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SUMMARY

The distributions of parasitic diseases are determined by complex factors, including many that are distributed in space.
A variety of statistical methods are now readily accessible to researchers providing opportunities for describing and
ultimately understanding and predicting spatial distributions. This review provides an overview of the spatial statistical
methods available to parasitologists, ecologists and epidemiologists and discusses how such methods have yielded new
insights into the ecology and epidemiology of infection and disease. The review is structured according to the three major
branches of spatial statistics: continuous spatial variation; discrete spatial variation; and spatial point processes.
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INTRODUCTION

Parasites are heterogeneously distributed within host
populations (Anderson and May, 1991; Anderson,
1993). Usually, some of this heterogeneity will be
spatially structured and explained by various ecologi-
cal factors and species interactions that are themselves
spatially structured. Improved understanding of the
spatial patterns of infection and disease, and the pro-
cesses behind them, can help predict spatial distri-
butions in unsampled areas, assist in the geographical
targeting of control interventions and improve our
understanding of disease outbreaks.

A number of tools are now available to help us
better quantify and understand spatial variation in
the patterns of infection and disease. The recent
application of global positioning systems (GPS),
geographical information systems (GIS) combined
with spatial statistical approaches, for example, has
provided an improved understanding of spatial pat-
terns and processes (Hay et al. 2000; Simoonga et al.
2009; Machault et al. 2011). This has, in turn, en-
abled us to predict spatial distributions using
remotely sensed environmental data to assist the
targeting of control and estimation of the burden of
parasitic diseases (Brooker, 2007; Patil et al. 2011;
SoaresMagalhães et al. 2011c). In this review, we aim
to provide an overview of available tools, methods
and their applications for improving our under-
standing of the ecology and epidemiology of human
parasitic diseases. As a framework, we consider

separately the three major branches of spatial
statistics: continuous spatial variation; discrete spatial
variation; and spatial point processes (Cressie, 1991;
Diggle, 1996).

Approaches to spatial analysis

Any statistical approach that accounts for either
absolute location and/or relative position (spatial
arrangement) of the data can be referred to as spatial.
There are threemain approaches, illustrated in Fig. 1.
The feature that distinguishes between them is the
basic underlying statistical model, and the assump-
tions that this makes regarding the spatial processes
involved (Diggle, 2004). For instance, spatial stat-
istics investigating continuous spatial dependency
assume that the outcome occurs and is potentially
measurable throughout space and, as such, spatial
variation in the outcome can be modelled explicitly.
In contrast, discrete spatial statistics investigate
proximity and are used when data are only available
at an aggregate area level. Here, spatial structure is
modelled by considering dependency between neigh-
bouring discrete units. Both of these approaches
rely upon spatially sampled measurement data, and
can be described as global in the sense that theymodel
the overall degree of spatial autocorrelation for a
dataset. Spatial point processes, on the other hand,
concern the physical location of events distributed
within a study region and are used to investigate
either the general (i.e. global) propensity for points
to cluster or the location of individual (i.e. local)
spatial clusters of infection, disease or vector and
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intermediate host populations, relative to the under-
lying population. Below, we describe each of these
three approaches.

QUANTIFYING CONTINUOUS SPATIAL

DEPENDENCE

Spatial dependence refers to the observation that
infection indicators (e.g. prevalence of infection or
quantitative egg counts) from samples taken in close
proximity to each other are more likely to be related
than would be expected by chance, either positively
or negatively. This is commonly known as Tobler’s
first law of geography, whereby “everything is related
to everything else, but nearby objects aremore related
than distant objects” (Tobler, 1970). When investi-
gating continuous spatial dependence, we assume
that the outcome can be characterized by a mean, a

variance and a correlation structure that is a specified
function of location. In such instances, assumptions
of independence between observations do not hold
true and thus any analysis that ignores spatial depen-
dence risks making inaccurate or misleading infer-
ences (Thomson et al. 1999). Quantifying continuous
spatial dependence can also provide additional in-
sight into spatial determinants of infection and
disease, and thus indicate interesting avenues for
investigation. For example, spatial dependence over
large spatial scales may suggest the influence of major
climatic correlates of infection, whilst spatial depen-
dence existing only between near locations (typical of
highly focal infections) might suggest the involve-
ment of local, micro-environmental factors. An
understanding of the distance at which spatial depen-
dence occurs can also inform spatial interpolation and
prediction and spatial sampling (see below).

Fig. 1. An illustrated application of the three major branches of spatial statistics, using one dataset. (A) Data used for
analysis: Point-level (school-level) malaria prevalence data for Western Kenya, collected during the National School
Malaria Survey, 2010 (Gitonga et al. 2010). (B) Discrete spatial analysis: data are aggregated to the area level (in this
case, mean district prevalence) for presentation and analysis. Discrete spatial statistics can be used to smooth between
units, or investigate associations with covariates. (C) Continuous spatial analysis: characterizes spatial dependency (or
autocorrelation) between points, and can be used to interpolate predicted outcomes across the entire study region (in this
case, using Ordinary Kriging (Goovaerts, 1997)). (D) Spatial point processes: used to investigate the location of
individual spatial clusters (indicated as hatched circles) in the outcome (in this case, Kulldorf’s spatial scan statistic
(Kulldorff and Nagarwalla, 1995)).
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When investigating continuous spatial depen-
dence, it is important to distinguish between first
order (i.e. generally large-scale, deterministic spatial
trends) and second order (i.e. small-scale, stochastic)
effects (Pfeiffer et al. 2008). First order trends, for
example a north-south gradient in the prevalence of
infection, can be readily modelled and accounted for
by standard regression techniques. Second order
effects arise from spatial dependence and represent
the tendency for neighbouring values to be similar in
their deviation from the global mean. It is therefore
the presence of second order effects that violates
assumptions of independence between observations,
and thus should be the main focus of any spatial
analysis. The categorisation of first order and second
order effects of course will change according to the
scale of the analysis – for example, variation that
appears as a trend at small spatial scales may be seen
as second order variation on a larger scale (Legendre
and Fortin, 1989; Weins, 1989; Levin, 1992). Simi-
larly, clear deterministic (first order) relationships
between infection prevalence and climatic factors
evident at country scales may disappear at a com-
munity level, overridden by local environmental
and socio-demographic characteristics. Most spatial
analyses will first begin with identifying any trends
in the global mean, and will then focus on inves-
tigating underlying spatial dependency in the resi-
duals (Pfeiffer et al. 2008). Second order effects are
generally assumed to be stationary and isotropic,
meaning that correlation between neighbouring ob-
servations is independent from absolute location and
does not depend on direction. If dependency between
observations is defined by either the physical location
of the observations, or by direction, the process is
respectively known as non-stationary or geometrically
anisotropic, which can be considerably harder to
analyse and model.

A number of statistics have been developed to
better describe second order spatial dependency,
includingMoran’s I and the inversely relatedGeary’s
C (Bailey and Gatrell, 1995). These indicators of
global spatial association evaluate whether outcome
values are clustered, randomly distributed or evenly
dispersed in space, and may form a starting point
for more detailed spatial analyses. A more widely
used descriptive approach however is the semi-
variogram – a cornerstone of classical geostatistics
(Goovaerts, 1997). Semi-variograms define semi-
variance (ameasure of expected dissimilarity between
a given pair of observations) as a function of the dis-
tance separating those observations, providing infor-
mation about the range and rate of decay of spatial
autocorrelation, as well as the relative contribution
of spatial factors to total variation in the outcome.
An empirical semi-variogram can be estimated from
survey data by calculating the squared difference
between all pairs of observations. For ease of inter-
pretation, semi-variance values are grouped and

averaged according to separation distance, termed
lags. If spatial autocorrelation is present in the data,
semi-variance typically increases to a maximum
value, termed the sill, before plateauing (Fig. 2). In
some instances, semi-variance may continue to rise
(known as an ‘unbounded’ variogram), indicative of
first order effects such as directional trends which
must be removed from the data, for example by using
regression methods.

Once the empirical semi-variogram is estimated, a
model semi-variogram can then be fitted as a line
through the plotted semi-variance values for each lag.
There are a number of permissible model functions
that can be used to fit valid semi-variograms,
although the most common are the exponential,
spherical and Gaussian functions (Cressie, 1991).
The modelled value of semi-variance at the intercept
(i.e. where points are separated by negligibly small
distances) is termed the nugget and represents the
stochastic variation between points, measurement
error or spatial autocorrelation over distances smaller
than those represented in the data. The distance at
which the sill is reached is termed the range, and
represents the distance over which spatial autocorre-
lation exists. Points separated by distances larger than
the range are therefore equally as dissimilar irrespec-
tive of the distance between them. Semi-variograms
are a commonly used descriptive tool, and have been
used for example to explore spatial heterogeneity of

Fig. 2. An example of a semi-variogram, showing its
major components. The range represents the separation
distance, at which 95% of sill variance is reached, and
here is approximately 20 km. The nugget represents the
stochastic variation between points, measurement error or
spatial autocorrelation over distances smaller than those
represented in the data. Data are from a school-based
survey of blood in urine indicative of genitourinary
schistosomiasis from Coast province, Kenya (Kihara et al.
2011) and were de-trended (i.e. first order spatial
structure was removed) using a quadratic trend surface.
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parasite populations within and between commu-
nities, and to quantify the spatial scale at which
variation occurs (Srividya et al. 2002; Brooker et al.
2004b; Sturrock et al. 2010).
A spatial tool that builds upon semi-variogram

analysis is kriging, a weighted moving average tech-
nique that interpolates or smooths estimates (de-
pending on whether a zero nugget is assumed), based
on values at neighbouring locations and parameters
from the semi-variogram. It also provides a relative
estimate of prediction error (also known as kriging
variance) at each prediction location. In parasite epi-
demiology, kriging has been widely used for predict-
ing spatial patterns (e.g. the prevalence of infection)
at unsampled locations. Taking a recent example,
Zouré et al. (2011) used this method to produce
spatially smoothed contour maps of the interpolated
prevalence of eye worm (an indicator for Loa loa
infection), based on rapid mapping questionnaire
data from a sample of 4,798 villages covering 11
potentially endemic country (Zouré et al. 2011). The
resulting maps were used to identify zones of hyper-
endemicity, including several previously unknown
foci, and provide critical information for large-scale
ivermectin treatment programmes. An extension
to ordinary kriging is universal kriging, which
includes variation due to both covariates and spatial
autocorrelation (Goovaerts, 1997), and has for
example been used to map malaria risk across Mali
(Kleinschmidt et al. 2000). This process considers
the variable of interest as a first order large-scale trend
determined by covariates and a second order spatially
auto-correlated residual. An important feature of
universal kriging variance therefore is that it in-
corporates both the error associated with the trend
estimation as well as the error of the spatial
interpolation.
Major limitations of a classical geostatistical ap-

proach include the inability to account fully for
inherent uncertainties, such as those arising from
the constraints of finite sampling, imperfect survey
measurement, uneven data distribution, or of the
fitted semi-variogram parameters themselves. It is
also less appropriate when considering non-Gaussian
outcomes (e.g. proportions and parasite counts). All
of these factors can have considerable implications
for risk mapping approaches. This has led spatial
epidemiologists to turn towards model-based geo-
statistics (MBG), in which classical geostatistics
is embedded in the (usually Bayesian) framework
of a generalised linear model (Diggle et al. 1998).
This offers a more explicit technical and conceptual
framework for capturing the relationship between
infection outcomes and covariates, providing a more
realistic account of uncertainty in both covariance
and mean functions (Diggle et al. 1998; Cressie et al.
2009).Importantly, themodelcan thenbeused togen-
erate a distribution of possible values (i.e. a posterior
probability distribution) for infection indicators at

unsampled locations (interpolation). A rapid expan-
sion of increasingly sophisticated mapping initiatives
based upon this method is now being driven by
increased computing capacity and the availability of
spatially referenced epidemiological data (Soares
Magalhães et al. 2011c; Patil et al. 2011). Below we
discuss some of the more recent advances using the
MBG approach, focusing on two key areas of direct
relevance to the effective targeting and evaluation of
control programmes: predicting spatial distributions
and designing sampling strategies.

Quantifying spatial dependence in order to predict
spatial distributions

One application for MBG is predicting the spatial
distributionof infection anddisease, especially in situ-
ations where outcome data are geographically sparse.
For example, MBG approaches have been used to
model prevalence of infection at regional, national
and sub-national levels for a variety of human para-
sitic diseases, including malaria (Clements et al.
2009c; Hay et al. 2009; Gosoniu et al. 2010; Reid
et al. 2010a,b), soil-transmitted helminths (STHs)
(Raso et al. 2006a; Pullan et al. 2011a), schisto-
somiasis (Clements et al. 2006a,b, 2008a, 2009a,b;
Vounatsou et al. 2009; Schur et al. 2011a), lymphatic
filariasis (Stensgaard et al. 2011) and trypanosomiasis
(Wardrop et al. 2010). Such maps can provide
detailed information on the distribution of infec-
tion and disease risk, maximising the usefulness
of the data that are available whilst best capturing
inherent uncertainties, and can be helpful for the
monitoring and evaluation of interventions. Over-
laying prevalence of infection maps with human
population surfaces can present a novel means for
burden estimation, as has been done at regional and
global scales for schistosomiasis (Clements et al.
2008a; Schur et al. 2011a) and malaria (Hay et al.
2010).
Nevertheless, despite being statistically appealing,

predictive prevalence surfaces (together with their
associated uncertainty) still require some degree of
interpretation before being useful for practical dis-
ease control guidance. One advantage of the Bayesian
approach is the ability to produce maps demonstrat-
ing the strength of evidence (i.e. the probability)
that intervention prevalence thresholds have been
exceeded. For example, studies have identified those
areas where there is strong evidence that STH,
schistosomiasis or Loa loa infection prevalence
exceed policy implementation thresholds for mass
drug administration, and where high uncertainty
warrants further surveys (Diggle et al. 2007;
Clements et al. 2008a; Pullan et al. 2011a). An
example of such an approach applied to STH infec-
tions, taken from Pullan et al. (2011a), is shown in
Fig. 3.
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Although the most common applications of MBG
typically use a binomial/logistic regression model
(i.e. modelling the prevalence/presence of infection),
generalised linear models can handle a variety of data
types. For example, density/intensity of infection can
provide a more informative indicator of disease
burden than simple presence of infection for many
parasites. Such data are usually over-dispersed and so

better captured using a negative binomial or zero-
inflated Poisson distribution. Alexander et al. (2000)
used a negative binomial MBG to model effectively
individual Wuchereria bancrofti parasite count data
from communities in Papau New Guinea (Alexander
et al. 2000), whilst Brooker et al. (2006) adapted this
model to investigate the small-scale spatial hetero-
geneity in STH and schistosome infections in rural

Fig. 3. An example of the practical applications of a model-based geostatistical (MBG) predictive mapping of soil-
transmitted helminths (STH). (a) Bayesian space-time geostatistical models were developed for each STH species using
survey data from 1980–2009, and were used to interpolate the probability that combined infection prevalence exceeded
the 20% level defined by the World Health Organisation as a mass drug administration (MDA) threshold in 2009. (b)
Population census data were overlaid with the probability models to estimate the proportion of the population at risk
(i.e. >50% probability of exceeding 20% prevalence threshold) and requiring treatment in 2009 for each district.
Recommended intervention districts (c) are defined as: once yearly mass drug administration (MDA), at least 33% of the
district exceeds 20% prevalence threshold, and twice yearly MDA, at least 33% of the district exceeds a 50% prevalence
threshold. Continued surveillance is recommended for districts where historically >75% of the district exceeded the 20%
prevalence based on predictions for 1999, and areas of high uncertainty are those where we can only be 50–65% certain
that prevalence is lower than 20%. Adapted from Pullan et al. 2011.
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and urban environments in Brazil. Spatial negative
binomial and zero-inflated Poisson models of faecal
egg count data have also been developed for
S. mansoni, S. haematobium and hookworm at com-
munity and country levels (Vounatsou et al. 2009;
Pullan et al. 2010; SoaresMagalhães et al. 2011b) and
for S. mansoni at regional levels (Clements et al.
2006b). In addition, multinomial models have been
built to stratify areas on the basis of prevalence of
high- and low-intensity S. haematobium infections
in West Africa (Clements et al. 2009b), and to model
the distribution of malaria-helminth co-infections
at country (Raso et al. 2006b) and regional levels
(Brooker and Clements, 2009). Finally, a Bayesian
framework allows the inclusion of multiple imputa-
tion steps. For example, theMalaria Atlas Project has
incorporated a Bayesian model to predict malaria
incidence as a function of parasite prevalence directly
(Patil et al. 2009) within the geostatistical framework
used to model infection prevalence (Hay et al. 2010).
Data used for mapping parasitic diseases typically

originate from a range of sources using various
diagnostics, age groups and sampling methods. A
Bayesian inference approach can be adapted to ac-
count for these additional sources of uncertainty. For
example a number of approaches have been used to
adjust for combining data from different age groups,
ranging from the inclusion of fixed regression
coefficients and random alignment factors (Pullan
et al. 2011a; Schur et al. 2011c) to the incorporation
of mathematical age-standardisation algorithms (Hay
et al. 2009; Gething et al. 2011). Diagnostic tests for a
large range of parasites typically have poor sensitivity
and specificity, at least in part due to significant day-
to-day and intra-specimen variation (Utzinger et al.
2001; Booth et al. 2003; Engels and Savioli, 2006;
Farnert, 2008; Leonardo et al. 2008; Tarafder et al.
2010). In response, in addition to simply adjusting
for the type of diagnostic method used (Pullan et al.
2011a), authors have explored bivariate outcome
spatial models that allow for calibration of spatially
correlated data series (Crainiceanu et al. 2008), and
models that include outcomes as random variables
with ‘informative’ priors defined by observed diag-
nostic uncertainties (Wang et al. 2008).
Another recent extension includes adding a tem-

poral dimension. For example, temporal effects have
been handled as random coefficients when modelling
STH prevalence across Kenya (Pullan et al. 2011a)
and malaria across Vietnam (Manh et al. 2010),
explicitly allowing dependency between observations
within years. This approach has been extended for
mappingmalaria at global scales using a sophisticated
two-dimensional space-time random coefficient (Hay
et al. 2010), thus simultaneously modelling corre-
lation between data points in both space and time.
Such models can provide more accurate predictions
when data are distributed through time as well as
space, providing a better understanding of both the

contemporary distribution of infection as well as
changing risks since the launch of large-scale control.
Spatially explicit approaches can also help better
capture environmental contexts when investigating
co-occurrence of parasite species. For example,
studies have used MBG approaches to investigate
the geographical distribution of multiple species
infection with helminths and malaria at differing spa-
tial scales (Raso et al. 2006b; Brooker and Clements,
2009; Pullan et al. 2011b; Soares Magalhaes et al.
2011b; Brooker et al. 2012), facilitating more detailed
investigation of associations between species. Lastly,
MBG models have been adapted to better capture
complex, non-linear relationships with covariates
thus providing a deeper understanding of the deter-
minants of infection. For example, authors have
used methods such as penalised spline regression
(Crainiceanu et al. 2005; Gosoniu et al. 2009; Soares
Magalhaes et al. 2011a).
Despite their utility, considerable caution must

be used when building and interpreting complex
MBG models. For example, careful consideration of
appropriate model specifications and priors are essen-
tial to prevent invalid or inefficient inferences. Sys-
tematic changes in diagnostic or sampling methods
over time or space can also be misinterpreted as
genuine change in disease status. Most MBGmodels
reported in the literature also assume that spatial
autocorrelation does not vary with location (so-called
stationary models). Whilst such an assumption may
be valid across small scales, this may not be true when
considering spatial processes over large geographical
areas where variation in geography, control, vectors
and even parasite strains can cause spatial variation in
autocorrelation. To tackle this problem, a number of
approaches have been developed (Gemperli, 2003;
Kim et al. 2005; Raso et al. 2006a, Beck-Worner et al.
2007; Gosoniu et al. 2009) although application
at large spatial scales is still hindered by practical and
computational constraints. To our knowledge, few
groups have yet to tackle the issue of geographical
anisotropy in parasite epidemiological analyses,
although direction is likely to play an important
role in observations of spatial dependency for focally
transmitted infections such as schistosomiasis and
trypanasomiasis (Vounatsou et al. 2009). Stein (2005)
however has proposed a geographically anisotropic
version of the space-time covariance matrix used
spatio-temporal MBG, that has since been adapted
by Gething et al. (2011) to model the global
distribution of malaria (Stein, 2005; Gething et al.
2011).
Due to the computational burden required to

generate predictions at each individual prediction
location, most applications of MBG models tend to
be via a ‘per prediction point’ approach, yielding
marginal prediction intervals that realistically capture
appropriate measures of ‘local’ uncertainty. How-
ever, failing to account for spatial or temporal
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correlation between prediction locations can lead to
gross underestimation of uncertainty when aggregat-
ing prediction estimates across regions, for example
when producing country-level credible intervals
(Goovaerts, 2001). A solution is to use joint or simul-
taneous simulation, which recreates appropriate
spatial and temporal correlation in the predictive
surface (Goovaerts, 2001), but which can be pro-
hibitively intensive computationally, especially over
large areas. Recently however, Gething et al. (2010)
proposed an approximate algorithm for joint simu-
lation, which they applied to a global scale MBG pre-
dictive model for malaria. Importantly, this approach
ensured that aggregated estimates of national and re-
gional burdens taken from continuous disease maps
still maintained appropriate credible intervals.

Final predictive surfaces are also very dependent
upon available data, a problem which becomes more
pronounced as spatial heterogeneity increases. For
example, a comparison of predictive risk maps of
S. haematobium in West Africa generated using simi-
larly robust MBG approaches but different datasets
gives rise to maps which, whilst having similar
regional trends, exhibit large differences in within-
country distributions (Clements et al. 2009b; Schur

et al. 2011a; Soares Magalhaes et al. 2011a). This
point is clearly illustrated in Fig. 4. Similar differ-
ences are seen for different maps of S. mansoni in East
Africa (Clements et al. 2010; Schur et al. 2011b).
Such differences can have important implications for
the planning of control activities and estimations
of populations at risk, and more generally highlight
difficulties in interpreting models from highly
spatially heterogeneous data, no matter how sophis-
ticated the underlying model.

Quantifying spatial dependency in order to undertake
spatial sampling

Data available to the disease mapping community
have usually been collected for other purposes, such
as to investigate a specific research question or to
determine national or sub-national prevalence esti-
mates, using traditional, probability-based sampling
methods (Levy and Lemeshow, 2008). Such design-
based sampling forms the basis of most prevalence
surveys for parasitic infections, including those for
Plasmodium infection (Roll BackMalariaMonitoring
and Evaluation Reference Group, 2005), STHs

Fig. 4. Contrasting predictions of the distribution of Schistosomiasis haematobium generated using similarly robust
MBG regression models, but different data. Model 1: Predicted prevalence of S. haematobium among individuals aged
420 years during the period of 2000–2009, based on survey data from 16 West African countries. Model 2: Predicted
prevalence of S. haematobium infection in boys aged 10–15 years in Burkina Faso, Mali and Ghana in 2004–2006. Inset
maps show the location of survey data used in each model. Although overall trends are similar, these models show
considerable differences in within country distributions, particularly in northern Burkina Faso, central Mali and much
of Ghana. Figures are adapted from Schur et al. 2011 and Soares et al. 2011.
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(World Health Organization, 2006) and schisto-
somiasis (World Health Organization, 2006). We
now know from other disciplines, such as geology and
environmental sciences, that where MBG mapping
is the eventual goal, such design-based sampling
may be suboptimal and instead purposive (non-
probability-based) sampling is generally more effici-
ent (Brus and de Gruijter, 1997; de Gruijter et al.
2006). Such purposive sampling does not involve a
random selection of sites, rather sites are selected
based on their location or characteristics (i.e. selected
to represent a particular altitude or ecological zone).
The majority of early applications of spatial sampling
came from ecological or soil science, but there are
now an increasing number of applications in infec-
tious disease epidemiology, which we review here.
Recent surveys of schistosome infection have

adopted a stratified cluster random sampling design
in order to obtain a spatially representative sample for
subsequent risk mapping (Clements et al. 2006a,b,
2009b). A qualitative approach to selecting survey
locations was adopted in a recent nationwide school
survey of Plasmodium infection in Kenya (Gitonga
et al. 2010), whereby the selection of schools in
each district was made with a non-probability-based
method to ensure a representative spatial spread of
points. Furthermore, sites were over-sampled in
sparsely populated districts to allow efficient spatial
interpolation in these areas. An alternative approach
is spatial coverage sampling, whereby survey sites
are selected to ensure maximum coverage over a
given survey region, accounting for its shape and
previously collected data (de Gruijter et al. 2006).
Van Groenigen et al. (2000) have, for example, used
an iterative process to determine the configuration of
sites for soil sampling that minimises the distance

between any point in an area to its nearest survey
site, such that an uniform distribution of sites over
areas of any shape or size is obtained.
The selection of survey sites can also be informed

by an understanding of the spatial structure of the
outcome to be surveyed. For example, if the spatial
structure of the data is known (based on a semi-
variogram), it is possible to estimate the kriging
variance of any configuration of survey sites a priori.
This feature makes it possible to optimise the
locations of surveys for spatial prediction before
data are gathered (Van Groenigen et al. 1999; Brus
et al. 2006). Where the autocorrelation structure
is unknown or uncertain, pilot surveys can be con-
ducted to quantify the spatial characteristics, which
can then be used to optimize secondary data collec-
tion (Stein and Ettema, 2003). Alternatively, Diggle
and Lophaven (2006) propose the use of a lattice plus
close pairs design which is formed of a regular grid of
points with some additional sites clustered around a
selected number of grid sites. Fig. 5 provides an
illustration of the lattice plus close pairs design for the
selection of schools in a survey of S. mansoni in
Ethiopia. First, a grid of a predefined size is placed
over the survey region and those schools lying closest
to the interstices of the grid are selected. Second, at
some of these schools, the five closest neighbouring
schools are selected. This stepwise selection ensures
both a good spread of sample sites which are efficient
for spatial interpolation and some closely located sites
which are important for quantifying the spatial struc-
ture of the outcome. Recent work by Sturrock et al.
(2011) demonstrates that use of a lattice plus close
pairs design followed by kriging provided a more
cost-effective approach to identify schools with high
prevalence of S. mansoni compared to sampling a

Fig. 5. (a) Illustrative example of the lattice plus close pairs design using a grid size of 50 km to select schools for
surveys of S. mansoni in Oromia Regional State, Ethiopia. Dark points refer to selected schools and gray points to
unselected schools. (b) A close-up of a region (black box in a) showing the locations of some of the clusters of closely
located schools. Adapted from Sturrock et al. (2011).
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small number of children in every school using lot
quality assurance sampling (LQAS). This work
shows that, whilst LQAS performed better than
spatial sampling in identifying schools with a high
prevalence, its cost-effectiveness in identifying such
schools was lower.

Researchers have recently begun to investigate
optimal survey designs that also incorporate covariate
information (such as environmental and climatic
factors) when collecting data for mapping based on
MBG techniques. Unlike optimizing sampling for
spatial interpolation alone, optimizing sampling for
mapping using MBG with covariates requires a
spread of points in so-called feature space (i.e. across
the full range of included covariates) as well as across
geographic space. To find a balance between these
differing requirements, Hengl et al. (2003) propose
an ‘equal-range strategy’ which ensures that equal
numbers of sites are randomly selected in areas
stratified by relevant covariates. By repeating this
process multiple times, the sampling design with the
most comprehensive spatial coverage can be chosen.
Researchers have also used universal kriging variance
to optimize surveys for soil, groundwater dynamics
and radioactive releases (Heuvelink et al. 2006; Brus
and Heuvelink, 2007; Melles et al. 2011). By finding
the configuration of sites that minimises the universal
kriging variance, a balance is struck between opti-
mizing sampling across feature and geographic space.
An appeal of this approach is that any number of
covariates can be included, making it theoretically
plausible to optimise surveys for multiple species
with differing environmental niches. Such stratified
sampling designs do however come with an impor-
tant caveat: over-sampling in areas with particular
characteristics (such as known higher infection
prevalence) does risk invalidating standard geostatis-
tical inference, as the implicit assumption of this
approach is of non-preferential sampling. Never-
theless, given the recent increase in advocacy for
integrated control of multiple parasite species, an
investigation into optimal survey methods that con-
sider both environmental correlates and spatial
dependency for multiple species is clearly warranted.

DISCRETE SPATIAL VARIATION:

UNDERSTANDING SPATIAL NEIGHBOURHOOD

STRUCTURE

The methods described above depend on two major
assumptions: that the underlying spatial process is
continuous and that sufficiently detailed point-level
data are available to capture this process. Certain data
may only be available at a small-area level (for
example, routine health surveillance data, access to
water and sanitation, quality of local health services),
and as such autocorrelation may only be apparent be-
tween immediate neighbours (i.e. based upon proxi-
mity rather than actual location). Alternatively, it

may be difficult to obtain sufficient point-level data to
model spatial variation in infection risk effectively,
due to financial or practical constraints. In such
instances, it may be more appropriate to make best
use of spatially discrete data using hierarchical
techniques. Whilst the primary focus of authors de-
veloping such techniques has often been in improv-
ing demographic and sociological data (Hentschel
et al. 2000), or in modelling the distribution of
non-communicable disease (Jackson et al. 2008b;
Yiannakoulias et al. 2009; Danaei et al. 2011), many
of these methods are also applicable to parasitological
and related data only available at an area level, for
example the number of malaria cases or intervention
population coverage. In the next section we discuss
some of these applications, drawing on examples
from beyond the infectious disease literature where
necessary.

Discrete spatial variation: modelling discrete
outcome data

A major objective when modelling discrete disease
data is obtaining statistically precise local estimates of
the outcome of interest, whilst maintaining fine-scale
geographic resolution. This can be a considerable
challenge when outcomes are rare or sample sizes are
small, as small stochastic differences between areas in
the number of cases can result in large apparent
differences in the distribution of the outcome. By
smoothing high-resolution variability, model-based
approaches can compromise between (overly) un-
certain within-area estimates and (overly) simplified
aggregated higher level estimates, thus stabilising
estimation from areas with small populations or
sample sizes (Goldstein, 1995). Such approaches,
based upon the use of generalised linear mixed effect
models, form the basis of small area estimation, with
wide application in the analysis of health and social
survey data (Ghosh andRao, 1994; Ghosh et al. 1998;
Richardson and Best, 2003; Asiimwea et al. 2011).
They are inherently non-spatial, borrowing infor-
mation across all areas without considering spatial
location, and smoothing to the global mean. How-
ever, they can easily be extended to include additional
model complexity such as spatial dependence using
discrete spatial smoothing models based on proxi-
mity. Such models, which assume positive spatial
correlation between observations, essentially borrow
more information from close neighbours than
those further away, and so smooth local rates to-
wards local, neighbouring values (Waller and Carlin,
2010).

One of the first examples of spatial discrete model-
ling is provided by Clayton and Kaldor (1987), who
developed a Poisson regression model with area-
specific random intercepts defined using a conditional
autoregressive (CAR) structure to model standardised
mortality ratios (in this case, cancer rates). By this
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approach, the area-specific random effect is generated
using a simple adjacency weights matrix, such that
for each observation the associated randomparameter
has a weighted mean given by a simple average of
its defined neighbours and a conditional variance
inversely proportion to the number of neighbours.
This model has since been extended to a fully
Bayesian formulation (Besag et al. 1991) and can be
readily implemented in standard Bayesian inference
software. Via this flexible inference platform, spatial
CAR models can be structured to allow autocorrela-
tion between adjacent neighbours only, or to allow
spatial smoothing to extend to more distant neigh-
bours (Wakefield, 2004; MacNab, 2010), and can be
extended to allow for: estimation of spatially varying
covariates; prediction of missing data; inclusion
of both spatial and non-spatial dependency; and
inclusion of spatio-temporal and multivariate out-
come covariance structures (Mollie, 1996;Waller and
Carlin, 2010).
A similar but less commonly used class of models

are the spatial multiple membership (MM) models,
which examine to what extent a latent spatially distri-
buted variable can explain the outcomes of interest
(Breslow and Clayton, 1993; Goldstein, 1995;
Langford et al. 1999; Browne et al. 2001). In contrast
to CAR models, the spatial dependence here is
modelled through the multiple membership relation-
ship, with an independent area-level random effect.
CAR and MM approaches have most widely been

applied to modelling rates of rare non-communicable
diseases, such as cancer and heart disease (Lawson,
2006), usually in a developed country setting where
comprehensive disease registry data are available.
However in tropical epidemiology, analyses of
routinely collected surveillance data have used spatial
CAR andMMmodels on varying scales to investigate
incidence of malaria in Zimbabwe, South Africa and
China (Kleinschmidt et al. 2002; Mabaso et al. 2006;
Clements et al. 2009c) and dengue in Rio de Janeiro,
Brazil (Teixeria and Cruz, 2011) in addition to
assisting in the geographical targeting of schisto-
somiasis control in Tanzania using collated ques-
tionnaire data (Clements et al. 2008b).
There are a number of substantial methodological

challenges when modelling spatially discrete data.
The first of these concerns assumptions made regard-
ing the underlying spatial process. Discrete spatial
variation models consider the location of data points
in terms of proximity only, rather than as literal
positions, and as such the model is valid only for
included data; validity is not necessarily preserved if
further locations are added to the data (Diggle, 2004).
For this reason, these models are not appropriate for
spatial prediction in new locations (interpolation). As
for methods quantifying continuous spatial depen-
dency, discrete spatial approaches also model global
spatial structure and thus assume that the degree of
correlation between neighbouring units is consistent

across the study area, and in all directions. This issue
was recently tackled in part by Reich and colleagues
(2007), who developed a 2NRCAR (CAR prior with
two neighbour relations) model that is able to accom-
modate two difference classes of neighbour relations
(e.g. east-west and north-south) (Reich et al. 2007),
although to our knowledge this has yet to be applied
in an epidemiological context. A third issue concerns
the often arbitrarily defined units of representation
available for geographical analysis. This is known as
the modifiable areal unit problem, by which for any
specified number of spatial units, there are many
ways of defining the boundaries of these units, which
can produce very different results (Openshaw and
Taylor, 1979). For example, spatial anomalies may go
undetected if the scale of the underlying spatial
heterogeneity is smaller than the area unit available.
Although this cannot be completely overcome, care-
ful consideration of CAR andMMmodels does allow
smoothing between units, thus blurring the concept
of a discrete unit of analysis.

Discrete spatial variation: combining point and
area level data

In many instances, disease data may be available at a
point level (e.g. survey or sentinel site data), although
covariate information may be available only at an area
level. For example, although recognised as important
factors influencing the distribution of parasitic dis-
eases at varying spatial scales, data on factors such as
water supply, sanitation and hygiene (WASH), own-
ership and use of bednets, coverage of interventions
such as mass drug administration, and poverty and
deprivation indicators may only be available at dis-
trict and regional levels (Esrey et al. 1991; Kazembe
et al. 2007; Soares Magalhaes et al. 2011a). Alterna-
tively, disease information may only be available
aggregated at area-levels for rare outcomes, although
individual-level survey data describing the distri-
bution of explanatory factors may be readily avail-
able. Despite the aggregated nature of such data,
careful analysis can provide information about the
relationships between area-level risks and point-level
outcomes. This process is known as ecological infer-
ence (Richardson and Monfort, 2000; Jackson et al.
2006, 2008a), and can be valuable when the effect of a
variable is believed to operate through its area-level
average (sometimes termed a contextual effect) (Begg
and Parides, 2003). For instance, control policies for
many parasitic infections implemented at the district
level have been shown to benefit indirectly those
individuals who have not participated. Helminth in-
fection prevalence in non-compliant or non-targeted
individuals, for example, is typically seen to reduce
after the administration of community or school-
based mass chemotherapy (Bundy et al. 1990; Chan
et al. 1997; Vanamail et al. 2005; Mathieu et al. 2006;
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El-Setouhy et al. 2007). This is primarily due to a
reduction in the force of transmission, analogous to
the ‘herd immunity effect’ seen for vaccines. How-
ever, in many instances area-level exposure-response
relationships may not accurately reflect associations
at the community or household level, a process
known as the ecological fallacy or ecological bias
(Morgenstern, 2008). For example, an individual-
level association between individual socio-economic
indicators and regional rates of disease does not
necessarily imply an effect of socio-economic status
on individual infection status. It can equally be
caused by other confounding factors.

The magnitude of ecological bias depends upon
the degree of within-area variability in exposures and
confounders – if there is no variability, all individuals
will experience the same degree of exposure, and so
there will be no ecological bias (Wakefield and Lyons,
2010). The only way to truly overcome the problem
of ecological bias therefore is to supplement aggregate
data with samples of data at the individual level,
which on their own may be too sparse to accurately
capture geographic variation but can provide an
indication of intra-unit variation. Several theoretical
methods have been proposed to do this, which can be
used to address bias and separate individual and
contextual effects when either the outcome or the
exposure measure is available at an ecological level
(Prentice and Sheppard, 1995; Steel and Holt, 1996;
Lasserre et al. 2000; Best et al. 2001; Wakefield and
Salway, 2001; Glynn et al. 2008). The so-called
aggregate data method, for example, estimates
individual-level exposure effects by regressing popu-
lation-based disease rates on covariate data from
survey samples in each population group (Prentice
and Sheppard, 1995). An alternative approach,
termed hierarchical related regression, assumes a dis-
tribution for within-area variability in exposure, and
fits the implied model to aggregate data combined
with small samples of individual-level exposure and
outcome data (Jackson et al. 2006, 2008a).

Both of these approaches however are not inher-
ently spatial, although the generalised linear model
frameworks upon which they are based can in theory
be adapted to include multiple levels of aggregation
and spatial dependency between baseline risks. For
example, spatial CAR models have been combined
with aggregate data methods to account better for
exposure effect when modelling spatially hetero-
geneous breast cancer rates (Guthrie et al. 2002),
and with hierarchical related regression when inves-
tigating sensitivity of environmental exposure and
childhood leukaemia data to ecological bias (Best
et al. 2001). These approaches have yet to be applied
within an infectious disease context, but they do have
great potential for application in spatial parasite
epidemiology, for example, to improve evaluation
of intervention programmes using implementation-
level, sentinel site and cluster-level data. This may be

problematic in practice, as obtaining data on the same
population from different sources may lead to con-
siderable inconsistencies, such as differences in
variable definition and reporting, timing, and even
geographical boundaries between levels, which may
in turn lead to unreliable conclusions (Jackson et al.
2008a).

SPATIAL POINT PROCESSES : INVESTIGATING

SPATIAL CLUSTERING

The global spatial statistics described above provide
an important set of epidemiological tools to inform
whether spatial heterogeneity is present throughout
spatially sampled measurement data. This in turn
informs optimal model building and can be used to
conduct spatial interpolation and prediction. These
methods cannot be used to delineate explicitly the
locations of individual clusters and typicallymake the
assumption that the magnitude and scale of cluster-
ing is equal throughout the study region. Identifying
the propensity for spatial clustering to occur, or the
physical locations of individual clusters, is vital for
both identifying areas with higher than expected
underlying risk and detecting outbreaks, as well as
determining the optimal spatial location and scale of
interventions. It is also important to emphasise that,
whilst identifying the presence of spatial clusters may
be useful, it is perhaps more important epidemio-
logically also to gain a deeper understanding of the
determinants of this clustering (Rothman, 1990;
Alexander and Boyle, 2001).

Point process statistics aims to analyse the explicit
location of events distributed in space under an
assumption that the spatial pattern is random (i.e. the
locations and numbers of points are not fixed). In
parasite epidemiology and ecology, such data typi-
cally present either as point locations within a given
study area (for example, residence of incident cases or
location of vector breeding sites) or as counts of cases
from administrative districts partitioning the study
area (Waller, 2010). Point process approaches typi-
cally play two distinct roles in the analysis of such
data. First, they can be used to investigate the general
tendency of points to exist near points, providing
a global measure of clustering averaged across the
observed point locations. For example, we may be
interested in whether summary global measures of
clustering for disease cases differ significantly from
those for the general at-risk population, and thus
whether there is an overall tendency for cases to occur
near other cases rather than to occur homogeneously
among the population at risk. Secondly, they can be
used to delineate explicitly the locations of individual
clusters, or anomalous collections of points. Such
clusters might be assumed to occur anywhere within
the study area, ormaybe focused, centred aroundpre-
defined foci of putatively increased risk (e.g. vector or
intermediate host breeding sites) (Besag and Newell,
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1991). In both scenarios, analysis strategies usually
build upon ideas of testing the hypothesis of com-
plete spatial randomness (CSR), such as the realis-
ation of a homogeneous Poisson process (Isham,
2010). In epidemiology, this is often complicated by
the heterogeneous distribution of the at-risk popu-
lation, with the null model of interest no longer being
CSR, but one of spatially constant risk, and thus
knowledge of the underlying distribution of the
population at-risk, or of appropriate non-infected
controls, is essential (Waller, 2010).
There is a rich body of literature addressing various

approaches for spatial point processes, although their
existing application to the ecology and epidemiology
of parasitic diseases has to date been somewhat
limited in scope. This is partly due to the fact that
model fitting is not straightforward and often com-
putationally complex. In addition, many approaches
have been derived from a rather mathematical pers-
pective and are not necessarily appropriate in an
ecological or epidemiological context. We do not
therefore provide a comprehensive review of all avail-
able methods here, but instead compare and illustrate
some of the most popular contemporary approaches
for detecting clustering and clusters in parasite epi-
demiology. More complete general reviews of
methods and applications appear elsewhere (Diggle,
2003;Waller and Gotway, 2004; Gelfand et al. 2010).

Detecting global clustering in point pattern data

Investigations of global clustering usually start by
testing benchmark hypotheses regarding the under-
lying process – i.e. is a point or case equally likely to
occur at any location? Such hypothesis testing ap-
proaches include Ripley’s K function (Ripley, 1976)
and the related L function (Besag, 1977), which pro-
vide a measure of the (scaled) number of additional
events expected within distance h of a randomly
selected point. Plotting K as a function of h can thus
be used to describe characteristics of the point process
at many different spatial scales. More recent appli-
cation of these methods to infectious disease epi-
demiology includes investigation of urban dynamics
of dengue epidemics in the Brazilian city of Belo
Horizone (Almeida et al. 2008), identification of
epidemic hotspots for malaria in the Kenyan western
highlands (Wanjala et al. 2011), and investigation of
spatial clustering of households with seropositive
children during evaluation of targeted screening
strategies to detect Trypanasoma cruzi infection in
Peru (Levy et al. 2007).
In recent years, summary test-based measures

for spatial point processes have been joined by
model-based approaches, using both frequentist and
Bayesian inference platforms. As with models of con-
tinuous and discrete spatial variation, spatial point
process models provide an objective and efficient

statistical framework for investigating spatial hetero-
geneity, whilst adjusting for spatially varying risk
factors. The more fundamental of these models are
based upon the non-homogeneous Poisson process,
which assumes a lack of interaction between points
(i.e. complete spatial randomness) but still allows
point intensity to vary over space. This assumption of
independence between points may be appropriate if
all spatial variation can be explained by observed or
unobserved risk factors, such as climate, topography
and inherited genetic risk, which are themselves
spatially correlated, an assumption often fitting for
non-infectious diseases (Diggle, 2001). For infec-
tious diseases however, stochastic spatial dependence
may still remain between points even after accounting
for covariates. For example, foci of parasite trans-
mission can perpetuate and amplify spatial hetero-
geneity, with heavily infected individuals shedding
large numbers of parasites into the environment,
increasing risk for those living in close proximity.
This can be modelled by hierarchical processes
derived from the above non-homogeneous Poisson
process, including Poisson cluster and Cox processes.
These flexible models are ‘doubly stochastic’ in that
they also include a random intensity function, which
may be taken to be any random spatial process. As
such, they are very effective for describing residual
positive association between points. For example,
sophisticated log-Gaussian Cox process models,
which assume a Gaussian random field for the
logarithm of the density function (analogous to
the Gaussian geostatistical models detailed above),
have been applied to investigations of tick-borne
encephalitis in the Czech Republic (Benes et al.
2011), and spatio-temporal surveillance of non-
specific gastroenteric disease in the UK (Diggle
et al. 2005). However, despite increased application
in other areas of spatial epidemiology (Lawson, 2006)
to our knowledge we have yet to see these potentially
exciting methods being applied to parasite ecology.

Detecting local clusters in point pattern data

Although restricted to hypothesis testing, methods
for detecting local clusters in point pattern data are
perhaps the most popular point process statistical
techniques currently used by parasite epidemiolo-
gists, with a variety of methods available for ex-
ploring and identifying clusters in both point and
aggregated data (for an excellent review see Pfeiffer
et al. 2008). The more popular approaches involve
spatial scan statistics, the most developed of these
being Kulldorff’s spatial scan statistic (Kulldorff and
Nagarwalla, 1995). This method constructs a series
of circles of increasing size around each data location
and compares the level of risk within each circle to
that outside using a likelihood ratio test. A compu-
tationally convenient Monte Carlo simulation is then
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used to generate permutations of the observed
number of cases across the entire set of data locations,
allowing for testing of the null hypothesis of complete
spatial randomness. Other tests that are specifically
designed to detect clusters around a source, so called
focused tests, include Stone’s test and Diggle’s test,
which have been used to explore clustering of cancers
around industrial plants (Stone, 1988; Diggle, 1990).
Results for all spatial scanning statistics are con-
ditional only over the discrete set of data locations
available, an important factor to bear in mind when
data locations are based on only a sample of all
potential locations (Waller and Gotway, 2004).

Kulldorff’s spatial scan statistic was first used
to explore clustering of leukaemia cases in
New York (Kulldorff and Nagarwalla, 1995) and
has since been used to investigate clustering for a
variety of parasitic diseases, including leishmaniasis
(Ryan et al. 2006; Schriefer et al. 2009), lymphatic
filariasis (Washington et al. 2004) schistosomiasis
(Peng et al. 2010), and trypanosomiasis (Fèvre et al.
2001; Gorla et al. 2009). The parasitic disease for
which spatial scan statistics have been most widely
used is malaria. Brooker et al. (2004a) used spatial
scan statistics to identify clusters of malaria cases
during an epidemic in the highlands of Kenya. More
recently, Bousema et al. (2010) used cluster statistics
to illustrate that clustering of seropositive individuals
can be used to identify ‘hot spots’ of high malaria
disease incidence in Tanzania. Similarly, Cook et al.
(2011) used spatial scan statistics to explore clustering
of infection and seroprevalence in different age-
groups to illustrate spatial heterogeneities in effec-
tiveness of malaria control on Bioko Island in
Equatorial Guinea. In a slightly different use of the
test, Fevre et al. (2001) used spatial scan statistics to
show that a cattle market was the likely source of an
outbreak of Trypanosoma brucei rhodesiense sleeping
sickness in Uganda.

Over the last two decades there have been several
developments in spatial scan statistics allowing an
exploration of clustering in a variety of different data
types including multinomial (Jung et al. 2010) and
ordinal (Jung et al. 2007) data as well as detection
of non-spherical clusters (Tango and Takahashi,
2005; Kulldorff et al. 2006; Cançado et al. 2010).
Where data allow, it is also possible to explore
clustering through time as well as space, either by
exploring years separately (Bejon et al. 2010) or by
considering circular clusters as cylinders that span
time (Kulldorff, 2001; Kulldorff et al. 2005). Such
spatio-temporal cluster analyses have been used to
explore space-time clustering in diarrhoea surveil-
lance data from emergency departments in NewYork
(Kulldorff, 2001) and malaria in highland Kenya
(Ernst et al. 2006) and South Africa (Coleman et al.
2009). Recent advances in the use of space-time
cluster detection analyses additionally include the use
of statistical models to better define underlying risk

(Robertson et al. 2010a). For example, Kleinman
et al. (2005) use a generalized linear mixed model,
which uses information on census tract, day of the
week, month of the year, holiday status and secular
time, to describe the underlying spatio-temporal
distribution of reported lower respiratory tract infec-
tions in Eastern Massachusetts. Spatial scan statistics
are then applied to the data to detect anomalies from
model-predicted risk, thus helping to avoid false
alarms in areas of explained high incidence.

Other current areas of research include the incor-
poration of human movement data (Tatem et al.
2009; Robertson et al. 2010b), which allows research-
ers to account for the fact that detection of risk in one
area does not necessarily correspond with the initial
location of infection. With the increasing availability
of data from mobile phones and other technological
devices with inbuilt GPS devices, such analyses will
no doubt become progressively incorporated into
disease surveillance systems.

Despite increasingly sophisticated cluster detec-
tion methods, a couple of important limitations
should be borne in mind when embarking on disease
cluster detection. First, systematic bias in study
design – including inaccurate and non-standardised
case definition, error in exposure measurement or
inadequate control of confounding variables – can
all lead to high possibility of false-positive clusters
(Rothman, 1990). Second, such analyses can be very
sensitive to the rather arbitrary assumptions re-
quired, such as selection of the scanning window
shape and size and upper cluster size threshold,
which in turn can lead to different results.

CONCLUSION

With the widespread use of GPS and GIS, and
the availability of high resolution environmental
data, spatial aspects of parasites and their vectors
and intermediate hosts are becoming increasingly
well understood. Such an understanding has been
facilitated by the development of a wealth of statis-
tical methods that have improved our ability both to
describe and to predict parasite distributions over
varying spatial scales. A growing number of these
methods sit within a Bayesian framework, providing
a more flexible approach to modelling that is able to
account for both spatial and non-spatial uncertainty
effectively. The choice of statistical method and
approach used however should be guided both by
the type of data available and the scientific questions
of interest. A central tenet of statistics that still holds
true for spatial analyses should always be borne in
mind: that there is no such thing as a “correct”model,
and that instead the best model is one that provides a
good fit of the data as economically as possible (Bailey
and Gatrell, 1995; Pfeiffer, 1996; Diggle, 2004).
Judgement is required to reach the correct balance
between an over-simplistic model, which may
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risk invalid inferences, and an over-elaborate model,
which may be inefficient and difficult to validate
(Altham, 1984). Nevertheless, applied spatial stat-
istics remains an active area of research, continually
providing parasitologists, ecologists and epidemiolo-
gists with novel approaches. As such, careful con-
sideration of spatial location is rapidly becoming a
routine component of parasite ecology and epide-
miology.
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