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Abstract 

 

Stem cells hold enormous potential for the treatment of injuries and 

degenerative diseases. In the pursuit of stem cell therapies, a plethora of biomaterials 

have been developed to induce lineage-specific differentiation or support cell 

propagation for research and clinical applications. However, the use of stem cells is 

hindered by the cost of scale-up and risk of zoonotic transmissions from animal-

derived culture components. Here, we utilise a recombinant protein scaffold 

composed of self-assembling nanofibres, termed ZT, and assess the systems 

adaptability for in vitro applications. Protein-based scaffolds offer distinct 

advantages over conventional materials such as the display of peptidic motifs with 

near-native stoichiometries and control of the spatial density and nanotopographical 

distribution of genetically-encoded bioactivities.  

Herein, the functionalisation potential of the ZT system is explored via the 

generation of chimeric protein building blocks that exhibit the integrin-binding RGD 

motif. Specific sites within the building blocks were found to tolerate diversification, 

in the form of exogenous peptides or a fused protein domain, without structural 

perturbation or inhibition of assembly. The bioactivity of functionalised ZT 

nanofibres was assessed using murine mesenchymal stem cells (mMSCs), which 

recognised the integrin-binding moieties. The ability of one ZT nanofibre variant to 

induce mMSC chondrogenesis was investigated, which proved unsuccessful in the 

current context. A second generation of ZT variants were generated by the 

incorporation of chondroinductive motifs for future applications in cartilage tissue 

engineering.  Additionally, the capacity of functionalised ZT nanofibres to act as 

culture substrates for human embryonic stem cell (hESC) self-renewal was explored. 



	

 III 

It was found that a ZT variant containing a domain from fibronectin could support 

attachment of hESCs, and that cells maintained a pluripotent phenotype over 

multiple passages. Intriguingly, cell attachment to the recombinant substrate induced 

morphological changes and specific integrin activation. These findings hold promise 

for the future utility of the ZT system as a customisable biomimetic substrate for 

stem cell culture.  
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 Chapter 1 

Introduction  

 

1.1 Stem cells and regenerative medicine  

 

 Stem cells have received tremendous attention in recent years due to their 

potential use in regenerative medicine. The hallmark traits of stem cells are their 

capacity to self-renew and ability to undergo differentiation. These attributes have 

enabled scientists to translate stem cell research into tissue engineering strategies for 

the treatment of diseases and injuries (Ivanova et al., 2002). Such strategies often 

require the use of biomaterial scaffolds for stem cell propagation, cellular delivery or 

to induce lineage-specific differentiation (Sakiyama-Elbert, 2008). In the 

regenerative medicine field, mesenchymal stem cells (MSCs) and embryonic stem 

cells (ESCs) feature prominently for reasons discussed below.     

 

1.1.1 Mesenchymal stem cells 

	 The term “mesenchymal stem cell” was devised in 1991 by Arthur Caplan  

(Caplan, 1991) to describe a population of bone-marrow-derived stromal precursor 

cells first isolated by Alexander Friedenstein and colleagues (Friedenstein et al., 

1974). MSCs are a heterogeneous population of cells that are plastic-adherent and 

can differentiate into lineages from bone, fat and cartilage tissues in vitro by the 

addition of appropriate inductive agents (Horwitz et al., 2005). Thus, MSCs 

represent an infinite pool of these cell types for use in regenerative medicine 

(Pittenger et al., 1999). As well as cells of mesodermal origin, MSCs can 
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differentiate into lineages from unrelated tissues such as myocytes, neurones and 

hepatocytes (Petersen et al., 1999; Mezey et al., 2000; Jackson et al., 2001). Thus, 

MSCs have become invaluable in tissue engineering strategies due to their 

multilineage potential. Additionally, MSCs can be sourced from a variety of tissues 

including bone marrow, umbilical cord tissue (Wharton’s jelly and blood), peripheral 

blood and adipose tissue, therefore circumventing the danger of causing further 

damage when harvesting cells from a site of injury (Csaki et al., 2008). The 

chondrogenic and osteogenic differentiation potential of MSCs have been their most 

exploited characteristic thus far, with vast numbers of studies describing their use in 

bone and cartilage repair (Gupta et al., 2012; Knight and Hankenson, 2013). 

Understanding the regulators and mechanisms of cartilogenesis during 

skeletogenesis is extremely important in MSC-based cartilage tissue engineering, 

since such strategies aim to recapitulate the in vivo situation for effective 

neocartilage formation (Richardson et al., 2015).  

 

1.1.2 Mechanisms of chondrogenesis and cartilogenesis  

During skeletogenesis in the early embryo, invasion and proliferation of 

chondroprogenitor cells in the skeletal blastema and subsequent formation of 

cartilaginous nodules leads to joint formation (Goldring et al., 2006). In the 

developing limb bud, the differentiation of mesenchymal progenitor cells to the 

chondrogenic lineage is a multifactorial process tightly regulated by a myriad of 

transcription factors and extracellular matrix (ECM) proteins. It is worth noting that 

in the developing embryonic skeleton, bone formation in the limbs and pelvis (by 

endochondral ossification) is preceded by cartilage anlage deposition, of which only 

articular cartilage remains after bone maturation. Thus, establishment of a cell niche 
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that is highly sensitive to microenvironmental changes promotes chondrogenic 

differentiation of progenitor cells (Djouad et al., 2007). Key mediators in the main 

stages of chondrogenesis (summarised in Figure 1) include the following exogenous 

and endogenous cell signalling molecules: mitogenic fibroblast growth factors 

(FGFs) (Hellingman et al., 2010), morphogens of the hedgehog signalling pathway, 

serine-threonine kinases, transcription factors of the RUNX and SOX families, and 

cytokines (Molténi et al., 1999; Goldring et al., 2006; Shimizu et al., 2007).   

Chondrogenic differentiation of progenitor cells begins by mass aggregation 

to form cellular condensations. This process is facilitated in part by increased 

hyaluronidase and metalloprotease activity to degrade the surrounding hyaluronan 

and collagen type I-rich ECM (Goldring et al., 2006; Djouad et al., 2007). Genes 

encoding the cell adhesion proteins N-cadherin and neural cell adhesion molecule 

(N-CAM) are upregulated by members of the transforming growth factor β (TGF-β) 

family of cytokines and support cell-cell interactions (Chimal-Monroy and De León, 

1999). Once compressed, intercellular signalling between ECM proteoglycans, such 

as syndecans, glypicans, laminin, tenascins and cartilage oligomeric protein (COMP) 

activate signalling cascades which ultimately lead to chondrocyte maturation 

(DeLise et al., 2000). An example of intercellular signalling activation in early 

chondrogenesis is the interaction of the α5β1 integrin ectodomain with fibronectin 

(Tavella et al., 1997; Nagae et al., 2012). Fibronectin has been shown to be essential 

for cellular condensation both in vitro and in vivo (Gehris et al., 1997).  

Each successive step in chondrogenic differentiation is modulated by 

transcription factors (Figure 1), of which the most important are SOX genes. SOX 

transcription factors are expressed throughout the maturation process and SOX9 is 

crucial for condensation (Akiyama et al., 2002). Although the role of FGFs in 
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chondroprogenitor cell condensation has not been fully defined, FGF2 has been 

shown to increase SOX9 expression and promote chondrogenic differentiation of 

human MSCs in vitro (Handorf and Li, 2011). FGF receptor 3 (FGFR3) signalling is 

implicated in pre-chondrocyte proliferation and has an established role in 

chondrogenic aberration during late embryonic development (Ornitz and Marie, 

2002). FGF9 and FGF18 signalling is important for both the promitogenic and 

hypertrophic effects of FGFR3, as mice lacking both growth factors show reduced 

chondrocyte proliferation and hypertrophy (Hung et al., 2007; Liu et al., 2007). 

Bone morphogenetic proteins (BMPs) also contribute to pre-cartilaginous 

condensation (Yoon et al., 2005; Shimizu et al., 2007). Following the proliferation 

of pre-chondrocytes, their differentiation to mature chondrocytes is dependent on 

SOX9, L-SOX5, SOX6 and BMP signalling (Akiyama et al., 2002; Goldring et al., 

2006; Dy et al., 2010). Completed differentiation is associated with the secretion of 

cartilage ECM composed primarily of collagen types II, IX and XI and the 

chondroitin sulphate proteoglycan, aggrecan (Goldring et al., 2006). SOX9 is 

required for upregulation of the collagen type II gene and its coactivators, L-SOX5 

and SOX6 (the SOX trio), promote aggrecan production as well as other ECM 

components (Ng et al., 1997; Smits et al., 2001). An alteration in the equilibrium of 

growth factor and cytokine signalling is responsible for chondrocyte proliferation, 

specifically involving BMPs and FGF1, 2 and 3-mediated upregulation of 

parathyroid hormone-related protein (PTHrP) and Indian hedgehog (IHH) which in 

turn stimulates mitosis (Minina et al., 2002). Finally, in the case of chondrocytes 

constituting the long bone cartilaginous anlage, hypertrophy and cell death ensue. 

This process is positively modulated by members of the RUNX family of 

transcription factors; RUNX1, RUNX2 and RUNX3, which activate matrix 
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metalloprotease 13 and other downstream target genes including IHH (Enomoto et 

al., 2000; Yoshida et al., 2004; Goldring et al., 2006). Hypertrophic chondrocytes 

drastically increase in volume and are positive for collagen type X, BMP-2, BMP-6 

and alkaline phosphatase expression before apoptosis and ossification of the 

cartilage matrix by osteoblasts (Goldring et al., 2006). FGFR1 signalling has been 

shown to be important in chondrocyte hypertrophy, as conditional FGFR1 knockout 

mice exhibit diminished hypertrophy during early development (Hung et al., 2007).  

Many soluble signalling molecules involved in chondrogenesis, such as 

FGFs, are known to interact with heparan sulphate (HS) proteoglycans (HSPGs). 

The HSPG perlecan has been shown to play a pivotal role in cartilogenesis, as 

perlecan deficient mice exhibit abnormal cartilage formation and impaired 

endochondral ossification (Arikawa-Hirasawa et al., 1999; Costell et al., 1999). 

Furthermore, the HS-bearing domain of perlecan alone is sufficient to induce 

chondrogenic differentiation in vitro, suggesting that the glycosaminoglycan (GAG) 

component is responsible for the chondroinductive effect of perlecan (French et al., 

2002). Perlecan may also be involved in adult cartilage homeostasis by sequestering 

FGF2, which is subsequently released in response to injury for activation of the ERK 

signalling pathway (Ellman et al., 2013). Syndecan-3, a transmembrane HSPG that 

also carries chondroitin sulphate chains, is highly expressed in precartilaginous 

mesenchyme and is required for cellular condensation (Gould et al., 1992; Koyama 

et al., 1996; Chimal-Monroy and Diaz de Leon, 1999). Functional blocking of 

syndecan-3 causes a reduction in FGF2-mediated proliferation of chondrocytes, 

which is indicative of a promitogenic role for syndecan-3 by modulation of FGF 

signalling pathways (Kirsch et al., 2002). 

In summary, although the molecular mechanisms governing chondrocyte 
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differentiation, hypertrophy and endochondral ossification have been well 

documented, details of the unique developing joint microenvironment in which the 

articular phenotype is retained remain undefined. Thus, further clarification of key 

players in articular maintenance will greatly enhance efforts in regenerative 

medicine for cartilage tissue repair.      

 

 

Figure 1. Stages in chondrocyte differentiation and hypertrophy from the 
perspective of anlage formation and bone maturation in the developing limb 
bud. All abbreviations are detailed in the main text. Figure adapted from Shimizu et 
al. (2007). 
 

1.1.3 Pluripotent stem cells  

 Pluripotent stem cells (PSCs) can give rise to any cell type of the body and 

are derived from the inner cell mass of the blastocyst. When isolated and cultured in 

vitro, they are termed embryonic stem cells (ESCs) and can self-renew indefinitely. 

ESCs were first isolated from the inner cell mass of mouse blastocysts in 1981 

(Evans and Kaufman, 1981; Martin, 1981) and in 1998 the first human ESC (hESC) 

lines were established by the group of James Thomson (Thomson et al., 1998). The 

ability of ESCs to differentiate into any somatic or germ cell lineage has generated 

enormous interest in their use for developmental biology, drug discovery and cellular 

therapies.  

 Aside from nuclear transfer or pluripotent cell fusion, somatic cells can be 
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stimulated to adopt an embryonic phenotype by inducing the expression of 

pluripotency-associated transcription factors. In 2006, the first induced pluripotent 

stem cell (iPSC) lines were generated by retroviral transduction of 24 candidate 

genes in mouse fibroblasts. Sequential trials revealed that as few as four genes 

(Oct3/4, c-Myc, Klf4 and Sox2) were required to reprogram somatic cells to a 

pluripotent phenotype (Takahashi and Yamanaka, 2006). A year later, the same 

group demonstrated that human dermal fibroblasts could be transformed into iPSCs 

(hiPSC) by expression of these four factors (Takahashi et al., 2007). Shinya 

Yamanaka was awarded the Nobel Prize in Physiology or Medicine for his discovery 

that adult cells can be reverted to an embryonic state by the enforced expression of 

pluripotency associated transcription factors. Many adult cell types have been used 

to derive iPSC lines including hepatocytes, keratinocytes, neural stem cells and 

adipose-derived stem cells (Stadtfeld and Hochedlinger, 2010). The generation 

iPSCs circumvents two major drawbacks of ESCs; ethical protests from the 

use/destruction of human embryos and immune rejection of allogenic donor cells.  

 Many clinical trials are now underway to realise the potential of PSC 

research and therapies. The London Project to Cure Blindness, established in 2007, 

was the first approved UK clinical trial for application of hESCs and focused on the 

treatment of age-related macular degeneration. The project aims to transplant hESC-

derived retinal pigment epithelial cells into the retina and the first patient was treated 

in 2015. Relatedly, autologous iPSC-derived dopaminergic neurons have now been 

successfully transplanted in a cynomolgous monkey model of Parkinson’s disease 

with positive effects (Hallett et al., 2015). As well as transplanting PSC-derived 

lineages to replace lost or damaged tissue, such cells could be used as screening 

platforms to evaluate the safety and efficacy of novel pharmaceuticals. 
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Unanticipated side-effects are the major cause for new and approved drugs being 

removed from the market, effectively wasting vast sums of money and research time. 

A prevalent example of such side-effects is cardiotoxicity, which accounts for 28% 

of pharmaceutical withdrawals in the USA (Gwathmey et al., 2009). Current safety 

platforms for identifying negative cardiovascular effects are limited by the use of 

genetically modified non-cardiac-derived cell lines, which fail to recapitulate cardiac 

events and yield misleading information. Since primary human cardiomyocytes are 

effectively senescent and are prone to dedifferentiation in vitro, another model 

system is needed. The elucidation of specific factors required to differentiate PSCs 

to a cardiac phenotype, in combination with enhanced sorting techniques to obtain 

pure populations, now means that billions of cardiomyocytes can be produced for in 

vitro toxicity screening (Denning et al., 2016).    

 

1.2 Biomaterials  

 

1.2.1 Fundamentals 

 Cells are surrounded by an ECM, which provides structural support as well 

as modulating essential chemical and physical stimuli that are necessary for tissue 

and organ homeostasis. The ECM is a conglomerate of fibrous proteins with 

modular architectures such as fibronectin, tenascin, collagens and laminins. 

Proteoglycans including aggrecan and the GAG polysaccharides HS, chondroitin 

sulphate and hyaluronic acid are also present at varying ratios in different tissues. It 

is the tissue-specific composition and spatial arrangement of the ECM which gives 

each organ its mechanical and biochemical characteristics through mediation of cell 

attachment, migration, and differentiation. Furthermore, the ECM can guide tissue 
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organisation and function through binding and sequestering soluble growth factors 

and governing their release in response to stimuli (Frantz et al., 2010). Thus, the 

tissue-specific physical and chemical cues imposed on cells by the ECM regulates 

phenotype and cell fate by engaging specific signalling pathways. These differences 

have been harnessed for the design of ECM-mimetic biomaterials that can direct the 

differentiation of stem cells to desired lineages for tissue engineering and 

regenerative medicine applications (Shekaran and Garcia, 2011).  

 In general, tissue engineering requires the combination of a biocompatible 

scaffold, a cell population and inductive agents (either as additional factors or 

incorporated into the scaffold) to drive differentiation to the required lineage or 

maintain cell phenotype (Figure 2). Scaffolds are typically composed of polymers, 

peptides, proteins or combinations of components to yield nanocomposite materials. 

Supramolecular polymers may be classified as ordered or disordered structures and 

assemble by non-covalent interactions. These mutable interactions bestow unique 

attributes on polymeric biomaterials such as the ability to reversibly switch their 

physicochemical properties by external stimuli (Dong et al., 2015). Peptidic systems 

employ the self-associating properties of certain peptides to create defined structures 

such as fibres, rods and sheets. The resulting nanostructures are readily amenable to 

chemical modifications that imbue biological functionality (Nisbet and Williams, 

2012). Like polymer-based materials, peptides can be easily modified to form three-

dimensional structures, such as hydrogels, for cell encapsulation (Zhou et al., 2009). 

The inherent biocompatibility of proteins makes them highly attractive as building 

blocks for biomaterials. They may also offer advantages over polymer and peptide-

derived counterparts in terms of bottom-up functionalisation potential and controlled 

nanotopographical distribution of genetically engineered bioactive moieties. In 
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polymer/peptide systems, functionality is often endowed top-down following 

assembly by coating, saturating or chemically conjugating active factors. However, 

such approaches can result in the heterogeneous distribution of functional groups 

and inadequate potency due to clustering or undesirable stoichiometric presentation 

(Bruning et al., 2010). Thus, protein-composed scaffolds represent a useful 

alternative to traditional, synthetic biomaterials.    

 

 

Figure 2. Fundamentals of tissue engineering. The principle of tissue 
engineering requires three components: a biocompatible scaffold, the cell type of 
interest or stem/progenitor cells capable of differentiation to the required phenotype, 
and inductive factors that can drive differentiation.  
 
 
1.2.2 Self-assembling peptides and proteins as biomaterials  

 A specific goal of protein nanotechnology is to develop scaffolds that mimic 

the ECM, thus the generation of fibrous assemblies is desirable since the ECM itself 

is a meshwork of polymeric proteins with modular architectures. Many natural 

polyproteins of the ECM have been utilised as scaffolds for in vitro applications 

including vitronectin, fibronectin, laminins and collagens. However, the majority of 

these proteins are extracted from animal sources by methods that may cause 

heterogeneous sampling, resulting in batch-to-batch inconsistencies. Further, 

immunoreactivity and zoonotic transmission are also cause for concern when using 

xenogeneic materials (Gomes et al., 2012). The next generation of biomaterials is 
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likely to include more chimeric protein assemblies and nanocomposites sparked by 

advances in recombinant protein and synthetic biology technologies (Sørensen and 

Mortensen, 2005; Assenberg et al., 2013). Multicomponent ECM proteins such as 

collagens have been recombinantly produced in eukaryotic expression systems and 

used as substrates for directed stem cell differentiation. However, production of full-

length proteins with complex architectures is often challenging and requires the co-

expression of chaperones or post-translationally-modifying enzymes for correct 

domain folding and quaternary structure assembly. For example, 4-hydroxylase must 

be co-expressed with collagen chains in yeast for assembly of triple-helical fibrils 

(Myllyharju et al., 2000). In the case of fibrinogen, protease-deficient yeast must be 

used since N-glycosylation is a prerequisite for successful association of the Aα, Bβ 

and γ chains (Tojo et al., 2008). Bulk recombinant protein production is most 

commercially viable when expressed in E. coli, however, this route is often 

confounded by the absence of eukaryotic post-translational modification machinery 

that is required for the synthesis of proteins identical to the native form (Gomes et 

al., 2012). Therefore, there is a great need for alternative biomatrices that can 

circumvent the complications associated with natural ECM derivatives. 

 In Nature, many proteins exhibit self-assembly properties that have evolved 

to generate supramolecular functional complexes. These systems have allowed 

researchers to dissect the principles of protein self-association and develop 

methodologies for the rational design of synthetic nanostructures (King and Lai, 

2013). Prominent examples of such structures are viral capsids, in which symmetry 

defines the assembly mode. Understanding the importance of symmetry in design 

concepts has led to the generation of novel protein cages and lattices by fusion of 

proteins that naturally oligomerise (Padilla et al., 2001; Sinclair et al., 2011). 
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Introducing self-association properties in proteins using bottom-up approaches and 

genetic engineering has pioneered the advent of a new generation of nanomaterials 

that surpass natural protein assemblies in terms of biological properties and 

customisation potential.   

 The de novo design of self-assembling peptide systems has seen much 

success in the fabrication of supramolecular structures for use in bionanotechnology. 

The majority of polypeptide-based assemblies incorporate small fragments of 

proteins (also called tectons) such as α helices in bundled or coiled-coil 

conformations, polyproline helices and  β-sheet assemblies. To this end, many 

studies have utilised tectons derived from natural supramolecular assemblies such as 

silk, elastin and resilin that retain the polymerisation capacities of the parental 

protein domains (Cai and Heilshorn, 2014). Similarly, β-sheet-forming peptides have 

been derived from both amyloidogenic sequences and rationally designed peptides 

based on the fundamentals of β-sheet formation. The peptides may be assembled 

into fibrils or hydrogels and attempts have been made to functionalise these systems 

with integrin binding motifs for enhanced cell attachment and survival. Gras et al. 

(2008) functionalised a self-assembling peptide from transthyretin by incorporating 

the fibronectin RGD motif at the C-terminus and demonstrated the attachment of 

mouse fibroblasts to the modified fibres. A β-sheet peptide-based hydrogel has also 

been functionalised by integration of a linear RGD peptide, which increased human 

umbilical vein endothelial cell (HUVEC) adhesion without negatively effecting the 

mechanical properties of the gel (Jung et al., 2009). However, peptide-derived 

materials are limited by their capacity to support a finite number of functionalities 

and exogenous peptides are often displayed in linear, non-native conformations due 

to a lack of spatial segregation between diversifiable sites and assembly interfaces 
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(Bruning et al., 2010). 

 Examples of folded protein domains exhibiting defined three-dimensional 

structures in bottom-up design strategies are relatively sparse in the literature. 

However, the utilisation of protein domains in self-assembling systems may 

overcome several limitations of tecton-based materials, namely the regulation of 

morphology, spatial separation of assembly interfaces with sites amenable to 

functionalisation and atomic level structural modification. Nevertheless, endowing 

protein domains with polymerisation properties is challenging due to the complex 

and highly reactive architecture of protein surfaces, which may respond in 

unpredictable and undesirable ways upon modification. 

 Recent advances in molecular modelling and the routine application of 

biophysical techniques, such as NMR (nuclear magnetic resonance spectroscopy) 

and X-ray crystallography, to the analysis of protein structures have allowed for the 

elucidation of structural features necessary for the logical design of supramolecular 

protein assemblies with defined features. Broadly speaking, there are three design 

strategies for the bottom-up generation of protein nanomaterials; domain fusion, site-

directed mutagenesis and complementation (King and Lai, 2013). In domain fusion, 

proteins that naturally oligomerise are genetically fused and expressed as 

recombinant chimeras that assemble via homotypic interactions. This approach has 

been utilised to build tetrahedral protein cages by fusion of the trimeric 

bromoperoxiadase with the dimeric M1 matrix protein (Padilla et al., 2001). Site 

directed mutagenesis can be used to introduce novel binding interfaces in 

monomeric proteins to form homo-oligomers. Grueninger et al. (2008) used this 

strategy to produce a trimeric urocanase and octameric L-rhamnulose-1-phosphate 

aldolase by extracting contact information from crystal structures and mutating 
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residues to induce self-association. Complementation involves the incorporation of 

non-biological moieties such as ligands or metal ions. In this fashion, hollow 

nanotubes were formed from the tetradecameric chaperonin GroEL by modification 

with 1’-(maleimidoethyl)spirobenzopyran, which coordinates divalent cations to 

connect GroEL monomers (Biswas et al., 2009). It is also possible to combine 

different design avenues to achieve assembly. For example, filamentous assemblies 

have been fashioned using a combination of domain fusion and complementation 

strategies. In a specific example, human Erbin PDZ domains were fused to each 

subunit of the tetrameric superoxide reductase (SOR) from Pyrococcus furiosus. A 

second construct was generated by replacing the PDZ domains fused to SOR with a 

PDZ-binding ligand, which in the presence of the first chimera would self-assemble 

in an abutting manner  (Usui et al., 2009). 

 In summary, there is great need for novel ECM mimetics that can be tailored 

to imitate niche microenvironments by multiunctionalisation. Scaffolds generated 

from whole protein domains may represent the ideal materials for such applications; 

however, their rational design remains challenging.   

 

1.3 The ZT nanofibre system 

 

1.3.1 Concept and design 

This project is centred around a self-assembling protein system developed by 

the research group of Professor Olga Mayans (Bruning et al., 2010). The system was 

inspired by the mode of titin dimerisation in the muscle sarcomere. Titin is a giant 

filamentous protein composed of approximately 300 domains, the majority of which 

comprise a fibronectin type III (FnIII) or immunoglobulin (Ig) fold (Meyer and 
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Wright, 2013). The sarcomere can be divided into several discrete zones, of which 

titin spans the entirety and is embedded N-terminally at the Z-disk and C-terminally 

at the M-line (Granzier and Labeit, 2004). The N-terminus of titin comprises two 

intermediate (I)-type Ig domains, Z1 and Z2, which interact with a crosslinking 

protein called telethonin (Tel). Structural elucidation of the Z1Z2-Tel complex has 

revealed that Tel forms an intermolecular β-sheet between two antiparallel Z1Z2 

molecules to generate a unique palindromic assembly (Figure 3a). Within the 

complex, the four Ig-Tel interfaces are formed by two antiparallel β-sheets 

comprising β-strand G of each opposing Ig domain and the β-hairpin motifs of Tel 

(Figure 3b) (Zou et al., 2006). The association is highly robust, as significant force is 

exerted upon the complex during passive muscle stretch (Bertz et al., 2009). The 

structural ingenuity of this load-bearing assembly was harnessed for protein 

engineering purposes by Bruning et al. (2010). By combining domain fusion and 

complementation strategies, the Z1Z2-Tel complex was engineered to induce the 

propagative assembly of a self-associating protein copolymer. To accomplish this, 

the Z1Z2 doublet was fused in tandem to generate a four Ig chain (henceforth Z1212, 

Figure 3c) joined centrally by a linker comprising the sequence VQGETTQA 

(residues in bold are integral to the flanking Z1 and Z2 Ig domains). The linker was 

considered suitable since both threonine residues were calculated to be free from 

interaction with flanking modules by in silico modelling, thus allowing for 

interdomain motion at this site (Bruning et al., 2010). Both Z1212 and Tel could be 

recombinantly expressed in E. coli at high yields. Hypothetically, each Z1212 tandem 

interfaces with two Tel molecules, thus permitting the sequential recruitment of 

building blocks in an adjoining manner to form fibrillar assemblies (Figure 3c). The 

resulting nanofibres, termed ZT, were predicted to follow two assembly modes by 



	 	 Chapter 1	

	 16 

molecular simulations. Indeed, two distinct morphologies were observable by 

transmission electron microscopy (TEM); “tapelike” fibres with apparent helicity 

and “curly” fibres with high flexibility (Figure 3d,e). Tapelike fibres are formed by 

transverse association of building blocks perpendicular to the fibre axis, and have a 

diameter of ~14 nm. Curly fibres are generated by longitudinal stacking and have a 

diameter of ~7 nm. The alternative stacking arrangements can be expected to impart 

characteristic properties on the resulting nanofibres. In tapelike fibres, the 

engineered linker of Z1212 is situated at the centre of the fibril, thus flexibility from 

this point would be sterically hindered and result in a semi-rigid arrangement (Figure 

3d). Conversely, longitudinal stacking in curly fibres allows for intermodular motion 

around the engineered linker as demonstrated by the high flexibility and kinking 

propensity of this morphology (Figure 3e).  
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Figure 3. Building blocks and assembly modes of ZT nanofibres. (a) Crystal 
structure (PDB: 1YA5, Zou et al., 2006) of the “sandwich-like” biological complex 
formed by two Z1Z2 Ig-doublets from titin (Z1; blue, Z2; light blue) and telethonin 
(red) in human muscle. This complex represents the repeating unit of ZT 
nanofibres. (b) Intermolecular antiparallel β-sheet formation in the Z1Z2-Tel 
complex. The schematic shows β-strand G from each opposing Ig domain and the 
two β-hairpin motifs of telethonin as observed in the crystal structure. (c) Schematic 
representations of fibre building blocks showing the Z1Z2-Tel complex with 
dimensions labelled (top left), Z1212 and position of the engineered linker (top right) 
and the propagative assembly mode of Z1212 with Tel (bottom). In the engineered 
linker, residues integral to the flanking Ig domains are highlighted (bold). Nanofibres 
exhibit two morphologies: “tapelike” (d) and “curly” (e) due to differential stacking 
arrangements of the individual components. Each panel shows a TEM micrograph 
(left), an in silico simulation-generated model (middle) and a schematic 
representation of the assembly (right). Scale bars = 100 nm. Figure taken in part 
and adapted from Bruning et al. (2010).      
 

1.3.2 Functionalisation potential of ZT nanofibres  

ZT nanofibres could display functional groups with nanoscale periodicity via 

recruitment of gold nanoparticles to an N-terminal hexahistidine tag on Tel, thus 

confirming the functionalisation potential of the system (Bruning et al., 2010). 

However, several other sites were identified that are spatially segregated from the 

assembly interface and may permit the display of exogenous peptides. Flexible loops 

on the surface of the Z1 and Z2 Ig domains are promising candidates for 

functionalisation since they represent the most variant regions of the (I)-type Ig 

domains of titin in terms of amino acid composition (Bruning et al., 2012). Ig 

domains are composed of 70-100 residues and share a β-sandwich framework. The 

tertiary structure is composed of antiparallel β-strands (βA – βG) ordered into two β-

sheets, which pack against each other to form the β-sandwich. Different Ig subtypes 

can be classified by the topology of the β-strands; (I)-type Ig domains are typically 

composed of one β-sheet formed by β-strands A, B, E and D, and another β-sheet 

formed by β-strands G, F and C (Bodelón et al., 2013) (Figure 4a). Each strand is 

connected by a loop, the nomenclature of which is based upon the strands it 
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connects. For example, the CD-loop connects β-strands C and D (Figure 4b). 

 

Figure 4. Structure and topology of (I)-type Ig domains. (a) Topological 
schematic of the (I)-type Ig fold and β-strand nomenclature. (b) Crystal structure of 
the Z1 Ig domain from titin (PDB: 1YA5, Zou et al., 2006). The position of the CD-
loop is indicated (arrow). Figure adapted from Meyer and Wright, (2013).  
 
 

Previous work has shown that the Z1 domain can tolerate drastic 

diversification of the CD-loop by insertion of the FLAG affinity tag (DYKDDDDK) 

and the native PxxP SH3-interaction motif (Bruning et al., 2012). The CD-loop was 

chosen because it is a region of low sequence conservation between the Ig domains 

of titin, thus residue composition has a low requirement for correct fold architecture. 

Despite moderately destabilising Z1 as evidenced by thermal denaturation, the 

exogenous sequences did not cause misfolding nor decrease protein yield. Analysis 

of these chimeric Z1 domains by NMR and Fourier transform infrared (FTIR) 

spectroscopy concluded that correct folding of the domain is not compromised by 

alterations to the CD-loop. Further, the FLAG sequence was shown to be exposed in 
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the context of Z1 and could actively bind an anti-FLAG M2 antibody as 

demonstrated by pull-down and isothermal titration calorimetry (ITC) (Bruning et 

al., 2012).  

The ZT nanofibre system was designed to support bottom-up 

functionalisation by spatial separation of diversifiable sites and assembly interfaces. 

Furthermore, the system is amenable to multifunctionalisation strategies through the 

utilisation of numerous customisable sites. These sites include the N- and C-termini 

of Tel, the CD-loops of Z1 and Z2, the N-terminus of Z1 and the C-terminus of Z2 

(Figure 5). The Z1Z2-Tel complex was purposely chosen as a building block 

because the association of the individual components is main-chain mediated and 

largely independent of sequence composition. Indeed, various truncated and/or 

mutated variants of Tel have been shown to retain their capacity to bind Z1Z2 (Zou 

et al., 2003).    

Multifunctionalisation may be achievable via the incorporation of cell 

adhesive and substrate adhesive moieties at different sites, or by coupling enzymatic 

and catalytic modules for orthogonal recognition. Since foreign peptides and/or 

domains would be genetically encoded, the periodicities of functional moieties are 

defined and customisable at the nanoscale (Bruning et al., 2010).   
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Figure 5. Functionalisation potential of ZT nanofibres. The crystal structure of 
the titin-telethonin complex is shown to the left and potential sites for 
functionalisation are circled and numbered. Zoomed views of the numbered sites 
are shown to the right and a description is given above each image.   
 

1.4 Aims 

 

 The biomaterials field encompasses a plethora of research on materials 

science and biotechnology, with novel substrates and translational approaches 

reported daily. However, biomaterials composed of folded protein domains in 

ordered, modular arrays are somewhat underrepresented as scaffolds for stem cell 

culture or differentiation. The aim of this work was to explore the functionalisation 

potential of ZT nanofibres and assess the applicability of the system to act as an 

ECM mimetic for stem cell applications.  For this, the following steps were taken: 
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1. To assess the functionalisation capacity of the system, individual components 

of ZT nanofibres were genetically engineered to generate protein chimeras 

displaying exogenous peptide motifs with biological activities.  

2. To ensure that domain integrity and polymerisation capacity were maintained 

following mutation, the chimeric proteins were heterologously expressed 

and structurally characterised.  

3. In order to validate the bioactivity of functional moieties, the ability of 

nanofibre variants to promote MSC adhesion was assessed. Further, the 

chondroinductive potential of an integrin-binding ZT variant was 

investigated.    

4. To demonstrate the ability of functionalised nanofibres to act as recombinant 

substrates for hESC propagation, HUES7 cell attachment, self-renewal and 

pluripotency were characterised when cultured on a ZT variant.  
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Chapter 2  

Materials and methods 

 

2.1 Molecular biology  

 

2.1.1 Materials 

 All restriction endonucleases were purchased from New England Biolabs 

(NEB) and digestions were performed according to the manufacturer’s guidelines in 

the recommended buffer system. Primers were purchased from Sigma Aldrich. 

Primer-specific amplification of DNA fragments by PCR used Q5 High-Fidelity 

DNA Polymerase (NEB). PCR reaction cleanup and extraction of DNA from 

agarose gels used the ISOLATE II PCR and Gel Kit (Bioline).  

 

2.1.2 QuikChange site-directed mutagenesis 

For QuikChange site-directed mutagenesis (Braman et al., 1996), primers 

were designed using the QuikChange Primer Design Program (Agilent 

Technologies). Following whole plasmid amplification with KOD Hot Start DNA 

Polymerase (Merck Millipore), methylated (non-mutated) DNA was digested by the 

addition of 10 U DpnI (Thermo Scientific) for 1 h at 37°C. Next, 1 µL of linear 

DpnI-treated DNA was added to a reaction mixture comprising 5 U T4 

Polynucleotide Kinase (NEB), 0.5 µL T4 buffer and nuclease-free water to a total 

volume of 5 µL. The reaction was incubated for 30 min at 37°C before addition of 

200 U T4 DNA Ligase (NEB), 0.5 µL T4 buffer and nuclease-free water to a final 

volume of 10 µL. Following incubation for 1 h at room temperature (RT; 
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approximately 22°C), all of the reaction mixture was used to transform chemically-

competent Escherichia coli (E. coli) cells (section 2.1.4). 

 

2.1.3 Ligation 

Ligation of endonuclease-digested DNA fragments and plasmid vectors used 

T4 DNA Ligase (NEB) according to the manufacturer’s protocol. Typically, a 3:1 

molar ratio of insert to vector DNA was used and ligations were allowed to occur for 

30 min at RT.   

 

2.1.4 Bacterial transformation 

E. coli DH5α (Invitrogen) or BL21 (DE3) (Novagen) RbCl-chemically 

competent cells were transformed with plasmid DNA as follows; 50 µL aliquots of 

cells stored at -80°C were mixed with plasmid DNA and incubated for 30 min on 

ice. Cells were subsequently heat-shocked at 42°C for 45 s and rested on ice for 1 

min. 500 µL of Luria-Bertani (LB) medium was added and the cells were incubated 

at 37°C with shaking for 1 h, after which the suspension was spread on LB agar 

plates supplemented with the appropriate antibiotic and incubated overnight at 37°C.  

 

2.1.5 Mutant verification 

Following transformation of plasmid DNA, antibiotic-resistant colonies were 

screened for correct construct size by PCR; a sterile pipette tip was used to touch 

each colony and then transferred to a 0.2 mL tube containing 25 µL MyTaq™ Red 

Mix (Bioline) mastermix (Table 1). Vigorous mixing was used to displace the 

bacteria from the tip and disperse the cells throughout the reaction mixture. After 

thermocycling (Table 1), amplicon size was determined by agarose gel 
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electrophoresis with reference to a molecular mass (MM) marker (HyperLadder™ 

1kb, Bioline). Colonies containing plasmids with the correct insert size were used to 

inoculate 10 mL Luria-Bertani broth and grown overnight at 37°C. Cells were 

collected by centrifugation and plasmid DNA was extracted using the ISOLATE II 

Plasmid Mini Kit (Bioline). All constructs were verified by Sanger sequencing 

(Source BioScience Sequencing Service) using T7 forward and reverse primers 

(Table 2).   

 

Table 1. Reaction components and PCR cycling conditions for transformant 
screening using MyTaq™ Red Mix.    
 

Reaction Components Volume (μL)  Cycling Conditions  

  1X 95°C, 5 min 
MyTaq™ Red Mix 12.5 

30X 

95°C, 15 s 
Sense (5’) primer (10 μM) 1 50°C, 10 s 
Antisense (3’) primer (10 μM) 1 72°C, 15 s/kb 
Nuclease-free water 10.5 1X 72°C, 2 min 

 

2.2 Protein cloning  

The nucleic acid sequences of all protein constructs produced during the 

course of this project are given in the Appendix.    

 

2.2.1 Z1212 grafted fibronectin chimera cloning 

Mutant proteins were produced from wild type (wt) Z1212 tandem template  

(described by Bruning et al., 2010). Insertion of the RGD motif into the second Z1 

domain of Z1212 (Z1212
RGD) was by overlap extension PCR; two fragments were 

created from the Z1212 template DNA (corresponding to native residues 1-242 and 

242-391) which overlapped by additional bases coding for the RGD motif generated 
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during fragment amplification. The first fragment (residues 1-242) was generated 

using the primers 1 and 4, and the second fragment (residues 242-391) using primers 

2 and 3 (Table 2). Individual fragments were hybridised and amplified using a two-

stage thermocycling protocol, the first cycle with the fragments alone and the second 

in the presence of primers 1 and 2 (note: the T7 forward and reverse primers 

complement sites upstream and downstream of the multiple cloning site and are 

integral to the pETM plasmid vectors). The grafted insert was seven amino acids in 

length and replaced residues 243-246 with four non-native residues flanking the 

RGD motif (SGRGDSS). An RGE variant (Z1212
RGE) was produced using the 

QuikChange method to replace aspartic acid with glutamic acid. Constructs were 

ligated into the pETM-11 vector (EMBL Plasmid Collection) via the NcoI and KpnI 

restriction sites so as to incorporate an N-terminal hexahistidine (His6) tag and a 

tobacco etch virus (TEV) cleavage site. 

 

2.2.2 Telethonin grafted fibronectin chimera cloning  

All Tel mutants were produced from a C-terminally truncated cysteine-null 

Tel template (residues 1-87, UniProt O15273, Bruning et al., 2010). Four mutants 

were produced in the pETM-13 vector (EMBL Plasmid Collection) as follows; a Tel 

amplicon containing a GRGDSGRGD sequence and His6-tag at the N-terminus was 

generated using primers 2 and 5 (Table 2), which was inserted into the pETM-13 

vector  via the NcoI and KpnI restriction sites (TelN-RGD13). A control construct 

containing a GRGESGRGE sequence (TelN-RGE13) was produced in the same 

fashion using primers 2 and 6 (Table 2). Two similar constructs containing motifs at 

the C-terminus (TelC-RGD13 and TelC-RGE13 ) were generated using primers 1 and 7 

or 1 and 8 (Table 2) for TelC-RGD13 and TelC-RGE13, respectively.  
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Two Tel mutants were produced in the pETM-11 vector as follows; a Tel 

amplicon containing a GRGDS motif at the C-terminus was generated using primers 

1 and 9 (Table 2), which was inserted into the pETM-11 vector via the NcoI and 

KpnI restriction sites (TelC-RGD11). A control construct containing a GRGES motif 

(TelC-RGE11) was produced in the same fashion using primers 1 and 10 (Table 2).  

 

Table 2. Primers for the generation of Z1212 and Tel fibronectin chimeras. Non-
native bases are shown in red and restriction sites are highlighted (bold, 
underlined).  
 

Primer Description 
Restriction 

enzyme 
Sequence (5’ – 3’) 

1 T7 Forward - TAATACGACTCACTATAGGG 

2 T7 Reverse - GCTAGTTATTGCTCAGCGG 

3 Z1212
RGD 

Forward - GTGATTTCCAGTGGTCGCGG
CGATAGCAGTCC 

4 Z1212
RGD 

Reverse - CACGCCGGGACTGCTATCGC
CGCGAC 

5 TelN-RGD13 
Forward NcoI 

ATGCCATGGGTCATCATCATC
ATCATCATCGCGGCGATAGC
GGCCGCGGCGATATGGCTAC

CTCAGA 
 

6 TelN-RGE13 
Forward NcoI 

ATGCCATGGGTCATCATCATC
ATCATCATCGCGGCGAAAGC
GGCCGCGGCGAAATGGCTAC

CTCAGA 

7 TelC-RGD13 
Reverse KpnI 

GATCGGTACCTTAATGATGAT
GATGATGATGCGGATCGCCG
CGGCCGCTATCGCCGCGCTG

GTAGGG 
 

8 TelC-RGE13 
Reverse KpnI 

GATCGGTACCTTAATGATGAT
GATGATGATGCGGTTCGCCG
CGGCCGCTTTCGCCGCGCTG

GTAGGG 

9 TelC-RGD11 
Reverse KpnI GGTACCTCAGGGGCTATCGC

CGCGACCACTCTGGTAGGG 

10 TelC-RGE11 
Reverse KpnI 

GGTACCTCAGGGGCTTTCGC
CGCGACCACTCTGGTAGGG 
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2.2.3 Z1212 fibronectin fusion chimera cloning 

The region of fibronectin encoding type III domains 8 to 11 (residues 1269-

1638, UniProt P02751) was amplified from human cDNA (a kind gift from Dr. 

Andrew Marriott, University of Liverpool) with primers 11 and 12 (Table 3) and 

used for subcloning. A fusion protein comprising Z1212 and the tenth type III domain 

of fibronectin (FnIII 10) joined C-terminally was produced by Golden Gate 

Assembly (Engler et al., 2009); sequence corresponding to FnIII 10 (residues 1448-

1543) was amplified with an N-terminal BbsI restriction site using primers 13 and 14 

(Table 3). A Z1212 amplicon with a C-terminal BbsI site was made in the same 

fashion using primers 15 and 16 (Table 3) and both fragments were ligated after 

digestion with BbsI. Primers were designed to introduce a GETTQ linker sequence 

between the C-terminal residue of Z1212 (Q389) and start residue of FnIII 10 (S1448). 

The full-length fusion protein (Z1212
Fn) was ligated into the pETM-11 vector via the 

NcoI and KpnI restriction sites.  

 
Table 3. Primers for the generation of fibronectin constructs. Non-native bases 
are shown in red and restriction sites (bold, underlined) are highlighted.  Overhangs 
produced by the Type IIS restriction endonuclease BbsI (for Golden Gate assembly) 
are shown in bold italics.  
 

Primer Description 
Restriction 

enzyme 
Sequence (5’ – 3’) 

11 Fn-III 8-11 
Forward NcoI CGCCATGGATCATCCCAGCTGT

T 

12 Fn-III 8-11 
Reverse KpnI GAGGTACCTCACAGTCCTTTAG

GGCG 

13 Fn-III10 
Forward BbsI 

 
TATTAAGAAGACACTCAGTCTG

ATGTTCCGAGGGAC 

14 Fn-III10 
Reverse KpnI GAGGTACCTCAGTCAATTTC 

TGTTCG 

15 Z1212 
Forward NcoI GCGCCATGGCAACTCAAGCA 

16 Z1212 
Reverse BbsI GTGGTGGAAGACCTCTGATGTT

TCACCTTGAAC 
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2.2.4 Generation of the Z1Z2 doublet and chimeric variants 

 A construct comprising the dual Z1Z2 Ig domains from titin (residues 1-196, 

UniProt Q8WZ42) was amplified from the Z1212 template DNA using primers 17 and 

18 (Table 4) and cloned into the pETM-11 vector via the NcoI and KpnI restriction 

sites. The process was repeated for Z1Z2RGD, Z1Z2RGE and Z1Z2Fn variants using the 

corresponding Z1212 chimeras as templates.    

 

 

Table 4. Primers for the generation of Z1Z2 chimeras. Non-native bases are 
shown in red and restriction sites are highlighted (bold, underlined). 
 

Primer Description 
Restriction 

enzyme 
Sequence (5’ – 3’) 

17 Z1Z2 Forward NcoI GCGCCATGGCAACTCAAGCA 
 

18 Z1Z2 Reverse KpnI GAGGTACCTCATGTCTCGCC
CTGCAC 

 

 

2.2.5 Z1212 grafted N-cadherin and decorin chimera cloning 

Insertion of the N-cadherin HAVD motif in β-strand B or the decorin KLER 

motif in the CD-loop of Z1 used the QuikChange method. As the Z1212 tandem 

contains two complementary sites for any specific primer, wt Z1Z2 (section 2.2.4) 

was used as a template for site-directed mutagenesis. The HAVD motif was inserted 

between residues A26 and F31 using primers 19 and 20 (Table 5), replacing native 

residues I28-G30 (H27 was retained) to produce Z1Z2HAVD. For insertion of the 

KLER motif, several rounds of QuikChange mutagenesis were required to generate 

the desired constructs by sequential mutation/deletion of codons using primers 21-26 

(Table 5). The KLER motif was placed between V45 and L51, replacing native 

residues I46-T50 to produce Z1Z2KLER.  
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To fuse the mutated and wt Z1Z2 sequences in order to recreate the original 

tandem, wt Z1212 in the pETM-11 vector was digested with unique (single site) 

restriction enzymes NcoI and SacI. The NcoI site is located upstream of the inserted 

construct in the multiple cloning site, whilst the SacI site is integral to the Z1212 

sequence (Figure 6). Digestion with these enzymes generates two fragments; 5934 

bp and 569 bp. The 5934 bp fragment comprising the vector and secondary Z1Z2 

module of Z1212 was purified by agarose gel electrophoresis. Similarly, Z1Z2HAVD 

and Z1Z2KLER constructs were amplified with T7 forward and reverse primers (Table 

2) and digested with NcoI and SacI. Finally, the 5934 bp and Z1Z2HAVD/Z1Z2KLER 

fragments were ligated to produce Z1212
HAVD and Z1212

KLER.  

 

Table 5. Primers used for the generation of N-cadherin and decorin chimeras. 
Non-native bases incorporated by the QuikChange method are shown in red.      
 

Primer Description Sequence (5’ – 3’) 

19 Z1Z2HAVD 

Forward TGATTTCCAGTTCCTGAGGTG 

20 Z1Z2HAVD 

Reverse ACAGCGTGAGCCTCAAAGGTTGC 

21 Z1Z2K 
Forward AAAACTTCCACTCTGCCCGGC 

22 Z1Z2K 
Reverse CACCTGGCCATCCCTAAAC 

23 Z1Z2KL 
Forward CCAGGTGAAACTCTCCACTCTGCCCG 

24 Z1Z2KL 
Reverse CCATCCCTAAACCAGCTC 

25 Z1Z2KLER 
Forward GGTGAAACTCGAACGCCTGCCCGGCGTG 

26 Z1Z2KLER 
Reverse TGGCCATCCCTAAACCAG 
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Figure 6. Vector map of Z1212 in the pETM-11 plasmid. Key features of the map 
are labelled and the position of the unique SacI site between the Z1Z2 doublets of 
Z1212 (purple) is shown to the right. The NcoI site in the multiple cloning site (MCS) 
is also highlighted. 
 

 

2.2.6 Cloning for co-expression of protein complexes 

 To permit the dual transformation of E. coli DH5α cells with plasmids 

encoding interacting proteins and their subsequent co-expression, Z1Z2 variants 

were subcloned into the pET-15b vector (Novagen) that contains an ampicillin 

resistance gene. Sequences encoding Z1Z2 variants were amplified using T7 forward 

and reverse primers (Table 2) to include the multiple cloning site from the pETM-11 

vector. Fragments were digested with XhoI/KpnI and ligated into the pET-15b 

plasmid spliced with the same restriction endonucleases. The XhoI site omits the 

incorporation of an N-terminal His6 tag and thrombin cleavage site encoded by the 

pET-15b vector, meaning that the recombinantly expressed protein is untagged and 

can only be isolated by immobilised metal affinity chromatography when complexed 

with a tagged binding partner.  
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2.3 Recombinant protein production  

 

2.3.1 Protein expression 

Expression of all protein constructs was achieved by transformation of E. coli 

BL21 (DE3) RbCl chemically competent cells with construct-containing 

plasmids.  Cultures were inoculated 1:100 and grown at 37°C with shaking to an 

OD600 of 0.6 in Luria Bertani (LB) medium containing appropriate antibiotics (25 

µg/mL kanamycin or 50 µg/mL ampicillin for constructs encoded by the pETM-11 

and pET-15b vectors, respectively). Cultures were grown overnight at 18°C in the 

presence of 1 mM isopropyl-thio-β-D-galactopyranoside (IPTG; Bioline) to induce 

protein overexpression, after which cells were harvested by centrifugation at 6,600g 

for 20 min at 4°C and stored at -80°C until use.  

 

2.3.2 Purification of Z1Z2 and Z1212 chimeras 

The following proteins were isolated and purified using the method described 

below: wt Z1Z2, Z1Z2HAVD, Z1Z2KLER, wt Z1212, Z1212
RGD, Z1212

RGE, Z1212
Fn, 

Z1212
HAVD and Z1212

KLER. Cell pellets were thawed on ice and resuspended in lysis 

buffer (50 mM Tris-HCl pH 7.4, 500 mM NaCl) supplemented with EDTA-free 

protease inhibitor cocktail (Roche) and 10 µg/mL DNAse I (Sigma Aldrich) before 

disruption by high pressure homogenisation. Lysates were clarified by centrifugation 

at 40,000g for 40 min at 4°C. The soluble fraction was filtered (0.22 µm 

polyethersulfone syringe filter) and applied to a 1 mL Ni2+-NTA Hi-Trap column 

(GE Healthcare). Bound recombinant protein was eluted with an imidazole gradient 

and supplemented with approximately 20 µg of TEV protease per mL of protein 

solution. Samples were dialysed into 50 mM Tris-HCl pH 7.4, 100 mM NaCl (gel 
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filtration buffer) overnight at 4°C to allow for His-tag cleavage. Next, samples were 

applied once more to a Ni2+-NTA Hi-Trap column to remove the protease, His-tag 

and uncleaved sample that remained bound to the column. The flow-through 

containing cleaved recombinant protein was concentrated before further purification 

by size-exclusion chromatography using either a Superdex 200 16/60 or 26/60 

column (GE Healthcare) equilibrated in gel filtration buffer. Finally, proteins were 

dialysed overnight at 4°C in 50 mM Tris-HCl pH 8.0, 50 mM NaCl and applied to a 

Mono Q 5/50 GL anion-exchange column (GE Healthcare) equilibrated in dialysis 

buffer. Elution used a linear gradient of 50-500 mM NaCl and fractions were 

dialysed in gel filtration buffer to remove excess NaCl prior to concentrating the 

proteins to approximately 20 mg/mL. Z1212 variants were used immediately or flash 

frozen in liquid nitrogen and stored at -80°C. Protein purity and quality was assessed 

at all stages of the purification process by Coomassie-stained sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Protein concentration 

was estimated by absorbance at 280 nm using a NanoDrop 1000 spectrophotometer 

(Thermo Scientific).  

 

2.3.3 Purification of Tel, TelC-RGD11 and TelC-RGE11  

Cell pellets were thawed at RT before resuspending in a lysis buffer 

containing 25 mM Tris-HCl pH 7.4 and 8 M urea supplemented with EDTA-free 

protease inhibitor cocktail and 10 µg/mL DNAse I. Cells were disrupted by high 

pressure homogenisation and the lysate clarified by centrifugation at 40,000g for 40 

min at 20°C. The soluble fraction containing Tel was filtered (0.22 µm 

polyethersulfone syringe filter) before applying to a 1 mL Ni2+-NTA Hi-Trap 

column. Bound protein was eluted with an imidazole gradient. Fractions containing 
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Tel were dialysed in 25 mM Tris-HCl pH 7.4, 8 M urea and concentrated to 

approximately 30 mg/mL. Tel preparations were stored at RT for up to 1 month 

before discarding.   

 

2.3.4 Dual expression of protein complexes  

 For in vivo complexation of Z1Z2 variants and Tel, proteins were co-

expressed in E. coli BL21 (DE3) cells. To achieve this, competent cells were 

transformed with pETM-11 and pET-15b plasmids encoding Tel and Z1Z2 variants, 

respectively. Z1Z2 variants were as follows: wt Z1Z2, Z1Z2RGD, Z1Z2Fn, Z1Z2KLER 

and Z1Z2HAVD. Dually-transformed clones were selected by antibiotic screening 

against kanamycin and ampicillin. Recombinant protein expression and purification 

was as described previously (sections 2.3.1 and 2.3.2).  

 

2.4 Protein characterisation 

 

2.4.1 Analytical size exclusion chromatography 

 Analytical SEC was conducted on an ÄKTA pure system (GE Healthcare) 

using a Superdex 200 10/300 Tricorn column (GE healthcare) at a flow rate of 0.75 

ml/min. The column was equilibrated in 50 mM Tris pH 7.4, 100 mM NaCl.  

 

2.4.2 Size exclusion chromatography combined with multi-angle laser light 

scattering (SEC-MALLS) 

SEC-MALLS measurements were obtained on an ÄKTA pure system linked 

to an 8-angle light scattering detector (λ = 658 nm) and a differential refractometer 

(Helios DAWN8+ and Optilab T-rEX, Wyatt Technology). A Superdex 200 Increase 



	 	 Chapter 2	

	 35 

10/300 GL column (GE Healthcare) equilibrated in 50 mM Tris pH 7.4, 100 mM 

NaCl was used at a flow rate of 0.75 mL/min.  Protein samples of 100 µL were 

injected at a concentration of 0.6 mg/mL. A BSA (Sigma-Aldrich) sample was used 

as a calibration standard to establish detector delay volumes. Data analysis and MM 

calculations used the ASTRA 6.1 software suite (Wyatt Technology) with a 

refractive index increment (dn/dc) of 0.185 mg/mL.   

 

2.5 Protein structural analysis  

 

2.5.1 Small-angle X-ray scattering (SAXS) 

SAXS data was collected by Dr. Barbara Franke (Universität Konstanz) at 

the P12 undulator beamline of the PETRA III Synchrotron (EMBL/DESY, 

Hamburg, Germany) using a Pilatus 2M detector (Dectris, Switzerland). Z1212 

samples were analysed at concentrations of 1.03, 3.50, 6.70, 10.20 and 14.50 

mg/mL. Z1212
RGD samples were analysed at concentrations of 1.03, 3.52, 6.90, 9.60 

and 15.10 mg/mL. Protein solutions (10 µL) were measured in 50 mM Tris-HCl pH 

7.4, 100 mM NaCl at a temperature of 10°C. The scattering intensity (I) in the range 

of momentum transfer 0.01 < s < 0.45 Å-1, (s = 4π sinθ/λ, where the wavelength λ = 

1.24 Å and 2θ  is the scattering angle) was recorded at a sample-detector distance of 

3.1 metres. Radiation damage, monitored by repetitive 0.05 s exposures, was 

negligible. Background scattering was subtracted and data reduced, normalised and 

extrapolated to infinite dilution using the program PRIMUS (Konarev et al., 2003). 

The forward scattering I(0), radii of gyration (Rg) and sample monodispersity were 

assessed using the Guinier approximation (Guinier, 1939). These parameters were 

also calculated from the entire scattering pattern using the program GNOM 
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(Svergun, 1992), which additionally provides the distance distribution function, p(r), 

and maximum particle dimension (Dmax).     

2.5.2 X-ray crystallography 

 

2.5.2.1 Crystallogenesis screening 

Crystallogenesis screening was carried out at 22°C using an automated 

Screenmaker 98+8™ Xtal™ nanovolume-dispensing crystallisation robot 

(Innovadyne) and INTELLI-PLATE 96-2 shallow well plates (Art Robinson 

Instruments). The sitting drop vapour diffusion method was utilised with reservoirs 

containing 70 µL mother liquor and drops composed of a 1:1 ratio of protein to 

reservoir solution at a final volume of 200 nL. The following commercial 

crystallisation matrices were used for screening; MD Structure Screen, JCSG+, 

Morpheus, Cryo, Midas (Molecular Dimensions), Wizard Classic (Emerald 

BioSystems), SaltRx, PEGRx (Hampton Research) and NeXtal PACT (Qiagen).    

 

2.5.2.2 Wild type Z1212 and Z1212
RGD crystallisation   

 Z1212 and Z1212
RGD were screened at 15 and 30 mg/mL, generating multiple 

crystal hits. The diffraction potential of initial crystals was tested on the tuneable 

microfocus beamline I24 (Diamond Light Source, Oxfordshire, UK). Z1212
RGD was 

crystallised in space group H3 at 15 mg/mL in 10% [w/v] 8000 kDa polyethylene 

glycol, 100 mM Tris HCl pH 7.0, 200 mM MgCl2 (Wizard Classic screen). Initial 

crystals diffracted to low resolution (~3 Å) and the condition was varied in an 

attempt to improve resolution. Diffraction quality was not improved by optimisation, 

and crystals were used for microseed screening (Bergfors, 2003) using a 1:1:2 ratio 

of protein to seed stock to mother liquor. Screens were set up as previously 
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described (section 2.5.2.1) using Wizard Classic and Cryo matrices. A large number 

of crystal hits were generated and diffraction data was collected on beamline I03 

(Diamond Light Source). The best crystals grew in 10% [v/v] isopropanol, 100 mM 

Na2HPO4 pH 4.2, 200 mM LiSO4 (Wizard Classic screen) and were cryoprotected 

with 30% [v/v] glycerol prior to flash cooling in liquid nitrogen. X-ray diffraction 

data was collected to 2.4 Å resolution for one Z1212
RGD crystal.  

 

2.5.2.3 Z1Z2HAVD and Z1Z2KLER crystallisation 

 Z1Z2HAVD and Z1Z2KLER were screened at 25 and 50 mg/mL; Z1Z2HAVD did 

not crystallise under any of the conditions assessed and one hit was identified for 

Z1Z2KLER; 1 M NH4H2PO4 pH 4.6, 100 mM sodium acetate (SaltRx). Attempts to 

recreate or improve the initial hit failed. Crystals were cryoprotected in 30% [v/v] 

glycerol and flash cooled in liquid nitrogen prior to data collection. X-ray diffraction 

data was collected on beamline I03 (Diamond Light Source) to 2.6 Å resolution.  

 

2.5.2.4 Structure calculation 

Diffraction data was processed using XDS (Kabsch, 2010) and estimation of 

the asymmetric unit content used the matthews_coef program of the CCP4 software 

suite (Winn et al., 2011). For Z1212
RGD, molecular replacement was conducted with 

Phaser (McCoy et al., 2007) using Z1 and Z2 Ig domains as individual search 

models (PDB: 2A38; Marino et al., 2006). Structure refinement was conducted with 

PHENIX (Adams et al., 2010). Manual building and the addition of water and 

solvent molecules used Coot (Emsley et al., 2010). Model quality was assessed 

using MolProbity (Chen et al., 2010). Refinement and building of the Z1212
RGD 

structure was carried out by Dr. Jennifer Fleming (Universität Konstanz).  
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2.6 ZT nanofibres 

 

2.6.1 Nanofibre assembly  

 Polymerisation of ZT nanofibres used a protocol developed by Bruning et al. 

(2010); a 3:1 molar excess of Tel to Z1212 was mixed (final protein concentration of 

10 mg/mL) and dialysed overnight (Slide-A-Lyzer™ MINI Dialysis Device 3.5 kDa 

MWCO; Thermo Fisher Scientific) at RT in 50 mM Tris-HCl pH 7.4, 100 mM NaCl 

(assembly buffer). Following initial assembly and removal of urea, nanofibre 

preparations were left for 1 week at RT in sterile Eppendorf tubes to allow 

polymerisation to proceed before use.  

 

2.6.2 Transmission electron microscopy (TEM) 

 

2.6.2.1 Grid preparation  

 200 mesh copper grids were coated with either pioloform or pure carbon 

support films. Grids with a pioloform support film were carbon-coated before use 

and both grid types were either left unmodified or freshly glow discharged for 30 s 

prior to sample application. Pioloform grids were manufactured in-house (University 

of Liverpool) from 0.3 % [w/v] polyvinyl butyral dissolved in chloroform. Pure 

carbon-coated grids were either manufactured in-house (University of Sheffield) or 

purchased (C101/025; TAAB).    

 

2.6.2.2 Sample loading and staining  

Nanofibre samples at 10 mg/mL were diluted 1:10 or 1:100 with assembly 

buffer prior to loading onto carbon-coated or piloform-coated grids. Five µL of 
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diluted nanofibre solution was applied for 60 s. The nanofibre solution was removed 

and the grid washed three times with distilled water before staining twice with 5 µL 

of 2% [w/v] uranyl-acetate dissolved in distilled water (5 s and 45 s for the first and 

second stains, respectively). Fluid was removed from the grid between each washing 

and staining step by gently touching a piece of filter paper to the edge of the grid. A 

loading protocol that omitted the wash steps was also implemented. Imaging was 

performed at the University of Liverpool (assisted by Alison Beckett) or the 

University of Sheffield (assisted by Dr. Svetomir Tsokov) on a FEI 120 kV Tecnai 

G2 Spirit BioTWIN electron microscope operating at 100 kV.  

 

2.6.3 Native polyacrylamide gel electrophoresis (PAGE) 

 Protein samples were loaded on 15% [v/v] acrylamide gels in non-reducing 

loading buffer (without boiling) and SDS was excluded from both the gel and the 

running buffer. Gels were run at RT for 3 h at 20 mA and stained with Coomassie 

Brilliant Blue.   

 

2.6.4 Nanofibre adsorption to plastic surfaces 

 All ZT nanofibres were sterilised by UV irradiation for 15 min in 1.5 mL 

Eppendorf tubes. Stock solutions of sterile ZT nanofibre variants and control human 

plasma fibronectin (Merck Millipore) were diluted in culture-grade PBS (Sigma 

Aldrich) to achieve concentrations ranging from 0.1 – 10 µg/mL. Proteins were 

passively adsorbed onto non-tissue culture treated (TCT) 24-well suspension plates 

(Greiner) or non-TCT 8-well µ-Slides (ibidi) by adding 300 µL of protein solution to 

each well and incubating at 37°C for 2 h. The protein solution was removed and 

wells were immediately filled with the required medium prior to cell seeding.  
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2.7 Cell Culture 

 

2.7.1 Mouse mesenchymal stem cells 

 Murine mesenchymal stem cell (mMSC) line D1 (ATCC) was cultured on 

standard TCT vessels in high glucose Dulbecco’s Modified Eagle Medium (DMEM; 

Sigma-Aldrich) supplemented with 10% [v/v] foetal calf serum (FCS; Gibco), non-

essential amino acids (Sigma-Aldrich), 2 mM L-glutamine (Invitrogen) and 55 µM 

β-mercaptoethanol (Gibco). Cells were subcultured at approximately 90% 

confluence using 1% trypsin (Sigma-Aldrich) and maintained at 37°C with 5% [v/v] 

CO2.  

 

2.7.2 Human embryonic stem cells 

 Human embryonic stem (hESC) cell line HUES7 (Harvard University, HUES 

cells facility, Melton Laboratory, ME, USA) was cultured in serum-free mTeSR™1 

medium (Stem Cell Technologies) on hESC-qualified Matrigel (Corning). For 

routine expansion, tissue culture treated plastic vessels (Corning) were coated with 

Matrigel according to the manufacturer’s instructions; Matrigel was thawed on ice 

and diluted in DMEM/F-12 medium (Gibco). Diluted Matrigel was added to culture 

vessels at a volume sufficient to cover the growth surface (1 mL/well for a 6-well 

plate) and incubated for 1 h at RT. Prior to cell seeding, the diluted Matrigel was 

removed by aspiration (care was taken not to disturb the matrix) and fresh 

mTeSR™1 medium was added. For passaging on Matrigel, spent medium was 

removed and hESC colonies were detached by incubation with Gentle Cell 

Dissociation Reagent (Stem Cell Technologies) at RT; the appearance of gaps 

between cells at the periphery of colonies (observed under a microscope) was judged 
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to be the optimal incubation time (typically 5 – 7 min) and care was taken to avoid 

the generation of a single cell suspension by overexposure to the dissociation 

reagent. Following incubation, the dissociation reagent was removed and fresh 

mTeSR™1 medium added before removal of colonies using a cell scraper and 

transfer to a 15 mL falcon tube. The suspension was gently triturated to generate 

clumps of approximately 50 – 200 cells and split 1:6 onto Matrigel-coated vessels. 

Cells were cultured at 37°C with 5% [v/v] CO2 and medium was exchanged daily.  

 

2.8 CCK-8 assay 

The toxicity of the Z1212 tandem was assessed by CCK-8 assay (Cell 

Counting Kit 8; Sigma-Aldrich) according to the manufacturer's guidelines. The 

assay utilises the reductive potential of WST-8 [2-(2-methoxy-4-nitrophenyl)-3-(4-

nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt] to produce a 

formazan dye in the presence of metabolically active cells. Further, the extent of 

colour change is directly correlatable to the number of viable cells in a sample. To 

assess Z1212 toxicity, 1 × 104 mMSCs were cultured for two days in the presence of 

0.01 – 1 mg/mL Z1212. Concentrations were created by sterile-filtering 15 mg/mL 

protein stocks (Ultrafree-MC Centrifugal Filter Units; Millipore) and diluting with 

cell medium. Standard medium and 0.1% (v/v) Triton-X 100 were included as 

negative and positive controls, respectively. Absorbance was measured at 450 nm 

using an LP400 microplate reader (Anthos Labtec Instruments) and results were 

expressed as a percentage of the activity of the positive control (100%). All 

conditions were run in triplicate.    
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2.9 Cell adhesion assays 

 mMSCs cultured under standard conditions were serum-starved for 24 h 

post-seeding on ZT nanofibres; medium was removed and the cells washed twice 

with phosphate-buffered saline (PBS; Sigma-Aldrich) to remove remaining serum 

components before serum-free (SF) medium was added. SF medium was composed 

of Advanced DMEM (Gibco), 100 U/mL Penicillin-Streptomycin (Invitrogen), 2 

mM L-glutamine and 55 µM β-mercaptoethanol. After 24 h, SF medium was 

removed and cells washed once with PBS before trypsinising to generate a single 

cell suspension. The suspension was diluted 1:1 with SF medium and centrifuged at 

200 × g for 3 min to pellet the cells, and the supernatant was discarded. The cells 

were resuspended in fresh SF medium and the centrifugation step was repeated to 

remove residual trypsin. Finally, the cells were resuspended in SF medium, counted 

using a haemocytometer and seeded at 1 × 104 cells/cm2 in non-TCT plates 

precoated with proteins.  

 HUES7 cells cultured on Matrigel were washed once with PBS and 

disaggregated by incubation with Accutase (Innovative Cell Technologies) at 37°C 

until all cells in colonies appeared rounded and began to lift from the dish 

(approximately 5 min). Cells were completely detached by shear force and the 

suspension was diluted 1:1 with mTeSR™1 medium followed by centrifugation at 

200 g for 3 min. The supernatant was removed and the pellet resuspended in fresh 

medium by gentle trituration to generate a single cell suspension. Seeding on 

protein-coated wells was as described for mMSCs, with the exception that 

mTeSR™1 medium was used and Matrigel was also included as an additional 

control. At specific time points post-seeding, cells were fixed with 4% [w/v] 

paraformaldehyde (PFA) for 10 min to halt adhesion/spreading and wells were 
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washed with PBS to remove non-attached cells prior to analysis.  

 For quantification, phase contrast micrographs were acquired in 3 random 

fields of view per well (triplicate wells, n = 9) using a Leica DM2500 inverted 

microscope and Leica DFC420C camera. Adhered cells in each field of view were 

counted and the average number for each condition calculated.  

 

2.10 Peptide inhibition assay 

 Peptide inhibition experiments essentially followed the same protocol as the 

cell adhesion assays. Following trypsinsation, mMSCs were incubated with 0, 2.5, 

25 or 250 µM of integrin-binding GRGDS or 250 µM control GRGES pentapeptides 

(synthesised by Protein Peptide Research Fareham, UK) for 15 min at 37°C. Cells 

were then seeded in suspension culture plates precoated with control fibronectin or 

ZT nanofibres at 10 µg/mL as described previously (section 2.6.4). After 2 h 

incubation at 37°C, cells were fixed and imaged by phase contrast microscopy to 

quantify attachment and spreading.   

 

2.11 Analysis of cell morphology 

 Variations in cell morphology induced by different substrates were 

investigated by quantifying cell area, circularity, aspect ratio (AR) and solidity. For 

this, individual cells were outlined using ImageJ (Schneider et al., 2012). Images 

were spatially calibrated (µm/pixel) and the parameters were calculated by the 

software.  

Circularity was calculated using Equation 1: 

!"#$%&'#"() = 	4-./0 	

Where A and P represent cell area and perimeter, respectively.  
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Solidity was calculated using Equation 2: 

12&"3"() = .
!. 

Where A and CA represent area and convex area, respectively.  

 

AR was calculated using Equation 3: 

.4 = 	5.1. 

Where LA and SA represent the long axis and short axis of the best-fitted ellipsis, 

respectively.  

For each independent experiment, 50 cells were measured for each condition 

and in the case of the number of observable cells being less than 50, all attached cells 

were measured in the images available. 

 

2.12 Live cell imaging  

For time lapse microscopy studies, cell cultures were transferred to a Cell-IQ 

live cell imaging system (CM Technologies) and maintained for the duration of the 

experiment at 37°C and 5% CO2. Imaging cycles were initiated 2 h post-seeding to 

allow the system to equilibrate and cells to adhere sufficiently for automated 

focusing. For each condition, three random areas were imaged in triplicate wells 

using a 10× objective (the field of view is 800 µm2). Each designated position was 

imaged once every 15 min and data was processed using Imagen analysis software 

(CM Technologies).   
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2.13 Chondrogenesis assays 

Induced chondrogenic differentiation of mouse MSCs in vitro used the pellet 

culture method (Peister et al., 2004); MSCs grown in monolayer culture were 

trypsinised and 2 x 105 cells in standard medium (Section 2.7.1) were compacted by 

centrifugation at 200g for 5 min. Following incubation for 24 h, medium was 

replaced with chondroinductive medium; DMEM, 10 ng/mL TGFβ-3 (Sigma-

Aldrich), 200 ng/µL BMP-7 (R & D Systems) 0.1 µM dexamethasone, 50 µg/mL 

ascorbic acid (Sigma-Aldrich), 40 µg/mL pyruvate and 50 mg/mL ITS (Invitrogen). 

Medium was exchanged every two days and pellets were cultured for up to 21 days 

at 37°C with 5% [v/v] CO2. After 21 days, cell pellets were fixed with 4% [w/v] 

PFA, washed with PBS and incubated at 4°C for 12 h in 30% [w/v] sucrose solution. 

Next, pellets were suspended in Cryomatrix embedding resin (Thermo-Fisher 

Scientific) and flash-frozen on dry ice. Finally, pellets were sectioned using a 

cryotome (7 µm thickness) and stained with 0.1% [w/v] Safranin-O solution (Sigma-

Aldrich) for 5 min. Slides were washed in distilled water and allowed to dry before 

imaging using a Leica DM2500 inverted microscope equipped with a Leica 

DFC420C camera.                         

 

2.14 Clonogenic assays 

 HUES7 cells were dissociated with Accutase to generate a single cell 

suspension and seeded at a density of 2.5 × 103/cm2 on non-TCT plastic precoated 

with fibronectin or ZTFn at 10 µg/mL, or control Matrigel as previously described 

(sections 2.6.4 and 2.7.2). Cells were cultured for 4 days under standard conditions 

to allow colonies to form. Next, cells were fixed with 4% [w/v] PFA and stained 

with 0.1% [w/v] crystal violet. The number of colonies per well and area of the 
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surface covered were calculated using ImageJ. All conditions were run in quadruplet. 

Clonogenic assays were carried out by Masoumeh Mousavinejad (University of 

Liverpool).   

 

2.15 Human embryonic stem cell self-renewal  

 HUES7 cells cultured on Matrigel were detached using the clump passaging 

procedure (section 2.7.2) and seeded onto non-TCT plates (Gibco) precoated with 

fibronectin or ZTFn solutions at 10 µg/mL as previously described (section 2.6.4). 

Once confluent, cells were passaged onto fresh substrates using the same method. 

Cells were fixed with 4% [w/v] PFA after five and ten passages for analysis by 

immunofluorescence (section 2.18.3) or were lysed in TRI Reagent after one and 

five passages for gene expression analysis (section 2.20).  

 

2.16 Embryoid body formation  

 For embryoid body (EB) formation, HUES7 cells grown on fibronectin or 

ZTFn-III for thirteen passages were dissociated with Accutase to generate a single cell 

suspension. Cultures maintained on Matrigel were used as a control. Cells were 

resuspended in STEMdiff™ APEL™ Medium (Stem Cell Technologies) and plated 

at 3 × 103 cells/well in 96-well round bottom Nunclon™ Sphera™ Microplates 

(Thermo Scientific). To promote aggregation, plates were centrifuged at 140g for 2 

min and incubated at 37°C with 5% CO2 to allow EBs to develop.  

 

2.17 Pluripotency assays  

EBs were harvested after 7-10 days of development and transferred to plastic 

8-well µ-Slides (ibidi) precoated with Matrigel. The EBs were allowed to attach and 
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spread in neutral STEMdiff™ APEL™ Medium. EBs were fixed after 7-10 days of 

attachment using 4% [w/v] PFA and stained for germ layer markers (section 2.18.3).    

 

2.18 Immunocytochemistry 

For analysis by immunofluorescence, cells were washed twice with PBS, 

fixed with 4% [w/v] PFA for 10 min, permeabilised with 0.1% [v/v] Triton X-100 

for a further 10 min and blocked with 1% [w/v] BSA for 30 min prior to the 

application of primary antibodies. All primary antibodies were incubated overnight 

at 4°C followed by secondary antibody application for 2 h at RT. All secondary 

antibodies were used at 1:1000 dilution. Observation of F-actin filaments used 

AlexaFluor488 or AlexaFluor594 Phalloidin (Invitrogen) and cell nuclei were 

counterstained with 4’,6-diamino-2-diamino-2-phenylindole, dilactate (DAPI; 

Invitrogen). 

 

2.18.1 Chondrogenic and osteogenic markers 

Primary antibodies for differentiation marker detection in mMSCs were as 

follows; rabbit anti-osteocalcin (1:200, sc-30045; Santa Cruz Biotechnology) and 

mouse anti-collagen type II (1:25, CIIC1; Hybridoma Bank, NIH). Secondary 

antibodies were chicken anti-rabbit AlexaFluor594 and goat anti-mouse 

AlexaFlour594 (Invitrogen).  

 

2.18.2 Focal adhesion markers and integrins   

Primary antibodies for focal adhesion and integrin staining of mMSCs and 

HUES7 cells were as follows; rabbit anti-paxillin (1:500, ab32084; Abcam), mouse 

anti-zyxin (1:500, ab58210; Abcam) rabbit anti-fibronectin (1:1000, ab299; Abcam), 
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rat anti-α5 integrin subunit (1:200, 5H10-27; BD Biosciences), rat anti-α5 integrin 

subunit (1:1000, MAB11; non-commercial), rat anti-αV integrin subunit (1:200, 

RMV-7; BD Biosciences), mouse anti-αV integrin subunit (1:200, L230; ATCC), 

hamster anti-β3 integrin subunit (1:200, 2C9.G2; BD Biosciences), mouse anti-αVβ3 

integrin (1:200, MAB1976; Merck Millipore), rabbit anti-β5 integrin subunit 

(1:1600,  3629; Cell Signaling Technology), rabbit anti-β1 integrin subunit (1:200, 

EP1041; ab52971 Abcam), mouse anti-β1 integrin subunit (1:200, MAB1987Z; 

Merck Millipore) and mouse anti-β1 integrin subunit (1:500, MAB1965; Merck 

Millipore). Secondary antibodies were goat anti-rabbit AlexaFluor594, goat anti-

mouse AlexaFluor594, chicken anti-rat AlexaFluor488, donkey anti-rat 

AlexaFluor568 (Invitrogen) and goat anti-hamster AlexaFluor647 (Jackson 

ImmunoResearch). All integrin antibodies were kind gifts of Dr. Mark Morgan 

(University of Liverpool).   

 

2.18.3 Pluripotency and germ layer markers 

Primary antibodies for pluripotency and germ layer marker detection in 

HUES7 cells were as follows; mouse anti-OCT3/4 (1:500, sc-5279; Santa Cruz 

Biotechnology), rabbit anti-NANOG (1:500, D73G4; Cell Signalling Technology), 

rabbit anti-GATA6 (1:500, sc-9055; Santa Cruz Biotechnology), rabbit anti-nestin 

(1:250, ab92391; Abcam) and goat anti-brachyury (1:500, sc-17743; Santa Cruz 

Biotechnology). Secondary antibodies were goat anti-mouse AlexaFluor594, donkey 

anti-goat AlexaFluor488 and chicken anti-rabbit AlexaFluor488/594 (Invitrogen).  

 

2.19 Confocal microscopy  

For confocal imaging, single cell suspensions of mMSCs or HUES7 cells 
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were seeded at a density of 3 × 104 cells/well in 8-well µ-Slides (ibidi) precoated 

with protein solutions (ZT nanofibres or fibronectin at 10 µg/mL, section 2.6.4) or 

Matrigel (section 2.7.2). Following application of antibodies, imaging was 

conducted on a 3i Spinning Disk confocal microscope with a Zeiss autofocus system 

and Hamamatsu camera. Multicolour fluorescence imaging used 405 nm, 488 nm, 

561 nm and 640 nm (50 mW) diode lasers (100 ms exposure time) and 20× air or 

40× and 63× oil objectives. Z-stacks were acquired using a step size of 0.34 µm and 

projections were generated in ImageJ.  

 

2.20 Real time-qPCR 

 

2.20.1 RNA extraction and cDNA synthesis  

 For RNA extraction, medium was removed and cells immediately lysed with 

TRI Reagent (Sigma-Aldrich). RNA was isolated by chloroform extraction (1:5 [v/v] 

chloroform followed by shaking for 15 s and centrifugation at 12,000g for 15 min at 

4°C). The upper aqueous phase was separated and RNA precipitated by the addition 

of 1:1 [v/v] isopropanol and overnight incubation at -20°C to increase yield. RNA 

was pelleted by centrifugation at 12,000g for 10 min at 4°C and washed with 75% 

[v/v] ethanol. The ethanol was removed and the pellets were air-dried before 

dissolving in nuclease-free water. RNA concentration was measured using a 

NanoDrop 2000 spectrophotometer (Thermo Scientific) and 2 µg of RNA from each 

sample was used for cDNA synthesis; RNA was incubated with 1 µL of RQ1 DNase 

(Promega) at 37°C for 30 min and the reaction was stopped by the addition of 1 µL 

of Stop Solution (Promega) and incubation at 60°C for 15 min. One µg of DNase-

treated RNA was reverse transcribed by the addition of 100 ng random hexamers 
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(Qiagen), 500 µM dNTPs (Invitrogen) and 200 U SuperScript III Reverse 

Transcriptase (Invitrogen) using the following incubation steps; 5 min at 25°C, 60 

min at 50°C and 15 min at 70°C.  

 

2.20.2 Gene expression analysis 

Template cDNA was diluted 1:25 with nuclease-free water for RT-qPCR 

experiments. Reaction mixtures were as follows; 1 µL cDNA, 500 nM 

forward/reverse primers (1 µL of a 10 µM stock), 10 µL 2X SYBR Green JumpStart 

Taq ReadyMix (Sigma-Aldrich) and nuclease-free water to a final volume of 20 µL. 

RT-qPCR was conducted on a CFX Connect Real-Time PCR Detection System 

(Bio-Rad) using the following cycling parameters; initial denaturation and enzyme 

activation at 95°C for 3 min followed by 40 3-step PCR cycles of 95°C for 10 s, 

58°C (mouse gene targets) or 65°C (human gene targets) for 15 s and 72°C for 30 s. 

Melt curve analysis was performed post-amplification; 0.5°C temperature 

increments from 65°C - 95°C. Details of the primer pairs (synthesised by Sigma-

Aldrich) used for RT-qPCR analysis of mouse and human cDNA are given in Tables 

6 and 7, respectively. DNase-treated RNA and no template control reactions were 

run for all samples and primer pairs, respectively, to confirm the absence of 

contaminants. Individual samples were run in triplicate and the mean cycle threshold 

(Ct) value was used for gene expression analysis. Data was analysed using CFX-

Manager 3.1 software (Bio-Rad) and verified in Excel (Microsoft). For mMSCs, 

gene expression was normalised using β-actin as the reference gene. For HUES7 

cells, gene expression was normalised using the geometric mean Ct values for 

reference genes GAPDH and HPRT1. Relative expression levels of target genes 

between control and experimental samples were calculated using the 2-ΔΔCt method 
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(Livak and Schmittgen, 2001).  

Table 6. Primers for RT-qPCR analysis of mouse mesenchymal stem cells  
 

Gene Denomination Direction Primer sequence (5’ – 3’) 
Size 

(bp) 

Actb β-actin 

Forward 
CGTTGACATCCGTAAAG

ACC 

154 

Reverse 
CAGGAGGAGCAATGATC

TTGA 

Bglap Osteocalcin 
Forward GACCATCTTTCTGCTCA

CTC 
128 

Reverse 
TCACTACCTTATTGCCCT

CC 

Col2a1 Collagen type II 
Forward CTGACCTGACCTGATGA

TACC 
170 

Reverse CACCAGATAGTTCCTGT
CTCC 

Sox9 Sox9 
Forward TACGACTGGACGCTGGT

GCC 
305 

Reverse CCGTTCTTCACCGACTT
CCTCC 
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Table 7. Primers for RT-qPCR analysis of human embryonic stem cells  
 

Gene Denomination Direction  
Primer sequence 

(5’ – 3’) 

Size 

(bp) 

GAPDH 
Glyceraldehyde 3-

phosphate 
dehydrogenase 

Forward GTGGAAGGACTCA
TGACCA 

119 
Reverse GAGGCAGGGATG

ATGTTCT 

HPRT1 
Hypoxanthine 

phosphoribosyltra-
nsferase 1 

Forward GCAGCCCTGGCG
TCGTGATTAG 

143 
Reverse TCGAGCAAGACGT

TCAGTCCTGTCC 

NANOG Nanog homeobox 
Forward TCCAACATCCTGA

ACCTCAGC 
125 

Reverse GAGGCCTTCTGC
GTCACA 

OCT4 
Octamer-binding 

transcription factor 
4 

Forward ATGTGGTCCGAGT
GTGGTTC 

67 
Reverse 

TGTGCATAGTCGC
TGCTTGA 

SOX2 
SRY (sex 

determining region 
Y)-box 2 

Forward TCAGGAGTTGTCA
AGGCAGAG 60 

Reverse GGCAGCAAACTAC
TTTCCCC 

 
 

2.21 Statistics 

 For statistical evaluation, independent experiments were conducted a 

minimum of 3 times. Standard error of the mean (SEM), standard deviation (SD), 

coefficient of variation (CV) and skewness were calculated using Excel. Statistically 

significant differences between two groups were determined by Student’s t-test using 

Minitab 17 software (www.minitab.com).  A difference between samples was 

considered significant when p < 0.05 (*), highly significant when p < 0.01 (**) and 

very highly significant when p < 0.001 (***). 
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Chapter 3  

Generation of fibronectin chimeras 

 

3.1 Introduction  

 

3.1.1 Fibronectin and RGD motifs  

The ECM is a conglomerate of molecules that acts as both a supportive 

scaffold and biochemical coordinator of fundamental cellular events including 

proliferation, polarisation, adhesion, movement and differentiation. A major 

component of the ECM is fibronectin, a dimeric glycoprotein that assembles into 

fibrils following interaction with cell surface integrins. Each fibronectin monomer is 

composed principally of homologous type I, II and III domains organised in modular 

repeats to form an elongated filament (Figure 7a) (Hynes and Yamada, 1982). 

Fibronectin interacts cooperatively with multiple ECM components including 

collages, fibrin, heparin and HS to initiate cellular responses (Xu and Mosher, 2011). 

However, the most well documented function of fibronectin is its role in integrin-

mediated cell adhesion. The major integrin interaction site is the Arg-Gly-Asp 

(RGD) motif located within the tenth type III domain (FnIII 10) (Main et al., 1992). 

The RGD motif is also found in other ECM proteins including vitronectin, collagens, 

fibrinogen and thrombospondin (Ruoslahti, 1996). In fibronectin, the RGD motif 

acts concomitantly with the synergistic Pro-His-Ser-Arg-Asn (PHSRN) motif in the 

ninth Type III domain (FnIII 9) to interact with integrins αVβ1, αVβ3, αVβ6, α8β1, 

α5β1 and αIIbβ3 (Figure 7a) (Mao and Schwarzbauer, 2005; Humphries et al., 2006) 

(see section 6.1.2 for detailed discussion on integrin-mediated cell adhesion). The 
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RGD motif is positioned at the apex of a solvent exposed loop between β-strands F 

and G (Figure 7b).  

 

 

Figure 7. The modular arrangement of fibronectin and structures of integrin-

binding domains.  (a) Schematic representation of a fibronectin dimer formed by 
the joining of two monomers via two disulphide bridges at the C-terminus. Each 
monomer is composed of 12 type I (squares), 2 type II (circles) and 15 type III 
(hexagons) domains. The ninth and tenth type III domains containing the synergy 
site and RGD motif are highlighted and integrins known to interact with this region 
are specified. Also shown is the type III connecting segment III (rectangle) along 
with known integrin receptors. Domains containing cryptic binding sites are 
indicated (triangles). Schematic adapted in part from Aziz-Seible and Casey, 
(2011). (b) Crystal structure of the ninth (yellow) and tenth (green) type III domains 
harbouring the synergistic PHSRN and integrin-binding RGD motifs, respectively 
(PDB: 1FNF, Leahy et al., 1996). Domains are coloured to match the schematic. 
Residues encompassing the motifs are shown as main chain sticks with side chain 
lines (orange).  
 
 

Observations of FnIII 10 at atomic resolution have revealed that the FG loop 

adopts a β-hairpin-like conformation with a distorted morphology, and studies 

suggest that the specific residue stoichiometries adopted in this environment are 
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critical for RGD function (Hautanen et al., 1989; Main et al., 1992; Ruoslahti, 

1996). In native fibronectin the synergy site is approximately 35 Å from the RGD 

motif, an arrangement that is essential for the binding of several integrins including 

α5β1 (Aota et al., 1991; Mardon and Grant, 1994). However, fibronectin 

deformation upon cellular and/or ECM interaction can decouple PHSRN and RGD 

to a point beyond cooperative integrin engagement, although some integrins can still 

bind to the RGD motif independent of the synergy site such as αVβ3 (Krammer et 

al., 2002; Zollinger and Smith, 2016). The discovery of RGD-mediated integrin 

engagement has inspired the development of biomaterials that incorporate the motif 

to promote cell attachment (Hersel et al., 2003; Macneil et al., 2008).  

 

3.1.2 Protein engineering for molecular recognition  

 For decades, protein domains that can display exogenous peptidic sequences 

for molecular recognition have been harnessed for biotechnological and medicinal 

applications (Skerra, 2000). Such proteins have been termed “scaffolds” to 

generalise a myriad of domain architectures with a common feature; the presence of 

non-contiguous loops that are not integral to stability of the tertiary structure of the 

domain and can thus tolerate diversity in sequence length and composition. The 

archetypal protein scaffolds found in nature are antibodies, of which the (V)-type Ig 

domains are able to bind innumerable antigens through a process of random 

recombination and consequent diversification of three hypervariable loops (Sela-

Culang et al., 2013). Strictly speaking, molecular recognition can be achieved by 

random or rational diversification. In the case of the former, randomised libraries are 

generated by combinatorial substitution of residues at target sites and the generated 

mutants are screened for desired binding specificities. Rational diversification 
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involves the incorporation of specific polypeptide sequences with defined bioactivity 

onto the scaffold fold using molecular biology techniques. Characteristic scaffold 

proteins include Ig domains, Fn domains, affibodies, PDZ domains, lipocalins, 

knottins and ankryin repeat domains (Skerra, 2000; Hosse et al., 2006). Although 

conformational stability is intrinsic to archetypal protein scaffolds, local changes in 

residue composition may cause domain instability and lead to misfolding or 

aggregation. Therefore, sites targeted for diversification must first be carefully 

assessed for their tolerance to modification (Bruning et al., 2012).  

 

3.1.3 Genetic incorporation of integrin binding motifs in scaffolds  

 Many studies have utilised integrin binding peptides to functionalise 

biomaterials for tissue engineering applications (Macneil et al., 2008). Synthetic 

peptides, such as RGD, are often incorporated in linear conformations (Hersel et al., 

2003; Widhe et al., 2013). However, cell adhesion to the linear fibronectin 

peptidomimetic GRGDSP has been shown to be ~1000-fold less efficient than native 

fibronectin (Hautanen et al., 1989), possibly because the structurally-restrained 

conformation of the loop and its distorted morphology are required for robust 

integrin binding (Hautanen et al., 1989; Leahy et al., 1996; Ruoslahti, 1996). 

Therefore, grafting of RGD tripeptides in scaffold domains or self-assembling 

protein systems may be advantageous in mimicking the native environment of the 

motif, leading to increased binding affinity or specific integrin targeting. To this end, 

domains with and without scaffolding properties have been functionalised by RGD 

motif insertion at the genetic level. For example, RGD motifs have been grafted in 

recombinant silk fibroin from Bombyx mori (Yang et al., 2008; Asakura et al., 

2011), Agouti-related protein of the cysteine-knot family (Silverman et al., 2009) 
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and even lysozyme (Yamada et al., 1995). In the case of RGD-grafted lysozyme, the 

potentially synergistic effect of lysozyme-heparin interaction (Boschetti et al., 1981) 

on cell adhesion was not explored, although native lysozyme was not found to 

support cell attachment. Others have taken an alternative approach to rationalised 

mutation by fusing regions of fibronectin to other proteins with distinctive 

properties, thus generating fibronectin chimeras. The fusion of fibronectin type III 

domains 9-14 with osteocalcin resulted in enhanced adhesion and osteogenic 

differentiation of a pre-osteoblastic cell line (Yun et al., 2013). Roy et al. (2011) 

have explored the generation of ECM mimetics by fusing key functional domains 

from fibronectin to imitate the effects of the full length protein on cell adhesion. 

Domains responsible for heparin and integrin binding were combined to produce 

bacterially-expressed chimeras with cell adhesive properties comparable to native 

fibronectin. 

 

3.1.4 Aims  

 In this chapter, the functionalisation potential of the ZT nanofibre system is 

assessed by modification of Tel terminal regions, CD-loop diversification and 

domain fusion to impart cell-adhesive properties. For this, a fibronectin-inspired 

RGD motif was genetically incorporated at the C-terminus of Tel, or grafted in the 

Z1 CD-loop of Z1212. These sites were selected because they had previously been 

shown to support functionalisation (Bruning et al., 2010, Bruning et al., 2012). The 

RGD motif was chosen due to its proven track record in biomaterial 

functionalisation and applicability to in vitro testing. The resulting chimeras were 

recombinantly expressed and characterised. Additionally, FnIII 10 from human 

fibronectin, which contains the native RGD motif, was fused with Z1212 to explore 
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the exciting prospect of whole domain exhibition in a self-assembling system.  

 

3.2 Results 

 

3.2.1 Generation and Expression of Tel variants 

 Tel acts as a molecular crosslinker to join two Z1Z2 molecules (or two Z1212 

molecules to form ZT nanofibres) and the majority of its surface is buried within the 

protein-protein interfaces (Figure 3b). However, the N- and C-termini protrude 

outwards from the complex and are free from interaction, thus permitting the 

exhibition of peptidomimetics in linear conformations. As standard, wt Tel was 

expressed in the pETM-11 vector that incorporates an N-terminal His6 tag and TEV 

protease cleavage site, thereby increasing the length of the N-terminus by 26 amino 

acids. In an attempt to assess the functionalisation potential of the N- and C-termini 

of Tel in an unbiased manner, the first generation of variants were expressed in the 

pETM-13 vector with an engineered His6 tag flanking the inserted peptide. For 

functionalisation, a dual RGD motif (RGDSGRGD) or control RGE motif 

(RGESGRGE) was grafted at the N- (TelN-RGD13 and TelN-RGE13) or C-terminus 

(TelC-RGD13 and TelC-RGE13) of Tel (Figure 8a). The resulting constructs were 

overexpressed in E. coli and whole cell lysates were subjected to SDS-PAGE 

analysis to observe protein yield (Figure 8b). A marked drop in yield was observed 

for all variants compared to wt Tel. Since yield was reduced in the pETM-13 vector 

following modification of protein termini, a second generation of Tel variants were 

created in the pETM-11 vector.      
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Figure 8. Tel functionalisation and expression in the pETM-13 vector. (a) The 
crystal structures of the N- (left) and C-termini (right) of Tel in the Z1Z2-Tel complex 
(PDB: 1YA5) are shown (red) and grafted amino acid sequences of the 
corresponding Tel variants in the pETM-13 vector are given below. (b) SDS-PAGE 
gel showing Tel expression pre- and post-induction of recombinant protein 
synthesis. The position of Tel is indicated.  
 
 

Accordingly, a GRGDS motif was grafted at the C-terminus of Tel in pETM-

11 (TelC-RGD11) and a second variant with an inactive GRGES motif (TelC-RGE11) 

was produced as a control (Figure 9a). To best mimic the motif of fibronectin, 

natural flanking residues glycine and serine were incorporated alongside the RGD 

tripeptide. Following overexpression of TelC-RGD11 and TelC-RGE11, whole bacterial 

lysate was subjected to SDS-PAGE analysis to observe yield. The quantity of TelC-
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RGD11 and TelC-RGE11 was noticeably lower than that of wt Tel and an unknown 

species of approximately 20 kDa was observed in both preparations (Figure 9b). Due 

to its disordered nature in the absence of a binding partner, heterologously-expressed 

recombinant Tel is sequestered in insoluble inclusion bodies, which necessitates the 

use of a strong denaturing buffer for solubilisation and subsequent isolation (Zou et 

al., 2003). Therefore, bacterial cell pellets corresponding to wt Tel and variants were 

lysed in the presence of 8 M urea and purified by immobilised metal affinity 

chromatography (IMAC) using a nickel column. Applying this method, wt Tel could 

be purified to a high level of homogeneity without the need for further 

chromatographic techniques. However, the unknown 20 kDa species present in TelC-

RGD11 and TelC-RGE11 preparations was co-eluted with the samples and became more 

enriched with increasing imidazole concentration, suggesting that it has a greater 

affinity for the nickel column than the His6-tagged Tel variants (Figure 9c).  Due to 

the relatively poor yields of terminally-modified Tel variants and presence of an 

unknown species in TelC-RGD11 and TelC-RGE11 preparations, priority was given to 

the generation of other RGD-functionalised constructs.  
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Figure 9. Tel functionalisation and expression in the pETM-11 vector. (a) The 
crystal structure of the Tel C-terminus in the Z1Z2-Tel complex (PDB: 1YA5) is 
shown in the schematic (red) and amino acid sequences grafted at the C-termini of 
Tel variants in the pETM-11 vector are shown below. (b) SDS-PAGE gel showing 
Tel expression post-induction of recombinant protein synthesis. The position of Tel 
is indicated and an unknown species present in the lysate corresponding to TelC-

RGD11 and TelC-RGE11 is marked by an asterisk (*). A molecular mass marker (M) in 
kDa is shown to the left. (c) Samples of TelRGD and TelRGE at high imidazole 
concentration following purification by immobilised metal affinity chromatography.  
 
3.2.2 Generation and characterisation of CD-loop-grafted variants 

3.2.2.1 Design of protein constructs 

The integrin-binding RGD motif with flanking residues from fibronectin was 

inserted in the CD-loop of the second Z1 domain within Z1212 (Z1212
RGD), thereby 

permitting the assessment of the functionalisation potential of this site in the context 

of ZT nanofibres. In Z1212
RGD, four naturally occurring residues were substituted and 

three non-native residues were inserted at the genetic level. Specifically, the amino 

acid sequence SGRGDSS was grafted, where the two residues flanking the RGD 

motif replaced native Z1 residues. An inactive RGE motif was also grafted (Z1212
RGE) 

to act as a control (Figure 10). To best mimic the RGD motif of fibronectin, natural 
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flanking residues glycine and serine were included alongside non-native serine 

residues to extend the loop and increase flexibility. 

 

Figure 10. Z1 domain functionalisation by CD-loop diversification. Crystal 
structure of the titin Z1 Ig domain (PDB: 2A38, Marino et al., 2006) with secondary 
structural elements labelled. The side chains of residues comprising the native CD-
loop are shown as sticks (red). The amino acid sequences of the CD-loop in wt Z1212 
and grafted mutants Z1212

RGD and Z1212
RGE are show below with non-native residues 

highlighted (red).  
 

3.2.2.2 Purification and characterisation of the Z1Z2RGD-Tel complex 

 To confirm that insertion of the RGD motif in the Z1 domain did not 

negatively affect the ability of the Z1Z2 doublet to interact with Tel, a construct 

comprising Z1Z2 with an RGD-modified CD-loop (Z1Z2RGD) was constructed and 

co-expressed with Tel to allow for in vivo complexation. The expression system was 

designed to include a His6-tagged Tel and untagged Z1Z2RGD, meaning that only 

Tel-bound Z1Z2RGD (Z1Z2RGD-Tel) would co-elute when subjected to nickel affinity 

chromatography. Thus, purification of the Z1Z2RGD-Tel complex was achieved by 

IMAC, followed by His6 tag removal using targeted proteolysis and subsequent 

reverse affinity chromatography. Final purification was by size-exclusion (SEC) and 
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anion-exchange (AEC) chromatography. The complex eluted as multiple species by 

SEC (Figure 11a) and both Z1Z2RGD and Tel were present in the main peak (Figure 

11b). Although the presence of Z1Z2RGD-Tel in an intermediate peak suggests that a 

higher oligomeric state was formed, the same elution profile was observed for wt 

Z1Z2-Tel (data not shown). It should be noted that higher MM species were 

consistently observed by SDS-PAGE for Z1Z2-Tel complexes (Figure 11b,d). It is 

most likely that these species represent complexes that were not denatured by boiling 

prior to sample loading. Importantly, the recombinant complex was not present in 

the column void, confirming the absence of aggregation. Fractions from the main 

peak (Ve = 85.45 mL) were further purified by AEC (Figure 11c,d) prior to 

additional analysis.  
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Figure 11. Purification of the Z1Z2
RGD

-Tel complex. (a) Size-exclusion 
chromatogram from a Superdex 200 16/60 column. The void (Vo) and exclusion (Ve) 
volumes are indicated on the graph and the inset SDS-PAGE gel (b) shows 
fractions taken from individual peaks (numbers) and the boxed area (red). (c) Anion-
exchange chromatogram from a MonoQ 5/50 GL column with inset SDS-PAGE gel 
(d) of fractions from the boxed area (red) of the peak. A molecular mass marker (M) 
in kDa is shown on each gel and individual protein components of the complex are 
indicated.  
 

To ensure that the complex of Z1Z2RGD-Tel reproduced that of wt Z1Z2-Tel, 

both samples were compared using analytical SEC (Figure 12a). The elution 

chromatograms of both samples were in exact agreement, reproducibly eluting at the 

same volume of exclusion (Ve = 14.42 mL). To further confirm that the Z1Z2RGD-Tel 

complex assembled in the expected 2:1 ratio, this sample was studied analytically 

using SEC coupled to multi-angle laser light scattering (SEC-MALLS). SEC-

MALLS is a technique for determination of absolute protein molecular mass (MM) 

independent of shape. The experimentally measured MM of Z1Z2RGD-Tel was 53.3 

± 0.7 kDa, in good agreement with a complex comprising one Tel and two Z1Z2RGD 
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subunits (respective MM of 13.43 and 21.12 kDa as calculated from the sequence 

data) (Figure 12b).  

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Characterisation of the Z1Z2
RGD

-Tel complex. (a) Size-exclusion 
chromatogram overlays of Z1Z2-Tel (black trace) and Z1Z2RGD-Tel (red trace) 
complexes on a Superdex 200 10/300 column. The exclusion volumes (Ve) are 
indicated. (b) SEC-MALLS analysis of Z1Z2RGD-Tel complex. Normalised refractive 
index (black trace) is plotted against retention volume. The experimentally 
determined molecular mass (MMexp) of the eluting material, calculated from the 
refractive index and light scattering measurements, is plotted as a red line. Values 
for both experimental and calculated (MMcalc) molecular masses are given above.  
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3.2.2.3 Purification and characterisation of Z1212
RGD and Z1212

RGE 

After concluding that insertion of the RGD motif in the CD-loop of Z1 did 

not interfere with Tel association, CD-loop-grafted Z1212 tandem chimeras were 

investigated for structural stability and polymerisation capacity. Both Z1212
RGD and 

Z1212
RGE proved unchallenging to produce in E. coli and expressed at yields 

comparable to wt Z1212 (approximately 40 and 30 mg pure protein per litre of 

bacterial culture, respectively). Z1212
RGD eluted as a single peak by SEC (Figure 

13a,b) and could be further purified to a high level of homogeneity by AEC (Figure 

13c,d).  

 
 

Figure 13. Purification of Z1212
RGD

. (a) Size-exclusion chromatogram from a 
Superdex 200 16/60 column. The void (Vo) and exclusion (Ve) volumes are indicated 
on the graph and the inset SDS-PAGE gel (b) shows fractions taken from the boxed 
area (red) of the peak. (c) Anion-exchange chromatogram from a MonoQ 5/50 GL 
column with inset SDS-PAGE gel (d) of fractions taken from individual peaks 
(numbers) or the boxed area (red). A molecular mass marker (M) in kDa is shown 
on each gel 
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Analytical SEC was used to assess the oligomeric state of Z1212
RGD and 

Z1212
RGE. Both proteins gave identical elution profiles to wt Z1212, confirming the 

absence of undesirable homophilic interactions in these variants (Figure 14). 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 14. Z1212
RGD

 and Z1212
RGE

 characterisation. Size-exclusion chromatogram 
overlays of Z1212 (black trace), Z1212

RGD (red trace) and Z1212
RGE (blue trace) on a 

Superdex 200 10/300 column. The exclusion volumes (Ve) are indicated.  
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3.2.2.4 Small-angle X-ray scattering analysis of Z1212 and Z1212
RGD  

Further insight into the molecular properties of Z1212
RGD was gained through 

small-angle X-ray scattering (SAXS) experiments. SAXS is a solution technique that 

can characterise the shape and conformation of macromolecules (Putnam et al., 

2007). SAXS data were collected at a concentration range of approximately 3.5 – 15 

mg/mL for Z1212 and Z1212
RGD to derive experimental scattering profiles (Figure 

15a,b). All SAXS data was collected by Dr. Barbara Franke (Universität Konstanz) 

at beamline P12 of the PETRA III Synchrotron Source (EMBL/DESY, Hamburg, 

Germany). The scattering data shows that both Z1212 and Z1212
RGD are monodisperse 

at the highest concentration tested and did not demonstrate a propensity to aggregate. 

Radius of gyration (Rg) values obtained by Guinier approximation were almost 

identical (Rg = 45.6 ± 0.2 Å and 45.4 ± 0.2 Å for Z1212 and Z1212
RGD, respectively), 

suggesting that both samples have a similar conformation in solution. Pair-distance 

distribution functions calculated from the scattering profiles of Z1212 and Z1212
RGD 

(Figure 15c,d) yielded a maximum particle size (Dmax) of 180 Å. This value is in 

good agreement with the hypothetical size of a four Ig protein given that domains are 

approximately 44 Å in length (Marino et al., 2005). The Dmax also indicates that 

domains attain an extended conformation along the the axial length of the construct. 

Taken together, analogous Rg and Dmax values for Z1212 and Z1212
RGD suggests that 

these proteins have near identical global conformations in solution.  
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Figure 15. SAXS analysis of Z1212 and Z1212
RGD

. Experimental scattering profiles of 
Z1212 (a) and Z1212

RGD (b) are displayed as dots with error bars. The log scattering 
intensity (I) is plotted against scattering momentum (S). Rg values obtained by 
Guinier approximation are stated on the graphs. Pair-distance distribution functions, 
p(r), of Z1212 (c) and Z1212

RGD (d) were calculated from the experimental scattering 
curves using the program GNOM. 
 

3.2.2.5 Polymerisation capacity of CD-loop-grafted variants  

 In the presence of Tel, Z1212
RGD and Z1212

RGE were shown to assemble at 

levels comparable to wt Z1212, as observed by native PAGE analysis (Figure 16a). 

Z1212 and variants were observed to generate streaks on native PAGE gels, which 

suggested that a concentration-dependent aggregation of the proteins was occurring. 

Although the monodisperse nature of Z1212 and Z1212
RGD at 15 mg/mL was confirmed 

by SAXS, considerably higher concentrations may be attained at the stacking and 

resolving gel interfaces, thus resulting in aggregation. The highly resolved 

unpolymerised Z1212 from the assembly mixtures was supportive of this hypothesis, 
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since protein concentration was lower. Assemblies derived from Z1212
RGD (ZTRGD) 

and Z1212
RGE (ZTRGE) showed near identical electrophoretic mobility profiles with 

supramolecular species in the upper portion of the gel. An unidentified band was 

observed in lanes corresponding to ZT assemblies that ran further on the gel than 

unpolymerised Z1212. It was hypothesised that this band represented a “blunt” by-

product of the assembly process formed by the interaction of Z1212 with a single Tel 

molecule (Figure 16b). Following seven days of polymerisation, two distinct phases 

were observable in the assembly mixtures; a clear upper layer and a turbid lower 

layer comprising insoluble material (Figure 16c).  

 

	
 

Figure 16. Z1212 CD-loop mutant polymerisation capacities. (a) Native PAGE of 
individual tandem proteins and their corresponding assemblies in the presence of 
Tel (samples at 5 mg/mL) 24 hours post-mixing. Hypothetical “blunt” products are 
marked with asterisks (*). (b) Schematic representation of a non-propagative Z1212-
Tel interaction. (c) Nanofibre solution at 10 mg/mL in a 1.5 mL Eppendorf tube 7 
days post-mixing at a 3:1 molar ratio of Tel to Z1212. Scale bar = 0.5 mm.   
  
 
3.2.2.6 Transmission electron microscopy  

During the original design and fabrication of the ZT system, nanofibres were 

visualised by transmission electron microscopy (TEM) using a negative staining 

method developed by Bruning et al. (2010) and carried out at the Biozentrum of the 

University of Basel, Switzerland. During the course of the current project, attempts 
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to image both unmodified and functionalised ZT nanofibres proved challenging and 

difficult to reproduce. To observe macromolecules by TEM, the sample must first be 

deposited onto a copper grid cast with a fine meshwork that has been coated with a 

support film. The nature of this support film varies depending on sample type and 

application, but is most often made from plastic (pioloform or formvar films that are 

stabilised with evaporated carbon) or pure carbon when working with protein-based 

samples. Furthermore, the surface chemistry of the support film can be modified to 

promote the adsorption of samples. Carbon support films are generally hydrophobic 

and must be glow discharged to make the surface hydrophilic and, thus, more 

accessible to the suspended sample. As described in Chapter 2 (section 2.6.2.1), both 

carbon-stabilised pioloform and pure carbon support films, with or without glow 

discharging, were tested in an attempt to consistently observe ZT nanofibres by 

TEM. However, samples were only visualised successfully when loaded on glow 

discharged pure carbon support films (manufactured in-house at the University of 

Sheffield) using the protocol established by Bruning et al. (2010). Visualisation of 

ZTRGD and ZTRGE by TEM confirmed the presence of nanofibres, with comparable 

distributions of curly and tapelike morphologies to wt ZT (Figure 17). Despite these 

promising observations, more thorough quantification of nanofibre morphology was 

not possible, since subsequent preparations of wt ZT, ZTRGD and ZTRGE were not 

observed when loaded onto grids using the same protocol.   
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Figure 17. Nanofibre morphology when assembled from Z1 CD-loop mutants. Representative transmission electron micrographs of 
negatively stained wt ZT, ZTRGD and ZTRGE nanofibres. Tapelike (white arrows) and curly (black arrows) morphologies are highlighted. 
Nanofibres (day 7 post-assembly) were loaded onto grids at a concentration of 1 mg/mL and imaged using a FEI 120 kV Tecnai G2 Spirit 
BioTWIN electron microscope operating at 100 kV. Scale bars = 200 nm. 
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3.2.3 Generation and characterisation of the fibronectin fusion chimera 

 

3.2.3.1 Protein construct design 

  The FnIII 10 domain from human fibronectin, containing the RGD motif in 

situ, was fused to the C-terminus of Z1212 by genetic engineering.  Specifically, a 

GETTQ linker sequence was introduced between the C-terminal glutamine of Z1212 

and the N-terminal serine of FnIII 10 to create a five-domain chimera termed Z1212
Fn 

(Figure 18a). Computational modelling of the GETTQ linker in the context of Z1212 

predicted that interdomain flexibility is permitted (Bruning et al., 2010), thus the 

linker was reused to permit movement of the FnIII domain for non-restricted 

interaction with receptors on the cell surface. It was hypothesised that the addition of 

FnIII 10 would not inhibit nanofibre polymerisation due to its positioning at the C-

terminus of Z1212, but would permit the periodic display of the RGD motif in both 

longitudinal (Figure 18b) and parallel (Figure 18c) assembly modes.  
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Figure 18. Z1212 functionalisation by domain fusion. (a) Schematic 
representation of the Z1212 tandem fused C-terminally to the FnIII 10 domain of 
human fibronectin (PDB: 1FNF, green) via the same GETTQ linker used to join the 
Z1Z2 pairs. The integrin binding RGD motif, as observed in the crystal structure, is 
highlighted (red). Z1 and Z2 domains are of approximately the same size as the 
fused FnIII domain; the domains are not shown to scale in the image for visual 
simplicity. The hypothesised self-assembly modes of Z1212

Fn
 and Tel into fibrous 

scaffolds along a “longitudinal” (b) or “parallel” (c) propagation path are portrayed to 
show the putative positioning of the FnIII domains (green spheres) in each 
assembly mode. 
 
 

3.2.3.2 Purification and characterisation of the Z1Z2Fn-Tel complex 

The effect of FnIII 10 fusion on Tel interaction was investigated using the 

same rational as CD-loop variants; an untagged construct comprising Z1Z2 fused to 

FnIII 10 (Z1Z2Fn) was co-expressed with His6-tagged Tel in bacteria to allow for 

complexation and co-purification. Recombinant proteins were purified by IMAC as 

previously described (section 3.2.2.2) and applied to a size-exclusion column. The 

complex eluted as multiple peaks by SEC (Figure 19a) and both Z1Z2Fn and Tel 

were present in the main peak (Figure 19b). As with wt Z1Z2-Tel, a small proportion 
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of Z1Z2Fn-Tel appears to adopt a higher oligomeric state, but is not prone to 

aggregation. Fractions from the main peak (Ve = 78.60 mL) were purified by AEC 

(Figure 19c,d) prior to additional analysis.  

 

Figure 19. Purification of the Z1Z2Fn-Tel complex. (a) Size-exclusion 
chromatogram from a Superdex 200 16/60 column. The void (Vo) and exclusion (Ve) 
volumes are indicated on the graph and the inset SDS-PAGE gel (b) shows 
fractions taken from individual peaks (numbers) and the boxed area (red). (c) Anion-
exchange chromatogram from a MonoQ 5/50 GL column with inset SDS-PAGE gel 
(d) of peak fractions from the boxed area (red). A molecular mass marker (M) in 
kDa is shown on each gel and individual protein components of the complex are 
indicated. 
 

Analytical SEC and SEC-MALLS were employed to investigate the 

stoichiometry of the Z1Z2Fn-Tel complex. As expected, Z1Z2Fn-Tel eluted as a 

larger species by analytical SEC compared to the wt Z1Z2-Tel complex and showed 

no indication of aggregation or oligomerisation (Figure 20a). SEC-MALLS 

measurements of Z1Z2Fn-Tel yielded an average MM of 72.2 ± 0.8 kDa, in good 
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agreement with the theoretical MM of a 2:1 association between Z1Z2Fn and Tel 

(31.41 and 13.43 kDa, respectively) (Figure 20b). 

 
Figure 20. Characterisation of the Z1Z2Fn-Tel complex. (a) Size-exclusion 
chromatogram overlays of Z1Z2-Tel (black trace) and Z1Z2Fn-Tel (orange trace) 
complexes on a Superdex 200 10/300 column. The exclusion volumes (Ve) are 
indicated and schematic representations of complexes are shown to the left or right 
of their corresponding peaks. (b) SEC-MALLS analysis of the Z1Z2Fn-Tel complex. 
Normalised refractive index (black line) is plotted against retention volume. The 
experimentally determined molecular mass (MMexp) of the eluting material, 
calculated from the refractive index and light scattering measurements, is plotted as 
a red line. Values for both experimental and calculated (MMcalc) molecular masses 
are given above. 
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3.2.3.3 Purification and characterisation of Z1212
Fn  

Overexpression of the five domain Z1212
Fn construct in E. coli was 

comparable in yield to wt Z1212 (approximately 40 mg pure protein per litre of 

bacterial culture) and the fusion protein was isolated from crude lysate by IMAC. 

Z1212
Fn eluted as a largely enriched species by SEC (Figure 21a,b) and was further 

purified by AEC (Figure 21c,d).  

 
 
Figure 21. Purification of Z1212

Fn. (a) Size-exclusion chromatogram from a 
Superdex 200 26/60 column. The void (Vo) and exclusion (Ve) volumes are 
indicated on the graph and the inset SDS-PAGE gel (b) shows samples taken from 
the boxed area (red) of the peak. (c) Anion-exchange chromatogram from a MonoQ 
5/50 GL column with inset SDS-PAGE gel (d) of peak fractions from the boxed area 
(red). A molecular mass marker (M) in kDa is shown on each gel.  
 

As Z1212
Fn contains an FnIII domain previously uncharted in the ZT nanofibre 

scheme, the effects of FnIII 10 fusion to Z1212 were investigated further. As 

predicted, Z1212
Fn eluted as a larger species compared to wt Z1212 (Figure 22a) and 

SEC-MALLS measurements confirmed the preservation of the monomeric nature of 
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Z1212 when fused to FnIII 10 (Figure 22b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. Characterisation of Z1212

Fn. (a) Size-exclusion chromatogram overlays 
of Z1212 (black trace) and Z1212

Fn (orange trace) on a Superdex 200 10/300 Tricorn 
column. The exclusion volume (Ve) of each protein is indicated. (b) SEC-MALLS 
analysis of Z1212

Fn. Normalised refractive index (black line) is plotted against 
retention volume. The experimentally determined molecular mass (MMexp) of the 
eluting material, calculated from the refractive index and light scattering 
measurements, is plotted as a red line. Values for both experimental and calculated 
(MMcalc) molecular masses are given above. 
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3.2.3.4 Polymerisation capacity of Z1212
Fn  

 Upon mixing, Z1212
Fn was found to interact propagatively with Tel to 

generate supramolecular assemblies observed by native PAGE (Figure 23a).  In this 

case, the electrophoretic mobility profile of assemblies generated from Z1212
Fn (ZTFn) 

was different from wt ZT and a band that may correspond to the “blunt” species was 

again present (Figure 23b). However, despite repeated attempts to characterise the 

assemblies by TEM, supramolecular structures were not observed on the grids, nor 

were proteinaceous deposits immediately evident from background staining. The 

latter would have been observed if ZTFn would have yielded amorphous assemblies 

instead of fibres. Although assembly was confirmed by native PAGE and the 

deposition of insoluble material post-mixing, the absence of an observation by TEM 

does not permit concluding on the assembly mode of this variant. Thus, it is unclear 

whether FnIII 10 occludes or allows both parallel and longitudinal assembly 

pathways.   

 
Figure 23. Polymerisation capacity of Z1212

Fn. Native PAGE gel of Z1212 and 
Z1212

Fn and their corresponding assemblies in the presence of Tel (samples at 5 
mg/mL) 24 hours post-mixing. Hypothetical “blunt” products are marked with 
asterisks (*). (b) Schematic representation of a non-propagative Z1212

Fn-Tel 
interaction.  
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3.3 Discussion  

 

 Many previous studies have utilised the scaffolding properties of (V)-type Ig 

domains to achieve molecular recognition, most notably antibody derivatives in the 

form of fragments, chimeric fusions or single domains (Holliger and Hudson, 2005). 

To the best of our knowledge, the results herein described are the first instance of 

non-native RGD motif exhibition in an (I)-type Ig fold. Also, the genetic encoding 

and display of FnIII 10 from fibronectin has not previously been explored in a self-

assembling system.  

The generation of Tel mutants displaying dual RGD motifs at the N- or C-

termini resulted in reduced protein yield. The reason for this is unclear, since the 

addition of small polypeptides is unlikely to imbue toxic characteristics on the 

proteins, nor dramatically increase demand on the translational machinery of host 

cells. It seemed most likely that changing from the pETM-11 to pETM-13 

expression vector was responsible for the decrease in protein yield. Therefore, a 

second generation of RGD-modified constructs were encoded in the pETM-11 

vector. However, the issue of decreased protein yield persisted and in this case the 

problem was confounded by the presence of an expression artefact. It is plausible 

that the unknown species was the product of inefficient termination of transcription, 

meaning that additional sequence was transcribed after the stop codon and 

subsequently translated into a His6-tagged recombinant protein of higher residue 

number and composition than intended. This problem may be resolvable by the 

incorporation of multiple stop codons at the 3’-end of constructs, resulting in 

accurate termination of transcription and increased yield of TelC-RGD11 and TelC-

RGE11. The reduced yield of constructs encoded in the pETM-13 vector may be due 
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to the chance incorporation of rare codons during mutagenesis, which can cause 

mRNA instability and inhibition of heterologous protein synthesis (Gustafsson et al., 

2004). Taken together, the issues encountered when modifying the N- and C-termini 

of Tel were surprising, since it was envisioned that these sites were the most likely to 

support ZT functionalisation due to their accessibility within the Z1Z2-Tel building 

block, and lack of contribution to protein-protein interfaces. Since other constructs 

were generated in parallel that showed greater promise, the insertion of additional 

stop codons or screening for rare codons from E. coli were not accomplished. 

However, the constructs that were successfully fabricated and expressed could be 

optimised for utilisation in future endeavours.    

Insertion of an exogenous RGD sequence in the Z1 CD-loop was well 

tolerated; Z1212
RGD was expressed at high yield, an important factor when evaluating 

the applicability of recombinant proteins for biotechnological applications. As 

demonstrated by analytical SEC and SAXS analysis, CD-loop grafted chimeras were 

structurally stable and capable of cooperative interaction with Tel. By inducing 

nanofibre formation with Z1212
RGD, a novel supramolecular assembly was generated 

with defined nanotopographical distribution of a bioactive moiety, termed ZTRGD. It 

was envisioned that RGD display in the flexible and exposed CD loop, as opposed to 

a linear conformation at the termini of Tel, would increase the avidity of the motif 

for cell surface integrin recognition.  

 Fusion of FnIII 10 at the C-terminus of Z2 did not inhibit the association of 

Z1Z2Fn with Tel to generate a palindromic complex. In the context of Z1212
Fn, the 

additional domain did not decrease protein yield and the monomeric nature of the 

tandem was retained. Indeed, the titin filament is composed of both Ig and FnIII 

domains that share structural homology (Labeit and Kolmerer, 1995), thus structural 
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tolerance and correct folding might be expected for titin-fibronectin chimeras. 

Encouraged by the retention of the Z1Z2-Tel interface when FnIII 10 is fused, 

Z1212
Fn was induced to interact propagatively with Tel. Native PAGE of the assembly 

mixture suggests that supramolecular structures are formed, confirming that C-

terminal fusion of a globular domain does not block the interaction of Z1212 with Tel. 

These observations were highly encouraging since the exhibition of folded protein 

modules in the ZT system is a tantalising prospect that may allow for the 

incorporation of functionalities previously unobtainable with peptidomimetics.   

 An obvious limitation of the findings described herein was the inability to 

consistently observe nanofibre morphology by TEM. Although wt ZT, ZTRGD and 

ZTRGE were successfully visualised on occasion, the results were not reproducible 

for different batches of nanofibre preparations despite employing a consistent 

assembly protocol. Indeed, each new preparation was routinely assessed by native 

PAGE to verify the formation of supramolecular assemblies. It could be that larger 

nanofibres were not always formed and that prematurely-terminated assemblies, 

which might be indistinguishable from larger assemblies by native PAGE, were not 

easily discernible on TEM grids. The reason for a potential premature termination of 

nanofibre polymerisation is unclear. One hypothesis is that the assembly process is 

highly sensitive to environmental factors, such as temperature and agitation, which 

were not rigorously controlled batch-to-batch. Future undertakings will aim to 

control such factors more carefully to observe their effects on nanofibre morphology. 
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Chapter 4  

Evaluating the effectiveness of integrin-binding sites in ZT 

variants and their ability to induce mesenchymal stem cell 

chondrogenesis   

4.1 Introduction  

 

4.1.1 Osteoarthritis 

The pathophysiology of osteoarthritis (OA) is typified by loss of hyaline 

articular cartilage in joints causing synovial inflammation, chronic pain and 

debilitation. Joint degeneration progressively worsens due to the limited regenerative 

potential of articular cartilage, a bradytrophic tissue, thus accelerating disease 

progression (Buckwalter and Mankin, 1998). As the most common joint-based 

affliction, affecting an estimated 10% of over 60s worldwide, OA contributes 

significantly to the global health burden (Pereira et al., 2011). Prevalence of OA  is 

predicted to increase due to the ageing population and obesity epidemic, which are 

leading causation factors of OA. Although anti-inflammatory drugs are available to 

treat the symptoms of OA they do not prevent disease progression(Csaki et al., 

2008). Total joint replacement and autologous chondrocyte implantation (ACI) are 

the most successful treatments for severe OA. However, increased prevalence of the 

disease and morbidities associated with invasive surgical procedures required by 

current therapies has highlighted the need for alternative, cell-based approaches 

(Diekman and Guilak, 2013).  
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4.1.2 Mesenchymal stem cells in cartilage tissue engineering 

The in vitro propagation of autologously-derived chondrocytes for cartilage 

regeneration is an attractive strategy. However, chondrocytes explanted from OA 

sufferers often have a limited proliferative capacity and poor functional competence. 

Additionally, chondrocytes from healthy joints grown in high-density cultures are 

prone to redifferentiation after several passages, subsequent to which the cells do not 

produce high quality articular cartilage (Schulze-Tanzil et al., 2002). Due to their 

chondrogenic potential, MSCs have been utilised extensively in cartilage tissue 

engineering strategies (Song et al., 2004; Vinatier et al., 2009). However, the use of 

autologously-derived MSCs for cartilage repair is fraught with challenges, such as 

the limited proliferative capacity of MSCs obtained from OA sufferers (Murphy et 

al., 2002), production of a lasting hyaline chondrocyte-like phenotype in vitro and 

promoting the deposition of mechanically sound neocartilage (Diekman and Guilak, 

2013). A pivotal problem in both in vitro and in vivo differentiation of MSCs to 

hyaline chondrocytes is their tendency to redifferentiate to a fibrocartilage or 

hypertrophic phenotype reminiscent of bone formation (Vinardell et al., 2012). The 

fact that previous culture conditions and inductive agents did not cater specifically 

for permanent hyaline differentiation may be to blame for these shortcomings. For 

example, relying solely on the powerful chondroinductive mediator TGF-β3 can 

facilitate hypertrophic differentiation of MSCs (Dickhut et al., 2009).  

Significant progress has been made in the development of engineered 

constructs for regeneration of damaged cartilage using MSCs. This next generation 

approach to ACI attempts to create an implantable scaffold containing newly 

differentiated chondrocytes from autologous bone marrow-derived MSCs (Csaki et 

al., 2008). Previous methods of cartilage tissue engineering using MSCs have 



	 	 Chapter 4 
	

	 85 

employed the use of recombinant growth factors, such as TGF-β family members, 

incorporated into (Bian et al., 2011) or immobilised onto scaffolds (Re’em et al., 

2012). Similar initiatives have tested the potential of a multitude of scaffolds to 

induce chondrogenesis, the success of which is often attributed to the 

functionalisation of platforms with short mimetic peptides, collagens and 

glycosaminoglycans (Table 8). Popular choices of scaffold to create a three-

dimensional microenvironment for cell culture are self-assembling polymer and 

peptide hydrogels. Whilst polymer hydrogels have been successfully utilised for 

cartilage tissue engineering (Salinas and Anseth, 2009; Ogawa et al., 2012; Re’em et 

al., 2012), peptide hydrogels offer distinct advantages. These include greater 

biocompatibility and degradability for in vivo use due to the nature of the 

components. Also, the nanomechanical properties of the gels can be tuned by 

varying the methods of gelation, a process which does not necessitate the use of 

photopolymerisation or redox reactions required for the cross-linking of many 

polymer-based hydrogels (Adams and Topham, 2010). Indeed, hydrogels formed 

from glycine-containing and phenylalanine-containing dipeptides linked to 

fluorenylmethoxycarbonyl at physiological pH have been shown to support the 

proliferation of bovine chondrocytes in two and three dimensions (Jayawarna et al., 

2006). Similarly, peptide hydrogels have been utilised to support the chondrogenic 

differentiation of bone marrow stromal cells by TGF-β1 induction (Kopesky et al., 

2011).  
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Table 8. Example materials and functionalities used to promote chondrogenic 
differentiation of MSCs in vitro 
 
Scaffold  Functional moieties  Reference  
Poly(ethylene glycol) 
(PEG) 

Decorin motif (KLER)  
(Salinas and 
Anseth, 2009) 

None – added directly 
to medium  

Bone morphogenetic protein 2 
peptide  

(Renner et al., 
2012) 

Macroporous alginate  Fibronectin RGD motif  
(Re’em et al., 
2010) 
(Xu et al., 2008) 

PEG hydrogels  Fibronectin RGD motif  
(Salinas and 
Anseth, 2008) 

Polyhydroxyalkanoate 
(PHA) 

PHA granule binding protein 
fused with fibronectin RGD 
peptide  

(You et al., 2011) 

Polystyrene  Photoreactive polymer derivatives  (Guo et al., 2008) 

Poly(ethylene oxide) 
diacrylate (PEODA) 

Collagen mimetic peptides  (Lee et al., 2008) 

Peptide-based 
hydrogels  

Peptides with varying electrostatic 
charges  

(Sinthuvanich et 
al., 2012) 

Hyaluronic acid 
hydrogel 

Hyaluronic acid density  
(Bian et al., 2013) 
(Chung and 
Burdick, 2009) 

Porous poly(ε-
caprolactone) (PCL) 
scaffold  

None – provides a permeable and 
mechanically favourable three-
dimensional matrix  

(Li et al., 2005) 

Poly(l-lactic acid) 
nanofibres in 
bioreactors  

Favourable three-dimensional 
matrix – mimics ECM  

(Janjanin et al., 
2008) 

Silk protein/fibroin 
scaffolds  

Silk fibres ± fibronectin RGD motif  
(Meinel et al., 
2004) 

Poly(vinyl alcohol)-
methacrylate nanofibres  

Chondroitin sulphate 
polysaccharides  

(Coburn et al., 
2012) 

Injectable hydrogels  
Dextran-tyramine and heparin-
tyramine conjugates  

(Jin et al., 2011) 

Chitosan scaffold  Collagen type II 
(Ragetly et al., 
2010) 

	 	

Whilst such constructs can induce the differentiation of MSCs to a 

chondrocyte-like phenotype, there are considerable limitations to be overcome. For 

example, the mechanical properties of cartilage formed in such constructs are 

different from those of natural or in vitro chondrocyte-derived cartilage. The 
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compressive modulus of MSC-derived cartilage from engineered scaffolds is 

significantly less than that of natural origin (Huang et al., 2009, 2010). Also, 

explanted hyaline chondrocytes incorporated into a hydrogel matrix form more high 

quality cartilage compared to MSC-derived chondrocytes (Erickson et al., 2009). As 

mentioned previously, a major inadequacy of many culture systems is their inability 

to promote MSC differentiation to articular chondrocytes and a tendency for 

implanted cells to dedifferentiate in vivo. This may be because the amount of 

inductive factor is critical for correct differentiation. For example, it has been show 

that increasing the RGD motif density of agarose hydrogels negatively affects 

articular differentiation of chondrocytes, as demonstrated by a decrease in collagen 

type II, and promotes dedifferentiation (Schuh et al., 2012). However, it is 

challenging to control top-down functionalisation at the molecular level by 

saturating, coating, or mixing substrates with compounds/motifs, as the density and 

nanotopographical distribution of functional moieties are difficult to assess and 

reproduce. 

 

4.1.3 Aims 

 Herein, the accessibility and bioactivity of integrin-binding motifs in ZTRGD 

and ZTFn were tested in vitro using the murine MSC (mMSC) D1 line. The ability of 

functionalised nanofibres to promote mMSC adhesion was investigated and cell 

morphology characterised. Further, the chondroinductive potential of ZTRGD was 

explored under serum-free culture conditions.    
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4.2 Results 

 
4.2.1 Effect of functionalised nanofibres on murine MSC adhesion and spreading  

 Since Z1212 and Tel were produced in E. coli, the presence of bacteriotoxins 

and contaminant proteins in the assembly mixture could not be discounted. Also, it 

was hypothesised that a small pool of unpolymerised Z1212 would remain following 

nanofibre assembly and that these molecules may cross cell membranes. To ensure 

that Z1212 was not cytotoxic, mMSCs were cultured for two days in the presence of 

Z1212 at concentrations ranging from 0.01 – 1 mg/mL. A colorimetric assay was used 

to assess metabolic activity and infer cell viability.  Z1212 did not cause a significant 

change in cell viability at any of the tested concentrations (Figure 24). 

 

Figure 24. Evaluation of Z1212 cytotoxicity on murine MSCs. The effect of 
unpolymerised Z1212 at concentrations ranging from 0.01-1 mg/mL was assessed 
after 3 days of exposure to MSCs in monolayer culture. Viability was measured as 
described (Section 2.8) and is expressed relative to the untreated control (100%) 
and 0.1% [v/v] Triton X-100 was included as a positive control. Statistically 
significant differences were determined by two sample t-tests. Box plots indicate the 
median (horizontal line), mean (square), 25th and 75th percentile values (box ends) 
and ± SD (error bars; n = 3). 
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To validate the bioactivity of the grafted RGD motif in the context of the Z1 

CD-loop and its accessibility for cell-surface integrin binding, mMSCs were seeded 

on a non-tissue culture treated (TCT) polystyrene surface coated with ZTRGD and 

control ZTRGE under serum-free conditions. Cells were maintained in TCT vessels 

before being serum-starved for 24 hours post-seeding (Figure 25a). Cells were 

maintained in serum-free medium to discount the potential adhesive effects of serum 

components that may passively adsorb to the hydrophobic polystyrene surface and 

mask the contribution of ZT nanofibres to cell attachment. ZTFn was also tested as a 

comparison between the engineered and FnIII 10-native RGD motifs in the context 

of the ZT system. A clear adhesive effect of ZTRGD and ZTFn on mMSCs could be 

observed 2 hours post-seeding compared to control ZTRGE (Figure 25b). 
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Figure 25. Murine MSC adhesion to functionalised nanofibres. (a) Typical 
morphology of cells plated on TCT plastic in 10% FBS (left) and following 24 hours 
under serum-free conditions. (b) Representative phase contrast micrographs of 
mMSCs 2 hours post-seeding on control fibronectin and nanofibre variants 
adsorbed at 10 µg/mL on non-TCT polystyrene. Scale bars = 100 µm.   
 
 

mMSC attachment and spreading on ZTRGE, ZTRGD and ZTFn was quantified 

at a range of coating concentrations. Cell attachment was expressed as a percentage 

of adherence to control human plasma fibronectin (Figure 26a). Compared to non-

TCT polystyrene surfaces, both ZTRGD and ZTFn promoted cell adhesion in a 

concentration-dependent manner. Control ZTRGE neither promoted nor inhibited cell 



	 	 Chapter 4 
	

	 91 

attachment. The average cell area was quantified for all conditions tested and was 

again found to increase relative to the coating concentration of ZTRGD and ZTFn 

(Figure 26b). Cell area was significantly increased when cells were cultured on 

ZTRGD or ZTFn adsorbed at 1 and 10 µg/mL compared to untreated polystyrene.  
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Figure 26. Effect of functionalised ZT nanofibres on murine MSC adhesion 
and spreading. Box plots show the effects of ZTRGE, ZTRGD and ZTFn at coating 
concentrations ranging from 0.1-10 µg/mL on mMSC attachment (a) and spreading 
(b) 2 hours post-seeding at a density of 1 × 104 cells/cm2. Cell attachment is 
expressed as a percentage of the positive control (fibronectin at 10 µg/mL; green 
boxes) that was taken as 100%. Statistical significance (two sample t-test) is in 
reference to a non-treated surface (white). Box plots indicate the median (horizontal 
line), mean (square), 25th and 75th percentile values (box ends) and ± SD (error 
bars; n = 3).  
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 In order to explore the specificity of the grafted motif in ZTRGD, a 

competitive inhibition assay was conducted using a linear integrin-binding 

pentapeptide (GRGDS). mMSCs were pre-incubated with peptide at increasing 

concentrations and seeded on ZTRGD, ZTFn or control human plasma fibronectin 

adsorbed at 10 µg/mL. An inactive GRGES peptide at the highest tested 

concentration was used as a negative control and cell attachment and spreading were 

quantified (Figure 27). The addition of GRGDS peptide resulted in a dose-dependent 

decrease in cell adhesion to both ZTRGD and ZTFn (Figure 27b,c). However, peptide 

inhibition had a more pronounced effect on cell adhesion to ZTRGD compared to 

ZTFn, where attachment was less affected at the maximum concentration of 250 µM. 

Cell spreading followed the same trend as attachment, with average cell area 

decreasing more on ZTRGD than ZTFn with increasing peptide concentration (Figure 

27b,c). Interestingly, the GRGDS peptide did not significantly decrease cell 

attachment or spreading on fibronectin at the concentrations tested (Figure 27a,d).  
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Figure 27. Effect of integrin-blocking RGD pentapeptide on murine MSC 
attachment to functionalised ZT nanofibres. Box plots show cell attachment and 
spreading 2 hours post-seeding in the presence of GRGDS peptide at 
concentrations ranging from 2.5-250 µM. Control GRGES peptide was used at a 
concentration of 250 µM. mMSCs were seeded at a density of 1 × 104 cells/cm2 on 
non-TCT polystyrene precoated with fibronectin (a), ZTRGD (b) or ZTFn (c) at 10 
µg/mL. Cell attachment is expressed as a percentage of the positive control 
(fibronectin at 10 µg/mL in the absence of peptide), which was taken as 100%. 
Statistical significance (two sample t-test) is in reference to untreated (0 µM) 
groups. Box plots indicate the median (horizontal line), mean (square), 25th and 75th 
percentile values (box ends) and ± SD (error bars; n = 3). (d) Representative phase 
contrast micrographs of cells on different substrates at 0 µM and 250 µM GRGDS 
peptide. Scale bars = 100 µm.    
 
 
4.2.2 Influence of the substratum on murine MSC morphology  

 Quantitative shape descriptors can offer important information on how cells 

engage with a substrate and the phenotypic changes this may induce. However, 

subtle differences in cell morphology may remain ambiguous by visual inspection 

alone, prompting the need for quantitative analysis. In this study, cell area, 

circularity, aspect ratio (AR) and solidity were investigated on different substrates. 

Surface area affords an unambiguous gauge on the degree of cell spreading on a 

given substrate. The area to perimeter ratio, termed circularity, provides a measure 

of divergence from a circular shape (where a perfect circle = 1) and is thus strongly 

influenced by cellular projections that increase the perimeter (Figure 28a,b). The AR 

is defined as the ratio of the height to the width of a profiles’ fitted ellipse, thus both 

a square and a circle would have an AR of 1 (Figure 28c). Solidity describes the 

semblance of a shapes’ area with its convex area. The convex area is defined as the 

area of the convex hull of a shape, meaning that circular shapes will have higher 

solidity (Figure 28d). Since circularity describes the local shape of a cell, AR and 

solidity are important parameters for the assessment of global shape in terms of 

symmetric or asymmetric cell spreading (Siani et al., 2012; Li et al., 2015). Thus, a 
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combination of shape descriptors can provide a more complete understanding of the 

effect of a substrate on cell morphology.  

 

Figure 28. Quantitative shape descriptors. The panels show how different 
parameters are calculated from cell profiles. (a) Immunofluorescence micrograph of 
a cell stained for F-actin. (b) The cell perimeter (red line) can be used to calculate 
surface area (white) and both values are used to calculate circularity. (c) The aspect 
ratio is defined as the ratio of the major (x) and minor (y) axis of a shapes best fitted 
ellipse (yellow dashed line). (d) Solidity is defined as the ratio of a shape’s area 
(white) and convex hull area (blue).  
 

The area, circularity, AR and solidity of mMSCs cultured on ZTRGD, ZTFn or 

fibronectin were quantified following two hours of attachment. Here, all shape 

descriptors were calculated using ImageJ software from manually rendered cell 

profiles. Average cell area was found to be significantly decreased on ZTRGD 

compared to ZTFn (Figure 29a). Circularity, AR and solidity were also significantly 

different for cells attached to ZTRGD compared to ZTFn and fibronectin (Figure 

29b,c,d). However, no significant differences were observed between cells cultured 

on ZTFn or fibronectin for any of the parameters investigated.  
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Figure 29. Effect of functionalised ZT nanofibres on murine MSC shape. Cell 
shape was quantified in terms of average cell area (a), circularity (b), aspect ratio 
(c) and solidity (d) when cultured for 2 hours on fibronectin, ZTRGD or ZTFn at coating 
concentrations of 10 µg/mL. Statistically significant differences were determined by 
two sample t-tests. Box plots indicate the median (horizontal line), mean (square), 
25th and 75th percentile values (box ends) and ± SD (error bars; n = 3).  
 

The higher circularity and solidity of mMSCs cultured on ZTRGD, combined 

with an average AR closer to 1 than cells cultured on fibronectin or ZTFn, were 

consistent with an approximately symmetric cell spreading and circular shape. The 

higher than average AR and lower solidity of mMSCs cultured on ZTFn or 

fibronectin indicated anisotropic cell spreading on these substrates. Frequency 

distributions of shape descriptors from all conditions tested and individual cells 

analysed are show in Figure 30. Parameters derived from the distributions are 

detailed in Table 9.  It was noted that almost all distributions were skewed to a 
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greater or lesser extent, suggesting that culture on fibronectin, ZTRGD and ZTFn 

directly influenced cell morphology.   
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Figure 30. Frequency distributions of murine MSC shape parameters for 
different substrates. Histograms show the distribution of cell area, circularity, 
aspect ratio and solidity when cultured on fibronectin (a), ZTRGD (b) and ZTFn (c). 
The mean values are indicated with standard deviations (n = 150). The coefficient of 
variation (CV) between biological replicates (n = 3) is also stated.  
   
 
Table 9. Morphological parameters for murine MSCs cultured on different 
substrates derived from all cells analysed.  

 Median Mean (SD) Skewness 
Area (µm2)    

Fibronectin 1762 1925  (911) 1.30 
ZTRGD 907 1095 (905) 4.59 
ZTFn 1763 1832 (645) 1.16 

Circularity    
Fibronectin 0.30 0.35 (0.20) 0.83 
ZTRGD 0.59 0.58 (0.16) -0.36 
ZTFn 0.32 0.35 (0.17) 0.82 

Aspect ratio    
Fibronectin 1.50 1.82 (0.93) 2.67 
ZTRGD 1.26 1.38 (0.30) 1.15 
ZTFn 1.48 1.85 (0.99) 2.27 

Solidity    
Fibronectin 0.66 0.64 (0.20) -0.41 
ZTRGD 0.84 0.82 (0.12) -1.19 
ZTFn 0.66 0.65 (0.16) -0.23 
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4.2.3 Influence of the substratum on focal adhesion formation and cytoskeletal 

organisation  

To further investigate mMSC attachment to functionalised ZT nanofibres, 

cells were stained for filamentous actin and paxillin (Figure 31). Paxillin is a 

scaffolding component of focal adhesion complexes, interacting with multiple 

binding partners to transduce integrin-mediated signalling events to changes in 

cytoskeletal organisation (Turner, 2000). Interestingly, cells grown on fibronectin, 

ZTRGD and ZTFn all contained focal adhesions, but exhibited a distinctive 

morphology when cultured on ZTRGD. mMSC adhesion to fibronectin and ZTFn 

typically resulted in a heterogeneous assortment of morphologies with distinct stress 

fibre networks. Cells cultured on ZTRGD rarely displayed defined stress fibres and the 

majority of phalloidin staining was at the cell periphery, highlighting a rounded 

phenotype defined by lamellipodia-like projections. Cells were also stained for 

zyxin, a zinc-binding phosphoprotein recruited to focal plaques upon integrin 

engagement to interact with α-actinin and other components of the focal adhesion 

complex (Wang and Gilmore, 2003). Zyxin is a marker of mature focal adhesions 

and is not observed in nascent focal plaques (Zaidel-Bar et al., 2003). Analysis by 

immunofluorescence revealed that mMSCs on all substrates possessed focal 

complexes containing zyxin (Figure 32), thus the engineered motif of ZTRGD is 

capable of supporting focal adhesion maturation. However, cell morphology and 

cytoskeletal arrangement was uniquely influenced by ZTRGD, therefore, mMSCs 

were stained for integrins to discern alterations in heterodimer expression on this 

substrate.   



	 	 Chapter 4 
	

	 102 

 

Figure 31. Focal 
adhesion formation 
and cytoskeletal 
organisation in 
murine MSCs cultured 
on different 
substrates. 
Immunofluorescence 
micrographs show 
representative z-series 
projections of cells 2 
hours post-seeding on 
fibronectin, ZTFn or 
ZTRGD. Cells were 
stained for F-actin 
(green), paxillin (red) 
and DAPI (blue). 
Zoomed views of the 
boxed areas in the 
upper panels are shown 
below to highlight focal 
adhesions and 
cytoskeletal structures. 
Scale bars = 10 µm.  
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Figure 32. Zyxin 
recruitment to focal 
adhesions in murine 
MSCs cultured on 
different substrates. 
Immunofluorescence 
micrographs show 
representative z-series 
projections of cells 2 
hours post-seeding on 
fibronectin, ZTFn or 
ZTRGD. Cells were 
stained for F-actin 
(green), zyxin (red) 
and DAPI (blue). 
Zoomed views of the 
boxed areas in the 
upper panels are 
shown below to 
highlight focal 
adhesions and 
cytoskeletal 
structures. Scale bars 
= 10 µm.  
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 As the RGD motif was the adhesive moiety in each substrate, cells were 

stained first for the well-characterised fibronectin receptors α5β1 and αVβ3. 

However, monoclonal antibodies targeting the unique α5 subunit, β1 subunit, αV 

subunit or β3 subunit did not generate specific staining (data not show). Despite 

clear differences in morphology following a two-hour culture period on ZTRGD, cells 

on all substrates obtained a typical fibroblastic morphology after one day and formed 

focal adhesions expressing paxillin and zyxin (Figure 33).  

 

 

Figure 33. Murine MSC morphology following prolonged culture on different 
substratum. Immunofluorescence micrographs show representative z-series 
projections of cells on fibronectin, ZTRGD or ZTFn 24 hours post-seeding. Cells were 
stained for F-actin (green), paxillin/zyxin (red) and DAPI (blue). Scale bar = 50 µm.  
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4.2.4 Structural analysis of Z1212
RGD 

The rational for inserting the RGD motif in the CD-loop of Z1 was to better 

mimic the native environment of the motif for enhanced integrin binding. However, 

reduced mMSC adhesion and spreading area when cultured on ZTRGD compared to 

ZTFn or fibronectin suggested that the grafted motif was not as active and/or 

accessible in the context of the Z1 domain. Therefore, Z1212
RGD was screened for 

crystallogenesis in an attempt to observe the grafted motif at atomic detail, thus 

permitting the comprehensive analysis of the modified CD-loop environment. 

Furthermore, structural characterisation of the engineered linker between the fused 

Z1Z2 doublets of Z1212 may prove useful in the future design of new nanofibre 

phenotypes. Screening of Z1212 and Z1212
RGD was carried out using commercial 

crystallisation matrices, from which several conditions were identified that induced 

crystallogenesis. The diffraction potential of initial hits was tested and one crystal 

type corresponding to Z1212
RGD was found to show the greatest promise (Figure 34a). 

Attempts to optimise these crystals by varying pH and PEG concentration were 

successful in reproducing the original crystals but failed to improve resolution 

(Figure 34b). Instead, these crystals were used for microseed screening against 

commercial crystallisation matrices, which generated multiple crystal hits. 

Diffraction experiments identified one crystal type as superior (Figure 34c) and the 

best diffraction data set was collected to 2.4 Å resolution (Figure 34d). The crystals 

belong to the centred trigonal space group H3 with unit cell dimensions a = 133.23, 

b = 133.23 and c = 135.58 Å. The data were processed at 2.5 Å and the partial 

structure of Z1212
RGD was solved by molecular replacement with Phaser (McCoy et 

al., 2007), using Z1 and Z2 domains (PDB: 2A38) as search models. Structure 

building and refinement was conducted by Dr. Jennifer Fleming (Universität 
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Konstanz). Data collection and refinement statistics are given in Table 10.  

 

Figure 34. Z1212
RGD crystals and X-ray diffraction pattern. (a) Crystals from the 

initial screening were grown in 10% [w/v] 8000 kDa polyethylene glycol, 100 mM 
Tris HCl pH 7.0, 200 mM MgCl2. (b) The original crystallisation conditions were 
varied in an attempt to improve quality and crystals were regrown in 7% [w/v] 8000 
kDa polyethylene glycol, 100 mM Tris HCl pH 7.0, 350 mM MgCl2. Crystals in 
panels (a) and (b) were obtained from 200 nL drops using a 1:1 ratio of protein 
solution to crystallisation media. (c) Crystals from microseed screening were grown 
in 10% [v/v] isopropanol, 100 mM Na2HPO4 pH 4.2, 200 mM LiSO4 in 200 nL drops 
using a 1:1:2 ratio of protein solution to seed stock to crystallisation media. All 
crystals were grown at 22°C using the sitting drop vapour diffusion method and 
images were acquired under cross-polarised light. Scale bar = 250 µm. (d) 
Representative diffraction pattern of crystals from microseed screening extending to 
2.4 Å resolution.    
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Table 10. X-ray data collection parameters and structure refinement statistics.  
 

Diffraction data Z1212
RGD 

Beamline I03 (Diamond Light Source) 

Detector Pilatus3 6M 

Wavelength (Å) 0.97 

Resolution (Å) 29.30 – 2.50 (2.59 – 2.50) 

Space group H3 

Cell dimensions   

a, b, c (Å) 133.23, 133.23, 135.58 

α, β, γ (º) 90.00, 90.00, 120.00 

Total observations 124792 (10896) 

Unique reflections 30971 (2968) 

Rmerge 0.064 (0.599) 

Multiplicity 4.1 (3.7) 

Completeness (%) 99.00 (96.00) 

  I/! (I) 15.11 (2.35) 

Refinement  

Reflections in working/free set 30780/1488 

Number of protein residues 379 

R-factor/R-free (%) 20.95/22.67 

RMSD bond length (Å)/bond 
angle (°) 0.009/1.17 

Validation statistics  

Ramachandran 
favoured/allowed/outliers (%) 97.05/2.41/0.54 

 

Values in parenthesis are for the outermost resolution shell 
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The asymmetric unit of the crystal formed contained two molecular copies of 

Z1212
RGD. However, the lattice suffered from partial disorder and only two of four 

domains could be observed for any given Z1212
RGD molecule (Figure 35). The 

packing arrangement of Z1212
RGD resulted in two different conformations of the Ig 

doublets that could be resolved. These were an extended arrangement composed of 

the first Z1 and Z2 domains and a compact, V-shaped conformation of the first Z2 

and second Z1 domains (Figure 35a). The V-shaped conformation encompassed both 

the engineered linker and grafted RGD motif. The engineered linker was well 

defined in the electron density map (Figure 35b) and the threonine residues 

hypothesised to act as a mechanical hinge (Bruning et al., 2010) were indeed free 

from interaction with the flanking domains. Further, the V-shaped conformation 

highlighted the flexibility of the linker. However, the grafted CD-loop could not be 

resolved because this region was characterised by low electron density, most likely 

due to loop flexibility (Figure 35c).    
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Figure 35. Crystal structure of Z1212

RGD. (a) Ribbon diagrams of the elongated 
(top) and compacted (bottom) conformations of resolved modules. The domain 
architecture of Z1212 (middle) is colour-coded to match the ribbon diagrams. The 
engineered linker and position of the modified CD-loop (red oval) in chain B are 
labelled. (b) Structure of the engineered linker with associated electron density 
(grey mesh). Amino acid residues are labelled and represented as sticks coloured 
according to atom type: carbon (purple), nitrogen (blue) and oxygen (red). (c) 
Position of the CD-loop containing the RGD motif. The unbuilt region between 
isoleucine and glycine is represented by a dotted line (not based on experimental 
observations). 2Fo-Fc electron density maps are contoured at 1 σ.  
 

4.2.5 Effects of ZTRGD on murine MSC phenotype  

 Following 7 days of culture on ZTRGD under serum-free conditions, mMSCs 

were observed to form multi-layered aggregates of 200 to 500 µm in diameter 

(Figure 36). Live cell imaging revealed that aggregate formation was through 

cellular condensation, rather than monolayer detachment and consequent 

aggregation. Cells cultured on non-TCT polystyrene did not form aggregates (Figure 

36), and were visually indistinguishable from cells cultured on ZTRGE (data not 

shown). 
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Figure 36. Aggregation of murine MSCs following culture on ZTRGD. Phase 
contrast micrographs show a time lapse series of the same area within the cultures 
at days 4-7 post-seeding. Cells were seeded at a density of 2 × 104 cells/cm2 on 
non-TCT plastic (control, top panels) or ZTRGD (bottom panels). ZTRGD was adsorbed 
at a concentration of 10 µg/mL. Cell aggregates are indicated (red arrows) and the 
scale bar = 100 µm.  
 
 

Since a process of cellular condensation precedes chondrogenic commitment 

of progenitor cells in the developing limb bud, mMSC aggregates were investigated 

for chondrogenic differentiation. The chondrogenic potential of the D1 mMSC line 

was first verified in vitro using the conventional pellet culture method (Johnstone et 

al., 1998). Following 21 days of culture in serum-free medium supplemented with 

TGFβ-3 and BMP7, cell pellets stained positive for sulphated glycosaminoglycans 

compared to control pellets (Figure 37a), which indicated that chondrogenic 

differentiation had occurred. However, mMSC aggregates formed on ZTRGD did not 

stain positive for collagen type II but did express osteocalcin, which localised 

predominantly to cells at the periphery (Figure 37b). Since expression of osteocalcin 

at day 7 suggested that mMSCs were undergoing osteogenic differentiation, cells 
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from day 4 of culture were analysed to determine whether chondrogenic 

differentiation preceded aggregate formation and ensuing hypertrophy. Gene 

expression analysis at this time point showed that expression of chondrogenic 

markers Col2a1 (collagen type II) and Sox9 were not notably elevated in cells 

cultured on either non-TCT plastic or ZTRGD in comparison to mMSCs cultured 

under standard conditions (TCT plastic and serum) (Figure 37c). However, Bglap 

(osteocalcin) gene expression was highly elevated in both groups (100-fold and 44-

fold for non-TCT plastic and ZTRGD, respectively) (Figure 37c).  It should be noted 

that RT-qPCR analysis was performed on 2 biological replicates only, since 

undesired osteogenic differentiation was clearly occurring.  
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Figure 37. Osteogenic differentiation of murine MSCs. (a) Representative 
images of in vitro pellet culture sections. Aggregates were cultured for 21 days in 
control (left) or chondroinductive (right) medium followed by fixation, 
cryoembedding, sectioning and Safranin-O staining. Zooms of boxed areas are 
show in the upper right of the respective image. Scale bar = 100 µm. (b) 
Immunostaining of multi-layered mMSC aggregates formed on ZTRGD following 7 
days of culture. Aggregates were stained for collagen type II or osteocalcin (red) 
and counterstained with DAPI (blue). (c) RT-qPCR analysis of Col2a1 (collagen 
type II), Sox9 (Sox9) and Bglap (osteocalcin) gene expression in mMSCs cultured 
for 4 days on non-TCT polystyrene (control) or ZTRGD in serum-free medium. 
Expression values are normalised to cells grown on TCT plastic in the presence of 
serum (dashed horizontal line) using Actb (β-actin) as a reference gene. Error bars 
represent SD (n = 2*).  
 

4.3 Discussion 

	
For in vitro cell culture and tissue engineering strategies, it is often desirable 

to mimic the natural ECM for enhanced cell propagation or to induce differentiation 

to a desired phenotype. This chapter describes the assessment of functionalised ZT 

nanofibre bioactivity using mMSCs, along with their ability to induce chondrogenic 

differentiation for cartilage tissue engineering.     

mMSCs attached and spread on ZTFn at rates comparable to adsorbed 

fibronectin and exhibited heterogeneous morphologies on both substrates. Since 

mMSCs attached to ZTRGD, the successful grafting of the active motif in Z1 was 

confirmed. However, a notable reduction in cell spreading, lack of matured 

cytoskeletal features and a rounded morphology implied that the motif was less 

effective in the context of the CD-loop. The average circularity of cells was higher 

for those cultured on ZTRGD, an unsurprising result given the rounded morphology 

observed on this substrate. Lower circularity can be attributed to more robust 

adhesion due to the development of focal adhesions and subsequent cell spreading. 

However, cells grown on ZTFn and fibronectin typically had more filopodia, a 

feature that increases the perimeter and may significantly influence circularity. 
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Therefore, other parameters were investigated to validate the observed influences of 

the substrates on cell shape. The AR of cells cultured on ZTFn and fibronectin was 

higher than those grown on ZTRGD, which is consistent with the anisotropic cell 

spreading induced by the former two substrates. Finally, solidity was highest in cells 

grown on ZTRGD, which taken together with AR confirms the results from circularity 

measurements and shows that mMSCs spread isotropically on this substrate during 

the initial stages of attachment. Therefore, mMSCs exhibit a morphogenetic reaction 

to culture on ZTRGD that is mitigated following longer culture periods, since at later 

stages of adhesion the cells will have begun to secrete their own ECM.  

Cell adhesion and spreading on ZTFn and ZTRGD could be inhibited by a 

linear GRGDS peptide in a dose-dependent manner, confirming the specificity of the 

RGD motifs in these variants for cell surface integrin binding. Interestingly, the 

peptide had no effect on cell adhesion to fibronectin, suggesting that other regions of 

the protein could support cell attachment. It seemed most likely that mMSCs express 

integrins that recognise the LVD motif in the V region of fibronectin (Humphries et 

al., 2006) or cell surface proteoglycans that interact with the heparan binding region 

(Dalton et al., 1995). mMSCs cultured on all substrates formed focal adhesions, and 

cells were immunostained for specific heterodimers in an attempt to discern any 

variance in integrin engagement induced by the different RGD contexts. However, 

no specific staining was observed for the established fibronectin receptors α5β1, 

αVβ3 or αVβ1 (Mao and Schwarzbauer, 2005; Humphries et al., 2006). These 

findings were unexpected since human MSC (hMSC) migration on fibronectin is 

mediated through α5β1 (Veevers-Lowe et al., 2011). Furthermore, focal adhesion 

complexes isolated from hMSCs cultured on fibronectin were found to contain 

α5β1, αVβ3 and αVβ1 integrins by proteomic analysis (Ajeian et al., 2016). It may 
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be that integrin epitopes were destroyed during the fixation procedure, although this 

scenario seems unlikely, since specific staining was observed for paxillin and zyxin. 

Integrin expression on different substrates could be further probed by flow 

cytometry or proteomic analysis of isolated adhesion complexes. However, integrin 

expression in the murine MSC line used in this study remains unclear.  

 By solving the partial crystal structure of Z1212
RGD, several important features 

of the molecule were determined. Firstly, the engineered linker designed to join the 

Z1Z2 Ig doublet could be observed in atomic detail. The structure shows that the 

linker permits a high degree of flexibility as demonstrated by the compacted V-shape 

conformation of the Ig domains. These findings are in good agreement with 

predictions made by Bruning et al. (2010), who hypothesised that the small, polar 

threonine residues incorporated in the engineered linker could act as a mechanical 

hinge. Furthermore, polar amino acids are common in natural protein linkers and are 

thought to aid in the stability of the structure by forming hydrogen bonds with water 

molecules (Argos, 1990; George and Heringa, 2002). It is reasonable to predict that 

by altering the flexibility of the engineered linker, the morphology of ensuing 

nanofibres would also be altered. For example, a more ridged linker may influence 

the morphology of longitudinally assembled nanofibres by decreasing intermodular 

motion, thereby limiting kinking and producing straighter fibres. To achieve this, 

prolines could be incorporated into the linker since the cyclic side chain of this 

residue restricts its conformation (Williamson, 1994). Additionally, the lack of an 

amide hydrogen in the side chain limits the hydrogen bonding potential of proline, 

thus it is less likely to interact with flanking protein domains (Chen et al., 2013). 

Alternatively, a rigid α-helical linker such as the sequence (EAAAK)n could be 

incorporated to the same effect (Amet et al., 2009).   
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 The second purpose for Z1212
RGD crystallisation was to interrogate the 

functionalised CD-loop environment, since ZTRGD appeared to be less potent than 

fibronectin or ZTFn in promoting mMSC attachment and spreading. However, the 

grafted CD-loop could not be resolved using the X-ray data currently available. This 

indicated that the loop exhibits high flexibility, which was a specific goal of the 

design process to permit integrin engagement. Indeed, the RGD motif of fibronectin 

has only been resolved when taking part in crystal lattice contacts, as the solvent-

exposed loop is disordered and may adopt multiple conformations (Main et al., 

1992). Since the grafted RGD motif could not be resolved in atomic detail, the exact 

reason for less robust integrin engagement can only be hypothesised. It is plausible 

that the distorted β-hairpin conformation of the RGD loop in fibronectin was not 

successfully mimicked in Z1, as only five native fibronectin residues were inserted. 

Therefore, it may be possible to improve ZTRGD integrin avidity by inclusion of 

more native flanking residues from fibronectin (Pierschbacher and Ruoslahti, 1987; 

Hautanen et al., 1989). Alternatively, the synergistic effect of the PHSRN motif 

native to FnIII 9 may be responsible for the enhanced cell adhesion observed on 

fibronectin.  

 Attempts to utilise ZTRGD for cartilage tissue engineering proved 

unsuccessful in its tested context. The formation of mMSC aggregates by cellular 

condensation when cultured on ZTRGD was considered promising, due to its parallels 

with early chondrogenic differentiation during skeletogenesis (Goldring et al., 2006; 

Djouad et al., 2007). Furthermore, polyacrylate substrates that mimic the RGD 

motif, in terms of functional group composition and stereochemistry, have been 

shown to induce mMSC aggregation and chondrogenic differentiation (Glennon-

Alty et al., 2013). However, protein and gene expression analysis revealed that 
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mMSCs cultured either on non-TCT plastic or ZTRGD expressed high levels of 

osteocalcin, a specific marker of osteoblasts (Lee et al., 2007), relative to cells 

maintained under standard conditions. Further, the chondrogenic markers collagen 

type II and Sox9 were not notably different between control and treated cells. It can, 

therefore, be concluded that osteogenic differentiation of mMSCs was a direct result 

of the change in culture environment (serum-free medium and non-TCT plastic) 

rather than an effect of ZTRGD. It should be noted that although in vitro 

chondrogenesis assays were consistent with successful chondrogenic differentiation, 

the D1 mMSC line used in this study has been shown to form bone-like structures 

when subcutaneously implanted in mice (Juffroy et al., 2009). Therefore, D1 

mMSCs may be predisposed to osteogenic differentiation and other cell lines should 

be tested to verify the osteoinductive effects of the culture conditions. FCS was not 

included in the assays for several reasons. Firstly, some studies have reported an 

inhibitory effect of serum on chondrogenesis (Bilgen et al., 2007; Lee et al., 2009). 

FCS is also undefined and xenogeneic, thus issues exist for its use in the in vitro 

propagation or differentiation of stem cells for clinical application (Tuschong et al., 

2002). Non-adhesive culture vessels were utilised primarily to observe the effects of 

the engineered integrin-binding motif of ZTRGD on mMSC phenotype, without the 

additional contribution of hydrophilic TCT polystyrene. However, it would appear 

that a combination of serum-free medium and a hydrophobic culture substrate 

induced mMSC osteogenesis. Therefore, the ability of ZTFn to induce mMSC 

chondrogenesis was not pursued using the present methodologies.    
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Chapter 5 

Generation of N-cadherin and Decorin Chimeras 

 

5.1 Introduction  

 

5.1.1 Cadherins and their roles in cell-cell adhesion  

 Cadherins are a family of transmembrane proteins with roles in cell-cell 

adhesion. The cadherin superfamily is vast, comprising a plethora of highly diverse 

members. Of these, the classical cadherins have a conserved ectodomain containing 

five calcium-binding domains with structural homology to the immunoglobulin fold 

(Angst et al., 2001). The classical cadherins, such as N-, E- and T-cadherin, are 

present at adherens junctions between cells where they mediate cell-cell interactions 

by the homophilic association of ectodomains in opposing membranes. 

Homodimerisation occurs in either a trans or cis conformation (Figure 38a). Trans 

dimerisation arises from the homophilic interaction of the extracellular 1 domains 

(EC1) of cadherins on adjacent cells. At the molecular level, this interaction is 

governed by a conserved tryptophan that anchors into a hydrophobic pocket on the 

opposing EC1 of the partner molecule to create a so called  β-strand-swapped 

interface (Boggon et al., 2002). Cis dimerisation occurs between EC1 and EC2 of 

cadherin ectodomains on the same cell membrane (Figure 38a). A highly conserved 

tripeptide sequence, HAV, is present in  β-strand F of EC1 in all classical cadherins 

(Figure 38b), and was shown to be essential for cell-cell adhesion since peptides 

containing the sequence could inhibit the aggregation of mouse blastocysts and 

prevent neurite outgrowth from dorsal root ganglia over astrocytes (Blaschuk et al., 
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1990). Furthermore, Williams et al. (2000) showed that HAV peptides in a cyclic 

conformation were more effective in preventing neurite outgrowth over cells 

expressing N-cadherin. Interestingly, the residues flanking the HAV motif were 

important for both potency and specificity of the cyclic peptides. Addition of a 

conserved aspartic acid residue (Figure 38c) native to N-cadherin (HAVD motif) 

increased the inhibitory activity of the peptide, whilst a serine residue native to E-

cadherin (HAVS) did not. Elucidation of the first crystal structure of N-cadherin 

EC1 was not particularly informative on HAV-mediated homophilic interactions, 

since the tripeptide was partially buried and did not relate to observed dimer 

interfaces. However, the hydrophobic pocket into which the conserved tryptophan 

docks in trans dimerisation was partially formed by alanine from the HAV motif 

(Shapiro et al., 1995). Crystal structures of the ectodomains from C-, E- and N-

cadherin showed that  β-strand F of EC1 forms a major portion of the cis dimer 

interface with EC2, with the valine residue of HAV contributing to the formation of 

a hydrophobic core between the domains. Mutation of the valine residue abolishes 

cis dimerisation of E-cadherin in crystal lattices and destabilises adherens junctions 

between cells (Harrison et al., 2011). Bunse et al. (2013) show that the same 

mutation in EC1 of N-cadherin decreases the lifetime of adherens junctions, 

highlighting the cooperative roles of both trans and cis dimerisation in cadherin-

mediated cell-cell adhesion. Thus, the HAV motif clearly plays an important role in 

homotypic association of classical cadherins but the precise mechanisms of action 

are poorly understood (Perez and Nelson, 2004).  

 Alongside homophilic interactions resulting in cell-cell adhesion, cadherins 

can also bind cell surface receptors and activate downstream signalling cascades. N-

cadherin has been shown to interact with fibroblast growth factor receptors (FGFRs) 
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via the acid box region located in the extracellular D2 domain of FGFR1 (Williams 

et al., 1994). Furthermore, FGF signalling is permitted in the absence of the acid box 

region, which is supportive of FGF-independent activation of FGFRs by cell 

adhesion molecules (Shimizu et al., 2001; Sanchez-Heras et al., 2006). The 

interaction of N-cadherin with FGFR1 has been shown to stimulate neurite 

outgrowth (Williams et al., 1994), but also to exacerbate the metastatic potential of 

tumour cells by blocking FGF2-mediated receptor internalisation, inducing 

prolonged MAPK-ERK signalling and subsequent upregulation of matrix 

metalloproteases (Suyama et al., 2002). Since FGF signalling plays a fundamental 

role in skeletogenesis (Su et al., 2014), it is possible that synergistic interactions 

between N-cadherin and FGFRs could contribute to chondrogenic differentiation of 

precursor cells. However, evidence for such associations during development and 

cartilogenesis remains unexplored.  

 

 

 
 
 



	 	 Chapter 5 
	

	 121 

Figure 38. N-cadherin structure and homophilic interactions. (a) Crystal 
structure of the mouse N-cadherin ectodomain comprising extracellular domains 
(EC) 1 to 5 (PDB: 3Q2W, Harrison et al., 2011). The ectodomain is observed to 
form dimers in both the trans (upper structure) and cis (lower structure) 
conformations within the crystal lattice. (b) Position of the HAVD motif within EC1, 
which is required for cis dimerisation. Residues encompassing the motif are shown 
as main chain sticks with side chain lines (orange). (c) Multiple sequence alignment 
of N-cadherin orthologs demonstrating conservation of the HAVD motif (red). 
Species acronyms are as follows: H. sapiens; human, M. musculus; mouse, G. 
gallus; chicken and D. rerio; zebrafish.    
 

 N-cadherin is known to play a critical role in the condensation of progenitor 

cells during the early stages of cartilogenesis, since inhibition of homotypic 

interactions results in failed cellular aggregation and subsequent chondrogenic 

differentiation. Furthermore, both the ectodomain and cytoplasmic domain of N-

cadherin are required for in vitro condensation and chondrogenic differentiation of 

chick limb bud micromass cultures (Oberlender and Tuan, 1994a; Oberlender and 

Tuan, 1994b). These findings suggest that not only are homotypic interactions 

required for cellular condensation, but also that activation of the catenin-signalling 

pathway is necessary for chondrogenesis to occur (Delise and Tuan, 2002). These 

discoveries have recently been utilised in the design of biomaterials for cartilage 

tissue engineering. Bian et al. (2013) showed that incorporation of a peptide derived 

from the HAVD motif of N-cadherin into hyaluronic acid-methacrylate (HA-Me) 

hydrogels resulted in enhanced chondrogenic differentiation of hMSCs in the 

presence of TGF-β3. The same HA-Me hydrogel functionalised with both the N-

cadherin mimetic and an RGD peptide was shown to improve the osteogenic 

differentiation of hMSCs in the presence of osteoinductive factors (Zhu et al., 2016).  

 

5.1.2 Structure and function of decorin  

 Decorin is a member of the small leucine-rich proteoglycan (SLRP) family 
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and has roles in ECM organisation and growth factor signalling. The tertiary 

structure of decorin is composed of leucine-rich repeats (LRRs) flanked by β-

hairpins, producing a curved solenoid shape characteristic of SLRPs (Figure 39a) 

(Scott et al., 2004). Decorin binds to collagens and plays a role in fibril stability, 

organisation and fibrillogenesis (Iozzo, 1998). It was proposed that the orthogonal 

positioning of decorin on collagen triple helices is responsible for correct spacing of 

fibrils by preventing lateral fusion (Scott, 1991). Decorin has been observed to 

localise at specific sites on collagen fibrils that contain a conserved motif of 11 

residues. Complementarily-charged peptides exist on the concave inner surface of 

the decorin monomer, namely the RELH and KLER motifs (Scott, 1996). The 

conserved KLER motif is located at the boundary between LRRs 3 and 4 (Figure 

39b,c), the region determined to interact most closely with collagen (Weber et al., 

1996; Orgel et al., 2009).  

A number of SLRPs, including decorin and biglycan, are found in cartilage 

and tendons where they play key roles in tissue homeostasis (Elliott et al., 2003; 

Zhang et al., 2006). Hyaline articular cartilage is rich in collagen type II and 

proteoglycans, which impart the physical resilience and load-bearing properties of 

the tissue. In osteoarthritic cartilage there is a reduction in decorin and biglycan 

expression that can be correlated with increased ECM destruction as the disease 

progresses (Poole et al., 1996; Cs-Szabó et al., 1997). Furthermore, analysis of 

single chondrocytes from late-stage OA patients has revealed that diseased cells 

produce less decorin and biglycan than cells from healthy cartilage (Bock et al., 

2001). Decorin also interacts with members of the TGF-β family and modulates their 

activity by inhibiting the activation of cognate receptors (Droguett et al., 2006). 

TGF-β signalling is fundamental to cartilage formation during skeletogenesis 
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(section 1.1.2) and has been implicated in OA pathogenesis. Patients with early-

onset OA have been found to harbour mutations in SMAD3, an essential component 

of the TGF-β signalling pathway (Valdes et al., 2010). Decorin may also play a 

protective role in the cartilage matrix since its binding to collagen type II has been 

shown to prevent proteolysis by matrix metalloprotease (MMP) 1 and 13, 

hypothetically to prevent excessive ECM degradation under physiological conditions 

(Geng et al., 2006). Indeed, both MMP1 and MMP13 were found to be upregulated 

in osteoarthritic joints (Vincenti and Brinckerhoff, 2002). Furthermore, both decorin 

and biglycan can act as damage-associated molecular patterns (DAMPs) in response 

to tissue injury, orchestrating the activation of proinflammatory signalling cascades 

(Moreth et al., 2012). Decorin can also act as a ligand for receptor tyrosine kinases, 

including the epidermal growth factor receptor and insulin-like growth factor 1 

receptor, which in the latter case regulates the synthesis of fibrillin-1 for maintained 

kidney homeostasis (Schaefer et al., 2007). 

The association of decorin with cartilage homeostasis has inspired the 

development of a biomaterial that mimics the collagen-binding function of the 

protein. Salinas and Anseth (2009) reported on the incorporation of a peptide 

containing the decorin KLER motif in PEG hydrogels co-functionalised with an 

RGD peptide. Encapsulation of hMSCs in hydrogels containing both motifs resulted 

in enhanced chondrogenic differentiation and cartilaginous ECM deposition 

compared to the RGD motif alone. Thus, the non-adhesive KLER motif is effective 

in promoting the chondrogenic differentiation of hMSCs, possibly by modulating 

ECM organisation to better emulate the cartilage niche (Salinas and Anseth, 2009).      
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Figure 39. Decorin structure and collagen binding motif. (a) Crystal structure of 
bovine decorin (PDB: 1XKU, Scott et al., 2004). (b) Position of the KLER motif 
within LRR 3 (leucine-rich repeat). Residues encompassing the motif are shown as 
main chain sticks with side chain lines (orange). (c) Multiple sequence alignment of 
decorin orthologs demonstrating conservation of the KLER motif (red). Species 
acronyms are as follows: H. sapiens; human, M. musculus; mouse, G. gallus; 
chicken, B. taurus; cattle and D. rerio; zebrafish.  
 
 
5.1.3 Aims  
   

In this chapter, the ZT system is functionalised with amino acid sequences 

derived from N-cadherin or decorin in an attempt to impart chondroinductive 

properties on the resulting nanofibres. Further, these variants were created to 

complement those inspired by fibronectin so as to broaden the repertoire of 

functionalities to encompass cell-matrix, cell-cell and matrix-matrix interactions. To 

achieve this, the HAVD or KLER motifs were grafted in the Z1 Ig domain and the 

resulting chimeras were recombinantly expressed and characterised.  
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5.2 Results 

 

5.2.1 Protein construct design 

           To functionalise the ZT system with chondroinductive moieties, motifs from 

N-cadherin and decorin were grafted within the first Z1 domain of Z1212 (Z1212
HAVD 

and Z1212
KLER, respectively). As the HAVD motif from N-cadherin is located within 

a β-strand, a similar site was chosen in the Z1 domain. A single native histidine 

(H27) residue is present in β-strand B of Z1, from which the subsequent three 

residues were mutated to form the HAVD motif (Figure 40a). By chance, H27 of Z1 

is flanked N-terminally by an alanine residue conserved in N-cadherin (Figure 38c). 

The decorin KLER motif is located within a loop of LRR 3, thus the Z1 CD loop 

was chosen to incorporate the motif. Specifically, the KLER peptide replaced five 

native residues so as to position the motif between a valine and leucine (Figure 40b). 

Leucine was conserved between the decorin orthologs compared herein and the 

amino-flanking residue was hydrophobic in all but one case (G. gallus) (Figure 39c).    
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Figure 40. Z1 domain diversification with N-cadherin and decorin functional 
motifs. Cartoon renderings show the crystal structure of the titin Z1 Ig domain 
(PDB: 2A38, Marino et al., 2006) with secondary structural elements labelled. (a) N-
cadherin chimera: β-strand B is highlighted (red) and the side chain of histidine 27 
is shown. The amino acid sequences of β-strand B in wt Z1212 and Z1212

HAVD are 
shown below with non-native residues highlighted (red). (b) Decorin chimera: the 
side chains of residues comprising the CD-loop are shown as sticks (red). The 
amino acid sequences of the CD-loop in wt Z1212 and Z1212

KLER are shown below with 
non-native residues highlighted (red).  
 

5.2.2 Purification and characterisation of Z1Z2HAVD and Z1Z2KLER 

            Due to the unexplored nature of Z1 diversification to generate N-cadherin 

and decorin chimeras (β-strand modification and CD-loop shortening) it was 

unknown whether the changes would be structurally tolerated. Therefore, the simpler 

Z1Z2HAVD and Z1Z2KLER chimeric Ig doublets were first produced and characterised. 

Both proteins could be successfully overexpressed in E. coli, with Z1Z2KLER 

produced at yields comparable to wt Z1Z2. However, a large proportion (~70%) of 

Z1Z2HAVD was retained in the insoluble fraction following lysate clarification (data 

not shown), suggesting that the protein was prone to misfolding or aggregation in 

vivo. The proteins were purified, as previously described for fibronectin chimeras 
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(section 3.2.2.2). Despite exhibiting insolubility when expressed heterologously, 

Z1Z2HAVD eluted as a single species by SEC (Figure 41a) without signs of 

degradation or aggregation (Figure 41b). Fractions from the main exclusion peak (Ve 

= 86.99 mL) were further purified by AEC (Figure 41c), which removed an 

unknown contaminant (~28 kDa) observed in all Z1Z2 preparations throughout this 

study (Figure 41d).  

 

Figure 41. Purification of Z1Z2HAVD. (a) Size-exclusion chromatogram from a 
Superdex 200 16/60 column. The void (Vo) and exclusion (Ve) volumes are 
indicated on the graph and the inset SDS-PAGE gel (b) shows samples taken from 
the boxed area (red) of the peak. (c) Anion-exchange chromatogram from a MonoQ 
5/50 GL column with inset SDS-PAGE gel (d) of fractions taken from individual 
peaks (numbers) or the boxed area (red). Molecular mass markers (M) in kDa are 
shown on each gel.  
 
 
 Z1Z2KLER was poorly resolved by SEC, as demonstrated by the presence of 

shoulders in the main peak (Ve = 89.82 mL) (Figure 42a). Importantly, the protein 

did not show a propensity to aggregate or degrade and lack of a symmetrical peak 
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appeared to be caused by contaminants in the latter half of the elution (Figure 42b). 

As with Z1Z2HAVD, an unknown contaminant was removed by AEC (Figure 42c) 

and Z1Z2KLER was purified to a high level of homogeneity for further analysis 

(Figure 42d).   

 

 
 
Figure 42. Purification of Z1Z2KLER. (a) Size-exclusion chromatogram from a 
Superdex 200 16/60 column. The void (Vo) and exclusion (Ve) volumes are 
indicated on the graph and the inset SDS-PAGE gel (b) shows samples taken from 
the boxed area (red) of the peak. (b) Anion-exchange chromatogram from a MonoQ 
5/50 GL column with inset SDS-PAGE gel (d) of fractions taken from individual 
peaks (numbers) or the boxed area (red). Molecular mass markers (M) in kDa are 
shown on each gel. 
 
 
5.2.3 Z1Z2HAVD and Z1Z2KLER crystallogenesis  

 In an attempt to observe the grafted HAVD and KLER motifs at atomic 

detail, Z1Z2HAVD and Z1Z2KLER were screened for crystallogenesis. Unlike the 

RGD-grafted Z1 domain, which was crystallised as a module of the Z1212 tandem, N-
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cadherin and decorin chimeras were screened as Z1Z2 Ig doublets for two reasons; 

firstly, Z1Z2 has one interdomain linker whilst Z1212 has three. Hypothetically, 

interdomain linkers have a negative impact on crystallogenesis because they increase 

conformational flexibility. Secondly, both wt Z1212 and Z1212
RGD crystallised in space 

group H3 only, an arrangement which produced disorder within the lattice. 

Therefore, Z1Z2HAVD and Z1Z2KLER, rather than Z1212
HAVD and Z1212

KLER, were 

screened in an attempt to improve crystallisation success and avoid lattice disorder 

associated with the four Ig tandem.   

 As described in Chapter 2 (section 2.5.2), screening of Z1Z2HAVD and 

Z1Z2KLER was carried out against commercial crystallisation matrices. No hits were 

identified for Z1Z2HAVD and only a single condition induced crystallisation of 

Z1Z2KLER (Figure 43a), from which the best X-ray diffraction data set was collected 

to 2.6 Å resolution (Figure 43b). The crystal had the symmetry of the hexagonal 

point group 6 with unit cell dimensions a = 149.90 b = 149.90 c = 150.60 Å. 

Attempts to recreate the initial hit for optimisation were unsuccessful. Data 

collection statistics are given in Table 11. 
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Figure 43. Z1Z2KLER crystals and X-ray diffraction pattern. (a) Crystals were 
grown in 1 M NH4H2PO4 pH 4.6, 100 mM sodium acetate at 22°C using the sitting 
drop vapour diffusion method. The image shows crystals exhibiting birefringence 
under cross-polarised light. Scale bar = 500 µm. (b) Representative diffraction 
pattern of a Z1Z2KLER crystal extending to 2.6 Å resolution.   
 
 
Table 11. Crystallographic data collection parameters and statistics. 
 

 Z1Z2KLER 
Beamline I03 (Diamond Light Source) 
Detector Pilatus3 6M 
Wavelength (Å) 0.97 
Resolution (Å) 29.87 – 3.30 (3.42 – 3.30) 
Point group  P6 
Unit cell dimensions   
a, b, c (Å) 149.90, 149.90, 150.60 
α, β, γ (°) 90.00, 90.00, 120.00 
Total observations 299922 
Unique reflections  28921 
Completeness (%) 100.0 (100.0) 
Multiplicity  10.4 (10.0) 
Rmerge 0.23 (0.94) 
Mean I/!(I) 12.68 (3.16) 
Statistics for the highest resolution shell are shown in parenthesis 
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Diffraction data was indexed, integrated and scaled to 3.3 Å resolution using 

the program XDS (Kabsch, 2010). The asymmetric unit was estimated to contain 

between 8 and 13 Ig domains by calculation of Matthews coefficients (VM) 

(Matthews, 1968) using the CCP4 software suite (Winn et al., 2011) (Table 12). 

Model building by molecular replacement is currently underway using the the Z1 

and Z2 Ig domains (PDB: 2A38) as individual search models.  Although Z1 and Z2 

share relatively low sequence identity (41%) they are structurally highly similar, 

with a rmsd of approximately 1.02 Å between their Cα backbones (Marino et al., 

2006).  Therefore, molecular replacement using the low resolution data available 

may be challenging. 

 

Table 12. Estimation of Z1Z2KLER asymmetric unit content. Matthews coefficient 
(VM) and solvent content values within the expected range for protein molecules are 
shown.  
 

Number of molecules 
per asymmetric unit VM (Å3/Da) Solvent content 

(%) 
8 3.05 59.73 
9 2.71 54.70 

10 2.44 49.67 
11 2.22 44.63 
12 2.04 39.60 
13 1.88 34.57 

 

 
5.2.4 Analysis of Z1Z2HAVD-Tel and Z1Z2KLER-Tel complexes 

 Since the successful interaction with Tel is of paramount importance for 

nanofibre assembly, Z1Z2HAVD and Z1Z2KLER were co-expressed with Tel to allow 
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for in vivo complexation (Z1Z2HAVD-Tel and Z1Z2KLER-Tel, respectively). The 

expression system comprised His6-tagged Tel and untagged Z1Z2 variants as 

previously described (section 3.2.2.2). Z1Z2HAVD-Tel eluted as a single species by 

SEC (Figure 44a) and both proteins were present in the main peak (Figure 44b). 

Fractions from the peak (Ve = 84.43 mL) were further purified by AEC (Figure 

44c,d).    

 
 
Figure 44. Purification of the Z1Z2HAVD-Tel complex. (a) Size-exclusion 
chromatogram from a Superdex 200 16/60 column. The void (Vo) and exclusion (Ve) 
volumes are indicated on the graph and the inset SDS-PAGE gel (b) shows 
fractions taken from the boxed area (red). (c) Anion-exchange chromatogram from a 
MonoQ 5/50 GL column with inset SDS-PAGE gel (d) of fractions taken from 
individual peaks (numbers) or the boxed area (red). A molecular mass marker (M) in 
kDa is shown on each gel and individual protein components of the complex are 
indicated. 
 
 
 Z1Z2KLER-Tel also eluted as a single species by SEC (Figure 45a) and co-

elution of each protein was observed without signs of degradation or aggregation 
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(Figure 45b).  Fractions from the main peak (Ve = 84.51 mL) were purified by AEC 

(Figure 45c,d) for comparison to the wt complex. 

 
 
Figure 45. Purification of the Z1Z2KLER-Tel complex. (a) Size-exclusion 
chromatogram from a Superdex 200 16/60 column. The void (Vo) and exclusion (Ve) 
volumes are indicated on the graph and the inset SDS-PAGE gel (b) shows 
fractions taken the boxed area (red). (c) Anion-exchange chromatogram from a 
MonoQ 5/50 GL column with inset SDS-PAGE gel (d) of fractions taken from 
individual peaks (numbers) or the boxed area (red). A molecular mass marker (M) in 
kDa is shown on each gel and individual protein components of the complex are 
indicated. 
 
 
 Following the observations of successful interaction between Z1Z2 N-

cadherin and decorin chimeras with Tel, the complexes were analysed by SEC to 

verify the correct stoichiometric ratios of components. Z1Z2HAVD-Tel eluted at 14.38 

mL (Figure 46a) and Z1Z2KLER-Tel at 14.44 mL (Figure 46b), both of which were 

comparable to the wt complex (Ve = 14.49). Therefore, it can be assumed that 

diversification of β-strand B or the CD-loop with peptides from N-cadherin and 
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decorin, respectively, does not induce confounding structural perturbations that 

prevent Tel binding or induce unwanted self-association.  

 
 
Figure 46. Characterisation of Z1Z2HAVD-Tel and Z1Z2KLER-Tel complexes. Size-
exclusion chromatograms of wt Z1Z2-Tel (black traces) overlaid with (a) Z1Z2HAVD-
Tel (green trace) or (b) Z1Z2KLER-Tel (purple trace) complexes on a Superdex 200 
10/300 column. The exclusion volumes (Ve) are indicated.  
 
 
5.2.5 Purification, characterisation and polymerisation capacity of Z1212

HAVD and 

Z1212
KLER 

 As with Z1Z2 N-cadherin and decorin chimeras, Z1212
HAVD and Z1212

KLER 

could be recombinantly expressed at yields comparable to wt Z1212. However, 

modification of β-strand B in Z1212
HAVD once again resulted in a significant 

proportion of the protein becoming insoluble following heterologous expression 

(data not shown). The soluble fraction of Z1212
HAVD eluted as multiple peaks by SEC 

(Figure 47a), suggesting that the protein is prone to aggregation. Despite this, the 

majority of the sample eluted as a single peak (Ve = 81.12 mL) and did not appear to 

degrade (Figure 47b). Z1212
HAVD was purified by AEC (Figure 47c,d) prior to 

analytical SEC and assembly analysis.    
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Figure 47. Purification of Z1212

HAVD. (a) Size-exclusion chromatogram from a 
Superdex 200 16/60 column. The void (Vo) and exclusion (Ve) volumes are 
indicated on the graph and the inset SDS-PAGE gel (b) shows fractions taken from 
individual peaks (numbers) or the boxed area (red). (c) Anion-exchange 
chromatogram from a MonoQ 5/50 GL column with inset SDS-PAGE gel (d) of 
fractions taken from individual peaks (numbers) or the boxed area (red). Molecular 
mass markers (M) in kDa are shown on each gel.  
 
 
  Following purification, the oligomeric state of Z1212

HAVD was estimated; the 

protein eluted at 14.03 mL by analytical SEC, which was comparable to that of wt 

Z1212 (Ve = 14.17) and confirms the monomeric nature of this variant (Figure 48a). It 

is interesting to note that the presence of higher order oligomers was not observed 

post-purification. This may indicate that a fraction of the protein had oligomerised in 

vivo due to misfolding but that the monomeric fraction is not prone to further self-

association. In the presence of Tel, Z1212
HAVD was shown to assemble into 

supramolecular species (ZTHAVD) by native PAGE (Figure 48b). However, the 

electrophoretic mobility profile was markedly different from wt ZT in that the 
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amount of unpolymerised Z1212
HAVD appeared to be less than Z1212 and the “blunt” 

assembly artefact was not present. These data would suggest that assembly is more 

efficient for Z1212
HAVD and that the nature of structural changes to β-strand B 

precludes “blunt” assembly by an unknown mechanism.    

 

  
 
Figure 48. Characterisation and polymerisation capacity of Z1212

HAVD. (a) Size-
exclusion chromatogram overlays of wt Z1212 (black trace) and Z1212

HAVD (green 
trace) on a Superdex 200 10/300 column. The exclusion volumes (Ve) are indicated. 
(b) Native PAGE of Z1212 and Z1212

HAVD and their corresponding assemblies in the 
presence of Tel (samples at 5 mg/mL) 24 hours post-mixing. Hypothetical “blunt” 
products are marked with asterisks (*).   
    
 
 
 Z1212

KLER was excluded in an unusual mixture of unresolved species  by SEC 

(Figure 49a). As with Z1Z2KLER, this could be an effect of contaminant co-elution or 

heterogeneity in the global conformation of the protein, since the first exclusion peak 

(Ve = 83.26 mL) corresponds to monomeric Z1212 and no evidence of degradation 

was observed by SDS-PAGE (Figure 49b). Fractions from both main peaks were 

pooled and purified by AEC, which removed some smaller MM contaminants 
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(Figure 49c,d).  

 

 
 
Figure 49. Purification of Z1212

KLER. (a) Size-exclusion chromatogram from a 
Superdex 200 16/60 column. The void (Vo) and exclusion (Ve) volumes are 
indicated on the graph and the inset SDS-PAGE gel (b) shows samples taken from 
the boxed area (red) of the peak. (c) Anion-exchange chromatogram from a MonoQ 
5/50 GL column with inset SDS-PAGE gel (d) of fractions taken from individual 
peaks (numbers) or the boxed area (red). Molecular mass markers (M) in kDa are 
shown on each gel.  
 
 
 Analytical SEC of purified Z1212

KLER yielded a single symmetrical peak (Ve = 

14.22) comparable to wt Z1212 (Ve = 14.17), thus confirming the monomeric state of 

this variant (Figure 50a). The generation of a single peak elution profile post-

purification suggested that the double peak observed prior to AEC was caused by the 

co-elution of contaminants that may have bound to Z1212
KLER and altered its 

conformation, thereby retarding the progress of some molecules through the column 

bed. In the presence of Tel, Z1212
KLER was found to form supramolecular species 

(ZTKLER) by native PAGE (Figure 50b). Unlike ZTHAVD, the electrophoretic mobility 
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profile of ZTKLER was near identical to wt ZT and the “blunt” assembly product 

could be observed.   

	

 
 
Figure 50. Characterisation and polymerisation capacity of Z1212

KLER. (a) Size 
exclusion chromatogram overlays of wt Z1212 (black trace) and Z1212

KLER (purple 
trace) on a Superdex 200 10/300 column. The exclusion volumes (Ve) are indicated. 
(b) Native PAGE of Z1212 and Z1212

KLER and their corresponding assemblies in the 
presence of Tel (samples at 5 mg/mL) 24 hours post-mixing. Hypothetical “blunt” 
products are marked with asterisks (*).   
 
 
 Unfortunately, more detailed analysis of ZTHAVD and ZTKLER was not 

possible due to the inability to observe the assemblies by TEM, for reasons 

discussed previously (section 3.2.2.6). However, retention of Tel binding capacity in 

grafted chimeras, along with native PAGE analysis and visual inspection, were 

highly supportive of nanofibre formation.   

 

5.2.6 Preliminary study with murine MSCs 

 Due to the non-adherent nature of the decorin motif, ZTKLER was not 

hypothesised to support cell adhesion. However, ZTHAVD might be expected to 
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enhance cell attachment if the inserted HAVD motif is capable of interacting with N-

cadherin ectodomains on the cell surface. Therefore, the interaction of mMSCs with 

ZTKLER and ZTHAVD was investigated. As with other nanofibre variants, ZTHAVD and 

ZTKLER were adsorbed to non-TCT polystyrene followed by seeding of mMSCs in 

serum-free medium. As predicted, the variants did not promote cell adhesion, nor 

were obvious changes in cell morphology observed (Figure 51).  

 

Figure 51. Murine MSCs cultured on ZTHAVD and ZTKLER. Phase contrast 
micrographs show a time lapse series of the same areas within the cultures at 2 
hours (top panels) and 12 hours (bottom panels) post-seeding. Fibronectin, ZTHAVD 
and ZTKLER were adsorbed to non-TCT plastic at a concentration of 10 µg/mL and 
cells were seeded at a density of 2 ⋅ 104 cells/cm2. Scale bar = 100 µm.  
 
 
5.3 Discussion  

 

 As observed in Z1212
RGD, diversification of the Z1 CD-loop in Z1212

KLER 

was well tolerated and did not result in unfavourable overall structural perturbations. 

The evidence for this conclusion came in part from Z1Z2KLER crystallogenesis, 

which necessitates a high level of stability and uniformity in the protein. Further, the 

cooperative interaction of Z1Z2KLER with Tel and retention of a monomeric state in 

Z1212
KLER are supportive of this conclusion. The completed crystal structure of 

Z1Z2KLER may provide important insights into the precise orientation of the motif 
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within the CD-loop, allowing for the rational modification of the loop to more 

precisely mimic that of decorin.  

 In the case of the N-cadherin chimera, Z1212
HAVD, modification of β-strand 

B caused a significant amount of the expressed protein to become insoluble. 

However, the soluble fraction of both Z1Z2HAVD and Z1212
HAVD behaved normally 

during purification and were comparable to fibronectin and decorin chimeras in 

terms of Tel binding and oligomeric state. During construct design, it was noted that 

the distal flanking residue of His28 in Z1 is an isoleucine (Ile23), the side chain of 

which is buried in the hydrophobic core. To incorporate the N-cadherin HAVD 

motif at this position, Ile23 was replaced with an alanine. In EC1 of N-cadherin, the 

side chain of Ala239 is also orientated towards the protein core, as is expected for 

hydrophobic residues (Figure 38b). Thus, the positioning of the HAVD motif in β-

strand B of Z1 was not predicted to be problematic in terms of destabilising the 

domain. However, expression of insoluble Z1Z2HAVD/Z1212
HAVD in E. coli indicated 

that these alterations in sequence composition were indeed problematic. This is most 

likely due to protein misfolding caused by β-hairpin destabilisation through mutation 

of Gly25. Surprisingly, a fraction of N-cadherin chimeras remained soluble and 

stable throughout the purification process. This would indicate that insertion of the 

HAVD motif in β-strand B is not innately intolerable for successful folding, but 

rather that the process is somewhat perturbed. The use of genetically-engineered 

bacterial cell lines that co-express chaperonins or are amenable to low temperature 

expression may improve the yield of this construct.      

 In the presence of Tel, Z1212
KLER and Z1212

HAVD were shown to generate 

supramolecular structures by native PAGE and the resulting assemblies, ZTKLER and 

ZTHAVD, may represent novel chondroinductive nanomaterials. As expected, ZTKLER 
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did not have an adhesive effect on mMSCs, thus the bioactivity of the KLER motif 

has not been proven experimentally. The KLER motif might be expected to illicit a 

chondroinductive effect due to its positioning in the CD-loop, a site demonstrated 

herein to be both bio-functionalisable and accessible in the context of the ZT system. 

This hypothesis is supported by the positive effects of a linear KLER peptide on the 

chondrogenic differentiation of hMSCs observed by Salinas and Anseth (2009). β-

strand B of Z1 was previously uncharacterised as a diversifiable site, thus 

incorporation of the HAVD motif will allow for the assessment of a secondary 

structural element to support functionalisation. HAV peptides derived from E-

cadherin have been shown to block E-cadherin mediated cellular processes including 

aggregation (Noë et al., 1999), whilst overexpression of N-cadherin can induce cell 

aggregation (Tamura et al., 1998).  Therefore, an assay could be established wherein 

a cell line expressing N-cadherin are dosed with Z1212
HAVD or ZTHAVD to investigate 

their ability to block N-cadherin mediated processes, thus confirming or revoking 

HAVD motif bioactivity in its current context.         
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Chapter 6 
 

ZT nanofibres as substrates for human embryonic stem cell 

self-renewal 

 

6.1 Introduction  

 

6.1.1 Substrates for pluripotent stem cell culture 

 PSCs, such as ESCs and iPSCs, can generate all adult cell types and thus 

have huge potential for treating a range of human diseases. However, traditional PSC 

culture protocols typically involve growing cells on murine fibroblast feeder layers 

or animal cell-derived substrates such as Matrigel and Geltrex, in culture medium 

containing foetal calf serum. The use of xenogeneic materials is a cause for concern 

when the ultimate aim is therapeutic application of stem cells due to the risk of 

pathogenic infection or adverse immunogenic reaction. For example, mouse 

fibroblasts are a source of the non-human sialic acid Neu5Gc that ESCs 

metabolically incorporate (Martin et al., 2005). Potential pathogenic transmissions 

from murine fibroblasts include lactate dehydrogenase-elevating virus (LDV) and 

retroviruses (Cobo et al., 2008; Carlson Scholz et al., 2011). Therefore, culture 

systems have been established to replace traditional components with xeno-free, 

chemically defined alternatives for the maintenance and propagation of clinical 

grade PSCs. To this end, xeno-free media have been developed such as Essential 8™ 

Medium (marketed by Thermo Fisher Scientific) and TeSR™2 (marketed by Stem 

Cell Technologies).  However, the choice of xeno-free substrates currently available 

is wider and can be broadly split into four categories: peptides, polymers, hydrogels 
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and ECM proteins (Sanjar and Jin, 2015).  

Peptide-based substrates are attractive due to their scalability under good 

manufacturing practice (GMP) conditions and synthetic nature. Most often, peptides 

exhibiting cell binding motifs derived from ECM proteins are covalently attached to 

glass or polystyrene surfaces to create adhesive substrates for PSC self-renewal. 

Examples include laminin-derived peptides (Derda et al., 2007) and cyclic RGD 

peptides (Kolhar et al., 2010). A peptide-acrylate composite, marketed as  

Synthemax by Corning, was developed by first depositing a carboxylic acid-

containing acrylate on culture surfaces and subsequent conjugation of a peptide 

containing the vitronectin RGD motif. Synthemax was successful in preserving both 

hESCs (Fadeev et al., 2010) and hiPSCs (Jin et al., 2012) in an undifferentiated state 

over more than ten passages.  However, a drawback of peptide substrates is the high 

production cost, making them less attractive when large numbers of cells must be 

propagated for clinical application (Sanjar and Jin, 2015).   

Polymer-derived substrates are typically cheaper to synthesise than those 

composed of peptides, making them a potential alternative. Poly(methyl vinyl ether-

alt-maleic anhydride) was found to preserve the phenotype of hESCs and hiPSCs 

following the screening of 90 different polymers (Brafman et al., 2010). Celiz et al. 

(2015) employed a similar microarray screening approach to identify a polymer 

composed of 5 (N-(4-hydroxyphenyl)methacrylamide) as suitable for PSC culture 

and demonstrated both pluripotent expansion and lineage specific differentiation of 

hESCs and hiPSCs on the substrate. Another polymer, aminopropyl methacrylamide, 

was capable of supporting hESCs, but only in the presence of BSA (Irwin et al., 

2011).  

Hydrogels offer the opportunity to culture cells in 3D and thus better imitate 
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the in vivo environment. Hyaluronic acid has been utilised as a hydrogel to culture 

hESCs (Gerecht et al., 2007). Recently, Higuchi et al. (2015) demonstrated that 

hESCs and hiPSCs could be cultured on polyvinylalcohol-co-itaconic acid hydrogels 

containing a vitronectin-derived peptide and explored the effects of substrate 

elasticity on self-renewal. They found that the stiffest hydrogel induced 

differentiation after five days of culture, whereas the more elastic hydrogels 

promoted self-renewal.  

Protein-based substrates can be either naturally derived or recombinantly 

produced. ECM proteins such as vitronectin and fibronectin can be purified from 

human or animal plasma and both have been utilised as substrates for PSCs. Plasma-

derived vitronectin was first used in combination with other ECM proteins including 

laminin and collagen IV to support hESC culture (Ludwig et al., 2006). Braam et al. 

(2008) demonstrated the self-renewal of three hESC lines on full-length recombinant 

vitronectin following prolonged culture. However, in this study, the recombinant 

vitronectin was expressed in a mouse myeloma cell line and was thus xenogeneic. 

Similarly, a recombinant fragment of vitronectin encompassing only the 

Somatomedin-B domain was capable of supporting hESCs in an undifferentiated 

state (Prowse et al., 2010). In this case, recombinant Somatomedin-B domain was 

produced heterologously in E. coli but adsorption to a surface required the use of 

nickel-coated culture plates that the protein attached to via a C-terminal His6-tag, 

thus increasing the complexity and cost of the coating procedure. hiPSCs have also 

been investigated; Rowland et al. (2010) reported attachment and expansion of three 

iPSC lines on human plasma vitronectin. Fibronectin is somewhat underrepresented 

as a substrate for PSC culture but is nonetheless effective; Baxter et al. (2009) 

showed that human plasma fibronectin can support the self-renewal of three hESC 



	 	 Chapter 6 
	

	 145 

lines under defined conditions. Furthermore, hESC attachment to fibronectin 

requires only the proteolytic 120 kDa central binding domain containing the RGD 

motif and synergy site (Kalaskar et al., 2013). As a primary component of Matrigel, 

many laminin isoforms have been explored for their ability to promote PSC 

attachment and self-renewal. Laminins are heterotrimeric glycoproteins comprising 

an α, β, and γ chain. Thus far, 12 chains have been discovered (5 α, 4 β, and 3 γ), 

which associate to form 16 unique laminin isoforms found predominantly in 

basement membranes (Hallmann et al., 2005). Isoform nomenclature is such that 

laminin 511 (LN-511) is composed of chains α5, β1, and γ1. LN-511 is expressed 

ubiquitously in most tissues and has been shown to support human PSC self-renewal 

(Rodin et al., 2010). Miyazaki et al. (2012) found that N-terminal truncated 

fragments of recombinant LN-332 and LN-511, which contain the integrin binding 

site, stimulated hESC and hiPSC attachment and maintained pluripotency. 

Recombinant LN-521 had the same effect on human PSCs as LN-511, and when 

combined with an E-cadherin fragment cloning efficacy was significantly increased 

over LN-521 alone (Rodin et al., 2014). However, like recombinant vitronectin 

substrates, the above described laminin derivatives were produced in mammalian 

expression systems, thus the high production cost and risk of 

pathogenic/immunogenic contamination remains. 

In summary, much research has been devoted to the development of defined 

and/or xeno-free substrates for PSC culture. Protein-based substrates may be 

advantageous, since they represent the natural ECM and are typically biocompatible; 

however, almost all are derived from mammalian expression systems. This is 

because prokaryotes lack the required eukaryotic translation machinery for correct 

folding and modification of some human proteins, such as vitronectin and 
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fibronectin, meaning that they cannot be easily produced in bacteria. Large-scale 

mammalian cell culture is also inherently more expensive than bacterial culture due 

to the increased cost of the media. High yield protein expression is most credible 

under GMP conditions when produced in E. coli, which can be easily scaled to high 

volume fermentation vessels (Gomes et al., 2012).Thus, there is a niche market for 

bacterially-expressed proteins that has yet to be exploited for PSC substrates.  

	

6.1.2 Integrins and their role in cell adhesion 

 Integrins are a family of cell adhesion receptors consisting of one α and one 

β subunit. Mammals have 18 α and 8 β subunits that combine in a non-covalent 

fashion upon activation to produce 24 unique heterodimers. Each subunit is a single-

pass transmembrane glycoprotein composed of multiple modules, of which the αA 

and βA domains represent the major ligand interaction sites in the α and β subunits, 

respectively (Arnaout et al., 2005) (Figure 52a). The binding of a ligand, such as a 

protein containing the RGD motif, induces both tertiary and quaternary alterations in 

integrin structure that initiate focal adhesion formation and downstream signalling 

cascades (Humphries et al., 2006). At the molecular level, focal adhesions are 

composed primarily of focal adhesion kinase (FAK), paxillin, talin and vinculin 

(Figure 52b). However, focal adhesions are highly dynamic and complex assemblies, 

the mechanistic actions of which may require a myriad of additional components 

depending on cell type, integrin engagement and nature of the extracellular stimuli. 

Following recruitment of focal plaque components, talin binds actin microfilaments 

comprising two polymers of actin subunits in a helical arrangement. These structures 

are termed nascent adhesions and may disassemble or mature into focal adhesions 

that generate stress fibres. The maturation process is mechanically stimulated by 



	 	 Chapter 6 
	

	 147 

actomyosin force generation, which is in turn induced by the small GTPases Rac1 

and RhoA (Chrzanowska-Wodnicka and Burridge, 1996; Burridge and Wennerberg, 

2004). Stress fibres are formed when individual actin microfilaments are cross-

linked by α-actinin and myosin II and may be classed as dorsal, ventral or transverse 

arcs depending upon their position in the cell. Actin filamentation induces projection 

of the plasma membrane, resulting in the formation of protrusions called 

lamellipodia and filopodia (Figure 52c). It is through a combination of nascent 

adhesion formation/dissociation, focal adhesion maturation and stress fibre 

contraction that cells migrate (Ciobanasu et al., 2012). 

 Several studies have shown the dependence of focal adhesion maturation on 

Rho-mediated myosin II contractility (Ridley and Hall, 1992; Chrzanowska-

Wodnicka and Burridge, 1996; Even-Ram et al., 2007; Pasapera et al., 2010; 

Burridge and Wittchen, 2013). However, it has long been noted that cells cultured on 

rigid substrates develop focal adhesions and stress fibres whilst those on soft 

substrates do not. It has been demonstrated that cells growing on rigid substrates 

have higher RhoA activity, thus the extracellular environment can stimulate focal 

adhesion and stress fibre formation by activating RhoA (Wozniak et al., 2003; 

Paszek et al., 2005). Further, RhoA activates the formin mDia1 to promote actin 

polymerisation. There is also a relationship between integrin engagement and focal 

adhesion formation through heterodimer-specific signalling. An example is the 

spatial and temporal expression of integrins α5β1 and αVβ3 during adhesion. α5β1 

is found in mature focal adhesions whilst αVβ3 expression is characteristic of 

nascent adhesions. This is because engagement of α5β1 reactivates RhoA signalling 

whilst αVβ3 does not (Danen et al., 2002). These differences in signalling manifest 

as distinctive morphologies in cells expressing specific heterodimers; cells 
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expressing α5β1 develop stress fibres whilst αVβ3-expressing cells typically have 

broad lamellipodia (Morgan et al., 2009). Similarly, Schiller et al. (2013) 

demonstrated distinctive roles of αV and β1-containing integrins during cell 

attachment to fibronectin; both subtypes activate RhoA in a cooperative manner but 

engagement of β1integrins was required for Rho-associated protein kinase (ROCK) 

signalling to activate myosin II. Conversely, αV integrin engagement promoted the 

activation of mDia1 and subsequent actin assembly.  
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Figure 52. Integrins, cell adhesion and cytoskeletal organisation. (a) Schematic representation of integrin α and β subunits; each contains 
an extracellular, transmembrane and cytoplasmic region. The extracellular segments are composed of multiple domains with distinct functions. 
It should be noted that not all α subunits contain an αA domain. Schematic adapted in part from Humphries et al. (2006). (b) Focal adhesion 
organisation; major components of the complex are depicted which includes focal adhesion kinase (FAK), paxillin (Pax), vinculin, talin and the 
actin crosslinker α-actinin. Myosin II is not included for simplicity but would be sandwiched between actin polymers as bipolar filaments. The 
organisation of components in the schematic is based on observations by Kanchanawong et al. (2010). (c) Cytoskeletal organisation and 
structures in migrating cells; actin structures (stress fibres and transverse arcs) form as the cell moves forward. As integrins interact with the 
substrate, dynamic nascent adhesions and robust focal adhesions are assembled which induce characteristic lamellipodia and filopodia at the 
leading edge. Schematic adapted from Ciobanasu et al. (2012).           



	 	 Chapter 6 
	

	 150 

6.1.3 Aims  

 Due to the inherently higher cost of recombinant protein production in 

eukaryotic expression systems and risk of contamination from immunogens or 

viruses, equivalents are needed for the propagation of clinical grade PSCs. Although 

human plasma-derived ECM proteins are an alternative, heterogeneous sampling 

techniques are known to cause batch to batch variability and the risk of pathogenic 

transmission remains (Gomes et al., 2012). Kalaskar et al. (2013) have previously 

shown that hESC lines HUES1 and HUES7 could attach to and proliferate on TCT 

polystyrene coated with human plasma fibronectin or the 120 kDa proteolytic 

fragment. The 120 kDa proteolytic fragment encompasses FnIII domains 1-10, thus 

it includes the integrin-binding RGD motif in FnIII 10. Interestingly, HUES7 cells 

did not attach to modified glass coverslips functionalised with a linear RGD 

hexapeptide (HUES1 cells were not tested). Therefore, HUES7 cells are either 

sensitive to the presentation of the RGD motif or they require additional interactions 

with the 120 kDa fibronectin fragment in conjunction with RGD for attachment and 

proliferation. However, the fact that the RGD hexapeptide in solution could partially 

inhibit HUES7 adhesion to both fibronectin and the 120 kDa fragment was 

indicative of a crucial role for the RGD motif in cell attachment (Kalaskar et al., 

2013).  

Here, the use of cell-adhesive ZT nanofibre variants as substrates for hESC 

culture is explored. It was hypothesised that by mimicking the fibronectin RGD 

motif in ZTRGD or by presenting the motif in its native form in ZTFn, we could 

promote attachment and proliferation of a hESC line. Both ZTRGD and ZTFn were 

tested for their ability to promote adhesion of HUES7 cells. Further, the specific 

integrin receptors involved in attachment to the recombinant substrates were 
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characterised and the self-renewal of HUES7 cells was investigated over multiple 

passages.  

 

6.2 Results 

 

6.2.1 Effect of functionalised nanofibres on hESC adhesion and spreading 

 To explore the usefulness of ZT nanofibre variants as recombinant substrates 

for hESC culture, the ability of ZTRGD and ZTFn to promote HUES7 cell adhesion 

and spreading was investigated. Cells cultured on Matrigel in serum-free mTeSR1 

medium were seeded on non-TCT polystyrene precoated with ZTRGD or ZTFn at 10 

µg/mL. Matrigel, human fibronectin and ZTRGE were included as control substrates. 

HUES7 cells did not attach to ZTRGE or ZTRGD. However, cells did adhere to ZTFn 

after a two-hour incubation and continued to attach and spread after four hours 

(Figure 53a). Quantification of cell attachment and area revealed that HUES7 cells 

attach to ZTFn at a rate comparable to fibronectin following two or four hours of 

incubation (Figure 53b). Furthermore, cell spreading on ZTFn was not significantly 

different from control Matrigel or fibronectin (p > 0.05) (Figure 53c).   
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Figure 53. Effects of functionalised ZT nanofibres and control substrates on 
hESC attachment and spreading. (a) Representative phase-contrast micrographs 
of HUES7 cells on different substrates 2 and 4 hours post-seeding. Scale bar = 100 
μm. Box plots show quantification of cell attachment (b) and spreading (c). Cell 
attachment to fibronectin and ZTFn is expressed as a percentage of the positive 
control (Matrigel) taken as 100%. Fibronectin and ZTFn were adsorbed at 
concentrations of 10 µg/mL and cells were seeded at a density of 1 × 104 cells/cm2. 
Statistically significant differences were determined by two sample t-tests. Box plots 
indicate the median (horizontal line), mean (square), 25th and 75th percentile values 
(box ends) and ± SD (error bars; n = 3)  
 
 
6.2.2 Influence of the substratum on hESC shape  

 The average surface area of HUES7 cells cultured on ZTFn for four hours 

tended to be smaller than those cultured on Matrigel or fibronectin, but the 

difference was not significant (Figure 54a). The effects of different substrates on cell 

shape were interrogated by calculating average circularity, AR and solidity using 

ImageJ (Figure 54b,c,d). Interestingly, the average AR of cells cultured on ZTFn was 
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found to be significantly higher than that of cells cultured on Matrigel, indicating 

asymmetric cell spreading on the former substrate. Frequency distributions of shape 

descriptors from all conditions tested and individual cells analysed are shown in 

Figure 55. Parameters derived from the distributions are detailed in Table 13.  

 
 
Figure 54. Effect of functionalised ZT nanofibres on hESC shape 4 hours post-
seeding. HUES7 cell shape was quantified in terms of average cell area (a), 
circularity (b), aspect ratio (c) and solidity (d) when cultured on Matrigel, fibronectin 
or ZTFn. Fibronectin and ZTFn were adsorbed at concentrations of 10 µg/mL. 50 cells 
were measured per condition for each replicate. Statistically significant differences 
were determined by two sample t-tests. Box plots indicate the median (horizontal 
line), mean (square), 25th and 75th percentile values (box ends) and ± SD (error 
bars; n = 3).  
 

The circularity of HUES7 cells was approximately normally distributed, but 

area, circularity and AR were significantly skewed (skewness > 1/-1) across the 

three substrates, suggesting that these parameters are influenced by Matrigel, 

fibronectin and ZTFn.  
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Figure 55. Frequency distributions of hESC shape parameters on different 
substrates. Histograms show the distribution of cell area, circularity, aspect ratio 
and solidity when cultured on Matrigel (a), fibronectin (b) and ZTFn (c). The mean 
values are indicated with standard deviations (n = 150). The coefficient of variation 
(CV) between biological replicates (n = 3) is also stated.  
 
 
 
Table 13. Morphological parameters for hESCs cultured on different substrates 
derived from all cells analysed.  

 Median Mean ± SD Skewness 
Area (µm2)    

Matrigel 1295 1354 ± 505 1.37 
Fibronectin 1255 1331 ± 511 2.07 
ZTFn 1108 1198 ± 465 1.30 

Circularity    
Matrigel 0.62 0.61 ± 0.17 -0.24 
Fibronectin 0.64 0.61 ± 0.16 -0.35 
ZTFn 0.60 0.59 ± 0.15 -0.07 

Aspect ratio    
Matrigel 1.31 1.47 ± 0.65 5.87 
Fibronectin 1.37 1.58 ± 0.76 4.16 
ZTFn 1.53 1.69 ±0.59 1.98 

Solidity    
Matrigel 0.86 0.83 ± 0.11 -1.21 
Fibronectin 0.87  0.85 ± 0.10 -1.55 
ZTFn 0.86 0.83 ± 0.10 -1.06 

 
 
6.2.3 Effects of ZTFn on focal adhesion formation and cytoskeletal organisation  

 Having demonstrated that HUES7 cells adhere to a polystyrene surface 

coated with ZTFn, we next wanted to investigate the effects of the substrate on focal 

adhesion formation and actin filamentation. For this, HUES7 cells were fixed after 4 

hours incubation on Matrigel, fibronectin or ZTFn and co-stained for F-actin and 

paxillin. The results show that cells on all three substrates exhibited actin 

filamentation and focal adhesion formation; however, marked differences were 

observed (Figure 56). Cells grown on Matrigel typically displayed abundant 

filopodia and focal adhesions around the cell periphery. Attachment to fibronectin 
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induced a similar morphology but focal adhesions appeared smaller and more 

disperse compared to cells grown on Matrigel. Intriguingly, cells on ZTFn presented 

a highly uniform morphology characterised by the absence of filopodia and presence 

of thick actin stress fibres terminating in large focal adhesions. Following two days 

of culture on ZTFn, defined stress fibres ending in focal adhesions could still be 

observed in HUES7 cell colonies, suggesting that the effects of the substrate on 

morphology are maintained throughout culture (Figure 57).  
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Figure 56. Focal 
adhesion formation 
and cytoskeletal 
organisation in hESCs 
cultured on different 
substrates. 
Immunofluorescence 
micrographs show 
representative z-series 
projections of HUES7 
cells 4 hours post-
seeding on Matrigel, 
fibronectin or ZTFn. 
Cells were stained for 
F-actin (green), paxillin 
(red) and DAPI (blue). 
Zoomed views of the 
boxed areas in the 
upper panels are shown 
below to highlight focal 
adhesions and 
cytoskeletal structures. 
Scale bars = 10 μm.  
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Figure 57. Focal adhesion formation and cytoskeletal organisation in hESCs 
on different substrates following 2 days of culture.  Immunofluorescence 
micrographs show representative z-series projections of HUES7 cells cultured on 
Matrigel or ZTFn. Cells were stained for F-actin (green) paxillin (red) and DAPI 
(blue). The bottom panels show zoomed views of the boxed areas from the merged 
panels. Scale bars = 50 μm.  
 
 
 Since stress fibre formation is mechanically stimulated by actomyosin 

contraction on rigid substrata, HUES7 cells were stained for zyxin to observe its 

distribution. Zyxin is known to relocate from focal adhesions to the actin 

cytoskeleton upon application of force in the form of cyclic stretching. This 

translocation is associated with recruitment of vasodilator-stimulated phosphoprotein 

(VASP) and stress fibre formation, which establishes zyxin as a mechanosensitive 

factor with a role in cytoskeletal remodelling (Yoshigi et al., 2005). HUES7 cells 

attached to ZTFn did express zyxin at focal adhesion sites, but it did not appear to be 

mobilised to stress fibres (Figure 58). Cells cultured on fibronectin or Matrigel also 

expressed zyxin in focal adhesions, with a staining pattern comparable to paxillin 

(Figure 58).   
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Figure 58. Zyxin recruitment to focal adhesions in hESCs cultured on different 
substrates. Immunofluorescence micrographs show representative z-series 
projections of HUES7 cells 4 hours post-seeding on Matrigel, fibronectin or ZTFn. 
Cells were stained for F-actin (green), zyxin (red) and DAPI (blue). Scale bar = 10 
μm.	 	
 

6.2.4 Differential integrin engagement on ZTFn  

 Due to the notable differences in cell morphology on ZTFn compared to 

Matrigel and fibronectin, integzrin engagement was explored by 

immunofluorescence. In the first instance, the presence of well-characterised 

fibronectin receptors α5β1 and αVβ3 integrins was tested. For this, antibodies to the 

unique α5 subunit and αVβ3 heterodimer were used to stain cells on each substrate 

following four hours of attachment. Analysis revealed that only cells on ZTFn 

showed focal adhesion-like staining for α5β1 integrin (Figure 59).  Interestingly, a 

subpopulation of spontaneously differentiated cells showed robust α5 staining on all 
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substrates. Evidence for the differentiated phenotype of this subpopulation came 

from the relative infrequency with which they were observed coupled with 

differences in morphology and focal adhesion characteristics.     
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Figure 59. Staining of hESCs on different substrates for integrin α5 subunit. 
Immunofluorescence micrographs show representative z-series projections of 
undifferentiated and spontaneously differentiated HUES7 cells 4 hours post-seeding 
on Matrigel, fibronectin or ZTFn. Cells were stained for F-actin (red) integrin α5 
subunit (green) and DAPI (blue). Scale bar = 50 μm.  
	

However, the fluorescence was diffuse and difficult to localise precisely to 

the areas of focal adhesion formation. Therefore, cells cultured on ZTFn were dual 

stained for paxillin and the α5 subunit for more precise localisation of the integrin. 

Despite a diffuse staining pattern for α5, an increased intensity was observed in 

focal adhesions formed on ZTFn (Figure 60a). Fluorescence intensity profiles of α5 

and paxillin were plotted for cells grown on ZTFn, Matrigel and fibronectin (Figure 

60b). Unsurprisingly, the α5 subunit was shown to colocalise strongly with paxillin 

in focal adhesions formed on ZTFn but not on Matrigel. Intensity profiles from cells 

grown on fibronectin gave the impression of α5-paxillin colocalisation, however, 

cells on this substrate rarely displayed prominent focal adhesions but rather a 

disperse paxillin expression at the cell periphery. Thus, it may be that α5β1 was 

mediating adhesion to fibronectin but the association was transient and infrequently 

resulted in the formation of mature focal adhesions.  
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Figure 60. Colocalisation of integrin α5 subunit with paxillin in hESCs. (a) 
Immunofluorescence micrographs show representative z-series projections of 
HUES7 cells 4 hours post-seeding on ZTFn. Cells were stained for paxillin (red), 
integrin α5 subunit (green) and DAPI (blue). The right panel shows a zoomed view 
of the boxed area within the merged panel. 16 colours look up tables were applied 
to paxillin and α5 micrographs using ImageJ. (b) Fluorescence intensity profiles of 
α5 (green line) and paxillin (red line) staining in cells cultured on Matrigel, 
fibronectin or ZTFn. The profiles from which the plots were generated are shown 
below (dashed white line). Scale bars = 10 μm. 
	

Immunofluorescence staining for the αVβ3 heterodimer did not produce 

focal adhesion-specific staining on any substrate (data not show). However, using an 

antibody against the αV subunit alone produced robust staining at the termini of 

actin filaments in cells cultured on ZTFn, but not on Matrigel or fibronectin (Figure 

61). We consequently investigated the presence of the β1 subunit, since αVβ1 is also 

known to selectively bind fibronectin (Zhang et al., 1993). Once again, no positive 

staining was observed in cells grown on any of the three substrates (data not shown). 
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Figure 61. Staining of hESCs on different substrates for integrin αV subunit. 
Representative immunofluorescence z-series projections of HUES7 cells 4 hours 
post-seeding on Matrigel, fibronectin or ZTFn. Cells were stained for F-actin (green) 
integrin αV subunit (red) and DAPI (blue). Scale bar = 50 μm.  
 
 

 Intriguingly, cells on ZTFn contained focal adhesions expressing the unique 

β5 subunit of the αVβ5 heterodimer, whilst focal adhesions on Matrigel and 

fibronectin were negative for this integrin (Figure 62). It can therefore be concluded 

that the initial attachment of HUES7 cells to ZTFn is facilitated by the combined 

activation of both α5β1 and αVβ5 integrins, although the potential contribution of 

other heterodimers not examined cannot be ruled out.  
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Figure 62. Staining of hESCs on different substrates for integrin β5 subunit. 
Representative immunofluorescence z-series projections of HUES7 cells 4 hours 
post-seeding on Matrigel, fibronectin or ZTFn. Cells were stained for F-actin (green) 
integrin β5 subunit (red) and DAPI (blue). Scale bar = 50 μm.   
 

Following two days of culture and early colony formation, HUES7 cells 

proliferating on ZTFn continued to express αVβ5 in focal adhesions but α5β1 was 

absent (Figure 63a,b). On the other hand, cells on Matrigel remained negative for 

αVβ5 but exhibited definitive staining for α5β1, which appeared more fibrillar than 

focal in nature (Figure 63a,b).  To further explore the appearance of fibrillar 

adhesion in cells grown on Matrigel, an antibody targeting fibronectin was used 

since the α5β1 integrin is the primary mediator of fibronectin fibrillogenesis 

(Ruoslahti and Obrink, 1996). As expected, cells on Matrigel appear to secrete and 

assemble more soluble fibronectin into insoluble fibrils compared to cells on ZTFn 

(Figure 64).                         
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Figure 63. Integrin engagement by hESCs on different substrates following 2 
days of culture.  Immunofluorescence micrographs show representative z-series 
projections of HUES7 cells cultured on Matrigel or ZTFn. Cells were stained for F-
actin (green), integrin α5 (a) or β5 (b) subunits (red) and DAPI (blue). The right 
panel shows a zoomed view of the boxed area within the merged panel. Scale bars 
= 25 μm.  
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6.2.5 hESC self-renewal on ZTFn 

 Following single cell dissociation of HUES7 colonies using an enzymatic 

reagent (Accutase) and seeding on various substrates for attachment experiments, 

cells were maintained in culture to investigate survival and morphology. It was 

found that cells seeded on Matrigel, fibronectin and ZTFn formed colonies after five 

days and that most cells exhibited a typical ESC morphology characterised by 

Figure 64. Staining of hESCs 
for fibronectin following 2 days 
of culture on different 
substrates. Immunofluorescence 
micrographs show representative 
z-series projections of HUES7 
cells cultured on Matrigel or ZTFn. 
Cells were stained for F-actin 
(green), fibronectin (red) and 
DAPI (blue). The bottom panel 
shows a zoomed view of the 
boxed area within the merged 
panel.  Scale bars = 25 μm. 
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prominent nucleoli and a high nuclear to cytoplasmic ratio (Figure 65a). Further, 

colonies formed on ZTFn were positive for pluripotency markers octamer-binding 

transcription factor 4 (OCT4) and NANOG (Figure 65b). Oct4 and NANOG are 

transcription factors essential for hESC self-renewal (Nichols et al., 1998; Hyslop et 

al., 2005; Wang et al., 2012). These results suggest that engagement of the αVβ5 

integrin via the RGD motif of FnIII 10 is sufficient to promote self-renewal of 

undifferentiated HUES7 cells in the short term. Therefore, an in-depth study was 

undertaken to evaluate the prospective use of ZTFn as a xeno-free substrate for ESC 

culture.   

	

Figure 65. Colony formation and typical morphology of hESCs cultured on 
different substrates as a single cell suspension. (a) Representative phase-
contrast micrographs of HUES7 cells grown on Matrigel, fibronectin or ZTFn after 5 
days of culture. The lower panels show zoomed areas to highlight cell morphology. 
(b) Immunofluorescence images of a colony grown on ZTFn and stained for 
pluripotency markers NANOG (green) and OCT4 (red). Cells were counterstained 
with DAPI (blue) and a merged image of the green and red channels in shown to 
the right. Scale bars = 100 µm. 
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 Firstly, the ability of ZTFn to promote clonal survival of HUES7 cells was 

investigated alongside Matrigel and fibronectin controls (Figure 66a). Clonogenic 

assays were carried out by Masoumeh Mousavinejad (University of Liverpool). 

Matrigel supported the most efficient cell survival and colony formation (efficacy of 

11.5%), which was significantly higher than fibronectin or ZTFn (p < 0.01). 

However, ZTFn did support clonal survival of HUES7 cells at an efficacy 

comparable to plasma fibronectin (p = 0.55).  Furthermore, cells on fibronectin 

appeared to proliferate more quickly than those on ZTFn as shown by a highly 

significant (p < 0.001) increase in the percentage of well area covered by colonies, 

despite clonal survival being comparable between the substrates (Figure 66b).   

	

	
	
Figure 66. Clonal survival of hESCs 4 days post-seeding. (a) Ratios of the 
number of colonies to the number of cells seeded on Matrigel, fibronectin or ZTFn. 
(b) Average area of wells covered by colonies. Cells were seeded at a density of 2.5 
× 103/cm2. Statistically significant differences were determined by two sample t-
tests. Box plots indicate the median (horizontal line), mean (square), 25th and 75th 
percentile values (box ends) and ± SD (error bars; n = 3).   
	
	
	
	
	
	
	
	

The self-renewal of HUES7 cells was evaluated following long-term (18 
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passages) culture on ZTFn and control fibronectin. For this, cells previously cultured 

on Matrigel were seeded on non-TCT polystyrene plates coated with ZTFn or 

fibronectin. The cells were passaged by loosening colonies with a non-enzymatic 

dissociation reagent followed by gentle scraping and trituration to generate 

aggregates of approximately 50-200 cells. The medium used was mTeSR1 which 

contains recombinant human fibroblast growth factor 2 (FGF2) and TGF-β 1 for 

feeder-free maintenance of an undifferentiated phenotype (Ludwig et al., 2006).  

Figure 67a shows images of HUES7 cells at passages five and ten of culture on 

ZTFn. The cells were found to adopt a typical morphology and continued to express 

OCT4 and NANOG (Figure 67b).  
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Figure 67. Long-term culture of hESCs on ZTFn. (a)  Representative phase-contrast micrographs of HUES7 cells cultured for 5 and 10 
passages on  ZTFn. The lower panels show zoomed areas to highlight cell morphology. (b) Immunofluorescence   images  of staining for 
pluripotency markers Oct4 (red) and  nanog (green). Cells were counterstained with DAPI (blue) and merged images of the red and green 
channels are shown in the lower panels. Scale bars = 100 µm.  
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 In order to quantify the level of pluripotency-associated transcription factor 

gene expression, RT-qPCR analysis was undertaken. Following one or five passages 

on fibronectin or ZTFn, cultures were assessed for expression levels of NANOG, 

OCT4 and SOX2 relative to control cells grown on Matrigel. Like OCT4 and 

NANOG, sex determining region Y-box 2 (SOX2) is a transcription factor essential 

for ESC self-renewal (Wang et al., 2012). It was found that cells cultured on ZTFn 

continue to express all three transcription factors, and no significant differences were 

observed compared to cells grown on control Matrigel (p > 0.05). However, it was 

noted that expression levels of SOX2 and NANOG were slightly lower in cells 

cultured on ZTFn and fibronectin relative to the control (Figure 68).   
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Figure 68. Relative quantification of pluripotency marker gene expression in 
hESCs cultured on different substrates for multiple passages. RT-qPCR 
analysis of (a) NANOG, (b) OCT4 and (c) SOX2 gene expression in HUES7 cells 
passaged 1 (P1) or 5 (P5) times on fibronectin (Fn) or ZTFn. Expression values are 
normalised to control cells grown on Matrigel (dashed horizontal line) using GAPDH 
and HPRT1 as reference genes. Box plots indicate the median (horizontal line), 
mean (square), 25th and 75th percentile values (box ends) and ± SD (error bars; n = 
3).  
 
6.2.6 Maintenance of hESC pluripotency  

 Although HUES7 cells were shown to self-renew on ZTFn and express key 

markers of an undifferentiated phenotype, it is also necessary to demonstrate that 

cells remain pluripotent following culture on novel scaffolds. To this end, HUES7 

cells grown on ZTFn and control fibronectin for thirteen passages were used to 

generate embryoid bodies (EBs) from single cell suspensions in ultra-low attachment 

96 well plates. EB formation and subsequent ESC differentiation was stimulated by 
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the use of a defined medium called APEL (Albumin Polyvinylalcohol Essential 

Lipids; Ng et al., 2008). The medium was not supplemented with factors to drive 

differentiation to a specific germ layer or somatic cell lineage, thus the EBs 

differentiated under “neutral” conditions. Following seeding and centrifugation to 

encourage aggregation, EBs were allowed to develop for ten days (Figure 69a) 

before transferring to a Matrigel-coated dish to promote attachment. After ten days 

of attachment, cells exhibiting multiple morphologies had begun to grow out from 

the EBs (Figure 69b) and were subsequently probed for markers of the three 

embryonic germ layers by immunofluorescence. 

	
Figure 69. Derivation of embryoid bodies from hESCs following prolonged 
cultured on protein substrates. Representative phase contrast micrographs show 
EBs differentiated from HUES7 cells cultured on fibronectin or ZTFn for 13 
passages. EBs at day 10 post-aggregation (a) and following a further 10 days of 
spreading on Matrigel (b) are shown. Zoomed views of the boxed areas are shown 
in the upper right corners to highlight cell morphology. Scale bar = 100 µm.   
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 The chosen markers were brachyury, GATA-binding transcription factor 6 

(GATA6) and nestin to represent mesoderm, endoderm and ectoderm-derived 

lineages, respectively. Brachyury is a transcription factor with a specific role in 

mesoderm differentiation during gastrulation (Kavka and Green, 1997). Another 

transcription factor, GATA6 is a key inducer of both extra-embryonic and definitive 

endoderm formation (Morrisey et al., 1998; Koutsourakis et al., 1999). Nestin is a 

class VI intermediate filament protein and marker of neural progenitor cells 

(Lendahl et al., 1990). Cells derived from both fibronectin (Figure 70a) and ZTFn 

(Figure 70b) were found to differentiate to lineages from all three germ layers in 

vitro, confirming the pluripotent nature of ESCs cultured on these substrates.
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Figure 70. Characterisation of the differentiation potential of hESCs following 
prolonged culture on protein substrates. Immunofluorescence micrographs 
show representative z-series projections of embryoid body-derived cells stained for 
markers of the three primary germ layers. HUES7 cells cultured on fibronectin (a) or 
ZTFn (b) for 13 passages were used to form embryoid bodies that were 
subsequently allowed to attach and spread on Matrigel-coated plastic wells. 
Following 10 days of culture, cells were stained for mesoderm-associated brachyury 
(green), endoderm-associated GATA6 (red) or ectoderm-associated nestin (red) 
and counterstained with DAPI (blue). Scale bars = 50 μm.  
 
	
6.2.7 Issues with culture on ZTFn 

             Despite the successful propagation of pluripotent HUES7 cells on ZTFn, 

issues with the culture protocol were noted. Firstly, cells on both fibronectin and 

ZTFn had a tendency to aggregate when nearing confluency. This resulted in larger 

than desired clumps of cells when passaging, because excessive shear force and/or 

non-enzymatic dissociation was required to separate the aggregates, which is 

undesirable when working with sensitive cell types. Larger aggregates would often 

attach to the protein substrates (Figure 71a), thus perpetuating the issue upon 

subsequent passaging. However, cells on Matrigel rarely formed such aggregates. 

Secondly, cells on both fibronectin and ZTFn were prone to spontaneous 

differentiation (Figure 71b).  It should be noted that differentiated regions were not 

manually removed throughout the course of this study, however, replicates were 

discarded where the proportion of pluripotent cells was less than ~90% of the 

population. Although spontaneous differentiation was observed on ZTFn (particularly 

around the periphery of aggregates), a similar level was noted in cells cultured on 

fibronectin. Further, a small degree of differentiation is considered normal in ESC 

cultures (Kent, 2009) and cells on Matrigel also displayed this characteristic.   
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Figure 71. hESC aggregation and spontaneous differentiation on protein 
substrates. Representative phase contrast micrographs show HUES7 cells 
cultured on fibronectin or ZTFn for 6 passages. (a) Multilayered aggregates of cells 
(red arrows) were observed to form on both substrates. (b) Areas of spontaneous 
differentiation (red dashed lines) surrounded by pluripotent stem cells. Scale bars = 
100 μm.  
 
	
            The cause of cell aggregation when cultured on fibronectin or ZTFn may be 

an effect of the non-TCT polystyrene. Indeed, several hESC lines have been cultured 

successfully on TCT vessels coated with fibronectin without reports of cell 

detachment or aggregation (Liu et al., 2006; Baxter et al., 2009). Untreated 

polystyrene is a highly hydrophobic polymer, which does not readily encourage cell 

attachment, thus culture vessels are treated to introduce a hydrophilic surface 

chemistry (Ramsey et al., 1984). The hydrophilic surface encourages the adsorption 

of serum components such as fibronectin and vitronectin to which cells can attach.  
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6.3 Discussion  

  

 The attachment of HUES7 cells to ZTFn was an exciting result because no 

previous studies (to the best of our knowledge) have investigated the use of a 

recombinant fibronectin fragment for hESC self-renewal. Although cell attachment 

to ZTFn was noticeably lower than Matrigel, it was not significantly different to 

control full-length human plasma fibronectin. The fact that cells attached to ZTFn, 

but not ZTRGD is intriguing; it has been shown that HUES7 cells do not attach to 

linear RGD peptides on silanised surfaces (Kalaskar et al., 2013). It was 

hypothesised that the lack of adhesion was due to an inaccessible conformation of 

the peptide induced by the coating protocol or that HUES7 cells require additional 

peptidic sequences of fibronectin for integrin engagement. The fact that HUES7 cells 

attached to ZTFn would suggest that only the RGD-containing FnIII 10 domain is 

required. Further, the failure of ZTRGD to promote attachment supports the 

hypothesis that the precise conformation of the RGD motif in FnIII 10 is required for 

successful integrin engagement in this cell line. It was noted during the attachment 

assays that cells on ZTFn presented a distinctive angular morphology when compared 

to other substrates. The observed difference was supported by an increase in the AR 

of cells cultured on ZTFn, indicating asymmetric spreading on this substrate. 

Visualisation of the actin cytoskeleton and focal adhesions revealed that cells on 

ZTFn form thick stress fibres terminating in large focal adhesions. However, stress 

fibre arrangement was not typical of those seen in migrating cells; rather they 

defined the cell periphery. It was hypothesised that ZTFn adsorption to polystyrene 

had created a stiffer substrate than Matrigel or fibronectin, thus influencing 

cytoskeletal organisation. However, zyxin was not mobilised to stress fibres, 
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suggesting that external stimulus is not the causative factor (Yoshigi et al., 2005). 

Therefore, integrin expression on different substrates was investigated to dissect 

heterodimer-specific engagement by ZTFn.       

 Cells cultured on ZTFn were found to engage αVβ5 and, to a lesser extent, 

α5β1. α5β1 expression was considered less robust than αVβ5 because staining was 

visually less intense for the former. Cells grown on Matrigel or fibronectin did not 

display specific staining for these integrins. This was expected in the case of 

Matrigel since PSCs interact with this substrate primarily through the laminin 

receptor α6β1 (Meng et al., 2010). However, HUES7 attachment to fibronectin has 

previously been shown to require α5β1 engagement (Kalaskar et al., 2013), thus the 

absence of specific staining on this substrate was unexpected. αVβ5 is a receptor for 

vitronectin (Smith et al., 1990) and binds via the RGD motif located immediately C-

terminal to the Somatomedin-B domain (Kim et al., 1994; Schvartz et al., 1999). 

Unlike fibronectin, the motif in vitronectin is positioned within an unstructured 

region of the protein (Mayasundari et al., 2004). Human PSC attachment to both 

plasma-derived and recombinant vitronectin was mediated by αVβ5 (Braam et al., 

2008; Prowse et al., 2010; Rowland et al., 2010). hiPSCs were again found to 

interact with the vitronectin-derived peptide in Synthemax via αVβ5 (Jin et al., 

2012). Intriguingly, iPSCs exhibited broader actin filaments and an upregulation of 

zyxin on Synthemax compared to cells on Matrigel, the former of which is consistent 

with our observations of HUES7 cells engaging αVβ5 through ZTFn. There is no 

compelling evidence for the binding of fibronectin to αVβ5 either in vitro or in vivo. 

HUES1 cells have been shown to express α5, αVβ3, α6 and β1 but not αVβ5 when 

cultured on fibronectin (Soteriou et al., 2013). Furthermore, unlike α5β1, which has 

a proven role in mechanotransduction and stress fibre formation via reactivation of 
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RhoA (Danen et al., 2002), little is known about the effects of αVβ5 engagement on 

cytoskeletal remodelling.  

Although immunostaining for αVβ5 was conclusive due to the presence of 

the heterodimer-specific β5 subunit, other αV-containing integrins known to bind the 

fibronectin RGD motif, αVβ1 and αVβ6 (Humphries et al., 2006), were not 

investigated. Targeting the β1 subunit did not produce specific staining despite 

probing with three different monoclonal antibodies, suggesting that αVβ1 is not 

involved in adhesion to Matrigel, fibronectin or ZTFn. However, attachment to 

Matrigel via the hypothetical engagement of α6β1 and the presence of α5 staining in 

cells attached to ZTFn is convincing evidence that the β1 subunit is present, thus 

positive staining would be expected. Therefore, ZTFn induced expression of αVβ1 

and αVβ6 in focal adhesions cannot be ruled out. It is interesting to note that cells on 

Matrigel appear to express more fibronectin than those attached to ZTFn, which on 

the former are assembled into fibrillar adhesions containing α5β1. Braam et al. 

(2008) observed the secretion of fibronectin by hESCs on feeder layers, but suggest 

that the majority was sourced from differentiated cells. The production of 

endogenous fibronectin is essential for murine ESC self-renewal on gelatine, to 

which the cells originally attach via fibronectin derived from serum (Hunt et al., 

2012). However, the role of fibronectin expression and fibrillation has not been 

explored in the context of hESC self-renewal. The results generated in the current 

study suggest that the level of fibronectin secretion observed on Matrigel is not 

necessary for maintenance of an undifferentiated phenotype on ZTFn. It may be that 

increased fibronectin expression is induced by factors present in Matrigel, since it is 

highly heterogeneous in nature and contains multiple ECM proteins and soluble 

factors.  
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The seemingly novel observation of FnIII 10 binding to αVβ5 poses many 

additional questions. Firstly, is the presentation of the RGD motif somehow altered 

in the context of ZTFn to induce a preferential switch for αVβ5 engagement? Indeed, 

the specific conformations of adsorbed fibronectin on different synthetic surfaces 

were shown to have a dramatic effect on integrin specificity (Keselowsky et al., 

2003). It may be that the loop is structurally restrained within the assembly, or that 

the titin-derived components have a contributory effect on αVβ5 recruitment caused 

by the overall shape of the assembly or an unexpected synergistic interaction with 

the integrin. Secondly, is αVβ5 engagement alone responsible for the unique 

morphology observed on ZTFn or is this a combinatorial effect of both αVβ5 and 

α5β1? It would be enlightening to inhibit αVβ5 with blocking antibodies to elucidate 

its contribution to HUES7 cell attachment to ZTFn and determine whether α5β1 

alone is sufficient for adhesion. Further, if the unique morphology is reverted to a 

more typical profile, one could conclude that αVβ5 is responsible for stress fibre 

formation. An alternative hypothesis is that ZTFn is clustered upon deposition, 

making for discreet adhesion spots to which robust focal plaques are formed. This 

could account for the larger focal adhesions observed in cells attached to ZTFn, 

through which force could be propagated by actomyosin contraction and subsequent 

stress fibre formation. The distribution of ZTFn on polystyrene surfaces could 

potentially be probed using a fluorophore-conjugated antibody against the titin 

component of the scaffold.  

HUES7 cells were observed to form colonies on ZTFn from single cell 

suspensions and the clonogenic potential of these cells was comparable to human 

plasma fibronectin, although colonies formed on ZTFn were significantly smaller 

than those formed on fibronectin. This difference may be the result of a more 
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compact morphology of colonies induced by ZTFn, or could indicate a difference in 

cell growth rates between the substrates. Thus, proliferation assays are required to 

investigate HUES7 cell doubling time when cultured on ZTFn. Furthermore, ROCK 

inhibitor was not required for survival or self-renewal (Watanabe et al., 2007). 

Encouraged by these results, we investigated the effects of long-term culture on 

ZTFn. The majority of cells continued to exhibit nuclear expression of OCT4 and 

NANOG whilst retaining a characteristic morphology over ten passages. Cells 

passaged five times on ZTFn and fibronectin presented a slight decrease of NANOG 

and SOX2 transcript levels compared to Matrigel, however, the differences were not 

significant. Unfortunately, RT-qPCR analysis at later passages (more than ten) was 

beyond the scope of this project. However, it would be enlightening to quantify 

pluripotency marker expression levels at later passages to determine whether they 

continue to decrease or stabilise as the cells adapt to the substrate.  

HUES7 cells retained a pluripotent phenotype following prolonged (thirteen 

passages) culture on ZTFn, as demonstrated by the presence of lineages from all three 

embryonic germ layers following differentiation. However, cells in culture are prone 

to the development of chromosomal abnormalities and human PSCs are no 

exception. Many studies have investigated the effects of culture environments on the 

genetic stability of hESCs and hiPSCs, revealing a loss of heterozygosity under a 

variety of conditions (Maitra et al., 2005; Mayshar et al., 2010; Närvä et al., 2010; 

Garitaonandia et al., 2015). Aberrations are commonly observed in chromosomes 

12, 17 and X that are similar to those found in germ cell tumours (Närvä et al., 

2010). Evidently, the genetic stability of PSCs cultured on novel substrates must be 

validated before such substrates could be utilised for scale-up and clinical 

application of stem cells. Therefore, cells grown on ZTFn should be karyotyped to 
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ensure that the substrate is not inducing chromosomal abnormalities before 

concluding that this substrate is suitable for ESC culture. There are several 

techniques commonly employed in karyotype analysis. The most conventional 

method, G-banding, is the least sensitive and can detect aneuploidy, mosaicism and 

gross chromosomal aberration. More recently, fluorescence in situ hybridisation 

probes have allowed for the detection of chromosomal abnormalities at 1-2 Mb 

resolution. Higher resolution yet can be achieved by gene arrays, which can detect 

deletions, insertions, amplifications and duplications (Rebuzzini et al., 2015).      

 The fact that HUES7 cells have a propensity to aggregate when cultured on 

ZTFn and fibronectin adsorbed on non-TCT plastic is problematic for cell 

propagation. It may be that the decrease in fibronectin secretion observed on ZTFn is 

responsible, meaning that cells are not robustly anchored to the substrate by their 

own ECM. Alternatively, secreted ECM proteins may not adsorb sufficiently to the 

hydrophobic polystyrene surface, or a combination of both factors. Increasing the 

coating concentration of ZTFn may help to mitigate this problem. 
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Chapter 7 

General discussion and future perspectives  

 

The design of biomaterials that best mimic the natural ECM is an ongoing 

pursuit in the fields of biotechnology and regenerative medicine. Due to their 

modular architecture and amenability to functionalisation, protein-based systems 

may be advantageous in this regard. 

The current work has demonstrated the functionalisation potential of the ZT 

nanofibre system and its applicability to cell-based applications. An important 

attribute of this system is the heterologous expression of its components in bacteria, 

since E. coli high density fermentation is the method of choice for recombinant 

protein production at an industrial level (Sørensen and Mortensen, 2005; Sahdev et 

al., 2008). By genetically encoding an RGD motif in the CD-loop of Z1, the 

potential of this site to successfully present a bioactive moiety in the context of 

ZTRGD could be evaluated in vitro. Additionally, protein domain exhibition was 

explored  in the form of ZTFn by the generation of a fusion chimera containing FnIII 

10 from fibronectin. Crucially, these diversifications were well tolerated structurally 

and did not inhibit assembly. Furthermore, loop grafting and domain fusion did not 

negatively affect protein yield, an important factor when considering the need for a 

high ratio of protein to bacterial cell mass to feasibly translate the technology to cell-

based applications.   

In Chapter 4, the bioactivity and accessibility of adhesive motifs in ZT 

variants were investigated using mMSCs. Here, the successful exhibition of the 

RGD motifs were confirmed through mMSC attachment and focal adhesion 

formation when cultured on adsorbed ZTRGD and ZTFn. However, reduced cell 
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spreading and differences in cell morphology associated with the initial stages of 

mMSC attachment to ZTRGD were suggestive of reduced integrin avidity in this 

variant. By solving the partial crystal structure of Z1212
RGD, it was envisioned that the 

specific conformation of the motif in the CD-loop could be determined and modified 

accordingly. Although the grafted loop could not be resolved, crystallisation of the 

protein emphasised the applicability of high resolution structural techniques to the 

system, which may allow for the structure-based rational improvement of future 

variants.  

A specific goal of ZT nanofibre functionalisation was to induce MSC 

chondrogenesis for cartilage tissue engineering and treatment of osteoarthritis. 

Unfortunately, osteogenic differentiation of mMSCs was observed when cultured on 

ZTRGD, and this phenotypic change appeared to be an artefact of the culture 

conditions rather than an effect of the substrate. These results highlighted the need 

for an alternative culture environment or additional chondroinductive cues for 

success in this aspect of the project. To this end, diversification of the Z1 CD-loop 

and β-strand B was undertaken to produce decorin and N-cadherin chimeras, 

respectively. However, due to time constraints, the bioactivity of ZTHAVD and 

ZTKLER was not characterised. 

A disadvantage of the ZT nanofibre system in its current form is that it does 

not constitute a mechanically stable 3D scaffold for cell encapsulation. Such 

environments are often advantageous since they better replicate the in vivo situation 

(Ravi et al., 2015). In the field of cartilage tissue engineering, 3D scaffolds 

(reviewed in section 4.1.2) have proven invaluable as customisable inducers of MSC 

chondrogenesis. Furthermore, such scaffolds are more applicable to clinical 

translation since they can be implanted at the site of injury. Therefore, a future 
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strategy for exploitation of bioactive ZT nanofibres could be their amalgamation 

with existing 3D scaffolds to generate nanocomposite materials.  

 

During the initial design of ZT nanofibres, it was intended that each building 

block would incorporate multiple bioactivities, thereby imbuing a degree of 

tailorability on the system in terms of the topographical distribution and nature of 

functional moieties. In the current work, monofunctionalisation of Z1212 components 

was achieved, but multifunctionalisation was not explored. Indeed, functionalities 

from fibronectin, N-cadherin and decorin were chosen with this objective in mind, 

because they represent a repertoire of cell-cell, cell-matrix and matrix-matrix 

interaction modulation involved in chondrogenic differentiation and cartilage 

homeostasis ( Oberlender and Tuan, 1994a; Oberlender and Tuan, 1994b; Bock et 

al., 2001; Singh and Schwarzbauer, 2014). Although different monofunctionalised 

Z1212 molecules could have been mixed to diversify the resultant assemblies, this 

route was not pursued since “doping” would remove control of functional group 

periodicity and may cause clustering. Therefore, it will be necessary to diversify 

different sites on the same module, for example the CD-loops of both Z1 and Z2 

domains, to fully explore the multifunctionalisation potential of the system.    

As discussed in Chapter 5, grafting the decorin KLER motif in the Z1 CD-

loop was well tolerated in terms of recombinant protein yield and stability. However, 

the generation of Z1212
HAVD by β-strand B modification caused a significant quantity 

of the protein to become insoluble, most likely through domain destabilisation. This 

issue highlighted the sensitivity of certain sites in the Ig domains to residue 

substitution, and stimulated the contemplation of methods for more rationally 

devised chimeras. Computer software designed to predict the effects of residue 
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mutation on protein stability was not applied in the current work. However, 

algorithms have been developed to estimate energy changes upon residue mutations 

and alterations in fold stability, which could be implemented in the future generation 

of ZT variants (Topham et al., 1997; Quan et al., 2016). Experimentally, changes in 

protein stability could be observed by differential scanning fluorimetry, a high 

throughput technique that could quickly characterise multiple variants. Additionally, 

more intricate bioinformatics tools could be utilised to model the likely 

conformation of exogenous peptides, their dynamics, the effects of grafting location 

and influence of flanking residues (Bakan et al., 2011; Jamroz et al., 2013; Webb 

and Sali, 2014). These parameters could also be studied experimentally using 

biophysical techniques such as X-ray crystallography and NMR.   

In Chapter 6, the self-renewal of hESCs when cultured on ZTFn is described. 

It was found that HUES7 cells could attach and spread on ZTFn at rates comparable 

to human plasma fibronectin, and that the cells acquired a unique morphology when 

cultured on the recombinant substrate. The formation of large focal adhesion foci 

and actin stress fibres in cells cultured on ZTFn was likely caused by the engagement 

of αVβ5 and α5β1 integrins. These findings were highly interesting as there have 

been no in-depth studies into the role of αVβ5 in mechanotransduction and 

cytoskeletal remodelling. Thus, the HUES7-ZTFn culture system could potentially be 

used to study the effects of αVβ5 engagement on Rac1 and RhoA dynamics. 

Importantly, changes in cell morphology did not correlate with a loss of embryonic 

phenotype. Following 5 passages on ZTFn, HUES7 cells expressed key pluripotency 

markers at levels comparable to cells grown on Matrigel and could differentiate to 

lineages from the three primary germ layers after 13 passages. These findings were 

highly supportive for the use of ZTFn as an alternative substrate for ESC propagation. 
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Evidently, these conclusions will need to be validated using a range of ESC and 

iPSC lines with different media to ensure that the findings are not exclusive to 

HUES7 cells cultured in mTeSR™1 medium. If ZTFn can support the self-renewal of 

a range of PSC lines, it is envisioned that production of the substrate could be scaled 

up by an industrial partner and marketed. Compared to currently available protein 

substrates produced in mammalian expression systems, the high yield production of 

ZTFn in E. coli may make the substrate a cheaper alternative. As such, ZTFn could be 

utilised in research for high throughput screening of PSCs, or possibly in the 

propagation of clinical-grade PSCs for therapeutic application.    

On a final note, rapid advances in synthetic biology and recombinant protein 

production are fuelling a resurgence in protein-based technologies. The discrete 

functional architecture of polyproteins native to the ECM means that they may be 

dissected at the molecular level to produce novel substrates imbued with defined 

functions. However, such approaches are as yet underexploited but could represent a 

new generation of biomaterial scaffolds on the horizon. 
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Appendix 
 

Nucleic acid sequences of protein constructs 

Both the nucleotide and translated amino acid sequence (yellow highlight) encoding 

the construct is given. The position of stop codons is represented by a dash (-).   

 

Tel in the pETM-11 vector 

ttaagaaggagatataccatgaaacatcaccatcaccatcaccccatgagcgattacgac 
L  R  R  R  Y  T  M  K  H  H  H  H  H  H  P  M  S  D  Y  D 

atccccactactgagaatctttattttcagggcgccatggctacctcagagctgagcagc 
I  P  T  T  E  N  L  Y  F  Q  G  A  M  A  T  S  E  L  S  S 

gaggtgtcggaggagaacagtgagcgccgggaggccttctgggcagaatggaaggatctg 
E  V  S  E  E  N  S  E  R  R  E  A  F  W  A  E  W  K  D  L 

acactgtccacacggcccgaggagggcagctccctgcatgaggaggacacccagagacat 
T  L  S  T  R  P  E  E  G  S  S  L  H  E  E  D  T  Q  R  H 

gagacctaccaccagcaggggcagagccaggtgctggtgcagcgctcgccctggctgatg 
E  T  Y  H  Q  Q  G  Q  S  Q  V  L  V  Q  R  S  P  W  L  M 

atgaggatgggcatcctcggccgtgggctgcaggagtaccagctgccctaccagcggtga 
M  R  M  G  I  L  G  R  G  L  Q  E  Y  Q  L  P  Y  Q  R  - 

 
 

TelN-RGD13 in the pETM-13 vector 

gagcggataacaattcccctctagaaataattttgtttaactttaagaaggagatatacc 
E  R  I  T  I  P  L  -  K  -  F  C  L  T  L  R  R  R  Y  T 

atgggtcatcatcatcatcatcatcgcggcgatagcggccgcggcgatatggctacctca 
M  G  H  H  H  H  H  H  R  G  D  S  G  R  G  D  M  A  T  S 

gagctgagcagcgaggtgtcggaggagaacagtgagcgccgggaggccttctgggcagaa 
E  L  S  S  E  V  S  E  E  N  S  E  R  R  E  A  F  W  A  E 

tggaaggatctgacactgtccacacggcccgaggagggcagctccctgcatgaggaggac 
W  K  D  L  T  L  S  T  R  P  E  E  G  S  S  L  H  E  E  D 

acccagagacatgagacctaccaccagcaggggcagagccaggtgctggtgcagcgctcg 
T  Q  R  H  E  T  Y  H  Q  Q  G  Q  S  Q  V  L  V  Q  R  S 

ccctggctgatgatgaggatgggcatcctcggccgtgggctgcaggagtaccagctgccc 
P  W  L  M  M  R  M  G  I  L  G  R  G  L  Q  E  Y  Q  L  P 

    taccagcggtgaggtaccggatccgaattcgagctccgt 
     Y  Q  R  -  G  T  G  S  E  F  E  L  R 
	
 

TelN-RGE13 in the pETM-13 vector 

ctctagaaataattttgtttaactttaagaaggagatataccatgggtcatcatcatcat 
L  -  K  -  F  C  L  T  L  R  R  R  Y  T  M  G  H  H  H  H 

catcatcgcggcgaaagcggccgcggcgaaatggctacctcagagctgagcagcgaggtg 
H  H  R  G  E  S  G  R  G  E  M  A  T  S  E  L  S  S  E  V 

tcggaggagaacagtgagcgccgggaggccttctgggcagaatggaaggatctgacactg 
S  E  E  N  S  E  R  R  E  A  F  W  A  E  W  K  D  L  T  L 



	 	 Appendix	

	 221 

tccacacggcccgaggagggcagctccctgcatgaggaggacacccagagacatgagacc 
S  T  R  P  E  E  G  S  S  L  H  E  E  D  T  Q  R  H  E  T 

taccaccagcaggggcagagccaggtgctggtgcagcgctcgccctggctgatgatgagg 
Y  H  Q  Q  G  Q  S  Q  V  L  V  Q  R  S  P  W  L  M  M  R 

atgggcatcctcggccgtgggctgcaggagtaccagctgccctaccagcggtgaggtacc 
M  G  I  L  G  R  G  L  Q  E  Y  Q  L  P  Y  Q  R  -  G  T 

 

TelC-RGD13 in the pETM-13 vector 

ttttgtttaactttaagaaggagatataccatggctacctcagagctgagcagcgaggtg 
F  C  L  T  L  R  R  R  Y  T  M  A  T  S  E  L  S  S  E  V 

tcggaggagaacagtgagcgccgggaggccttctgggcagaatggaaggatctgacactg 
S  E  E  N  S  E  R  R  E  A  F  W  A  E  W  K  D  L  T  L 

tccacacggcccgaggagggcagctccctgcatgaggaggacacccagagacatgagacc 
S  T  R  P  E  E  G  S  S  L  H  E  E  D  T  Q  R  H  E  T 

taccaccagcaggggcagagccaggtgctggtgcagcgctcgccctggctgatgatgagg 
Y  H  Q  Q  G  Q  S  Q  V  L  V  Q  R  S  P  W  L  M  M  R 

atgggcatcctcggccgtgggctgcaggagtaccagctgccctaccagcgcggcgatagc 
M  G  I  L  G  R  G  L  Q  E  Y  Q  L  P  Y  Q  R  G  D  S 

ggccgcggcgatccgcatcatcatcatcatcattaaggtaccggatccgaattcgagctc 
G  R  G  D  P  H  H  H  H  H  H  -  G  T  G  S  E  F  E  L 

 
 

TelC-RGE13 in the pETM-13 vector 

acaattcccctctagaaataattttgtttaactttaagaaggagatataccatggctacc 
T  I  P  L  -  K  -  F  C  L  T  L  R  R  R  Y  T  M  A  T 

tcagagctgagcagcgaggtgtcggaggagaacagtgagcgccgggaggccttctgggca 
S  E  L  S  S  E  V  S  E  E  N  S  E  R  R  E  A  F  W  A 

gaatggaaggatctgacactgtccacacggcccgaggagggcagctccctgcatgaggag 
E  W  K  D  L  T  L  S  T  R  P  E  E  G  S  S  L  H  E  E 

gacacccagagacatgagacctaccaccagcaggggcagagccaggtgctggtgcagcgc 
D  T  Q  R  H  E  T  Y  H  Q  Q  G  Q  S  Q  V  L  V  Q  R 

tcgccctggctgatgatgaggatgggcatcctcggccgtgggctgcaggagtaccagctg 
S  P  W  L  M  M  R  M  G  I  L  G  R  G  L  Q  E  Y  Q  L 

ccctaccagcgcggcgaaagcggccgcggcgaaccgcatcatcatcatcatcattaaggt 
     P  Y  Q  R  G  E  S  G  R  G  E  P  H  H  H  H  H  H   
 

TelC-RGD11 in the pETM-11 vector 

nnnnnnnnnnnnnctagaataattttgttnnctttaagaaggagatataccatgaaacat 
X  X  X  X  X  R  I  I  L  X  X  L  R  R  R  Y  T  M  K  H 

caccatcaccatcaccccatgagcgattacgacatccccactactgagaatctttatttt 
H  H  H  H  H  P  M  S  D  Y  D  I  P  T  T  E  N  L  Y  F 

cagggcgccatggcaacctcagagctgagcagcgaggtgtcggaggagaacagtgagcgc 
Q  G  A  M  A  T  S  E  L  S  S  E  V  S  E  E  N  S  E  R 

cgggaggccttctgggcagaatggaaggatctgacactgtccacacggcccgaggagggc 
R  E  A  F  W  A  E  W  K  D  L  T  L  S  T  R  P  E  E  G 

agctccctgcatgaggaggacacccagagacatgagacctaccaccagcaggggcagagc 
S  S  L  H  E  E  D  T  Q  R  H  E  T  Y  H  Q  Q  G  Q  S 

caggtgctggtgcagcgctcgccctggctgatgatgaggatgggcatcctcggccgtggg 
Q  V  L  V  Q  R  S  P  W  L  M  M  R  M  G  I  L  G  R  G 

ctgcaggagtaccagctgccctaccagagtggtcgcggcgatagcccctgaggtaccgga 
L  Q  E  Y  Q  L  P  Y  Q  S  G  R  G  D  S  P  -  G  T  G 
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TelC-RGE11 in the pETM-11 vector 

 
nnnnnnnnnnctagnaatattttgtttnctttaagaaggagatataccatgaaacatcac 
X  X  X  X  X  N  I  L  F  X  L  R  R  R  Y  T  M  K  H  H 

catcaccatcaccccatgagcgattacgacatccccactactgagaatctttattttcag 
H  H  H  H  P  M  S  D  Y  D  I  P  T  T  E  N  L  Y  F  Q 

ggcgccatggcaacctcagagctgagcagcgaggtgtcggaggagaacagtgagcgccgg 
G  A  M  A  T  S  E  L  S  S  E  V  S  E  E  N  S  E  R  R 

gaggccttctgggcagaatggaaggatctgacactgtccacacggcccgaggagggcagc 
E  A  F  W  A  E  W  K  D  L  T  L  S  T  R  P  E  E  G  S 

tccctgcatgaggaggacacccagagacatgagacctaccaccagcaggggcagagccag 
S  L  H  E  E  D  T  Q  R  H  E  T  Y  H  Q  Q  G  Q  S  Q 

gtgctggtgcagcgctcgccctggctgatgatgaggatgggcatcctcggccgtgggctg 
V  L  V  Q  R  S  P  W  L  M  M  R  M  G  I  L  G  R  G  L 

caggagtaccagctgccctaccagagtggtcgcggcgaaagcccctgaggtaccggatcc 
Q  E  Y  Q  L  P  Y  Q  S  G  R  G  E  S  P  -  G  T  G  S 

 
 

Z1Z2 in the pETM-11 vector 

ttaactttaagaaggagatataccatgaaacatcaccatcaccatcaccccatgagcgat 
L  T  L  R  R  R  Y  T  M  K  H  H  H  H  H  H  P  M  S  D 

tacgacatccccactactgagaatctttattttcagggcgccatggcaactcaagcaccg 
Y  D  I  P  T  T  E  N  L  Y  F  Q  G  A  M  A  T  Q  A  P 

acgtttacgcagccgttacaaagcgttgtggtactggagggtagtaccgcaacctttgag 
T  F  T  Q  P  L  Q  S  V  V  V  L  E  G  S  T  A  T  F  E 

gctcacattagtggttttccagttcctgaggtgagctggtttagggatggccaggtgatt 
A  H  I  S  G  F  P  V  P  E  V  S  W  F  R  D  G  Q  V  I 

tccacttccactctgcccggcgtgcagatctcctttagcgatggccgcgctaaactgacg 
S  T  S  T  L  P  G  V  Q  I  S  F  S  D  G  R  A  K  L  T 

atccccgccgtgactaaagccaacagtggacgatattccctgaaagccaccaatggatct 
I  P  A  V  T  K  A  N  S  G  R  Y  S  L  K  A  T  N  G  S 

ggacaagcgactagtactgctgagcttctcgtgaaagctgagacagcaccacccaacttc 
G  Q  A  T  S  T  A  E  L  L  V  K  A  E  T  A  P  P  N  F 

gttcaacgactgcagagcatgaccgtgagacaaggaagccaagtgagactccaagtgaga 
V  Q  R  L  Q  S  M  T  V  R  Q  G  S  Q  V  R  L  Q  V  R 

gtgactggaatccctacacctgtggtgaagttctaccgggatggagccgaaatccagagt 
V  T  G  I  P  T  P  V  V  K  F  Y  R  D  G  A  E  I  Q  S 

tcccttgatttccaaatttcacaagaaggcgacctctacagcttactgattgcagaagca 
S  L  D  F  Q  I  S  Q  E  G  D  L  Y  S  L  L  I  A  E  A 

taccctgaggactcagggacctattcagtaaatgccaccaatagcgttggaagagctact 
Y  P  E  D  S  G  T  Y  S  V  N  A  T  N  S  V  G  R  A  T 

tcgactgctgagctccttgtgcagggcgagacatgaggtaccggatccgaattcgagctc 
S  T  A  E  L  L  V  Q  G  E  T  -  G  T  G  S  E  F  E  L 

 

Z1Z2 in the pET-15b vector 

nnnnnnnnnnnntccccnctnnnntaattttgtttaactttaagaaggagatataccatg 
X  X  X  X  S  X  X  X  -  F  C  L  T  L  R  R  R  Y  T  M 

gcaactcaagcaccgacgtttacgcagccgttacaaagcgttgtggtactggagggtagt 
A  T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V  V  L  E  G  S 

accgcaacctttgaggctcacattagtggttttccagttcctgaggtgagctggtttagg 
T  A  T  F  E  A  H  I  S  G  F  P  V  P  E  V  S  W  F  R 

gatggccaggtgatttccacttccactctgcccggcgtgcagatctcctttagcgatggc 
D  G  Q  V  I  S  T  S  T  L  P  G  V  Q  I  S  F  S  D  G 

cgcgctaaactgacgatccccgccgtgactaaagccaacagtggacgatattccctgaaa 



	 	 Appendix	

	 223 

R  A  K  L  T  I  P  A  V  T  K  A  N  S  G  R  Y  S  L  K 
gccaccaatggatctggacaagcgactagtactgctgagcttctcgtgaaagctgagaca 
A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L  V  K  A  E  T 

gcaccacccaacttcgttcaacgactgcagagcatgaccgtgagacaaggaagccaagtg 
A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R  Q  G  S  Q  V 

agactccaagtgagagtgactggaatccctacacctgtggtgaagttctaccgggatgga 
R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K  F  Y  R  D  G 

gccgaaatccagagttcccttgatttccaaatttcacaagaaggcgacctctacagctta 
A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G  D  L  Y  S  L 

ctgattgcagaagcataccctgaggactcagggacctattcagtaaatgccaccaatagc 
L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V  N  A  T  N  S 

gttggaagagctacttcgactgctgagctccttgtgcagggcgagacatgaggtaccgga 
V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E  T  -  G  T  G 

 
 
Z1212 in the pETM-11 vector 

 
ccntngctagaatanttttgtttaactttaagaaggagatataccatgaaacatcaccat 
X  X  L  E  X  F  C  L  T  L  R  R  R  Y  T  M  K  H  H  H 

caccatcaccccatgagcgattacgacatccccactactgagaatctttattttcagggc 
H  H  H  P  M  S  D  Y  D  I  P  T  T  E  N  L  Y  F  Q  G 

gccatggcgactcaagcaccgacgtttacgcagccgttacaaagcgttgtggtactggag 
A  M  A  T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V  V  L  E 

ggtagtaccgcaacctttgaggctcacattagtggttttccagttcctgaggtgagctgg 
G  S  T  A  T  F  E  A  H  I  S  G  F  P  V  P  E  V  S  W 

tttagggatggccaggtgatttccacttccactctgcccggcgtgcagatctcctttagc 
F  R  D  G  Q  V  I  S  T  S  T  L  P  G  V  Q  I  S  F  S 

gatggccgcgctaaactgacgatccccgccgtgactaaagccaacagtggacgatattcc 
D  G  R  A  K  L  T  I  P  A  V  T  K  A  N  S  G  R  Y  S 

ctgaaagccaccaatggatctggacaagcgactagtactgctgagcttctcgtgaaagct 
L  K  A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L  V  K  A 

gagacagcaccacccaacttcgttcaacgactgcagagcatgaccgtgagacaaggaagc 
E  T  A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R  Q  G  S 

caagtgagactccaagtgagagtgactggaatccctacacctgtggtgaagttctaccgg 
Q  V  R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K  F  Y  R 

gatggagccgaaatccagagttcccttgatttccaaatttcacaagaaggcgacctctac 
D  G  A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G  D  L  Y 

agcttactgattgcagaagcataccctgaggactcagggacctattcagtaaatgccacc 
S  L  L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V  N  A  T 

aatagcgttggaagagctacttcgactgctgagctccttgtgcagggcgagacaactcaa 
N  S  V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E  T  T  Q 

gcaccgacgtttacgcagccgttacaaagcgttgtggtactggagggtagtaccgcaacc 
A  P  T  F  T  Q  P  L  Q  S  V  V  V  L  E  G  S  T  A  T 

tttgaggctcacattagtggttttccagttcctgaggtgagctggtttagggatggccag 
F  E  A  H  I  S  G  F  P  V  P  E  V  S  W  F  R  D  G  Q 

gtgatttccacttccactctgcccggcgtgcagatctcctttagcgatggccgcgctaaa 
V  I  S  T  S  T  L  P  G  V  Q  I  S  F  S  D  G  R  A  K 

ctgacgatccccgccgtgactaaagccaacagtggacgatattccctgaaagccaccaat 
L  T  I  P  A  V  T  K  A  N  S  G  R  Y  S  L  K  A  T  N 

ggatctggacaagcgactagtactgctgagcttctcgtgaaagctgagacagcaccaccc 
G  S  G  Q  A  T  S  T  A  E  L  L  V  K  A  E  T  A  P  P 

aacttcgttcaacgactgcagagcatgaccgtgagacaaggaagccaagtgagactccaa 
N  F  V  Q  R  L  Q  S  M  T  V  R  Q  G  S  Q  V  R  L  Q 

gtgagagtgactggaatccctacacctgtggtgaagttctaccgggatggagccgaaatc 
V  R  V  T  G  I  P  T  P  V  V  K  F  Y  R  D  G  A  E  I 

cagagttcccttgatttccaaatttcacaagaaggcgacctctacagcttactgattgca 
Q  S  S  L  D  F  Q  I  S  Q  E  G  D  L  Y  S  L  L  I  A 

gaagcataccctgaggactcagggacctattcagtaaatgccaccaatagcgttggaaga 
E  A  Y  P  E  D  S  G  T  Y  S  V  N  A  T  N  S  V  G  R 

gctacttcgactgctgaattactggttcaaggtgaatgaaagcttgcggccgcactcgag 
A  T  S  T  A  E  L  L  V  Q  G  E  -  K  L  A  A  A  L  E 
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Z1Z2RGD in the pETM-11 vector 

nnnnnnnnnnnnnnnnntctnnnannattttgtttaactttaagaaggagatataccatg 
X  X  X  X  X  X  X  X  X  F  C  L  T  L  R  R  R  Y  T  M 

aaacatcaccatcaccatcaccccatgagcgattacgacatccccactactgagaatctt 
K  H  H  H  H  H  H  P  M  S  D  Y  D  I  P  T  T  E  N  L 

tattttcagggcgccatggcaactcaagcaccgacgtttacgcagccgttacaaagcgtt 
Y  F  Q  G  A  M  A  T  Q  A  P  T  F  T  Q  P  L  Q  S  V 

gtggtactggagggtagtaccgcaacctttgaggctcacattagtggttttccagttcct 
V  V  L  E  G  S  T  A  T  F  E  A  H  I  S  G  F  P  V  P 

gaggtgagctggtttagggatggccaggtgatttccagtggtcgcggcgatagcagtccc 
E  V  S  W  F  R  D  G  Q  V  I  S  S  G  R  G  D  S  S  P 

ggcgtgcagatctcctttagcgatggccgcgctaaactgacgatccccgccgtgactaaa 
G  V  Q  I  S  F  S  D  G  R  A  K  L  T  I  P  A  V  T  K 

gccaacagtggacgatattccctgaaagccaccaatggatctggacaagcgactagtact 
A  N  S  G  R  Y  S  L  K  A  T  N  G  S  G  Q  A  T  S  T 

gctgagcttctcgtgaaagctgagacagcaccacccaacttcgttcaacgactgcagagc 
A  E  L  L  V  K  A  E  T  A  P  P  N  F  V  Q  R  L  Q  S 

atgaccgtgagacaaggaagccaagtgagactccaagtgagagtgactggaatccctaca 
M  T  V  R  Q  G  S  Q  V  R  L  Q  V  R  V  T  G  I  P  T 

cctgtggtgaagttctaccgggatggagccgaaatccagagttcccttgatttccaaatt 
P  V  V  K  F  Y  R  D  G  A  E  I  Q  S  S  L  D  F  Q  I 

tcacaagaaggcgacctctacagcttactgattgcagaagcataccctgaggactcaggg 
S  Q  E  G  D  L  Y  S  L  L  I  A  E  A  Y  P  E  D  S  G 

acctattcagtaaatgccaccaatagcgttggaagagctacttcgactgctgaattactg 
T  Y  S  V  N  A  T  N  S  V  G  R  A  T  S  T  A  E  L  L 

gttcaaggtgaatgaaagcttgcggccgcactcgagcaccaccaccaccaccactgagat 
V  Q  G  E  -  K  L  A  A  A  L  E  H  H  H  H  H  H  -  D 

 
 

Z1Z2RGD in the pET-15b vector 

atgacaactcaagcaccgacgtttacgcagccgttacaaagcgttgtggtactggagggt 
M  T  T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V  V  L  E  G 

agtaccgcaacctttgaggctcacattagtggttttccagttcctgaggtgagctggttt 
S  T  A  T  F  E  A  H  I  S  G  F  P  V  P  E  V  S  W  F 

agggatggccaggtgatttccagtggtcgcggcgatagcagtcccggcgtgcagatctcc 
R  D  G  Q  V  I  S  S  G  R  G  D  S  S  P  G  V  Q  I  S 

tttagcgatggccgcgctaaactgacgatccccgccgtgactaaagccaacagtggacga 
F  S  D  G  R  A  K  L  T  I  P  A  V  T  K  A  N  S  G  R 

tattccctgaaagccaccaatggatctggacaagcgactagtactgctgagcttctcgtg 
Y  S  L  K  A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L  V 

aaagctgagacagcaccacccaacttcgttcaacgactgcagagcatgaccgtgagacaa 
K  A  E  T  A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R  Q 

ggaagccaagtgagactccaagtgagagtgactggaatccctacacctgtggtgaagttc 
G  S  Q  V  R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K  F 

taccgggatggagccgaaatccagagttcccttgatttccaaatttcacaagaaggcgac 
Y  R  D  G  A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G  D 

ctctacagcttactgattgcagaagcataccctgaggactcagggacctattcagtaaat 
L  Y  S  L  L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V  N 

gccaccaatagcgttggaagagctacttcgactgctgaattactggttcaaggtgaatga 
A  T  N  S  V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E  - 
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Z1212
RGD in the pETM-11 vector  

nnnnnnnnntnccctctannnnnnttttgtttaactttaagaaggagatataccatgaaa 
X  X  X  X  P  L  X  X  F  C  L  T  L  R  R  R  Y  T  M  K 

catcaccatcaccatcaccccatgagcgattacgacatccccactactgagaatctttat 
H  H  H  H  H  H  P  M  S  D  Y  D  I  P  T  T  E  N  L  Y 

tttcagggcgccatggcgactcaagcaccgacgtttacgcagccgttacaaagcgttgtg 
F  Q  G  A  M  A  T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V 

gtactggagggtagtaccgcaacctttgaggctcacattagtggttttccagttcctgag 
V  L  E  G  S  T  A  T  F  E  A  H  I  S  G  F  P  V  P  E 

gtgagctggtttagggatggccaggtgatttccacttccactctgcccggcgtgcagatc 
V  S  W  F  R  D  G  Q  V  I  S  T  S  T  L  P  G  V  Q  I 

tcctttagcgatggccgcgctaaactgacgatccccgccgtgactaaagccaacagtgga 
S  F  S  D  G  R  A  K  L  T  I  P  A  V  T  K  A  N  S  G 

cgatattccctgaaagccaccaatggatctggacaagcgactagtactgctgagcttctc 
R  Y  S  L  K  A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L 

gtgaaagctgagacagcaccacccaacttcgttcaacgactgcagagcatgaccgtgaga 
V  K  A  E  T  A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R 

caaggaagccaagtgagactccaagtgagagtgactggaatccctacacctgtggtgaag 
Q  G  S  Q  V  R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K 

ttctaccgggatggagccgaaatccagagttcccttgatttccaaatttcacaagaaggc 
F  Y  R  D  G  A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G 

gacctctacagcttactgattgcagaagcataccctgaggactcagggacctattcagta 
D  L  Y  S  L  L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V 

aatgccaccaatagcgttggaagagctacttcgactgctgagctccttgtgcagggcgag 
N  A  T  N  S  V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E 

acaactcaagcaccgacgtttacgcagccgttacaaagcgttgtggtactggagggtagt 
T  T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V  V  L  E  G  S 

accgcaacctttgaggctcacattagtggttttccagttcctgaggtgagctggtttagg 
T  A  T  F  E  A  H  I  S  G  F  P  V  P  E  V  S  W  F  R 

gatggccaggtgatttccagtggtcgcggcgatagcagtcccggcgtgcagatctccttt 
D  G  Q  V  I  S  S  G  R  G  D  S  S  P  G  V  Q  I  S  F 

agcgatggccgcgctaaactgacgatccccgccgtgactaaagccaacagtggacgatat 
S  D  G  R  A  K  L  T  I  P  A  V  T  K  A  N  S  G  R  Y 

tccctgaaagccaccaatggatctggacaagcgactagtactgctgagcttctcgtgaaa 
S  L  K  A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L  V  K 

gctgagacagcaccacccaacttcgttcaacgactgcagagcatgaccgtgagacaagga 
A  E  T  A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R  Q  G 

agccaagtgagactccaagtgagagtgactggaatccctacacctgtggtgaagttctac 
S  Q  V  R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K  F  Y 

cgggatggagccgaaatccagagttcccttgatttccaaatttcacaagaaggcgacctc 
R  D  G  A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G  D  L 

tacagcttactgattgcagaagcataccctgaggactcagggacctattcagtaaatgcc 
Y  S  L  L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V  N  A 

accaatagcgttggaagagctacttcgactgctgaattactggttcaaggtgaatgaaag 
T  N  S  V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E  -  K 

 

Z1Z2RGE in the pETM-11 vector 

nnnnnnnnnnnccnnctannnnnnttttgtttaactttaagaaggagatataccatgaaa 
X  X  X  X  X  L  X  X  F  C  L  T  L  R  R  R  Y  T  M  K 

catcaccatcaccatcaccccatgagcgattacgacatccccactactgagaatctttat 
H  H  H  H  H  H  P  M  S  D  Y  D  I  P  T  T  E  N  L  Y 

tttcagggcgccatggcaactcaagcaccgacgtttacgcagccgttacaaagcgttgtg 
F  Q  G  A  M  A  T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V 

gtactggagggtagtaccgcaacctttgaggctcacattagtggttttccagttcctgag 
V  L  E  G  S  T  A  T  F  E  A  H  I  S  G  F  P  V  P  E 

gtgagctggtttagggatggccaggtgatttccagtggtcgcggcgagagcagtcccggc 
V  S  W  F  R  D  G  Q  V  I  S  S  G  R  G  E  S  S  P  G 
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gtgcagatctcctttagcgatggccgcgctaaactgacgatccccgccgtgactaaagcc 
V  Q  I  S  F  S  D  G  R  A  K  L  T  I  P  A  V  T  K  A 

aacagtggacgatattccctgaaagccaccaatggatctggacaagcgactagtactgct 
N  S  G  R  Y  S  L  K  A  T  N  G  S  G  Q  A  T  S  T  A 

gagcttctcgtgaaagctgagacagcaccacccaacttcgttcaacgactgcagagcatg 
E  L  L  V  K  A  E  T  A  P  P  N  F  V  Q  R  L  Q  S  M 

accgtgagacaaggaagccaagtgagactccaagtgagagtgactggaatccctacacct 
T  V  R  Q  G  S  Q  V  R  L  Q  V  R  V  T  G  I  P  T  P 

gtggtgaagttctaccgggatggagccgaaatccagagttcccttgatttccaaatttca 
V  V  K  F  Y  R  D  G  A  E  I  Q  S  S  L  D  F  Q  I  S 

caagaaggcgacctctacagcttactgattgcagaagcataccctgaggactcagggacc 
Q  E  G  D  L  Y  S  L  L  I  A  E  A  Y  P  E  D  S  G  T 

tattcagtaaatgccaccaatagcgttggaagagctacttcgactgctgaattactggtt 
Y  S  V  N  A  T  N  S  V  G  R  A  T  S  T  A  E  L  L  V 

caaggtgaatgaaagcttgcggccgcactcgagcaccaccaccaccaccactgagatccg 
Q  G  E  -  K  L  A  A  A  L  E  H  H  H  H  H  H  -  D  P 

  

Z1212
RGD in the pETM-11 vector 

nnnnnnntnnnnnctagnntnntttgtttaactttaagaaggagatataccatgaaacat 
X  X  X  X  X  X  X  X  C  L  T  L  R  R  R  Y  T  M  K  H 

caccatcaccatcaccccatgagcgattacgacatccccactactgagaatctttatttt 
H  H  H  H  H  P  M  S  D  Y  D  I  P  T  T  E  N  L  Y  F 

cagggcgccatggcgactcaagcaccgacgtttacgcagccgttacaaagcgttgtggta 
Q  G  A  M  A  T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V  V 

ctggagggtagtaccgcaacctttgaggctcacattagtggttttccagttcctgaggtg 
L  E  G  S  T  A  T  F  E  A  H  I  S  G  F  P  V  P  E  V 

agctggtttagggatggccaggtgatttccacttccactctgcccggcgtgcagatctcc 
S  W  F  R  D  G  Q  V  I  S  T  S  T  L  P  G  V  Q  I  S 

tttagcgatggccgcgctaaactgacgatccccgccgtgactaaagccaacagtggacga 
F  S  D  G  R  A  K  L  T  I  P  A  V  T  K  A  N  S  G  R 

tattccctgaaagccaccaatggatctggacaagcgactagtactgctgagcttctcgtg 
Y  S  L  K  A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L  V 

aaagctgagacagcaccacccaacttcgttcaacgactgcagagcatgaccgtgagacaa 
K  A  E  T  A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R  Q 

ggaagccaagtgagactccaagtgagagtgactggaatccctacacctgtggtgaagttc 
G  S  Q  V  R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K  F 

taccgggatggagccgaaatccagagttcccttgatttccaaatttcacaagaaggcgac 
Y  R  D  G  A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G  D 

ctctacagcttactgattgcagaagcataccctgaggactcagggacctattcagtaaat 
L  Y  S  L  L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V  N 

gccaccaatagcgttggaagagctacttcgactgctgagctccttgtgcagggcgagaca 
A  T  N  S  V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E  T 

actcaagcaccgacgtttacgcagccgttacaaagcgttgtggtactggagggtagtacc 
T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V  V  L  E  G  S  T 

gcaacctttgaggctcacattagtggttttccagttcctgaggtgagctggtttagggat 
A  T  F  E  A  H  I  S  G  F  P  V  P  E  V  S  W  F  R  D 

ggccaggtgatttccagtggtcgcggcgagagcagtcccggcgtgcagatctcctttagc 
G  Q  V  I  S  S  G  R  G  E  S  S  P  G  V  Q  I  S  F  S 

gatggccgcgctaaactgacgatccccgccgtgactaaagccaacagtggacgatattcc 
D  G  R  A  K  L  T  I  P  A  V  T  K  A  N  S  G  R  Y  S 

ctgaaagccaccaatggatctggacaagcgactagtactgctgagcttctcgtgaaagct 
L  K  A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L  V  K  A 

gagacagcaccacccaacttcgttcaacgactgcagagcatgaccgtgagacaaggaagc 
E  T  A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R  Q  G  S 

caagtgagactccaagtgagagtgactggaatccctacacctgtggtgaagttctaccgg 
Q  V  R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K  F  Y  R 

gatggagccgaaatccagagttcccttgatttccaaatttcacaagaaggcgacctctac 
D  G  A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G  D  L  Y 
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agcttactgattgcagaagcataccctgaggactcagggacctattcagtaaatgccacc 
S  L  L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V  N  A  T 

aatagcgttggaagagctacttcgactgctgaattactggttcaaggtgaatgaaagctt 
N  S  V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E  -  K  L 

 

Z1Z2Fn in the pET-15b vector  

ctactgagaatctttattttcagggcgccatggatgacaactcaagcaccgacgtttacg 
L  L  R  I  F  I  F  R  A  P  W  M  T  T  Q  A  P  T  F  T 

cagccgttacaaagcgttgtggtactggagggtagtaccgcaacctttgaggctcacatt 
Q  P  L  Q  S  V  V  V  L  E  G  S  T  A  T  F  E  A  H  I 

agtggttttccagttcctgaggtgagctggtttagggatggccaggtgatttccacttcc 
S  G  F  P  V  P  E  V  S  W  F  R  D  G  Q  V  I  S  T  S 

actctgcccggcgtgcagatctcctttagcgatggccgcgctaaactgacgatccccgcc 
T  L  P  G  V  Q  I  S  F  S  D  G  R  A  K  L  T  I  P  A 

gtgactaaagccaacagtggacgatattccctgaaagccaccaatggatctggacaagcg 
V  T  K  A  N  S  G  R  Y  S  L  K  A  T  N  G  S  G  Q  A 

actagtactgctgagcttctcgtgaaagctgagacagcaccacccaacttcgttcaacga 
T  S  T  A  E  L  L  V  K  A  E  T  A  P  P  N  F  V  Q  R 

ctgcagagcatgaccgtgagacaaggaagccaagtgagactccaagtgagagtgactgga 
L  Q  S  M  T  V  R  Q  G  S  Q  V  R  L  Q  V  R  V  T  G 

atccctacacctgtggtgaagttctaccgggatggagccgaaatccagagttcccttgat 
I  P  T  P  V  V  K  F  Y  R  D  G  A  E  I  Q  S  S  L  D 

ttccaaatttcacaagaaggcgacctctacagcttactgattgcagaagcataccctgag 
F  Q  I  S  Q  E  G  D  L  Y  S  L  L  I  A  E  A  Y  P  E 

gactcagggacctattcagtaaatgccaccaatagcgttggaagagctacttcgactgct 
D  S  G  T  Y  S  V  N  A  T  N  S  V  G  R  A  T  S  T  A 

gaattactggttcaaggtgaaactactcaatctgatgttccgagggacctggaagttgtt 
E  L  L  V  Q  G  E  T  T  Q  S  D  V  P  R  D  L  E  V  V 

gctgcgacccccaccagcctactgatcagctgggatgctcctgctgtcacagtgagatat 
A  A  T  P  T  S  L  L  I  S  W  D  A  P  A  V  T  V  R  Y 

tacaggatcacttacggagaaacaggaggaaatagccctgtccaggagttcactgtgcct 
Y  R  I  T  Y  G  E  T  G  G  N  S  P  V  Q  E  F  T  V  P 

gggagcaagtctacagctaccatcagcggccttaaacctggagttgattataccatcact 
G  S  K  S  T  A  T  I  S  G  L  K  P  G  V  D  Y  T  I  T 

gtgtatgctgtcactggccgtggagacagccccgcaagcagcaagccaatttccattaat 
V  Y  A  V  T  G  R  G  D  S  P  A  S  S  K  P  I  S  I  N 

taccgaacagaaattgactgaggtaccggatccgaattcgagctccgtcgacaagcttgc 
Y  R  T  E  I  D  -  G  T  G  S  E  F  E  L  R  R  Q  A  C 

 

Z1212
Fn in the pETM-11 vector 

nnnnnnnncccnctnnnnnaattttgtttaactttaagaaggagatataccatgaaacat 
X  X  X  X  X  X  X  F  C  L  T  L  R  R  R  Y  T  M  K  H 

caccatcaccatcaccccatgagcgattacgacatccccactactgagaatctttatttt 
H  H  H  H  H  P  M  S  D  Y  D  I  P  T  T  E  N  L  Y  F 

cagggcgccatggcaactcaagcaccgacgtttacgcagccgttacaaagcgttgtggta 
Q  G  A  M  A  T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V  V 

ctggagggtagtaccgcaacctttgaggctcacattagtggttttccagttcctgaggtg 
L  E  G  S  T  A  T  F  E  A  H  I  S  G  F  P  V  P  E  V 

agctggtttagggatggccaggtgatttccacttccactctgcccggcgtgcagatctcc 
S  W  F  R  D  G  Q  V  I  S  T  S  T  L  P  G  V  Q  I  S 

tttagcgatggccgcgctaaactgacgatccccgccgtgactaaagccaacagtggacga 
F  S  D  G  R  A  K  L  T  I  P  A  V  T  K  A  N  S  G  R 

tattccctgaaagccaccaatggatctggacaagcgactagtactgctgagcttctcgtg 
Y  S  L  K  A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L  V 

aaagctgagacagcaccacccaacttcgttcaacgactgcagagcatgaccgtgagacaa 



	 	 Appendix	

	 228 

K  A  E  T  A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R  Q 
ggaagccaagtgagactccaagtgagagtgactggaatccctacacctgtggtgaagttc 
G  S  Q  V  R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K  F 

taccgggatggagccgaaatccagagttcccttgatttccaaatttcacaagaaggcgac 
Y  R  D  G  A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G  D 

ctctacagcttactgattgcagaagcataccctgaggactcagggacctattcagtaaat 
L  Y  S  L  L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V  N 

gccaccaatagcgttggaagagctacttcgactgctgagctccttgtgcagggcgagaca 
A  T  N  S  V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E  T 

actcaagcaccgacgtttacgcagccgttacaaagcgttgtggtactggagggtagtacc 
T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V  V  L  E  G  S  T 

gcaacctttgaggctcacattagtggttttccagttcctgaggtgagctggtttagggat 
A  T  F  E  A  H  I  S  G  F  P  V  P  E  V  S  W  F  R  D 

ggccaggtgatttccacttccactctgcccggcgtgcagatctcctttagcgatggccgc 
G  Q  V  I  S  T  S  T  L  P  G  V  Q  I  S  F  S  D  G  R 

gctaaactgacgatccccgccgtgactaaagccaacagtggacgatattccctgaaagcc 
A  K  L  T  I  P  A  V  T  K  A  N  S  G  R  Y  S  L  K  A 

accaatggatctggacaagcgactagtactgctgagcttctcgtgaaagctgagacagca 
T  N  G  S  G  Q  A  T  S  T  A  E  L  L  V  K  A  E  T  A 

ccacccaacttcgttcaacgactgcagagcatgaccgtgagacaaggaagccaagtgaga 
P  P  N  F  V  Q  R  L  Q  S  M  T  V  R  Q  G  S  Q  V  R 

ctccaagtgagagtgactggaatccctacacctgtggtgaagttctaccgggatggagcc 
L  Q  V  R  V  T  G  I  P  T  P  V  V  K  F  Y  R  D  G  A 

gaaatccagagttcccttgatttccaaatttcacaagaaggcgacctctacagcttactg 
E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G  D  L  Y  S  L  L 

attgcagaagcataccctgaggactcagggacctattcagtaaatgccaccaatagcgtt 
I  A  E  A  Y  P  E  D  S  G  T  Y  S  V  N  A  T  N  S  V 

ggaagagctacttcgactgctgaattactggttcaaggtgaaactactcaatctgatgtt 
G  R  A  T  S  T  A  E  L  L  V  Q  G  E  T  T  Q  S  D  V 

ccgagggacctggaagttgttgctgcgacccccaccagcctactgatcagctgggatgct 
P  R  D  L  E  V  V  A  A  T  P  T  S  L  L  I  S  W  D  A 

cctgctgtcacagtgagatattacaggatcacttacggagaaacaggaggaaatagccct 
P  A  V  T  V  R  Y  Y  R  I  T  Y  G  E  T  G  G  N  S  P 

gtccaggagttcactgtgcctgggagcaagtctacagctaccatcagcggccttaaacct 
V  Q  E  F  T  V  P  G  S  K  S  T  A  T  I  S  G  L  K  P 

ggagttgattataccatcactgtgtatgctgtcactggccgtggagacagccccgcaagc 
G  V  D  Y  T  I  T  V  Y  A  V  T  G  R  G  D  S  P  A  S 

agcaagccaatttccattaattaccgaacagaaattgactgaggtaccggatccgaattc 
S  K  P  I  S  I  N  Y  R  T  E  I  D  -  G  T  G  S  E  F 

 

Fibronectin FnIII 8-11 in the pETM-11 vector  

ttcagggcgccatggatcatcccagctgttcctcctcccactgacctgcgattcaccaac 
F  R  A  P  W  I  I  P  A  V  P  P  P  T  D  L  R  F  T  N 

attggtccagacaccatgcgtgtcacctgggctccacccccatccattgatttaaccaac 
I  G  P  D  T  M  R  V  T  W  A  P  P  P  S  I  D  L  T  N 

ttcctggtgcgttactcacctgtgaaaaatgaggaagatgttgcagagttgtcaatttct 
F  L  V  R  Y  S  P  V  K  N  E  E  D  V  A  E  L  S  I  S 

ccttcagacaatgcagtggtcttaacaaatctcctgcctggtacagaatatgtagtgagt 
P  S  D  N  A  V  V  L  T  N  L  L  P  G  T  E  Y  V  V  S 

gtctccagtgtctacgaacaacatgagagcacacctcttagaggaagacagaaaacaggt 
V  S  S  V  Y  E  Q  H  E  S  T  P  L  R  G  R  Q  K  T  G 

cttgattccccaactggcattgacttttctgatattactgccaactcttttactgtgcac 
L  D  S  P  T  G  I  D  F  S  D  I  T  A  N  S  F  T  V  H 

tggattgctcctcgagccaccatcactggctacaggatccgccatcatcccgagcacttc 
W  I  A  P  R  A  T  I  T  G  Y  R  I  R  H  H  P  E  H  F 

agtgggagacctcgagaagatcgggtgccccactctcggaattccatcaccctcaccaac 
S  G  R  P  R  E  D  R  V  P  H  S  R  N  S  I  T  L  T  N 

ctcactccaggcacagagtatgtggtcagcatcgttgctcttaatggcagagaggaaagt 
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L  T  P  G  T  E  Y  V  V  S  I  V  A  L  N  G  R  E  E  S 
cccttattgattggccaacaatcaacagtttctgatgttccgagggacctggaagttgtt 
P  L  L  I  G  Q  Q  S  T  V  S  D  V  P  R  D  L  E  V  V 

gctgcgacccccaccagcctactgatcagctgggatgctcctgctgtcacagtgagatat 
A  A  T  P  T  S  L  L  I  S  W  D  A  P  A  V  T  V  R  Y 

tacaggatcacttacggagaaacaggaggaaatagccctgtccaggagttcactgtgcct 
Y  R  I  T  Y  G  E  T  G  G  N  S  P  V  Q  E  F  T  V  P 

gggagcaagtctacagctaccatcagcggccttaaacctggagttgattataccatcact 
G  S  K  S  T  A  T  I  S  G  L  K  P  G  V  D  Y  T  I  T 

gtgtatgctgtcactggccgtggagacagccccgcaagcagcaagccaatttccattaat 
V  Y  A  V  T  G  R  G  D  S  P  A  S  S  K  P  I  S  I  N 

taccgaacagaaattgacaaaccatcccagatgcaagtgaccgatgttcaggacaacagc 
Y  R  T  E  I  D  K  P  S  Q  M  Q  V  T  D  V  Q  D  N  S 

attagtgtcaagtggctgccttcaagttcccctgttactggttacagagtaaccaccact 
I  S  V  K  W  L  P  S  S  S  P  V  T  G  Y  R  V  T  T  T 

cccaaaaatggaccaggaccaacaaaaactaaaactgcaggtccagatcaaacagaaatg 
P  K  N  G  P  G  P  T  K  T  K  T  A  G  P  D  Q  T  E  M 

actattgaaggcttgcagcccacagtggagtatgtggttagtgtctatgctcagaatcca 
T  I  E  G  L  Q  P  T  V  E  Y  V  V  S  V  Y  A  Q  N  P 

agcggagagagtcagcctctggttcagactgcagtaaccaacattgatcgccctaaagga 
S  G  E  S  Q  P  L  V  Q  T  A  V  T  N  I  D  R  P  K  G 

 

Z1Z2HAVD in the pETM-11 vector 

nattcccctctngatattttgtttactttaagaaggagatataccatgaaacatcaccat 
X  S  P  X  D  I  L  F  T  L  R  R  R  Y  T  M  K  H  H  H 

caccatcaccccatgagcgattacgacatccccactactgagaatctttattttcagggc 
H  H  H  P  M  S  D  Y  D  I  P  T  T  E  N  L  Y  F  Q  G 

gccatggcaactcaagcaccgacgtttacgcagccgttacaaagcgttgtggtactggag 
A  M  A  T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V  V  L  E 

ggtagtaccgcaacctttgaggctcacgctgttgattttccagttcctgaggtgagctgg 
G  S  T  A  T  F  E  A  H  A  V  D  F  P  V  P  E  V  S  W 

tttagggatggccaggtgatttccacttccactctgcccggcgtgcagatctcctttagc 
F  R  D  G  Q  V  I  S  T  S  T  L  P  G  V  Q  I  S  F  S 

gatggccgcgctaaactgacgatccccgccgtgactaaagccaacagtggacgatattcc 
D  G  R  A  K  L  T  I  P  A  V  T  K  A  N  S  G  R  Y  S 

ctgaaagccaccaatggatctggacaagcgactagtactgctgagcttctcgtgaaagct 
L  K  A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L  V  K  A 

gagacagcaccacccaacttcgttcaacgactgcagagcatgaccgtgagacaaggaagc 
E  T  A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R  Q  G  S 

caagtgagactccaagtgagagtgactggaatccctacacctgtggtgaagttctaccgg 
Q  V  R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K  F  Y  R 

gatggagccgaaatccagagttcccttgatttccaaatttcacaagaaggcgacctctac 
D  G  A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G  D  L  Y 

agcttactgattgcagaagcataccctgaggactcagggacctattcagtaaatgccacc 
S  L  L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V  N  A  T 

aatagcgttggaagagctacttcgactgctgagctccttgtgcagggcgagacatgaggt 
N  S  V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E  T  -  G 

accggatccgaattcgagctccgtcgacaagcttgcggccgcactcgagcaccaccacca 
T  G  S  E  F  E  L  R  R  Q  A  C  G  R  T  R  A  P  P  P 

 
 
Z1212

HAVD in the pETM-11 vector  
 

aaacatcaccatcaccatcaccccatgagcgattacgacatccccactactgagaatctt 
K  H  H  H  H  H  H  P  M  S  D  Y  D  I  P  T  T  E  N  L 

tattttcagggcgccatggcaactcaagcaccgacgtttacgcagccgttacaaagcgtt 
Y  F  Q  G  A  M  A  T  Q  A  P  T  F  T  Q  P  L  Q  S  V 

gtggtactggagggtagtaccgcaacctttgaggctcacgctgttgattttccagttcct 
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V  V  L  E  G  S  T  A  T  F  E  A  H  A  V  D  F  P  V  P 
gaggtgagctggtttagggatggccaggtgatttccacttccactctgcccggcgtgcag 
E  V  S  W  F  R  D  G  Q  V  I  S  T  S  T  L  P  G  V  Q 

atctcctttagcgatggccgcgctaaactgacgatccccgccgtgactaaagccaacagt 
I  S  F  S  D  G  R  A  K  L  T  I  P  A  V  T  K  A  N  S 

ggacgatattccctgaaagccaccaatggatctggacaagcgactagtactgctgagctt 
G  R  Y  S  L  K  A  T  N  G  S  G  Q  A  T  S  T  A  E  L 

ctcgtgaaagctgagacagcaccacccaacttcgttcaacgactgcagagcatgaccgtg 
L  V  K  A  E  T  A  P  P  N  F  V  Q  R  L  Q  S  M  T  V 

agacaaggaagccaagtgagactccaagtgagagtgactggaatccctacacctgtggtg 
R  Q  G  S  Q  V  R  L  Q  V  R  V  T  G  I  P  T  P  V  V 

aagttctaccgggatggagccgaaatccagagttcccttgatttccaaatttcacaagaa 
K  F  Y  R  D  G  A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E 

ggcgacctctacagcttactgattgcagaagcataccctgaggactcagggacctattca 
G  D  L  Y  S  L  L  I  A  E  A  Y  P  E  D  S  G  T  Y  S 

gtaaatgccaccaatagcgttggaagagctacttcgactgctgagctccttgtgcagggc 
V  N  A  T  N  S  V  G  R  A  T  S  T  A  E  L  L  V  Q  G 

gagacaactcaagcaccgacgtttacgcagccgttacaaagcgttgtggtactggagggt 
E  T  T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V  V  L  E  G 

agtaccgcaacctttgaggctcacattagtggttttccagttcctgaggtgagctggttt 
S  T  A  T  F  E  A  H  I  S  G  F  P  V  P  E  V  S  W  F 

agggatggccaggtgatttccacttccactctgcccggcgtgcagatctcctttagcgat 
R  D  G  Q  V  I  S  T  S  T  L  P  G  V  Q  I  S  F  S  D 

ggccgcgctaaactgacgatccccgccgtgactaaagccaacagtggacgatattccctg 
G  R  A  K  L  T  I  P  A  V  T  K  A  N  S  G  R  Y  S  L 

aaagccaccaatggatctggacaagcgactagtactgctgagcttctcgtgaaagctgag 
K  A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L  V  K  A  E 

acagcaccacccaacttcgttcaacgactgcagagcatgaccgtgagacaaggaagccaa 
T  A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R  Q  G  S  Q 

gtgagactccaagtgagagtgactggaatccctacacctgtggtgaagttctaccgggat 
V  R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K  F  Y  R  D 

ggagccgaaatccagagttcccttgatttccaaatttcacaagaaggcgacctctacagc 
G  A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G  D  L  Y  S 

ttactgattgcagaagcataccctgaggactcagggacctattcagtaaatgccaccaat 
L  L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V  N  A  T  N 

agcgttggaagagctacttcgactgctgaattactggttcaaggtgaatgaaagcttgcg 
S  V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E  -  K  L  A 

 
 
Z1Z2KLER in pETM-11 vector 
 

nnnnnnnnnnnnnnctagantnntttgttnnntttaagaaggagatataccatgaaacat 
X  X  X  X  X  -  X  X  L  X  X  L  R  R  R  Y  T  M  K  H 

caccatcaccatcaccccatgagcgattacgacatccccactactgagaatctttatttt 
H  H  H  H  H  P  M  S  D  Y  D  I  P  T  T  E  N  L  Y  F 

cagggcgccatggcaactcaagcaccgacgtttacgcagccgttacaaagcgttgtggta 
Q  G  A  M  A  T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V  V 

ctggagggtagtaccgcaacctttgaggctcacattagtggttttccagttcctgaggtg 
L  E  G  S  T  A  T  F  E  A  H  I  S  G  F  P  V  P  E  V 

agctggtttagggatggccaggtgaaactcgaacgcctgcccggcgtgcagatctccttt 
S  W  F  R  D  G  Q  V  K  L  E  R  L  P  G  V  Q  I  S  F 

agcgatggccgcgctaaactgacgatccccgccgtgactaaagccaacagtggacgatat 
S  D  G  R  A  K  L  T  I  P  A  V  T  K  A  N  S  G  R  Y 

tccctgaaagccaccaatggatctggacaagcgactagtactgctgagcttctcgtgaaa 
S  L  K  A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L  V  K 

gctgagacagcaccacccaacttcgttcaacgactacagagcatgaccgtgagacaagga 
A  E  T  A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R  Q  G 

agccaagtgagactccaagtgagagtgactggaatccctacacctgtggtgaagttctac 
S  Q  V  R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K  F  Y 

cgggatggagccgaaatccagagttcccttgatttccaaatttcacaagaaggcgacctc 
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R  D  G  A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G  D  L 
tacagcttactgattgcagaagcataccctgaggactcagggacctattcagtaaatgcc 
Y  S  L  L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V  N  A 

accaatagcgttggaagagctacttcgactgctgagctccttgtgcagggcgagacatga 
T  N  S  V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E  T  - 

 
 
 
Z1212

KLER in the pETM-11 vector 
 

nnnnnnnnnnnnnncnntnnngaataattttgtttaactttaagaaggagatataccatg 
X  X  X  X  X  X  X  E  -  F  C  L  T  L  R  R  R  Y  T  M 

aaacatcaccatcaccatcaccccatgagcgattacgacatccccactactgagaatctt 
K  H  H  H  H  H  H  P  M  S  D  Y  D  I  P  T  T  E  N  L 

tattttcagggcgccatggcaactcaagcaccgacgtttacgcagccgttacaaagcgtt 
Y  F  Q  G  A  M  A  T  Q  A  P  T  F  T  Q  P  L  Q  S  V 

gtggtactggagggtagtaccgcaacctttgaggctcacattagtggttttccagttcct 
V  V  L  E  G  S  T  A  T  F  E  A  H  I  S  G  F  P  V  P 

gaggtgagctggtttagggatggccaggtgaaactcgaacgcctgcccggcgtgcagatc 
E  V  S  W  F  R  D  G  Q  V  K  L  E  R  L  P  G  V  Q  I 

tcctttagcgatggccgcgctaaactgacgatccccgccgtgactaaagccaacagtgga 
S  F  S  D  G  R  A  K  L  T  I  P  A  V  T  K  A  N  S  G 

cgatattccctgaaagccaccaatggatctggacaagcgactagtactgctgagcttctc 
R  Y  S  L  K  A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L 

gtgaaagctgagacagcaccacccaacttcgttcaacgactgcagagcatgaccgtgaga 
V  K  A  E  T  A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R 

caaggaagccaagtgagactccaagtgagagtgactggaatccctacacctgtggtgaag 
Q  G  S  Q  V  R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K 

ttctaccgggatggagccgaaatccagagttcccttgatttccaaatttcacaagaaggc 
F  Y  R  D  G  A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G 

gacctctacagcttactgattgcagaagcataccctgaggactcagggacctattcagta 
D  L  Y  S  L  L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V 

aatgccaccaatagcgttggaagagctacttcgactgctgagctccttgtgcagggcgag 
N  A  T  N  S  V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E 

acaactcaagcaccgacgtttacgcagccgttacaaagcgttgtggtactggagggtagt 
T  T  Q  A  P  T  F  T  Q  P  L  Q  S  V  V  V  L  E  G  S 

accgcaacctttgaggctcacattagtggttttccagttcctgaggtgagctggtttagg 
T  A  T  F  E  A  H  I  S  G  F  P  V  P  E  V  S  W  F  R 

gatggccaggtgatttccacttccactctgcccggcgtgcagatctcctttagcgatggc 
D  G  Q  V  I  S  T  S  T  L  P  G  V  Q  I  S  F  S  D  G 

cgcgctaaactgacgatccccgccgtgactaaagccaacagtggacgatattccctgaaa 
R  A  K  L  T  I  P  A  V  T  K  A  N  S  G  R  Y  S  L  K 

gccaccaatggatctggacaagcgactagtactgctgagcttctcgtgaaagctgagaca 
A  T  N  G  S  G  Q  A  T  S  T  A  E  L  L  V  K  A  E  T 

gcaccacccaacttcgttcaacgactgcagagcatgaccgtgagacaaggaagccaagtg 
A  P  P  N  F  V  Q  R  L  Q  S  M  T  V  R  Q  G  S  Q  V 

agactccaagtgagagtgactggaatccctacacctgtggtgaagttctaccgggatgga 
R  L  Q  V  R  V  T  G  I  P  T  P  V  V  K  F  Y  R  D  G 

gccgaaatccagagttcccttgatttccaaatttcacaagaaggcgacctctacagctta 
A  E  I  Q  S  S  L  D  F  Q  I  S  Q  E  G  D  L  Y  S  L 

ctgattgcagaagcataccctgaggactcagggacctattcagtaaatgccaccaatagc 
L  I  A  E  A  Y  P  E  D  S  G  T  Y  S  V  N  A  T  N  S 

gttggaagagctacttcgactgctgaattactggttcaaggtgaatgaaagcttgcggcc 
V  G  R  A  T  S  T  A  E  L  L  V  Q  G  E  -  K  L  A  A 

 
 
 
 


