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Abstract
Where causal SNPs (single nucleotide polymorphisms) tend to accumulate within biological
pathways, the incorporation of prior pathways information into a statistical model is expected to
increase the power to detect true associations in a genetic association study. Most existing
pathways-based methods rely on marginal SNP statistics and do not fully exploit the dependence
patterns among SNPs within pathways.

We use a sparse regression model, with SNPs grouped into pathways, to identify causal pathways
associated with a quantitative trait. Notable features of our “pathways group lasso with adaptive
weights” (P-GLAW) algorithm include the incorporation of all pathways in a single regression
model, an adaptive pathway weighting procedure that accounts for factors biasing pathway
selection, and the use of a bootstrap sampling procedure for the ranking of important pathways. P-
GLAW takes account of the presence of overlapping pathways and uses a novel combination of
techniques to optimise model estimation, making it fast to run, even on whole genome datasets.

In a comparison study with an alternative pathways method based on univariate SNP statistics, our
method demonstrates high sensitivity and specificity for the detection of important pathways,
showing the greatest relative gains in performance where marginal SNP effect sizes are small.
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1 Introduction
The mixed success of attempts to identify genetic variants that account for a large part of the
heritability of common disease has focussed attention on the need to develop new
methodological approaches to the analysis of GWAS data. A number of factors that might
explain this ‘missing heritability’ have been suggested, including the failure of many current
models to capture the presence of gene-gene and gene-environment interactions, of multiple
SNPs with small effect and of rare variants (Manolio et al., 2009, Goldstein, 2009). One
promising approach uses prior information on functional structure present within the
genome to group genes and associated SNPs into gene sets or pathways. The motivation
here is that genes do not work in isolation, but instead work together through their effect on
molecular networks and cellular pathways. The hope is that by jointly considering the
effects of multiple SNPs or genes within a biological pathway, significant associations might
be identified that would otherwise be missed when considering markers individually (Wang
et al., 2010). First developed in the context of gene expression studies (Mootha et al., 2003),
pathways-based methods have more recently been extended to the analysis of GWAS data
(Holmans et al., 2009, Luo et al., 2010, Lango Allen et al., 2010, Lambert et al., 2010). This
has led to the identification of putative causal pathways for a number of diseases including
Parkinson’s Disease (Lesnick et al., 2007), Crohn’s Disease (Wang et al., 2009b) and
rheumatoid arthritis (Eleftherohorinou et al., 2011). As well as offering the potential for
increased statistical power, pathways-based genetic association studies (PGAS) can aid the
biological interpretation of results through the identification of causal pathways, and may
also facilitate comparisons between studies genotyping different variants that nonetheless
map to common pathways (Ma and Kosorok, 2010, Cantor et al., 2010).

The majority of existing PGAS methods begin with a univariate test of association, in which
individual SNPs are scored according to their degree of association with disease status or a
quantitative trait. Various techniques are then used to combine these univariate statistics into
pathway scores. For example, the GenGen method (Wang et al., 2007) first ranks all genes
according to the value of the highest-scoring SNP within 500kb of each gene. Pathway
significance is then assessed by determining the degree to which high-ranking genes are
over-represented in a given gene set, in comparison with the genomic background. The
PLINK tookit (Purcell et al., 2007) also features a ‘set-based test’, in which pathway
significance is measured by taking the average, marginal p-value of a pre-determined
maximum number of ‘uncorrelated’ SNPs within the pathway. Here, uncorrelated SNPs are
defined as those whose pairwise linkage disequilibrium (LD) is below a certain threshold
value. As a final step, where more than one pathway is considered a correction for multiple
testing is generally made.

In contrast to univariate, ‘one SNP at a time’ methods, multivariate or multi-locus methods
allow all SNPs to be considered in the model at the same time, which can aid the
identification of weak signals while diminishing the importance of false ones. One such
approach consists of fitting a penalised, multivariate regression model, in which a subset of
SNPs is selected by imposing a penalty on some suitably selected norm of the regression
coefficients, as in Lasso regression (Tibshirani, 1996). This approach has been shown to
yield higher statistical power, compared to more common ‘mass univariate linear models’,
especially with multivariate and high-dimensional quantitative traits (Vounou et al., 2010).
Several other studies have demonstrated the advantages of this approach for the detection of
genetic associations. For example, Wu et al. (2009) use penalized logistic regression to
select SNPs in a case-control study, and analyse two-way and higher-order SNP-SNP
interactions. Hoggart et al. (2008) propose a similar method for SNP selection in a Bayesian
context.
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A number of penalized regression techniques that allow prior information on the relationship
between SNP markers to be incorporated into the model selection process have recently
been proposed. For example, Zhou et al. (2010) group SNPs into genes, and utilise a useful
property of the group lasso (Yuan and Lin, 2006) to aid the detection of rare variants within
genes. The GRASS method (Chen et al., 2010) begins by characterising within-gene
variation as ‘eigenSNPs’, obtained by principal component analysis (PCA). A combination
of lasso and ridge regression, followed by permutations is then used to measure significance
for a single pathway. Finally, Zhao et al. (2011) use a combination of PCA and lasso
regression to identify a subset of genes within a candidate pathway, followed by
permutations to measure pathway significance. Once again this method considers one
pathway at a time.

The search for SNPs, or quantitative trait loci (QTL) influencing quantitative traits is
gaining momentum as a potentially more powerful way to study the underlying causes of
complex disease (Plomin et al., 2009). In the emerging field of neuroimaging genetics for
example, in which we have a particular interest, quantitative data in the form of MRI or PET
scans serve as a type of intermediate phenotype in the study of complex disorders such as
Alzheimer’s Disease (AD) or schizophrenia (Bigos and Weinberger, 2010). We use
genotype data from the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset in this
analysis.

Our focus here is on the identification of biological pathways associated with a quantitative
trait. Our assumption is that where causal SNPs are enriched in a pathway, the use of a
regression model that selects SNPs that are grouped into pathways will have increased
power, compared to a more traditional approach in which SNPs are considered one at a time.
We also seek a true, multivariate model which includes all mapped pathways at the same
time. The hope is that this will confer some of the benefits, in terms of detecting weaker
signals and diminishing false positives, described earlier. To achieve these ends, we use a
modified version of the group lasso (GL) with SNPs grouped into pathways, and develop a
fast estimation algorithm applicable to the case of non-orthogonal groups. In order to rank
pathways, we use a bootstrap sampling procedure to rank pathways in decreasing order of
importance. We face a number of challenges in applying GL to SNP and pathway data for
the identification of implicated pathways. These include the fact that pathways overlap,
since many SNPs map to multiple pathways; the problem of selection bias, that is the
tendency of the model to select pathways having specific statistical properties irrespective of
their association with phenotype; and the sheer scale of SNP datasets, making efficient
estimation a necessity.

We have found that the issue of overlapping pathways receives surprisingly little attention in
the PGAS literature, given that the presence of overlaps might be expected to have a
significant impact on the results of any PGAS analysis. For example, variation in the
number and distribution of causal SNPs with respect to genes that overlap multiple pathways
will affect the number of pathways defined to be ‘causal’, and different PGAS methods will
be affected by such variation in different ways. Additionally, the inclusion of multiple
pathways in a single GL regression model presents a particular problem, since GL in its
original formulation will not select pathways in the manner that we would wish. To account
for this we employ a variable expansion procedure, originally proposed in the context of
microarray data analysis by Jacob et al. (2009), that ensures that overlapping SNPs enter the
regression model separately, for each pathway that they map to.

A number of factors may bias PGAS results, exaggerating pathway significance and giving
rise to inflated numbers of false positives. Depending on the methods used, and the
underlying disease-causing mechanism, such factors are likely to include pathway size

Silver et al. Page 3

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2013 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(measured in number of SNPs and/or genes), and the extent and distribution of pathway LD.
Common strategies employed by existing methods to reduce this bias include the use of
permutation (of genes or phenotypes), and dimensionality reduction techniques such as PCA
(Fridley and Biernacka, 2011, Wang et al., 2010). We propose a procedure that reduces bias
by adjusting pathway weightings in the regression model according to the empirical bias in
pathway selection frequencies obtained by fitting the GL model with a null response.

One potential drawback of using a regression model in the analysis of genetic data is the
typically very large number of predictors (here SNPs) that must be analysed. While the use
of penalized regression techniques at least makes the problem tractable when the number of
predictors vastly exceeds sample size, the very large matrix calculations required can still
make model estimation computationally infeasible. To address this, we combine a number
of techniques that speed up the estimation process including the use of an ‘active set’ of
predictors, a Taylor approximation of the GL penalty and efficient computation of pathway
block residuals. The final estimation algorithm, which we call ‘Pathways Group Lasso with
Adaptive Weights’ (P-GLAW), is sufficiently fast to obviate the need either to undertake a
preliminary stage of dimensionality reduction, or to consider pathways individually.

We evaluate our method’s performance in a Monte Carlo (MC) simulation study, using real
genetic and pathway data with quantitative phenotypes simulated under an additive genetic
model. We consider a range of scenarios with different causal SNP distributions and effect
sizes. We feel the use of real genotype and pathway data is crucial, so as to capture the
complex distributions of gene size and number within a pathway, together with SNP LD
patterns and overlaps between pathways, all of which may have a significant effect on
pathway ranking performance. To our knowledge, this is the first such PGAS power study
using GL with real SNP and pathway data. The evaluation of GL pathway ranking
performance however presents a number of challenges. Firstly, as described above, variation
in the number of causal pathways due to overlaps must be taken into account when
evaluating performance over multiple MC simulations. Secondly, we require a means of
evaluating the degree to which causal pathways are represented amongst the top ranks.
Thirdly, since GL performs variable selection, not all causal pathways may be ranked, and
ranking performance measures must reflect this. To address these issues we devise a battery
of measures that aim to capture different aspects of ranking performance. Finally, we
compare our method’s performance with another common PGAS method, derived from
univariate SNP statistics.

The article is organised as follows. Section 2 describes the GL model; our strategy for
dealing with overlapping pathways, model estimation and speed-ups; our proposed bias-
adjusted pathway weighting update procedure; our strategy for ranking pathways using a
resampling procedure, and our proposed ranking performance measures. In Section 3 we
describe the real biological data sets used in the experiments, the SNP to pathway mapping
process, and the simulation framework used to evaluate both methods under consideration.
The results from these simulation studies are provided in Section 4, and we conclude in
Section 5 with a discussion and final remarks.

2 Methods
2.1 The group lasso for pathway selection

We assume N unrelated individuals genotyped at P SNPs, each with a univariate quantitative
trait yi, for i = 1, …, N. For an individual i, we denote by xij the minor allele count for SNP
j, for j = 1,…,P, and arrange these counts in an (N × P) design matrix X. Quantitative
phenotypes are arranged in an (N × 1) column vector y, and will be treated as quantitative
responses in a regression model.
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We initially consider the situation where SNPs are partitioned into L mutually exclusive
pathways, or groups. Each group , for l = 1,…,L, is a subset of {1, 2,…,P} of cardinality
Sl, containing the indices l1, l2,…,lSl of the SNPs that belong to it, such that  for
any l ≠ l′. We denote by , the set of all SNP indices. We denote by

 the subset of SNPs that are causal, that is the SNPs influencing y, and
additionally denote the cardinality of  by S. Accordingly, we denote by 
the subset of causal pathways containing one or more SNPs in , having cardinality . We
denote the complement of  by . We also assume that , so that only a small
proportion of all pathways are causal. Finally, we assume that y can be optimally predicted,
in the least squares sense, by a linear combination of allele counts corresponding to SNPs in
pathway , where l belongs to the set .

We denote the vector of SNP regression coefficients , and the parameter

vector corresponding to SNPs in pathway  only as . Under these
assumptions, one or more elements of each βl for  are expected to be non-zero, whereas
all the regression coefficients associated with SNPs that do not belong to  will be zero, that
is βl = 0 for . For example, for a single causal pathway  with causal SNPs {a, b} in

, the sparsity pattern might look like

A suitable regression model that would enforce the assumed block sparsity pattern above is
the group lasso (GL) (Yuan and Lin, 2006), in which estimates for β are obtained by
minimising the penalised least squares function

(1)

with respect to β, where ||·||2 denotes the  (Euclidean) norm and wl is a pathway weighting
factor for group l. Sparsity at the pathway level is encouraged through the imposition of an 
lasso penalty on ||βl||2, which ensures that SNPs belonging to pathways not selected by the
model have zero regression coefficients. For selected pathways, i.e. those with βl ≠ 0, SNP
coefficients tend shrink, through the imposition of a ridge-type penalty on ||βl||2. The degree
of sparsity is controlled by the regularisation parameter, λ, such that the number of
pathways selected by the model increases with decreasing λ. For a given λ, the block
sparsity pattern is determined both by the data (y and X), and by the distribution of pathway
weights, w = (w1,…,wl), such that an increase in wl means that pathway l is less likely to be
selected, whereas a decrease in wl will have the opposite effect.

The GL optimisation problem associated with minimising the objective function (1) is
convex, and can be solved using coordinate descent methods. Problems arise however in the
situation where pathways overlap, that is when a SNP is allowed to belong to more than one
pathway, so that  for some l ≠ l′. Firstly, where groups overlap, the penalty term
in (1) is no longer separable into groups, since the same SNPs occur in multiple pathways,
and convergence using coordinate descent is no longer guaranteed (Tseng and Yun, 2009).
Secondly, if we wish to be able to select pathways independently, GL is unable to do this.
We illustrate this last point using a simple example in Fig. 1 A, where we consider only
three pathways, ,  and , two of which overlap. As a consequence of this, pathway
parameter vectors β1 and β2 also overlap, since they have a number of SNPs in common
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(shaded dark grey). If a shared SNP is selected (i.e. it has a non-zero coefficient), then both
pathways to which it belongs (  and ) are also selected, since their corresponding
pathway parameter vectors have non-zero  norms. The GL regression model thus does not
meet our requirements, since in order to be able to rank pathways in order of importance, we
wish to be able to distinguish overlapping pathways and select them independently.
Conversely, where shared SNPs have zero coefficients, for example in the case that  is not
selected in the model, then these SNPs will have zero coefficients in each and every
pathway to which they belong (here  and ). Hence SNPs retained in the model are
necessarily drawn from the complement of a union of (unselected) pathways. We instead
require retained SNPs to be drawn from a union of (selected) pathways, so that a SNP
driving selection in one pathway may still have a zero coefficient in another.

Jacob et al. (2009) propose one possible solution to the problem of overlapping predictors in
a similar context, motivated by the analysis of gene expression data. The essence of this
method is to create duplicate, dummy SNPs, so that SNPs belonging to more than one
pathway enter the model separately (see Fig. 1 B). The process works as follows. An
expanded design matrix is formed from the column-wise concatenation of the L sub-

matrices of size (N × Sl), that is  with i = 1,…,N and , to form the expanded

design matrix  of size , where . The corresponding
parameter vector, , size , is formed by joining the L, (Sl × 1) pathway parameter

vectors, , so that . The model is then able to perform pathway
selection in the way that we require, and the optimisation (1), with β replaced by β*, and X
replaced by X* becomes block separable, so that it can be solved by block coordinate
descent. In the following sections we assume both β and X have been expanded, but omit
the * superscript for clarity. Finally, we note that where one or more SNPs in  overlap
multiple pathways, the corresponding number, , of causal pathways will increase.

2.2 Parameter estimation

We seek a solution, , that minimises the GL objective function (1). Where groups or
pathways are disjoint, so that the penalties are separable into groups, a global solution can be
obtained using block coordinate descent (BCD). Coordinate descent algorithms offer a
highly efficient means of solving convex optimisation problems, and work by breaking
down the optimisation into a series of univariate problems, solving the optimisation for each
variable (here SNP) in turn, while holding all the others fixed, until a suitable minimum
based on some stopping criterion is reached (Friedman et al., 2007). Where variables are
grouped, as in GL, estimates are obtained for each pathway parameter vector, βl in turn,
while holding constant the current estimates for all other pathway parameter vectors,

, and then cycling through each pathway until convergence.

Yuan and Lin (2006) derive a method for solving GL under the assumption that the group

design matrices,  are orthogonal, that is . This assumption does not hold in our
case, so in the next section we derive a solution for GL in the case of non-orthogonal groups.
We additionally find that GL estimation using BCD can be slow, particularly for the large
datasets common to PGAS, and so in the following sections propose a number of strategies
for speeding up parameter estimation.

2.2.1 Block coordinate descent for non-orthogonal groups—We assume that (1)
is block-separable, that is the groups indexed by 1,…,L are disjoint by construction. In our
context, this is achieved by implementing the SNP duplication strategy of section 2.1. We
begin by considering a single pathway l. We collect the N individual observed SNPs for a
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given SNP j in a column vector Xj = (x1j, x2j,…,xNj). Using this notation, we define the

matrix  containing all Sl SNPs belonging to pathway , and the
corresponding vector of regression coefficients βl = (βl1,βl2,…,βSl). We can then rewrite the
objective function (1) for a single block l as a function of βl,

(2)

where . The vector  is the ‘partial residual’ vector for pathway l, based on

the current estimates, , of the other pathway parameter vectors.

Estimates for each βj are then obtained by taking partial derivatives with respect to βj, that is
by setting

(3)

Ignoring the penalty term, the partial derivative with respect to βj is

We denote the partial derivative of the penalty term, by

so that (3) can be written as

(4)

We first consider the case where βl = 0, that is βj = 0, for j = l1,…,Sl. In this case ||βl||2 is not
differentiable. We instead form the Sl sub-differentials, , so that

(5)

The system of equations (4) can now be written

and using (5), we have
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(6)

Note that for (6) to be unbiased with respect to group size, a weight, , as proposed by
Yuan and Lin (2006), can be applied. Alternatively, since

we may rewrite (6) as

so that if βl = 0

(7)

When βl ≠ 0, the minimisation of (2) can be obtained numerically, using coordinate descent,
as a series of one-dimensional estimations over βj, j = l1, …, lSl. Friedman et al. (2010)
suggest a golden section search over βj, combined with parabolic interpolation. However,
the number of such estimations depends on L and P*, both of which increase with P, the
latter markedly so. This can make the GL optimisation prohibitively slow, particularly for
the large P typically found in PGAS. For this reason, we next describe three strategies for
speeding up the estimation.

2.2.2 Taylor approximation of penalty—One means of speeding up the estimation for
βj is to use a linear or quadratic approximation of the GL  penalty (Zou and Li, 2008, Fan
and Li, 2001), enabling the replacement of the multi-step numerical optimisation over βj
with a one-step calculation. Breheny and Huang (2009) propose the use of a Taylor
approximation for a range of different estimation problems with grouped variables and we
adopt this approach for our GL estimation problem. We begin by rewriting the group 
objective function (2), for a single predictor as

where , with , and the  are the current SNP coefficient
estimates. For convenience, we rewrite this as

(8)
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where  is the total residual, using the current estimates of all SNP coefficients.

We now consider the first order Taylor expansion of  as a function of , about

the point 

Now

so that

Substituting , and noting that , where  denotes the current estimate of βl,
this gives

Substituting this expression in (8), we have

Differentiating with respect to βj gives

since . Rearranging terms and setting the partial derivative equal to zero, we
see that the minimum is achieved when

(9)
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Where the current estimate , that is when group l first enters the estimation, we set

 to be a small positive quantity, η, enabling βj in (9) to be estimated.

BCD proceeds by obtaining estimates for each βj, j = l1,…,Sl, 1,…,Sl,… until convergence
within the block, and for each pathway, l = 1,…,L,1,…,L,… in turn, until a stopping
criterion indicating a global minimum of (1) has been satisfied. The estimation process is
summarised in Box 1.

2.2.3 Use of pathway ‘active set’—For large P* and L, the need for the repeated
calculation of (7) to establish whether or not a particular group can enter the estimation
presents a major computational bottleneck. This problem motivates another strategy
providing substantial gains in computational efficiency for a range of sparse regression
problems. This ‘active set’ strategy relies on the pre-selection of a subset of ‘potentially
active’ predictors, or groups of predictors that are likely to be selected by the model at a
given λ (Tibshirani et al., 2010, Roth and Fischer, 2008). The optimisation can then be run
over this reduced set of variables, with a subsequent check to ensure that no other predictors
should have been included in the first place. The active set procedure offers potentially
dramatic speed up in execution times, particularly for very large datasets such as those found
in PGAS, due to the reduced number of computations that need to be performed. In addition
there are substantial savings in the amount of memory required to store data during
processing, which can also lead to dramatic reductions in computation times with large
datasets where memory is constrained.

For the GL, we begin by considering the inequality (7). For groups to enter the model we
require

(10)

and therefore, at the first iteration, with β initialised to zero, a group  enters the model if

(11)

We define the ‘active set’  of potentially active groups that satisfy (11) as

and additionally define

(12)

namely the smallest λ value for which the active set is empty. Note that provided λ is close

to λmax, then . Once one or more groups enter the model, not all  will be zero and
the inequality (10) will then determine which groups may enter or leave the model.

The active set procedure rests on the observation that in practice, the final set of groups
selected by the model rarely includes any groups not in  (Tibshirani et al., 2010). We can
therefore perform the full estimation on , followed by a check of the inequality (10), to see
if any additional groups not in  can enter the model. If there are no additional groups, then
we have the full solution. If not, then we run the full estimation again, with the additional
groups satisfying (10) added to . A summary of the active set algorithm is given in Box 2.
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2.2.4 Efficient computation of block residuals—A further, large computational
burden results from the repeated calculation of the residuals rl and r in (7), (9) and (10). The
computational overhead for these calculations is substantial, both because of the size of the
expanded design matrix (N = 743 and P* = 66,085 in the simulation study described in
section 3, but substantially larger for a full PGWAS), and because of the iterative nature of
the BCD algorithm, meaning that a very large number of calculations are performed. We
therefore achieve one further substantial gain in computational efficiency by noting that
since the blocks are separable, during BCD only the single block residual, hl = y – Xlβl,
changes between iterations j = 1,…,Sl,1,…,Sl,… within block l, and between iterations l = 1,
…,L,1,…,L,… across blocks. We therefore only need update hl at each iteration, with r and
rl updated using computationally inexpensive matrix subtractions and additions. Python
code for mapping SNPs to pathways, and for analysing SNP data using PGLAW is available
on request.

2.3 Selection bias and pathway weighting
PGAS methods derived from univariate SNP statistics are subject to various biasing factors
that can influence pathway ranking under the null, where no SNPs influence the phenotypic
trait, y. These factors vary from method to method, but may include the number and size of
genes in a pathway, as well as LD between SNPs and genes. Such biasing factors are
generally corrected through the use of permutation procedures. For example, the ‘GenGen’
method (Wang et al., 2009b), measures the degree to which pathways are enriched with high
ranking genes, and is subject to bias due to variation in the number of SNPs mapped to a
gene, and to differences in LD between SNPs mapped to different genes. The bias correction
procedure begins by forming multiple datasets through permutation of phenotype labels. For
each permuted dataset, gene scores are generated from univariate SNP statistics, and a
pathway enrichment score is calculated. A normalised (bias-corrected) pathway enrichment
score is then derived by comparing the distribution of pathway scores under the null with the
score obtained from the unpermuted data.

Regression-based methods are similarly prone to bias, and once again the use of permutation
has been proposed to correct for this, along with dimensionality reduction to extract non-
redundant information. For example, with the GRASS method for case-control data (Chen et
al., 2010), genetic information within each gene is first summarised as ‘eigenSNPs’,
obtained through PCA. The biasing effect of gene size is once again accounted for through
the generation of a null distribution, formed by permuting phenotype labels.

With the GL under the null, pathway selection will be influenced by pathway size (i.e. the
number of SNPs within a pathway), since the accumulation of spurious associations in larger
pathways will give rise to larger ||β||2 in (1). In addition, variation in dependencies between
SNPs within pathways, and to a lesser extent between pathways will give rise to
corresponding variations in ||βl||2 where spurious associations arise in regions of high LD.

One way to correct for biases arising from variations in the statistical properties of different
pathways or groups is through the selection of appropriate group weights w = (w1,…,wL) for
the objective function (1). For example, as noted before, Yuan and Lin (2006) suggest one
possible choice for the pathway weighting would be

(13)

which ensures that groups of different size are penalised equally, and so have an equal
chance of being selected by the model, other things being equal (see (6)). In principle, we
could follow this strategy and perhaps attempt to account for other, additional factors that
may also bias pathway selection. However, there are a number of problems with this
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approach. Consider for example the biasing effect of dependencies between SNPs within a
pathway. Where causal SNPs tag, or reside within large blocks with strong LD, the pathway
‘signal’ will be high, increasing the chance that such pathways will be selected by the
model, compared with other pathways where LD is low. This biasing effect will further
depend on the distribution of LD within the pathway, which will in turn depend on other
factors such as the number and size of pathway genes. The precise form of any additional
term(s) that should be added to (13) to account for this bias is thus unclear. Even if we were
able to identify a list of potential biasing factors, and formulate bias-correcting weight
adjustments for each, we are still faced with the problem that their may be other, unknown
factors that contribute to the bias. We therefore choose to adopt a ‘hypothesis-free’ approach
to adjusting pathway weights, which makes no assumptions about those factors which might
influence pathway selection.

Consider pathway selection under the GL model (1), with λ tuned to select M pathways. We
begin with the case M = 1. When there is no selection bias, and assuming no genetic
association, a pathway  should be randomly selected by the model according to a uniform
distribution, namely with probability IIl = 1/L, for l = 1,…,L. However, when biasing factors
are present this is generally not the case, and the empirical probability distribution
describing pathway selection, Π*(w) will not be uniform. Here the dependence upon the
weight vector w has been made explicit, since with λ tuned to select a single pathway, w
alone determines the frequency distribution. A measure of distance between these two
distributions can be obtained by computing their Kullback-Leibler (KL) divergence

(14)

where  is the empirical probability for the selection of pathway  under the
assumption of no genetic associations. When GL pathway selection is unbiased, we expect
this distance to be approximately zero. Our strategy consists in adaptively adjusting all
weights w in order to minimise D.

Our adaptive weighting procedure is an iterative one, whereby at each iteration τ we first

update the previous weight vector w(τ–1), and then reestimate  by fitting the GL
model R times, each with a random permutation of the response in order to create R null

data sets1.  is then the frequency at which pathway  is selected across the R null
data sets at iteration τ. The algorithm is initialised at iteration τ = 0 by using an initial
weight vector w(0), for instance the standard size weighting (13). This procedure is then
repeated until D reaches some suitably small value.

From (14), a reduction in D can be obtained by reducing the difference , for
all l. As each ∣dl∣ approaches zero, the ratio, , approaches one, so that the
contribution of pathway  to D is decreased. With this in mind, at each iteration, we adjust
pathway weights according to the following formula,

(15)

where the paramater α controls the maximum amount by which each wl can be reduced in a
single iteration, in the case that pathway  is selected with zero frequency. The weighting

1Alternatively, in a simulation study where the null distribution of the response is known (as in section 3), the R models can be fitted
after sampling a response from that null distribution.
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update equation has the following desirable properties. When , i.e. , wl

is decreased, up to a maximum factor α when , increasing the chance that group l is
selected. When , i.e. , wl is increased, decreasing the chance that group l is
selected. Finally, when , i.e. , wl is unchanged. The square in the weight
adjustment factor ensures that large values of |dl| result in relatively large adjustments to wl.

The estimation of Π* when M > 1, that is where more than one pathway is selected by the
model, is computationally infeasible even for a small value of M, since we would need to
estimate the empirical joint probability distribution that M pathways are jointly selected.
However, we expect that many of the factors biasing pathway selection when M = 1 will
similarly affect this joint probability distribution. Under this assumption, we estimate the
optimal weight vector w only in the M = 1 case. Extensive simulation studies (see section 4)
indicate that this data-driven adaptive waiting scheme is able to substantially increase power
and specificity compared with the standard weighting (13), even when M > 1, indicating that
this assumption holds in practice. Finally, we note that despite the need for multiple MC
simulations over multiple iterations, our proposed bias-adjusted weighting strategy is fast,
since it relies on fitting the GL model with λ tuned to select a single pathway only, ensuring
that the active set (see section 2.2.3) is very small, and model estimation time for each of the
R model fits is minimal.

2.4 Pathway ranking
Penalized regression typically proceeds by determining an optimal value for λ,
corresponding to a subset of variables that best predicts the response, and this is generally
done by cross validating the prediction error. In genetic association mapping, results are
often instead presented in the form of lists of pathways or SNPs, ranked in order of
importance. We seek such a strategy for the ranking of pathways within the regression
model, such that pathways in , will achieve a high ranking, whereas those in  will be
ranked low. This approach has the added advantage of allowing us to make direct
comparisons with alternative pathway methods that use p-values as a ranking criterion.

One simple ranking criterion in penalised regression is to use the order in which each
variable enters the model along the regularization path - i.e. as λ is decreased from its
maximal value, where no variables are selected. We instead adopt a bootstrap sampling
approach, in which we fit the regression model over multiple subsamples of the data, drawn
with replacement, at a single, fixed value for λ. Pathways are ranked in order of importance
according to their selection frequency across subsamples. Our motivation here is to exploit
knowledge of finite sample variability obtained by subsampling, to achieve better estimates
of pathway importance. In this respect our strategy resembles the pointwise stability
selection method proposed by Meinshausen and Bühlmann (2010) in the context of variable
selection.

As with stability selection, for our ranking strategy to be effective, the value of λ must be
small enough to ensure that all pathways in  are selected by the model with a high
probability at each subsample. Computation time increases rapidly with M, the number of
selected pathways, so that with the number, , of causal pathways unknown, the choice of
M is driven by the number of causal pathways we seek to identify within computational
constraints. We use B = 100 subsamples, each of size N/2, and at each subsample we
perform a line search over λ, to ensure that M ≥ Mmin pathways are selected. This procedure
is described in appendix 5. Once λ is tuned, for each subsample, b, we obtain estimates

 for each SNP coefficient . For pathway , we define 
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when  and  otherwise, where  is the pathway parameter vector estimated
for subsample b. We rank pathways in order of their selection frequency across subsamples,

. We note that since typically M << L, some  may be zero. Such pathways
are classified as unranked.

2.5 Ranking performance measures
In order to evaluate the success of any PGAS method, some measure of ranking
performance is required. In this section we describe 3 separate ranking performance
measures that we use to evaluate the performance of our method in a simulation study
described in section 3. One complicating factor is the issue of overlapping pathways, making
the effective number of causal pathways, , dependent on the degree to which SNPs in 
overlap multiple pathways. In addition, with any method based on variable Sselection, the
possibility that causal pathways are unranked, i.e. they are not selected by the model, must
be taken into account.

Consider the situation where the set  of causal SNPs, with cardinality S > 1, is known. We
may choose to define  in its most restricted sense as the set of pathways that contain all
members of , or alternatively  might include all pathways containing one or more SNPs
Sbelonging to . In either case  will depend on the degree to which SNPs in  overlap
multiple pathways. This in turn depends on the particular distribution of causal SNPs with
respect to overlapping genes. The need to accommodate this variability in  in part
motivates our formulation of the ranking measures described below.

We propose three separate ranking measures that capture different aspects of ranking
performance, and focus on the top 100 ranked pathways only. We do this firstly because in
any method attention is inevitably focused on the highest ranking pathways (or alternatively
those with the highest statistical significance in a hypothesis testing framework). Also, since
in a simulation study we compare the performance of our variable selection method which
identifies a limited number of pathways against an alternative method that scores all
pathways, some suitable cutoff in rank order must be chosen.

We denote the set of ranked causal pathways by , cardinality , and
their respective rankings by , ranked in order of their respective selection

frequencies, . We further denote by , cardinality

, the set of ranked causal pathways falling in the top 100 ranks, with corresponding

rankings . Our three proposed ranking measures are as follows:

1. Highest causal pathway rank, rk1, that is the single highest rank achieved by any

pathway in . This lies in the range 1 ≤ rk1 ≤ 100, and is only defined for

.

2. Ranking power, p100, defined as

(16)

with 0 ≤ p100 ≤ 1. p100 = 0 when no causal pathways are ranked in the top 100

, and p100 = 1 when all causal pathways are ranked in the top 100

.
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3. Power-adjusted, normalised, C weighted ranking score, R. This takes account of the

actual rankings, , as well as the ranking power, p100. We begin by
defining a normalised, weighted ranking score,

(17)

Here the square root increases the weight given to highly-ranked causal pathways.
The denominator is a normalising factor which represents the minimum possible

weighted ranking score, with , ensuring that  attains

its minimum value of 1 when the pathways in  are optimally ranked. Higher
values of  indicate suboptimal ranking.  takes no account of the possibility that

, i.e. not all causal pathways are ranked. To do this we form the adjusted
measure

(18)

R thus attains a minimum value of 1 when all causal pathways are optimally
ranked, and the value γ when no causal pathways are ranked.

3 Simulation Study
We assess the power of our proposed method in a simulation study using real genotype and
pathway data, with simulated, quantitative phenotypes generated under an additive genetic
model from SNPs within a single, selected causal pathway. The presence of overlapping
SNPs means that the actual number of causal pathways is typically greater than one. We
additionally compare our method’s performance with an alternative, univariate-based
method commonly used in gene set analysis. Computation times for both methods increase
with P, and because of this, and the large number of scenarios and simulations tested, we
restrict this analysis to SNPs on a single chromosome to keep execution times within
practical limits.

3.1 Genotype and pathways data
We use genotypes obtained from the Alzheimer’s Disease Neuroimaging Initiative, ADNI
(www.loni.ucla.edu/ADNI), derived from the Illumina Human 610-Quad BeadChip.
Subjects comprise a mix of healthy controls, those diagnosed as having mild cognitive
impairment, and those with AD. After removing variants with a call rate < 95%, minor allele
frequency (MAF) < 0.1 and significant deviation from Hardy-Weinberg equilibrium (p < 5.7
× 10−7), 448, 294 SNPs remain. In this study we use genotype data from N = 743 subjects,
and consider only SNPs from chromosome 1 (33, 850 SNPs).

Popular databases used for the mapping of genes to biological pathways include the Kyoto
Encylopedia of Genes and Genomes (KEGG, www.genome.jp/kegg/pathway.html) and
BioCarta (www.biocarta.com/genes/index.asp). For this study we use data on ‘canonical
pathways’ from the Molecular Signals Database (MSigDB, www.broadinstitute.org/gsea/
msigdb/index.jsp), which is a commonly-used, curated collection of pathways obtained from
multiple sources. At the time of writing this comprised 880 pathways mapped to 6, 804
genes. 2,382 human gene locations on chromosome 1, corresponding to assembly
GRCh37.p3 are obtained using Ensembl’s biomart API (www.biomart.org). ADNI-
genotyped SNPs on chromosome 1 are then mapped to annotated genes within 10kb (20,399
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SNPs mapped to 2,096 genes), and these remaining genes and SNPs are then mapped to
pathways using MSigDB (8,102 SNPs mapped to 778 pathways). Thus we see that the
majority of chromosome 1 SNPs fail to map to any pathway, but that the majority of
annotated pathways map to at least 1 SNP on this chromosome. Finally, small (< 10 SNPs)
and identical pathways are removed. After all pre-processing we are left with a total of P =
8,078 SNPs mapped to 551 pathways (max: 1, 059; min: 10; mean: 120 ± 142 SNPs per
pathway). All SNP to pathway mapping and filtering was performed using bespoke code
written in Python. The mapping and filtering process is illustrated in Fig. 2.

More than 80% of SNPs are observed to overlap more than 1 pathway, with around 20%
overlapping 10 or more pathways and 2% overlapping 60 or more (see Fig. 3). After
variable expansion to account for overlapping pathways (section 2.1), we have P* = 66,085
SNPs.

3.2 Simulation framework
We begin by adjusting the pathway weight vector, w, using the bias-adjusted adaptive
weighting procedure described in section 2.3. We do this over 10 iterations with R = 40,000
MC simulations, each with response y sampled from a standard normal distribution,  (0,
1) for simplicity, since many quantitative traits are expected to follow a normal distribution.

For the simulation of a SNP-dependent response, we begin by drawing  SNPs from a
single, randomly selected causal pathway, , according to some specified distribution (see
below), and then form the set , of causal pathways that contain all the members of . We
thus chose to define  in its most restricted sense, rather than for example including
pathways that contain one or more SNPs in . Note that the number,  of causal vary
according of pathways will to the particular distribution of overlaps within .

For each simulation, a univariate quantitative phenotype y is simulated using an additive
model,

where ζk is the allelic effect per minor allele due to causal SNP k. Setting wk = ζkxk, we

define the effect size of SNP k as δk = E(wk)/E(y) for , and set  so that δk
= 0 when ζ = 0. We also record the average SNP effect size as a proportion of total
phenotypic variance, ESk = Var(wk)/Var(y), and the mean proportionate change in response
per minor allele, E(ζk). For our simulations we control δk, and set ζk accordingly, so that
effect size is independent of SNP MAF, whereas ζk and ESk are MAF-dependent.

The power and specificity of any PGAS method is likely to depend on a range of factors
including the number of causal pathways to be identified, the number and distribution of
causal SNPs, and the size of their phenotypic effect (Wang et al., 2010, Fridley and
Biernacka, 2011). We therefore assess the performance of our method across 6 different
scenarios in which we vary each of these factors. Furthermore, we test each scenario over
500 MC simulations to account for variation in causal SNP MAFs, gene size and number
within pathways, and LD patterns within and between causal pathways.

The list of scenarios tested is presented in Table 1. First, we consider scenarios where the
number of causal SNPs is small (S = 3) or large (S = 10). Secondly, we consider two

different SNP effect sizes. We choose values for  and δk to mimic effect sizes obtained in
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recent association studies, focussing particularly on the smallest reported effect sizes. Park
et al. (2010) review GWAS for a number of quantitative traits (height, Crohn’s disease and
breast, prostate and colorectal cancers) and report values for ESk ranging from 0.02 to
0.0004. Cho et al. (2009) report values for ζk for 8 quantitative traits in a large GWAS
ranging from 1.6 to 0.006. A recent neuroimaging genetic study measuring genetic effects
on a variety of traits related to brain structure reports significant values for ζk of around 0.07
(Joyner et al., 2009). We set σε = 0.2, and test δk = 0.005 and 0.001, which gives values for
ESk = 0.001 and 0.00004 and E(ζk) = 0.01 and 0.002 respectively. Finally, we also vary the
particular distribution of SNPs with respect to their location within causal pathways. We
expect the distribution of causal SNPs with respect to genes and associated LD blocks to
affect performance, both in our regression model, and in the case where pathway scores are
derived in a two-step process that begins with the calculation of gene association scores
(Wang et al., 2007). The distributions of , the number of causal pathways for each
scenario, are shown in Fig. 4.

4 Results
We begin with an investigation of the effect of our proposed speed ups to the GL estimation
algorithm. We first note that GL estimation times will depend on the sample size (N) and the
number of SNPs (P), which will in turn affect the number of mapped pathways (L) and P*.
Estimation times will further depend on the number of groups selected (M), and the amount
of signal present, since this affects convergence times. For illustrative purposes, in Table 2
we show gains in execution time compared with ‘standard’ block coordinate descent, using
our proposed speed ups for a single model fit with a null response, and for M = 10.
Estimation times are seen to be substantially reduced across a range of values for N and P,
dramatically so for larger datasets.

We next turn to the application of P-GLAW to real genotype and pathway data described in
section 2.3. We apply this procedure over 10 iterations, each with R = 40,000 MC
simulations with a response (0, 1). Fig. 5 (c) shows how the weight adjustment factor
w(τ)/w(τ–1), (see (15)), varies with dl across all pathways at a single iteration. Fig. 5 (a) and
(b) shows the observed, empirical distribution, Π*, using the standard size weighting (13),
and the adapted weights (15) after 10 iterations, respectively. The corresponding KL
divergence measure, D, is observed to reduce steadily over the 10 iterations (Fig. 5 (d)),
illustrating how the proposed weight adjustment procedure reduces pathway selection bias.

For the remainder of this section, we assess the performance of our proposed P-GLAW
method using simulated phenotypes under the simulation framework described in the
previous section, and using the bias-adjusted pathway weights described above. We first
compare performance using the bias-adjusted weights with that obtained using the standard
size weighting (13). We find the adjusted weighting scheme offers a considerable
improvement in ranking performance for all ranking measures, and illustrate this in Fig. 6
for a single scenario (scenario (a)) using the ranking performance measures described in
section 2.4. Fig. 6 (a) shows the first ranking measure (rk1) as a ROC curve, in which we
show the proportion of simulations with rk1 ≤ z, for ranks z = 1,2,…,100. We plot z on the
horizontal axis as a false ) positive rate (FPR), so that FPR = (z –1)/L. At a FPR of 0.05, we
see that the adapted weighting scheme shows a more than 2 fold increase in power (from
0.29 to 0.62) over the standard pathway size weighting (13), indicating 62% of MC
simulations have rk1 ≤ 28, compared with 29% for the standard size weighting. The
distribution of p100 across 500 MC simulations is illustrated as a boxplot in Fig. 6 (b). Here
we see that the adapted weighting scheme offers a clear and substantial improvement in
GL’s capacity to rank a high proportion of causal pathways in the top 100 (p = 2.03 × 10−50

that the two population p100 CDFs are equal using a two-sample Kolmogorov-Smirnov (KS)
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test). GL with the standard weighting scheme performs particularly poorly with 55% of
simulations failing to rank any causal pathway in any simulation, compared with 18% for
the adapted weighting scheme. Finally, Fig. 6 (c) shows the distribution of the R ranking
measure across 500 simulations under the two weighting schemes. Once again we see that
the adaptive weighting scheme demonstrates improved ranking performance over the
standard size weighting scheme, with the distribution of R scores skewed towards lower
values for the former, indicating that causal pathways tend to be ranked higher.

We next assess P-GLAW ranking performance with the adapted weighting scheme across
the full range of scenarios, and compare these with pathway rankings obtained using the
method proposed by Wang et al. (2007), commonly referred to as ‘GenGen’ (GG). GG is a
widely-used, GSEA-type PGAS method that measures pathway enrichment using genes
scores derived from univariate SNP statistics. Studies using GG include searches for
implicated pathways in Crohn’s disease (Wang et al., 2009b), autism spectrum disorders
(Wang et al., 2009a), breast cancer (Menashe et al., 2010) and Alzheimer’s disease (Lambert
et al., 2010). GG begins by scoring each SNP according to its association with the
phenotype. SNPs are then mapped to genes within a specified distance, and each gene is
scored according to its most significant mapped SNP. The enrichment of highly-ranked
genes in a given pathway is then compared with those in all other pathways, to obtain a
pathway enrichment score. For GenGen we use identical source data (genotypes,
phenotypes, SNP to gene, and gene to pathway mappings), and rank pathways by
normalised enrichment score, determined from 1,000 permutations (the GG default settings).
MC simulations for P-GLAW and GG are performed in parallel across 50 (P-GLAW) and
500 (GG) processors respectively, on a high-performance computing cluster. As described
above for alternative weighting schemes, results for the comparison study are presented in
the form of rk1 ROC curves (Fig. 7), p100 boxplots (Fig. 8) and R bar graphs (Fig. 9).
Selected ranking measures are presented in numerical form in Tables 3 and 4.

Beginning with the ROC curves illustrating the rk1 ranking measure (Fig. 7 and first 3
columns of Table 3), GG consistently demonstrates increased power and specificity across
all of the top 100 ranks illustrated. In addition, the relative gain in power for P-GLAW is
greater at the smallest effect size for each equivalent scenario, (a) vs. (d), (b) vs. (e), and (c)
vs. (f). At the smaller effect size, where causal SNPs are distributed randomly within causal
pathways, power increases where the number of causal SNPs is fewer ((d) vs. (e)). Finally,
maximum power is achieved for both methods where causal SNPs are located within a
single gene ((c) and (f)).

Turning to the distributions of the p100 ranking measure (Fig. 8, and columns 4 to 9 in Table
3), P-GLAW again outperforms GG across all scenarios. For example, the null hypothesis
that the two population cdfs are equal is rejected at the α = 0.05 level (Table 3, final
column), as is the null hypothesis that the two sample medians are the same (Fig. 8), except
for scenario (a) where median p100 is not significantly different for the two methods.
Excluding scenario (a) where both methods perform relatively well, P-GLAW median p100
is consistent across each scenario, and is maintained from the larger to the smaller effect
size. This is in marked contrast to GG, where this measure shows a large decrease at the
smaller effect size, although the decrease is less marked when causal SNPs are located
within a single gene. A similar pattern persists for both P-GLAW and GG if we consider the
proportion of simulations with p100 = 0, i.e. where no causal pathways are found in the top
100 ranks, except for P-GLAW in the case where causal SNPs are located in a single gene,
where this measure is particularly low.

The final series of plots (Fig. 9), illustrate the distributions of R across all scenarios. These
distributions once again follow the trends in ranking performance highlighted above, but
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they offer a more nuanced view, in the sense that while this measure takes power into
account, it is also sensitive to the actual causal pathway rankings. Here we see that P-GLAW
tends to rank causal pathways higher than GG, since all P-GLAW distributions are skewed
towards lower R values, indicating that causal pathways tend to be ranked higher. This is
borne out if we focus on the proportion of simulations with R < 10 (Table 4, first 3
columns), which also illustrates how proportionate gains in ranking performance for P-
GLAW over GG are largest for the smallest effect size ((a)-(c) vs. (d)-(f)). This table also
gives results for the proportion of simulations demonstrating near optimal ranking of causal
pathways (R < 3), although the very small frequencies suggest that little can be inferred
from these.

5 Discussion
We have developed a penalised regression-based strategy (P-GLAW) that exploits
functional structure within genotypes to identify biological pathways associated with a
continuous trait. We use the group lasso, with all mapped SNPs and pathways in a single
regression model, and use a novel combination of methods including a bias-adjusted group
weighting scheme and bootstrap sampling, together with a number of speed ups designed to
make the analysis of large scale datasets computationally feasible. An important feature of
our method is the need to accommodate the presence of overlapping pathways. On the
assumption that causal SNPs are enriched within a biological pathway, we find in a
simulation study that our proposed method shows relative gains in both power and
specificity across a range of scenarios, compared with an alternative pathways method (GG),
based on univariate SNP statistics, that we use as a benchmark. We believe this is the first
such study evaluating GL performance using real SNP and pathway data across a range of
realistic scenarios.

One key motivation for a pathways-based approach is the desire to harness the joint effects
of those SNPs or genes with relatively small effect size, that typically fail to achieve
genome-wide significance in GWAS (Baranzini et al., 2009). We hypothesise that the
advantages inherent in a multivariate approach to modelling SNP effects will increase power
to detect these, and in our simulation study we therefore focus on scenarios with causal
SNPs that exhibit effect sizes at or below the limits of those found in recent GWAS. To
evaluate the performance of each method considered here, we devise three separate ranking
metrics, each of which measures a different aspect of ranking performance.

One factor affecting power is the ‘genetic architecture’ of the disease in question, that is the
number and distribution of SNP effects across causal pathways (Wang et al., 2010). For
example, causal SNPs may be distributed across many genes in a pathway, or restricted to a
single gene. Since PGAS methods vary in the way that they combine the effects of
individual SNPs, the specific genetic architecture is expected to impact power for different
methods in different ways (Wang et al., 2009b, Holmans et al., 2009). GG uses genes scores
corresponding to the most significant SNP associated with a gene to establish pathway
significance. This has the advantage of reducing redundant information arising from SNPs in
LD with a causal SNP within a single gene, but may lead to reduced power where causal
variants reside in distinct LD blocks within a gene (Wang et al., 2007). An important, related
factor that we find has received little attention is the issue of overlapping pathways, and the
consequent effect on PGAS performance. The precise distribution of causal SNPs with
respect to genes that overlap multiple pathways will affect the number of pathways that are
considered to be ‘causal’, and we expect this to affect ranking performance for different
methods in different ways. To explore these issues, we investigate a variety of different
genetic architectures, in which we vary both the number and distribution of causal SNPs
with respect to pathways and genes.
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In general, we find that P-GLAW performs well across the range of causal SNP distributions
and effect sizes considered. Additionally, our method is able to consistently outperform the
benchmark (GG). GG performance at the smaller effect size is particularly weak, so that P-
GLAW shows the largest gains in relative performance here.

An insight into some of those factors affecting ranking performance is afforded by
considering some of the ranking measures in more detail. Starting with the highest ranking
causal pathway measure (rk1), as expected we find that this decreases for each scenario at
the smaller effect size. However, at the smaller effect size this measure is observed to
increase for both methods as the number of causal SNPs is decreased, markedly so when the
reduced number of causal SNPs are concentrated in a single gene. Since the effect size for
each causal SNP is held constant, this seems counterintuitive, since the pathway ‘signal’ is
reduced when there are fewer causal SNPs. In addition, for the reasons described above, for
GG this signal may be further reduced where causal SNPs reside within a single gene. The
explanation is likely to be that the effective number of causal pathways tends to increase as
the number of causal SNPs is reduced, increasing the probability that a single causal
pathway is ranked high. The number of causal pathways is even larger when causal SNPs
are concentrated in a single gene (see Fig. 4). Where the pathway signal is highest (scenario
(a)), both methods tend to rank a high proportion of causal pathways in the top 100 (high
p100), although the proportion of MC simulations in which GG fails to rank any causal
pathways (that is the proportion of simulations with p100 = 0) is relatively high. On this
measure of ranking power, GG performs relatively poorly across all other scenarios,
particularly at the smaller effect size. Interestingly, P-GLAW is relatively insensitive to
variation in the number and distribution of SNPs within causal pathways, as might be
expected from the smoothing properties of the GL  penalty, which ensures that all SNPs
within a selected pathway are retained in the model (Zhou et al., 2010).

The need to account for factors such as variation in LD, gene and pathway size is a feature
common to all PGAS methods. A range of approaches, often used in combination, have been
proposed to correct for these biasing factors, including the use of gene scores that summarise
SNP statistics (Holmans et al., 2009), and permutation of phenotypes (Wang et al., 2009b).
Dimensionality reduction techniques have also been advocated for the control of redundant
information (Chen et al., 2010, Zhu and Li, 2011, Ballard et al., 2010). For P-GLAW, we
propose a method that adjusts the distribution of pathway weights according to the observed
bias in pathway selection frequencies across multiple MC simulations under the null. We
find in a simulation study that our proposed bias correction method does substantially
increase power and specificity, indicating that pathway selection bias is decreased. One
potential disadvantage of our approach is that it takes no account of variation in biasing
factors within a pathway. It would be interesting to compare the relative merits of our
approach against alternative bias-reduction methods, for example the use of within-pathway
dimensionality reduction. However, we consider the retention of all SNPs in the regression
model to be a potentially attractive feature of our approach, as it affords the possibility of the
simultaneous identification of causal SNPs driving pathway selection, and we are currently
pursuing this as an extension to the present model.

In situations where predictors, or groups of predictors are correlated, both the lasso and
group lasso can demonstrate problems with consistency, that is they are unable to constently
identify the true set of causal predictors or groups (Zhao and Yu, 2006, Bach, 2008,
Chatterjee and Lahiri, 2011). Despite this, we have demonstrated that in a finite sample, our
bootstrap sampling approach performs well, and this has been borne out elsewhere
(Meinshausen and Bühlmann, 2010). We are however pursuing alternative methods for the
ranking of pathways, using different ranking strategies.

Silver et al. Page 20

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2013 January 06.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



We pay considerable attention to the need to develop fast algorithms for solving the GL, a
problem that is particularly acute when using regression models with GWAS data. Using a
combination of techniques, we establish a GL estimation algorithm that can quickly solve
the GL using whole genome data. However, the very large number of simulations and
scenarios considered in our simulation study, and the relatively slow performance of the
benchmark method mean that we restrict the analysis to mapped SNPs from a single
chromosome.2

We note that phenotypes in our simulation study are generated under an additive linear
model. The assumption of additive linear SNP effects is built into both the P-GLAW and
GG models, in the former through the SNP allele codings in the genotype design matrix, and
in the latter through the particular model used to generate the univariate SNP scores,
although for both methods alternative models can easily be accommodated.

In our simulation study we account for variation in the size and distribution of causal SNP
minor allele frequencies through the use of MC simulations, but we expect that such
variation is likely to impact model performance, and this is something that warrants further
exploration.

As with all PGAS methods, we note that results are dependent on the choice of pathways
database, and will inevitably reflect biases due for example to the increased number of
annotations for genes implicated in particular disease etiologies (Elbers et al., 2009, Cantor
et al., 2010). Results are also subject to bias resulting from SNP to gene mapping strategies.
For example, SNP to gene mapping distances will affect the number of unmapped SNPs
falling within gene ‘deserts’ (Eleftherohorinou et al., 2009), SNPs will map to relatively
large numbers of genes in gene rich areas of the genome, and the mapping of a SNP to its
closest gene may obscure a true functional relationships with a more distant gene (Wang et
al., 2009b).

Finally, we note that our method can be easily adapted to accommodate other ways of
grouping SNP data, for exampling using protein interaction networks (Wu et al., 2010), or
GO and other ontologies (Jensen and Bork, 2010).

Appendix: Line search over λ
We wish to tune λ so as to select a minimum M pathways at each subsample. To do this we
perform a line search over λ. This procedure is described in box 3.
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Figure 1.
The problem of overlapping pathways: here there are three pathways, ,  and , two of
which overlap. A: Standard formulation. Pathway parameter vectors β1 and β2 overlap,
since they have SNPs in common (shaded dark grey). Where an overlapping SNP has a non-
zero coEfficient, only , can be selected independently. B: Formulation with duplicated
SNPs. An expanded G parameter vector, β*, is created by duplicating overlapping SNPs

(dotted line).  and  now enter the model separately, so that pathways can be selected
independently.
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Figure 2.
SNP to pathway mapping.
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Figure 3.
Frequency distribution of ADNI SNPs by number of pathways they map to. SNPs are
mapped to genes within 10kbp. The data set consists of 8,078 SNPs and 551 pathways.
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Figure 4.
Distributions of  across 500 MC simulations for the 6 scenarios described in Table 1.
Where SNPs are distributed within a single gene (scenarios (c) and (f)), the number of
causal pathways tends to be larger, since a single gene can map to multiple pathways. Where
SNPs are distributed randomly across  (scenarios (a), (b), (d), and (e)), this number tends
to be smaller, particularly where the number of causal SNPs is large (scenarios (a) and (d)).
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Figure 5.
Application of bias-adjusted weighting procedure to the data used in the simulation study. R
= 40,000, with a different null response, (0, 1), at each MC simulation. α = 0.98. (a)
Empirical pathway selection frequency distribution, Π*, with standard, pathway size

weighting, . D = 2.24. Dotted horizontal line shows the expected distribution, IIl = 1/
L ≃ 0.002. (b) Π* with bias-adjusted weights after 10 iterations. D = 0.12. (c) Variation of
weighting adjustment factor w(τ)/w(τ–1) with dl at a single iteration, with α = 0.98. Each
point represents the adjustment to a single wl, l = 1,…,L. (d) Decrease in K-L divergence, D,
over 10 iterations.
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Figure 6.
Comparison of ranking performance: adaptive weighting scheme (section 2.3) vs. standard
pathway size weighting (13). S = 10; δk = 0.005; SNPs randomly distributed across . (a)
ROC curves illustrating power to identify at least one causal pathway in the top 100. Power
is average across 500 simulations. (b) Distribution of ranking power, p100, across 500

simulations. This is the proportion  of causal pathways in  that are ranked in the
top 100 pathways. Notches indicate 95% confidence intervals for the true median. (c)
Distribution of the power-adjusted, normalised, weighted ranking score, R, across 500
simulations. The final ‘50+’ column includes simulations for which no causal pathway was

ranked in the top 100, i.e. ; R = 100.
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Figure 7.
ROC curves illustrating proportion of simulations with rk1 ≤ z, for ranks z = 1,2,…,100.
Power is average across 500 simulations. False positive rate = (z – 1)/L. Scenarios
corresponding to the higher SNP effiect size (δk = 0.005) are presented in the left-hand
column, with the equivalent scenarios at the lower effect size (δk = 0.001) on the right.
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Figure 8.
Box plots of distribution of ranking power, p100, across 500 simulations. This is the

proportion  of causal pathways in  that are ranked in the top 100 pathways.
Notches indicate 95% confidence intervals for the true median.
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Figure 9.
Distribution of the power-adjusted, normalised, weighted ranking score, R, across 500
simulations. The final ‘50+’ column includes simulations for which no causal pathway was

ranked in the top 100, i.e. ; R = 100.
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Box 1

GL estimation algorithm using BCD

1. set β^  = 0.

2. For pathway Gl , l = l1, 2,…,L:

  set r̂ l = y − Σm≠lXmβ
^

m

  If Xl
T r̂ l 2 ≤ λwl

   set β^ l = 0
  else
   do
    for j = l1,…,Sl
     estimate βj using (9)
    end
   until convergence of f(βl) (2)
   set β^ l = βl
  end
 end

3. Repeat step 2 until (global) convergence of f(β)(1)
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Box 2

Active set algorithm for a single γ value

1. Form the active set, A = {m ∈ G : Xm
T y 2 > λwm}

2. Set β^ = 0, and solve the GL estimation at λ, using only the groups in A:

β^ = min
β

1
2

y − ∑m∈A Xmβm 2
2 + λ∑m∈A wm βm 2

3. Compute the revised active set on the full dataset:

A+ = {z ∈ G : Xz
T r̂ z 2 > λwz}

 if A+ ∕ A = ∅
  β^  is the full solution
  STOP
 else

  set A = A+

  repeat 2. and 3. with the new, (expanded) active set
 end
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Box 3

Line search procedure for tuning λ to select M ≥ Mmin pathways

1. Set λmax = minλ : Xl
T y 2 ≤ λwl  (from (12)) and α = 0.8†

2. Let λ = αλmax

3. Form the active set, A = {m ∈ G : Xm
T y 2 ≤ λwm}

4. Let M = ∣ A ∣ . If M < Mmin skip to step 6.‡

5. Solve the GL estimation at λ using the active set A, as described in box 2 (starting at box 2, step 2.)

 Let the solution be β^ , with final active set A
 S(λ) = {l ∈ G : β^ l > 0} (the set of selected pathways)

 M = ∣ S(λ) ∣ (the number of selected pathways)

6. if M ≥ Mmin

  β^  is the full solution
  STOP
 else
  λmax = λ (need to decrease λ)
 end

7. Go to step 2.

†
The value of α is chosen for computational convenience. A value close to 1 ensures that λ values stay close to 1, so that as few pathways are

selected by the model as possible, thus speeding up the estimation. However, a value too close to 1 means that the decrease in λ at each iteration is
small, meaning that many iterations may have to be performed before M reaches the desired range.

‡
This step is introduced for computational efficiency, since if | | < Mmin there is no prospect of selecting enough groups

Stat Appl Genet Mol Biol. Author manuscript; available in PMC 2013 January 06.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Silver et al. Page 37

Table 1

Scenarios tested in simulation study. For scenarios (c) and (f), in the rare event that a gene has less than 3
SNPs, all SNPs within the gene are selected.

scenario S δk distribution description

(a) 10 0.005 random from Gϕ S large; δk large; random distribn

(b) 3 0.005 random from Gϕ S small; δk large; random distribn

(c) 3 0.005 random from single gene in Gϕ S small; δk large; single gene

(d) 10 0.001 random from Gϕ S large; δk small; random distribn

(e) 3 0.001 random from Gϕ S small; δk small; random distribn

(f) 3 0.001 random from single gene in Gϕ S small; δk small; single gene
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