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Risk predictionmodels are powerful tools that use multivariable
regression to combine predictors or predisposing factors to estimate
the probability or risk of the presence or future occurrence of clinical
outcomes such as lung cancer.1-3 Several lung cancer risk prediction
models have been developed.4-12 Suchmodels are usually constructed
in data sets with information from a well-defined population with
similar characteristics.13 Discrimination is a measure of how well a
model can separate diseased from nondiseased individuals and is most
often measured using the area under the receiver operating charac-
teristic curve or concordance c-statistic,14 although other methods and
metrics of performance of prediction models have been published.15

The discriminative performance of a risk model depends not
only on the identification of individual risk factors, but also on how
these risk variables interact with other variables, how accurately these
factors can be measured, and the appropriateness of the population
and statistical techniques used for modeling.16 Generally, the dis-
criminative performance of risk models in the initial development
data set is better than the performance in other data sets.1,13,17 This
self-fulfilling prophecy, otherwise known as optimism, is a statistical
phenomenon that is well described in the literature.1,2,18

Many risk prediction models fail in clinical settings because of
overfitting, ie, spurious association as the result of noise in the data
set, which may lead to overestimation or underestimation of pre-
dictive performance.19,20 A valuable risk model will not only predict
outcome in the initial development data but also show good dis-
criminative performance in independent data sets.2 Poor prediction
performance of risk models can be prevented by conducting an
unbiased internal validation.21 The principal methods for con-
ducting internal validation of risk models are data-splitting, cross-
validation, and bootstrapping.1 Of the three methods described for
internal validation, bootstrapping has been applauded as the most
efficient method.1,13 This resampling technique invokes an iteration
process by drawing samples with replacement from the original
sample, and the original data set is used for model development.1,13

One of the major issues hampering effective lung cancer
treatment is the presentation of patients at advanced stages of the
disease, when current therapeutic regimens have poor outcomes.22

The way forward for improved management and prognosis for
individuals at high risk of lung cancer is early detection of the disease,
which may be achieved through low-dose computed tomography

screening.23 The high percentage of false positives reported in various
lung cancer screening trialsmay be attributed to variability in age and
smoking history, which are solely used as eligibility criteria. Concerns
about the high percentage of false positives and associated health
hazards as the result of radiation exposure have awakened interest in
the application of quantitative and more informative risk prediction
models in identifying individuals at high risk.24

Different validated risk models using different risk criteria
have been proposed; the Liverpool Lung Project risk model was
used to select individuals with a $ 5% risk of developing lung
cancer in a 5-year period7,25; the Prostate, Lung, Colorectal and
Ovarian (PLCO) PLCOm2012 risk $ 1.51% of lung cancer death
over 6 years26; and the recently proposed model on the basis of the
use of quintile of the risk of lung cancer death at 5 years, and more
recently, risk modeling on the basis of US Preventive Services Task
Force lung cancer screening recommendations.27,28 Li et al24 ex-
ternally validated four lung cancer risk prediction models (Bach,
Spitz, Liverpool Lung Project, and PLCOm2012) among 20,700 ever
smokers in the German European Prospective Investigation of
Cancer and Nutrition (EPIC) study and concluded that all models
apart from the Spitz model have a similar accuracy to identify
individuals at high risk for screening and outperform age and
smoking eligibility criteria used in screening trials.

In the article accompanying this editorial, Muller et al29 re-
ported a lung cancer risk prediction model incorporating lung
function in the UK Biobank prospective cohort study. In their
study, they used flexible parametric survival models to estimate the
2-year probability of lung cancer, accounting for the competitive
risk of death in 502,321 participants. During accumulated follow-
up of 1,469,518 person years, 738 developed lung cancer. Their
model incorporating all predictors had excellent discrimination.
The c-statistic of their risk model and the bias-corrected bootstrap
resampling were similar: 0.85 (95%CI, 0.82 to 0.87) and 0.84 (95%
CI, 0.82 to 0.86), respectively. In addition, the full model had better
discrimination than standard lung cancer screening eligibility criteria
c-statistics: 0.66 (95% CI, 0.64 to 0.69). Internal validation suggested
that the model will perform well in discriminating between patients
with lung cancer and population control subjects. A model with such
high discrimination could improve eligibility criteria for lung cancer
screening programs after validation in external data sets.
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Internal validation of studies by bootstrapping is a well-
established statistical technique that does not examine the gener-
alizability of risk models. As mentioned above, bootstrapping uses
the original entire data set to estimate predictive performance of
a model. This method, albeit, is a self-fulfilling prophecy that is often
optimistic. Steyerberg et al30 argued that internal validation is sta-
tistically inefficient andmethodologically weak because no difference
in time or place exist other than by chance. Many published pre-
diction models have never been validated as the result of uncollected
predictor variables in otherwise suitable validation cohorts.31 How-
ever, several imputation techniques have been developed to overcome
this barrier. Clinical application of a model to predict an individual’s
risk of disease (ie, lung cancer) is dependent on its successful vali-
dation in independent populations. Although themodel developed by
Muller et al has good discrimination, this model must pass the litmus
test of external validation (such as the aforementioned lung cancer
risk prediction models) before its clinical utility can be considered for
lung cancer screening programs.

Lung cancer risk prediction models will continue to play an
important role in this era of personalized medicine, particularly in
the selection of individuals for prevention and surveillance in-
terventions. Risk estimates from a predictivemodelmay help identify
and counsel individuals at elevated risk of lung cancer, raising
awareness that can lead to risk-minimizing behaviors.32 Alterna-
tively, the model’s prediction may be useful in defining a high-risk
population to include in prevention trials or to target for screening
and prevention efforts. In all of these contexts, accurate, internally
and externally validated risk models will be most useful in making
clinical decisions regarding patient stratification for prevention and
early detection interventions of lung cancer.33
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26. Tammemägi MC, Church TR, Hocking WG, et al: Evaluation of the lung
cancer risks at which to screen ever- and never-smokers: Screening rules applied
to the PLCO and NLST cohorts. PLoS Med 11:e1001764, 2014

27. Kovalchik SA, Tammemagi M, Berg CD, et al: Targeting of low-dose CT
screening according to the risk of lung-cancer death. N Engl J Med 369:245-254,
2013

28. Katki HA, Kovalchik SA, Berg CD, et al: Development and validation of risk
models to select ever-smokers for CT lung cancer screening. JAMA 315:
2300-2311, 2016

29. Muller DC, Johansson M, Brennan P: A lung cancer risk prediction model
incorporating lung function: Development and validation in the UK Biobank pro-
spective cohort study. J Clin Oncol 35:861-869, 2017

30. Steyerberg EW, Moons KG, van der Windt DA, et al: Prognosis Research
Strategy (PROGRESS) 3: Prognostic model research. PLoS Med 10:e1001381,
2013

31. Held U, Kessels A, Garcia Aymerich J, et al: Methods for handling missing
variables in risk prediction models. Am J Epidemiol 184:545-551, 2016

32. Sherratt FC, Marcus MW, Robinson J, et al: Utilizing lung cancer risk
prediction models to promote smoking cessation: Two randomized controlled
trials. Am J Health Promot 0890117116673820, 2016

33. Field JK, Hansell DM, Duffy SW, et al: CT screening for lung cancer:
Countdown to implementation. Lancet Oncol 14:e591-e600, 2013

DOI: 10.1200/JCO.2016.71.3214; published at jco.org on January 23,
2017.

n n n

jco.org © 2017 by American Society of Clinical Oncology 819

Editorial

Downloaded from ascopubs.org by UNIVERSITY LIVERPOOL on August 23, 2017 from 138.253.072.141
Copyright © 2017 American Society of Clinical Oncology. All rights reserved.

http://jco.org
http://ascopubs.org/doi/full/10.1200/JCO.2016.71.3214
http://jco.org
http://jco.org


AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Is Bootstrapping Sufficient for Validating a Risk Model for Selection of Participants for a Lung Cancer Screening Program?

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are
self-held unless noted. I 5 Immediate Family Member, Inst 5 My Institution. Relationships may not relate to the subject matter of this manuscript. For more
information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/site/ifc.

Michael W. Marcus
No relationship to disclose

John K. Field
No relationship to disclose

© 2017 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY

Editorial

Downloaded from ascopubs.org by UNIVERSITY LIVERPOOL on August 23, 2017 from 138.253.072.141
Copyright © 2017 American Society of Clinical Oncology. All rights reserved.

http://www.asco.org/rwc
http://ascopubs.org/jco/site/ifc

	Is Bootstrapping Sufficient for Validating a Risk Model for Selection of Participants for a Lung Cancer Screening Program?
	REFERENCES


