∞(u∗∞(·)) = H +G.

Proof. We proceed similarly to the proof of Theorem 3.2.1. The differential of the
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quadratic form x′(t)Px(t) is:

d[x′(t)Px(t)] = {2x′(t)P [Ax(t) +Bu(t)] + tr(C ′PC)
}
dt+ 2x′(t)PCdW (t).

Integrating both sides from 0 and T , and rearranging the resulting expression, gives:

0 = −x′(T )Px(T ) + x′(0)Px(0) +

∫ T

0
2x′(t)PCdW

+

∫ T

0
{x′(t)Ṗ x(t) + 2x′(t)P [Ax(t) +Bu(t)] + tr(C ′PC)}dt.

The cost functional J∞(u(·)) can now be written as:

J∞(u(·)) = lim
T→∞

γ

f(T )
logE

{
exp

[γ
2
x′(0)Px(0)− γ

2
x′(T )Px(t)

+
γ

2

∫ T

0
[x′(t)Qx(t) + u′(t)Ru(t)]dt

+
γ

2

∫ T

0
{2x′(t)P [Ax(t) +Bu(t)] + tr(C ′PC)}dt

+
γ

2

∫ T

0
[2x′(t)PC + x′(t)Q1 + u′(t)R1]dW (t)

]}
For any u(·) ∈ A∞, the above expression becomes:

J∞(u(·)) = lim
T→∞

γ

f(T )
log Ẽu

{
exp

[γ
2
x′(0)Px(0)− γ

2
x′(T )Px(t) +

γ

2
tr(C ′PC)T

+
γ

2

∫ T

0
x′(t)[Q+ PA+A′P +

γ

4
(2PC +Q1)(2PC +Q1)

′]x(t)dt

γ

2

∫ T

0
{u′(t)(R+

γ

4
R1R

′
1)u(t) + 2x′(t)[PB +

γ

4
(2PC +Q1)R

′
1]u(t)}dt

]}
For any (Y (·), z(·)) ∈ K∞, let us introduce the processes:

L∞1 (t) := Y (t)− (R+
γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)Y (t),

L∞2 (t) := z(t)− (R+
γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)z(t),

which, due to the properties of the Moore-Penrose pseudoinverse (see Lemma 2.5.1
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(a)), have the property

(R+
γ

4
R1R

′
1)L
∞
i (t) = (R+

γ

4
R1R

′
1)
†L∞i (t) = 0, i = 1, 2. (3.3.7)

We can write J∞(u(·)) now as:

J∞(u(·)) = lim
T→∞

γ

f(T )
Ẽu
{

exp
[γ

2
x′(0)Px(0)− γ

2
x′(T )Px(t) +

γ

2
tr(C ′PC)T

+
γ

2

∫ T

0
x′(t){Q+ PA+A′P +

γ

4
(2PC +Q1)(2PC +Q1)

′

−[PB +
γ

4
(2PC +Q1)R

′
1]
′(R+

γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1]}x(t)dt

+
γ

2

∫ T

0
[u(t) + ((R+

γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1] + L∞1 )x(t) + L∞2 ]′

×(R+
γ

4
R1R

′
1)[u(t) + ((R+

γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1] + L∞1 )x(t) + L∞2 ]′dt

]}
.

This simplifies further to:

J∞(u(·)) = lim
T→∞

γ

f(T )
log Ẽu

{
exp

[γ
2
x′(0)Px(0)− γ

2
x′(T )Px(t) +

γ

2
tr(C ′PC)T

+
γ

2

∫ T

0
[u(t) + ((R+

γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1] + L∞1 )x(t) + L∞2 ]′

×(R+
γ

4
R1R

′
1)[u(t) + ((R+

γ

4
R1R

′
1)
†[PB +

γ

4
(2PC +Q1)R

′
1] + L∞1 )x(t) + L∞2 ]′dt

]}
.

For all u(·) ∈ A∞, the following inequality holds:

J∞(u(·)) ≥ lim
T→∞

γ

f(T )
log Ẽu exp

[γ
2
x′(0)P (0)x(0)− γ

2
x′(T )Px(t) +

γ

2
tr(C ′PC)T

]

= lim
T→∞

γ2[x′(0)P (0)x(0) + tr(C ′PC)T ]

2f(T )
+ lim
T→∞

γ

f(T )
log Ẽu

[
e−γx

′(T )Px(t)/2
]

= H +G.

This lower bound is achieved if u(t) = u∗∞(t).

The remaining part of the proof in showing that all optimal controls have the



3.3 Infinite horizon 36

form (3.3.6) proceeds as in the proof of Theorem 3.2.1.

We now focus on deriving some conditions under which the stability requirement

(3.3.5) holds under the optimal control u∗∞(·). We assume that the processes Y (·)
and z(·) have the following special structure:

Y (t) = K0, , z(t) = K1x(t) +K2,

for some constant matrices K0, K1, and K2. The optimal control u∗∞(·) can now be

written as

u∗∞(t) = −K3x(t) +K4,

where

K3 = −
{[
R+

γ

4
R1R

′
1

]†[
PB +

γ

4

(
2PC +Q1

)
R′1

]′
K0

−
[
R+

γ

4
R1R

′
1

]†[
R+

γ

4
R1R

′
1

]
K0

− K1 +
[
R+

γ

4
R1R

′
1

]†[
R+

γ

4
R1R

′
1

]
K1

}
,

K4 = K2 −
(
R+

γ

4
R1R

′
1

)† (
R+

γ

4
R1R

′
1

)
K2.

By the Girsanov theorem, the process

W̃ (t) = W (t)−
∫ t

0

γ

2
[2
(
x′(t)PC

)′
+ x′(t)Q1 + u′(t)R1]dt, t ≥ 0,

is a Brownian motion under the measure P̃u. Substituting u∗∞(·) into the state

equation (3.1.1) gives:

dx(t) =
[(
A+ γCC ′P + γCQ1

)
−
(
B +

γ

2
CR′1

)
K3

]
x(t)dt+K4

(
B +

γ

2
CR′1

)
dt+ CdW̃ (t)

= [Āx(t) + K̄]dt+ CdW̃ (t),

where Ā =
(
A+ γCC ′P + γCQ1

)
−
(
B + γ

2CR
′
1

)
K3 and K̄ = K4

(
B + γ

2CR
′
1

)
.
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3.4 An example of the application on optimal invest-

ment

In this section we illustrate the application of our results to the problem of optimal

investment in a market with a stochastic interest rate (see, for example, [21], [37],

[35], [56], [65], [9], [57], for a background on the optimal investment problem). Let

us consider a market of a bank account with price S0(t), and l stocks with prices

Si(t), i = 1, ..., l, that satisfy the following equations:

dS0(t) = S0(t)r(t)dt,

dSi(t) = Si(t)[µi(t)dt+ σ′i(t)dW (t)], i = 1, ...l,

Si(0) > 0, i = 0, 1, ..., l, are given.

(3.4.1)

Here r(t) is the interest rate, µi(t) is the appreciation rate, whereas the d-dimensional

vector process σi(t) is the volatility of the stock. All these coefficient processes must

be such that the equations (3.4.1) have unique strong solutions.

In this market we consider an investor with an initial wealth of y0. Let ni(t)

denote the number of shares of asset Si(t) held by the investor at time t. The value

of his portfolio is y(t) :=
∑l

i=0 ni(t)Si(t). This portfolio is called self-financing if

(see, for example, [37]):

dy(t) =
l∑

i=0

ni(t)dSi(t).

After substituting the differentials of Si(t) into this equation, and defining ui(t) :=

ni(t)Si(t), we obtain:

dy(t) = [r(t)y(t)dt+B′(t)u(t)]dt+ u′(t)σ(t)dW (t), (3.4.2)

where u(t) := [u1(t), ..., ul(t)]
′, σ′(t) := [σ′1(t), ..., σ

′
l(t)], and B(t) := [µ1(t) −

r(t), ..., µl(t) − r(t)]′. Thus, the portfolio (3.4.2) is a stochastic control system

with state y(t) and control u(t).
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We are interested in the following optimal investment problem with power utility:
max
u(·)∈Ap

E[yλ(T )],

s.t. (3.4.2) and y(t) > 0, ∀ t ≥ 0 a.s.,

,

for some λ ∈ (0, 1) and a suitable admissible set of controls Ap. Consider the

following n-dimensional factor process:
dx(t) = A(t)x(t)dt+ C(t)dW (t),

x(0) ∈ Rn.

We define the interest rate as:

r(t) = x′(t)Q(t)x(t).

Thus, the interest rate follows a quadratic-affine term-structure model (QATSM)

(see, for example, [16]). Similarly to [8], [7], we assume that for some function L(t)

it holds that:

B(t) = L(t)x(t).

In this formulation, the optimal investment problem appears to be different from

our risk-sensitive control problem considered in the previous sections. However, we

now show that it can be reformulated as an example of the risk-sensitive control

problem. We confine ourselves to control processes u(t) that ensure y(t) > 0 for

t ≥ 0. In this case the differential of log y(t) is:

d log y(t) =
1

y(t)
[r(t)y(t)dt+B′(t)u(t)]dt− 1

2

1

y2(t)
u′(t)σ(t)σ′(t)u(t)dt

+
1

y(t)
u′(t)σ(t)dW (t).

By defining the new control process as v(t) = 1
y(t)u(t), we have:

d log y(t) = [r(t) +B′(t)v(t)− v′(t)σ(t)σ′(t)v(t)/2]dt+ v′(t)σ(t)dW (t).

In integral form this can be written as:

y(T ) = y0 exp

[∫ T

0
[r(t) +B′(t)v(t)− v′(t)σ(t)σ′(t)v(t)/2]dt+

∫ T

0
v′(t)σ(t)dW (t)

]
.
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The optimal investment problem 3.4.3 can now be stated as:
max
v(·)∈Av

E exp

[
λ

∫ T

0
(x′Qx+ x′L′v − v′σσ′v/2)dt+ λ

∫ T

0
v′σdW (t)

]
,

s.t. dx(t) = A(t)x(t) + C(t)dW (t).

Here, for simplicity, we have taken y0 = 1 since it does not effect the form optimal

control.

Let σ(t) be deterministic and σ(t)σ′(t) > 0. By the completion of squares, we

have:

1

2
v′σσ′v − x′L′B′v =

1

2
[v − (σσ′)−1Lx]′σσ′[v − (σσ′)−1Lx]− 1

2
x′L′(σσ′)−1Lx

=
1

2
k′σσ′k − 1

2
x′L′(σσ′)−1Lx,

where k(t) := v(t)− [σ(t)σ′(t)]−1L(t)x(t). Our optimal investment problem (3.4.3)

can now be written as:
min

k(·)∈Ak
−E exp

[
−1

2

∫ T

0
(x′Q̃x+ k′R̃k)dt− 1

2

∫ T

0
(x′Q̃1 + k′R̃1)dW (t)

]
,

dx(t) = Ax(t)dt+ CdW (t),

where

Q̃ := −λQ− λL′(σσ′)−1BL, R̃ = λσσ′, Q̃′1 = −2λσ′(σσ′)−1L, R̃′1 = −2λσ.

If Ak is defined as A of section 3.2, then this an example of the risk-sensitive

control problem (3.1.5), and thus Theorem 3.2.1 can be applied. Provided that the

assumptions of section 3.2 are satisfied, and since R̃− R̃1R̃
′
1/4 = λσσ′(1− λ) > 0,

from Theorem 3.2.1 it follows that the unique solution to (3.4.3) is:

k∗(t) =
1

4λ(1− λ)
(σσ′)−1R̃1(2C

′P + Q̃1)x(t),
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where P (t) is the solution to the Riccati differential equation

Ṗ + PA+A′P + Q̃− 1

4
(2PC + Q̃1)(2PC + Q̃1)

′

− 1
16λ(1−λ)(2PC + Q̃1)R̃

′
1(σσ

′)−1(2PC + Q̃1)R̃
′
1

)′
= 0

P (T ) = 0.

The corresponding optimal investment strategy u∗(·) is:

u∗(t) = v∗(t)y(t) = [k∗ + (σσ′)−1Lx]y(t).

Since this is a linear function of y(t), the requirement of y(t) > 0 is satisfied.

3.5 Summary

We have considered a general case of an indefinite risk-sensitive control problem

for stochastic systems with additive noise. This situation appears when we use a

generalised risk-sensitive cost functional. We find all solutions to this problem by

the completion of squares and the change of measure methods. Both the finite and

infinite horizon cases are considered. The optimal investment problem in a market

with a stochastic interest rate appears as a special case of our results.



Chapter 4

Indefinite risk-sensitive control

with partially observed system

4.1 Introduction

Let (Ω,F , (F(t), t ≥ 0),P) be a complete probability space on which a p + q-

dimensional standard Brownian motion (W (t), t ≥ 0) is defined. We assume that

F(t) is the augmentation of σ{W (s)|0 ≤ s ≤ t} by all the P-null sets of F . Consider

the linear stochastic control system:



dx(t) = [A(t)x(t) +B(t)u(t)]dt+ C(t)dw1(t),

dy(t) = H(t)x(t)dt+D
1
2 (t)dw2(t),

x(0) = x0 ∈ Rn, y(0) = 0 is given.

(4.1.1)

We assume thatA(·) ∈ L∞(0, T ;Rn×n), B(·) ∈ L∞(0, T ;Rn×m), C(·) ∈ L∞(0, T ;Rn×p),

H(·) ∈ L∞(0, T ;Rq×n), D(·) ∈ L∞(0, T ;Rq×q) and D > 0, ∀t ∈ [0, T ] where

L∞(0, T ;Rn×n) denotes the set of all Rn×n-valued uniformly bounded functions.

We are given W (t) = [w′1(t), w
′
2(t)]

′, i.e. w1(t) and w2(t) are components of W (t)

of order p and q. And we assume that x0 and W (t) are independent, and x0 is

a Gaussian random variable with mean µ0 and variance σ0. We further assume

that the F(t)-adapted control process u(·) is such that (4.1.1) has a unique strong

solution.
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Given the cost functional

J(u(·)) := γE
{

exp

[
γ

2

∫ T

0

[
x′(t)Q(t)x(t) + u′(t)R(t)u(t)

]
dt+

γ

2
x′(T )Sx(T )

+
γ

2

∫ T

0

[
x′(t)Q1(t) + u′(t)R1(t)

]
dW (t)

]}
, (4.1.2)

and the optimal control problem is to find some controller u(·) which satisfies the

following: 
min
u(·)∈A

J(u(·)),

s.t. (4.1.1),

(4.1.3)

for some suitably defined admissible set A. The weighting matrices in (4.1.2) satisfy

the following definiteness properties:

0 ≤ Q(·) ∈ L∞(0, T ;Rn×n),

0 < R(·) ∈ L∞(0, T ;Rm×m),

0 ≤ S ∈ Rn×n,

Q1(·) ∈ L∞(0, T ;Rn×p),

R1(·) ∈ L∞(0, T ;Rm×p).

(4.1.4)

With fifty years development, several cases about risk-sensitive control problem

have been analized. The partial observation problem was considered by [38], [39],

[68], [69], and complete solution obtained in [5].

In the papers of Date and Gashi [16], [17], they solved the generalization case

by introducing noise dependent penalties on the state and control variables.

In this chapter, we weaken condition of the indefiniteness even further by

assuming

R(t) +
γ

4
R1(t)R

′
1(t) ≥ 0, a.e. t ∈ [0, T ]. (4.1.5)

As a comtribution, we no longer have a unique and linear optimal control law, but

rather a parametrised family of state feedback laws. Moreover, the derivation of the
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solution is more involved as compared to [16], [17], which is reflected by less explicit

assumptions. In section 4.2, we find all solutions to the optimal control problem

(4.1.3) under assumption (4.1.5).

Our second contribution is that we introduce an infinite horizon cost functional:

J∞(u(·)) := lim
T→∞

γ

f(T )
logE

{
exp

[
γ

2

∫ T

0

[
x′(t)Qx(t) + u′(t)Ru(t)

]
dt

+
γ

2

∫ T

0

[
x′(t)Q1 + u′(t)R1

]
dW (t)

]}
,

where f(T ) is some given function. This is clearly the infinite horizon version of

(4.1.2) of an average type. A new feature of this criterion is the function f(T ), which

is not necessarily equal to T . This enables the solution of the corresponding optimal

control problem under weaker assumptions, in particular with regards to the stability

of the system, a feature important in applications. In section 4.3, we find all solutions

to the optimal control problem with criterion J∞(u(·)), and apply such results to the

optimal investment problem, where the relevance of the function f(T ) is illustrated.

We emphasize that in [16], [17] only the finite horizon risk-sensitive control problems

are considered.

4.2 Finite Horizon

Here we are interested in finding all solutions to the risk-sensitive control problem

(4.1.3), under some weaker assumptions as compared to [16], [17]. As already men-

tioned, the following is one of our main assumptions (throughout this section we

suppress the argument t where appropriate for notational simplicity).

For simplicity, we define the following matrices:

A = A+
γ

2
CQ′11 − P

(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)
+ γP

(
Q+

γ

4
Q1Q

′
1

)
,

B = B +
γ

2
CR′11,

C = P
(
H +

γ

2
D

1
2Q′12

)′
D−

1
2 ,
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where

Q1 =

[
Q11

Q12

]
R1 =

[
R11

R12

]
(4.2.1)

We now focus in defining the appropriate admissible set of controls A. Let U
denote the set of all F(t)-adapted processes u(t) such that the state equation (4.1.1)

has a unique strong solution. For each u(·) ∈ U we define:

θ′u(t) := −γ
2

[
x′(t)Q1 + u′(t)R1

]
,

Zu(t) := exp

[
−
∫ t

0
θ′u(τ)dW (τ)− 1

2

∫ t

0
θ′u(τ)θu(τ)dτ

]
,

Zu := Zu(T ),

P̃u(α) :=

∫
α
Zu(ω)dP̃(ω), ∀α ∈ F .

In order to ensure that P̃u is a probability measure, we assume that θu(t) satisfies

the Novikov condition, i.e. for some positive β the following holds:

E
[
e(β/2)

∫ T
0 θ′u(τ)θu(τ)dτ

]
<∞. (4.2.2)

We can now define the admissible set of controls as:

A := {u(·) ∈ U such that (4.2.2) holds}.

As it will become clear from the proof of Theorem 4.2.1, for any u(·) ∈ A we have

J(u(·)) <∞. The assumption of (4.2.2) appears to be stronger than the assumption

of the finiteness of J(u(·)), but it is required by our method of solution. Note that for

any u(·) ∈ A the probability measures P̃u and P are equivalent, which in particular

means that if X is an FT -measurable random variable, then:

E[ZX] = Ẽu[X], (4.2.3)

Here Ẽu denotes the expectation under P̃u.
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We define:

dỹ = dy − γ

2
D

1
2R′12u(t)dt,

and the process w2 : Ω× T → Rd is a standard Wiener process:

w̃2 = w2 −
∫ T

0
D−

1
2

(
H +

γ

2
D

1
2Q′12

)
x(t)dt,

dỹ(t) = D
1
2dw2

and by Girsanov theorem, we define the change of probability that:

dP

dP
= exp

{∫ T

0
D

1
2

(
H +

γ

2
D

1
2Q′12

)
x(t)dw2

−1

2

∫ T

0
x′(t)

(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)
x(t)dt

}

= exp

{∫ T

0
D−1

(
H +

γ

2
D

1
2Q′12

)
x(t)dỹ

−1

2

∫ T

0
x′(t)

(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)
x(t)dt

}
.

(4.2.4)

We introduce a vector r : Ω× T → Rn

dr(t) =

[
A+

γ

2
CQ′11 − P

(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)
+ γP (Q

+
γ

4
Q1Q

′
1

)]
r(t)dt+

(
B +

γ

2
CR′11

)
u(t)dt+ P

(
H +

γ

2
D

1
2Q′12

)′
D−1dỹ,

(4.2.5)
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where P(t) is the solution of the following Riccati differential equation:

Ṗ − (A+
γ

2
CQ′11)P − P (A+

γ

2
CQ′11)

′ + P

[
(H +

γ

2
D

1
2Q′12)

′

×D−
1
2 (H +

γ

2
D

1
2Q′12)− γ(Q+

γ

4
Q1Q

′
1)

]
P − CC ′ = 0,

P (0) = P0,

(4.2.6)

The following Riccati differential equation appears naturally in the proof of

Theorem 4.2.1:

γ
(
Q+

γ

4
Q1Q

′
1

)
−
(
H +

γ

2
R

1
2Q′12

)′
R−1

(
H +

γ

2
R

1
2Q′12

)
+ Ṁ1 +M1A

+A′M1 +
[
I +M1P

] (
H +

γ

2
R

1
2Q′12

)′
R−1

(
H +

γ

2
R

1
2Q′12

) [
I +M1P

]′
− 1

γ2
M1B

(
R+

γ

4
R1R

′
1

)†
B′M1 = 0,

(
R+

γ

4
R1R

′
1

)(
R+

γ

4
B′M1

)
= 0,

M1(T ) = S.

(4.2.7)

The Riccati differential equation (4.2.7) has a unique solution, the proof is given

in Anderson and Moore’s book [1].

Assumption 9. Q1R
′
1 = 0.

Let Y (·) be an Rm×n-valued F(t)-adapted process, z(·) an Rm-valued F(t)-

adapted process, and define:

LY (t) := −(R+
γ

4
R1R

′
1)
†M1B + Y (t)− (R+

γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)Y (t),

Lz(t) := z(t)− (R+
γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)z(t).



4.2 Finite Horizon 47

We confine the processes Y (·) and z(·) to the following set

L := {(Y (·), z(·)) : LY (·)x(·) + Lz(·) ∈ A}.

In other words, the processes Y (·) and z(·) must be such that the control uL(t) :=

LY (t)x(t) + Lz(t) is admissible.

Theorem 4.2.1. All solutions to (4.1.3) are given by:

u∗(t) = LY (t)r(t) + Lz(t),

, (4.2.8)

with (Y (·), z(·)) ∈ L. The optimal cost is:

J∗ := J(u∗(·)) = γ exp

[
1

2
r′(0)M1(0)r(0) +

1

2

∫ T

0
γtr
[
P
(
Q+

γ

4
Q1Q

′
1

)]
+ tr

[
C̄ ′M1C̄

]
dt

]
.

(4.2.9)

Proof. The proof is a combination of a certain completion of squares and change of

measure methods, and the approach of [63]. Due to (4.2.3), for any u(·) ∈ A, the

cost functional J(u(·)) becomes:

J(u(·)) =
1

γ
Ẽu

{
exp

[
γ

2

∫ T

0

[
x′(t)

(
Q+

γ

4
Q1Q

′
1

)
x(t)

+u′(t)
(
R+

γ

4
R1R

′
1

)
u(t) +

γ

2
x′(t)Q1R

′
1u(t)

]
dt+ x′(T )Sx(T )

]}
.

(4.2.10)

By the property on dW (t), we can write:

dW̃ (t) = dW (t)− γ

2

(
x′(t)Q1 + u′(t)R1

)′
dt,

dW (t) =

dw̃1(t)

dw̃2(t)

+
γ

2

Q
′
11x(t) +R′11u(t)

Q′12x(t) +R′12u(t)

 dt.
The state equation under the new probability measure P̃ and in terms of the new
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control variable u(t) is:

dx(t) =
[ (
A+

γ

2
CQ′11

)
x(t) +

(
B +

γ

2
CR′11

)
u(t)

]
dt+ Cdw̃1(t),

dy(t) =
[ (
H +

γ

2
D

1
2Q′12

)
x(t) +

γ

2
D

1
2R′12u(t)

]
dt+D

1
2dw̃2(t),

x(0) = x0, y(0) = 0.

(4.2.11)

the equation 4.2.11 can be transferred to:

dx(t) =
[ (
A+

γ

2
CQ′11

)
x(t) +

(
B +

γ

2
CR′11

)
u(t)

]
dt+ Cdw̃1(t),

dỹ(t) =
(
H +

γ

2
D

1
2Q′12

)
x(t)dt+D

1
2dw̃2(t),

x(0) = x0, y(0) = 0.

(4.2.12)

With the assumption 9, and substitute all results above into the equation 4.2.10:

J(u(·)) =
1

γ
Ẽu
{

exp

[ ∫ T

0
D−1

(
H +

γ

2
D

1
2Q′12

)
x(t)dỹ + x′(T )Sx(T )

+

∫ T

0

[
x′(t)

[γ
2

(
Q+

γ

4
Q1Q

′
1

)
− 1

2

(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

) ]
x(t)

+
γ

2
u′(t)

(
R+

γ

4
R1R

′
1

)
u(t)

]
dt

]}
(4.2.13)

Introduce a cost functional K(u(·)):

K(u(·)) =
1

γ
Ẽu
{

exp

[ ∫ T

0

[
D−

1
2

(
H +

γ

2
D

1
2Q′12

)
r(t)

]
dw2 + r′(T )Sr(T )

−1

2

∫ T

0
r′(t)

[ (
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2
Q′

12

)
− γ

(
Q+

γ

4
Q1Q

′
1

) ]
r(t)

−γu′(t)
(
R+

γ

4
R1R

′
1

)
u(t)− γtr

[
P
(
Q+

γ

4
Q1Q

′
1

) ]
dt

]}
.

(4.2.14)
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By Bensoussan and Van Schuppen’s [5]theorem, minimization of the cost func-

tional J(u(·)) subject to equation for dx(t) after changing of measure is equivalent

to the minimization of the cost functional K(u(·)) respect to dr(t).

The differential of the quadratic form r′(t)M1(t)r(t) is:

d[r′(t)M1r(t)] = r′(t)Ṁ1r(t) + 2r′(t)M1

[
Ar(t) +Bu(t)

]
+ tr[CM1C]

+2r′(t)M1Cdw2.

Integrating both sides from 0 and T , and rearranging the resulting expression, gives:

0 = −r′(T )Sr(T )− r′(0)M1(0)r(0) +

∫ T

0
2r′(t)M1Cdw2.

+

∫ T

0

{
r′(t)Ṁ1r(t) + 2r′(t)M1

[
Ar(t) +Bu(t)

]
+ tr[CM1C]

}
dt

(4.2.15)

The new cost functional K(u(·)) can now be written as:

K(u(·)) =
1

γ
Ẽu
{

exp

[
1

2
r′(0)M1(0)r(0) +

∫ T

0

{
r′(t) [I +M1P ]

(
H +

γ

2
D

1
2Q′12

)′
D−

1
2

}
dw2

+
1

2

∫ T

0
r′(t)

{
γ
(
Q+

γ

4
Q1Q

′
1

)
−
(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)

+Ṁ1 +M1A+A′M1

}
r(t)dt

+
1

2

∫ T

0
γ
{
u′(t)

(
R+

γ

4
R1R

′
1

)
u(t) + 2r′(t)M1Bu(t)

}
dt

+
1

2

∫ T

0

{
γtr
[
P
(
Q+

γ

4
Q1Q

′
1

)]
+ tr

[
C ′M1C̄

]}
dt

]}
.

(4.2.16)

Now we are going to deal with the Brownian Motion term dw2 in K(u(·)). Let U
denote the set of all F(t)-adapted processes u(t) such that the state equation (4.1.1)

has a unique strong solution. For each u(·) ∈ U we define:

θ̃′u(t) := r′(t)
[
I +M1P

] (
H +

γ

2
D

1
2Q′12

)′
D−

1
2 ,
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Z̃u(t) := exp

[
−
∫ t

0
θ̃′u(τ)dW (τ)− 1

2

∫ t

0
θ̃′u(τ)θu(τ)dτ

]
,

Z̃u := Z̃u(T ),

P̂u(α) :=

∫
α
Zu(ω)dP̃(ω), ∀α ∈ F .

Applying the same method as before, for any u(·) ∈ A, the cost functional

K(u(·)) becomes:

K(u(·)) =
1

γ
Êu
{

exp

[
1

2
r′(0)M1(0)r(0) +

1

2

∫ T

0

{
γtr
[
P
(
Q+

γ

4
Q1Q

′
1

)]
+ tr

[
C ′M1C

]}
dt

+
1

2

∫ T

0
r′(t)

{
γ
(
Q+

γ

4
Q1Q

′
1

)
−
(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)

+Ṁ1 +M1A+A′M1 + [I +M1P ]
(
H +

γ

2
D

1
2Q′12

)′
×D−1

(
H +

γ

2
D

1
2Q′12

)
[I +M1P ]′

}
r(t)dt

+
1

2

∫ T

0
γ
{
u′(t)

(
R+

γ

4
R1R

′
1

)
u(t) + 2r′(t)M1Bu(t)

}
dt

]}
.

(4.2.17)

For any (Y (·), z(·)) ∈ L, let us introduce the processes:

L1(t) := Y (t)− (R+
γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)Y (t),

L2(t) := z(t)− (R+
γ

4
R1R

′
1)
†(R+

γ

4
R1R

′
1)z(t),

which, due to the properties of the Moore-Penrose pseudoinverse (see Lemma 2.5.1

(a)), have the property

(R+
γ

4
R1R

′
1)Li(t) = (R+

γ

4
R1R

′
1)
†Li(t) = 0, i = 1, 2. (4.2.18)

Using this property, as well as other properties of the Moore-Penrose pseudoinverse
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given in Lemma 2.5.1 (a), we can write K(u(·)) as:

K(u(·)) = γÊu
{

exp

[
1

2
r′(0)M1(0)r(0) +

1

2

∫ T

0

{
γtr
[
P
(
Q+

γ

4
Q1Q

′
1

)]
+ tr

[
C ′M1C

]}
dt

+
1

2

∫ T

0
r′(t)

{
γ
(
Q+

γ

4
Q1Q

′
1

)
−
(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)

+Ṁ1 +M1A+A′M1 + [I +M1P ]
(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)

× [I +M1P ]′ − 1

γ2
M1B

(
R+

γ

4
R1R

′
1

)†
B′M1

}
r(t)dt

+
1

2

∫ T

0

[
u(t) +

(
R+

γ

4
R1R

′
1

)† (
B′M1 + L1(t)

)
r(t) + L2(t)

]′

×
(
R+

γ

4
R1R

′
1

)[
u(t) +

(
R+

γ

4
R1R

′
1

)† (
B′M1 + L1(t)

)
r(t) + L2(t)

]
dt

]}
.

(4.2.19)

Due to the Riccati differential equation 4.2.7, the term containing r(t) is zero. This

simplifies the cost functional into:

K(u(·)) = γÊu
{

exp

[
1

2
r′(0)M1(0)r(0) +

1

2

∫ T

0

{
γtr
[
P
(
Q+

γ

4
Q1Q

′
1

)]
+ tr

[
C̄ ′M1C̄

]}
dt

+
1

2

∫ T

0

[
u(t) +

(
R+

γ

4
R1R

′
1

)† (
B′M1 + L1(t)

)
r(t) + L2(t)

]′

×
(
R+

γ

4
R1R

′
1

)[
u(t) +

(
R+

γ

4
R1R

′
1

)† (
B′M1 + L1(t)

)
r(t) + L2(t)

]
dt

]}
.

(4.2.20)

Since
(
R+ γ

4R1R
′
1

)
≥ 0, for all u(·) ∈ A, the following inequality holds:

K(u(·)) ≥ γ exp

[
1

2
r′(0)M1(0)r(0) +

1

2

∫ T

0
γtr
[
P
(
Q+

γ

4
Q1Q

′
1

)]
+ tr

[
C̄ ′M1C̄

]]
.

This lower bound is achieved if:

u(t) = −
(
R+

γ

4
R1R

′
1

)† (
B′M1 + L1(t)

)
r(t)− L2(t),

which becomes (4.2.8) after substituting the expressions for L1(t) and L2(t).
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We now focus in proving that any admissible optimal control must be of the

form (4.2.8). Let u(·) ∈ A be any optimal control. From (4.2.20) it follows that it is

necessary to have

(
R+

γ

4
R1R

′
1

) 1
2

[
u(t) +

(
R+

γ

4
R1R

′
1

)† (
B′M1 + L1(t)

)
r(t) + L2(t)

]
= 0,

which after multiplication from the right by
(
R+

γ

4
R1R

′
1

) 1
2

becomes

(
R+

γ

4
R1R

′
1

)[
u(t) +

(
R+

γ

4
R1R

′
1

)† (
B′M1 + L1(t)

)
r(t) + L2(t)

]
= 0.

Due to (4.2.18), this equation can be written as(
R+

γ

4
R1R

′
1

)
u(t)+

(
R+

γ

4
R1R

′
1

)(
R+

γ

4
R1R

′
1

)†
B′M1r(t)=0.

(4.2.21)

This is an equation of the type (2.5.1) with u(t) as the unknown. If we define

L :=
(
R+

γ

4
R1R

′
1

)
,

M := 1,

N := −
(
R+

γ

4
R1R

′
1

)(
R+

γ

4
R1R

′
1

)†
B′M1r(t),

then, due to the Riccati differential equation (see the second equation in (4.2.7)), we

know that the condition

−
(
R+

γ

4
R1R

′
1

)(
R+

γ

4
R1R

′
1

)† (
R+

γ

4
R1R

′
1

)(
R+

γ

4
R1R

′
1

)†
B′M1r(t)

= −
(
R+

γ

4
R1R

′
1

)(
R+

γ

4
R1R

′
1

)†
B′M1r(t),

is satisfied. From Lemma 2.5.1 (b) we know that this is a necessary and sufficient

condition for the equation (4.2.21) to have a solution. Therefore, there exists a

process S(t) such that the solution to (4.2.21) is

u∗(t) = −
(
R+

γ

4
R1R

′
1

)†
B̄′M1(t)r(t) + S(t)−

(
R+

γ

4
R1R

′
1

)(
R+

γ

4
R1R

′
1

)†
S(t).

which corresponds to (4.2.8) with Y (t) = 0 and z(t) = S(t). Therefore, we have
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proved that any optimal control must be of the form (4.2.8).

4.3 Infinite horizon

Here we consider the infinite horizon optimal control problem:


min

u(·)∈A∞
J∞(u(·)),

s.t. 4.1.1 holds,

(4.3.1)

where A∞ is a suitable admissible set of controls to be defined below. The solution

to this problem proceeds in a similar way as to the finite horizon, but we require

more assumptions, in particular with regards to the stability of the system.

The matrices A,B,C,H,D,Q,R,Q1, R1, are constant and(
R+

γ

4
R1R

′
1

)
> 0.

For simplicity, we define the following matrices:

A = A+
γ

2
CQ′11 − P

(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)
+ γP

(
Q+

γ

4
Q1Q

′
1

)
,

B = B +
γ

2
CR′11,

C = P
(
H +

γ

2
D

1
2Q′12

)′
D−

1
2 ,

where

Q1 =

[
Q11

Q12

]
, R1 =

[
R11

R12

]
.

We now focus in defining the appropriate admissible set of controls A. Let U
denote the set of all F(t)-adapted processes u(t) such that the state equation (4.1.1)

has a unique strong solution. For each u(·) ∈ U we define:

θ′u(t) := −γ
2

[2x′(t)PC + x′(t)Q1 + u′(t)R1],

Zu(t) := exp

[
−
∫ t

0
θ′u(τ)dW (τ)− 1

2

∫ t

0
θ′u(τ)θu(τ)dτ

]
,
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Zu := Zu(T ),

P̃u(α) :=

∫
α
Zu(ω)dP̃(ω), ∀α ∈ F .

In order to ensure that P̃u is a probability measure, we assume that θu(t) satisfies

the Novikov condition, i.e. for some positive β the following holds:

E
[
e
β
2

∫ T
0 θ′u(τ)θu(τ)dτ

]
<∞. (4.3.2)

Different from the finite horizon, here we further require that the controls satisfy the

following stability condition:

lim
T→∞

γ

f(T )
log Êu

[
e−

γ
2
r′(T )M2r(T )

]
= π2, (4.3.3)

for some π2 ∈ R.

The admissible set of controls can now be written as:

A∞ := {u(·) ∈ U such that (4.3.2) and (4.3.3) holds}.

Note that for any u(·) ∈ A the probability measures P̃u and P are equivalent,

which in particular means that if X is an FT -measurable random variable, then:

E[ZX] = Ẽu[X], (4.3.4)

Here Ẽu denotes the expectation under P̃u.

We define:

dỹ = dy − γ

2
D

1
2R′12u(t)dt,

and the process w2 : Ω× T → Rd is a standard Wiener process:

w̃2 = w2 −
∫ T

0
D−

1
2

(
H +

γ

2
D

1
2Q′12

)
x(t)dt,

therefore,

dỹ(t) = D
1
2dw2
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and by Girsanov theorem, we define the change of probability that:

dP

dP
= exp

{∫ T

0
D

1
2

(
H +

γ

2
D

1
2Q′12

)
x(t)dw2

−1

2

∫ T

0
x′(t)

(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)
x(t)dt

}

= exp

{∫ T

0
D
(
H +

γ

2
D

1
2Q′12

)
x(t)dỹ

−1

2

∫ T

0
x′(t)

(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)
x(t)dt

}
.(4.3.5)

We introduce a vector r : Ω× T → Rn

dr(t) =

[
A+

γ

2
CQ′11 − P

(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)
+ γP (Q

+
γ

4
Q1Q

′
1

)]
r(t)dt+

(
B +

γ

2
CR′11

)
u(t)dt+ P

(
H +

γ

2
D

1
2Q′12

)′
D−1dŷ.

(4.3.6)

P(t) is the solution of the following Riccati differential equation:

Ṗ − (A+
γ

2
CQ′11)P − P (A+

γ

2
CQ′11)

′ + P

[
(H +

γ

2
D

1
2Q′12)

′

×D−
1
2 (H +

γ

2
D−1Q′12)− γ(Q+

γ

4
Q1Q

′
1)

]
P − CC ′ = 0,

P (0) = P0,

(4.3.7)

The following Riccati differential equation appears naturally in the proof of
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Theorem 4.3.1:

γ
(
Q+

γ

4
Q1Q

′
1

)
−
(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)
+M2A+A′M2

+ [I +M2P ]′
(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)
[I +M2P ]′

− 1

γ2
M2B

(
R+

γ

4
R1R

′
1

)†
B′M2 = 0,

(
R+

γ

4
R1R

′
1

)(
R+

γ

4
R1R

′
1

)† (
R11C

′M2 +B′M2

)
= 0,

(4.3.8)

The Riccati differential equation (4.3.8) has a solution, and the proof is in

Anderson and Moore’s book [1].

Assumption 10. Q1R
′
1 = 0.

Let us define that the given function f : (0,∞)→ R is such that:

lim
T→∞

γ
[
r′(0)M2r(0) + tr[P (Q+ γ

4Q1Q
′
1)]T

]
+ tr(C ′M2C)T

2f(T )
= π1,

for some π1 ∈ R.

Let Y (·) be an Rm×n-valued F(t)-adapted process, z(·) an Rm-valued F(t)-

adapted process, and define:

L∞Y (t) := −
(
R+

γ

4
R1R

′
1

)†
M2B + Y (t)−

(
R+

γ

4
R1R

′
1

)† (
R+

γ

4
R1R

′
1

)
Y (t),

L∞z (t) := z(t)−
(
R+

γ

4
R1R

′
1

)† (
R+

γ

4
R1R

′
1

)
z(t).

We confine the processes Y (·) and z(·) to the following set

L∞ := {(Y (·), z(·)) : L∞Y (·)x(·) + L∞z (·) ∈ A∞}.

Theorem 4.3.1. All solutions to (4.3.1) are given by:

u∗∞(t) = L∞Y (t)r(t) + L∞z (t), (4.3.9)
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with (Y (·), z(·)) ∈ K∞. The optimal cost is:

J∗∞ := J∞(u∗∞(·)) = π1 + π2.

Proof. We proceed similarly to the proof of Theorem 4.2.1. For any u(·) ∈ A, the

cost functional J(u(·)) can be written as:

J∞(u(·)) = lim
T→∞

1

f(T )
γ log Ẽu

{
exp

[
γ

2

∫ T

0

[
x′(t)

(
Q+

γ

4
Q1Q

′
1

)
x(t)

+u′(t)
(
R+

γ

4
R1R

′
1

)
u(t) +

γ

2
x′(t)Q1R

′
1u(t)

]
dt

]}
. (4.3.10)

By the property on dW (t), we can write:

dW̃ (t) = dW (t)− γ

2

(
x′(t)Q1 + u′(t)R1

)′
dt,

dW (t) =

dw̃1(t)

dw̃2(t)

+
γ

2

Q
′
11x(t) +R′11u(t)

Q′12x(t) +R′12u(t)

 .
The state equation under the new probability measure P̃ and in terms of the new

control variable u(t) is:

dx(t) =
[ (
A+

γ

2
CQ′11

)
x(t) +

(
B +

γ

2
CR′11

)
u(t)

]
dt+ Cdw̃1(t),

dy(t) =
[ (
H +

γ

2
D

1
2Q′12

)
x(t) +

γ

2
D

1
2R′12u(t)

]
dt+D

1
2dw̃2(t),

x(0) = x0, y(0) = 0.

(4.3.11)
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the equation 4.3.11 can be transferred to:

dx(t) =
[ (
A+

γ

2
CQ′11

)
x(t) +

(
B +

γ

2
CR′11

)
u(t)

]
dt+ Cdw̃1(t),

dỹ(t) =
(
H +

γ

2
D

1
2Q′12

)
x(t)dt+D

1
2dw̃2(t),

x(0) = x0, y(0) = 0.

(4.3.12)

With the assumption 10, and substitute all results above into 4.3.10 and by

Girsanov theorem, we have:

J∞(u(·)) = lim
T→∞

1

f(T )
γ log Ẽu

{
exp

[ ∫ T

0
D−1

(
H +

γ

2
D

1
2Q′12

)
x(t)dỹ

+

∫ T

0

[
x′(t)

[γ
2

(
Q+

γ

4
Q1Q

′
1

)
− 1

2

(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

) ]
x(t)

+
γ

2
u′(t)

(
R+

γ

4
R1R

′
1

)
u(t)

]
dt

]}
. (4.3.13)

Introduce the following cost functional K(u(·)):

K(u(·)) = lim
T→∞

1

f(T )
γ log Ẽu

{
exp

[ ∫ T

0

[
D−

1
2

(
H +

γ

2
D

1
2Q′12

)
r(t)

]
dw2

−1

2

∫ T

0
r′(t)

[ (
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2
Q′

12

)
− γ

(
Q+

γ

4
Q1Q

′
1

) ]
r(t)

−γu′(t)
(
R+

γ

4
R1R

′
1

)
u(t)− γtr

[
P
(
Q+

γ

4
Q1Q

′
1

) ]
dt

]}
. (4.3.14)

By Bensoussan and Van Schuppen’s [5]theorem, minimization of the cost function-

al J∞(u(·)) respect to dx(t) is equivalent to the minimization of the cost functional

K(u(·)) respect to dr(t).

The differential of the quadratic form r′(t)M1(t)r(t) is:

d[r′(t)M2r(t)] = 2r′(t)M2

[
Ar(t) +Bu(t)

]
+ tr[CM2C]

+2r′(t)M2Cdw2.
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Integrating both sides from 0 and T , and rearranging the resulting expression, gives:

0 = −r′(T )M2r(T ) + r′(0)M2r(0) +

∫ T

0
2r′(t)M2Cdw2

+

∫ T

0

{
2r′(t)M2

[
Ar(t) +Bu(t)

]
+ tr[CM2C]

}
dt.

The cost functional K∞(u(·)) can now be written as:

K∞(u(·)) = lim
T→∞

1

f(T )
γ log Ẽu

{
exp

[∫ T

0

{
r′(t) [I +M2P ]

(
H +

γ

2
D

1
2Q′12

)′
D−

1
2

}
dw2

+
1

2

∫ T

0
r′(t){γ

(
Q+

γ

4
Q1Q

′
1

)
−
(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)
+M2A+A′M2

}
r(t)dt

+
1

2

∫ T

0
γ
{
u′(t)

(
R+

γ

4
R1R

′
1

)
u(t) + 2r′(t)M2Bu(t)

}
dt

+
1

2

∫ T

0

{
γtr
[
P
(
Q+

γ

4
Q1Q

′
1

)]
+ tr

[
C ′M2C

]}
dt

−1

2
r′(T )M2r(T ) +

1

2
r′(0)M2r(0)

]}
.

(4.3.15)

Now we are going to deal with the Brownian Motion term dw2 in K(u(·)). Let U
denote the set of all F(t)-adapted processes u(t) such that the state equation (4.1.1)

has a unique strong solution. For each u(·) ∈ U we define:

θ̃′u(t) := r′(t)
[
I +M2P

] (
H +

γ

2
D

1
2Q′12

)′
D−

1
2 ,

Z̃u(t) := exp

[
−
∫ t

0
θ̃′u(τ)dW (τ)− 1

2

∫ t

0
θ̃′u(τ)θu(τ)dτ

]
,

Z̃u := Z̃u(T ),

P̂u(α) :=

∫
α
Zu(ω)dP̃(ω), ∀α ∈ F .
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Applying the same method as before, for any u(·) ∈ A∞, the above expression

becomes:

K∞(u(·)) = lim
T→∞

1

f(T )
γ log Ê

{
exp

[
1

2
r′(0)M2r(0)− 1

2
r′(T )M2r(T )

+
1

2

∫ T

0

{
γtr
[
P
(
Q+

γ

4
Q1Q

′
1

)]
+ tr

[
C ′M2C

]}
dt

+
1

2

∫ T

0
r′(t)

{
γ
(
Q+

γ

4
Q1Q

′
1

)
−
(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)

+M2A+A′M2 + [I +M2P ]
(
H +

γ

2
D

1
2Q′12

)′
×D−1

(
H +

γ

2
D

1
2Q′12

)
[I +M2P ]′

}
r(t)dt

+
1

2

∫ T

0
γ

{
u′(t)

(
R+

γ

4
R1R

′
1

)
u(t) + 2r′(t)M2B̄u(t)

}
dt

]}
. (4.3.16)

For any (Y (·), z(·)) ∈ L∞, let us introduce the processes:

L∞1 (t) := Y (t)−
(
R+

γ

4
R1R

′
1

)+ (
R+

γ

4
R1R

′
1

)
Y (t),

L∞2 (t) := z(t)−
(
R+

γ

4
R1R

′
1

)+ (
R+

γ

4
R1R

′
1

)
z(t).

which, due to the properties of the Moore-Penrose pseudoinverse (see Lemma 2.5.1

(a)), have the property(
R+

γ

4
R1R

′
1

)
L∞i (t) =

(
R+

γ

4
R1R

′
1

)†
L∞i (t) = 0, i = 1, 2. (4.3.17)

Using this property, as well as other properties of the Moore-Penrose pseudoinverse

given in Lemma 2.5.1 (a), we can write K(u(·)) as:

K∞(u(·)) = lim
T→∞

1

f(T )
γ log Êu

{
exp

[
1

2
r′(0)M2r(0)− 1

2
r′(T )M2r(T )

+
1

2

∫ T

0

{
γtr
[
P
(
Q+

γ

4
Q1Q

′
1

)]
+ tr

[
C ′M2C

]}
dt

+
1

2

∫ T

0
r′(t)

{
γ
(
Q+

γ

4
Q1Q

′
1

)
−
(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)
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+M2A+A′M2 + [I +M2P ]
(
H +

γ

2
D

1
2Q′12

)′
D−1

(
H +

γ

2
D

1
2Q′12

)

× [I +M2P ]′ − 1

γ2
M2B

(
R+

γ

4
R1R

′
1

)†
B′M2

}
r(t)dt

+
1

2

∫ T

0

[
u(t) +

(
R+

γ

4
R1R

′
1

)† (
B′M2 + L1

)
r(t) + L2

]′

×
(
R+

γ

4
R1R

′
1

)[
u(t) +

(
R+

γ

4
R1R

′
1

)† (
B′M2 + L1

)
r(t) + L2

]
dt

]}
.

(4.3.18)

Due to the Riccati differential equation, the term containing r(t) is zero. This

simplifies the cost functional into:

K∞(u(·)) = lim
T→∞

1

f(T )
γ log Êu

{
exp

[
1

2
r′(0)M2r(0)− 1

2
r′(T )M2r(T )

+
1

2

∫ T

0

{
γtr
[
P
(
Q+

γ

4
Q1Q

′
1

)]
+ tr

[
C ′M2C

]}
dt

+
1

2

∫ T

0

[
u(t) +

(
R+

γ

4
R1R

′
1

)† (
B′M2 + L1

)
r(t) + L2

]′

×
(
R+

γ

4
R1R

′
1

)[
u(t) +

(
R+

γ

4
R1R

′
1

)† (
B′M2 + L1

)
r(t) + L2

]
dt

]}
.

(4.3.19)

Sinace
(
R+ γ

4R1R
′
1

)
≥ 0, for all u(·) ∈ A, the following inequality holds:

K(u(·)) ≥ lim
T→∞

1

f(T )
γ log Êu

{
exp

[
1

2
r′(0)M2r(0)− 1

2
r′(T )M2r(T )

+
1

2

∫ T

0

{
γtr
[
P
(
Q+

γ

4
Q1Q

′
1

)]
+ tr

[
C ′M2C

]}

= lim
T→∞

γ
[
r′(0)M2r(0) + tr

[
P
(
Q+ γ

4Q1Q
′
1

)]
T
]

+ tr
[
C ′M2C

]
T

2f(T )

+ lim
T→∞

1

f(T )
γ log Êu

[
e−

γ
2
r′(T )M2r(T )

]

= π1 + π2 (4.3.20)
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This lower bound is achieved if:

u(t) = u∗∞(t),

which becomes (4.3.9) after substituting the expressions for L1(t) and L2(t).

The remaining part of the proof in showing that all optimal controls have the

form (4.3.9) proceeds as in the proof of Theorem 4.3.1.

We now focus on deriving some conditions under which the stability requirement

(4.3.3) holds under the optimal control u∗∞(·). We assume that the processes Y (·)
and z(·) have the following special structure:

Y (t) is a constant matrix S,

z(t) is a state feed-back process, i.e.z(t) = G1r(t) +G2

for some constant S, G1 and G2. The optimal control u∗∞(·) can now be written as

u∗ = G3r(t) +G4,

where

G3 = −
(
R+

γ

4
R1R

′
1

)† [
B̄′M2 + S −

(
R+

γ

4
R1R

′
1

)† (
R+

γ

4
R1R

′
1

)
S
]

−G1 +
(
R+

γ

4
R1R

′
1

)† (
R+

γ

4
R1R

′
1

)
G1,

and

G4 = −G2 +
[
R+

γ

4
R1R

′
1

]†[
R+

γ

4
R1R

′
1

]
G2.

By Girsanov theorem, the process:

dw̃2(t) = dw2(t)− r′(t)
[
I +M2P

]′ (
H +

γ

2
D

1
2Q′12

)′
D−

1
2dt, (4.3.21)

is a Brownian motion under the measure P̂u. Substituting u∗(t) into dr(t), gives:

dr(t) =

{[
Ā+ B̄G3 + C̄D

1
2 (D−

1
2 )′
(
H +

γ

2
D

1
2Q′12

)
(I +M2P )′

]
r(t) + B̄G4

}
dt
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+C̄D
1
2dw̃2(t).

For simplicity, we define the following matrices:

Ḡ1 = Ā+ B̄G3 + C̄D
1
2 (D−

1
2 )′
(
H +

γ

2
D

1
2Q′12

)
(I +M2P )′ ,

Ḡ2 = B̄G4,

Ḡ3 = C̄D
1
2 .

Therefore, we can write the equation of dr(t) as:

dr(t) =
[
Ḡ1r(t) + Ḡ2

]
dt+ Ḡ3dw̃2(t). (4.3.22)

4.4 Summary

We solved the generalized risk-sensitive control problem in an indefinite case in

this chapter. By using a combination method of the completion of squares and

the changing of probability measure, we have obtained explicit solutions to optimal

control problems in both finite and infinite horizon. Especially for the infinite case, we

introduced a general function into the cost functional, from which weaker conditions

are needed for solving similar infinite optimal control problems. It will be interesting

to extend these ideas to discrete-time setting, and explore the relation with robust

controllers based on H∞ control theory.



Chapter 5

Robust risk-sensitive control

5.1 Introduction

Let (Ω,F , (F(t), t ≥ 0),P) be a complete probability space on which a d-dimensional

standard Brownian motion (W (t), t ≥ 0) is defined. We assume that F(t) is the

augmentation of σ{W (s)|0 ≤ s ≤ t} by all the P-null sets of F . Consider the linear

stochastic control system:

dx(t) = [A(t)x(t) +B2(t)u(t) +B1(t)v(t)]dt+A1(t)dW (t)

z(t) =

C(t)x(t)

D(t)u(t)

 , D′(t)D(t) = I ∀t ≥ 0,

x(0) = x0 ∈ Rn is given.

(5.1.1)

Here x(·) is the state of the system, u(·) is the control process, v(·) is the disturbance,

and z(·) is the output of the system. We assume that:

A(·) ∈ L∞(0, T ;Rn×n), B2(·) ∈ L∞(0, T ;Rn×nu), B1(·) ∈ L∞(0, T ;Rn×nv),

A1(·) ∈ L∞(0, T ;Rn×d), C(·) ∈ L∞(0, T ;Rmc×n), D(·) ∈ L∞(0, T ;Rmd×nu),

where L∞(0, T ;E) denotes the set of all E-valued uniformly bounded functions.

If u(·) and v(·) are square integrable processes, i.e. if u(·) ∈ LF(0, T ;Rnu) and

v(·) ∈ LF (0, T ;Rnv), then (5.1.1) has a unique strong solution.
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The H2/H∞ control problem is well known (see, for example, [28], [50], [58],

[6], [20], [85], [53]). For deterministic systems, i.e. when A1(t) = 0 for all t ≥ 0,

this problem is formulated in [52] as follows: given the two cost functionals

I1(u(·), v(·)) :=

∫ T

0
z′(t)z(t)dt,

I2(u(·), v(·)) :=

∫ T

0
(θ2v′(t)v(t)− z′(t)z(t))dt,

for some positive θ, find the optimal pair (u∗(·), v∗(·)) of the optimal control u∗(·)
and the worst case disturbance v∗(·), that satisfy the Nash equilibrium

I1(u
∗(·), v∗(·)) ≤ I1(u(·), v∗(·)), (5.1.2)

I2(u
∗(·), v∗(·)) ≤ I2(u

∗(·), v(·)). (5.1.3)

The inequality (5.1.2) indicates that u∗(·) minimizes the quadratic cost of the

output (i.e. the output energy) under the worst-case disturbance, which corresponds

to the “H2” part of the problem. The inequality (5.1.3) ensures that under the

worst-case disturbance the effect of the disturbance on the output, as measured by

the quadratic cost I2, is bounded, and this corresponds to the “H∞” part of the

problem. The infinite horizon formulation is very similar, but it requires that the

system be stable under the pair (u∗(·), v∗(·)), which is not a requirement in the finite

horizon formulation.

In [52], the solution to this control problem is obtained under the assumption of

linear state feedback form of u(·) and v(·). It was shown that if a certain coupled

pair of Riccati differential equations has a solution, then a unique explicit solution

exists. It was also shown that the pair (u∗(·), v∗(·)) of deterministic systems is also

the optimal pair for the stochastic systems with additive noise, i.e. when A1(t) 6= 0

for all t ≥ 0. This is an expected result considering the fact that both I1(u(·), v(·))
and I2(u(·), v(·)) are quadratic. In particular, in this case the pair (u∗(·), v∗(·)) is

independent of the noise intensity A1(t).

There has been a great interest and progress in various stochastic versions of the

H2/H∞ control problem in the past two decades (see, for example, [12]). The focus

in recent years has been in the stochastic systems with multiplicative noise. However,

in all these papers the criteria have been kept in the quadratic form.
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In this chapter, we generalise the H2/H∞ control problem of [52] by using the

following exponential quadratic criteria:

J1(u(·), v(·)) :=
1

γ1
E exp

[
γ1
2

∫ T

0
z′(t)z(t)dt

]
,

J2(u(·), v(·)) :=
1

γ2
E exp

[
γ2
2

∫ T

0
(θ2v(t)′v(t)− z′(t)z(t))dt

]
,

for some positive γ1 and γ2. The aim now is to find a pair (u∗(·), v∗(·)) such that

the following inequalities hold:

J1(u
∗(·), v∗(·)) ≤ J1(u(·), v∗(·)), ∀u(·) ∈ Au (5.1.4)

J2(u
∗(·), v∗(·)) ≤ J2(u

∗(·), v(·)), ∀v(·) ∈ Av. (5.1.5)

for some suitably defined sets Au and Av.

Two motivations for this generalisation are that we still obtain an explicit

solution for this control problem, and by using risk-sensitive criteria we further

increase the potential for applications of this control method. In what follows, we

consider separately the finite and infinite horizon cases. To simplify the notation, we

suppress the argument t where appropriate.

5.2 Finite horizon

We confine ourselves to linear state feedback controls and disturbances. The sets of

all such controls and disturbances are defined as:

U := {u(·) : u(t) = Ku(t)x(t) where Ku(·) ∈ L∞(0, T ;Rnu×n)},

V := {v(·) : v(t) = Kv(t)x(t) where Kv(·) ∈ L∞(0, T ;Rnv×n)}.

There exists a unique solution pair (P1(·), P2(·)) to the following coupled Riccati
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differential equations:

Ṗ1 + C ′C + P1A+A′P1 − P1(B2B
′
2 − γ1A1A

′
1)P1 − θ−2(P1B1B

′
1P2 + P2B1B

′
1P1) = 0,

Ṗ2−C ′C+P2A+A′P2−P2(θ
−2B1B

′
1−γ2A1A

′
1)P2−P1B2B

′
2P1−P2B2B

′
2P1−P1B2B

′
2P2=0,

P1(T ) = 0, P2(T ) = 0.

The main aim of this section is to show that there exists a unique pair (u∗(·), v∗(·))
such that the inequalities (5.1.4) and (5.1.5) hold, and is given by:

u∗(t) := −B′2P1x(t), (5.2.1)

v∗(t) := −θ−2B′1P2x(t). (5.2.2)

If the noise v∗(·) is applied to the system (5.1.1), then for any u(·) ∈ U we define:

θ′u(t) := −γ1x′(t)P1(t)A1,

Zu(t) := exp

[
−
∫ t

0
θ′u(τ)dW (τ)− 1

2

∫ t

0
θ′u(τ)θu(τ)dτ

]
,

Zu := Zu(T ),

P̃u :=

∫
α
Zu(ω)dP(ω), ∀α ∈ F .

A sufficient condition for P̃u to be a probability measure is the following Novikov

condition:

E

{
exp

[
βu
2

∫ T

0
θ′u(t)θu(t)dt

]}
<∞, (5.2.3)

for some βu > 0. We can now formulate the admissible set of controls as:

Au := {u(·) ∈ U that satisfy (5.2.3)}.

Similarly, if the control u∗(·) is applied to the system (5.1.1), then for any v(·) ∈ V
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we define:

θ′v(t) := −γ2x′(t)P2(t)A1,

Zv(t) := exp

[
−
∫ t

0
θ′v(τ)dW (τ)− 1

2

∫ t

0
θ′v(τ)θv(τ)dτ

]
,

Zv := Zv(T ),

P̃v :=

∫
α
Zv(ω)dP(ω), ∀α ∈ F .

The sufficient Novikov condition for P̃v to be a probability measure is:

E

{
exp

[
βv
2

∫ T

0
θ′v(t)θv(t)dt

]}
<∞, (5.2.4)

for some βv > 0. The set of disturbances that we consider is:

Av := {v(·) ∈ V that satisfy (5.2.4)}.

Assumption 11. (u∗(·), v∗(·)) ∈ Au ×Av.

Theorem 5.2.1. There exists a unique pair (u∗(·), v∗(·)) that satisfies the inequalities

(5.1.4) and (5.1.5), and is given by (5.2.1) and (5.2.2). In this case we have

J1(u
∗(·), v∗(·)) =

1

γ1
exp

[
γ1
2
x′(0)P1(0)x(0) +

γ1
2

∫ T

0
tr(A′1P1A1)dt

]
,

J2(u
∗(·), v∗(·)) =

1

γ2
exp

[
γ2
2
x′(0)P2(0)x(0) +

γ2
2

∫ T

0
tr(A′1P2A1)dt

]
.

Proof. We first consider J1(u(·), v∗(·)) with u(·) ∈ Au. Since

0 = x′(0)P1(0)x(0)

+

∫ T

0
[x′Ṗ1x+ 2x′P1(Ax+B2u+B1v

∗) + tr(A′1P1A1)]dt+

∫ T

0
2x′P1A1dW,
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we can write J1(u(·), v∗(·)) as:

J1(u(·), v∗(·)) =
1

γ1
E exp

[
γ1
2
x′(0)P1(0)x(0) +

γ1
2

∫ T

0
tr(A′1P1A1)dt

+
γ1
2

∫ T

0
x′(Ṗ1 + C ′C + P1A+A′P1 − θ−2P1B1B

′
1P2 − θ−2P2B1B

′
1P1)xdt

+
γ1
2

∫ T

0
(u′u+ 2x′P1B2u)dt+

γ1
2

∫ T

0
2x′P1A1dW (t)

]
.

Let Ẽu denote the expectation under the probability measure P̃u. For any u(·) ∈ Au
we can write J1(u(·), v∗(·)) as:

J1(u(·), v∗(·)) =
1

γ1
Ẽu exp

[
γ1
2
x′(0)P1(0)x(0) +

γ1
2

∫ T

0
tr(A′1P1A1)dt

+
γ1
2

∫ T

0
x′(Ṗ1 + C ′C + P1A+A′P1 − θ−2P1B1B

′
1P2 − θ−2P2B1B

′
1P1 + γ1P1A1A

′
1P1)xdt

+
γ1
2

∫ T

0
(u′u+ 2x′P1B2u)dt

]
.

The completion of squares gives:

u′u+ 2x′P1B2u = (u+B′2P1x)′(u+B′2P1x)− x′P1B2B
′
2P1x.

Due to our Riccati equation on P1(·), for all u(·) ∈ Au we have:

J1(u(·), v∗(·)) =
1

γ1
Ẽu exp

[
γ1
2
x′(0)P1(0)x(0) +

γ1
2

∫ T

0
tr(A′1P1A1)dt

+
γ1
2

∫ T

0
(u+B′2P1x)′(u+B′2P1x)dt

]
,

≥ 1

γ1
exp

[
γ1
2
x′(0)P1(0)x(0) +

γ1
2

∫ T

0
tr(A′1P1A1)dt

]
,

with equality if and only if u(t) = −B′2P1(t)x(t) for a.e. t ∈ [0, T ].
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We now consider J2(u
∗(·), v(·)) for all v(·) ∈ Av. Since

0 = x′(0)P2(0)x(0)

+

∫ T

0
[x′Ṗ2x+ 2x′P2(Ax+B2u

∗ +B1v) + tr(A′1P2A1)]dt+

∫ T

0
2x′P2A1dW (t),

we can write J2(u
∗(·), v(·)) as

J2(u
∗(·), v(·)) =

1

γ2
E exp

[
γ2
2
x′(0)P2(0)x(0) +

γ2
2

∫ T

0
tr(A′1P2A1)dt

+
γ2
2

∫ T

0
x′(Ṗ2 + P2A+A′P2 − P2B2B

′
2P1 − P1B2B

′
2P2 − C ′C − P1B2B

′
2P1)xdt

+
γ2
2

∫ T

0
(θ2v′v + 2x′P2B1v)dt+

γ2
2

∫ T

0
2x′P2A1dW (t)

]
.

If we denote by Ẽv the expectation under the probability measure P̃v, then for any

v(·) ∈ Av we have:

J2(u
∗(·), v(·)) =

1

γ2
Ẽv exp

[
γ2
2
x′(0)P2(0)x(0) +

γ2
2

∫ T

0
tr(A′1P2A1)dt

+
γ2
2

∫ T

0
x′(Ṗ2+P2A+A′P2−P2B2B

′
2P1−P1B2B

′
2P2−C ′C − P1B2B

′
2P1+γ2P2A1A

′
1P2)xdt

+
γ2
2

∫ T

0
(θ2v′v + 2x′P2B1v)dt

]
.

The completion of squares gives:

θ2v′v + 2x′P2B1v = (v + θ−2B′1P2x)′θ2(v + θ−2B′1P2x)− θ−2x′P2B1B
′
1P2x(t).

Due to our Riccati equation on P2(·), for any v(·) ∈ Av we have:

J2(u
∗(·), v(·)) =

1

γ2
Ẽv exp

[
γ2
2
x′(0)P2(0)x(0) +

γ2
2

∫ T

0
tr(A′1P2A1)dt

+
γ2
2

∫ T

0
(v + θ−2B′1P2x)′θ2(v + θ−2B′1P2x)dt

]
.
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≥ 1

γ2
exp

[
γ2
2
x′(0)P2(0)x(0) +

γ2
2

∫ T

0
tr(A′1P2A1)dt

]
,

with equality if and only if v(t) = −θ−2B′1P2(t)x(t) for a.e. t ∈ [0, T ]. 2

5.3 Infinite horizon

Here we consider the infinite horizon version of our problem. The derivation is similar

to the finite horizon, but it is more involved due to certain stability requirements,

which are absent in the finite horizon case. The matrices A, A1, B1, B2, C, D, are

constant. We consider the following two functionals, which are the infinite horizon

versions of J1(u(·), v(·)) and J2(u(·), v(·)):

J∞1 (u(·), v(·)) = lim
T→∞

1

f1(T )γ1
lnE exp

[
γ1
2

∫ T

0
z′zdt

]
,

J∞2 (u(·), v(·)) = lim
T→∞

1

f2(T )γ2
lnE exp

[
γ2
2

∫ T

0
(θ2v′v − z′z)dt

]
.

where f1(T ) and f2(T ) are given positive functions. Our aim is to find a pair

(u∗(·), v∗(·)) such that the following inequalities hold:

J∞1 (u∗(·), v∗(·)) ≤ J∞1 (u(·), v∗(·)), ∀u(·) ∈ A∞u (5.3.1)

J∞2 (u∗(·), v∗(·)) ≤ J∞2 (u∗(·), v(·)), ∀v(·) ∈ A∞v . (5.3.2)

for some suitably defined sets A∞u and A∞v . We confine ourselves only to linear

constant state feedback controls and disturbances. The sets of all such controls and

disturbances are defined as:

U∞ := {u(·) : u(t) = Kux(t) where Ku ∈ Rnu×n},

V∞ := {v(·) : v(t) = Kvx(t) where Kv ∈ Rnv×n}.

There exists a solution pair (P1, P2) to the following coupled Riccati algebraic
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equations:
C ′C + P1A+A′P1 − P1(B2B

′
2 − γ1A1A

′
1)P1 − θ−2(P1B1B

′
1P2 + P2B1B

′
1P1) = 0,

−C ′C+P2A+A′P2−P2(θ
−2B1B

′
1−γ2A1A

′
1)P2−P1B2B

′
2P1−P2B2B

′
2P1−P1B2B

′
2P2=0,

The proof can be found in Anderson and Moore’s book [1].

Let us define that functions f1(T ) and f2(T ) are such that:

lim
T→∞

tr(A′1P1A1)T + x′(0)P1x(0)

2f1(T )
= g1 ∈ R,

lim
T→∞

tr(A′1P2A1)T + x′(0)P2x(0)

2f2(T )
= g2 ∈ R.

We show later in this section that there exists a unique pair (u∗∞(·), v∗∞(·)) that

satisfies the inequalities (5.3.1) and (5.3.2), and is given by:

u∗∞(t) := −B′2P1x(t), (5.3.3)

v∗∞(t) := −θ−2B′1P2x(t). (5.3.4)

If the noise v∗∞(·) is applied to the system (5.1.1), then for any u(·) ∈ U∞ we define:

θ′u(t) := −γ1x′(t)P1A1,

Zu(t) := exp

[
−
∫ t

0
θ′u(τ)dW (τ)− 1

2

∫ t

0
θ′u(τ)θu(τ)dτ

]
,

Zu := Zu(T ),

P̃u :=

∫
α
Zu(ω)dP(ω), ∀α ∈ F .

A sufficient condition for P̃u to be a probability measure is the following Novikov

condition:

E

{
exp

[
βu
2

∫ T

0
θ′u(t)θu(t)dt

]}
<∞, (5.3.5)
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for some βu > 0. The controls u(·) are restricted further, so that the following

stability condition holds:

lim
T→∞

1

f1(T )γ1
ln Ẽu exp

[
−γ1

2
x(T )′P1x(T )

]
= h1 ∈ R. (5.3.6)

We can now formulate the admissible set of controls as:

A∞u := {u(·) ∈ U such that (5.3.5) holds for all T ∈ (0,∞), and (5.3.6) holds}.

Similarly, if the control u∗∞(·) is applied to the system (5.1.1), then for any v(·) ∈ V∞

we define:

θ′v(t) := −γ2x′(t)P2A1,

Zv(t) := exp

[
−
∫ t

0
θ′v(τ)dW (τ)− 1

2

∫ t

0
θ′v(τ)θv(τ)dτ

]
,

Zv := Zv(T ),

P̃v :=

∫
α
Zv(ω)dP(ω), ∀α ∈ F .

The sufficient Novikov condition for P̃v to be a probability measure is:

E

{
exp

[
βv
2

∫ T

0
θ′v(t)θv(t)dt

]}
<∞, (5.3.7)

for some βv > 0. We further restrict the set of permitted disturbances, so that the

following holds:

lim
T→∞

1

f2(T )γ2
lnE exp

[
−γ2

2
x(T )′P2x(T )

]
= h2 ∈ R. (5.3.8)

The set of disturbances that we consider can now be defined as:

Av := {v(·) ∈ V such that (5.3.7) holds for all T ∈ (0,∞), and (5.3.8) holds}.

Assumption 12. (u∗∞(·), v∗∞(·)) ∈ A∞u ×A∞v .

Theorem 5.3.1. There exists a unique pair (u∗∞(·), v∗∞(·)) that satisfies the in-

equalities (5.3.1) and (5.3.2), and is given by (5.3.3) and (5.3.4). In this case we
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have

J∞1 (u∗(·), v∗(·)) = g1 + h1,

J∞2 (u∗(·), v∗(·)) = g2 + h2.

Proof. Let us first consider J∞1 (u(·), v∗∞(·)) with u(·) ∈ A∞u . Since

0 = −x′(T )P1x(T ) + x′(0)P1x(0)

+

∫ T

0
[2x′P1(Ax+B2u+B1v

∗
∞) + tr(A′1P1A1)]dt+

∫ T

0
2x′P1A1dW,

we can write J∞1 (u(·), v∗∞(·)) as:

J∞1 (u(·), v∗∞(·)) = lim
T→∞

1

f1(T )γ1
lnE exp

[
γ1
2
x′(0)P1x(0) +

γ1
2
tr(A′1P1A1)T

+
γ1
2

∫ T

0
x′(C ′C + P1A+A′P1 − θ−2P1B1B

′
1P2 − θ−2P2B1B

′
1P1)xdt

−γ1
2
x′(T )P1x(T ) +

γ1
2

∫ T

0
(u′u+ 2x′P1B2u)dt+

γ1
2

∫ T

0
2x′P1A1dW (t)

]
.

For any u(·) ∈ A∞u we can write J∞1 (u(·), v∗∞(·)) as:

J∞1 (u(·), v∗∞(·)) = lim
T→∞

1

f1(T )γ1
ln Ẽu exp

[
γ1
2
x′(0)P1x(0) +

γ1
2
tr(A′1P1A1)T

+
γ1
2

∫ T

0
x′(C ′C + P1A+A′P1 − θ−2P1B1B

′
1P2 − θ−2P2B1B

′
1P1 + γ1P1A1A

′
1P1)xdt

−γ1
2
x′(T )P1x(T ) +

γ1
2

∫ T

0
(u′u+ 2x′P1B2u)dt

]
.

The completion of squares gives:

u′u+ 2x′P1B2u = (u+B′2P1x)′(u+B′2P1x)− x′P1B2B
′
2P1x.
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Due to our Riccati equation on P1, for all u(·) ∈ A∞u we have:

J∞1 (u(·), v∗∞(·)) = lim
T→∞

1

f1(T )γ1
ln Ẽu exp

[
γ1
2
x′(0)P1x(0) +

γ1
2
tr(A′1P1A1)T

− γ1
2
x′(T )P1x(T ) +

γ1
2

∫ T

0
(u+B′2P1x)′(u+B′2P1x)dt

]
,

≥ g1 + h1,

with equality if and only if u(t) = −B′2P1x(t) for a.e. t ∈ [0,∞).

We now consider J∞2 (u∗∞(·), v(·)) for all v(·) ∈ A∞v . Since

0 = −x′(T )P2x(T ) + x′(0)P2x(0)

+

∫ T

0
[2x′P2(Ax+B2u

∗
∞ +B1v) + tr(A′1P2A1)]dt+

∫ T

0
2x′P2A1dW (t),

we can write J∞2 (u∗∞(·), v(·)) as

J∞2 (u∗∞(·), v(·)) = lim
T→∞

1

f2(T )γ2
lnE exp

[
γ2
2
x′(0)P2x(0) +

γ2
2
tr(A′1P2A1)T

+
γ2
2

∫ T

0
x′(P2A+A′P2 − P2B2B

′
2P1 − P1B2B

′
2P2 − C ′C − P1B2B

′
2P1)xdt

−γ2
2
x′(T )P2x(T ) +

γ2
2

∫ T

0
(θ2v′v + 2x′P2B1v)dt+

γ2
2

∫ T

0
2x′P2A1dW (t)

]
.

For any v(·) ∈ A∞v we have:

J∞2 (u∗∞(·), v(·)) = lim
T→∞

1

f2(T )γ2
ln Ẽv exp

[
γ2
2
x′(0)P2x(0) +

γ2
2
tr(A′1P2A1)T

+
γ2
2

∫ T

0
x′(P2A+A′P2−P2B2B

′
2P1−P1B2B

′
2P2−C ′C − P1B2B

′
2P1+γ2P2A1A

′
1P2)xdt

−γ2
2
x′(T )P2x(T ) +

γ2
2

∫ T

0
(θ2v′v + 2x′P2B1v)dt

]
.
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The completion of squares gives:

θ2v′v + 2x′P2B1v = (v + θ−2B′1P2x)′θ2(v + θ−2B′1P2x)− θ−2x′P2B1B
′
1P2x(t).

Due to our Riccati equation on P2, for any v(·) ∈ A∞v we have:

J∞2 (u∗∞(·), v(·)) = lim
T→∞

1

f2(T )γ2
ln Ẽv exp

[
γ2
2
x′(0)P2x(0) +

γ2
2
tr(A′1P2A1)T

− γ2
2
x′(T )P2x(T ) +

γ2
2

∫ T

0
(v + θ−2B′1P2x)′θ2(v + θ−2B′1P2x)dt

]
.

≥ g2 + h2,

with equality if and only if v(t) = −θ−2B′1P2(t)x(t) for a.e. t ∈ [0,∞). 2

5.4 Summary

In this chapter we introduce a risk-sensitive version of the H2/H∞ control method

for linear stochastic systems with additive noise. With the assumption of linear

state-feedback controllers, both the finite and infinite horizon cases are considered,

and explicit solutions in terms of Riccati equations are obtained. It will be interesting

to extend these ideas to nonlinear and discrete-time systems.



Chapter 6

Linear-quadratic control and

risk-sensitive control problems

for stochastic linear control

system with delay

6.1 Introduction

Time-delay systems are also called systems with aftereffect or dead-time. The LQ

optimal control theory of systems with delays in state and control variables has been

studied by several authors from different view-points, and some important papers

build up the fundamental theories of the delay problem, such as Ichikawa [32][33],

Kwong and Willsky [41][42], R. H. Kwong [44] [40] [43], Koivo and Lee etc. [36].

Most of the authors in the early period of the research for this topic solved the

delay problem by the state-space techniques with different approaches. For example,

Ichikawa aims at a general theory for a family of evolution equations with a control

operator containing a finite number of pure delays; the work of Kwong and Willsky

deals with differential delay equations and a less general control operator which does

not contain pure delays. However the state-space technique only apply to control

operators with a special delay structure which contains a finite number of delays and

an integral term on the length of the memory but not applied generally.
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In the paper of Chen and Wu [13], consider the following LQ system:

dx(t) = [Ax(t) +A1x(t− δ) +Mtu(t) +M1
t u(t− δ)]dt

+ [Cx(t) + C1x(t− δ) +Dtu(t) +D1
t u(t− δ]dw(t)

x(t) = φ(t), u(t) = η(t), t ∈ [−δ, 0].

(6.1.1)

where, φ, η(t) ∈ C[−δ, 0]n is deterministic functions, satisfying
∫ 0
−δ α

2(s)ds < +∞,

α = φ. Giving the cost functional as:

J(u(·)) =
1

2
E

[∫ T

0
x′(t)Qx(t) + u′(t)Ru(t)dt+ x(T )Sx(T )

]
. (6.1.2)

They encountered the stochastic differential equations:
−dY (t) = f(t, Y (t), Z(t), Y (t+ δ(t)), Z(t+ ζ(t)))dt− Z(t)dB(t), t ∈ [0, T ],

Y (t) = ξ(t), Z(t) = η(t), t ∈ [T, T +K],

Where Y and z are the solution pair to a specific backward stochastic equation,

δ(·) and ζ(t) are R+-valued functions defined on [0,T] (See Peng and Yang [60]

in the optimization problem). By the backward stochastic differential equation

(FBSDE) method, this paper gives the feedback regulator in terms of the conditional

expectation of the future information as follows:

u(t) = −R−1
[
M τ
t y(t) +Dτ

t z(t)

(6.1.3)

+EFt
(
(M1

t+δ)
τy(t+ τ) +

(
D1
t+δ

)τ
z(t+ δ)

) ]
, t ∈ [0, T ].

This paper solved a very general case of the LQ delay problem, however, the result

they found about the optimal controller is not explicit and difficult to be applied in

real situation. The advantage of our approach is that our solution is in a feed-back

form, which is not the case in Chen and Wu, where the solution is found in a

conditional expectation.

The research on delay system developed rapidly in recent years, since the stochas-
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tic delay differential equations could be applied in a lot of fields, such as finance,

engineering and physics. The robust control problem and H∞ control problem

for time-delay systems were solved in a lot of papers, such as Tadmor( [72]- [76]),

Zhou [84], Uchida [77], Nagpal [59].

In the past decades, there are few papers related with risk-sensitive delay control

problem have been published. In Speyer and Banavar [2], a differential game approach

was employed to solve such problem for continuous time systems, while a dynamic

programming was applied [70]. In Zhao and Cui [83], the risk-sensitive estimation

problem for systems with constant delay was considered by employing indefinite

space approach. In Yoneyama [82], he used a change of measure technique to solve

the partially observed risk-sensitive control problem with delay system. However,

the delay term in the state system is only occurred on the controller u(t).

In this chapter we analyzed the delay system in two different directions: one is

combined with LQ control problem, and the other one is focused on the exponential

criteria: generalized risk-sensitive control. The organization of this chapter is as

follows: in section 2, we pay attention to the LQ problem. In section 3, we focused

on the generalized risk-sensitive control problem with delay system, and a conclusion

is given in section 4.

6.2 Linear-quadratic problem with delay system

In this section, we are dealing with cases of the linear-quadratic problem with input

delays in a particular time horizon, i.e. t ∈ [0, 2δ].

6.2.1 Problem formulation and assumptions

Consider the linear stochastic control system:
dx(t) = [A1x(t) +A2x(t− δ)]dt+ [A3x(t− δ) +B1u(t) +B2u(t− δ)]dw(t), t ∈ [0, 2δ],

x(t) = φ(t), u(t) = η(t), t ∈ [−δ, 0].

(6.2.1)

where x(t) ∈ Rn is the state of the system, u(t) is F -adapted process such that (6.2.1)

has a unique solution, A1, A2, A3, B1, B2 are given matrices in proper dimensions,

δ is a positive real number.
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The cost functional is as follows:

J(u(·)) ≡ E

{∫ 2δ

0

[
x(t)Q1x(t) + x(t− δ)Q2x(t− δ) + u(t)′R1u(t) + u(t− δ)R2u(t− δ)

]
dt

}
,

(6.2.2)

where Q1, Q2, R1, R2 are given matrices in proper dimensions.

We wish to solve the problem:
min
u(·)∈A

J(u(·)),

s.t. (6.2.1) holds,

(6.2.3)

A is a set where u is the solution to the problem (6.2.3).

For simplicity, let us define the following matrices:

xt =

 x(t)

x(t− δ)

 , ut =

 u(t)

u(t− δ)

 , wt =

 w(t)

w(t− δ)

 ,

Ā1 =

A1 A2

0 A1

 , Ā2 =

 0

A2φ(t)

 , Ā3 =

0 A3

0 0

 , Ā4 =

 0

A3φ(t)

 ,

B̄1 =

B1 B2

0 B1

 , B̄2 =

 0

B2η(t)

 .

Consider the following linear equations:

Matrix P (t) =

[
P1(t) P2(t)

P2(t) P3(t)

]
satisfies the following:


Ṗ (t) + P (t)Ā1 + Ā1P (t) + Q̄+ Ā3P (t)Ā3 = 0,

P (2δ) = 0.

(6.2.4)
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and another matrix G(t) which satisfies:
Ġ′ +G′(t)Ā1 + 2Ā′2P (t) + 2Ā′4P (t)Ā3 + 2B̄′2PĀ3 = 0,

G(2δ) = 0.

(6.2.5)

We define the following variables for simplicity:

R̃ = R1 +B′1H(t)B1(t) +R2 +B′2P1(t)B2 + 2B′1P2(t)B2 +B′1P3(t)B1

−
[
B′2P1(t)B1 +B′1P2(t)B1

][
R1 +B′1P1(t)B1

]−1[
B′1P1(t)B2 +B′1P2(t)B1

]
,

K1 =
[
B′2P1(t) +B′1P2(t)

]
A3 −

[
B′2P1(t)B1 +B′1P2(t)B1

][
R1 +B′1P1(t)B1

]−1
B′1P1(t)A3,

K2 = B′1H(t)A3φ(t) +B′1H(t)B2η(t) +

[
B′2P2(t) +B′1P3(t)

]
A3φ(t)

+

[
B′2P2(t) +B′1P3(t)

]
B2η(t)−

[
B′2P1(t)B1 +B′1P2(t)B1

]

×
[
R1 +B′1P1(t)B1

]−1[
B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]
.

Let introduce a matrix H(t) which satisfies:

Q1 + Ḣ(t) +H(t)A1 +A1H(t)−A′3P1(t)B1

×
[
R1 +B′1P1(t)B1

]−1
B′1P1A3 −K ′1R̃−1K1 = 0,

H(δ) = P1(δ).

(6.2.6)
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and matrix M(t) where:

Ṁ(t) +
1

2

[
M ′(t)A1 +A′1M(t)

]
+ 2A′2H(t)φ(t)− 2K ′2R̃

−1K1

− 2

[
A′3P2(t)B1φ(t) +B′2P2(t)B1η(t)

][
R1 +B′1P1(t)B1

]−1
B′1P1A3 = 0,

M(δ) = 2P2(δ)x(0) +G1(δ).

(6.2.7)

The following are the main results of this section:

Theorem 6.2.1. Let the above equations hold, the unique solution to problem 6.2.3

and the corresponding cost are as follow respectively:

u∗(t) =



− R̃−1
[

1

2
xt[A3P1B2 +A3P2B1] +

1

2
[A3P2B2φ(t) +A3P3B1φ(t)]

− [xtA3P1B1 +A3P2B1φ(t) +B2P2B1η(t)]

× [R1 +B1P1B1]
−1[B2P1B1 +B1P2B1]

]′
, if t ∈ [0, δ],

−
[
R1 +B′1P1(t)B1

]−1[
[B′1P1(t)B2 +B′1P2(t)B1]u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]
, if t ∈ [δ, 2δ].

(6.2.8)

and

J(u(·)) = E
∫ 2δ

0

{
Ā′4P (t)Ā4 + 2Ā′4P (t)B̄2 + B̄′2P (t)B̄2 +G′(t)Ā2

}
dt

+E
∫ δ

0

{
Q2(t)φ

2(t) +R2(t)η
2(t) +A′3H(t)A3φ

2(t) + 2A′3H(t)B2φ(t)η(t)

+B′2H(t)B2η
2(t) +M ′(t)A2φ(t) + x′(0)H(0)x(0) +M(0)x(0)
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+x′(0)P3(δ)x(0) +G2(δ)x(0)−K ′2R̃−1K2

}
dt

−E
∫ 2δ

δ

{[
A′3P2(t)φ(t)B1 +B′2P2(t)η(t)B1

][
R1 +B′1P1(t)B1

]−1

×
[
A′3P2(t)φ(t)B1 +B′2P2(t)η(t)B1

]′}
dt. (6.2.9)

The proof of the Theorem 1 will be given in the following subsection.

6.2.2 Proof of Theorem 6.2.1

From (6.2.1), we can rewrite the state system as

dx(t) = [A1x(t) +A2x(t− δ)]dt+ [A3x(t− δ) +B1u(t) +B2u(t− δ)]dw(t), t ≥ 0,

dx(t− δ) = [A1x(t− δ) +A2φ(t)]dt+ [A3φ(t) +B1u(t− δ) +B2η(t)]dw(t− δ), t > δ,

x(t) = φ(t), u(t) = η(t), t ∈ [−δ, 0].

(6.2.10)

The state system can be written as:

dxt = [Ā1xt + Ā2]dt+ [Ā3xt + Ā4 + B̄1ut + B̄2]dwt, t ≥ δ. (6.2.11)

The cost functional is as follows:

J(u(·)) ≡ E

{∫ 2δ

0

[
x′tQ̄xt + u′tR̄ut

]
dt

}
. (6.2.12)

where

Q̄ =

Q1 0

0 Q2

 , R̄ =

R1 0

0 R2

 .
The differential of the quadratic form x′(t)P (t)x(t) is:

x′2δP (2δ)x2δ − x′δP (δ)xδ =

∫ 2δ

δ

{
xtṖ (t)xt + 2x′tP (t)(Ā1xt + Ā2)
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+(x′tĀ
′
3 + Ā′4 + u′tB̄

′
1 + B̄′2)P (t)(Ā3xt + Ā4 + B̄1ut + B̄2)

}
dt

+

∫ 2δ

δ
2x′tP (t)(Ā3xt + Ā4 + B̄1ut + B̄2)dwt,

By the assumption on matrix G(t), it is clear that:

−E
[
G′(δ)xδ

]
= E

∫ 2δ

δ

[
(Ġ′(t)+G′(t)Ā1)xt+G

′(t)Ā2

]
dt+E

∫ 2δ

δ
G′(t)(Ā3xt+Ā4+B̄1ut+B̄2)dwt.

Therefore, J(u(·)) can be written as:

J(u(·)) = E
∫ δ

0

[
x′(t)Q1x(t) + φ′(t)Q2φ(t) + u(t)′R1u(t) + η′(t)R2η(t)

]
dt

+E

[
G′(δ)xδ + x′δP (δ)xδ

]

+E
∫ 2δ

δ

{
x′t

[
Ṗ (t) + P (t)Ā1 + Ā′1P (t) + Q̄+ Ā′3P (t)Ā3

]
xt

+

[
2Ā′2P (t) + 2Ā′4P (t)Ā3 + 2B̄′2PĀ3 + Ġ(t) +G′(t)Ā1

]
xt

+u′t

[
R̄+ B̄′1P (t)B̄1

]
ut + 2u′t

[
B̄′1P (t)Ā3xt + B̄′1P (t)Ā4 + B̄′1P (t)B̄2

]

+

[
Ā′4P (t)Ā4 + 2Ā′4P (t)B̄2 + B̄′2P (t)B̄2 +G′(t)Ā2

]}
dt. (6.2.13)

By the equations of P (t) and G(t), we have all terms related to xt eliminated. Since

the cost function J(u(·)) is divided into two parts based on different time horizons,

we have to do some analysis before applying the completion of squares method on ut

terms:

u′t

[
R̄+ B̄′1P (t)B̄1

]
ut + 2u′t

[
B̄′1P (t)Ā3xt + B̄′1P (t)Ā4 + B̄′1P (t)B̄2

]

= u′(t)

[
R1 +B′1P1(t)B1

]
u(t) + 2u′(t)

[ (
B′1P1(t)B2 +B′1P2(t)B1

)
u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]
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+u′(t− δ)
[
R2 +B′2P1(t)B2 + 2B′1P2(t)B2 +B′1P3(t)B1

]
u(t− δ)

+2u′(t− δ)
[ (
B′2P1(t) +B′1P2(t)

)
A3x(t− δ) +

(
B′2P2(t) +B′1P3(t)

)
A3φ(t)

+
(
B′2P2(t) +B′1P3(t)

)
B2η(t)

]
. (6.2.14)

Substitute above equation into (6.2.13), and we perform the completion of squares

for the terms inside the integral which contains u(t):

u′(t)

[
R1 +B′1P1(t)B1

]
u(t) + 2u′(t)

[ (
B′1P1(t)B2 +B′1P2(t)B1

)
u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]

=

{
u(t) +

[
R1 +B′1P1(t)B1

]−1[ (
B′1P1(t)B2 +B′1P2(t)B1

)
u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]}′[
R1 +B′1P1(t)B1

]

×

{
u(t) +

[
R1 +B′1P1(t)B1

]−1[ (
B′1P1(t)B2 +B′1P2(t)B1

)
u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]}

−
[ (
B′1P1(t)B2 +B′1P2(t)B1

)
u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]′[
R1 +B′1P1(t)B1

]−1

×
[ (
B′1P1(t)B2 +B′1P2(t)B1

)
u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]
.
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Therefore, we obtained the optimal u(t) = u(t)∗ when t ∈ [δ, 2δ] as following:

u∗(t) = −
[
R1 +B′1P1(t)B1

]−1[
(B′1P1(t)B2 +B′1P2(t)B1)u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]
. (6.2.15)

Now let us turn attention to the time horizon t ∈ [0, δ]. First we substitute u∗ back

to J(u(·)):

J(u(·)) = E
∫ δ

0

[
x′(t)Q1x(t) +Q2φ

2(t) + u(t)′R1u(t) +R2η
2(t)

]
dt

+G′1(δ)x(δ) +G′2(δ)x(0) + x′(δ)P1(δ)x(δ) + 2x′(δ)P2(δ)x(0) + x′(0)P3(δ)x(0)

+E
∫ 2δ

0

[
Ā′4P (t)Ā4 + 2Ā′4P (t)B̄2 + B̄′2P (t)B̄2 +G′(t)Ā2

]
dt

+E
∫ 2δ

δ

{
u(t) +

[
R1 +B′1P1(t)B1

]−1[(
B′1P1(t)B2 +B′1P2(t)B1

)
u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]}′[
R1 +B′1P1(t)B1

]

×

{
u(t) +

[
R1 +B′1P1(t)B1

]−1[(
B′1P1(t)B2 +B′1P2(t)B1

)
u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]}
dt

+E
∫ δ

0

{
u′(t)

[
R2 +B′2P1(t)B2 + 2B′1P2(t)B2 +B′1P3(t)B1

]
u(t)

+2u′(t)

[(
B′2P1(t) +B′1P2(t)

)
A3x(t) +

(
B′2P2(t) +B′1P3(t)

)
A3φ(t)

+
(
B′2P2(t) +B′1P3(t)

)
B2η(t)

]

−
[
u′(t)

(
B′2P1(t)B1 +B′1P2(t)B1

)
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+x′(t)A′3P1(t)B1 +A′3P2(t)B1φ(t) +B′2P2(t)B1η(t)

][
R1 +B′1P1(t)B1

]−1

×
[(
B′1P1(t)B2 +B′1P2(t)B1

)
u(t)

+B′1P1(t)A3x(t) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]}
dt. (6.2.16)

Let us take some analysis on the expression above. First, recall the function (6.2.1),

where t ∈ [0, δ], the equation can be written as:

dx(t) = [A1x(t) +A2φ(t)]dt+ [A3φ(t) +B1u(t) +B2η(t)]dw(t)

The differential of the quadratic form x′(t)H(t)x(t) is:

dx′(t)H(t)x(t) =

[
x′(t)Ḣ(t)x(t) + 2x′(t)H(t)(A1x(t) +A2φ(t))

+
[
A′3φ(t) + u′(t)B′1 +B′2η(t)

]
H(t) [A3φ(t) +B1u(t) +B2η(t)]

]
dt

+2x′(t)H(t) [A3φ(t) +B1u(t) +B2η(t)] dw(t),

it is clear that:

E

[
x′(δ)H(δ)x(δ)− x′(0)H(0)x(0)

]

= E
∫ δ

0

{
x′(t)

[
Ḣ(t) +H(t)A1 +A′1H(t)

]
x(t) + 2x′(t)H(t)A2φ(t)

+u′(t)B′1H(t)B1u(t) + 2u′(t)
[
B′1H(t)A3φ(t) +B′1H(t)B2η(t)

]

+A′3H(t)A3φ
2(t) + 2A′3H(t)B2φ(t)η(t) +B′2H(t)B2η

2(t)

}
dt. (6.2.17)

The differential of M(t)x(t) is:

dM(t)x(t) =

[
Ṁ(t)x(t) +M ′(t)(A1x(t) +A2φ(t)

]
dt
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+M ′(t)

[
A3φ(t) +B1u(t) +B2η(t)

]
dw(t),

we have:

E[M(δ)x(δ)]−M(0)x(0) = E
∫ δ

0
(Ṁ(t) +M ′(t)A1)x(t) +M ′(t)A2φ(t)dt.(6.2.18)

Substitute equation (6.2.17) and (6.2.18) into (6.2.16), we can get:

J(u(·)) = E
∫ 2δ

0

[
Ā′4P (t)Ā4 + 2Ā′4P (t)B̄2 + B̄′2P (t)B̄2 +G′(t)Ā2

]
dt

+E
∫ 2δ

δ

{
u(t) +

[
R1 +B′1P1(t)B1

]−1[
[B′1P1(t)B2 +B′1P2(t)B1]u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]}′
[R1 +B′1P1(t)B1]

×

{
u(t) +

[
R1 +B′1P1(t)B1

]−1[
[B′1P1(t)B2 +B′1P2(t)B1]u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]}
dt

+E
∫ δ

0

{
x′(t)

[
Q1 + Ḣ(t) +H(t)A1 +A1H(t)

−A′3P1(t)B1

[
R1 +B′1P1(t)B1

]−1
B′1P1(t)A3

]
x(t)

+

[
2A′2H(t)φ(t) + Ṁ(t) +

1

2

[
M ′(t)A1 +A′1M(t)

]
− 2
[
A′3P2(t)B1φ(t)

+B′2P2(t)B1η(t)
][
R1 +B′1P1(t)B1

]−1
B′1P1(t)A3

]
x(t)

+u′(t)

{
R1 +B′1H(t)B1(t) +R2 +B′2P1(t)B2 + 2B′1P2(t)B2 +B′1P3(t)B1

−
[
B′2P1(t)B1 +B′1P2(t)B1

][
R1 +B′1P1(t)B1

]−1[
B′1P1(t)B2 +B′1P2(t)B1

]}
u(t)

+2u′(t)

{
B′1H(t)A3φ(t) +B′1H(t)B2η(t) +

[
B′2P1(t) +B′1P2(t)

]
A3x(t)
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+
[
B′2P2(t) +B′1P3(t)

]
A3φ(t) +

[
B′2P2(t) +B′1P3(t)

]
B2η(t)

−
[
B′2P1(t)B1 +B′1P2(t)B1

][
R1 +B′1P1(t)B1

]−1

×
[
B′1P1(t)A3x(t) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]}}
dt

+E
∫ δ

0

{
Q2(t)φ

2(t) +R2(t)η
2(t) +A′3H(t)A3φ

2(t) + 2A′3H(t)B2φ(t)η(t)

+B′2H(t)B2η
2(t) +M ′(t)A2φ(t) + x′(0)H(0)x(0) +M(0)x(0)

+x′(0)P3(δ)x(0) +G2(δ)x(0)

}
dt

−E
∫ 2δ

δ

{[
A′3P2(t)φ(t)B1 +B′2P2(t)η(t)B1

][
R1 +B′1P1(t)B1

]−1

×
[
A′3P2(t)φ(t)B1 +B′2P2(t)η(t)B1

]′}
dt. (6.2.19)

We can rewrite the u(t) terms in (6.2.19) as:

u′(t)R̃u(t) + 2u′(t)

[
K1x(t) +K2

]

=

{
u′(t) + R̃−1

[
K1x(t) +K2

]}′
R̃

{
u′(t) + R̃−1

[
K1x(t) +K2

]}

−
[
x′(t)K ′1 +K ′2

]
R̃−1

[
K1x(t) +K2

]
.

The terms including the state x(t), including the last term in the above equation,

are:

x′(t)

{
Q1 + Ḣ(t) +H(t)A1 +A1H(t)−K ′1R̃−1K1

−A′3P1(t)B1

[
R1 +B′1P1(t)B1

]−1
B′1P1(t)A3

}
x(t)
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+

{
2A′2H(t)φ(t) + Ṁ(t) +

1

2

(
M ′(t)A1 +A′1M(t)

)
− 2K ′2R̃

−1K1

−2
[
A′3P2(t)B1φ(t) +B′2P2(t)B1η(t)

][
R1 +B′1P1(t)B1

]−1
B′1P1(t)A3

}
x(t).

(6.2.20)

By the equations of H(t) and M(t), the whole expression (6.2.20) will be zero.

Therefore, we have the optimal u(t) = u∗(t), where t ∈ [0, δ] as follows:

u∗(t) = −R̃−1
[
K1x(t) +K2

]

= −R̃−1
{([

B′2P1(t) +B′1P2(t)
]
A3 −

[
B′2P1(t)B1 +B′1P2(t)B1

]

×
[
R1 +B′1P1(t)B1

]−1
B′1P1(t)A3

)
x(t)

+B′1H(t)A3φ(t) +B′1H(t)B2η(t) +
[
B′2P2(t) +B′1P3(t)

]
A3φ(t)

+
[
B′2P2(t) +B′1P3(t)

]
B2η(t)−

[
B′2P1(t)B1 +B′1P2(t)B1

]

×
[
R1 +B′1P1(t)B1

]−1[
B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]}
.(6.2.21)

Therefore, J(u(·)) could be writen as:

J(u(·)) = E
∫ 2δ

0

{
Ā′4P (t)Ā4 + 2Ā′4P (t)B̄2 + B̄′2P (t)B̄2 +G′(t)Ā2

}
dt

+E
∫ 2δ

δ

{
u(t) +

[
R1 +B′1P1(t)B1

]−1[(
B′1P1(t)B2 +B′1P2(t)B1

)
u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)
]}′[

R1 +B′1P1(t)B1

]

×

{
u(t) +

[
R1 +B′1P1(t)B1

]−1[
[B′1P1(t)B2 +B′1P2(t)B1]u(t− δ)

+B′1P1(t)A3x(t− δ) +B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)
]}
dt
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+E
∫ δ

0

{
u+ R̃−1

[([
B′2P1(t) +B′1P2(t)

]
A3 −

[
B′2P1(t)B1 +B′1P2(t)B1

]

×
[
R1 +B′1P1(t)B1

]−1
B′1P1(t)A3

)
x(t)

+B′1H(t)A3φ(t) +B′1H(t)B2η(t) +
[
B′2P2(t) +B′1P3(t)

]
A3φ(t)

+
[
B′2P2(t) +B′1P3(t)

]
B2η(t)−

[
B′2P1(t)B1 +B′1P2(t)B1

]

×
[
R1 +B′1P1(t)B1

]−1[
B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]]}′
R̃

×

{
u+ R̃−1

[([
B′2P1(t) +B′1P2(t)

]
A3 −

[
B′2P1(t)B1 +B′1P2(t)B1

]

×
[
R1 +B′1P1(t)B1

]−1
B′1P1(t)A3

)
x(t)

+B′1H(t)A3φ(t) +B′1H(t)B2η(t) +
[
B′2P2(t) +B′1P3(t)

]
A3φ(t)

+
[
B′2P2(t) +B′1P3(t)

]
B2η(t)−

[
B′2P1(t)B1 +B′1P2(t)B1

]

×
[
R1 +B′1P1(t)B1

]−1[
B′1P2(t)A3φ(t) +B′1P2(t)B2η(t)

]]}
dt

+E
∫ δ

0

{
Q2(t)φ

2(t) +R2(t)η
2(t) +A′3H(t)A3φ

2(t) + 2A′3H(t)B2φ(t)η(t)

+B′2H(t)B2η
2(t) +M ′(t)A2φ(t) + x′(0)H(0)x(0) +M(0)x(0)

+x′(0)P3(δ)x(0) +G2(δ)x(0)−K ′2R̃−1K2

}
dt

−E
∫ 2δ

δ

{[
A′3P2(t)φ(t)B1 +B′2P2(t)η(t)B1

][
R1 +B′1P1(t)B1

]−1
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×
[
A′3P2(t)φ(t)B1 +B′2P2(t)η(t)B1

]′}
dt.

(6.2.22)

When we applied the optimal u∗ into the equation above, we have:

J(u(·)) = E
∫ 2δ

0

{
Ā′4P (t)Ā4 + 2Ā′4P (t)B̄2 + B̄′2P (t)B̄2 +G′(t)Ā2

}
dt

+E
∫ δ

0

{
Q2(t)φ

2(t) +R2(t)η
2(t) +A′3H(t)A3φ

2(t) + 2A′3H(t)B2φ(t)η(t)

+B′2H(t)B2η
2(t) +M ′(t)A2φ(t) + x′(0)H(0)x(0) +M(0)x(0)

+x′(0)P3(δ)x(0) +G2(δ)x(0)−K ′2R̃−1K2

}
dt

−E
∫ 2δ

δ

{[
A′3P2(t)φ(t)B1 +B′2P2(t)η(t)B1

][
R1 +B′1P1(t)B1

]−1

×
[
A′3P2(t)φ(t)B1 +B′2P2(t)η(t)B1

]′}
dt. (6.2.23)

Compared with Chen and Wu [13], the delay terms appear in both state and

control in our system, and the cost functional is more general. However, the time

horizon in our research is specific and the state is a special case of Chen and Wu.

But the method we used to solve the linear-quadratic problem is completely new.

And the result we found is in a feed-back form, but in Chen and Wu. it is in a

conditional expectation.

6.3 Risk-sensitive control problem with delay system

In this section, we deal with the risk-sensitive control problem with delay system.
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6.3.1 Problem formulation and assumption

Consider the linear stochastic control system:

dx(t) =
[
A1x(t) +A2

n∑
K1=1

x(t−K1δ) +B1u(t) +B2

n∑
K2=1

u(t−K2δ)
]
dt

+
[
C1u(t) + C2

n∑
K3=1

u(t−K3δ) + C3

]
dw(t)

x(t) = φ(t), u(t) = η(t), t ∈ [−δ, 0]

(6.3.1)

where x(t) ∈ Rn is the state process and u(t) is an F-adapted process. A1, A2, B1,

B2, C1, C2, C3, K1, K2, K3 are constants.

The cost functional is as follows:

J(u(·)) : = E

{
exp

[ ∫ T

0
[Qx(t) + u′(t)Ru(t)]dt+Q1x(T )

]}
. (6.3.2)

where Q, R and Q1 are constant matrices with proper dimensions.

We wish to solve the problem:
min
u(·)∈A

J(u(·)),

s.t. 6.3.1 holds,

(6.3.3)

A is a set where u is the solution to the problem 6.3.3.

Define the following matrices:

x̄(t) =


x(t)

x(t− δ)
...

x(t− nδ)

 , ū(t) =


u(t)

u(t− δ)
...

u(t− nδ)

 , w̄(t) =


w(t)

w(t− δ)
...

w(t− nδ)

 ,
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Ā1 =


A1 A2 A2 . . . A2

0 A1 A2 . . . A2

...
...

. . .
. . .

...

0 0 0 . . . A1

 , Ā2 =


0

0
...

A2φ(t)

 , B̄1 =


B1 B2 B2 . . . B2

0 B1 B2 . . . B2

...
...

. . .
. . .

...

0 0 0 . . . B1

 ,

B̄2 =


0

0
...

B2η(t)

 , C̄1 =


C1 C2 C2 . . . C2

0 C1 C2 . . . C2

...
...

. . .
. . .

...

0 0 0 . . . C1

 , C̄2 =


C3

C3

...

C2η(t) + C3

 .
The following ordinary differential equation has a unique global solution:

Q+ Ṗ (t) +
1

2
P ′(t)Ā1 +

1

2
Ā′1P (t) = 0,

P (T ) = Q1,

(6.3.4)

Assumption 13.

R+
1

2
C̄ ′1P (t)P ′(t)C̄1 > 0.

(6.3.5)

We now focus in defining the appropriate admissible set of controls A. Let U
denote the set of all F(t)-adapted processes u(t) such that the state equation (6.3.1)

has a unique strong solution.

Let θ′(t), Z(t), and Z be defined as:

θ′(t) ≡ P ′(t)
(
C̄1ū(t) + C̄2

)
,

Z(t) ≡ exp

[
−
∫ t

0
θ′(τ)dw̄(τ)− 1

2

∫ t

0
θ′(τ)θ(τ)dτ

]
,

Z ≡ Z(T ).

Let the new probability measure P̃ be defined as:

P̃(α) ≡
∫
α
Z(ω)dP̃(ω), ∀α ∈ F .
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By Girsanov theorem, the process

w̃(t) ≡ w̄(t)−
∫ t

0
θ(τ)dτ,

is a standard Brownian motion. In order to ensure that P̃u is a probability measure,

we assume that θu(t) satisfies the Novikov condition, i.e. for some positive β the

following holds:

E
[
e(β/2)

∫ T
0 θ′u(τ)θu(τ)dτ

]
<∞. (6.3.6)

We can now define the admissible set of controls as:

A := {u(·) ∈ U such that (6.3.6) holds}.

Since P̃ and P are equivalent probability measures, for any Ft-measurable random

variable X, we have:

E[ZX] = Ẽ[X],

where Ẽ(·) is the expectation with respect to the probability measure P̃.

Theorem 6.3.1. Let the above assumption above holds, the optimal control and the

corresponding cost are respectivly:

ū∗(t) = −1

2

[
R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]−1[
B̄′1P (t) + C̄1P (t)P ′(t)C̄2P

]
,

J(u∗) = exp

[
P ′(0)x̄(0) +

∫ T

nδ
[P ′(t)Ā2 + P ′(t)B̄2 + P (t)K̄ ′2K̄2P (t)]dt

]
.

(6.3.7)

The proof is given in the following subsection. The optimal solution is found by

a combination of change of measure and completion of squares method.
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6.3.2 Proof of Theorem 6.3.1

From the given system dx(t), we can write:

dx(t) = [A1x(t) +A2

n∑
K1=1

x(t−K1δ) +B1u(t) +B2

n∑
K2=1

u(t−K2δ)]dt

+ [C1u(t) + C2

n∑
K3=1

u(t−K3δ) + C3]dw(t), t ≥ 0,

dx(t− δ) = [A1x(t− δ) +A2

n∑
K1=2

x(t−K1δ) +B1u(t− δ) +B2

n∑
K2=2

u(t−K2δ)]dt

+ [C1u(t− δ) + C2

n∑
K3=2

u(t−K3δ) + C3]dw(t− δ), t > δ,

...

dx(t− nδ) = [A1x(t− nδ) +A2φ(t) +B1u(t− nδ) +B2η(t)]dt

+ [C1u(t− nδ) + C2η(t) + C3]dw(t− nδ) t > nδ,

x(t) = φ(t), u(t) = η(t), t ∈ [−δ, 0].

(6.3.8)

We could write the system as:

dx̄(t) = [Ā1x̄(t) + B̄1ū(t) + Ā2 + B̄2]dt+ [C̄1ū(t) + C̄2]dw̄(t), t ≥ nδ. (6.3.9)

The differential of the term P ′(t)x̄(t) is:

dP ′(t)x̄(t) = [Ṗ ′(t)x̄(t) + P ′(t)(Ā1x̄(t) + Ā2 + B̄1ū(t) + B̄2)]dt

+P ′(t)(C̄1ū(t) + C̄2)dw̄(t),

it is clear that:

J(u(·)) = E

{
exp

[{
P ′(0)x̄(0)− P ′(T )x̄(T ) +Q1x̄(T )

}

+

∫ T

nδ

{
Qx̄(t) + ū(t)′Rū(t) + Ṗ ′(t)x̄(t) + P ′(t)

[
Ā1x̄(t) + Ā2 + B̄1ū(t) + B̄2

]}
dt

+

∫ T

nδ

{
P ′(t)

[
C̄1ū(t) + C̄2

]}
dw̄(t)

]}
. (6.3.10)
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Under the new probability measure P̃, the control problem (6.3.3) could be trans-

formed into the standard risk-sensitive control problem of Jacobson (see, [34]). The

cost functional J(u(·)) can now be written as:

J(u(·)) = Ẽ

{
exp

[{
P ′(0)x̄(0) +

(
P (t)Ā2 + P (t)B̄2 +

1

2
C̄ ′2P (t)P ′(t)C̄2

)
T

}

+

∫ T

nδ

{[
Q+ Ṗ (t) +

1

2
P ′(t)Ā1 +

1

2
Ā′1P (t)

]
x̄(t)

+ ū′(t)
[
(R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]
ū(t) +

[
P ′(t)B̄1 + C̄ ′2P (t)P ′(t)C̄ ′1

]
ū(t)

}
dt

]}
(6.3.11)

We now perform the completion of squares for the terms inside the above integrals

that contain ū(t), as follows:

ū′(t)
[
(R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]
ū(t) +

[
P ′(t)B̄1 + C̄ ′2P (t)P ′(t)C̄ ′1

]
ū(t)

=

{
ū(t) +

1

2

[
R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]−1[
B̄′1P (t) + C̄1P (t)P ′(t)C̄2

]}′[
R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]

×
{
ū(t) +

1

2

[
R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]−1[
B̄′1P (t) + C̄1P (t)P ′(t)C̄2

]}

−1

4

[
B̄′1P (t) + C̄1P (t)P ′(t)C̄2

]′[
R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]−1[
B̄′1P (t) + C̄1P (t)P ′(t)C̄2

]
.

(6.3.12)

The terms including the state x(t) are[
Q+ Ṗ (t) +

1

2
P ′(t)Ā1 +

1

2
Ā′1P (t)

]
x̄(t),

by the equation od P (t), the above expression is zero. The cost functional J(u(·))
can now be written as:

J(u(·)) = Ẽ

{
exp

[{
P ′(0)x̄(0) +

(
P (t)Ā2 + P (t)B̄2 +

1

2
C̄ ′2P (t)P ′(t)C̄2 −

1

4

[
B̄′1P (t)

+C̄1P (t)P ′(t)C̄2

]′[
R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]−1[
B̄′1P (t) + C̄1P (t)P ′(t)C̄2

])
T

}
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+

∫ T

0

{
ū(t) +

1

2

[
R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]−1[
B̄′1P (t) + C̄1P (t)P ′(t)C̄2

]}′

×
[
R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]

×
{
ū(t) +

1

2

[
R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]−1[
B̄′1P (t) + C̄1P (t)P ′(t)C̄2

]}
dt

]}
.

(6.3.13)

Since R +
1

2
C̄ ′1P (t)P ′(t)C̄1 > 0, we have that for all u(·) the following inequality

holds:

J(u(·)) ≥ Ẽ

{
exp

[{
P ′(0)x̄(0) +

(
P (t)Ā2 + P (t)B̄2 +

1

2
C̄ ′2P (t)P ′(t)C̄2 −

1

4

[
B̄′1P (t)

+C̄1P (t)P ′(t)C̄2

]′[
R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]−1[
B̄′1P (t) + C̄1P (t)P ′(t)C̄2

])
T

}
,

(6.3.14)

the lower bound is achieved if and only if:

ū∗(t) = −1

2

[
R+

1

2
C̄ ′1P (t)P ′(t)C̄1

]−1[
B̄′1P (t) + C̄1P (t)P ′(t)C̄2P

]
. (6.3.15)

Lemma 6.3.2. If u is zero, and r(t) = Qx̄(t), i.e. the interest rate model with delay,

then J∗, the optimal cost, is the price of a zero-coupon bond. Since

P (0, T ) = E
[
exp

[∫ T

0
r(u)du

]]
,

The optimal cost is:

J∗ = exp

[
P ′(0)x̄(0) +

∫ T

0
[P ′(t)Ā2 + P ′(t)B̄2 + P (t)K̄ ′2K̄2P (t)]dt

]
. (6.3.16)

6.4 Conclusion

This chapter analyzes the stochastic linear quadratic control and risk-sensitive control

problems with delay systems. We generalize the linear quadratic delay problem and

find the explicit solution to each case. Compared with the previous research, the

optimal solution we found is in a feed-back form, and it is not the case in Chen and

Wu [13] which is found in a conditional expectation. Since this chapter is just a start
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of some preliminary results, There are some further research could be done in the

future, for example, the generalized case for the risk-sensitive control, the extension

of time horizon to infinite, and also it could be extend in time-varying process.



Chapter 7

Conclusions

7.1 Introduction

In this chapter, we summarize the main contributions of the thesis and list some

interesting open questions for future research.

7.2 Chapter 3

In this chapter, we consider a general case of an indefinite risk-sensitive control

problem for fully observed stochastic systems with additive noise. This situation

occurs when we use a generalised risk-sensitive cost functional. We find all explicit

solutions to this problem using a combination of the completion of squares and

the change of measure methods. We consider both the finite and infinite horizon

cases. In particular, for the infinite case, we introduce a general function into the

cost functional, from which weaker conditions are needed for solving similar infinite

optimal control problems. The optimal investment problem in a market with a

stochastic interest rate appears as a special case in our results.

These are a few interesting problems that could be look at in the future:

• The conditions for the existence and uniqueness of the solutions to the Riccati

equation.

• The discrete case of the indefinite risk-sensitive control problem.

• Applications of risk-sensitive control in engineering and financial mathematics.

• State system with time-varying processes.



7.3 Chapter 4 101

7.3 Chapter 4

We solve the generalized risk-sensitive control problem with a partially observed

system for an indefinite case in this chapter. This is an extension of chapter 3. By

applying Bensoussan and Van Schuppen’s theorem [5] of equivalence, we transform

the partially observed system to a fully observed problem, and obtain explicit

solutions to optimal control problems in both finite and infinite horizons.

It will be interesting to extend these ideas to the follows:

• When we are transforming the partially observed system to a fully observed

system, there are several conditions and assumptions made which seems to be

strong to be hold. It will be interesting to weaken these conditions and give

the explicit solutions to the Riccati equations in those assumptions.

• In this chapter, we find the solution to the state system with constant matrices,

it would be desirable to explore the time-varying controls.

• We focus on the continuous risk-sensitive control, and it would be of interest

to discover the solutions to a discrete-time risk-sensitive control with partially

observed system.

• The application of risk-sensitive control with partial observation to engineering

and financial mathematics.

7.4 Chapter 5

In this chapter we introduce a risk-sensitive version of the H2/H∞ control method for

linear stochastic systems with additive noise. Two criteria of exponential-quadratic

form are employed instead of the usual quadratic criteria. Both the finite and infinite

horizon cases are considered under the assumption of linear state-feedback controllers,

and explicit solutions in terms of Riccati equations are obtained.

It will be interesting to extend these ideas to nonlinear and discrete-time systems.

7.5 Chapter 6

This chapter analyzes the stochastic linear-quadratic control and risk-sensitive control

problems with delay systems. We generalise the linear-quadratic delay problem and

find the explicit solution to each case. Compared with previous research, the optimal

solution we found is in a feed-back form, which is not the case in Chen and Wu [13]

who found it to be a conditional expectation.
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Since this chapter gives only some preliminary results, further research could be

done, for example, the generalised case for the risk-sensitive control, extension of the

time horizon to infinite, and alsoextend the research for a time-varying process.

7.6 Summary

In this thesis, the generalised risk-sensitive control problem is studied. Three related

topics have been analyzed: the indefinite risk-sensitive control with full observation,

the indefinite risk-sensitive control with partial observation and the H2/H∞ control

with risk-sensitive cost functional. Explicit solutions are found for each problem.

In this last chapter, we have pointed out the main contributions of this thesis and

introduced come interesting open questions for future research.



Appendix: a special case of the

solution for the Riccati equation

In this section, we give an example of the solution of the Riccati equation. Let

Q1R
′
1 = 0. Then the algebratic equation part becomes:(

R+
γ

4
R1R

′
1

)(
R+

γ

4
R1R

′
1

)† [
PB +

γ

4
· 2PCR′1

]′
−
[
PB +

γ

4
· 2PCR′1

]′
= 0,

(7.6.1)

[(
R+

γ

4
R1R

′
1

)(
R+

γ

4
R1R

′
1

)† [
B +

γ

2
CR′1

]
−
[
B +

γ

2
CR′1

]′ ]
P = 0.

(7.6.2)

Thus, if(
R+

γ

4
R1R

′
1

)(
R+

γ

4
R1R

′
1

)† [
B +

γ

2
CR′1

]
−
[
B +

γ

2
CR′1

]′
= 0, (7.6.3)

equation 7.6.2 holds.

Under our assumption of Q1R
′
1 = 0, the differential equation part becomes:

Ṗ + PA+A′P +
γ

4
(2PC +Q1)(2PC +Q1)

′ +Q

−P
[
B +

γ

2
CR′1

] (
R+

γ

2
R1R

′
1

)† [
B +

γ

2
CR′1

]′
P = 0,

which is

Ṗ + P (A+
γ

2
CQ′1) + (A+

γ

2
CQ′1)

′P +
γ

4
Q1Q

′
1 +Q

−P
[ [
B +

γ

2
CR′1

] (
R+

γ

2
R1R

′
1

)† [
B +

γ

2
CR′1

]′
− γCC ′

]
P = 0.
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Thus, this is a Riccati equation for deterministic LQ control, and it has a unique

solution if
S ≥ 0,
γ

4
Q1Q

′
1 +Q1 ≥ 0,[

B +
γ

2
CR′1

] (
R+

γ

2
R1R

′
1

)† [
B +

γ

2
CR′1

]′
− γCC ′ > 0 (or = 0).

(7.6.4)

Example Let 
B +

γ

2
CR′1 = 0,

γ

4
Q1Q

′
1 +Q = 0,

S = 0.

Thus, equation 7.6.3 is satisfied, and the Riccati equation becomes Ṗ + P (A+
γ

2
CQ′1) + (A+

γ

2
CQ′1)P + γPCC ′P = 0,

P (T ) = 0
(7.6.5)

which has a unique solution P (t) = 0.
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