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Abstract

The summation inequality plays an important role in developing delay-dependent criteria for discrete-time systems with time-
varying delay. This note proposes an improved summation inequality to estimate the summation terms appearing in the forward
difference of Lyapunov-Krasovskii functional. Compared with the inequality recently developed by the Wirtinger-based summation
inequality and the reciprocally convex lemma, the proposed one reduces the estimation gap while requires the same number of
decision variables. A relaxed stability criterion of a linear discrete-time system with a time-varying delay is established by using
such novel inequality. Two numerical examples are given to demonstrate the advantages of the proposed method.
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1. Introduction

In the last few years, the stability analysis of discrete-time
systems with time-varying delays has become a hot topic in
the field of control theory [1]-[17]. An important objective
of stability analysis is to find the admissible delay region such
that time-delay systems remain stable for the time-varying de-
lay within this region [18]. Delay-dependent stability criteria
developed in the framework of the Lyapunov-Krasovskii func-
tional (LKF) and the linear matrix inequality (LMI) are the most
effective criteria to determine such admissible region. The fol-
lowing double summation term is frequently applied during the
constructing of LKF to obtain delay-dependent criterion [8]:

Vr(k)=
−h1−1∑
i=−h2

k−1∑
j=k+i

ηT ( j)Rη( j) (1)

where h1 and h2 are respectively the lower and the upper bounds
of a time-varying delay (i.e., h1 ≤ d(k) ≤ h2), R ≥ 0, and
η(k) = x(k+1)− x(k) with x(k) being the system state. Then the
following term will appear in the forward difference of Vr(k):

S(k) :=
k−h1−1∑

i=k−d(k)

ηT (i)Rη(i) +
k−d(k)−1∑
i=k−h2

ηT (i)Rη(i) (2)

During the development of stability criteria, a challenging
problem is how to estimate the lower bound of the above sum-
mation term [9]. Obtaining tighter bound of summation term
(i.e., reducing the estimation gap) plays a key role in reducing
the conservatism. In the early literature, the free-weighting ma-
trix (FWM) approach [4] and the Jensen-based inequality (JBI)
[1] were two important methods for this issue. By relaxing the
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JBI, Wirtinger-based inequalities (WBIs) were simultaneously
reported in [7, 8] and later in [9]. Very recently, an auxiliary
function based inequality (AFBI) [10] and a free-matrix-based
summation inequality (FMBI) [19] inspired by the research of
[22, 23] were developed by further improving the WBI.

Those inequality-based estimation methods include two key
steps to estimate S(k): 1) applying the JBI/WBI/AFBI to esti-
mate two summation terms in S(k), respectively; and 2) using
the reciprocally convex lemma (RCL) [20] to handle the d(k)
appearing in the denominator. The recently developed tech-
niques (the WBIs, the AFBI, and the FMIB) focus on the first
step. To the best of the authors’ knowledge, there is no research
that discusses the tighter estimation of S(k) considering two
steps together. This note aims to fill this research gap.

This note proposes an improved summation inequality by
considering two terms of S(k) together. It is tighter than the
one obtained by combining the WBI and the RCL but keeps the
same number of decision variables. A new stability criterion
for a linear discrete-time system with a time-varying delay is
established by applying the proposed inequality. Finally, two
numerical examples are given to illustrate the effective of the
proposed inequality and the corresponding criterion.

Throughout this note, the superscripts T and −1 mean the
transpose and the inverse of a matrix, respectively; Rn denotes
the n-dimensional Euclidean space; ∥ · ∥ refers to the Euclidean
vector norm; P > 0 (≥ 0) means that P is a symmetric positive-
definite (semi-positive-definite) matrix; diag{·} denotes a block-
diagonal matrix; Sym{X} = X + XT ; and the symmetric term in
a symmetric matrix is denoted by ∗. Matrices, if their dimen-
sions are not explicitly stated, are assumed to be compatible for
algebraic operations.

2. Problem formulation and preliminaries

Consider the following linear discrete-time system with a
time-varying delay:{

x(k + 1) = Ax(k) + Ad x(k − d(k)), k ≥ 0
x(k) = ϕ(k), k ∈ [−h2, 0] (3)
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where x(k) ∈ Rn and ϕ(k) are the system state and the initial
condition, respectively; A and Ad are the system matrices; and
d(k) is a positive integer which is time-varying and satisfies

1 ≤ h1 ≤ d(k) ≤ h2 (4)

This note is concerned with the stability of system (3). As
mentioned in Section I, a challenging problem is how to esti-
mate the summation term S(k). Therefore, the first aim of this
note is to develop a more effective estimation method for this
task. Then, this note will apply the proposed method to derive
a new stability criterion for judging the influence of the time-
varying delay on the stability of system.

Several WBIs with different forms were simultaneously re-
ported in [7, 8] and later in [9]. The ones to be applied in this
note are recalled from [8].

Lemma 1. (Wirtinger-based inequality [8]) For a given sym-
metric positive definite matrix R, integers b > a, any sequence
of discrete-time variable x: Z[a, b] → Rn, the following in-
equalities hold

b−1∑
i=a

ηT (i)Rη(i)≥ 1
b − a

[
ϑ1
ϑ2

]T  R 0
0 3
(

b−a+1
b−a−1

)
R

 [ϑ1
ϑ2

]
(5)

≥ 1
b − a

[
ϑ1
ϑ2

]T [R 0
0 3R

] [
ϑ1
ϑ2

]
(6)

where ϑ1 = x(b) − x(a), and ϑ2 = x(b) + x(a) − 2
b∑

i=a

x(i)
b−a+1 .

The following RCL is usually applied to combine with the
WBI in the literature.

Lemma 2. (Reciprocally convex lemma (RCL) [20]) For a giv-
en scalar α in the interval (0, 1), symmetric positive definite

matrices U1 and U2, and any matrix X such that
[
U1 X
∗ U2

]
≥ 0,

the following inequality holds[ 1
α

U1 0
∗ 1

1−αU2

]
≥
[
U1 X
∗ U2

]
(7)

The estimation of the S(k) via the WBI and the RCL leads to
the following lemma.

Lemma 3. For a symmetric positive definite matrix R, any ma-

trix X satisfying
[
R̃ X
∗ R̃

]
≥ 0 with R̃ = diag{R, 3R}, the S(k)

defined in (2) is estimated as

S(k)≥ 1
h21
ζT (k)

[
E1
E2

]T [R̃ X
∗ R̃

] [
E1
E2

]
ζ(k) (8)

where

h21 = h2 − h1, d = d(k) (9)
ζ(k)=

[
xT (k), xT (k − h1), xT (k − d), xT (k − h2),

vT
1 (k), vT

2 (k), vT
3 (k)
]T

(10)

v1(k)=
k∑

i=k−h1

x(i)
h1 + 1

, v2(k) =
k−h1∑

i=k−d

x(i)
d − h1 + 1

(11)

v3(k)=
k−d∑

i=k−h2

x(i)
h2 − d + 1

(12)

E1 =

[
e2 − e3

e2 + e3 − 2e6

]
, E2 =

[
e3 − e4

e3 + e4 − 2e7

]
(13)

ei =
[
0n×(i−1)n, In×n, 0n×(7−i)n

]
, i = 1, 2, · · · , 7 (14)

Proof: Using WBI (6) and RCL (7) to estimate the S(k) yields

S(k)=
k−h1−1∑
i=k−d

ηT (i)Rη(i) +
k−d−1∑
i=k−h2

ηT (i)Rη(i)

≥ 1
d − h1

ζT (k)ET
1 R̃E1ζ(k) +

1
h2 − d

ζT (k)ET
2 R̃E2ζ(k)

≥ 1
h21
ζT (k)

[
E1
E2

]T [R̃ X
∗ R̃

] [
E1
E2

]
ζ(k)

3. A relaxed summation inequality

This section develops an improved summation inequality for
estimating S(k), shown in the following lemma.

Lemma 4. For a symmetric positive definite matrix R, any ma-
trix X, the S(k) defined in (2) is estimated as

S(k) ≥ 1
h21
ζT (k)

[
E1
E2

]T [R̃ X
∗ R̃

]
+

 h2−d
h21

T1 0
0 d−h1

h21
T2

 [E1
E2

]
ζ(k)

(15)
where R̃ = diag{R, 3R}, T1 = R̃−XR̃−1XT and T2 = R̃−XT R̃−1X.

Proof: Firstly, for the symmetric matrix R > 0 and any matri-
ces, Mi, i = 1, 2, 3, 4, with appropriate dimension, the following
holds based on Schur complement:

[
M2i−1
M2i

]
R−1
[
M2i−1
M2i

]T [M2i−1
M2i

]
∗ R

 ≥ 0, i = 1, 2

Then, for any vector ς j(k, i), j = 1, 2, the following is true:

Π1 =

k−h1−1∑
i=k−d

ςT
1 (k, i)


M1R−1MT

1 M1R−1MT
2 M1

∗ M2R−1MT
2 M2

∗ ∗ R

 ς1(k, i) ≥ 0

(16)

Π2 =

k−d−1∑
i=k−h2

ςT
2 (k, i)


M3R−1MT

3 M3R−1MT
4 M3

∗ M4R−1MT
4 M4

∗ ∗ R

 ς2(k, i) ≥ 0

(17)
Secondly, letting f (i, a, b) = 2i−b−a+1

b−a+1 yields the following
equalities

k−h1−1∑
i=k−d

η(i) = (e2−e3)ζ(k),
k−h1−1∑
i=k−d

f1(i)η(i) = (e2+e3−2e6)ζ(k)(18)

k−d−1∑
i=k−h2

η(i) = (e3−e4)ζ(k),
k−d−1∑
i=k−h2

f2(i)η(i) = (e3+e4−2e7)ζ(k) (19)
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k−h1−1∑
i=k−d

1=d−h1,

k−h1−1∑
i=k−d

f1(i)=0,
k−h1−1∑
i=k−d

f 2
1 (i)=

(d−h1)(d−h1−1)
3(d−h1+1)

(20)

k−d−1∑
i=k−h2

1=h2−d,
k−d−1∑
i=k−h2

f2(i)=0,
k−d−1∑
i=k−h2

f 2
2 (i)=

(h2−d)(h2−d−1)
3(h2−d+1)

(21)

where f1(i) = f (i, k − d, k − h1) and f2(i) = f (i, k − h2, k − d).
Moreover, redefine vector ς j(k, i), j = 1, 2 and matrices Mi, i=
1, 2, 3, 4, in Πi as follows

ς j(k, i)=
[
gT (k), f j(i)gT (k), ηT (i)

]T
, g(k)=

[
ET

1 , ET
2
]T
ζ(k)(22)

M1 =−
1

h21

[
R, 0, LT

1

]T
, M2 = −

1
h21

[
0, 3R, LT

2

]T
(23)

M3 =−
1

h21

[
LT

3 , R, 0
]T
, M4 = −

1
h21

[
LT

4 , 0, 3R
]T

(24)

X = [L1, L2]T = [L3, L4], R̃ = diag{R, 3R} (25)

where Li, i = 1, 2, 3, 4 are any matrices.
Thirdly, calculatingΠi, i = 1, 2 based on (18)-(25). It follows

from (20), (22), (23), (25) and d−h1−1
d−h1+1 < 1 that

k−h1−1∑
i=k−d

[
g(k)

f1(i)g(k)

]T [M1R−1MT
1 M1R−1MT

2

∗ M2R−1MT
2

] [
g(k)

f1(i)g(k)

]
= (d − h1)gT (k)M1R−1MT

1 g(k) + 2 × 0 × gT (k)M1R−1MT
2 g(k)

+
(d − h1)(d − h1 − 1)

3(d − h1 + 1)
gT (k)M2R−1MT

2 g(k)

< (d − h1)gT (k)M1R−1MT
1 g(k) + (d − h1)gT (k)M2(3R)−1MT

2 g(k)

=
d − h1

h2
21

ζT (k)

E1

E2


T  R 0 LT

1
0 0 0
L1 0 L1R−1LT

1


E1

E2

 ζ(k)

+
d − h1

h2
21

ζT (k)

E1

E2


T 0 0 0

0 3R LT
2

0 L2 L2(3R)−1LT
2


E1

E2

 ζ(k)

=
d − h1

h2
21

ζT (k)

E1

E2


T  R 0 LT

1
0 3R LT

2
L1 L2 L1R−1LT

1 + L2(3R)−1LT
2


E1

E2

 ζ(k)

=
d − h1

h2
21

ζT (k)
[
E1
E2

]T [R̃ X
∗ XT R̃−1X

] [
E1
E2

]
ζ(k) (26)

It follows from (18), (22), (23), (25) that

k−h1−1∑
i=k−d


[

g(k)
f1(i)g(k)

]T [M1

M2

]
η(i) + ηT (i)

[
M1

M2

]T [
g(k)

f1(i)g(k)

]
= 2

k−h1−1∑
i=k−d

{
gT (k)M1η(i) + f1(i)gT (k)M2η(i)

}
= 2gT (k)

[
M1 M2

] 
∑k−h1−1

i=k−d η(i)∑k−h1−1
i=k−d f1(i)η(i)


=− 2

h21
ζT (k)

E1

E2


T  R 0

0 3R
L1 L2

 E1ζ(k)

=− 1
h21
ζT (k)

E1

E2


T 2R 0 LT

1
0 6R LT

2
L1 L2 0


E1

E2

 ζ(k)

=− 1
h21
ζT (k)

[
E1

E2

]T [
2R̃ X
∗ 0

] [
E1

E2

]
ζ(k) (27)

Similarly, based on (19), (21), (22), (24), (25), and h2−d−1
h2−d+1 < 1,

the following holds
k−d−1∑
i=k−h2

[
g(k)

f2(i)g(k)

]T [M3R−1MT
3 M3R−1MT

4

∗ M4R−1MT
4

] [
g(k)

f2(i)g(k)

]

<
h2 − d

h2
21

ζT (k)

E1

E2


T L3R−1LT

3 + L4(3R)−1LT
4 L3 L4

LT
3 R 0

LT
4 0 3R


E1

E2

 ζ(k)

=
h2 − d

h2
21

ζT (k)
[
E1
E2

]T [XR̃−1XT X
∗ R̃

] [
E1
E2

]
ζ(k) (28)

and
k−d−1∑
i=k−h2


[

g(k)
f2(i)g(k)

]T [M3

M4

]
η(i) + ηT (i)

[
M3

M4

]T [
g(k)

f2(i)g(k)

]
=− 1

h21
ζT (k)

E1

E2


T  0 L3 L4

LT
3 2R 0

LT
4 0 6R


E1

E2

 ζ(k)

=− 1
h21
ζT (k)

[
E1

E2

]T [
0 X
∗ 2R̃

] [
E1

E2

]
ζ(k) (29)

Thus, combining (16), (17), and (26)-(29) yields

Π1 + Π2 (30)

<S(k) − 1
h21
ζT (k)

[
E1
E2

]T [R̃ X
∗ R̃

]
+

 h2−d
h21

T1 0
0 d−h1

h21
T2

 [E1
E2

]
ζ(k)

Finally, the summation inequality (15) can be obtained based
on Π1 + Π2 ≥ 0 and (30). This completes the proof. �

Remark 1. On the one hand, it is obvious that Ti ≥ 0, i = 1, 2

hold during slack matrix X is selected to satisfy
[
R̃ X
∗ R̃

]
≥ 0 (it is

the requirement of Lemma 3). Thus, Ti-dependent positive term
appearing in (15) reduces the estimation gap between two sides
of (8). Thus, the proposed inequality (15) is tighter than (8). On
the other hand, the slack matrix introduced by inequality (15)
(i.e., X) is the same as the one arising in (8). That is to say,
compared with inequality (8), the proposed (15) is a variable-
increase-free inequality. Therefore, inequality (15) has the po-
tential to derive new criteria that have less conservatism but
require the same number of decision variables.

Remark 2. The AFBI proposed in [10] improves the WBI by
adding additional terms to reduce the estimation gap existing
in the WBI. The FMBI proposed in [19] improves the WBI by
introducing many free matrices. Both improvements target to
a single summation term, i.e., the first step for handling S(k)
as mentioned in Section I. The idea of deriving inequality (15)
provides a new way to improve the WBI, i.e., considering two
summation terms of S(k) together.
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Remark 3. The techniques for continuous time-delay system
are usually similar to the ones for discrete-time systems with
time-varying delay (for example, Wirtinger-based integral in-
equality for continuous-time systems and Wirtinger-based sum-
mation inequality for discrete-time systems). It is expected that
the corresponding new integral inequalities for continuous-time
systems would be developed based on the similar idea of deriv-
ing of summation inequality (15).

4. A novel stability criterion

By using the summation inequality (15) and the LKF taken
from [8], the following stability criterion for system (3) is es-
tablished.

Theorem 1. For given integers h1 and h2, system (3) with
a time-varying delay satisfying (4) is asymptotically stable if
there exist symmetric positive definite matrices P ∈ R3n×3n,
Q1 ∈ Rn×n, Q2 ∈ Rn×n, R1 ∈ Rn×n, R ∈ Rn×n, and any ma-
trix X ∈ R2n×2n, such that the following LMIs hold:[

Ψ(h1) − Υ5,1 ET
1 X

∗ −R̃

]
< 0 (31)[

Ψ(h2) − Υ5,2 ET
2 XT

∗ −R̃

]
< 0 (32)

where

Ψ(d)=Υ1(d) + Υ2 + Υ3 − Υ4

Υ1(d)=Sym
{
ΓT (d)P(Γ1 − Γ2)

}
+ ΓT

1 PΓ1 − ΓT
2 PΓ2

Γ(d)=
[
eT

1 , (h1 + 1)eT
5 , (d − h1 + 1)eT

6 + (h2 − d + 1)eT
7

]T
Γ1 =
[
eT

s , − eT
2 , − eT

3 − eT
4

]T
Γ2 =
[
eT

0 , − eT
1 , − eT

2 − eT
3

]T
Υ2 = eT

1 Q1e1 − eT
2 Q1e2 + eT

2 Q2e2 − eT
4 Q2e4

Υ3 = eT
s (h2

1R1 + h2
21R)es

Υ4 =

[
e1−e2

e1+e2−2e5

]T [R1 0
0 3
(

h1+1
h1−1

)
R1

] [
e1−e2

e1+e2−2e5

]
(33)

Υ5,1 =

[
E1
E2

]T [2R̃ X
∗ R̃

] [
E1
E2

]
Υ5,2 =

[
E1
E2

]T [R̃ X
∗ 2R̃

] [
E1
E2

]
E1 =

[
e2 − e3

e2 + e3 − 2e6

]
, E2 =

[
e3 − e4

e3 + e4 − 2e7

]
e0 = 07n×7n, es = (A − I)e1 + Ade3

ei =
[
0n×(i−1)n, In×n, 0n×(7−i)n

]
, i = 1, 2, · · · , 7

Proof: Consider the LKF candidate taken from [8]:

V(xk)= ξT (k)Pξ(k) +
k−1∑

i=k−h1

xT (i)Q1x(i) +
k−h1−1∑
i=k−h2

xT (i)Q2x(i)

+h1

−1∑
i=−h1

k−1∑
j=k+i

ηT ( j)R1η( j) + h21

−h1−1∑
i=−h2

k−1∑
j=k+i

ηT ( j)Rη( j) (34)

where P > 0, Qi > 0, i = 1, 2, R1 > 0, R > 0, and

ξ(k) =

xT (k),
k−1∑

i=k−h1

xT (i),
k−h1−1∑
i=k−h2

xT (i)


T

, η(k) = x(k+1)−x(k)

Calculating the forward difference of V(xk) yields [8]:

∆V(xk)= ζT (k)
[
Υ1(d) + Υ2 + Υ3

]
ζ(k)

−h1

k−1∑
i=k−h1

ηT (i)R1η(i) − h21

k−h1−1∑
i=k−h2

ηT (i)Rη(i) (35)

where ζ(k) is defined in (10).
Using WBI (5) to estimate R1-dependent summation term

yields

h1

k−1∑
i=k−h1

ηT (i)R1η(i) ≥ ζT (k)Υ4ζ(k) (36)

And using the proposed summation inequality (15) to estimate
R-dependent summation term (= h21S(k)) yields

h21

k−h1−1∑
i=k−h2

ηT (i)Rη(i) ≥ ζT (k)Υ̃5(d)ζ(k) (37)

where

Υ̃5(d) =
[
E1
E2

]T [R̃ X
∗ R̃

]
+

 h2−d
h21

T1 0
0 d−h1

h21
T2

 [E1
E2

]
Thus, based on (35)-(37), the forward difference of the LKF

is estimated as

∆V(xk) ≤ ζT (k)
[
Υ1(d) + Υ2 + Υ3 − Υ4 − Υ̃5(d)

]
ζ(k)

:= ζT (k)Φ(d)ζ(k) (38)

It is easy to check that Φ(d) is affine with respect to the time-
varying delay d ∈ [h1, h2], thus Φ(d) < 0 if and only if Φ(h1) <
0 and Φ(h2) < 0, which are equivalent to LMIs (31) and (32),
respectively, based on Schur complement. Therefore, if LMIs
(31) and (32) hold, then ∆V(xk) ≤ −ε||x(k)||2 for a sufficient
small ε > 0, which shows the asymptotical stability of system
(3). This completes the proof. �

Remark 4. In [8], the summation term, S(k), was estimated
by using the WBI and the RCL, while it is handled by using
a tighter inequality (15) in this note. On the other side, the
matrices to be determined in Theorem 1 are the same as the
ones in the criterion in [8] (Theorem 5 therein). Thus, Theorem
1 has the potential to provide less conservative results while
requires the same number of decision variables in comparison
to the one in [8].

Remark 5. In [10], the AFBI tighter than the WBI, together
with the RCL, was applied to improve the criterion of [8], and
in [19], the FMBI including the WBI was used to improve the
WBI-based criterion [8]. Both improved criteria require the
increase of the number of decision variables. On the contrary,
Theorem 1 improves the criterion in [8] but does not require
additional decision variables.
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Remark 6. Theorem 1 can be further improved by combining
the proposed inequality with several existing techniques, such
as introducing zero-value terms for estimating the forward d-
ifference of the LKF [12], and constructing augmented-based
and/or delay-partition-based LKF [7, 10]. The details are omit-
ted in this note, since the main contribution of this note is to
propose a novel way to improve the WBI while keep the same
number of decision variables, and there is no much technique
difficulty in the aforementioned extension.

5. Numerical examples

Two numerical examples are used to demonstrate the advan-
tages of the proposed criterion via the comparisons of the cal-
culated maximal admissible delay upper bounds (MAUBs) and
of the number of decision variables (NDVs).

Example 1. Consider system (3) with

A =
[

0.8 0
0.05 0.9

]
, Ad =

[
−0.1 0
−0.2 −0.1

]
(39)

This example is widely used for checking the conservatism
of stability criteria. The MAUBs calculated by Theorem 1, to-
gether with the ones reported in several literature, are given in
Table 1, where the NDVs of several criteria are also listed. The
following observations are summarized from the results listed
in table:

• In the early literature, stability criteria were developed via
the FWM approach [1, 2, 3, 4, 5] or the JBI [13, 15, 11],
commonly combined with a simple LKF [1, 2, 3, 4, 15],
and they are very conservatism. Then, improved criteri-
a were established by constructing LKFs with more gen-
eral form (delay-partition-based LKF [6] and augmented-
based LKF [12]) and/or by replacing the JBI with tighter
WBI [7, 8]. The WBI reduces the conservatism and avoid-
s much increase of NDVs. (Note that Theorem 4 of [6]
requires tune three parameters di, i = 1, 2, 3, which is a
time-consuming procedure, although its NOV is smaller
than that of the WBI-based criteria in [7, 8].)

• Very recently, two types of methods were developed to im-
prove the WBI, including the AFBI and the FMBI. It can
be found from the table that both the AFBI-based crite-
rion [10] and the FMBI-based criterion [19] achieve the
reduction of conservatism at the cost of increase of ND-
Vs. On the contrary, Theorem 1 obtained by the proposed
inequality provides less conservative results but keeps the
same NDVs in comparison with the WBI-based criterion
[8, 7]. Moreover, Theorem 1 provides better results than
the AFBI- and FMBI-based criteria [10, 19] but requires
smaller NDVs. It clearly shows the advantages of the pro-
posed inequality and the corresponding criterion.

Example 2. Consider system (3) with

A =
[
0.6480 0.0400
0.1200 0.6540

]
, Ad =

[
−0.1512 −0.0518
0.0259 −0.1091

]
(40)

Table 1: The MAUBs and the NDVs for different criteria (Example 1)
Methods h1 NDVs (n=2)

2 4 6 9 11
[1-5,11,13,15] <20 <20 ≤20 ≤21 <22
[6] (Theorem 4l=3) 21 21 21 22 23 7.5n2+4.5n
[12] (Theorem 2) 22 22 22 22 23 27n2+9n
[8] (Theorem 5) 20 21 21 22 23 10.5n2+3.5n
[7] (Remark 4) 20 21 21 22 23 10.5n2+3.5n
[10] (Remark 6) 20 21 21 22 23 20.5n2+5.5n
[10] (Theorem 1) 20 21 21 22 23 29.5n2+8.5n
[19] (Theorem 1) 21 22 22 23 23 78.5n2+12.5n
Theorem 1 21 22 22 23 24 10.5n2+3.5n

This example is recalled from the recently published liter-
ature [19]. As mentioned in Remarks 1 and 2, the proposed
inequality and both the AFBI and the FMBI can be considered
as improvements of the WBI. In this example, Theorem 1 pro-
posed in this note is compared with the criteria obtained through
the WBI [8], the AFBI [10], and the FMBI [19]. The MAUB-
s calculated by those criteria, together with the corresponding
NDVs, are summarized in Table 2. Theorem 1 provides less
conservative results but keeps the same NDVs in comparison
with the WBI-based criterion [8], and it leads to better results
than the FMBI-based criterion [19] and the AFBI-based criteri-
on [10] with requiring smaller NDVs. It means that Theorem 1
has the potential to reduce the conservatism of the WBI-based
criteria without introducing much extra decision variables.

Table 2: The MAUBs and the NDVs for different criteria (Example 2)
Methods h1 NDVs (n=2)

5 7 11 13 20
[8] (Theorem 5) 20 22 25 27 34 10.5n2+3.5n
[10] (Theorem 1) 20 22 26 28 34 29.5n2+8.5n
[19] (Theorem 1) 21 22 26 27 34 78.5n2+12.5n
Theorem 1 21 22 26 28 35 10.5n2+3.5n

6. Conclusions

This note has proposed a novel summation inequality by con-
sidering two summation terms appearing in the forward differ-
ence of the LKF together. Compared with the recently reported
inequality derived by the WBI and the RCL, the proposed one
reduces the estimation gap while requires the same NDVs. It is
a new way to reduce the conservatism caused by the inequal-
ity based estimation. Application this inequality to the linear
discrete-time system with a time-varying delay has lead to a
relaxed stability criterion. Two numerical examples have been
given to demonstrate the advantages of the proposed method.
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