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Abstract: Public health responses to HIV epidemics have
long relied on epidemiological modelling analyses to help
prospectively project and retrospectively estimate the
impact, cost-effectiveness, affordability, and investment
returns of interventions, and to help plan the design of
evaluations. But translating model output into policy
decisions and implementation on the ground is chal-
lenged by the differences in background and expectations
of modellers and decision-makers. As part of the PLoS
Medicine Collection ‘‘Investigating the Impact of Treat-
ment on New HIV Infections’’—which focuses on the
contribution of modelling to current issues in HIV
prevention—we present here principles of ‘‘best practice’’
for the construction, reporting, and interpretation of HIV
epidemiological models for public health decision-making
on all aspects of HIV. Aimed at both those who conduct
modelling research and those who use modelling results,
we hope that the principles described here will become a
shared resource that facilitates constructive discussions
about the policy implications that emerge from HIV
epidemiology modelling results, and that promotes joint
understanding between modellers and decision-makers
about when modelling is useful as a tool in quantifying
HIV epidemiological outcomes and improving prevention
programming.

Introduction

In almost all areas of public health, mathematical models are

used to provide quantification and insight that can inform

decision-making. Epidemiological data can be collected about

individuals, and clinical trials can measure individual-level effects

in a selected study population (often under best-case circum-

stances), but public health decision-making requires an under-

standing of the dynamics of disease across a population under a

variety of conditions. Mathematical modelling aims to unite

knowledge and assumptions about behavioural dynamics,

biology, costs, and constraints to generate estimates of impact

and cost-effectiveness, and recommendations for resource

allocation.

Models are especially useful in the case of infectious diseases,

where they can estimate temporal changes in disease burden and

treatment needs, and so underpin projections of the counter-

factuals in some quasi-experimental impact evaluation designs,

and power calculations for prospective experimental study designs.

These are important applications, especially in contexts where

empirical data are not available. Thus, models have increased in

prominence over the last several years, including in establishing

optimal responses to emerging pathogens [1] and influenza

pandemics [2], examining the conditions for polio eradication

[3] and malaria control [4], and making a case for restructuring

investment in HIV programs [5,6].

Investigators from many different disciplines generate models,

and the techniques and presentation formats employed have

tended to follow a corresponding diverse set of conventions and

presumptions. Meanwhile, those who rely on modelling output

have highly varied needs and expectations from epidemiological

modelling analyses. It is not uncommon for different models

addressing very similar questions to produce—or appear to

produce—widely different estimates [7], and thus a model’s

validity and ability to inform an important public health decision

can be questioned.

Therefore, there is a need for constructive dialogue between

‘‘producers’’ and ‘‘consumers’’ of modelling results about a

model’s assumptions and structure, the policy implications of the

results, and what further empirical and modelling studies should
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be planned. The World Bank Global HIV/AIDS Program, as a

funder, coordinator, and evaluator of HIV prevention efforts, has

become increasingly reliant on mathematical modelling and has

initiated a modelling guidelines development process through its

Prevention Science and Mathematical Modelling Reference

Group, a panel of experts in HIV prevention, and modelling

relating to HIV prevention, created and convened by the World

Bank on the basis of individuals’ publication records and

institutional roles. In consultation with the reference group and

other HIV modelling experts, we have developed a set of

principles for the construction, reporting, and interpretation of

HIV epidemiological models for public health decision-making on

all aspects of HIV.

Development and Scope of the Recommendations

The nine principles, discussed below and summarised in

Table 1, were initially identified during a number of discussions

within the context of collaboration amongst the authors, within the

HIV Modelling Consortium and the World Bank modelling

guidelines production process. Written input on the nine principles

was solicited from a wider group of modellers, including former

and current collaborators. This was followed by a three-day work

retreat of five of the authors, during which a first draft was

produced, based on the authors’ experience and other researchers’

responses to the proposed core principles. The resulting draft was

presented to a meeting of the World Bank Prevention Science and

Mathematical Modelling Reference Group, and revised in light of

feedback received.

Our focus complements more general reviews of modelling [8–

10] and technical content in modelling textbooks [11,12]. The

recommendations are intended for all HIV public health

practitioners who rely on modelling research to make policy

decisions, as well as those conducting the modelling research itself.

They are not intended to be prescriptive, and hence should not be

seen as a normative checklist against which to score the quality or

validity of modelling studies. For instance, where mathematical

models are used to construct a simple conceptual framework of

behavioural, clinical, virological, and/or epidemiological dynam-

ics, rather than to conduct research for public health decision-

making, some of the recommendations in this article may not be

applicable.

Principle 1: Clear Rationale, Scope, and Objectives

As in any scientific report, the rationale, scope, and objectives

of a modelling study should be clearly stated. The reporting of a

modelling study should include an explicit explanation for why

epidemiological modelling, rather than another study design

(e.g., systematic review, meta-analysis, quasi-experimental de-

sign, or a randomized controlled trial), is appropriate for the

problem, the exact questions the work seeks to address, and the

readership for which it is intended. This statement of rationale,

scope, and objectives provides the criteria against which all

modelling decisions should be judged, assists in framing the

interpretation of the work, and should be referred to at key

points throughout the write-up, to maintain the alignment of

aims, model, results, and interpretation. Examples might be:

‘‘We aimed to generate estimates for the cost of rolling out a

male circumcision programme in South Africa so that stake-

holders can compare these costs against those of other possible

interventions, and use the comparison to inform decisions about

allocation of funding’’; ‘‘We aimed to explore the extent to which

HIV incidence rates can be influenced by changes in condom

use among sex workers and their clients under different

assumptions about sexual mixing patterns in concentrated HIV

epidemics, so that recommendations can be made for data

collection during the implementation of a condom distribution

campaign’’.

For studies that aim to estimate the potential population-level

impact of a given biomedical intervention, there are differences in

emphasis in their purpose that should be clear from the outset and

throughout the presented work. An important distinction is

between investigation of the potential benefits of a hypothetical

biomedical intervention that is currently in development but has

unknown efficacy, and an intervention that has a proven efficacy,

such as from a trial setting. Typically, the purpose of the first type

of study is to estimate the population-level effectiveness of the

hypothesized intervention and to identify key properties the

intervention would need to have to be effective (such as for

vaccines [13–15], microbicides [16,17], and chemoprophylaxis

[18]), whereas the purpose of the second type of study is to guide

targeted implementation of the intervention in real populations

(such as deciding which populations should be circumcised first

[19], or prioritised for treatment as prevention [20]). Another

distinct form of modelling study is where an assessment is

generated for the epidemiological impact of a previously

implemented public health program [21].

Principle 2: Explicit Model Structure and Key
Features

The model chosen for the analysis should be described

completely and clearly (commonly in the form of an online

technical appendix, ideally with the model’s computer code

made available), so that other investigators can reproduce its

findings and projections. Justification for the choice of model

(individual- versus population-based, stochastic versus deter-

ministic, linear versus nonlinear) should be provided, along

with a description of the model’s structure and key features,

with cross-references to the scope and objectives. A flow

diagram, representing how individuals or subpopulations

transition through the different demographic, behavioural,

or clinical states in the model can be an excellent way to

communicate the model’s main structure.

The model structure, and the consequent key demographic,

behavioural, biological, clinical, and epidemiological factors

represented or omitted by the model, may affect the interpretation

of the results. Certain biological or behavioural features of HIV

transmission, prevention, and treatment may be at the core of the

issue addressed by the model, and cannot be omitted. However,

additional features that are irrelevant to the primary objectives of

the analysis may obscure the main conclusions or may open

unnecessary debate about the validity of parameter values that are

not essential to interpretation of the model output [8]. Judging

which features fall into which category may be informed by earlier

research or explicit investigation, but is more commonly based on

assumptions, which should at least be clearly stated. Furthermore,

a mathematical model need not require an examination at all

scales (e.g., within host, individual level, sexual network level, and

population level); rather, scales to be included should be dictated

by the objectives of the study (e.g., some models focus on within-

host processes and thus must include the interaction between virus

and immune cells, but models that focus on between-host

transmission may not require detail at this scale). In general, the

strength of the model should not be judged merely by the level of

model detail and whether or not particular factors are included.

Rather, the appropriateness of model detail and factors taken into
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account by the model should be assessed within the context of the

scope and objectives.

Discussion of how the model structure could have influenced the

results should always be included. Examples of formal evaluations

of differently structured models addressing similar research

questions but reaching different conclusions can be found in

various branches within the infectious disease modelling field, e.g.,

in the modelling of chlamydia [22], influenza [23], and HIV

epidemics [24]. It is often not feasible, in one article or within one

modelling research group, to explore large differences in model

structure, such as between deterministic population-based versus

individual-based models. However, where possible, comparison

between models is highly encouraged. For example, Johnson et al.

[25] used two models in the same study to assess the impact of

antiretroviral therapy (ART) and condom usage on HIV

epidemics in South Africa, and Eaton et al. [7] discuss the

implications of alternative model structures for estimating the

potential impact of early initiation of ART on HIV incidence in

hyperendemic settings. Such formal evaluations foster discussions

of the reasons behind discrepancies in model predictions, and

either pave the way for a consensus statement about the findings

and conclusions that are most certain, or highlight key issues for

further scientific enquiry.

Principle 3: Well-Defined and Justified Model
Parameters

Another set of assumptions in a model concerns the values that are

given to the parameters. Examples of parameters include the

probability of HIV transmission per sex act for an individual on

Table 1. Summary of principles of good HIV epidemiology modelling.

Principle Model Producer Considerations Model Consumer Considerations

Clear rationale, scope, and objectives Are the rationale, scope, and objectives clearly stated? Are the rationale, scope, and objectives understood?

Is there a statement about why epidemiological
modelling is appropriate for this problem?

Is epidemiological modelling appropriate for this problem?

Explicit model structure and key
features

Is the model structure completely described, such
that all analyses can be reproduced?

Is the model presented comprehensively, such that the
inclusion/exclusion of any particular assumption or feature can
be identified?

Is there a description of key model features? Is the justification for model structure/key assumptions
reasonable, considering the primary rationale, scope, and
objectives of the study?

Has a justification for the model structure been provided?

Well-defined and justified model
parameters

Is there an understandable and complete listing of the
model parameters, their values, and their justification?

Are the implicit inputs upon which the model predictions are
made understood, and are they satisfactorily justified?

Alignment of model
output with data

Are the model fitting, calibration, and validation
approaches with respect to relevant data defined and
justified?

Does the model produce, or fail to produce, outputs that can
be compared to real world data, and does the model output
reflect realistic conditions?

Does the comparison with real world data increase confidence
in the suitability of the model for the current enquiry?

Clear presentation of results,
including uncertainty in estimates

Have the uncertainties been captured for all relevant
factors included in the model?

Have the uncertainties been captured for all relevant factors
included in the model?

Is the key result of the study robust to that uncertainty? Are the results sufficiently robust for confident decision-
making, or is further analysis or data collection required?

Are specific recommendations for new data analyses/
collections appropriate?

Exploration of model limitations Are sufficient details provided about limitations of the
study, specifically about model structure,
parameterization, and application/generalisability?

Are the limitations of the model and its findings clearly
understood, including the limits of applicability and
generalisability?

Considering the strength of the evidence, how are the model
findings relevant for informing public health decision-making?

Contextualisation with other
modelling studies

Have relevant previous studies been referenced and
differences/similarities discussed?

Is there an understanding of the overarching conclusion(s) from
modelling studies on the topic?

Is it clearly specified whether a new result versus a
confirmation/contradiction of a previous result is
presented?

Are the general reasons (assumptions or underlying real world
conditions) for why models differ in their conclusions
understood?

Application of epidemiological
modelling to health economic
analyses

Where relevant, are understandable and appropriate
estimates of epidemiological impact provided, such
that health economic inferences can be made?

Can the model-based estimates be used to infer cost-
effectiveness measures of relevant interventions or be
extended to health economics?

Is the degree of uncertainty in estimates relevant to cost-
effectiveness understood, particularly with respect to the
sensitivity of key parameters?

Clear language Are model scenarios described in clear formal terms
(separate from interpretations about reality) that
facilitate technical understanding and evaluation?

Are there clear explanations of intended correspondences
between inputs used in the model and key real world
conditions such as epidemiological conditions, policy, and
programmes?

doi:10.1371/journal.pmed.1001239.t001
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ART, the fraction of patients still alive and on ART three years after

ART initiation, and the annual population growth rate. It is essential

for any modelling study to include a transparent listing of all model

parameters, providing the following for each parameter: the name of

the parameter; the mathematical symbol of the parameter (if

appropriate); the meaning of the parameter in plain language; the

value(s) assigned to the parameter (a point estimate and range/

confidence interval as appropriate); and a contextual justification for

used values, with references for the origins of the model parameter(s),

and any relevant caveats (particularly important if more than one

value for the model parameter exists or if the parameter is fit in the

model or is derived from another modelling analysis).

This notion of justifying or formally ‘‘fitting’’ individual

parameters—or a model in its entirety—to data covers many

possibilities. As these also do not lie on a clear continuum from

‘‘rough heuristic/qualitative’’ to ‘‘formally rigorous and unbiased’’,

some ad hoc critical evaluation is appropriate for the most

important inputs into any model. All model fitting relies on the

notion of the likelihood of observing a set of data. There are then

various possible approaches to (1) maximising the likelihood, i.e.,

selecting the particular model within which the data are most

consistent, or (2) performing a sensitivity analysis, i.e., identifying

ranges of model parameters that are consistent with the data and

determining the relative importance of each model parameter. Note

that the ‘‘likelihood function’’ itself can capture multiple sources of

randomness, such as the usually unavoidable incompleteness of

sampling and random effects in population processes themselves.

Some parameters, such as the mother-to-child HIV transmission

rate under a particular care regimen, can be more or less directly

‘‘measured’’ in an appropriate (typically randomized) study, using

observation and standard robust biostatistical methods, but there

may be subtle artefacts. For example, using logistic regression to

identify the characteristics of individuals that are associated with an

HIV infection or transmission event may be misleading in ways that

are seldom systematically explored in routine application, beyond

noting the potential for ‘‘residual confounding’’. A particular shape

for a relationship between a predictor (such as viral load or age) and

an outcome (transmission) is implicitly assumed, although it may be

inappropriate—age in particular may correlate strongly with health

status, but not necessarily monotonically.

For parameters where it is very difficult to obtain direct

measurements, e.g., to capture behavioural dynamics such as risk

reduction in the face of risk perception, heuristic parametrization

may indicate which parameter sets are plausible and which are

clearly at odds with data: a heuristically sensible model and a

formally fitted model should be clearly distinguished, with

sensitivity analyses where applicable.

Often the most important assumptions concern those specifying

a simulated intervention, and it is recommended that these be

prominently and exhaustively listed. For instance, if the interven-

tion of interest relates to a policy change in ART, specifying a

‘‘coverage’’ and ‘‘efficacy’’ may not be enough: assumptions about

enrolment rates, adherence, and retention, as well as behavioural

characteristics (e.g., risk reduction or compensation) and demo-

graphic impacts (e.g., reduced mortality rates and increased size of

the HIV-positive population) [7] may need to be made explicit.

These specifications should be documented over the time period of

the model simulation, and, where relevant, for different substrata

of the modelled population. If the work is specific to a country,

then it is helpful to involve relevant stakeholders in the decisions

taken about parameter values, and this process should be

described. Such documentation also assists when modelling

findings are subsequently used to inform decision-making in that

setting [26,27].

Principle 4: Alignment of Model Output with Data

Here the emphasis shifts to assessing the alignment of output

from a particular epidemiological scenario model to data.

Understanding the modelled scenarios produced, and relating

these to data by back-fitting them to a model, naturally forms an

important component of the evaluation and application of any

model. It is particularly important to indicate whether, and to

what extent, input parameters were chosen to maximise the

correspondence of outputs to data, or whether correspondences

emerged naturally from choosing externally justified inputs.

Demonstrating that a model can reproduce observed patterns

provides a certain level of reassurance that the model is capturing

the system appropriately, and where models cannot demonstrate

this, extreme caution should be taken in interpreting results.

The most desirable situation is when a model that has been

fitted to some data (a training set) produces output in close

correspondence with additional data (a testing set). There are two

primary caveats to this approach: (1) fitting a smooth model to

slowly varying data and extrapolating a little may be ‘‘too easy’’,

and might indicate little about the suitability of the model, and (2)

in key applications relevant to impact evaluation, asking the model

to produce other independent data may be an unreasonable

demand, tantamount to asking a model to predict future changes

in the financial or political context. There may be deeper

differences between the scenarios producing the training/testing

datasets than can realistically be captured by a model—such as

changes in treatment uptake or effects of improved treatment

programmes on mortality.

While correspondence between models and data is reassuring

and potentially useful—if not taken as absolute confirmation of the

correctness of either model structure or parameter values—it is

important to consider whether there are multiple ways to fit the

data, and to realise that there may be scientific progress in a failure

to fit data, either at all or without resorting to implausible values,

ranges, or correlations of parameters. For example, simple

(biological) models of ART cannot reproduce both the consistently

strong reductions in patient viral loads and the inability to achieve

viral eradication observed in the real world, without implausible

‘‘fine tuning’’ of individual subjects’ treatment efficacy parameters

into a narrow range. This situation diagnoses a model limitation,

namely, the neglect of the fact that interactions between cells,

drugs, and virions vary among compartments within the infected

host.

The difficulties of ‘‘correctly’’ capturing a complex set of shifting

context-defining processes impinge not only on the interpretation

of correspondence between models and historical data, but also on

the interpretation of the predictive component of scenarios. One

useful application of modelling, when there are insufficient data to

construct scenarios with conventional predictive credibility, is to

pose questions such as what characteristic of a program would be

required for certain goals to be achieved (e.g., what level of risk

compensation, captured in a suitably clearly defined parameter,

would be required to negate the risk reduction of a planned

intervention).

Principle 5: Clear Presentation of Results,
Including Uncertainty in Estimates

The output of any modelling study needs to be presented clearly,

using explicitly defined metrics and with any deviance in the

interpretation between the model metric and the real world

analogue explained. The many assumptions involving the structure

of the model, the parameter estimates, and the data will all have
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uncertainties, and it is important to understand how these propagate

to key model outputs. In some cases, uncertainty in a particular

parameter will be benign—a result is reached irrespective of any

credible assumption about that parameter—and this serves to

increase confidence in the findings. In other cases, different credible

values for a parameter (or model structure or interpretation of data)

would lead to different conclusions, and this should be noted.

Uncertainties are best depicted as part of the modelling results

presentation—either in tables or as part of the graphical output of

the model. If sufficient information is available about inputs,

computational techniques can manufacture a distribution for

model outcomes, so that the main result can be given as a

‘‘credible interval’’. In addition to uncertainty analyses, formal

sensitivity analyses of the importance of each model parameter in

influencing the variability in model outcomes can be useful for

identifying items for further data collection or investigation (see

[28–30] for examples in HIV modelling). Bayesian melding

approaches have also been used recently, and have the advantage

that they integrate uncertainty analyses with model fitting: good

examples in HIV transmission modelling include work by Alkema

et al. [31] and Johnson et al. [32].

Principle 6: Exploration of Model Limitations

As Box and Draper [33] wrote, ‘‘Remember that all models are

wrong; the practical question is how wrong do they have to be to

not be useful’’. It is necessary for modellers to provide a

description of model limitations and for model consumers to

appreciate the caveats and limitations of modelling studies when

considering their results. Many limitations are due to the data that

are available and used to parameterize modelling studies. Direct

observation of some of the model parameters is often not feasible.

This is especially true in the case of HIV, where transmission

dynamics are dependent on sensitive and private aspects of human

behaviour [34]. Modelling strategies address this challenge in part

by fitting the model to data to yield estimates for the unknown

parameters.

One thing that modellers may implicitly understand but that

model consumers may not—and which therefore should always be

made clear—is that capturing complex reality is not really the

purpose of mathematical models. Practicality implies that one can

never capture full dynamical structure, such as all conceivable

population compartments, transition rules, or stochasticity. A

mathematical model is a minimalist approach to representing the

essential elements of reality that are necessary and sufficient for

addressing a specific research question [35,36]. Models are often

applied to specific settings, and so transferability of the predictions

to other settings may be limited. Just as the findings of clinical trials

can be subject to multiple interpretations, modelling studies

similarly may have multiple interpretations, and even more readily

admit various choices in emphasis, of which only a few receive a

full airing in the investigators’ report.

Some of the limitations of modelling studies can be addressed by

uncertainty or sensitivity analyses as discussed above [28,37,38].

Probably the least appreciated mode by which limitations in

models are addressed is by a comparative assessment of models

and their predictions, similar to systematic reviews and meta-

analyses of datasets. Recent examples of this kind of process

include the male circumcision modelling consensus paper [19], a

special edition of Vaccine that examined the potential impact of a

partially effective vaccine [13], and model comparisons of the

impact of ART on prevention presented in another article in the

July 2012 PLoS Medicine Collection, ‘‘Investigating the Impact of

Treatment on New HIV Infections’’ [7].

Principle 7: Contextualisation with Other
Modelling Studies

It is common for multiple modelling groups to attempt to

address similar research questions but with different modelling

approaches: using models that have been designed to describe

different populations, involve different model structures, and make

different parameter assumptions. Apparently conflicting results in

the modelling literature may consequently lead to greater

confusion for the consumers of models or to distrust in the use

of models for decision-making. Therefore, it is necessary that

interpretations of results are contextualised with previous model-

ling findings relevant to the topic. It should be made clear whether

a new result is being presented or whether study findings concur

with previously published results.

Meanwhile, journal editors should recognise the value of works

that rigorously confirm or draw together previous findings. Review

papers that summarise the modelling literature on a specific topic

are highly useful (see the recent special issue on HIV epidemic

modelling in Current Opinion in HIV and AIDS [39]). Also, papers

that aim to present meta-analyses of model results (e.g., [24])

should be encouraged, as well as papers that compare modelling

results to quasi-experimental results. Of even greater utility for

policy-makers is the formulation of consensus documents that

summarise conclusions from numerous modelling studies, and

provide general conclusions in a single voice from the modelling

community; this has been done for evaluations of circumcision

interventions [19] and HIV vaccines [13], and this PLoS Medicine

Collection on HIV treatment as prevention aims to move the field

in that direction as well, although there is clearly much more to do

[7,40].

Principle 8: Application of Epidemiological
Modelling to Health Economic Analyses

A public health policy or programme decision-maker generally

desires to take actions that will have maximal impact whilst

minimising the amount of money required to achieve the health

outcomes—based, for example, on estimates of either the

maximum impact that can be achieved for a given amount of

money, or the money needed to achieve specific set levels of

impact. Therefore, the cost-effectiveness, affordability, and returns

on investments of interventions are among the most important

considerations in their potential implementation. HIV epidemic

modelling studies often attempt to estimate the population-level

impact associated with changes in programme or policy condi-

tions, and hence estimate the denominator (effectiveness) in the

incremental cost-effectiveness ratio. Ideally, such models should be

designed to produce outputs amenable to recycling into analyses

of cost implications and estimates of primary epidemiological

effects that are understandable and relevant to decision-makers,

such as the number of incident infections or deaths averted,

quality-adjusted life years gained, or disability-adjusted life years

averted. Effective assessment of affordability and cost-effectiveness

may require different time horizons than those chosen in

epidemiological modelling analyses, hence additional simulations

may be necessary prior to attaching costs, benefits, and utilities to

epidemiological model outputs.

There are numerous good examples of modelling studies that

have provided outputs that are relevant for use in health economic

calculations or that have been integrated into cost-effectiveness

analyses [41–44]. Guidelines have been developed for the

production, submission, and review of health economic analyses

for BMJ [45]; some of the principles presented in those guidelines
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align with those presented here. When modelling studies have the

potential to be extended to health economic calculations,

consideration of these health economic guidelines is encouraged.

Principle 9: Clear Language

A particular challenge that arises when using models to evaluate

the impact of interventions is a lack of clarity around the

intervention itself. Such a lack of clarity minimises the usefulness

of results for policy-makers in deciding which interventions to

prioritise. While modellers are usually keenly aware of the technical

details of the model, the interpretation of model features—both in

the input and output phase—is prone to oversimplification by both

modellers and readers. It can be convenient but misleading to

present a correspondence in the real world between an actual policy

choice and future events. For instance, a write-up should highlight

that what is modelled is a reduction in the proportion of

‘‘unprotected sex acts’’, which is not an intervention per se but

could be the outcome of an intervention (e.g., an increase in

condom distribution points or a targeted education campaign).

It is probably better to risk erring on the side of repetitiveness in

efforts to keep focusing on precise model assumptions (qualitative

and quantitative), and for consumers to process the model first on

its own terms, before evaluating model scenarios in broad

correspondence to reality and potential policy implications. At

the same time, it is important that modellers use language that

facilitates easy communication, without loss of precision and of key

real world messages to consumers.

Conclusion

The issue of using models in decision-making is especially

important for the field of HIV prevention, which has now reached

a critical point. Just as spending on HIV has levelled off or

declined [46], there have been several significant scientific

breakthroughs, including the finding that ART can substantially

reduce the infectiousness of infected individuals [47]. This finding

immediately conjures a multitude of questions that can be best

examined through mathematical modelling. Examples of specific

questions within the field would include (1) whether programs

should reallocate funding to treatment in response to the new data

[48], (2) the probability of drug resistance emerging as a threat to

the therapeutic effectiveness of treatment [49], and (3) how the

impact of real programs can be scientifically measured [50].

Further research questions are delineated in this PLoS Medicine

Collection [40]. Our intention in compiling our recommendations

is to help strengthen the support that mathematical models can

provide in addressing such questions that are critical for setting

research and intervention priorities for HIV.
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