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We present a new method for the detection of gene pathways associated with a multivariate quantitative trait,
and use it to identify causal pathways associated with an imaging endophenotype characteristic of longitudinal
structural change in the brains of patients with Alzheimer's disease (AD). Our method, known as pathways
sparse reduced-rank regression (PsRRR), uses group lasso penalised regression to jointly model the effects of
genome-wide single nucleotide polymorphisms (SNPs), grouped into functional pathways using prior knowl-
edge of gene-gene interactions. Pathways are ranked in order of importance using a resampling strategy that
exploits finite sample variability. Our application study uses whole genome scans and MR images from 99 prob-
able AD patients and 164 healthy elderly controls in the Alzheimer's Disease Neuroimaging Initiative (ADNI)
database. 66,182 SNPs are mapped to 185 gene pathways from the KEGG pathway database. Voxel-wise imaging
signatures characteristic of AD are obtained by analysing 3D patterns of structural change at 6, 12 and 24 months
relative to baseline. High-ranking, AD endophenotype-associated pathways in our study include those describing
insulin signalling, vascular smooth muscle contraction and focal adhesion. All of these have been previously
implicated in AD biology. In a secondary analysis, we investigate SNPs and genes that may be driving pathway
selection. High ranking genes include a number previously linked in gene expression studies to 3-amyloid plaque
formation in the AD brain (PIK3R3,PIK3CG,PRKCA and PRKCB), and to AD related changes in hippocampal gene
expression (ADCY2, ACTN1, ACACA, and GNAIT). Other high ranking previously validated AD endophenotype-
related genes include CR1, TOMM40 and APOE.
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Introduction

A growing list of genetic variants has now been associated with
greater susceptibility to develop early and late-onset Alzheimer's dis-
ease (AD), with the APOEe4 allele consistently identified as having the
greatest effect (for an up to date list see www.alzgene.org). Recently,
case-control susceptibility studies have been augmented by studies
using neuroimaging phenotypes. The rationale here is that the use of
heritable imaging signatures (endophenotypes) of disease may increase
the power to detect causal variants, since gene effects are expected to be
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more penetrant at this level (Meyer-Lindenberg and Weinberger,
2006). This ‘imaging-genetic’ approach has been used to identify
genes associated with a range of AD-associated imaging phenotypes
including measures of hippocampal volume (Stein et al., 2012), cortical
thickness (Burggren et al., 2008) and longitudinal, structural change
(Vounou et al,, 2011).

AD is a moderate to highly heritable condition, yet as with many
common heritable diseases, association studies have to date identified
gene variants explaining only a relatively modest amount of known
AD heritability (Braskie et al., 2011). One approach to uncovering this
‘missing heritability’ is motivated by the observation that in many
cases disease states are likely to be driven by multiple genetic variants
of small to moderate effect, mediated through their interaction in mo-
lecular networks or pathways, rather than by the effects of a few, highly
penetrant mutations (Schadt, 2009). Where this assumption holds, the
hope is that by considering the joint effects of multiple variants acting
in concert, pathways genome-wide association studies (PGWAS) will
reveal aspects of a disease's genetic architecture that would otherwise
be missed when considering variants individually (Fridley and
Biernacka, 2011; Wang et al,, 2010). Another potential benefit of the
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PGWAS approach is that it can help to elucidate the mechanisms of dis-
ease by providing a biological interpretation of association results
(Cantor et al,, 2010). In the case of AD for example, an understanding
of the underlying mechanisms by which gene mutations impact disease
aetiology may play an important role in the translation of basic AD biol-
ogy into therapy and patient care (Sleegers et al., 2010).

In this paper, we present the first PGWAS method that is able to
accommodate a multivariate quantitative phenotype, and apply our
method to a pathway analysis of the ADNI cohort, comparing genome-
wide single nucleotide polymorphism (SNP) data with voxel-wise
tensor-based morphometry (TBM) maps describing longitudinal struc-
tural changes that are characteristic of AD. In this study we map SNPs
to pathways from the KEGG pathway database, a curated collection of
functional gene pathways representing current knowledge of molecular
interaction and reaction networks (http://www.genome.jp/kegg/
pathway.html). Our method is however able to accommodate alterna-
tive sources of information for the grouping of SNPs and genes, for
example using gene ontology (GO) terms, or information from protein
interaction networks (Jensen and Bork, 2010; Wu et al., 2010).

The use of high-dimensional endophenotypes in imaging genetic
studies has become increasingly commonplace, since it enables the
voxel-wise mapping of genetic effects across the brain (Thompson
et al,, 2010). Previous work has demonstrated that a sparse reduced-
rank regression (SRRR) approach that exploits the multivariate nature
of the phenotype can be more powerful than a mass-univariate linear
modelling approach in which each phenotype is regressed against
each SNP (Vounou et al., 2010). Furthermore, multivariate, high-
dimensional phenotypes have also been shown to offer an increased
signal to noise ratio over low dimensional or univariate phenotypes,
provided that uninformative voxels that are not characteristic of the
disease under study are removed (Vounou et al.,, 2011). In this study
we use a high-dimensional phenotype describing structural change
relative to baseline over three time points in subjects with AD, and in
healthy controls. From this we extract an imaging endophenotype
that is highly characteristic of AD in our sample by using a stringent sta-
tistical threshold to exclude voxels that do not discriminate between AD
and CN. Our main objective here is not to build a robust statistical clas-
sifier for AD, but instead to produce a quantitative phenotype having
maximal sample variability between AD and CN for the subsequent
gene mapping stage of our analysis.

Many existing PGWAS methods, such as GenGen (Wang et al., 2009)
and ALLIGATOR (Holmans et al., 2009) rely on univariate statistics of
association, whereby each SNP in the study is first independently tested
for association with a univariate quantitative or dichotomous (case-
control) phenotype. SNPs are assigned to pathways by mapping them
to adjacent genes within a specified distance, and individual SNP or
gene statistics are then combined across each pathway to give a mea-
sure of pathway significance, corrected for multiple testing. Methods
must also account for the potentially biasing effects of gene and path-
way size and linkage disequilibrium (LD), and this is generally done
through permutation. A potential disadvantage of these methods is
that each SNP is considered separately at the first step, with no account
taken of SNP-SNP dependencies. In contrast, a multilocus or multivari-
ate model that considers all SNPs simultaneously may characterise SNP
effects more accurately by aiding the identification of weak signals
while diminishing the importance of false ones (Hoggart et al., 2008).

In earlier work we developed a multivariate PGWAS method for
identifying pathways associated with a single quantitative trait (Silver
and Montana, 2012). We used a sparse regression model - the group
lasso — with SNPs grouped into pathways. We demonstrated in simula-
tion studies using real SNP and pathway data, that our method showed
high sensitivity and specificity for the detection of important pathways,
when compared with an alternative pathway method based on univar-
iate SNP statistics. Our method showed the greatest relative gains
in performance where marginal SNP effect sizes are small. Here we
extend our previous model to accommodate the case of a multivariate

neuroimaging phenotype. We do this by incorporating a group sparsity
constraint on genotype coefficients in a multivariate sparse reduced-
rank regression model, previously developed for the identification of
single causal variants (Vounou et al.,, 2010). Our proposed ‘pathways
sparse reduced-rank regression’ (PsRRR) algorithm incorporates phe-
notypes and genotypes in a single model, and accounts for potential
biasing factors such as dependencies between voxels and SNPs using
an adaptive, weight-tuning procedure.

To the best of our knowledge, few other multilocus methods for the
identification of biological pathways currently exist. The GRASS method
(Chen et al., 2010) and the method proposed by Zhao et al. (2011) use
sparse regression techniques to measure pathway significance. These
methods are currently implemented for case-control data only, and
are unable to accommodate a multivariate phenotype. Each method
makes different assumptions about the distribution of important SNPs
and genes affecting the phenotype. GRASS assumes sparsity at the
SNP level within each pathway gene, while Zhao's method assumes
sparsity at the gene level. In contrast, our PsSRRR method assumes spar-
sity only at the pathway level (although we subsequently perform SNP
and gene selection as a second step in selected pathways). As such, each
method is expected to perform differently, depending on the ‘true’
distribution of causal SNPs and genes. GRASS and Zhao's methods also
use a pre-processing dimensionality reduction step on SNPs within
each gene using PCA. While this has been shown to be advantageous
in certain circumstances (Wang and Abbott, 2008), we elect to retain
original SNP genotypes in our model, since this facilitates sparse SNP
selection. A further distinguishing feature of our method is that we
include all pathways together in a single regression model. By doing
this we hope to gain a better measure of the relative importance of dif-
ferent pathways, by ensuring that they compete against each other.

The article is presented as follows. We begin in the Imaging data
section with a description of the voxel-wise TBM maps used in the
study, and in the Phenotype extraction section we outline how we use
these maps to generate an imaging signature characteristic of structural
change in AD, that is able to discriminate between AD patients and con-
trols. In the Genotype data section we describe the genotype data used
in the study, together with quality control procedures, and in the SNP
to pathway mapping section we explain how this genotype data is
mapped to gene pathways. The theoretical underpinnings of the PsSRRR
method are described in the Pathways sparse reduced-rank regression
section. We explain our method for ranking AD-associated pathways,
SNPs and genes using a resampling procedure in the Pathway, gene
and SNP ranking section, and discuss our strategies for addressing the
significant computational challenge of fitting a regression-based model
with such high dimensional datasets in the Computational issues
section. Pathway, SNP and gene ranking results are presented in the
Results section, and we conclude with a Discussion.

Materials and methods

Imaging and genotype data used in this study were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and non-profit organisations, as a
5-year public-private partnership. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early AD. Determina-
tion of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time and cost of
clinical trials.
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Imaging data

Longitudinal brain MRI scans (1.5 T) were downloaded from the
ADNI public database (http://www.loni.ucla.edu/ADNI/Data/). Serial
brain MRI scans (N=3512; see Table 1) were analysed from 200 prob-
able AD patients and 232 healthy elderly controls (CN). AD subjects
were scanned at screening and followed up at 6, 12, and 24 months,
CN subjects at 6, 12, 24 36 and 48 months. All subjects were scanned
with a standardised 1.5 T MP-RAGE protocol developed for ADNI (Jack
et al., 2008). The typical acquisition parameters were repetition time
(TR) of 2400 ms, minimum full echo time (TE), inversion time (TI) of
1000 ms, flip angle of 8, 24 cm field of view, 192 x 192 x 166 acquisition
matrix in the x-,y-, and z-dimensions, yielding a voxel size of 1.25x
1.25x1.2 mm°, and later reconstructed to 1 mm isotropic voxels.
Image correction steps included gradwarp (Jovicich et al., 2006),
B1-correction (Jack et al., 2008), N3 bias field correction (Sled et al.,
1998), and phantom-based geometrical scaling (Gunter et al., 2006).

Linear registration (9-parameter) was used to align the longitudinal
scan series of each subject and then the mutually aligned time-series
was registered to the International Consortium for Brain Mapping
template (ICBM-53) (Mazziotta et al.,, 2001). Brainmasks that excluded
the skull, other non-brain tissues, and the image background were gen-
erated automatically using a parameter-less robust brain extraction tool
(ROBEX) (Iglesias et al., 2011).

Individual Jacobian maps were created to estimate 3D patterns of
structural brain change over time by warping the skull-stripped, globally
registered and scaled follow-up scan to match the corresponding screen-
ing scan. We used a non-linear, inverse consistent, elastic intensity-
based registration algorithm (Leow et al., 2005), which optimises a
joint cost function based on mutual information (MI) and the elastic
energy of the deformation. Colour-coded maps of the Jacobian determi-
nants were created to illustrate regions of ventricular/CSF expansion
(ie., with det J(r)>1), or brain tissue loss (i.e., with det J(r)<1)
(Ashburner and Friston, 2003; Chung et al., 2001; Freeborough and
Fox, 1998; Riddle et al, 2004; Thompson et al., 2000; Toga, 1999)
over time. These longitudinal maps of tissue change were also spatial-
ly normalised across subjects by nonlinearly aligning all individual
Jacobian maps to an average group template known as the minimal
deformation target (MDT), for regional comparisons and group statisti-
cal analyses.

The study was conducted according to the Good Clinical Practice
guidelines, the Declaration of Helsinki and U.S. 21 CFR Part 50-
Protection of Human Subjects, and Part 56-Institutional Review
Boards. Written informed consent was obtained from all participants
before experimental procedures, including cognitive tests, were
performed.

Phenotype extraction

We include 253 individuals (99 AD, 154 CN) with longitudinal
maps at all three time points (6, 12 and 24 months), who have also
been genotyped by ADNI. Other time points are excluded because of
missing observations.

Table 1
Available scans for the ADNI-1 dataset (downloaded on February 28, 2011).
Screening 6 mo 12 mo 24 mo

AD 200 165 144 111
CN 232 214 202 178
Total 432 379 346 289
At screening:
Group Age (years) N male N female
AD 75.7+£7.7 103 97
CN 76.0+5.0 120 112

To maximise the power to detect causal pathways, we seek a phe-
notype which is highly representative of those structural changes in
the brain that are characteristic of AD. One way to do this is to use
prior knowledge on regions of interest (ROI) to extract a univariate
quantitative measure as a disease signature (Potkin et al., 2009). We
instead use a voxel-wise, data-driven approach to produce a multi-
variate disease signature that may present a stronger signal for the
detection of genetic effects (Vounou et al., 2011).

A previous imaging genetic study on the same ADNI cohort mea-
sured structural change relative to baseline at a single time point only.
In that study an AD-specific phenotype was produced using a sparse
linear classifier to select a subset of voxels that minimised the CN/AD
classification error (Vounou et al,, 2011). In the present study where
we incorporate two additional timepoints, we instead begin by fitting
a linear regression with an intercept term, where the dependent
variable is the voxel value (change relative to baseline at screening),
and the independent variable is time. The regression coefficient for
the slope thus gives a summary measure of tissue change over time at
each voxel. To obtain a phenotype that is maximally discriminative
between CN and AD in our sample, we remove all voxels where the
difference in the slopes is not significantly different from zero, by
performing an analysis of variance (ANOVA), with sex and age as covar-
iates. Finally we select the most discriminative voxels whose ANOVA
p-values exceed a level of 0.05, with a Bonferroni correction for multiple
testing. Once again, the use of an ultra-conservative significance thresh-
old ensures that our phenotypic disease signature is maximally discrim-
inative between CN and AD in our sample. The final set of phenotypes
used in the study then corresponds to the voxel-wise slope coefficients
for all 253 subjects at the selected voxels, corrected for sex and age.

Genotype data

Genotypes for the 464 subjects in the study were obtained from the
ADNI database. ADNI genotyping is performed using the Human610-
Quad Bead-Chip, which includes 620,901 SNPs and copy number varia-
tions (see Saykin et al., 2010 for details). SNPs defining the APOEc4
variant are not included in the original genotyping chip, but have
been genotyped separately by ADNIL. These were added to the final ge-
notype dataset. Subjects were unrelated, and all of European ancestry,
and passed screening for evidence of population stratification using
the procedure described in Stein et al. (2010). We included only autoso-
mal SNPs in the study (78,874 markers excluded), and additionally
excluded SNPs with a genotyping rate <95% (42,680 SNPs), a Hardy-
Weinberg equilibrium p-value <5x 107 (873 SNPs), and a minor allele
frequency <0.1 (64,204 SNPs). Finally, since our method does not allow
for missing SNP minor allele counts, missing genotypes were imputed
(see Vounou et al., 2011 for details). 434,271 SNPs remained after all
SNP filtering steps described above.

SNP to pathway mapping

Our SNP mapping procedure rests on the extraction of prior infor-
mation from a pathway database that provides curated lists of genes,
mapped to functional networks or pathways. Pathway databases such
as those provided by KEGG (http://www.genome.jp/kegg/pathway.
html), Reactome (http://www.reactome.org/) and Biocarta (http://
www.biocarta.com/) typically classify pathways across a number of
functional domains, for example apoptosis, cell adhesion or lipid me-
tabolism; or crystallise current knowledge on specific disease-related
molecular reaction networks.

Starting with a list of all genes that map to at least one pathway in
the database, we assign SNPs to genes within a specified distance, up-
stream or downstream of the gene in question, and thence to pathways.
This process is illustrated schematically in Fig. 1. For our AD pathway
study, we proceed as follows. A list of 21,004 human gene chromosomal
locations, corresponding to human genome assembly GRCH36 was


http://www.loni.ucla.edu/ADNI/Data/
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://www.reactome.org/
http://www.biocarta.com/
http://www.biocarta.com/

1684
™ an
pamars Y Y
N e

AN/ INVANIN
okobdbiabothobdin

genes

genotyped SNPs

M. Silver et al. / Neurolmage 63 (2012) 1681-1694

™

7

~
A R oy

7>

bk

Fig. 1. Schematic illustration of the SNP to pathway mapping process. (i) Known genes (green circles) are mapped to pathways using information on gene-gene interactions (top
row), obtained from a gene pathway database. Many genes do not map to any known pathway (unfilled circles). Also, some genes may map to more than one pathway. (ii) Genes
that map to a pathway are in turn mapped to genotyped SNPs within a specified distance. Many SNPs cannot be mapped to a pathway since they do not map to a mapped gene
(unfilled squares). Note SNPs may map to more than one gene. Some SNPs (orange squares) may map to more than one pathway, either because they map to multiple genes
belonging to different pathways, or because they map to a single gene that belongs to multiple pathways.

obtained using Ensembl's BIOMART API (www.biomart.org). SNPs were
then mapped to any gene within 10 kilo base pairs, upstream or down-
stream of the gene in question. This resulted in 211,106 SNPs being
mapped to 18,405 genes. While the majority of known genes did map
to at least one SNP in our study, approximately half of the SNPs passing
QC were not located within 10 kbp of a known gene. For pathway map-
ping, we used the KEGG canonical pathway gene sets obtained from the
Molecular Signatures Database v3.0 (http://www.broadinstitute.org/
gsea/msigdb/index.jsp), which contains 186 gene sets, which map to a
total of 5267 distinct genes, with many genes mapping to more than
one pathway. Note that only around 25% of all known genes map to a
pathway in this dataset. We map all SNPs within 10 kilo base pairs of
one or more of the 5267 pathway-mapped genes to the pathway(s)
concerned. Finally, we exclude the largest pathway, by number of
mapped SNPs, (‘Pathways in Cancer’) that is highly redundant, in that
it contains multiple other pathways as subsets. This results in 66,162
SNPs mapped to 4425 genes and 185 pathways (see Fig. 2).

The distribution of pathway sizes in terms of the number of SNPs
that they map to is illustrated in Fig. 3 (left). Pathway sizes range
from 57 to 5111 SNPs (mean 949). The distribution of overlapping
SNPs, that is the number of pathways to which each SNP is mapped, is
illustrated in Fig. 3 (right). This ranges from 1 to 45 pathways (mean
2.65).

Note that following the above procedure, some genes previously im-
plicated in AD studies do not map to any pathways, and thus are not
included in the analysis. For example, in this study, 12 out of 30 genes
highlighted in the review by Braskie et al. (2011) are mapped to path-
ways. The remaining 18 genes are excluded because they do not feature
in any KEGG pathway. Also note that since SNPs are mapped to all genes
within a range of 10 kbp, AD implicated SNPs may map to more than
one gene, and its corresponding pathway(s). This is the case for exam-
ple with a number of SNPs mapping to the APOE and TOMMA40 genes.
This information is summarised in Table 2.

Pathways sparse reduced-rank regression

We consider the problem of identifying gene pathways associated
with a multivariate quantitative trait (MQT) or phenotype, YR?. The
observed values for phenotype g, measured for N unrelated individuals,
are arranged in an (Nx 1) response vector yg, and the Q phenotypes are
arranged in an (Nx Q) response matrix Y= (yj,...,yo). We assume that
minor allele counts for P SNPs are recorded for all individuals, and
denote by x;; the minor allele count for SNP j on individual i. These are
arranged in an (NxP) genotype design matrix X. We additionally
assume all phenotypes and genotypes are mean centred, and that SNP

ADNI QC’d SNPs
434,271 SNPs

Genes: GRCH36/hg18
21,004 genes

SNP to gene mappm/

Pathways: KEGG
186 Pathways containing

211,106 SNPs mapped to
18,405 genes within 10kbp

’ 5,267 distinct genes

<

SNP to pathway mapping

[ Exclude largest, highly redundant, pathway]

I/

[66,1 62 SNPs mapped to 4,632 genes and 185 pathways ]

overlap expansion

P* = 175,544 SNPs mapped to 185 pathways

Fig. 2. Mapping SNPs to pathways.
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Fig. 3. Left: Pathway sizes. Distribution of KEGG pathways, by the number of ADNI SNPs that they map to. Right: SNP overlaps. Distribution of ADNI SNPs, by the number of pathways
that they map to. SNPs map to multiple pathways either because they map to a gene that belongs to more than one pathway, or because they map to more than one gene belonging

to more than one pathway.

genotypes are standardised to unit variance, so that Zixizj =1,forj=1,
..,P.

If we denote by C=(Cj,...,Cq), a (Px Q) matrix of regression coef-
ficients, then we can model the multivariate response as
Y=XC+E 1)
where E is an (Nx Q) matrix of error terms. A least squares estimate
for C may be obtained by generalising the multiple least squares opti-
misation to include a multivariate response, that is by minimising the
residual sum of squares

MMMIR _ Tr{(Y—XC)(Y—XC)’}. )

Where N>P, and the design matrix X is of full rank, the least

~ ’ _] 1.
squares estimates are given by C= (X X) X'Y. Note that the

Table 2

AD genes included in this study. 12 out of 30 genes previously implicated
with AD (Braskie et al., 2011) that are included in this study are listed in
the left hand column. These are genes that (a) map to a KEGG pathway
and (b) have a genotyped SNP within 10 kbp. The right hand column
shows neighbouring genes that map to one or more SNPs mapping to the
respective AD implicated gene.

Implicated gene Mapped genes in study

TOMM40 TOMM40 APOE PVRL2
ACE ACE

EPHA4 EPHA4

CCR2 CCR2 CCR5

APOE TOMM40 APOE PVRL2
FAS FAS

CHRNB2 ADAR CHRNB2

EFNA5 EFNA5

LDLR LDLR

CR1 CR1 CR2

GRIN2B GRIN2B

IL8 IL8

(Px1) column vectors C, ...,CQ of C are just the least squares esti-
mates of the regression of each y, on X, that is

C, = arg ncain||yq—xcq||§ g=1,...Q (3)
q

where || ||, denotes the ¢, (Euclidean) norm.

For high-dimensional datasets, such as those typically found in
genomics, this model is unsuitable for a number of reasons. Firstly,
P> N, so that X' X is singular and thus not invertible and the estimates
Cq are not uniquely defined. Even where P<N, for example in a candi-
date gene study, LD or equivalently near multi-collinearity between
predictors means that X'X is nearly singular, resulting in inflated vari-
ance in SNP coefficient estimates. Furthermore, the estimation (3) is
equivalent to performing Q independent regressions, and takes no
account of the multivariate nature of Y. Ideally, we would like to exploit
this in our estimation procedure to boost power (Breiman and
Friedman, 1997; Vounou et al., 2010).

These limitations are addressed in reduced-rank regression (RRR),
(Izenman, 2008), by restricting the rank of the coefficient matrix C.
Specifically we impose the constraint that C has rank r<min(P,Q),
and rewrite C as C=BA, where A and B both have (full) rank r. The
reduced rank form of Eq. (1) is then given by

Y = XBA + E (4)
where B and A are (Px ) and (rx Q) matrices of regression coefficients
respectively relating to genotypes and phenotypes. This model has
the interesting interpretation of exposing r hidden or latent factors,
which capture the major part of the relationship between Y and X. If
we denote by By, the kth column of B, then we see that the products
XB ),k =1,...,r, represent r linear combinations of the P predictor
variables. Similarly, the r row vectors, Agy,k=1,...,r, represent the
transformation of each of these back to the dimensions of Y, so that
they can predict the response. The linear combinations XB;, and YA;,()
thus represent a reduced set of r (latent) factors that capture the
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relationship between response and predictors, reduced in the sense that
this set has dimensionality r<min(P,Q).

We consider the rank-1 RRR model which captures the first, main
set of genotype and phenotype latent factors describing the associa-
tion between X and Y. With r=1, we rewrite Eq. (4) as

Y = Xba +E 5)

where b and a are (Px1) and (1xQ) coefficient vectors respectively

relating to genotypes and phenotypes. Least squares estimates for b
and a are then obtained by minimising the rank-1 equivalent of Eq. (2),

MRRIR Tr{(Y—Xba)I"(Y—Xba)'} ©6)

where I is a given (qxq) positive definite matrix of weights. The
choice of I'reflects how we deal with correlation between the responses
Vi.....¥q in the least squares optimisation. Such correlations can be
exploited by setting I' to be the inverse of the estimated covariance of
the responses. In the context of imaging genetics for example, where a
voxel-wise multivariate response may be derived from structural MRI,
spatial correlations between phenotypes are expected in part to reflect
common genetic variation. However, the calculation of the inverse

! _] . . . . . . .
(Y Y) is computationally very intensive, and is in any case likely to

be inaccurate for small sample sizes, so we instead use the simplifying
approximation I'=I, effectively assuming the responses to be
uncorrelated (Vounou et al., 2010, 2011).

We now turn to the case where all P SNPs may be mapped to L
groups, G, —{1,..., P}, I=1,...,L, for example by mapping SNPs to
gene pathways (see the SNP to pathway mapping section). We begin
by assuming that pathways are disjoint or non-overlapping, that is
GiNGr# for any [ #I'. We denote the rank-1 vector of SNP regression
coefficients by b= (by,...,bp). We additionally denote the matrix
containing all SNPs mapped to pathway G; by X;=(X,X,,....Xs),
where Xj= (x1;,Xj...,Xn;)’, is the column vector of observed SNP
minor allele counts for SNP j, and S; is the number of SNPs in G,. Finally,
we denote the corresponding vector of SNP coefficients by b;= (by,, by,
...,bs).

In general, where P is large, we expect only a small proportion of
SNPs to be ‘causal’, in the sense that they exhibit phenotypic effects.
We further assume that causal SNPs will tend to be enriched within
functional groups, or gene pathways. This latter assumption is illustrat-
ed schematically in Fig. 4, where causal SNPs (marked in grey) tend to
accumulate within a small number of causal pathways, while the major-
ity of pathways contain no causal SNPs. A model that generates such a
sparsity pattern is said to be group-sparse, in that SNPs affecting Y are

to be found in a set CC{1,...,L} of causal gene pathways (groups),
with |C|<L, where |C| denotes the cardinality of C. We seek a parsimo-
nious model that is able to identify this set, C, of causal pathways, by
imposing a group-sparsity constraint on the estimated SNP coefficient
vector, b.

In sparse reduced-rank regression (sRRR) (Vounou et al., 2010,
2011), sparse estimates for genotype and/or phenotype coefficient
vectors are obtained by imposing a regularisation penalty on b and/
or a respectively. Apart from the benefits of model parsimony,
enforcing a sparsity constraint on b also allows us to deal with the
P> N case, and with multicollinearity between predictors. In our pro-
posed ‘pathways sparse reduced-rank regression’ (PsRRR) model, the
required group sparsity pattern is obtained by imposing an additional
group lasso penalty (Yuan and Lin, 2006) on Eq. (6). Group-sparse so-
lutions to the rank-1 RRR model (5) are then obtained by minimising
the following penalised least squares problem

L
MPSRRIR _ %Tr{(y_xba) (Y—Xba)’} + )\Z wi[byll, (7)
1=

with respect to b and a. Eq. (7) corresponds to an ordinary least squares
(OLS) optimisation, but with an additional group-wise penalty whose
size depends on ||bj|5,=1,...,L, a regularisation parameter \, and an
additional group weighting parameter w; that can vary from group to
group. Depending on the value of \, this penalty has the effect of setting
multiple pathway SNP coefficient vectors, b;=0, | —{1,...,L}, thereby
enforcing group sparsity. Pathways with non-zero coefficient vectors
form the set C of selected pathways, so that

C(N) = {l:b, # 0}.

Expanding Eq. (7), and noting that the first term YY does not
depend on b or a, solutions satisfy

L
b,a = argmin {% (—2aY'Xb + aa’b’x’xb) +N> " wilbl, } (8)
ba I=1

For fixed a, this penalised least squares problem equates to a convex
optimisation in b, and is thus amenable to solution using coordinate
descent (Friedman et al.,, 2007). A global solution can then be obtained
by iteratively estimating one coefficient vector (b or a), while holding
the other fixed at its current value, until convergence (Chen and Chan,
2012).
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Fig. 4. Group-sparse distribution of causal SNPs. The set SC{1, ..., P} of causal SNPs influencing the phenotype are represented by boxes that are shaded grey. Causal SNPs are assumed to
occur within a set C of causal pathways. Here C = {2, 3}. Note that the particular distribution of causal SNPs may vary for each individual, i=1,...,N. The group sparsity assumption is that

lc|<L.
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Thus, for fixed b and \, and with the additional constraint that
bb' = 1, we estimate a as

L
a = argmin {; (—ZaY/Xb + aa’b'X’Xb) +AY w,||b,||2}.
a =1

Differentiating and setting to zero gives

~,

b XY

a— 22X
b X'Xb

Similarly, for fixed a, and with the additional constraint that
aa' = 1, we have

L
b = argmin {% (—2aY'Xb + le'Xb) 2w, } 9)
b =1

This is equivalent to a standard group lasso estimation problem with
univariate response vectorYa'. In an earlier work we describe a method,
‘Pathways Group Lasso with Adaptive Weights’ (P-GLAW), for solving
this problem, specifically tailored to the situation where predictor vari-
ables are SNPs grouped into pathways (Silver and Montana, 2012).
Here, we briefly recap key points of this method, and incorporate a
number of extensions designed to accommodate a MQT in the context
of PsRRR with coordinate descent.

The minimising function (9) is convex, and can be solved using block
coordinate descent (BCD) (Friedman et al., 2010), an extension of coor-
dinate descent to convex estimation with grouped variables. BCD rests
on obtaining successive estimates, b, for each pathway in turn, while
keeping current estimates for all other pathways, by, k1, constant,
until a global minimum is obtained. For pathway G, =1,...,L, esti-
mates for each SNP coefficient, bj,j=1....,1s, are obtained through coor-
dinate descent within the group. The group lasso estimation algorithm
using BCD is presented in Box 1.

As N increases, fewer groups (or pathways) are selected by the
model (Box 1, step 5), while for selected pathways with b; 0, esti-
mated SNP coefficients, b;j=1,...,S, tend to shrink towards zero
(Box 1, step 11).

The full PsRRR estimation algorithm is presented in Box 2.

Note that we set the regularisation parameter, N, to be a constant
fraction (y) of the maximal value, N4, Wwhere no groups are selected
by the model.

Box 1
Q(a, Y, X, \): GL estimation algorithm using BCD.
1. b—o0
block coordinate descent
2. repeat
3. forl=1,2,...,L
4. r—Ya'— 3" . Xiby
5. if ||X/,l'l||zﬁ)\Wl
6. b1<—0
7. else
coordinate descent within block
8. repeat
9. forj=1,,..., Is,
10. r<—Ya —Xb
et
(]l
12. until b; converges
13. until b converges

Box 2
Rank-1 PsRRR estimation algorithm using coordinate descent.
1. a1/l
2. repeat:
3 N < YNimax Where Npe = min)\{)\ JXIYall, =ww, 1=1, L}
4. b—0(a,Y,X,\) (from Box 1)
5 b < b/||bl|, (normalise)
6 a— bXY
b XXb
7. a<a/lall, (normalise)
8. until b and a converge

A key feature of our P-GLAW method is the need to accommodate
the fact that pathways overlap, that is GiNG; #@ for some [#1', since
SNPs may map to multiple pathways. To enable the independent selec-
tion of pathways, we instead require that groups are disjoint (Jacob et
al., 2009). This is achieved through an expansion of the design matrix,
X, formed from the column-wise concatenation of the L sub-matrices
of size (NxS)), so that X=[Xy,X,...,X;]. This expanded X has dimen-
sions (NxP*), with P* =} ;S,. A corresponding expansion of the pa-
rameter vector, b=[b;’,b’5,...,b;]" is also required. The expansion of
the design matrix enables the same SNP to be selected (or not selected)
in one pathway, while remaining unselected (or selected) in another
pathway to which it is mapped. Interaction effects between pathways
arising from replicated SNPs will occur, but in simulation studies we
have found that multiple interacting causal pathways may be selected
by the model (Silver and Montana, 2012).

Another issue that we address is the problem of pathway selection
bias, by which we mean the tendency of the group lasso to favour the
selection of specific pathways, under the null, where no SNPs influence
the phenotype. Such biases can arise for example from variations in the
number of SNPs or genes in pathways, and varying patterns of depen-
dence (LD) between SNPs within pathways. Under the null, with the
regularisation parameter N tuned so that a single pathway is selected,
pathway selection probabilities should follow a uniform distribution,
namely with probability I'lj=1/L, for = 1,...,L. However, where biasing
factors are present, the empirical probability distribution, IT* will not be
uniform. Our iterative weight tuning procedure works by applying suc-
cessive adjustments to the pathway weight vector, w= (wy,...,w;), so
as to reduce the difference, d;=T11;(w)—TI1I, between the unbiased
and empirical (biased) distributions for each pathway. We begin with
an initial weight vector,w® = /S, which corrects for the biasing effect
of group size in the group lasso model (Silver and Montana, 2012). At
iteration 7, we compute the empirical pathway selection probability
distribution ITj(w™) over multiple model fits with permuted pheno-
types, and compute d, for each pathway. We then apply the following
weight adjustment
w{™D = i [1—sign(d,)(n—1)L2d,2] 0<n<1, I=1,...L
where the parameter 7) controls the maximum amount by which each
wj can be reduced in a single iteration, in the case that pathway g is se-
lected with zero frequency. The square in the weight adjustment factor
ensures that large values of |d)| result in relatively large adjustments to
w,. Iterations continue until convergence, where Z,Lzl |d| <e.

Even when relatively few SNPs or genes are associated with the
phenotype, we can expect multiple pathways to harbour genetic effects
since many SNPs and genes overlap multiple pathways. Where more
than one pathway is selected by the model, we therefore expect that
pathway selection probabilities will not be uniform, since the presence
of overlapping SNPs means that pathways are not independent. Instead,
selection probabilities will reflect the pattern of overlaps corresponding
to the distribution of causal SNPs (or spurious associations under the
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null). This non-uniform distribution of selection probabilities is to be
expected and is in fact desirable, since a signal corresponding to causal
SNPs or genes should be captured in each and every pathway that con-
tains them. We have shown in extensive simulation studies, that where
more than one pathway is selected, the weight tuning process described
above leads to substantial gains in both sensitivity and specificity when
identifying causal pathways (Silver and Montana, 2012).

Estimates for b and a respectively represent the first (rank 1) latent
factors that are expected to capture the strongest signal of association
between gene pathways and the phenotype. In principle, it is possible
to capture further latent factors of diminishing importance, by iterative-
ly repeating the procedure described above, after regressing out the ef-
fects of previous factors (Vounou et al, 2010). With PsRRR, the
estimation of further ranks is complicated by the need to recalibrate
the group weights at each step, and by the typically large number of
SNPs in selected pathways. For this reason we consider only the first
latent factor in this study.

Pathway, gene and SNP ranking

Pathway ranking

With most variable selection methods, a choice for the regularisation
parameter, \, must be made, since this determines the number of vari-
ables selected by the model. Common strategies include the use of
cross validation to choose a N value that minimises the prediction
error between training and test datasets (Hastie et al., 2008). One draw-
back of this approach is that it focuses on optimising the size of the set,C,
of selected pathways (more generally, selected variables) that mini-
mises the cross validated prediction error. Since the variables in ¢ will
vary across each fold of the cross validation, this procedure is not in
general a good means of establishing the importance of a unique set of
variables (Vounou et al, 2011). Alternative approaches, based on
data resampling or bootstrapping have been demonstrated to improve
model consistency, in the sense that the ‘true’ variables are selected
with a high probability (Bach, 2008; Meinshausen and Biihlmann,
2010). We adopt a resampling strategy, in which we calculate pathway
selection frequencies by repeatedly fitting the model over B sub-
samples of the data, at a fixed value for \. With this approach, which
in some respects resembles the ‘pointwise stability selection’ strategy
of Meinshausen and BiihImann (2010), selection frequencies provide a
direct measure of confidence in the selected pathways in a finite sample.

We denote the set of selected pathways at subsample b by

= {1:p"#0} b=1...B

where b{? is the estimated SNP coefficient vector for pathway I at
subsample b. The selection probability for pathway [ measured across
all B subsamples is then

path 1 d b)
m} 7EZI

where the indicator variable, I{”? =1 if 1=¢'?), and 0 otherwise. Path-

ways are ranked in order of their selection probabilities, n,]P“f”z,
Zﬂle ath.

SNP and gene ranking

The PsRRR model is designed to identify important pathways which
may contain multiple genetic markers with varying effect sizes. Howev-
er, it is still interesting to establish which SNPs and genes are most pre-
dictive of the response amongst those mapped to the set¢” of selected
pathways at subsample b. Note that these are not necessarily the SNPs
and genes that are driving the selection of any particular pathway in
the PsRRR model.

To rank SNPs and genes, we perform a second level of variable selec-
tion using sRRR with a lasso penalty (Vounou et al., 2011). We first

form the reduced (NxZ®) matrix X, o, with columns {X JEU G;}

corresponding to all SNPs in pathways selected at subsample b. Sparse es-
timates for the corresponding SNP coefficient vector, B, and rank-1 phe-
notype vector a then satisfy the equivalent of Eq. (8) with a lasso
penalty, namely

B,& = argmin {% (—ZaY'Xé‘mB + aa’B'Xé(mX b)ﬂ) + N8Il }

We denote the set of SNPs selected at sample b by S (b), and further
denote the set of selected genes to which the SNPsin S are mapped
by ¢ <D, where d={1,...,G} is the set of gene indices corresponding
to all G mapped genes. Using the same strategy as for pathway ranking,
we obtain an expression for the selection probability of SNP j across B
subsamples as

nSNP I®)

J

53
I

Uc:l\ —
Mm

1

where the indicator variable, ') =1 if je5"”, and 0 otherwise. A sim-
ilar expression for the selection probability for gene g is

(b)
Iy

ene 1 B
g El;
where the indicator variable, I{) =1 if g=¢, and 0 otherwise. SNPs

and genes are then ranked in order of their respective selection
frequencies.

Computational issues

All computer code is written in the open source Python program-
ming language, using Numpy and SciPy modules which are optimised
for efficient operation with large matrices. Execution of the PsRRR esti-
mation algorithm nonetheless presents a considerable computational
burden, both in terms of processor time and memory use. We therefore
implement a number of strategies designed to increase computational
efficiency (see Silver and Montana, 2012 for details). We use a Taylor
approximation of the group penalty that avoids the need for computa-
tionally intensive numerical search methods (Breheny and Huang,
2009; Friedman et al., 2010). In addition, we use an ‘active set’ strategy
(Roth and Fischer, 2008; Tibshirani et al., 2010), that identifies a subset
of pathways that are more likely to be selected by the model at a given
. Model estimation then proceeds with this reduced set, followed by a
final check to ensure that no other pathways should have been included
in the active set in the first place. Depending on the choice of \, this can
lead to substantial gains in computational efficiency and a large reduc-
tion in memory requirements, resulting from the very much reduced
size of X in Q(a,Y,X,\).

The need to fit a large number of PsRRR models over multiple
subsamples of the data for pathway ranking presents another major
computational bottleneck. However, the fact that each subsample is
generated entirely independently presents an opportunity for
performing multiple model fits in parallel. We implement such a
strategy using a computer cluster, in which a single client node dis-
tributes subsamples across 40 CPU cores. Parallel computations and
client-server communication are implemented in Parallel Python
(http://www.parallelpython.com/). The reduction in computation
time due to parallelisation is considerable. For example, in the AD
study described in this paper, total execution time (excluding weight
tuning) with B= 1000 subsamples was 6 1/2 h, whereas total execu-
tion time if each job were run separately would be approximately 10
1/2 days.
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Fig. 5. Sample mean (left) and standard deviation (right) of slope coefficients for the 2 subject groups. Slope coefficients represent a linear approximation of change in brain volume
over time. Scales represent 10 x percentage change in voxel volume per year, so that for example a slope coefficient of 12 (white areas in left hand plot) is equivalent to an average

yearly increase in voxel volume of 1.2%.

Results
AD associated phenotypes

An imaging signature characteristic of AD was created using the pro-
cedure described in the Phenotype extraction section. We begin by
computing a linear least-squares fit of the longitudinal structural
change across 3 time points at each voxel. An illustration of average
slope coefficients, and their variation between subjects, is shown in
Fig. 5. Increased expansion of ventricular volumes is clear in all subjects,
but this increase is most marked in AD patients, where ventricular vol-
umes expand by an average of 1.2% per year (white regions in left hand
part of Fig. 5). AD patients also show the most variation in structural
change over time.

A statistical image showing the corresponding ANOVA p-values, a
measure of the extent to which each voxel is able to discriminate be-
tween ADs and CNs, is shown in the top row of Fig. 6. From the Q"=

2,153,231 voxels in this image, we extract a final set of Q=148,023
voxels whose p-values exceed a Bonferroni-corrected threshold of
0.05/Q’. This final set of voxels that is most discriminative between
ADs and CNs is highlighted in yellow in the bottom row of Fig. 6.
These Q voxels constitute the phenotype for each subject used in the
study. We provide a further indication of the discriminatory power of
the selected voxels by visualising the Euclidean distances between sub-
jects using the selected voxels in a 3D multi-dimensional scaling plot in
Fig. 7. The relatively small overlap between CD and AD subjects indi-
cates that our chosen disease signature is indeed discriminative be-
tween the two groups. As expected we also see evidence of greater
variability in the AD group, compared with CN.

Pathway, SNP and gene rankings

We use the PsRRR algorithm described in the Pathways sparse
reduced-rank regression section to identify KEGG pathways associated

Fig. 6. Imaging signature characteristic of AD. Top: Statistical image showing p-values (—log 1o scale) obtained from an ANOVA on the linear structural change over 3 time points,
corrected for age and sex, to discriminate between AD and CN subjects. Bottom: The final set of Q= 148,023 selected voxels with p-values exceeding a Bonferroni-corrected threshold

ap=0.05/2153231,(—log;o oy ="7.6) are highlighted in yellow.
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Fig. 7. 3D multi-dimensional scaling plot illustrating the spread of imaging signatures
across ADs and CNs. Imaging signatures correspond to selected voxels only.

with the AD-discriminative longitudinal phenotypes described in the
preceding section. Pathways are ranked in order of importance using
the resampling strategy described in the Pathway, gene and SNP
ranking section, with B=1000 subsamples. We use N\ =0.8 Nyax
which results in the selection of an average of 7 pathways at each sub-
sample (min 1, max 15, SD=2.3). Pathway ranking results are
presented in Table 3.

SNPs and genes are ranked using sRRR with a lasso penalty on the
SNP coefficient vector, as described in the Pathway, gene and SNP
ranking section. Lasso selection is performed on pathways selected at
each subsample in the pathway analysis described above, so that once
again B=1000. The number of SNPs, Z), included in the lasso model
at subsample b varies according to the number and size (in terms of
the number of mapped SNPs) of selected pathways. Z*) ranges from
a minimum of 227, to a maximum of 19,642 (mean=_8400; SD=

Table 3
Top 30 pathways, ranked by pathway selection frequency.

3000). As with pathway ranking, we use N = 0.8 N;,q, Which results in
the selection of an average of 11.5 SNPs at each subsample (min 1, max
56, SD=11.7). SNP and gene ranking results are presented in Table 4.

We first consider the pathway ranking results in Table 3. Under the
null, where there is no association between phenotypes and genotypes,
and with a single pathway selected by the model at each subsample,
the expected pathway selection frequency distribution is uniform,
with, nP" =1/185 ~ 0.005. With an average of 7 pathways selected at
each subsample, as is the case here, and assuming pathways are inde-
pendent, the corresponding pathway selection frequency distribution
under the null is also uniform, with, mP®"=7/185~0.038. However,
as explained in the Pathways sparse reduced-rank regression section,
the presence of SNPs (and genes) overlapping multiple pathways
means that where more than one pathway is selected at each subsam-
ple, the selection frequency distribution will depend on the distribution
of causal SNPs and genes, and will not be uniform. For this reason the
figure of 0.038 should be seen only as a guide threshold to signify
pathway importance, and while we report pathway selection frequen-
cies, mP™ our main focus is on pathway rankings. To aid interpretation
of pathway rankings, for each pathway, we list those genes in the path-
way that are ranked in the top 30 genes, selected by lasso selection
(in Table 4).

In the final column of Table 3 we list genes in the top ranked path-
ways that have previously been linked to AD in the review by Braskie
et al. (2011). Both the number of such genes affecting phenotypes in
this study, and the extent to which these genes may drive pathway se-
lection are unknown. It is nevertheless interesting to consider whether
these genes are significantly enriched amongst high-ranking pathways.
To do this we calculate an average ranking for each ‘AD gene’ by taking
the average rank achieved by all pathways containing the gene in ques-
tion. We then derive an AD gene enrichment score by summing average
AD gene ranks across all AD genes. A lower score thus indicates that
pathways containing AD genes tend to be ranked high. We compare

Rank KEGG pathway name mPath Size Lasso selected genes in pathway’ Known AD genes?
(# SNPs) in pathway

1. Insulin signalling pathway 0.524 1517 HK2 PIK3R3 PIK3CG ACACA G6PC

2. Vascular smooth muscle contraction 0.456 3236 PRKCB ADCY8 ADCY2 PRKCA MYLK PLCB1

3. Melanogenesis 0.331 1638 PRKCB ADCY8 ADCY2 PRKCA GNAI1T WNT2 PLCB1

4. Focal adhesion 0232 4009 PRKCB PRKCA PIK3R3 MYLK PIK3CG COL5A3 RELN ACTN1

5. Gap junction 0.180 2350 PRKCB ADCY8 ADCY2 PRKCA GNAI1 PLCB1

6. Huntington's disease 0.155 1980 PLCB1 DNAI2 UQCRH GRIN2B

7. Purine metabolism 0.154 2896 ADCY8 ADCY2 ALLC

8. Pyruvate metabolism 0.153 456 ACACA

9. Propanoate metabolism 0.152 471 ACACA

10. Amyotrophic lateral sclerosis ALS 0.151 865 TOMM40 TOMM40 GRIN2B

11. Chemokine signalling pathway 0.145 2769 PRKCB ADCY8 ADCY2 PIK3R3 PIK3CG GNAI1 PLCB1 XCL1 ITK GNG2 GRK5 CCR2 IL8

12. Phosphatidylinositol signalling system 0.138 2067 PRKCB PRKCA PIK3R3 PIK3CG DGKA DGKB PLCB1 DGKI

13. Citrate cycle TCA cycle 0.137 210

14. Glycosphingolipid biosynthesis globo series 0.135 227

15. Alzheimer's disease 0.127 2500 PLCB1 APOE UQCRH APOE FAS GRIN2B

16. Complement and coagulation cascades 0.119 783 CR1 CR1

17. Steroid biosynthesis 0.113 153

18. Jak stat signalling pathway 0.106 1311 PIK3R3 PIK3CG

19. ECM receptor interaction 0.104 1969 COL5A3 RELN

20. Tight junction 0.103 3332 PRKCB PRKCA GNAI1 ACTN1 YES1

21. Glycerolipid metabolism 0.102 877 DGKA DGKB DGKI

22. Calcium signalling pathway 0.096 5111 PRKCB ADCY8 ADCY2 PRKCA MYLK PLCB1

23. Toll like receptor signalling pathway 0.096 712 PIK3R3 PIK3CG IL8

24. Leishmania infection 0.090 620 PRKCB CR1 CR1

25. Lysosome 0.089 1111

26. Fc gamma R mediated phagocytosis 0.080 1976 PRKCB PRKCA PIK3R3 PIK3CG

27. Neurotrophin signalling pathway 0.075 1689 PIK3R3 PIK3CG

28. Glycerophospholipid metabolism 0.071 1047 DGKA DGKB DGKI

29. Renal cell carcinoma 0.071 840 PIK3R3 PIK3CG

30. Whnt signalling pathway 0.070 2023 PRKCB PRKCA WNT2 PLCB1

! Top 30 ranked genes in this pathway, using lasso selection (see Table 4).
2 Previously identified AD genes in the pathway (see Table 2).
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Table 4

Top 30 SNPs and genes, respectively ranked by SNP and gene selection frequency, using
lasso sRRR. Note the APOE gene is selected at a lower frequency than the APOEe4 since
the allele is often selected in a pathway where it is mapped to the TOMM40 gene only.

Rank SNP RANKING
SNP NP

rs4788426  0.451 PRKCB
rs11074601 0.429 PRKCB ADCYS8 0411 69
1s263264 0.411 ADCY8 ADCY2 0.392 106
rs13189711 0.392 ADCY2 HK2 0302 28
rs680545 0302 HK2 PRKCA 0290 99
rs4622543  0.290 PRKCA PIK3R3 0.267 9
rs9896483  0.274 PRKCA MYLK 0234 24
rs1052610 0.267 PIK3R3 PIK3CG ~ 0.207 9
APOEc4 0.251 TOMM40 APOE ~ COL5A3 0.174 14
10 rs1254403  0.234 MYLK GNAI1 0.167 22
11 rs4730205  0.207 PIK3CG ACACA 0.164 23
12 rs889130 0.174 COL5A3 G6PC 0.163 6
13 rs6973616  0.167 GNAI1 DGKA 0.160 3
14 rs9906543  0.164 ACACA CR1 0.154 21
15 rs2229611  0.163 G6PC TOMM40 0.152 6
16 rs10876862 0.160 DGKA WNT2 0.137 12

GENE RANKING

Mapped gene(s) Gene mE"  # mapped SNPs

PRKCB 0451 73

O oo~ U W=

17 rs772700 0.160 DGKA DGKB 0.131 200
18 rs12734030 0.154 CR1 PLCB1 0.128 218
19 rs11117959 0.154 CR1 APOE 0.127 4
20 rs650877 0.154 CR1 RELN 0.117 160
21 rs11118131 0.154 CR1 DGKI 0.112 49
22 rs6691117  0.142 CR1 ACTN1 0.110 41
23 rs677066 0.142 CR1 ALLC 0.108 18
24 1s2239956  0.137 WNT2 XCL1 0.086 7
25 rs4719392  0.131 DGKB ITK 0.084 27
26 rs6077420  0.128 PLCBI DNAI2 0.077 16
27 rs7777178  0.126 DGKB GNG2 0.076 31
28 rs12699607 0.122 DGKB GRK5 0.074 56
29 1s7796440 0.122 DGKB UQCRH  0.071 2

30 rs1872837 0.120 HK2 YES1 0.068 11

this empirically derived score with the distribution of scores obtained
by permuting pathway rankings 100,000 times. The null distribution
of this enrichment score (obtained by permutation), and the empirical-
ly observed value are compared in Fig. 8. Finally, we compute a p-value
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Fig. 8. Measure of extent to which genes previously linked to AD are enriched in
highly-ranked pathways. The histogram shows the distribution of AD gene enrichment
scores obtained when permuting pathway rankings 100,000 times. The vertical black
line indicates the observed AD gene enrichment score using the true pathway rankings
obtained in the study. From this we derive a p-value indicating the probability that the
empirical AD gene enrichment score could arise by chance as p=0.0051. AD-linked
genes are those identified in Braskie et al. (2011).

for the null hypothesis that the empirically observed enrichment score
has arisen by chance, as the proportion of enrichment scores obtained
through permutation that are lower than the observed value. This
gives a value p=0.0051, indicating that AD genes are highly over-
represented amongst top ranking pathways, compared to what would
be expected by chance.

Discussion

We describe a method for the identification of gene pathways asso-
ciated with a multivariate quantitative trait (MQT). Here, we extend
previous work modelling a univariate response, where we showed
that a multilocus, group-sparse modelling approach can demonstrate
increased power to detect causal pathways, when compared to conven-
tional approaches that begin by modelling individual SNP-phenotype
associations (Silver and Montana, 2012). We apply our method in an
AD gene pathway study using imaging endophenotypes, but our meth-
od is not restricted to the case of biological pathways or imaging pheno-
types, and can be applied to any data in which we seek to identify sparse
groups of predictors affecting a multivariate response.

In any method modelling effects on an MQT, the use of a multivariate
disease signature that is characteristic of the disease under investigation
is important. This is especially so in the case of high-dimensional imag-
ing phenotypes, where a poorly characterised imaging signature with
low signal to noise ratio may show no advantage over a simple ROI
average-based approach (Vounou et al.,, 2011). In this study we extract
an AD imaging phenotype that is highly discriminative of subjects with
the disease, compared to controls, by excluding voxels at which the
fitted slopes, measuring structural change over 3 time points, are not
significantly different between the two groups. The subsequent path-
way and gene mapping stages will clearly depend on the particular
choice of phenotype, so that a different choice of phenotype may well
highlight different genetic effects. An analysis of the sensitivity of our
gene mapping procedure to the choice of phenotype is however beyond
the scope of the present study. We note that implicit in our overall strat-
egy is the assumption that our imaging phenotype is indeed characteris-
tic of AD-related structural change in the general population. Ideally we
would therefore like to validate these results using an independent
dataset. However, at the time of writing no other datasets with similar
imaging endophenotypes were available.

We use a resampling strategy to rank pathways by selection fre-
quency across multiple N/2 subsamples of the data. This strategy is
designed to provide a robust measure of the relative importance of indi-
vidual pathways in a finite sample (Silver and Montana, 2012). In some
respects our approach resembles the ‘pointwise stability selection’
strategy proposed by Meinshausen and Bithlmann (2010). For the lat-
ter, a theoretical bound for determining a selection frequency threshold
that controls the expected number of false positives has been derived.
However, this rests on the assumption that selected variables are inde-
pendent, which is not the case here, since the variables under selection
are groups of variables (pathways) that are functionally related, and
overlap in terms of the genes that they contain. Indeed a feature of
our method is that we expect to identify multiple, possibly interacting
pathways where the signal is strong.

Of the top-ranking pathways identified in our study (see Table 3),
functions associated with many of the top 10 ranked pathways have
been linked to aspects of AD biology described in the literature. Be-
ginning with the top 2 ranked pathways, numerous studies suggest
links between disruption to the insulin signalling pathway and AD
(Biessels and Kappelle, 2005; de la de la Monte and Wands, 2005;
Liao and Xu, 2009; Liu et al., 2011; Steen et al., 2005), and to the
role of vascular smooth muscle dysfunction in AD-associated neuro-
degeneration (Zlokovic, 2011). Other functions previously associated
with AD biology among high-ranking pathways include those re-
lated to focal adhesion, gap junctions, chemokine signalling and phos-
phatidylinositol signalling (Caltagarone et al., 2007; Huber et al.,
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2001; Kim et al., 2003; Nakase and Naus, 2004; Ravetti et al., 2010;
Xia and Hyman, 1999).

In order to better elucidate which genes may be driving pathway
selection, we performed a follow up analysis designed to identify
SNPs and genes in selected pathways that are separately associated
with the phenotype (see Table 4). Since these gene (and associated
SNP) rankings are derived from lasso selection of all SNPs within
selected pathways, irrespective of their ‘group’ structure within path-
ways, they are expected to capture larger, independent signals of
association, and not necessarily all the salient signals within a partic-
ular pathway that may be driving pathway selection. In particular, the
group lasso is designed to detect distributed signals that may not be
highlighted using lasso selection. From this analysis, it is clear that
the lipid kinase genes PIK3R3/PIK3CG, and the calcium-activated,
phospholipid-dependent genes PRKCA/PRKCB are important in driving
selection of many pathways in the top 30 ranks. All these genes have
previously been linked in gene expression studies with B-amyloid
plaque formation in the AD brain (Liang et al., 2008). Aside from the
previously validated AD endophenotype-related genes TOMMA40, CR1
and APOE (Biffi et al., 2010; Lambert et al., 2009; Shen et al., 2010),
other genes occurring in the top 10 ranking pathways, include ADCY2,
ACTN1, ACACA and GNAI1, all of which have been associated with AD
related changes in hippocampal gene expression (Ravetti et al.,, 2010;
Taguchi et al.,, 2005, supporting information). Along with APOE and
TOMMA40, ADCY2 was also highlighted in a previous study searching
for SNPs associated with AD-associated structural change (Vounou
et al., 2011). This latter study was on the same ADNI cohort, but unlike
the current study it was not pathway-driven, and used phenotypes
describing structural change measured at a single time point (relative
to baseline) only.

The major AD risk and phenotype-related gene APOE, and risk
allele APOEe4 are respectively ranked 19 and 9. In our study the APOE
gene maps to a single pathway, the KEGG Alzheimer's disease pathway,
and this pathway is selected in =~ 13 % of subsamples. Notably, in all sub-
samples in which the KEGG Alzheimer's disease pathway is selected, the
APOEe4 allele is the sole selected SNP, confirming the known large mar-
ginal effect of this allele on AD phenotypes. The higher ranking of the
APOEe4 SNP, relative to the APOE gene, reflects the fact that this SNP
also maps to the TOMMA40 gene, which occurs in a number of other
pathways selected by the model. This may affect the Alzheimer
pathway's ranking, as may the fact that selection of this pathway is driv-
en by the presence of this single, strong APOE 4 signal, and as explained
above, the model is designed to identify distributed signals across a
pathway.

In principle our method enables the voxel-wise mapping of pathway
effects across the brain, through the analysis of the phenotype coeffi-
cient vector a, although we do not report this here. We note that the
use of an additional regularisation penalty on a to enforce the sparse
selection of important voxels, would make an interesting extension to
our method, by highlighting specific voxels or regions with a putative
association with high ranking causal pathways. Suitable sparse regres-
sion models include the lasso and the elastic net (Carroll et al., 2009),
although both would require the tuning of addition regularisation
parameters.

Our model rests on a number of assumptions, and as a consequence
will fail to detect a number of different association signals. For example,
while our model implicitly accommodates the fact that SNPs and genes
interact within functional pathways, we do not explicitly model interac-
tion effects. Also, we make the simplifying assumption that voxel-wise
measures of atrophy are uncorrelated. In reality, the phenotype will
exhibit a complex correlation structure which will affect the association
signal. Vounou et al. (2010) have demonstrated that even under this
simplifying assumption, significant gains in power can be achieved by
modelling a multivariate phenotype, compared to a mass univariate
modelling approach. Finally, our model is founded on the assumption
that causal SNPs tend to accumulate within functional pathways, and

as such is not designed to identify significant marginal effects, as
evidenced by its failure to rank the high-risk APOE gene highly. For
this last reason, any pathway analysis should be seen as being comple-
mentary to conventional GWAS approaches.

To the best of our knowledge, there are few other multilocus path-
way methods, and none are able to accommodate a multivariate, quan-
titative phenotype. While a methodological study comparing the
various approaches would be interesting, as has been noted by others,
a lack of benchmark datasets with validated pathways makes compari-
son between methods difficult (Chen et al., 2010; Khatri et al., 2012).

The present study demonstrates some of the limitations of path-
way studies in general. Many genes previously implicated in AD do
not map to known pathways in our study, so that these genes and
their associated SNPs, many of which are well validated, are excluded.
This further reinforces the point that pathway studies should be seen
as complementary to studies searching for single markers, since a sig-
nificant part of the known AD-associated genetic signal is missing. The
relative sparsity of gene-pathway annotations reflects the fact that our
understanding of how the majority of genes functionally interact is at
an early stage. As a consequence, annotations from different pathway
databases often vary (Soh et al.,, 2010), and in any case are undergoing
rapid change.
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