
A Study of Time and Energy E�cient

Algorithms for Parallel and Heterogeneous

Computing

Thesis submitted in accordance with requirements of the University of Liverpool

for the degree of Doctor in Philosophy

by

Jude-Thaddeus Ojiaku

September 2016

Degree of Doctor of Philosophy

Abstract

This PhD project is motivated by the need to develop and achieve better and energy

e�cient computing through the use of parallelism and heterogeneous systems. Our con-

tribution consists of both theoretical aspects, as well as in-depth and comprehensive

empirical studies that aim to provide more insight into parallel and heterogeneous com-

puting.

Our �rst problem is a theoretical problem that focuses on the scheduling of a special

category of jobs known as deteriorating jobs. These kind of jobs will require more e�ort to

complete them if postponed to a later time. They are intended to model several industrial

processes including steel production, �re-�ghting and �nancial management. We study

the problem in the context of parallel machine scheduling in an online setting where jobs

have arbitrary release times. Our main results show that List Scheduling is (1 + bmax)-

competitive and that no deterministic algorithm is better than (1 + bmax)1−
1
m , where

bmax is the largest deteriorating rate. We also extend our results to online deterministic

algorithms and show that no deterministic online algorithm is better than (1 + bmax)-

competitive.

Our next study concerns the scheduling of n jobs with precedence constraints on m par-

allel machines. We are interested in the precedence constraint known as chain precedence

constraint where each job can have at most one predecessor and at most one successor.

The jobs are modelled as directed acyclic graphs where nodes represent the jobs and

edges represent the precedence constraints between jobs. The jobs have a strict deadline

that must be met. The parallel machines are considered to be unrelated and a commu-

nication network connects each pair of machines. Execution of the jobs on the machines

as well as communication across the network incurs costs in the form of time and energy.

These costs are given by cost matrices that covers processing and communication. The

goal is to construct a feasible schedule that minimizes the total energy required to ex-

ecute the chain of jobs on the machines, such that all deadlines are met. We present a

dynamic programming solution to the problem that leads to a pseudo polynomial time

i

ii

algorithm with running time O(nm2dmax), where dmax is the largest deadline. We show

that the algorithm computes an optimal schedule where one exists.

We then proceed to a similar problem that involves the scheduling of jobs to minimize

�ow time plus energy. This problem is based on a dynamic speed scaling heuristic in

literature that is able to adjust the speed of a processor based on the number of active

jobs, called AJC. We present a comprehensive empirical study that consists of several

job selection, speed selection and processor allocation heuristics. We also consider both

single processor and multi processor settings. Our main goal is to investigate the viability

of designing a �xed-speed counterpart for AJC, that is not as computationally intensive

as AJC, while being very simple. We also evaluate the performance of this �xed speed

heuristic and compare it with that of AJC.

Our fourth and �nal study involves the use of graphics processing unit (GPU) as an accel-

erator for compute intensive tasks. The GPU has become a very popular multi processor

for heterogeneous computing both from an economical point of view and performance

standpoint. Firstly, we contribute to the development of a Bioinformatics tool, called

GapsMis, by implementing a heterogeneous version that uses graphics processors for ac-

celeration. GapsMis is a tool designed for the alignment of sequences, like protein and

DNA sequences, and allows for the insertion of gaps in the alignment. Then we present a

case study that aims to highlight the various aspects, including bene�ts and challenges,

involved in developing heterogeneous applications that is vendor-agnostic. In order to

do this we select four algorithms as case studies including GapsMis and the algorithm

presented in our second problem. The other two algorithms are based on the Velocity-

Verlet integration and the Fruchterman-Reingold force-based method for graph layout.

We make use of the Open Computing Language (OpenCL) and C++ for implementa-

tion of the algorithms on a range of graphics processors from Advanced Micro Devices

(AMD) and NVIDIA Corporation. We evaluate several factors that can a�ect perfor-

mance of these applications on each hardware. We also compare the performance of our

algorithms in a multi-GPU setting and against single and multi-core CPU implementa-

tions. Furthermore, several metrics are de�ned to capture several aspects of performance

including execution time of application kernel(s), execution time of application including

communication times, throughput, power and energy consumption.

Acknowledgements

Firstly I would like to show my deepest gratitude to my supervisors Dr. Prudence Wong

and Prof. Leszek G¡sieniec for their support and advice throughout the duration of my

PhD studies. I have learned a lot during this period and they have always guided me in

the right direction.

I am very grateful to my family for their unending love, encouragement and support,

and for giving me the means to ensure that I complete my PhD studies.

I would also like to thank all my friends and colleagues for their help and support

including Dr. O. Nwamadi, whose help, discussions and advice bene�ted me a great

deal.

iii

Contents

Abstract i

Acknowledgements iii

Contents iv

List of Figures vii

List of Tables xv

1 Introduction 1

1.1 Overview . 1

1.2 Background on Scheduling . 3

1.2.1 Inputs and outputs . 3

1.2.2 The α|β|γ scheduling notation . 4

1.2.3 Classes of scheduling problems . 5

1.2.4 Input structure and constraints . 6

1.3 Problems Studied and related work . 6

1.3.1 Online scheduling of deteriorating jobs on parallel machines 6

1.3.2 Energy-e�cient scheduling of precedence-constrained jobs on par-
allel machines . 9

1.3.3 Energy-e�cient �ow time scheduling 10

1.3.4 Parallel and heterogeneous computing with graphics processors . . 12

1.4 Contribution of thesis . 14

2 Online Scheduling of Linear Deteriorating Jobs on Parallel Machines 17

2.1 Introduction . 17

2.2 Preliminaries . 18

2.2.1 Problem de�nition . 18

2.2.2 Property of simple linear deterioration 19

2.3 New lower bounds in online-time model 20

2.3.1 List Scheduling on m parallel machines 21

2.3.2 Lower bounds for deterministic online scheduling 23

2.4 Conclusion . 28

iv

Contents v

3 Energy-E�cient Scheduling of Jobs with Precedence Constraints 29

3.1 Introduction . 29

3.2 Preliminaries . 30

3.2.1 Problem de�nition . 30

3.3 Discussion . 31

3.3.1 A dynamic programming solution 31

3.3.2 Algorithm DPS . 33

3.4 Conclusion and future work . 36

4 Energy-E�cient Flow Time Scheduling 38

4.1 Introduction . 38

4.2 Problem De�nition . 40

4.3 Heuristics . 41

4.3.1 Job selection strategies . 41

4.3.2 Speed functions . 41

4.3.3 Processor allocation strategies . 42

4.4 Simulations Conducted and Results . 43

4.4.1 Preliminaries . 43

4.4.2 Results on job selection strategies 45

4.4.3 Results on speed functions . 49

4.4.4 Results on processor allocation strategies 55

4.4.5 Conclusion . 57

5 Background on Parallel Computing with General Purpose GPUs 71

5.1 Introduction . 71

5.2 Comparison of CPU and GPU Hardware Architecture 71

5.2.1 Memory management in a computer system 72

5.2.2 Stream processing hardware implementation 73

5.2.3 Scheduling - threads, warps and wavefronts 74

5.3 Vendor-speci�c SIMD implementations . 79

5.3.1 The Graphics Core Next architecture (AMD) 80

5.3.2 The Kepler architecture (NVIDIA) 81

5.4 GPU Computing Framework . 82

5.4.1 The Open Computing Language 82

6 Parallel Algorithms for Heterogeneous Systems with GPGPUs 87

6.1 Introduction . 87

6.2 Theoretical analysis of parallel algorithms 89

6.3 Naming convention and notations . 90

6.4 DPS: energy-aware scheduler for precedence-constrained jobs on parallel
machines . 90

6.4.1 Sequential approach . 90

6.4.2 Task-parallel approach . 92

6.4.3 Data-parallel approach . 93

6.5 GapsMis: a tool for sequence alignment with bounded number of gaps . . 95

6.5.1 Introduction . 95

6.5.2 Problem de�nition . 96

Contents vi

6.5.3 Sequential GapsMis Algorithm . 97

6.5.4 Task-parallel approach . 97

6.5.5 Data-parallel approach . 100

6.6 Velvet: Velocity-Verlet integrator . 102

6.6.1 Sequential approach . 103

6.6.2 Task-parallel approach . 104

6.6.3 Data-parallel approach . 105

6.7 FDGV: Force-directed graph visualizer . 106

6.7.1 Sequential approach . 106

6.7.2 Task-parallel approach . 107

6.7.3 Data-parallel approach . 108

6.8 Preliminary discussion . 109

6.8.1 Evaluation model and performance metrics 109

6.8.2 Hardware and software speci�cations 111

6.8.3 Input data for experiments . 112

6.8.4 Aims of experiments conducted . 115

6.9 Discussion of experiment results . 118

6.9.1 Results on device-host communication overheads 118

6.9.2 Results on e�ects of work-group size 126

6.9.3 Results on e�ects of local memory 138

6.9.4 Results on bene�ts of pre-pinned memory and DMA 152

6.9.5 Results on application scaling with multi-GPUs 153

6.9.6 Results on comparison of CPU vs.GPU performance 156

6.10 Conclusion and future work . 178

A More Experiment Results for Energy-E�cient Flow Time Scheduling 179

A.1 Results on job selection strategies . 180

A.1.1 Single processor simulations . 180

A.1.2 Multi-processor simulations . 187

A.2 Results on speed functions . 194

A.2.1 E�ectiveness of speed scaling . 194

A.2.2 Speed scaling vs. semi-clairvoyant �xed speed function 201

A.2.3 E�ectiveness of AJC speed spectrum 208

A.3 Results on processor allocation strategies 215

Bibliography 228

List of Figures

1.1 An illustration of linear deterioration. 7

1.2 Examples of job precedence constraints. 10

2.1 An illustration of jobs based on the deteriorating rates. 19

2.2 An illustration of schedules constructed by LS and OPT for the job set
shown in Figure 2.1. 19

2.3 An illustration of n jobs assigned to one machine. 20

2.4 Stage 1 of adversary: The deteriorating rate, b1, of job J1 satis�es 1+b1 =
(1+b)3 where b is the deteriorating rate of each of the smaller jobs depicted
in the illustration. Jobs are released at time t0 and scaled according to
deteriorating rates only. 21

2.5 Stages 2 and 3 of adversary: (A) In stage 2, jobs are released at time
t1 = t0(1+b1) and as a result, LS cannot schedule them earlier onM1 and
M2. This means machines M1 and M2 are idle until time t1. (B) In stage
3 new jobs start arriving at time t2 = t1(1 + b2) and the trend continues
as with the previous stages. 22

2.6 Illustration of the 3 representative cases, labelled (a), (b) and (c), in stage
2 of the general lower bound. 25

2.7 Example showing Stage 3 of the general lower bound. 25

2.8 Illustration of the general lower bound for Stage 31 where k = 31 and
h = 15. (i) At t30 ALG is still processing J30 from Stage 30 on M1. (ii)
OPT has completed all jobs released before t30 including J30. (iii) OPT
schedule for Stage 31. Note that OPT can maintain the same makespan
on both machines. 26

4.1 Class diagram of the simulator software program. 44

4.2 Details of the Job and JobGenerator classes. 45

4.3 Details of the scheduler part of the simulator. 46

4.4 Measurement shows the ratio of total �ow time plus energy for SJF vs
AJC on a single processor. Results are grouped according to average job
size. 47

4.5 Measurement shows the ratio of total �ow time plus energy for SJF vs
AJC on a single processor. Results are grouped according to average
inter-arrival time. 48

4.6 Measurement shows the ratio of total �ow time plus energy for SJF vs
AJC on 4 processors. Results are grouped according to average job size. . 50

4.7 Measurement shows the ratio of total �ow time plus energy for SJF vs AJC
on 4 processors. Results are grouped according to average inter-arrival time. 51

vii

List of Figures viii

4.8 E�ectiveness of speed scaling : Measurement shows the ratio of total �ow
time plus energy for a �xed speed heuristic using a speed of 1 against AJC
on a single processor. Results are grouped according to average job size.
Note: ratio is always at least 1. 52

4.9 E�ectiveness of speed scaling : Measurement shows the ratio of total �ow
time plus energy for a �xed speed heuristic using a speed of 1 against
AJC on a single processor. Results are grouped according to average
inter-arrival time. Note: ratio is always at least 1. 53

4.10 Speed scaling vs.semi-clairvoyant �xed speed function: Measurement shows
the ratio of total �ow time plus energy between AJC and a �xed speed
function that has some information about the job set. Results are grouped
according to average job size. 59

4.11 Speed scaling vs.semi-clairvoyant �xed speed function: Measurement shows
the ratio of total �ow time plus energy between AJC and a �xed speed
function that has some information about the job set. Results are grouped
according to average inter-arrival time. 60

4.12 E�ectiveness of AJC speed spectrum: Comparison of AJC to a �xed speed
function that uses, as �xed speed values, the average and maximum speeds
obtained from a prior AJC run. Results show the performance ratio of
the total �ow time plus energy of �xed speed functions vs.AJC. 61

4.13 E�ectiveness of AJC speed spectrum: Comparison of AJC to a �xed speed
function that uses, as �xed speed values, the average and maximum speeds
obtained from a prior AJC run. Results show the performance ratio of
the total �ow time plus energy of �xed speed functions vs.AJC. 62

4.14 Results for RoundRobin in terms of average job size comparing the
performance ratio of total �ow time plus energy for a single processor
vs.multiple processors. 63

4.15 Results for RoundRobin in terms of average inter-arrival time comparing
the performance ratio of total �ow time plus energy for a single processor
vs.multiple processors. 64

4.16 Results for *MinActiveCount in terms of average job size comparing
the performance ratio of total �ow time plus energy for a single processor
vs.multiple processors. 65

4.17 Results for *MinActiveCount in terms of average inter-arrival time
comparing the performance ratio of total �ow time plus energy for a single
processor vs.multiple processors. 66

4.18 Results for *MinCost in terms of average job size comparing the perfor-
mance ratio of total �ow time plus energy for a single processor vs.multiple
processors. 67

4.19 Results for *MinCost in terms of average inter-arrival time comparing
the performance ratio of total �ow time plus energy for a single processor
vs.multiple processors. 68

4.20 Results for *MinSize in terms of average job size comparing the perfor-
mance ratio of total �ow time plus energy for a single processor vs.multiple
processors. 69

4.21 Results for *MinSize in terms of average inter-arrival time comparing
the performance ratio of total �ow time plus energy for a single processor
vs.multiple processors. 70

List of Figures ix

5.1 A fundamental di�erence between a CPU and a GPU is that the GPU
dedicates majority of its transistors to execution units. 74

5.2 Thread divergence occurs as a result of threads within a wavefront/warp
taking di�erent code paths. 76

5.3 Thread divergence can be avoided if branch granularity of the GPU hard-
ware is maintained. 77

5.4 The GPU is able to hide latency by swapping out wavefronts/warps that
stall during memory operations. 78

5.5 Non-coalesced memory access patterns can result in poor performance on
the GPU hardware. 79

5.6 Coalesced memory access patterns can improve performance on the GPU
hardware. 79

5.7 Generalized block diagram of AMD's GCN architecture. 80

5.8 Generalized block diagram of NVIDIA's Kepler architecture. 81

5.9 Block diagram illustrating the major components of the OpenCL platform. 83

5.10 Decomposition of an OpenCL index space into work-groups and work-items. 84

5.11 Illustration of the OpenCL memory model. 85

6.1 Illustration of how the NDRange is de�ned so that work-groups are mapped
to machines in the input and a work-item maps to a time index. 94

6.2 An example showing the advantage of using vector data type. (a) Without
vectors, work-items need 4 memory accesses in order to retrieve values
from tables. (b) Using vectors, two read operations are merged into a
single read. 95

6.3 Alignment with no gap. 97

6.4 Alignment with 1 gap. 97

6.5 Alignment with 2 gaps. 97

6.6 Block diagram showing the memory requirement for matrix G for each
processor in GapsMis-t when executing for a 2-gap alignment. 100

6.7 Illustration of the data dependencies among cells in the three cases within
the GapsMis algorithm. 101

6.8 Illustration of how GapsMis-d maps alignment tasks to the GPU device
across work-groups. 102

6.9 A screenshot of Velvet capturing the starting positions of 32,768 particles
projected inside a 3-ball. This sample is running on an NVIDIA GTX 680
GPU. 103

6.10 FDGV running a visualization of a graph with a grid-like structure consisting
of 6,400 vertices and 12,640 edges. 106

6.11 Comparison of latency vs.e�ective latency for single GPU performance. . . 119

6.12 Comparison of throughput vs.e�ective throughput for single GPU perfor-
mance. 121

6.13 Comparison of the latency and e�ective latency for GapsMis-d running on
a single GPU device performing alignments allowing 2 gaps. 122

6.14 Comparison of the latency and e�ective latency for GapsMis-d running on
a single GPU device performing alignments allowing 3 gaps. 123

List of Figures x

6.15 Results comparing the latency and e�ective latency of executing Velvet-d
for all problem sizes (Figure 6.15(a)). Resulting throughput performance
is shown in Figure 6.15(b). Here, due to the small data to computation
ratio, the communication time between host and compute device is marginal.125

6.16 Comparison of latency vs.e�ective latency for complete graph (400 ver-
tices, 79,800 edges) . 126

6.17 Comparison of latency vs.e�ective latency for Gnutella p2p network graph
(26,518 vertices, 65,369 edges) . 127

6.18 Comparison of latency vs.e�ective latency for grid graph (40,000 vertices,
79,500 edges) . 128

6.19 Comparison of latency vs.e�ective latency for tree graph (40,000 vertices,
39,999 edges) . 129

6.20 Latency for DPS-d with 3,200 jobs with varying work-group sizes on NVIDIA
GTX 680 GPU. 130

6.21 Latency for DPS-d with 3,200 jobs with varying work-group sizes on NVIDIA
GTX 650 GPU. 130

6.22 Latency for DPS-d with 3,200 jobs with varying work-group sizes on AMD
HD 7970 GPU. 131

6.23 Latency for DPS-d with 3,200 jobs with varying work-group sizes on AMD
HD 7750 GPU. 131

6.24 Throughput for DPS-d with 3,200 jobs with varying work-group sizes on
NVIDIA GTX 680 GPU. 132

6.25 Throughput for DPS-d with 3,200 jobs with varying work-group sizes on
NVIDIA GTX 650 GPU. 132

6.26 Throughput for DPS-d with 3,200 jobs with varying work-group sizes on
AMD HD 7970 GPU. 133

6.27 Throughput for DPS-d with 3,200 jobs with varying work-group sizes on
AMD HD 7750 GPU. 133

6.28 Latency for Velvet-d with varying work-group sizes on NVIDIA GTX 680
GPU. 134

6.29 Latency for Velvet-d with varying work-group sizes on NVIDIA GTX 650
GPU. 135

6.30 Latency for Velvet-d with varying work-group sizes on AMD HD 7970
GPU. 136

6.31 Latency for Velvet-d with varying work-group sizes on AMD HD 7750
GPU. 137

6.32 Results showing the throughput performance of Velvet-d as work-group
size varies on the NVIDIA GTX 680 GPU. 138

6.33 Results showing the throughput performance of Velvet-d as work-group
size varies on the NVIDIA GTX 650 GPU. 139

6.34 Results showing the throughput performance of Velvet-d as work-group
size varies on the AMD HD 7970 GPU. 140

6.35 Results showing the throughput performance of Velvet-d as work-group
size varies on the AMD HD 7750 GPU. 141

6.36 Results showing latency performance FDGV-d as work-group size varies for
NVIDIA GTX 680 GPU. 141

6.37 Results showing latency performance FDGV-d as work-group size varies for
NVIDIA GTX 650 GPU. 142

List of Figures xi

6.38 Results showing latency performance FDGV-d as work-group size varies for
AMD HD 7970 GPU. 142

6.39 Results showing latency performance FDGV-d as work-group size varies for
AMD HD 7750 GPU. 143

6.40 Results showing throughput performance FDGV-d as work-group size varies
for NVIDIA GTX 680 GPU. 143

6.41 Results showing throughput performance FDGV-d as work-group size varies
for NVIDIA GTX 650 GPU. 144

6.42 Results showing throughput performance FDGV-d as work-group size varies
for AMD HD 7970 GPU. 144

6.43 Results showing throughput performance FDGV-d as work-group size varies
for AMD HD 7750 GPU. 145

6.44 Comparison of latency for 1,600 jobs with and without using GPU local
memory. 145

6.45 Comparison of latency for 3,200 jobs with and without using GPU local
memory. 146

6.46 Comparison of throughput for 1,600 jobs with and without using GPU
local memory. Throughput is measured in millions of cell updates per
second (MCUPS). 146

6.47 Comparison of throughput for 3,200 jobs with and without using GPU
local memory. Throughput is measured in millions of cell updates per
second (MCUPS). 147

6.48 Results showing the e�ect of local memory on the latency performance of
Velvet-d for all GPU devices. The work-group sizes in these results are
1024 for NVIDIA GPUs and 256 for AMD GPUs. 148

6.49 Results showing the e�ect of local memory on the throughput performance
of Velvet-d for all GPU devices. The work-group sizes in these results
are 1024 for NVIDIA GPUs and 256 for AMD GPUs. Throughput is
measured in billions of �oating-point operations per second. 149

6.50 Results showing the e�ect of local memory on latency performance of
FDGV-d for all GPU devices. The work-group sizes in these results are 512
for NVIDIA GPUs and 256 for AMD GPUs. 150

6.51 Results showing the e�ect of local memory on latency performance of
FDGV-d for all GPU devices. The work-group sizes in these results are 512
for NVIDIA GPUs and 256 for AMD GPUs. Throughput is measured in
billions of �oating-point operations per second. 151

6.52 Results showing the bene�ts of using pre-pinned memory for Velvet-d
and FDGV-d running on our designated reference machine. Time elapsed is
given in microseconds. 152

6.53 Results showing the bene�ts of using pre-pinned memory for Velvet-d
and FDGV-d running on our designated reference machine. Time elapsed is
given in microseconds. 153

6.53 Comparison of how GapsMis-d scales with the addition of a second GPU
device. Results shown here are for an alignment that allows 3 gaps.
Throughput is measured in billions of cell updates per second (GCUPS) . 160

6.54 Throughput performance comparison of how DPS-d scales with the addi-
tion of a second GPU device for simulation with 1,600 jobs. The work-
group size used for these results is 256 for all GPU devices. 161

List of Figures xii

6.55 Throughput performance comparison of how DPS-d scales with the addi-
tion of a second GPU device for simulation with 3,200 jobs. The work-
group size used for these results is 256 for all GPU devices. 162

6.56 Comparison of how FDGV-d scales with the addition of a second GPU
device. The results for NVIDIA GPUs are obtained using a work-group
size of 512 and using local memory. The AMD GPUs use a work-group
size of 256 and without using local memory. Throughput is measured in
billions of �oating-point operations per second. 163

6.57 Results of power consumption pro�ling for each application on each device
con�guration. 164

6.58 Latency performance of GapsMis-s vs GapsMis-d on single GPU for a 3-
gap alignment. The length of target sequences is 250 and 200 for query
sequences. 165

6.59 Latency performance of GapsMis-t with 12 CPU threads vs GapsMis-d on
dual GPUs for a 3-gap alignment. The length of target sequences is 250
and 200 for query sequences. 166

6.57 Comparison of CPU vs GPU performance of DPS for a problem size con-
sisting of 3200 jobs. 169

6.57 Comparison of energy consumption and e�ciency for CPU and GPU de-
vices for DPS. Energy consumption is given in Watt-second while e�ciency
is given in millions of cell updates per second per Watt. 171

6.57 (a) Ratio of CPU performance to single GPU performance with respect to
latency. (b) Comparison of CPU vs.GPU in terms of e�ciency measured
in billions of �oating-point operations per Watt. 172

6.57 Comparison of energy consumption for CPU and GPU devices for Velvet.
Energy consumption is measured in Watt-second. 173

6.57 Comparison of CPU vs.GPU execution times for FDGV. The largest value
for each graph is shown in the labels within the plot. 175

6.57 Comparison of CPU vs.GPU energy consumption and e�ciency for FDGV.
Energy consumption is measured in Watt-second and e�ciency is mea-
sured in GFLOPS/Watt. 177

A.0 Comparison of the performance ratio based on total �ow time plus energy
of AJC when using SJF vs. SRPT on a single processor. Inter-arrival
times are given by Poisson distribution and job sizes are given by uniform
distribution. 182

A.0 Comparison of the performance ratio based on total �ow time plus en-
ergy of AJC when using SJF vs. SRPT on a single processor. Uniform
distribution is used for both inter-arrival times and job sizes. 184

A.0 Comparison of the performance ratio based on total �ow time plus energy
of AJC when using SJF vs. SRPT on a single processor. Uniform distribu-
tion is used for job sizes while Poisson distribution is used for inter-arrival
times. 186

A.0 Comparison of the performance ratio based on total �ow time plus energy
for AJC when using SJF vs. SRPT on 4 processors. Poisson distribution
is used for the inter-arrival times while uniform distribution is used for
the jobs sizes. 189

List of Figures xiii

A.0 Comparison of the performance ratio based on total �ow time plus energy
for AJC when using SJF vs. SRPT on 4 processors. Uniform distribution
is used for both the inter-arrival times and jobs sizes. 191

A.0 Comparison of the performance ratio based on total �ow time plus energy
for AJC when using SJF vs. SRPT on 4 processors. Uniform distribution
is used for the inter-arrival times and Poisson distribution is used for jobs
sizes. 193

A.0 E�ectiveness of speed scaling : Comparison of the performance ratio based
on total �ow time plus energy between AJC and a �xed speed heuristic
that uses a �xed speed of 1 on a single processor. Poisson distribution is
used for inter-arrival times and uniform distribution is used for job sizes. . 196

A.0 E�ectiveness of speed scaling : Comparison of the performance ratio based
on total �ow time plus energy between AJC and a �xed speed heuristic
that uses a �xed speed of 1 on a single processor. Uniform distribution is
used for both inter-arrival times and job sizes. 198

A.0 E�ectiveness of speed scaling : Comparison of the performance ratio based
on total �ow time plus energy between AJC and a �xed speed heuristic
that uses a �xed speed of 1 on a single processor. Uniform distribution is
used inter-arrival times and Poisson distribution is used for job sizes. . . . 200

A.0 Speed scaling vs. semi-clairvoyant �xed speed function: Comparison of the
performance ratio based on total �ow time plus energy between AJC and a
�xed speed function that has some information about the job set. Poisson
distribution is used for inter-arrival times and uniform distribution is used
for job sizes. 203

A.0 Speed scaling vs. semi-clairvoyant �xed speed function: Comparison of
the performance ratio based on total �ow time plus energy between AJC
and a �xed speed function that has some information about the job set.
Uniform distribution is used for both inter-arrival times and job sizes. . . 205

A.0 Speed scaling vs. semi-clairvoyant �xed speed function: Comparison of the
performance ratio based on total �ow time plus energy between AJC and a
�xed speed function that has some information about the job set. Uniform
distribution is used for inter-arrival times and Poisson distribution is used
for job sizes. 207

A.0 E�ectiveness of AJC speed spectrum: Comparison of AJC to a �xed speed
function that uses, as �xed speed values, the average and maximum speeds
obtained from a prior AJC run. Results show the performance ratio of
the total �ow time plus energy of �xed speed functions vs. AJC. Poisson
distribution is used for inter-arrival times and uniform distribution is used
for job sizes. 210

A.0 E�ectiveness of AJC speed spectrum: Comparison of AJC to a �xed speed
function that uses, as �xed speed values, the average and maximum speeds
obtained from a prior AJC run. Results show the performance ratio of
the total �ow time plus energy of �xed speed functions vs. AJC. Uniform
distribution is used for both inter-arrival times and job sizes. 212

List of Figures xiv

A.0 E�ectiveness of AJC speed spectrum: Comparison of AJC to a �xed speed
function that uses, as �xed speed values, the average and maximum speeds
obtained from a prior AJC run. Results show the performance ratio of
the total �ow time plus energy of �xed speed functions vs. AJC. Uniform
distribution is used for inter-arrival times and Poisson distribution is used
for job sizes. 214

A.-2 Results on processor allocation strategies in terms of average job size: Fig-
ures A.1(a) to A.1(d) show the performance ratios for average job size of
1. Results for average sizes of 16 and 512 are shown in Figures A.0(g),
A.0(h), A.1(e) and A.1(f) and Figures A.-1(j) to A.-1(l) and A.0(i) re-
spectively. Results measure the performance ratio of total �ow time plus
energy for a single processor vs. multiple processors. Poisson distribution
is used for inter-arrival times and uniform distribution is used for job sizes. 219

A.-4 Results on processor allocation strategies in terms of average job size: Fig-
ures A.-1(a) to A.-1(d) show the performance ratios for average job size
of 1. Results for average sizes of 16 and 512 are shown in Figures A.-2(g),
A.-2(h), A.-1(e) and A.-1(f) and Figures A.-3(j) to A.-3(l) and A.-2(i) re-
spectively. Results measure the performance ratio of total �ow time plus
energy for a single processor vs. multiple processors. Uniform distribution
is used for both inter-arrival times and job sizes. 223

A.-6 Results on processor allocation strategies in terms of average job size: Fig-
ures A.-3(a) to A.-3(d) show the performance ratios for average job size
of 1. Results for average sizes of 16 and 512 are shown in Figures A.-4(g),
A.-4(h), A.-3(e) and A.-3(f) and Figures A.-5(j) to A.-5(l) and A.-4(i) re-
spectively. Results measure the performance ratio of total �ow time plus
energy for a single processor vs. multiple processors. Uniform distribution
is used for inter-arrival times and Poisson distribution is used for job sizes. 227

List of Tables

3.1 Lookup tables showing processing and communication costs with respect
to time and energy. 31

3.2 Dynamic programming table for job J1 in the problem described in Ex-
ample 3.1. 32

3.3 Solution for the dynamic programming table for the problem described in
Example 3.1. 33

3.4 Solution for the dynamic programming table for the problem described in
Example 3.1 without the redundant values. 33

4.1 Summary of the best performance ratios for all processor allocation strate-
gies. 58

6.1 Table listing hardware speci�cations of all host systems used in the exper-
iments. 111

6.2 Intervals used in data generation for DPS. These intervals are inclusive in
the resulting data. 112

6.3 Information for GenBank databases used to generate input sequences for
GapsMis. 114

6.4 Details of the real graph data obtained from SNAP. 114

6.5 Details of the synthetic graph data generated for FDGV application. 115

xv

Dedicated to my family, for providing me with the means to pursue

my dreams. And to my supervisor, Dr. Prudence Wong, for making

those dreams a reality.

xvi

Chapter 1

Introduction

1.1 Overview

The study of scheduling dates back as far as the 1950s when researchers in operations

research, industrial engineering and management were faced with the problem of manag-

ing various activities occurring in a workshop [64]. An organization can lower production

costs in its manufacturing processes thereby enabling it to stay competitive. Later on in

the 1960s computer scientists also encountered scheduling problems during the develop-

ment of operating systems. During this time period computer resources such as CPU,

memory and I/O devices were considerably scarce so it was crucial that they had to

be e�ciently utilized in order to minimize the cost of running these computer systems.

Therefore an economic reason to study scheduling was established and eventually vari-

ous classes of scheduling problems have been developed to take into account the di�erent

scenarios they aim to address. Even in present times, new scheduling problems arise

from various sources such as the introduction of a new technology in various �elds like

systems design, automated industrial processes and so on.

Advances in the technology of microprocessor development and chip fabrication process

means that the density of transistors that make up these chips continue to grow. In

addition, the computational power and processing capability of these chips somewhat

doubled with each new design as manufacturers are able to ramp up the clock speeds with

the introduction of subsequent generations of microprocessors. Consequently, operating

at high clock speeds usually comes at the expense of incurring exponential increase

in power consumption and in order to mitigate this issue, manufacturers resorted to

shrinking chip sizes but this process has been restricted by available technology. As

a result, the growth in clock speeds began to slow down [103] and the gains in the

performance levels of these chips began to diminish. Chip manufacturers pursued other

1

Chapter 1. Introduction 2

means of achieving higher performance and this brought about the advent of multi-

core technology and mainstream parallel computation. Multi-core processor technology

was particularly attractive and promising especially because manufacturers were able to

more than double performance without necessarily increasing the operating frequency

by simply adding more processing cores. This means that devices are able to do more

as more processing power became readily available and this lead to an age of ubiquitous

computing as these chips powered almost everything ranging from small devices such

as mobile phones and tablets to our home computers to enterprise server systems and

super-computers. However, the problem of energy consumption soon re-surfaced and it

became highly imperative that system designers and developers tackle the issue for both

technical and economic reasons in order to prolong the sustainability of multi-core and

parallel systems.

On the economic side, apart from the costs of powering these computer systems, ex-

tra costs are incurred as a result of cooling systems required to keep them within their

optimal operating conditions. Since signi�cant amount of the energy drawn by these sys-

tems is dissipated as heat, the life span of a system can be greatly shortened due to the

adverse e�ects of high temperatures such as degraded transistor performance and dam-

age to components like soldering which can cause permanent damages. Therefore, the

problem of managing energy has become a critical topic in both industrial and academic

research and various approaches have been considered leading to innovations in algorithm

designs, software and hardware. Among the several approaches of managing energy con-

sumption, a growing trend is the adoption of heterogeneous computing to deliver high

performance. This is evident from the recent rankings of the 500 most powerful and

energy-e�cient supercomputers where the 17 most energy-e�cient supercomputers [38]

as well as the most powerful supercomputer [106] are heterogeneous systems utilizing

graphics processing units (GPU) and other co-processors.

The development of heterogeneous and parallel systems o�er exciting prospects in the

quest to �nd a balance between energy consumption and performance of computer sys-

tems. The GPU has shot to the forefront as most used co-processor in heterogeneous

systems quite simply because it was already part of existing systems where it is used

for visual and rendering tasks making its adoption very easy. As a part of this thesis,

we will present a detailed study to demonstrate the bene�ts of a heterogeneous system

that includes the GPU with respect to saving energy while achieving high computational

performance.

This chapter is organized as follows; in Section 1.2, we discuss some of the basic concepts

related to scheduling problems. The problems we studied along with related works are

Chapter 1. Introduction 3

introduced in Section 1.3. Finally, in Section 1.4, we outline the contribution of the

thesis.

1.2 Background on Scheduling

Scheduling can be generally considered as dealing with allocation concerns involving

scarce resources and tasks or operations that demand them with the goal of optimizing

one or more performance measures of interest in a given setting. These resources could

refer to a number of entities depending on the situation being considered. These may

include cores in a multi-core CPU, CPUs in a multiprocessor system, servers in a server

farm or cluster, memory, I/O devices, machines in an assembly line, airport runways,

train stations, personnel assignment in workplaces, just to mention a few. Operations,

on the other hand, may also refer to train calls at stations, airport landing and take-o�s,

an operation in a manufacturing process, execution of a computer program, manning

workstations in an industrial setting or call centres.

1.2.1 Inputs and outputs

The inputs in a scheduling problem includes a set consisting of a number of jobs to

be executed on a set consisting of a number of machines and each job or machine can

be uniquely referenced by a subscript. The time at which a job becomes available for

processing is known as the release or arrival time. The time it takes for a job j to

completely execute on a machine i is known as its processing time, and this value is

assumed to be �nite and non-negative unless explicitly stated. The point in time at which

job j �nishes its execution is known as its completion time. In some cases a job is required

to �nish execution at a particular time or deadline, however, a job might �nish at a time

greater than the time speci�ed as its deadline. The term tardiness measures how late a

job completes past its deadline and is expressed as max{completion time−deadline, 0},
while earliness, expressed as max{deadline − completion time, 0}, measures how much

a job completes before its deadline. Hence, when a job completes before its deadline its

tardiness is 0, and when a job completes after its deadline then its earliness is 0.

In order to represent each scheduling problem in a concise way including the inputs,

constraints and objective function(s), I would like to mention the well-known three-�eld

α|β|γ notation �rst introduced by Graham et al. [35]. However, we will be describing the

notation that was later introduced to incorporate machine availability constraints [95].

Chapter 1. Introduction 4

1.2.2 The α|β|γ scheduling notation

The �rst �eld α = α1α2α3 in the notation describes the machine environment in a

problem setting. Parameter α1ε{∅, P,Q,R, F, J,O} is used to characterize the machines

in single machine, identical, uniform and unrelated parallel machines, �ow shop, job

shop and open shop problem settings respectively. Parameter α2ε{∅,m}, where m is a

positive integer, indicates that the number of machines in a parallel machine environment

or number of stages for dedicated machines is assumed to be the variable m. Parameter

α3ε{∅, hi,k} describes unavailability intervals which occur on the machines otherwise

referred to as holes. In this notation α = ∅ represents a problem setting with no holes

and hi,k speci�es the number of holes and the machine(s) on which they occur. However

α = hi,k represents a problem setting with an arbitrary number of holes on each machine.

If i is replaced by a positive integer it means that holes only occur on machine Mi

otherwise holes will occur on all machines but if k is replaced by a positive integer it

denotes the number of holes occurring on the corresponding machine. For instance,

α = h1,k denotes a problem with an arbitrary number of holes on M1 only; α = hi,1

represents a problem with one hole on each machine while α = h1,1 represents a problem

with one hole on machine M1 only.

The second �eld β = β1, ..., β5 describes characteristics or constraints associated with

operations (jobs) and resources. Parameter β1ε{∅, t−pmtn, pmtn} denotes the kind of

preemption constraint in place which is either non-preemption, operation preemption or

arbitrary preemption respectively. An operation is said to be preempted if its processing

on a particular machine is interrupted at any time and resumed later at any time and

restarted at no cost. It must either remain on the same machine until it can be continued

later (operation preemption) or it can be shifted to another machine (arbitrary preemp-

tion). However, there are several studies that use β1 = r−a, β1 = nr−a and β1 = sr−a
to represent resumable, non-resumable and semi-resumable availability constraints re-

spectively [68]. In the resumable case preemption is allowed so if an operation cannot

be completed before the unavailability period of a machine it can resume later when the

machine becomes available again. The non-resumable case does not allow preemption so

the disrupted operation has to completely restart instead of continue. However, in the

semi-resumable case, operations can only be restarted partially after the machine be-

comes available again. Parameter β2ε{∅, rj} indicates release time for operations (jobs),

which can either be zero or di�er respectively. Parameter β3ε{∅, dj} denotes deadline
constraints on the job set where β3 = ∅ indicates no assumed deadlines, however, due

dates may be de�ned if necessary. On the other hand, β3 = dj indicates a deadline

constraint imposed in the job set. Parameter β4ε{∅, qj} indicates the absence or pres-

ence of tails in the jobs while β5ε{∅, online} represents an o�ine or online problem. A

Chapter 1. Introduction 5

problem is said to be o�ine if we have full knowledge regarding job data before building

a schedule or online if a scheduling decision is required once a job arrives without any

information about jobs that are yet to arrive in the future [68]. The β �eld can also

be left blank to denote no constraints on the job set and that all the jobs are available

before the construction of the schedule begins.

The third �eld γ represents the performance measure or objective function to be opti-

mized. Some of the commonly studied objective functions include maximum completion

time of all jobs or makespan (Cmax), minimum completion time (Cmin), maximum late-

ness (Lmax), maximum tardiness (Tmax), total completion time (
∑
Ci), total weighted

completion time (
∑
wiCi), number of tardy jobs (

∑
Ui) and weighted number of tardy

jobs (
∑
wiUi).

1.2.3 Classes of scheduling problems

Single machine problems.

The single machine problem simply involves scheduling a set of jobs on one machine only

which can either be assumed to be continuously available throughout the processing

period of the job set or have periods of unavailability or holes. It is the simplest form of

the scheduling problems.

Parallel machine problems.

The parallel machines can be further subdivided into identical (Pm), uniform (Qm) and

unrelated (Rm) parallel machines. The variablem usually indicates the number of parallel

machines in the problem setting which can also be omitted to denote an arbitrary number

of machines. Identical parallel machine problem involves a set of identical machines

running at the same speed, therefore, a given job will take the same amount of time to

process on all the machines. For the case of uniform parallel machines each machine

runs at a di�erent speed. For instance machine Mi, 1 ≤ i ≤ m, runs at speed si. The

processing time pij that job Jj spends on Mi is given by pj/si assuming Jj is completely

processed by Mi. Finally, in unrelated parallel machines, the jobs are processed at

di�erent speeds on the machines so even if two machines run at the same speed it does

not necessarily mean that they will take the same amount of time to process a particular

job.

Job shop problems (Jm).

In this problem setting with m machines there is a set of n jobs that need to be processed

using a number of the machines for a certain amount of time. Each job has its own

Chapter 1. Introduction 6

predetermined route through the machines so a job can use some machines more than

once and may not use some machines at all. For instance, in a problem consisting of

m=10 machines labelled serially M1, ...,M10, a job Jj might have a predetermined route

through machines M1, M3, M5 and M1 exactly in that order. The order in which a job

executes must follow the order in the predetermined route.

Flow shop problems (Fm).

Here all m machines are ordered linearly and all the jobs in the job set must follow the

same route from the �rst machine to the last machine in order to be processed.

Open shop problems (Om).

In an open shop problem of m machines all n jobs in the job set needs to visit each of

the machines at least once and the order in which this happens is not relevant.

1.2.4 Input structure and constraints

Apart from the machines a certain structure or constraint can exist in the set of jobs to be

processed known as precedence constraints. This could be in the form of an intree, outtree

or chain. Precedence constraints are speci�ed explicitly in the β �eld or generally written

as prec and it is always given as a directed acyclic graph where each vertex represents

a job. Job i precedes job j if there is a directed arc from i to j meaning that i must be

completed before j starts. A chain exists when each job has at most one predecessor and

at most one successor. An intree is such that each job has at most one successor while

an outtree is when each job has at most one predecessor. It also possible to restrict the

number of jobs by including the symbol nbr in the β �eld which is the maximum number

of jobs to be processed. For �ow shop problems only a no-wait constraint (nwt) can be

speci�ed to denote that jobs are not allowed to wait between two successive machines.

Also a restriction can be imposed on the processing time of the jobs using pj = p in

the β �eld to denote that each job's processing time is p units. Finally, in job shop

problems where jobs can have operations, the sub-�eld nj is used to restrict the number

of operations allowed for each job.

1.3 Problems Studied and related work

1.3.1 Online scheduling of deteriorating jobs on parallel machines

In classical scheduling problems, it is usually of the assumption that the processing of

jobs are �xed, however, this is not always the case in some practical situations. There

Chapter 1. Introduction 7

are various scenarios where the processing time of a job increases of deteriorates as

the start time increases or is delayed. An instance of this scenario would be in the

continuous casting stage in a steel production process. This requires that the steel is still

in molten form in order to be cast into slabs, blooms or billets. Any delays in the prior

processes might result in the steel cooling down to unacceptable temperatures which

may result in a restart in the whole process, leading to additional time as a consequence.

Other examples can be found in �re-�ghting, cleaning, maintenance tasks and �nancial

management [53, 74]. In general, any delay in the start time of such task would incur

additional e�ort to complete it at a later time, hence, the reason and motivation behind

the study of deteriorating jobs.

The problem of scheduling deteriorating jobs was �rst introduced by Gupta and Gupta [41],

and Brown and Yechiali [17]. Although both works studied makespan minimization on

a single machine, the processing time of a job is given as a monotone linear function of

its start time in [17] while in [41], it is given as a non-linear function. The problem has

since attracted huge interests and has been studied in other time-dependent models with

other objective functions [5, 24, 34].

Linear deterioration. The problem of scheduling jobs with linear deterioration has

been studied in great details as a result of its simplicity while capturing the vital prop-

erties of practical situations. The processing time of a job is expressed as a monotone

linear function of its start time. To be precise, the processing time pj of a job Jj is

de�ned as pj = aj + bjsj , where aj > 0 is the normal or basic processing time, bj > 0

is the deteriorating rate and sj > 0 is the start time. As the start time of a job gets

larger, the processing time also gets larger and therefore, the processing time of a job

is dependent on the schedule. Furthermore, linear deterioration is said to be simple if

aj = 0, that is, pj = bjsj .

Figure 1.1: An illustration of linear deterioration.

Consider the illustration in Figure 1.1 that shows two jobs, Jj and Jk, with identical

deteriorating rates of 2 scheduled at di�erent times. Assume that t0 = 1 and Jj starts at

t0, then the completion time is given by t0 + bjt0 = 1 + 2(1) = 3. On the other hand, Jk

Chapter 1. Introduction 8

is started later at time 2t0, therefore, the completion time is given by 2t0 + bk2t0 which

evaluates to 6.

As the number of jobs grows, the start time of jobs gets larger and the processing time

of in�nitely many jobs is no longer a�ected by the normal processing time but only by

the deteriorating rate [73, 74]. In addition, Gupta and Gupta [41] observed that in the

case of linear deterioration, it is optimal to process jobs in ascending order of
aj
bj
. From

this example, we can see that even though both jobs have identical deteriorating rates,

their processing times di�er signi�cantly and this demonstrates how the schedule of a

deteriorating job can greatly a�ect its processing time.

Scheduling jobs with linear deterioration has been studied in the contexts of both single

machine [74, 80] and parallel machines [33, 49, 51, 75, 92]. In [80], Ng et al presents a

study of the problem on a single machine where preemption is allowed and each job is

associated with a release time. They show that minimizing the maximum job completion

cost is polynomial time solvable whether or not precedence constraints are imposed on

the jobs. They also show that minimizing the total weighted completion time is NP-hard

even with only two distinct release times. On parallel machines, Garey and Johnson [33]

showed that the problem is NP-hard for two machines and strongly NP-hard for arbitrary

number of machines as a result of the complexity of the corresponding problems with

�xed processing time. A FPTAS is proposed by Kang and Ng [49]. For the case of simple

linear deterioration, the problem has been independently shown to be NP-hard [51, 75]

and a FPTAS is proposed by Ren and Kang in [92].

Other time-dependent models. In the de�nition of linear deterioration, pj = aj +

bjsj , bj is assumed to be non-negative and non-decreasing. However, in a di�erent

model, bj is assumed to be a non-positive and non-increasing factor. In other words, the

processing time of each job decreases as its start time increases. This model was initiated

in [43] and represents a real-world problem in the military domain where the objective

is to eliminate an aerial threat target. In this case the execution time decreases as the

target gets closer.

Another time-dependent model involves scheduling with procrastination. In [15] the

scheduler is assumed to execute a job with increasing speed as the deadline approaches.

This models a number of real-world scenarios, most especially human behaviour, where

one would postpone execution of an arduous task close to the deadline in order to spend

as little time as possible. Another example is the addition of more resources or people

to a project in order to meet the project's deadline. For this problem, an optimal o�ine

algorithm was presented for case where a feasible schedule or solution exists. They

also present results in the online case showing a Θ(1)-competitive online algorithm for

Chapter 1. Introduction 9

maximum interval stretch, that is, the time allowed for the procrastinator to �nish a job

beyond its due date.

Online models. Most of the results discussed above assume that the all jobs are

available at the same time so an algorithm has full knowledge (that is, aj and bj) of the

all jobs in advance. However, the reality is that jobs may also have arbitrary release

times. Pruhs et al [91] formalized two online models, namely, online-list and online-time

models. In the online-list model, jobs are released only one at a time so an algorithm

must schedule the released job before further subsequent jobs can be released. Once a

job is scheduled by the algorithm it cannot be modi�ed in the future. One the other

hand, in the online-time model, an arbitrary release time is associated with each job so

the information relating to each individual job is only available after it has been released.

Graham [36] proposed a List Scheduling (LS) algorithm for online parallel machine

scheduling with �xed processing time. Online algorithms for linear deteriorating jobs

with release times have been studied in [23, 60]. In [60], the application of deteriorating

jobs with release times to steel production is discussed. Cheng and Ding [23] showed

that the problem with release times on a single machine is strongly NP-hard for the case

of identical normal processing time a or deteriorating rate b.

To the best of our knowledge, the only work on online scheduling of deteriorating jobs

that we are aware of is by Cheng and Sun [22]. In this thesis, we present results in

both contexts of online-list and online-time models for simple linear deteriorating jobs

on parallel machines.

1.3.2 Energy-e�cient scheduling of precedence-constrained jobs on par-

allel machines

In Section 1.3.1, we introduce a scheduling problem with no constraints present in the

structure of the jobs, in other words, each job can be treated as a completely independent

entity. However, there are practical situations where the execution of an operation or

collection of operations can depend on some factors related to the problem domain. Some

of these factors include storage, transportation, resource availability and maintenance,

and process constraints which is related to a particular order in which operations must

be ful�lled. A simple example can be found in queueing systems which are applicable to

�nancial institutions, health care and service industries, where requests are ful�lled in the

order of their arrivals so that earlier ones �nish �rst. Other examples include automated

processes in industrial assembly and fabrication systems in which some operations cannot

be carried out without some prerequisite operation, for example, spray-painting process

of a car in a vehicle assembly plant cannot begin without �rst assembling all vehicle parts.

Chapter 1. Introduction 10

These kind of restrictions in the scheduling process gave rise to the research and study

of scheduling subject to constraints, a class of which consists of precedence constraints.

The concept of precedence constraints was introduced to capture the essence of scheduling

where operations are not totally independent of each other. In simple terms, precedence

constraints specify that a job cannot be started unless all the jobs preceding it have

been completed. The precedence constraints between jobs is usually depicted with the

use of a directed acyclic graph. Figure 1.2 illustrates the di�erent types of precedence

constraints.

(a) Chain (b) Intree (c) Outtree

Figure 1.2: Examples of job precedence constraints.

The study of scheduling with precedence constraints began as early as 1970s with notable

theoretical studies including [58, 61, 99]. Lenstra and Rinnooy Kan [61] were able to show

that most of the relatively simple, classic scheduling problems become NP-complete when

precedence constraints are added to these problems.

In this thesis, we present a study of the scheduling of jobs with chain precedence con-

straint on parallel machines with the objective of minimizing energy. Our motivation is

two-fold. First we present an algorithm for solving the problem, and secondly, our goal

is to use our algorithm as a case study in our study involving heterogeneous and parallel

computing. The study of energy-aware scheduling on parallel machines or chip multi-

processors have received numerous attention in research, however, we are concerned with

problems involving non-independent tasks. Some closely related works in this aspect in-

clude [14, 97]. Here, tasks are represented as directed acyclic graphs (DAG) where nodes

represent the task while the edges represent the precedence between tasks. The cost

associated with processing time and energy as well as communication time and energy

are also given as input to the problem. We present a problem using similar model to the

works mentioned but our focus in a task set with chain precedence constraint and each

task can have a di�erent deadline. We present both theoretical results and empirical

results for this problem.

1.3.3 Energy-e�cient �ow time scheduling

Single processor scheduling. The theoretical study of dynamic speed scaling to

reduce energy was initiated by Yao et al. [111] and has received a considerable amount

Chapter 1. Introduction 11

of attention [16, 26, 88]. Yao et al. considered the in�nite speed model where a processor

can dynamically change its speed to a value between zero and in�nity. They studied

the problem of online scheduling of jobs with arbitrary sizes and deadlines, and their

objective is to produce a schedule such that all jobs complete within their deadline while

minimizing the energy incurred by the schedule. The study has been extended to take

into consideration the fact that in realistic situations processors can only adjust speeds

within a �nite speed spectrum with often pre-de�ned voltage levels. Here, processor

voltage is determined from a �nite spectrum of discrete voltage levels which in turn

determines the speed levels the processor is capable of running at. Earlier approaches

to the problem involve �rst computing the continuous version of the problem and then

adjusting the speeds to the �t into the discrete voltage levels for the �nal schedule [47, 56].

Yao and Li [65] further extended the study and presented results where the computation

of the continuous schedule is skipped entirely.

On the other hand, the problem of minimizing total �ow time plus energy compacted

into a single objective function de�ned as the sum of �ow time and energy was proposed

by Albers and Fujiwara [4]. They considered jobs of unit size and propose a speed scaling

algorithm that changes the speed of the processor based on the number of active jobs

(AJC), which refers to jobs that have arrived but are yet to be completed. They, however,

studied a batched version of the algorithm where newly released jobs are queued until all

jobs in the current batch are completed and showed that it is 8.3e(1 + Φ)α-competitive

for minimizing total �ow time plus energy, where Φ = (1+
√
5)

2 is the golden ratio. Further

improvement on their work has been presented by Bansal et al. [11, 12].

Multiple processor scheduling. The problem of scheduling on multiple processors

with �xed speed and without energy considerations has been widely studied [8, 9, 19,

20, 62]. The use of multiple processors can be seen in practice in most modern computer

systems and devices where the most common con�guration consists of identical processing

cores, for instance, processors found in home desktop machines and most recently, mobile

phones and tablets. For the problem involving multiple processors, jobs still arrive in

a sequential fashion and cannot be executed by more than one processor in parallel.

Online algorithms such as shortest remaining processing time (SRPT) and immediate

dispatch (IMD) [8] that are Θ(log P)-competitive have been proposed for the migratory

and non-migratory model respectively, where P is the ratio of the maximum job size to

the minimum job size [8, 9, 62]. Furthermore, IMD has been shown to be O(1 + 1
ε)-

competitive when using processors that are (1 + ε) times faster. In the case where

migration is allowed, SRPT has been to achieve a competitive ratio of 1 or even smaller

when using su�ciently fast processors [71, 87].

Chapter 1. Introduction 12

Subsequently, Bunde [18] initiated the study of multiple processor scheduling that takes

both �ow time and energy into account and presented a study of the o�ine approximation

for jobs with unit size. On the other hand, Lam et al. [57] presented the �rst online,

non-migratory algorithm for minimizing total �ow time plus energy for jobs of arbitrary

size. Conserving energy with multiple processors typically involves distributing jobs as

evenly as possible among the available processors in order to avoid running any processor

at higher than required speed, therefore, it is only natural to consider techniques similar

to round-robin. This is demonstrated by Lam et al [57] in the classi�ed round robin

(CRR) algorithm, which classi�es jobs according to their sizes and allocates jobs of the

same class to the processors in a round robin fashion. They showed that CRR can be

Θ(log P)-competitive for the problem of minimizing total �ow time plus energy.

In this thesis, we present an empirical study that focuses on the analysis of the speed-

scaling heuristic based on the number of active jobs and investigate the possibility of

designing a simpler heuristic that is capable of achieving the sort of performance close to

that of the speed-scaling heuristic. In addition, our investigation includes several speed

selection, job selection and multi-processor allocation heuristics.

1.3.4 Parallel and heterogeneous computing with graphics processors

Over the years, chip manufacturers have greatly concentrated on improving single-thread

performance of the central processing unit (CPU), which provides the bulk of the comput-

ing power in enterprise and home computer systems. However, the future of computing

centres around parallelism and heterogeneous computing. As it is the current trend, the

design and development of future microprocessors will continue to focus adding more

computing cores instead of simply focusing on single-thread performance or frequency.

The Cell broadband engine. One of the earlier trends in heterogeneous computing

involves the use of the Cell broadband engine [69]. The Cell processor was developed by

Sony, Toshiba and IBM and it provides the processing power for the Sony Playstation

3 game console. The heterogeneous nature and multicore architecture quickly attracted

attention in the science and research communities. A number of the initial works such

as [10, 21, 54, 55, 108] focused on using the Cell processor to accelerate scienti�c compu-

tations including 1D/2D Fast Fourier Transforms, and several linear algebra techniques

including QR factorization, Cholesky factorization, dense matrix operations and sparse

matrix-vector operations. These results show that using the Cell processor for these

applications resulted in signi�cant performance increase compared to the conventional

CPUs available during the same period.

Chapter 1. Introduction 13

GPU computing. Another kind of multiprocessor that quickly gained popularity

among the scienti�c community is the graphics processing unit (GPU). The GPU is

a multiprocessor primarily designed to accelerate compute tasks involved in graphics

rendering. It is speci�cally designed for high throughput computation rather than low

latency computation as is seen with the CPU. It is also optimized to handle compute

tasks that require high levels of parallelism as is associated with rendering of pixels and

other graphics-related tasks. Due to these reasons, the GPU is characterized by a mas-

sively parallel architecture with hundreds of processing elements. In addition, the GPU

is readily available and the desktop versions can be very a�ordable. These factors make

it very appealing to the scienti�c community, hence, the signi�cant amount of attention

it has received over the years. The use of graphics processors for accelerating applica-

tions is commonly referred to as GPU computing or general purpose computing on GPUs

(GPGPU). Owens et al. provides a comprehensive survey and introduction in [85, 86].

GPU computing has seen applications in several �elds. In Computer Science, there has

been several work in literature that study the implementation of several algorithms on

the GPU and evaluate their performance. Problems in graph theory including graph

cuts, traversal and layout have already been studied in [31, 42, 72, 107]. Furthermore,

sorting algorithms including merge sort, radix sort, quick sort and bitonic sort, just to

mention a few, have been analysed on the GPU [37, 39, 94, 96, 100].

Another �eld of study where GPU computing has received a lot of attention is Bioin-

formatics. Some of the applications used in Bioinformatics are typically characterized

as mainly requiring high throughput computation. Therefore, it is no surprise that

the graphics processor has been adopted to accelerate the performance of such appli-

cations. GPU computing is applied to applications used for sequencing, alignment and

database searches and some the works include implementation of the very popular Smith-

Waterman algorithm [101] on the GPU [67], and tools such as [66, 98, 113, 114]. Majority

of the works provided by the authors relating to GPU computing are accompanied with

empirical studies demonstrating the advantages that the GPU o�ers over conventional

computing with CPUs.

In this thesis, we are not only interested in presenting new implementations of algorithms

on the GPU. We will be presenting a study detailing our experiences in developing

applications on the GPU. We will study several factors that can easily be overlooked

when designing applications for GPGPU which are key in order to achieve desired levels

of performance on the GPU. In order to do this, we will select a few algorithms as

representative case studies. Some of which are already known algorithms but have not

been studied in the context of GPU computing, at least to the best of our knowledge,

and others will be a novel approach.

Chapter 1. Introduction 14

1.4 Contribution of thesis

In Chapter 2 of this thesis, we present a theoretical study of the problem of scheduling

linear deteriorating jobs on parallel machines with the objective of minimizing makespan.

This is a joint work with Sheng Yu, Prudence Wong and Yinfeng Xu, and is published

in the Theory and Applications of Models of Computation [112]. We present three main

results in the online-time model, where jobs are associated with arbitrary release times.

Our �rst result concerns the List Scheduling (LS) on arbitrary number of parallel ma-

chines in which we show that the competitive ratio of LS is at least (1 + bmax). We

present details of the adversary as well as mathematical proof for the adversary used

to obtain this competitive ratio. The second result concerns the scheduling of simple

linear deteriorating jobs on arbitrary number of machines. We show that no determin-

istic algorithm is better than (1 + bmax)1−
1
m -competitive and that this also holds for

the online-list model. Finally we extend our adversary to show that in the case of two-

machine scheduling of jobs with simple linear deteriorating rates, no deterministic online

algorithm is better than (1 + bmax)-competitive.

In Chapter 3, we present a study of a problem concerned with energy-aware scheduling

of n tasks with precedence constraints on m parallel machines. The type of precedence

constraints we focus on is the chain precedence constraint, where each task can have

at most one predecessor and at most one successor. A task is also characterized by a

strict deadline that must be met. The parallel machines are assumed to be unrelated

and are connected by an underlying communication network. The execution of a task

on a machine costs time and energy and for each machine-job pair, the cost is given

by a machine-job matrix. Similarly, communication across the network costs time and

energy too given in a machine-machine cost matrix. We assume that the communication

links can be asymmetric, that is, the cost depends on the direction between a pair

of machines. We present an optimal, pseudo polynomial algorithm using a dynamic

programming approach with a running time of O(nm2dmax), where dmax is the largest

deadline. In addition, we implement this algorithm in our empirical studies involving

multi-core processors and graphics processors. The aim is to provide a representative

case for serial, monadic dynamic programming formulations for analysis on the GPU.

In Chapter 4, we present a study of the problem of scheduling to minimizing total �ow

time plus energy. Results of our work was presented at the 11th Workshop on Models and

Algorithms for Planning and Scheduling Problems, 2013 [83]. Our contribution to the

problem is a comprehensive empirical study that aims to complement results obtained

from theoretical studies. We implement and investigate several job selection, speed func-

tion and processor allocation heuristics. We start by considering SRPT and shortest

Chapter 1. Introduction 15

job �rst (SJF) job selection heuristics for both single processor and multi-processor set-

ting. We demonstrate that SRPT is indeed better than SJF although the di�erence in

performance is very small.

For single processor simulations, we investigate the e�ectiveness of dynamic speed scaling

by comparing a speed-scaling heuristic with several �xed speed heuristics where the

heuristics have no prior knowledge of the job set. We demonstrate that in such case, the

speed scaling heuristic performs better than the �xed speed heuristics. However, we also

designed a �xed speed heuristic that is capable of selecting a speed based on some prior

knowledge of the job set and we show that, if we allow a �xed speed function to have

some prior knowledge of the job set, we can achieve good results that are close to the

results attainable with speed scaling. The �xed speed heuristic is also meant to serve as

an alternative that is very simple and easy to implement compared to the speed-scaling

heuristic. We then evaluate how the performance of the �xed-speed heuristic compares

to the speed-scaling heuristic. We also demonstrate that when jobs arrive sparingly, the

performance gain or e�ectiveness of speed scaling degrades because there is less pressure

on the scheduler in terms of work.

Furthermore, we extend our simulations to multi-processor setting and evaluate the per-

formance of several processor allocation heuristics including round robin. We demon-

strate that, in general, using multiple processors can help save time and energy and this

is regardless of the processor allocation heuristic in question. However, when job distri-

bution is sparse, we show that there is little or no bene�t from adding more processors.

In Chapter 5 of this thesis, we present a brief introduction to general purpose computing

on graphics processing units (GPGPU). We introduce description of well-known graphics

processor hardware and architecture from Advanced Micro Devices (AMD) and NVIDIA

Corporation. We also cover topics such as stream computing and parallel computing

frameworks. This chapter is meant to describe concepts related to GPGPU and serve as

crash course on the subject in order to assist the reader with the understanding of the

work presented in Chapter 6.

In Chapter 6, we present comprehensive and detailed empirical studies concerning parallel

and heterogeneous computing with graphics processing units (GPU). Most of the work

presented in literature related to GPU computing are merely concerned with speedup

achieved in comparison to the best sequential implementation of a known algorithm. We

are interested in the several factors that are involved in the development of applications

for GPU computing including thread grouping and scheduling, memory management

techniques and kernel optimizations related to the GPU hardware. We select a total of

4 applications as our test cases.

Chapter 1. Introduction 16

Our �rst application is a dynamic programming application mentioned earlier in this

chapter for scheduling jobs with chain precedence constraint on parallel machines to

minimize energy. This algorithm is meant to represent a class of dynamic program-

ming formulations known as serial monadic formulation. It is a simple case of dynamic

programming where the computation for each level only depends on the level directly

preceding it (serial) and does not contain any recursive term in its de�nition (monadic).

The second application is a novel implementation of the GapsMis algorithm [3, 13] for

GPGPU. It is also based on dynamic programming, however, it can be described as serial

polyadic. It is a practical tool for sequence alignment with the aim of allowing variable

and bounded number of gaps.

The third application is a novel implementation of the Velocity-Verlet algorithm [104]

on the GPU. It is a well-known algorithm used in n-body simulations and it is used

for the numerical integration of Newton's laws of motion. We chose this algorithm to

represent a class of n-body algorithms and because of its practical application in particle

and molecular simulations. The last of our application is a tool for graph layout and

visualization based on the well-known Fruchterman-Reingold algorithm [32]. It is very

similar to the n-body algorithms and �nds practical applications in tools developed for

visualizing graphs and network structures.

We implement sequential, multi-threaded and GPU kernel versions for each of these

applications. We evaluate the performance based on several metrics which we de�ne

in order to capture several aspects of the performance the applications including, for

instance, execution times of both GPU kernel and whole application, throughput tailored

to individual application and also estimation of power and energy consumption for each

application. We hope to highlight the challenges involved in developing heterogeneous

applications and provide some insight using our case studies as the results presented in

this chapter can also be extended to similar algorithms with similar characteristics.

Chapter 2

Online Scheduling of Linear

Deteriorating Jobs on Parallel

Machines

2.1 Introduction

In this chapter, we extend the study of simple linear deteriorating jobs in the online-list

model to the online-time model. Recall that in the online-list model, jobs are released one

at a time and an algorithm must schedule a released job before the next job is released.

However, in the online-time model, each job can be characterized by a release time. In

the online-list model, with an arbitrary number, m, of parallel machines, List Scheduling

has been shown to be (1 + bmax)
1− 1

m -competitive, where bmax is the largest deteriorating

rate. We extend this study to the online-time model, showing that for the case of

two machines no deterministic online algorithm is better than (1 + bmax)-competitive.

This result implies that the problem becomes more di�cult in the online-time model

in comparison with the online-list model. In addition, we show that List scheduling is

(1 + bmax)
2(1− 1

m
), hence, it is optimal for the case where m = 2.

In the organization of this chapter, we begin with a formal problem de�nition and de-

scription of notations in Section 2.2. In Section 2.3, we present the new lower bound

results in the online-time model and details of the adversary employed are explained

comprehensively. Finally in Section 2.4, we present our concluding remarks.

17

Chapter 2. Online Scheduling of Linear Deteriorating Jobs on Parallel Machines 18

2.2 Preliminaries

2.2.1 Problem de�nition

Consider a set of n jobs J = {J1, J2, . . . , Jn} to be scheduled on m machines labelled

{M1,M2, . . . ,Mm}. Each job Jj is associated with a release time, rj , and a processing

time, pj . We assume that the jobs are indexed non-decreasing order of their release times

such that rj ≤ rj+1. The start time of job Jj , denoted by sj , refers to the time at which

job Jj starts being executed on a processor. The processing time pj of a job Jj depends

on its start time sj and this implies that pj di�ers with di�erent schedules.

We focus on linear deterioration where a job Jj is characterized by a normal processing

time, a ≥ 0, and a deteriorating rate, bj > 0, such that pj = aj + bjsj . Consider a case

where all jobs in the job set have identical normal processing times, we refer to this case

as simple linear deterioration. We denote by bmax the largest deteriorating rate among

all jobs in the job set.

Our concentration is on an online formulation where jobs arrive in an online manner

which means that jobs are not available at the beginning and information related to a

particular job is only known on arrival. Furthermore, an algorithm constructs a schedule

that shows, for each Jj ∈ J , the machine on which Jj is to be executed. Let us consider

a schedule S, the completion time of each job Jj ∈ J in S is denoted by cj(S). For any

machine Mk, where 1 ≤ k ≤ m, the group of jobs assigned to Mk by the schedule S

is denoted by J k(S). This can also be written as J k for simplicity when no ambiguity

exists.

We denote by Ck
max

(S) the makespan of machine Mk, which is the largest completion

time among the jobs in J k(S). The makespan of the schedule S, denoted by Cmax(S),

is the largest makespan among all machines, hence,

Ck
max

(S) = max
j∈J k(S)

{cj(S)}

and

Cmax(S) = max
1≤k≤m

{Ck
max

(S)}

The objective of the problem is to minimize the makespan of the constructed schedule.

Furthermore, we describe the following terms,

Chapter 2. Online Scheduling of Linear Deteriorating Jobs on Parallel Machines 19

List Scheduling (LS). This comprises of a list into which jobs are inserted in non-

decreasing order of arrival. The next available job in the list is assigned to whichever

machine becomes idle.

OPT. This denotes the optimal o�ine algorithm (and its schedule).

Let us consider the following example that helps to illustrate the working principle behind

LS along with a counterpart optimal schedule.

Example 2.1. Consider a set of �ve jobs labelled J1, J2, . . . , J5 according to their release

times, illustrated in Figure 2.1, to be scheduled on two machines, M1 and M2. The

illustrations only show jobs scaled according to the deteriorating rates and not according

their processing times so jobs J1 to J4 all have the same deteriorating rate while J5 has

the largest deteriorating rate.

Figure 2.1: An illustration of jobs based on the deteriorating rates.

For these jobs, the resulting schedules constructed by LS and OPT are illustrated in

Figure 2.2. Without loss of generality, we assume that LS starts with machine M1 and

continues subsequent assignments accordingly. On the other hand, the schedule illustrated

by OPT gives an optimal assignment for the same set of jobs. Note that the illustrations

in Figure 2.2 do not depict the processing times of the jobs rather they merely depict job

assignments on each machine.

Figure 2.2: An illustration of schedules constructed by LS and OPT for the job set
shown in Figure 2.1.

2.2.2 Property of simple linear deterioration

Let us consider the following example that shows the assignment of a sequence of jobs

on a single machine. All jobs are assumed to have the same deteriorating rate. For full

details and proof for the properties relating to simple linear deterioration the reader is

referred to Property 1 in [112]. Example 2.2 aims to provide some intuition into these

properties.

Chapter 2. Online Scheduling of Linear Deteriorating Jobs on Parallel Machines 20

Example 2.2. Consider the sequence of n jobs labelled J1, J2, . . . , Jn to be scheduled

on a single machine. As in the previous example jobs are only scaled according to their

deteriorating rates. Figure 2.3 illustrates an assignment of these jobs on a machine. It

shows the start times and completion times of these jobs. Note that we assume t0 > 0.

Figure 2.3: An illustration of n jobs assigned to one machine.

Given this assignment, we can compute the completion times, labelled t1, t2, . . . , tn, as

follows,

t1 = t0 + b1s1 = t0 + b1t0

t1 = t0(1 + b1) (2.1)

Equation 2.1 above computes the completion time t1 for job J1. Since the start time of

job J3 depends on the completion time of job J2 which in turn depends on the completion

time of job J1, we can compute t2 and t3 as follows,

t2 = t0(1 + b1)(1 + b2) (2.2)

t3 = t0(1 + b1)(1 + b2)(1 + b3) (2.3)

Hence, for n jobs, we can generalize the computation of the completion time, tn, for the

n-th job as follows,

tn = tn−1 + bntn−1

tn = t0(1 + b1)(1 + b2)(1 + b3) · · · (1 + bn) (2.4)

2.3 New lower bounds in online-time model

In this section, we present our results on the new lower bounds obtained for the online-

time model for simple linear deterioration. In Section 2.3.1, we describe the proof of the

lower bound for LS as well as the adversary employed in obtaining this lower bound. Then

Section 2.3.2, �rstly, we extend this adversary to show how to obtain a lower bound on

any deterministic algorithm in online-list model. Then we adopt the adversary to obtain

Chapter 2. Online Scheduling of Linear Deteriorating Jobs on Parallel Machines 21

a lower bound on any deterministic algorithm in online-time model for a two-machine

case.

2.3.1 List Scheduling on m parallel machines

We begin with the following Lemma.

Lemma 2.1. Consider simple linear deteriorating jobs with arbitrary release times. The

competitive ratio of LS is at least (1 + bmax).

Proof. We introduce an adversary that works in stages. Each stage, k, consists of jobs

with either of two distinctive deteriorating rates and jobs are released at a particular

time that marks the beginning of the stage.

Figure 2.4: Stage 1 of adversary: The deteriorating rate, b1, of job J1 satis�es 1+b1 =
(1 + b)3 where b is the deteriorating rate of each of the smaller jobs depicted in the
illustration. Jobs are released at time t0 and scaled according to deteriorating rates
only.

Stage k = 1. Figure 2.4 illustrates the assignment of jobs on three machines in stage

1 for both LS and OPT. The adversary starts by releasing m(m − 1) jobs, each with

deteriorating rate b, at time t0. LS will distribute these jobs evenly across all machines

so that it achieves a completion time of t0(1 + b)m−1 across all machines. The adversary

then proceeds with releasing a single job J1 with deteriorating rate b1, such that 1+b1 =

(1 + b)m. As a result, LS will incur a completion time of t0(1 + b)m−1(1 + b1) on which

ever machine it chooses to assign job J1 to. However, OPT can assign job J1 on one of

the machines while the other jobs are assigned to the remaining machines. Consequently,

all machines in OPT will have the same completion time equal to t0(1 + b1), meanwhile,

LS is still executing job J1 past this time. Furthermore, one can observe that at any

given point in time all machines in OPT are busy while for LS, some machines can be

idle.

Chapter 2. Online Scheduling of Linear Deteriorating Jobs on Parallel Machines 22

(a) Stage 2 (b) Stage 3

Figure 2.5: Stages 2 and 3 of adversary: (A) In stage 2, jobs are released at time
t1 = t0(1 + b1) and as a result, LS cannot schedule them earlier on M1 and M2. This
means machinesM1 andM2 are idle until time t1. (B) In stage 3 new jobs start arriving
at time t2 = t1(1 + b2) and the trend continues as with the previous stages.

Stage k ≥ 2. Figure 2.5 illustrates stages 2 and 3 of the adversary following from stage

1 shown in Figure 2.4. For each stage k ≥ 2, let us de�ne the term pk such that,

pk = k(m− 1) + 1 (2.5)

and the deteriorating rate bk for job Jk such that,

1 + bk = (1 + b)pk (2.6)

At the start of each stage k ≥ 2, LS is still processing job Jk−1 on one of the machines

until time tk−1(1+b)(k−1)(m−1). Meanwhile, the rest of the machines in LS and OPT are

idle from time tk−1. The adversary starts the stage by releasing (k−1)(m−1)2+m(m−1)

jobs with deteriorating rate b at time tk−1. Without loss of generality, let us assume that

LS has assigned job Jk−1 on machineM1. Consequently, LS will assign (k−1)(m−1) jobs

to each machine M2,M3 · · · ,Mm and the remaining jobs are assigned to all machines

M1,M2 · · · ,Mm so that each machine gets (m − 1) more jobs. Then, the adversary

releases a job Jk with deteriorating rate bk which LS can schedule on any machine, say

M1, so that the completion time of machine M1 is given by the following expression,

tk−1(1 + b)(k−1)(m−1)(1 + b)m−1(1 + bk) = tk(1 + b)k(m−1)

while machines M2,M3 · · · ,Mm are idle from time

tk−1(1 + b)(k−1)(m−1)(1 + b)m−1 = tk−1(1 + b)pk−1 < tk

However, OPT can assign Jk on one of the machines and the remaining jobs on the rest

of the machines such that the completion time tk is the same across all machines, where,

tk = tk−1(1 + b)(k−1)(m−1)+m = tk−1(1 + b)pk

Chapter 2. Online Scheduling of Linear Deteriorating Jobs on Parallel Machines 23

Finally, the ratio of LS to OPT can be expressed as follows,

Cmax(LS)

Cmax(OPT)
= (1 + b)k(m−1) = (1 + b)

k(m−1)
k(m−1)+1

This ratio can be arbitrarily close to (1 + bmax) if the number of stages is arbitrarily

large. The lemma then follows.

2.3.2 Lower bounds for deterministic online scheduling

We now consider deterministic algorithms for scheduling simple linear deteriorating jobs.

Firstly, we show that for an arbitrary number of machines, m, we can obtain a lower

bound on any deterministic algorithm by adopting and using the �rst stage of the ad-

versary described in Section 2.3.1. For this reason we present the following lemma.

Lemma 2.2. Consider simple linear deteriorating jobs. No deterministic algorithm is

better than (1 + bmax)
1− 1

m - competitive. This also holds for online-list model.

Proof. Let us denote by ALG any reasonable and deterministic online algorithm. We

say that ALG is reasonable if it does not allow unnecessary idle times in its schedule.

Consider the �rst stage of the adversary described in the proof of Lemma 2.1. The

adversary begins by releasing m(m − 1) jobs, each with a deteriorating rate b. ALG

could assign m or more jobs to one of the machines and if this is the case, the makespan

is at least t0(1 + b)m. On the other hand, OPT can distribute the jobs evenly across all

machines so that each machine is assigned m − 1 jobs which results in a makespan of

t0(1+b)m−1. Consequently, the competitive ratio is at least 1+b > (1+b)1−
1
m , therefore,

the lemma follows since bmax = b in this case.

However, if ALG assigns exactly m− 1 jobs to each machine, the adversary will release

a job with deteriorating rate b1 such that 1 + b1 = (1 + b)m. As a result, the makespan

of ALG will be t0(1 + b)m−1(1 + b1) while that of OPT is t0(1 + b1). This leads to the

following competitive ratio,

Cmax(ALG)

Cmax(OPT)
=
t0(1 + b)m−1(1 + b1)

t0(1 + b1)
= (1 + b)m−1 = (1 + b1)

1− 1
m

Hence, the lemma follows.

Chapter 2. Online Scheduling of Linear Deteriorating Jobs on Parallel Machines 24

We then extend the adversary to a case of two machines in the online-time model and

show that no deterministic online algorithm is better than (1 + bmax)-competitive. The

challenge here is that when the jobs with deteriorating rate b are released, ALG does

not necessarily distribute them evenly between the two machines. Therefore, we adapt

the adversary such that before job Jk with deteriorating rate bk is released in stage k,

more jobs with deteriorating rate b is released in order to equalize the completion time

on both machines. We describe this process in the following theorem.

Theorem 2.3. Consider two-machine scheduling of jobs with arbitrary release times

and simple linear deteriorating rates. No deterministic online algorithm is better than

(1 + bmax)-competitive.

Proof. Consider any reasonable, deterministic online algorithm ALG. For each stage k,

de�ne bk such that 1 + bk = (1 + b)k+1.

Stage 1. The adversary starts by releasing two jobs of deteriorating rate b at time t0 > 0.

If ALG assigns both jobs to the same machine then we obtain the desired competitive

ratio as given below,

Cmax(ALG)

Cmax(OPT)
=
t0(1 + b)2

t0(1 + b)
where bmax = b

Alternatively, in the case where ALG assigns a job to each machine the adversary then

releases a job J1 with deteriorating rate b1 at time t0, so that (1 + b1) = (1 + b)2.

Without loss of generality, let us assume that ALG assigns J1 to machine M1. As a

result, Cmax(ALG) = t0(1 + b)(1 + b1), given by machine M1 while the completion time

of M2 is t0(1 + b). However, OPT can assign J1 to M1, for instance, and remaining two

jobs toM2 which will result in a uniform completion time of t0(1+b1) on both machines.

Stage 2. At the start of stage 2, three jobs of deteriorating rate b are released at time

t0(1 + b1). As illustrated in Figure 2.6, there are three representative cases to consider.

Case (a). ALG assigns all three jobs to machine M1 and as a result, Cmax(ALG) =

t0(1 + b1)(1 + b)4. Meanwhile, OPT can assign two jobs to M1 and the other

remaining job to M2 so that Cmax(OPT) = (1 + b1)(1 + b)2. Then,

Cmax(ALG)

Cmax(OPT)
= (1 + b)2 = (1 + b1) = (1 + bmax)

Case (b). In this case ALG assigns one of the jobs to M1 while the other is assigned

to M2 so that the makespan of both machines is t0(1 + b1)(1 + b)2. This is also

equivalent to the makespan of OPT.

Chapter 2. Online Scheduling of Linear Deteriorating Jobs on Parallel Machines 25

Figure 2.6: Illustration of the 3 representative cases, labelled (a), (b) and (c), in stage
2 of the general lower bound.

Case (c). ALG assigns two jobs toM1 and one job toM2 so that the resulting makespan

of both machines are t0(1 + b1)(1 + b)3 and t0(1 + b1)(1 + b) respectively. The

adversary then releases a job, J ′, with deteriorating rate b1. After the adversary

has released J ′, OPT can assign these jobs properly such that Cmax(OPT) =

t0(1 + b1)(1 + b)3, as illustrated by diagram (ii) in Figure 2.6. If ALG assigns

J ′ to M1 then the completion time of M1 becomes t0(1 + b1)
2(1 + b)3 and the

ratio becomes 1 + b1 = 1 + bmax. Otherwise, ALG assigns J ′ to M2 resulting in a

completion time of t0(1 + b1)(1 + b)3 on both machines.

Figure 2.7: Example showing Stage 3 of the general lower bound.

When we consider Cases (b) and (c), we observe that the situation becomes very similar

to the proof of LS in Lemma 2.1, such that the completion time is the same for both

machines in ALG. In such scenario, the adversary �nalizes the stage by releasing a job

with deteriorating rate b2 resulting in a competitive ratio of (1 + b)2. Figure 2.7 shows

an instance for Stage 3.

Chapter 2. Online Scheduling of Linear Deteriorating Jobs on Parallel Machines 26

Stage k. Let us denote by tk−1 the makespan of OPT at the beginning of Stage k,

where the exact value of tk−1 depends on ALG. At the beginning of Stage k, ALG is still

processing job Jk−1 of deteriorating rate bk−1 on machineM1 whileM2 is idle during this

period, such that Cmax(ALG) = tk−1(1+b)k−1. We will show that this invariant holds at

the end of Stage k. At time tk−1, the adversary �rst releases k + 1 jobs of deteriorating

b. For simplicity, we consider an odd-valued k and assume k = 2h + 1. The other case

where k is an even value is similar and so we skip the details. We then consider three

familiar cases.

Figure 2.8: Illustration of the general lower bound for Stage 31 where k = 31 and
h = 15. (i) At t30 ALG is still processing J30 from Stage 30 on M1. (ii) OPT has
completed all jobs released before t30 including J30. (iii) OPT schedule for Stage 31.
Note that OPT can maintain the same makespan on both machines.

Case (1). In this case, ALG assigns at least h+2 jobs toM1 which results in a makespan

of at least t2h(1 + b)2h+h+2. Meanwhile, OPT assigns h jobs to each machine so

that the makespan of OPT is t2h(1 + b)h. Then, the following competitive ratio

holds and we are done,

Cmax(ALG)

Cmax(OPT)
≥ (1 + b)2h+2 = (1 + b2h+1) = (1 + bmax)

Case (2). In this case, ALG assigns one job to M1 and 2h + 1 jobs to M2 so that the

completion time of both machines is equal to t2h(1 + b)2h+1. At this point we

have a situation similar to Lemma 2.1. The adversary then releases a job J2h+1 of

deteriorating rate b2h+1, where 1 + b2h+1 = (1 + b)2h+2. OPT can assign J2h+1 to

M1 and the other jobs to M2 so that Cmax(OPT) = t2h(1 + b)2h+2. Then we have

the following ratio,

Cmax(ALG)

Cmax(OPT)
=
t2h(1 + b)2h+1+2h+2

t2h(1 + b)2h+2
= (1 + b)2h+1

The invariant holds for Stage 2h+1 so the adversary can proceed to the next stage.

Case (3). In this case, ALG assigns x jobs to M1 and 2h + 2 − x jobs to M2, where

1 < x < h + 2. Consequently, the completion time of M1 and M2 is equal to

Chapter 2. Online Scheduling of Linear Deteriorating Jobs on Parallel Machines 27

t2h(1 + b)2h+x and t2h(1 + b)2h+2−x, respectively. Then, the adversary releases

extra jobs with the aim of equalizing the completion time of both machines. In

the �rst attempt, the adversary releases a job J ′ of deteriorating rate b′, such that,

(1 + b′) = t2h(1+b)
2h+x

t2h(1+b)2h+2−x = (1 + b)2(x−1).

To be precise, the adversary releases jobs J ′1, J
′
2, · · · with deteriorating rates b′1, b′2, · · ·

such that 1 + b′i = (1 + b)2i(x−1) until the ALG is forced to assign the �rst of

such jobs to M2. This will be the case because ALG cannot keep assigning these

jobs to M1 otherwise the makespan becomes to large. More precisely, i is de-

�ned such that 2i−1 < h ≤ 2i(x − 1). If ALG assigns the jobs J ′1, J
′
2, . . . , J

′
i

to M1, this will result in a makespan of t2h(1 + b)2h+x+2(x−1)+22(x−1)+···+2i(x−1) =

t2h(1+b)2h+(2i+1−1)(x−1)+1. However, OPT can assign J ′i toM1 and J
′
1, J
′
2, . . . , J

′
i−1

to M2 while the rest jobs are distributed evenly between both machines resulting

in the same completion times. As a result, OPT will have a makespan equal to

t2h(1 + b)h+(x−1)+2(x−1)+···+2i−1(x−1) = t2h(1 + b)h+(2i−1)(x−1). Hence, by the de�-

nition of i,

Cmax(ALG)

Cmax(OPT)
= (1 + b)h+2i(x−1)+1 ≥ (1 + b)2h+1 = 1 + bmax

In essence, we can assume that there exists a job J ′j , where 1 ≤ j < i, such that

ALG assigns J ′j to M2 and jobs J ′1, . . . , J
′
j−1 to M1. This results in equivalent

completion times on both machines such that the completion time of M1 and M2

is t2h(1 + b)2h+2−x+2j(x−1) and t2h(1 + b)2h+x+2(x−1)+···+2j−1(x−1), respectively. On

the other hand, OPT can assign J2h+1 to M1 and jobs J ′1 · · · , J ′j to M2 while the

remaining jobs are distributed evenly between both machines to achieve the same

completion time on both machines. Consequently, OPT obtains a makespan equal

to t2h(1 + b)2h+2+2(x−1)+···+2j(x−1)+2h+2 = t2h(1 + b)2h+2+(2j−1)(x−1). OPT is able

to achieve such a schedule because 2(x−1) + · · ·+ 2j(x−1) ≤ (2j −2)(x−1) + 2h,

where the inequality is as a result of the de�nition of j leading to 2j−1(x− 1) ≤ h.
In summary, the ratio after Stage k can be expressed as follows,

Cmax(ALG)

Cmax(OPT)
= (1 + b)2h+1 = (1 + b)k

The variant holds for Stage k. Figure 2.8 illustrates an example showing Stage 31

where x = 4.

In both Cases 2 and 3, we have the following competitive ratio which can approach

1 + bmax by having arbitrarily large k,

Cmax(ALG)

Cmax(OPT)
= (1 + b)k = (1 + bmax)

k
k+1

Chapter 2. Online Scheduling of Linear Deteriorating Jobs on Parallel Machines 28

2.4 Conclusion

In this chapter, we study the problem of online scheduling of jobs with linear deteriorating

rate on parallel machines. Precisely, we consider jobs with simple linear deterioration,

i.e., pj = bjsj . We also focus on the online-time model where a release time is associated

with each job. For this case, we show that List Scheduling (LS) is (1 + bmax)
2(1− 1

m
)-

competitive, where bmax is the largest deteriorating rate among all jobs. We also show

that for an arbitrary number of machines, m, no deterministic online algorithm is better

than (1 + bmax)
1− 1

m -competitive. Furthermore, we also show that on two machines, no

deterministic online algorithm is better than (1 + bmax)-competitive.

We conjecture that it is possible to extend the adversary used for the two-machine case

to m machines. An immediate open question that arises is whether the gap between the

upper and lower bounds can be closed.

Chapter 3

Energy-E�cient Scheduling of Jobs

with Precedence Constraints

3.1 Introduction

In this chapter, we present a study of the problem of scheduling jobs with precedence

constraints on parallel machines. The type of precedence constraint we will focus on is

the chain precedence constraint. The jobs in a given chain are characterized by deadline

and a job is not allowed to be executed past its deadline. The machines are considered

to be unrelated and may also be viewed as, for instance, processing components or

chips in a system-on-chip architecture with an underlying network substructure for inter-

chip communication. The time and energy required by a processor in order to execute

any particular job is de�ned in lookup tables. Likewise, time and energy required for

communication between a given pair of machines is also de�ned in lookup tables. The

objective of a solution is to compute a feasible such that all jobs meet their deadline

constraint while minimizing the total amount of energy incurred by the schedule.

We present a dynamic programming solution to the problem that yields an algorithm that

runs in pseudo-polynomial time. We also present the proof to show that the algorithm

will always compute an optimal schedule where one exists. The problem presented in

this chapter is also intended to be used as a case study in Chapter 6.

The rest of this chapter is organized as follows. In Section 3.2 we present a formal

de�nition of the problem and description of model. Then in Section 3.3.1 we present the

dynamic programming approach, as well as a description of the algorithm and the proof

in Section 3.3.2. Finally, we conclude in Section 3.4.

29

Chapter 3. Energy E�cient Scheduling of Jobs with Precedence Constraints 30

3.2 Preliminaries

3.2.1 Problem de�nition

Consider a set of m unrelated, parallel machines given byM = {M1, . . . ,Mm} and a set

of n jobs given by J = {J1, . . . , Jn}. The set J is characterized by a chain precedence

constraint such that, given a pair of jobs Jj , Jj+1 ∈ J , job Jj must be completed before

the processing of Jj+1 can begin. Each job Jj is also characterized by a strict deadline,

denoted by dj , that refers to the time by which the job must be completed. Any job can

be scheduled on any machine.

The time required by a particular machine to execute a given job is given by a table

referred to as processing time matrix, denoted by PT [1 . . .m, 1 . . . n]. Thus, the time

required by a machine Mi to process a job Jj is given by the value PT [i, j]. The

execution of a job on a particular machine also incurs some amount of energy de�ned in

the processing energy matrix, PE [1 . . .m, 1 . . . n].

When two consecutive jobs are executed on di�erent machines, say Mi and Mk, we as-

sume that some time is required for synchronization between the two machines during

which data is transmitted between both machines. The amount of time required per-

form this synchronization phase is given by the communication time matrix, denoted

by CT [1 . . .m, 1 . . .m], such that the value CT [k, i] gives the amount of time required

to migrate from machine Mk to Mi. In addition, we also assume that the communi-

cation link also consumes some amount of energy de�ned in the communication energy

matrix, denoted by CE [1 . . .m, 1 . . .m]. We assume that the communication links are

asymmetric, that is, CT [k, i] or CE [k, i] may or may not be equal to CT [i, k] or CE [i, k],

respectively. Note that the synchronization between two machines must be completed

before the execution of the next job can start. On the other hand, there are no costs in

terms of time and energy incurred when two consecutive jobs in the chain are executed

on the same machine.

The objective is to construct a feasible schedule that minimizes the total amount of

energy required to execute all jobs in the chain. A feasible schedule shows, for each job,

the machine it is to be executed on as well as the start time, sj , and completion time,

cj , such that cj ≤ dj for all Jj ∈ J . This problem is an o�ine problem so all jobs in the

chain are available from the beginning.

Chapter 3. Energy E�cient Scheduling of Jobs with Precedence Constraints 31

3.3 Discussion

3.3.1 A dynamic programming solution

In this section, we present a dynamic programming solution to the problem. Let us start

with the following example.

Example 3.1. Consider the following jobs shown in the illustration below to be scheduled

on 2 machines.

J1"!

d1 = 5

- J2"!

d2 = 10

- J3"!

d3 = 15

- J4"!

d4 = 20

The processing time matrix and processing energy matrix are shown in Table 3.1a and

Table 3.1b, respectively, while the communication time matrix and the communication

energy matrix are shown in Table 3.1c and Table 3.1d, respectively.

J1 J2 J3 J4
M1 5 3 5 4

M2 4 2 7 5

(a) Processing time matrix

J1 J2 J3 J4
M1 5 4 2 6

M2 3 7 3 3

(b) Processing energy matrix

M1 M2

M1 0 1

M2 2 0

(c) Communication time matrix

M1 M2

M1 0 2

M2 1 0

(d) Communication energy matrix

Table 3.1: Lookup tables showing processing and communication costs with respect
to time and energy.

In order to construct a feasible schedule, our dynamic programming formulation must

�rst compute for each job Jj a table, denoted by S[1 . . .m, 1 . . . n, 1 . . . dj], so that the

value S[i, j, t] is the least amount of energy required to execute all jobs in the chain up

to Jj such that Jj completes at time t on machine Mi, where t ≤ dj . We assume that

S[i, j, t] =∞ when a job Jj cannot be completed at time t on machineMi. Furthermore,

if for all machines a job cannot be scheduled to satisfy its deadline constraint, then the

algorithm terminates and reports that a schedule cannot be computed. The dynamic

programming is comprised of two parts.

The �rst part deals with the �rst job in the chain, J1. The recurrence given in Equa-

tion (3.1) describes how the solution for the �rst job in the chain is computed.

Chapter 3. Energy E�cient Scheduling of Jobs with Precedence Constraints 32

S[i, 1, t] =

PE [i, 1] if PT [i, 1] ≤ d1 and t ∈ {PT [i, 1], . . . , d1}

∞ otherwise
(3.1)

When we consider the solution for the �rst job, we can easily observe that the feasible

entries for S[i, j, t] are equivalent to the amount of energy required to execute J1 on any

machine Mi, given by PE [i, 1]. Table 3.2 gives the solution to the table for J1 following

our Example 3.1.

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M1 ∞ ∞ ∞ ∞ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
J1 M2 ∞ ∞ ∞ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Table 3.2: Dynamic programming table for job J1 in the problem described in Ex-
ample 3.1.

After we have determined all energy values for J1 up to the time d1, we simply initialize

the remaining entries from t = 6, . . . , 20 to the value at time d1. From the table, we can

see that it is not possible to complete J1 by t = 4 onM1 and by t = 3 onM2 as indicated

by the ∞ values. Therefore, possible feasible solutions for J1 is to complete it by time

t = 4 or t = 5 and both incurs 3 units of energy.

The other part of the dynamic programming deals with the remaining jobs, j > 1,

after a feasible solution has been computed for J1. This is given by the recurrence in

Equation (3.2).

S[i, j, t] =


min

1≤k≤m
{S[k, j − 1, tk] + CE [k, i]}+ PE [i, j] if t ≤ dj

∞ otherwise

(3.2)

where j > 1 and tk = t− PT [i, j]− CT [k, i]

The idea is that at each point in time on each machine, we try to extend the previously

obtained solution for job Jj−1 while taking into account the amount of energy that will

be required for migration between machines. Following from Equation (3.2), Table 3.3

gives the solution to the dynamic programming table for all jobs.

Hence, from Table 3.3, a feasible schedule that gives a solution to the problem in Exam-

ple 3.1 is described below with a total energy consumption of 15 units.

J1 →M2, J2 →M1, J3 →M1, J4 →M2

Chapter 3. Energy E�cient Scheduling of Jobs with Precedence Constraints 33

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M1 ∞ ∞ ∞ ∞ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
J1 M2 ∞ ∞ ∞ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

M1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 9 8 8 8 8 8 8 8 8 8 8 8 8
J2 M2 ∞ ∞ ∞ ∞ ∞ 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

M1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 11 10 10 10 10 10 10 10
J2 M2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 13 13 13 13 13 13 13 13

M1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 17 16 16 16
J2 M2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 16 16 15

Table 3.3: Solution for the dynamic programming table for the problem described in
Example 3.1.

3.3.2 Algorithm DPS

The algorithm DPS computes the table S and takes as input J , M, CE , CT , PE and

PT . In the design of DPS we �rst begin with the following observation. Consider the

solution given in Table 3.3. For each job, it is not absolutely necessary to store values

in the table for any time beyond the deadline of that particular job. In essence, we can

discard these values and only maintain the required values for each job which are the

ones leading up to the deadline of that job. Table 3.4 is the same solution as Table 3.3

except for the fact that redundant values have been truncated.

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M1 ∞ ∞ ∞ ∞ 5
J1 M2 ∞ ∞ ∞ 3 3

M1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 9 8 8
J2 M2 ∞ ∞ ∞ ∞ ∞ 10 10 10 10 10

M1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 11 10 10
J2 M2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 13 13 13

M1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 17 16 16 16
J2 M2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 16 16 15

Table 3.4: Solution for the dynamic programming table for the problem described in
Example 3.1 without the redundant values.

As a result we must re-de�ne tk from the recurrence given in Equation (3.2) as follows,

tk = min{t− PT [i, j]− CT [k, i], dj−1}

This will enable us take into account the fact that values beyond the deadline of a

preceding job are unde�ned. Hence, we restrict the lookup time index, tk, to the value

Chapter 3. Energy E�cient Scheduling of Jobs with Precedence Constraints 34

of deadline of the preceding job. Algorithm 1 describes the pseudo code for the DPS

algorithm.

Algorithm 1 DPS

1: procedure DPS(n,m, CE , CT ,PE ,PT)
{For the �rst job only}

2: for i← 1 to m do

3: for t← 1 to d1 do . d1 is the deadline of job j
4: tidx← t− PT [i, 1]
5: if tidx ≥ 1 then
6: S[i, 1, t]← PE [i, 1]
7: else

8: S[i, 1, t]←∞
9: for j ← 2 to n do . For the remaining jobs

10: for i← 1 to m do

11: for t← 1 to dj do
12: minEnergy ←∞
13: for k ← 1 to m do . Check all migration costs
14: tidx← min{t− PT [i, j]− CT [k, i], dj−1}
15: if tidx ≥ 1 then
16: tidx← min{tidx, dj−1}
17: if S[k, j − 1, tidx] 6=∞ then

18: e← PT [i, j] + CE [k, i] + S[k, j − 1, tidx]
19: minEnergy ← min{e,minEnergy}
20: if minEnergy 6=∞ then

21: S[i, j, t]← minEnergy . job j can �nish at t on machine i
22: else

23: S[i, j, t]←∞
return S[1 . . .m, 1 . . . n, 1 . . . dj]

3.3.2.1 Proof of correctness

Let us begin with the following property.

Property 1. Consider the solution S for a given job Jj on a given machine Mi. S[i, j, t]

is non-increasing for increasing values of t, where 1 ≤ t ≤ dj .

Proof. It is easy to observe that this property holds for J1 because the value at each

point in time on a particular machine is equal to the value given by PE [i, j] provided

that PT [i, j] ≤ d1. Even when a feasible schedule does not exist for J1, all values will

be ∞ and so the property still holds.

Then, in order to compute a solution for the next job, at each point in time on a given

machine, we compute S[i, j, t], for j > 1 and t ≤ dj , based on all previously obtained

values for job Jj−1. Since S[k, 1, tk − 1] ≤ S[k, 1, tk] for a given machine Mk, then it

Chapter 3. Energy E�cient Scheduling of Jobs with Precedence Constraints 35

implies that S[k, 1, tk−1]+CE [k, i]+PE [i, j] ≤ S[k, 1, tk]+CE [k, i]+PE [i, j] for S[i, j, t].

Hence the property follows.

An optimal substructure. Consider a chain given by the job set J = {J1, . . . , Jn}
and the set of machines given byM = {M1, . . . ,Mm}. Let us denote by B(i, j), where

1 ≤ j ≤ n, a candidate solution obtained if job Jj is assigned to machine Mi, where

1 ≤ i ≤ m. In order to compute a feasible completion time for a job on any given

machine, we need to consider all the points in time leading up to the deadline of the job.

For instance, consider a point in time, t, on some machine Mi. In order to determine

whether it is feasible to complete a job, Jj , at time t, we use the following expression,

tk = t− PT [i, j]− CT [k, i]

where tk is the completion time of job Jj−1 on machine Mk for all k ∈ {1, . . . ,m}. As a
result it is possible to have more than one feasible solution on a single machine in terms

of the possible completion times for a job on that machine. However, from Property 1

we only need to consider the point in time where t = dj .

We denote by Bj the set of candidate solutions for a given job Jj so that using Property

1, we can enumerate all candidate solutions for Jj on all machines as,

Bj = {B(1, j), B(2, j), . . . , B(m, j)}

So for the �rst job, J1, in the chain, B1 can be equally written as follows,

B1 = {PE [1, 1],PE [2, 1], . . . ,PE [m, 1]}

Let us denote the optimal solution for job J1 in the chain by OPT (1). This implies that

the smallest amount of energy required to execute J1 is given by,

OPT (1) = min
1≤k≤m

{B(k, 1) ∈ B1} (3.3)

For remaining jobs, assume that each B ∈ Bj is optimal for completing Jj on a particular

machine, where j > 1. For instance, B(1, j) is optimal for the case where Jj completes

on M1, then we compute B(1, j) as follows,

B(1, j) = min
1≤k≤m

{B(k, j − 1) + CE [k, 1]}+ PE [1, j] (3.4)

Here we see that in order to compute B(1, j), we have to consider the solutions in the

set Bj−1 in order to be able to determine which B ∈ Bj−1 will result in the smallest

total cost when we include the amount of energy required to process Jj on M1. Hence

Chapter 3. Energy E�cient Scheduling of Jobs with Precedence Constraints 36

it follows that given Bj , where j = n is the last job in the chain, the optimal solution

that computes the smallest amount of energy required to complete all jobs in J can be

expressed as follows,

OPT (j) = min
1≤k≤m

{B(k, j) ∈ Bj}

This suggests that in order to compute an optimal solution for a sub-problem including

Jj , the optimal solution to the sub-problem consisting of jobs J1, . . . , Jj−1 must �rst be

computed.

Theorem 3.1. Algorithm DPS correctly computes OPT (n) for J = {J1, . . . , Jn} in time

O(nm2dmax), where dmax is the deadline of the last job in the chain.

Proof. Suppose that j = 1, then the value of S[i, 1, t] for increasing values of t is simply

given by PE [i, 1] which is the amount of energy required to process J1 on a given machine

Mi, where t ≤ d1. Otherwise ∞ is assigned to indicate that there is no feasible solution

for J1 machine Mi at time t. The implication is that if a feasible solution exists on any

machine thenOPT (1) is given by whichever machines requires the least amount of energy

to process J1. Now consider some job Jj , where j > 1, and assume that by induction

DPS(j − 1) correctly computes OPT (j − 1). By the induction hypothesis, we know that

DPS(j) = OPT (j) and that DPS(j − 1) = OPT (j − 1). Hence, from Equation (3.4), we

have,

OPT (j) = min
1≤k≤m

{B(k, j) ∈ DPS(j)}

= DPS(j)

So for each job, on each machine, in order to compute the value S[i, j, t], we must compare

the costs required for migrating from some other machine k where k 6= i. As a result,

this will require a running time of O(nm2dmax), hence, the theorem follows.

3.4 Conclusion and future work

In this chapter, we have presented a study of the problem of scheduling jobs with chain

precedence constraints on unrelated, parallel machines with the objective of minimizing

energy consumed by the schedule. We assume that a communication network connects all

machines together and that communication between each pair of machines is asymmetric.

The job set is given as a single chain with each job characterized by a strict deadline that

must be met. The time and energy required to execute a job on a particular machine is

Chapter 3. Energy E�cient Scheduling of Jobs with Precedence Constraints 37

given in lookup tables. Likewise, the time and energy required to communicate over the

network links are also given in lookup tables.

The problem presented in this chapter is meant to serve as a case study as well which we

will be discussing in Chapter 6. It serves as a type of dynamic programming algorithm

with the characteristic of a structure that allows us to develop a data-parallel algorithm

for graphics processors.

A future direction to extend the problem will be to consider other possible types of prece-

dence constraints such as a job set consisting of multiple chains or tree-like precedence

constraints. This will closely model task graphs of parallel applications in practice.

Chapter 4

Energy-E�cient Flow Time

Scheduling

4.1 Introduction

In this chapter, we present an empirical study of the problem of job scheduling to min-

imize �ow time plus energy in both single-processor and multi-processor settings. We

implement and investigate several heuristics used for various aspects of the scheduling

process such as processor speed selection, job selection and job allocation heuristics for

the case of multi-processors. The motivation behind our study comes from the design

constraints associated with ubiquitous computing, especially portable systems such as

notebooks and mobile phones or tablets, where battery life is directly related to the en-

ergy e�ciency of the underlying system. Furthermore, it is expected that these systems

do not compromise on performance and quality of service while operating within accept-

able levels of energy consumption. Consequently, we incorporate �ow time as a measure

of quality of service in addition to the objective of minimizing energy consumption. The

additional objective of maintaining desired levels of performance is orthogonal to the

objective of saving energy.

Modern computer chips are capable of delivering huge amounts of processing power

per square inch brought about by technological advances in chip design and fabrication

processes. As a result, the power envelope for these parts is pushed up thereby raising

the energy demands for computer systems. A direct implication is that, apart from

the cost of running these systems, one must factor in the cost of cooling from small

scale, embedded in the systems to large scale as the case of data centres and server

stores. Due to these reasons, energy conservation has become a critical design feature in

modern computer systems and several technologies and techniques have been developed

38

Chapter 4. Energy-E�cient Flow Time Scheduling 39

to better utilize and conserve energy as much as possible. For instance, features such

as AMD PowerNow!� and Intel SpeedStep® allow the operating system to dynamically

adjust core frequency and voltage thereby altering the speed of the processor in order

to conserve power [1, 45]. This concept of adjusting the speed of the processor to meet

computing demands is often known as throttling or dynamic speed scaling.

The closest work to the study presented in this chapter is that presented in [7], where a

number of job selection policies and speed-scaling algorithms were analyzed empirically.

The goal of their empirical studies is to analyze these speed-scaling algorithms coupled

with the job selection policies in order to demonstrate that their real-world performance

can be improved by using knowledge of the input job data. Furthermore, they were also

able to demonstrate that di�erent algorithms work better on certain types of input data

and as a result, the input data should be taken into account when choosing a speed-

scaling algorithm. One of the speed-scaling algorithm they studied was AJC (Active

Job Count) [4] and SRPT (Smallest Remaining Processing Time) was also one of the

job selection policies. Our empirical studies also includes these two algorithms but for

diferent reasons.

In this chapter, we compare AJC with several �xed speed heuristics, including a semi-

clairvoyant �xed speed function that we designed. We describe this heuristic as semi-

clairvoyant since it requires an approximate knowledge of the characteristics of a given

instance of jobs. In contrast, a clairvoyant algorithm would require exact knowledge, for

example, the exact arrival time of each job, while a non-clairvoyant algorithm has no

knowledge of the jobs. The purpose of this comparison with the semi-clairvoyant �xed

speed function is to attempt to demonstrate that it is possible to design a simple �xed

speed function that performs close to AJC in objective of minimizing total �ow time plus

energy. The investigation of a simpler alternative is due to the fact that AJC can be

quite computationally intensive to implement in practice and given the arbitrary nature

of the speed spectrum, it could be a challenge to support such a capability in hardware.

Our studies also uses AJC in multi-processor scheduling that attempts to demonstrate

that having more processors can be very cost-e�ective in minimizing total �ow time plus

energy.

The highlights of our results in this chapter, within the context of minimizing total �ow

time plus energy, include,

� Empirically, we are able to con�rm the theoretical result that SRPT is a better job

selection policy in comparison to SJF.

� As a speed-scaling algorithm, AJC is very e�ective and performs better than a

�xed-speed heuristic.

Chapter 4. Energy-E�cient Flow Time Scheduling 40

� Given some prior knowledge about a job sequence, it is possible to design a much

simpler �xed-speed heuristic that can perform close to AJC. In other words, without

some insight about the job sequence, a �xed-speed heuristic cannot perform better

than a speed-scaling algorithm.

� We demonstrate that with multiple processors and speed-scaling, we can achieve

signi�cantly better performance over a single processor. Furthermore, it is also

interesting to note that we observed a trend where the performance bene�t from

multiple processors can only be noticed beyond a certain number of processors,

regardless of the nature of the job sequence.

The rest of this chapter is organized as follows; in Section 4.2, we present a formal

de�nition of the problem then we present the heuristics we designed, implemented and

evaluated, in Section 4.3. Finally, in Section 4.4, we describe the setup for the simulations

and present our observations and results.

4.2 Problem De�nition

Consider a set of job instances {I〈a,p〉1 , . . . , I〈a,p〉n} where each job instance, I〈a,p〉i , is

characterized by the pair of parameters, a and p, which denote the average inter-arrival

time and average job size respectively. The average inter-arrival time parameter of a job

instance is the average time interval between the arrival times of successive jobs in the

set while the size of the job refers to the amount of work to be done or processor cycles

required in order to process the job. Both parameters are de�ned as positive integer

values that serve as input to a discrete probability distribution function which in turn

generates the arrival times and size of jobs in a job set and we always assume that p > 0.

We assume the in�nite speed model where a processor is capable of changing its speed to

any value between 1 and ∞. The energy E consumed by a processor running at speed s

is given as sα per unit time, where α ≥ 2 [16, 76], and the amount of work completed by

the processor is s units of work. The �ow time Fi for a job Ji is the amount of time that

elapsed between the arrival time of the job and its completion time. Therefore, the total

�ow time for a given job set can be expressed as F =
∑

i Fi. The goal is to produce a

schedule that shows, for each job, the time intervals a particular job is being processed

and at what speed. In the case of multiple processors, the particular processor the job

is being executed. Pre-emption is allowed for a job executing on a particular processor

which implies that a job can be suspended and resumed at a later time on the same

processor, hence, job migration between processors is not allowed.

Chapter 4. Energy-E�cient Flow Time Scheduling 41

In the experiments, we consider job arrivals with Poisson arrival patterns where the inter-

arrival time follow an exponential distribution. For the job sizes we consider uniform

distribution only.

The schedule aims to minimize the cost G which is the total �ow time plus energy

incurred for a given job set expressed as G = F + E. In the case of multiple processors

it is simply a summation of the cost incurred by each processor.

4.3 Heuristics

In this section we discuss the heuristics we implemented and evaluated in our simulations

and as mentioned earlier in this chapter, they are grouped into job selection, speed

selection and processor allocation heuristics. Note that the names for the heuristics we

designed and implemented are pre�xed with an asterik (*).

4.3.1 Job selection strategies

The purpose of a job selection heuristic is to prioritize job execution order by determining

which job is selected for execution based on some rules. We consider SRPT and SJF

which are very common job selection heuristics.

Shortest Remaining Processing Time (SRPT). The selection criteria for this

heuristic is based on the amount of work left to be processed for each job in the job

queue. A job is selected for execution if it has the least amount of work yet to be pro-

cessed. In the case where two or more jobs have the same priority, in terms of remaining

amount of work, ties can be broken arbitrarily.

Shortest Job First (SJF). This job selection strategy gives execution priority to jobs

in the queue based on the total amount of work that characterizes each of them. Priority

is given to the job with the smallest amount of work and in case two or more jobs have

the same priority, ties can be broken arbitrarily.

4.3.2 Speed functions

Speed Scaling based on Active Job Count (Sajc). A job is said to be active if it has

arrived and added to the processing queue but yet to be completed. The AJC heuristic

relies on the number of active jobs in order to determine the speed of the processor. The

speed determined by Sajc is computed as n
1
α , where n is the number of active jobs and

Chapter 4. Energy-E�cient Flow Time Scheduling 42

α = 3. Note that this heuristic does not have any prior knowledge of the job set with

regards to average inter-arrival time or average job size parameters.

Fixed speed function (*Sf). This refers to a heuristic that is oblivious to the input

job set and it will always use a �xed speed value of 1.

Semi-clairvoyant �xed speed function (*Sd). This �xed speed heuristic is based

on the distribution parameters, a and p, of the job set and therefore has some prior

knowledge about the job set in order to determine a speed. The speed is determined as

(β · ap)
1
α , where β = 5 is a constant determined experimentally.

Fixed Speed based on Mean AJC Speed (*AJCavg). We present a �xed speed

heuristic that is based on the average speed obtained from the di�erent speed values

obtained by executing Sajc on the same job set. In order to compute the average speed,

we take into account the length of the interval(s) a particular speed value was active, in

other words, we determine a weighted average of the speed values obtained from Sajc.

For each speed value, s(t) > 0, active for the duration of time denoted by the interval I,

the average speed s is given by the following expression;

s =

∫ I
0 s(t)dt

I

Fixed Speed based on Maximum AJC Speed (*AJCmax). Similar to *AJCavg,

this �xed speed heuristic depends on a prior execution of Sajc on the job set. The speed

is determined by selecting the maximum speed recorded by the execution of Sajc.

4.3.3 Processor allocation strategies

In our simulations, we implement and evaluate four processor allocation heuristics and

they are described as follows.

RoundRobin. This processor allocation heuristic attempts to distribute jobs as evenly

as possible across all available processors. Therefore, priority is given to the processor

with the least number of jobs allocated to it already.

*MinCost. In this heuristic for processor allocation, a job that is ready to be allocated

is dispatched to the processor that yields the least total cost if that particular job was

assigned to it.

*MinSize. Each processor keeps track of the jobs allocated to it including the total

size of all the jobs. This heuristic gives priority to the processor with the least total job

size.

Chapter 4. Energy-E�cient Flow Time Scheduling 43

*MinActiveCount. This heuristic utilizes the number of active jobs after a par-

ticular job is allocated to a processor. Priority is then given to the processor with the

smallest number of active jobs.

4.4 Simulations Conducted and Results

4.4.1 Preliminaries

4.4.1.1 Overview of the Simulator Software Program

The simulation software program consists of a scheduler as well as a data generator that

can be used to generate the job instances. Figure 4.1 shows the di�erent parts of the

simulator software.

JobGenerator and Job classes. The JobGenerator class is responsible for the

generation of the job sequences used as input data for the simulations. The method

to be used for generating either the job sizes or the job arrival times can be speci�ed

as input. The PoissonProcess() method of the JobGenerator class implements the

Knuth's algorithm for generating Poisson random events [25]. In our experiments, the

size of each job in a given job sequence is chosen uniformly at random within [1, p], and

the size of each job is an integer value. On the other hand, the arrival time of each job is

obtained through a Poisson process with rate p, which is the average inter-arrival time

parameter.

ProcessorObject and Scheduler classes. In the simulator, a ProcessorObject

represents a processor. Each processor manages its own job queues, one each for jobs

being processed and jobs waiting to be processed. A processor is also aware of which speed

function to use and this is set as a property of the ProcessorObject. During execution,

a processor keeps track of statistics including total energy consumed, total �ow time,

maximum speed, average speed and number of jobs. These are reported to the Scheduler

at the end of the simulation. The Scheduler manages the creation of processors and

the scheduling tasks including allocating jobs to processors, and setting any processor

property that are not meant to change during the simulation. The scheduler is designed

to run in single or multi-processor mode and, in addition, is easily con�gured to choose

from a combination of job selection, speed selection and processor allocation heuristics

The SchedulerApp is the main controller of the simulation program that coordinates the

execution process, from input parameters to execution to processing results and writing

to �le.

Chapter 4. Energy-E�cient Flow Time Scheduling 44

Figure 4.1: Class diagram of the simulator software program.

4.4.1.2 Simulation methodology

The scheduler and all the heuristics described in Section 4.3 are implemented using the

C++ programming language. The simulation program was run on a machine with an

AMD FX-8350 CPU with a clock frequency of 4.0 GHz and 16 GB of system memory.

The average inter-arrival time and average job size for each job set instance is given

by the set of values, S = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}. Each job set contains a

total of 2000 jobs and for each pair of parameters 〈a, p〉, where a ∈ {20, 21 . . . , 29} and
for each value of a, p ∈ {20, 21, . . . , 29}, we generate 10 instances and the cost for a

particular 〈a, p〉 con�guration is obtained by taking the average over the 10 instances.

The job instances are generated once and re-used for all the simulations presented in

Chapter 4. Energy-E�cient Flow Time Scheduling 45

Figure 4.2: Details of the Job and JobGenerator classes.

this chapter. For the case of multiple processors, the number of processors used in the

simulations are 2, 4, 8 and 16 processors. For all simulations the value of α used in

determining the energy consumption of the schedule is set to 3 [16, 76].

4.4.2 Results on job selection strategies

In this simulation we compare the performance of SRPT and SJF as the job selection

strategies in a single processor setting as well as with multi-processor setup. Although we

already know that SRPT is an optimal job selection strategy we expect the performance

of SJF to be close in terms of minimizing the cost incurred by their respective schedules.

We present results for the performance of SJF and SRPT on both single and multi-

processor setting.

Chapter 4. Energy-E�cient Flow Time Scheduling 46

Figure 4.3: Details of the scheduler part of the simulator.

Single processor simulation. Figures 4.4 and 4.5 show the performance ratio of SJF

to SRPT on a single processor for various samples categorized based on average job size

and average inter-arrival time of jobs in the job set, respectively. We observe that when

the job distribution is either very dense or very sparse, for instance in Figures 4.5(a)

and 4.5(c) respectively, the performance of SJF is very similar to SRPT. However, we

notice that when the average inter-arrival time is similar to the average job size, SRPT

performs better than SJF in all the cases with a performance ratio of up to 1.45 as seen

in Figure 4.4(c). In general, we can con�rm that although the performance of SJF and

SRPT are quite similar, SRPT is the better job selection strategy for minimizing total

�ow time plus energy on a single processor.

Chapter 4. Energy-E�cient Flow Time Scheduling 47

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of SJF and SRPT with a fixed average job size of 1

SJF / SRPT for avgerage job size = 1

(a) Performance ratio for average job size of 1 with varying inter-
arrival time.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of SJF and SRPT with a fixed average job size of 16

SJF / SRPT for avgerage job size = 16

(b) Performance ratio for average job size of 16 with varying inter-
arrival time.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of SJF and SRPT with a fixed average job size of 512

SJF / SRPT for avgerage job size = 512

(c) Performance ratio for average job size of 512 with varying inter-
arrival time.

Figure 4.4: Measurement shows the ratio of total �ow time plus energy for SJF vs
AJC on a single processor. Results are grouped according to average job size.

Chapter 4. Energy-E�cient Flow Time Scheduling 48

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of SJF and SRPT with a fixed average inter-arrival time of 1

SJF / SRPT for avg. inter-arrival time = 1

(a) Performance ratio for average inter-arrival time of 1 with varying
job size.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of SJF and SRPT with a fixed average inter-arrival time of 16

SJF / SRPT for avg. inter-arrival time = 16

(b) Performance ratio for average inter-arrival time of 16 with varying
job size.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of SJF and SRPT with a fixed average inter-arrival time of 512

SJF / SRPT for avg. inter-arrival time = 512

(c) Performance ratio for average inter-arrival time of 512 with varying
job size.

Figure 4.5: Measurement shows the ratio of total �ow time plus energy for SJF vs
AJC on a single processor. Results are grouped according to average inter-arrival time.

Chapter 4. Energy-E�cient Flow Time Scheduling 49

Multi-processor simulation. We also evaluate the performance of SJF and SRPT as

job selection strategies for multiple processors. Figure 4.6, categorized according to the

average job size, shows the performance ratios for the case of four processors using all

four processor allocation strategies. Figure 4.7 shows the results from the perspective

of average inter-arrival time. We observe that when the job sizes are very small and

when job distribution is very sparse, as shown in Figures 4.6(a) and 4.7(c), again the

performance of SJF and SRPT are near identical. In other cases, however, especially

when the average inter-arrival time and average job size parameters are close, we notice

a clear performance di�erence where SRPT can be up to 1.2 times better than SJF. This

can be observed in Figure 4.6(c).

Following the observations and results outlined above, we can conclude that SRPT is

better than SJF as a job selection strategy for both single and multiple processors. Hence,

the rest of the results published in this chapter will make use of SRPT as the job selection

policy.

4.4.3 Results on speed functions

4.4.3.1 E�ectiveness of speed scaling

In this simulation we would like to evaluate the performance bene�ts of speed scaling

over using a single, �xed speed of 1. We know that a processor running at a low speed

will conserve more energy, however, it will incur a higher cost in terms of the time spent

executing the jobs or total �ow time. Therefore it will be interesting to investigate how

much the variation between the energy saved and �ow time a�ects the total cost when

running at a �xed speed. We evaluate the AJC heuristic and a �xed speed heuristic that

uses a �xed speed of 1, denoted by *Sf, on a single processor. Results are presented as

the performance ratio of Sajc to *Sf.

Figures 4.8 and 4.9 show the performance ratio of *Sf to Sajc for various job input

samples. Firstly, we observe that in Figure 4.8(a) where amount of work in the job

set instances is very small and in Figure 4.9(c) where job distribution is very sparse,

both speed functions are almost identical in performance and this should not come as

a surprise. The reason is because in such cases, the number of active jobs is mostly 1

throughout the duration of a scheduling process, hence, the speed selected by AJC will

be 1 or very close to 1 which is the same speed as the �xed speed heuristic running at a

speed of 1.

On the other hand, in cases where there is a considerable amount of work to be done

either in terms of job arrival density or size of the jobs, we notice signi�cant di�erences

Chapter 4. Energy-E�cient Flow Time Scheduling 50

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of SJF and SRPT on 4 processors with a fixed average job size of 1
(Uniform distribution)

Round Robin

MinCost

MinSize

MinActiveCount

(a) Performance ratio for average job size of 1 with varying inter-
arrival time.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of SJF and SRPT on 4 processors with a fixed average job size of 16
(Uniform distribution)

Round Robin

MinCost

MinSize

MinActiveCount

(b) Performance ratio for average job size of 16 with varying inter-
arrival time.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of SJF and SRPT on 4 processors with a fixed average job size of 512
(Uniform distribution)

Round Robin

MinCost

MinSize

MinActiveCount

(c) Performance ratio for average job size of 512 with varying inter-
arrival time.

Figure 4.6: Measurement shows the ratio of total �ow time plus energy for SJF vs
AJC on 4 processors. Results are grouped according to average job size.

Chapter 4. Energy-E�cient Flow Time Scheduling 51

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average inter-arrival time of 1
(Poisson arrival)

Round Robin

MinCost

MinSize

MinActiveCount

(a) Performance ratio for average inter-arrival time of 1 with varying
job size.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average inter-arrival time of 16
(Poisson arrival)

Round Robin

MinCost

MinSize

MinActiveCount

(b) Performance ratio for average inter-arrival time of 16 with varying
job size.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average inter-arrival time of 512
(Poisson arrival)

Round Robin

MinCost

MinSize

MinActiveCount

(c) Performance ratio for average inter-arrival time of 512 with varying
job size.

Figure 4.7: Measurement shows the ratio of total �ow time plus energy for SJF vs
AJC on 4 processors. Results are grouped according to average inter-arrival time.

Chapter 4. Energy-E�cient Flow Time Scheduling 52

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and SF for average job size of 1 (Uniform distribution).

Flow time

Energy

Flow time + energy

(a) Performance ratio for average job size of 1 with varying inter-
arrival time.

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and SF for average job size of 16 (Uniform distribution).

Flow time

Energy

Flow time + energy

(b) Performance ratio for average job size of 16 with varying inter-
arrival time.

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and SF for average job size of 512 (Uniform distribution).

Flow time

Energy

Flow time + energy

(c) Performance ratio for average job size of 512 with varying inter-
arrival time.

Figure 4.8: E�ectiveness of speed scaling : Measurement shows the ratio of total �ow
time plus energy for a �xed speed heuristic using a speed of 1 against AJC on a single
processor. Results are grouped according to average job size. Note: ratio is always at
least 1.

Chapter 4. Energy-E�cient Flow Time Scheduling 53

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC and SF for average inter-arrival time of 1 (Poisson arrival).

Flow time

Energy

Flow time + energy

(a) Performance ratio for average inter-arrival time of 1 with varying
job size.

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC and SF for average inter-arrival time of 16 (Poisson arrival).

Flow time

Energy

Flow time + energy

(b) Performance ratio for average inter-arrival time of 16 with varying
job size.

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC and SF for average inter-arrival time of 512 (Poisson arrival).

Flow time

Energy

Flow time + energy

(c) Performance ratio for average inter-arrival time of 512 with varying
job size.

Figure 4.9: E�ectiveness of speed scaling : Measurement shows the ratio of total �ow
time plus energy for a �xed speed heuristic using a speed of 1 against AJC on a single
processor. Results are grouped according to average inter-arrival time. Note: ratio is
always at least 1.

Chapter 4. Energy-E�cient Flow Time Scheduling 54

in performance. The �xed speed heuristic performs signi�cantly worse in terms of �ow

time but performs much better with regards to saving energy. This is due to the fact

that running a processor at a low speed will help save a lot of energy but this will result

in longer job processing times. In fact, when we consider the performance ratio in terms

of the overall cost of total �ow time plus energy, we observe a huge gulf in performance

with Sajc performing up to 92.7 times better than *Sf (Figure 4.9(a)). This con�rms

that speed scaling is important in providing a balance between saving energy and not

compromising on the quality of service.

Another important observation is that, despite the fact that both heuristics make use

of SRPT, the order of the jobs in the �nal schedule will not necessarily be identical.

This is because *Sf will spend more time executing a particular job as a result of the

its low speed thereby causing more jobs to accumulate in the queue. As a result, there

is a higher chance for another with a higher priority to arrive in the queue. This is

particularly common occurrence in cases where job arrival is dense and job sizes are

reasonably large.

4.4.3.2 Speed scaling vs. semi-clairvoyant �xed speed function

In the previous simulation discussed in Section 4.4.3.1, we demonstrated that a speed

function that has no prior knowledge about the job set and running at a �xed speed

does not perform well when compared to a speed scaling heuristic like AJC. In this

simulation we compare the performance of AJC and that of a heuristic which has some

prior knowledge about the job set, precisely, only the 〈a, p〉 parameters are used by the

heuristic to determine a �xed speed. The aim of this simulation is to evaluate how well a

�xed speed heuristic with some knowledge about the job set can perform when compared

to a speed scaling heuristic like AJC.

The �rst observation from the results shown in Figures 4.10 and 4.11 is that when we

allow the �xed speed heuristic to have some prior knowledge about the job set, it can

perform considerably better especially for cases with dense job arrival times.

On the other hand, given the simplicity of *Sd and limited knowledge about the job

sets, we can also observe that the resulting speed can be too low in some cases, like in

Figures 4.10(a) and 4.11(c), or too high as seen in Figure 4.10(c). As expected, when

the speed is too high jobs are completed faster at the expense of incurring high energy

costs. However, when we consider the performance ratio of *Sd to Sajc in general, we

can see that *Sd achieves a performance close to that of Sajc in contrast to *Sf.

In conclusion, as seen from the performance of *Sd, we are able to show that a speed

function that has some information about the job set performs better than one without

Chapter 4. Energy-E�cient Flow Time Scheduling 55

any information. However, when we examine the performance of Sajc, we can assert

that some form of speed scaling is required in order to achieve even better performance

in terms of minimizing �ow time plus energy.

4.4.3.3 E�ectiveness of AJC speed spectrum

In the preceding sections, we have demonstrated the e�ectiveness of speed scaling in

minimizing �ow time and energy incurred by a schedule. The AJC speed scaling heuristic

is characterized by a spectrum of speed values, of which the range of speeds achieved

greatly depends on the distribution of jobs and their sizes. In this simulation, our aim is

to investigate how the variations in an AJC speed spectrum compare to AJC itself if a

�xed speed value was selected from this speed spectrum. To be precise, we compare the

performance of AJC to a �xed speed heuristic. However, unlike the previous �xed speed

heuristics discussed earlier in the chapter, this �xed speed heuristic depends on a prior

execution of AJC in order to obtain two �xed speed values in the form of its average

speed, *AJCavg, and maximum speed, *AJCmax.

The results shown in Figures 4.12 and 4.13 are presented in the form of a ratio of the

�xed speed heuristic to AJC in terms of their respective total costs. The �rst observation

that we easily make is, given the fact that there is no form of speed scaling involved, the

�xed speed heuristic still performs reasonably well when compared to previous results

involving �xed speed heuristics. It seems to indicate that at each point in time, AJC is

able to determine a speed that is very good for the situation. This gives further credence

to the claim that a heuristic based on speed scaling will yield better performance over a

�xed speed heuristic in the problem of minimizing �ow time plus energy.

On the other hand, there is not much di�erence in performance between using the average

speed and maximum speed from AJC. When we focus on *AJCmax in particular, the

performance is not far o� from that of Sajc. Since we already know that running at high

speeds will help save time at the expense of higher energy costs, the *AJCmax is still low

enough to achieve reasonable performance across the variations and distributions in the

job inputs.

4.4.4 Results on processor allocation strategies

In this section we present the results from the simulations involving processor allocation

strategies in a multi-processor environment. We aim to evaluate how multi-processors can

contribute to minimizing �ow time plus energy while utilizing several processor allocation

strategies as listed in Section 4.3.3. For these simulations, we make use of AJC as the

Chapter 4. Energy-E�cient Flow Time Scheduling 56

speed function and SRPT as the job selection strategy. We simulate systems with 2, 4,

8 and 16 processors independently and for each simulation, the cost is presented as the

summation of costs across all processors.

4.4.4.1 RoundRobin

The �rst of the multi-processor allocation strategy to be considered is RoundRobin.

Recall that this processor allocation strategy aims to evenly distribute jobs across all

available processors. Figures 4.14 and 4.15 shows the results of the simulation according

to average job size and average inter-arrival time, respectively.

We can observe that when job density is relatively low, up to 4 units of work per unit

time, there is no di�erence in performance between single processor and multiple proces-

sors. However, above this threshold, we begin to observe the bene�ts of adding multiple

processors over a single processor. This bene�t ranges from 3 times, as seen in Figure

4.15(b), up to around 46 times with 16 processors, as shown in Figure 4.15(a). This

performance boost increases as the job density increases.

4.4.4.2 *MinActiveCount

This processor allocation strategy is similar to RoundRobin, however, priority is based

on the number of active jobs. Figure 4.16 shows the results with respect to average job

size while Figure 4.17 is with respect to average inter-arrival time.

The performance of this processor allocation strategy is quite similar to RoundRobin.

Again, the performance bene�t from using multiple processors over a single processor

can only be observed when the ratio of average job size to average inter-arrival time is

larger than 4. In this case, the performance gain is up to 22 times with 16 processors

as shown in Figures 4.17(a) and 4.16(c). This is considerably less than what we observe

with RoundRobin.

We can observe that when job density is relatively low, up to 4 units of work per unit

time, there is no di�erence in performance between single processor and multiple proces-

sors. However, above this threshold, we begin to observe the bene�ts of adding multiple

processors over a single processor. This bene�t ranges from 3 times, as seen in Figure

4.17(b), up to around 21 times, as shown in Figure 4.17(a). This performance boost

increases as the job density increases.

Chapter 4. Energy-E�cient Flow Time Scheduling 57

4.4.4.3 *MinCost

Among the four processor allocation strategies, *MinCost can be considered the most

computationally intensive. This is because priority is given to the processor that will

yield the least amount of cost, meaning, that the job queue for each processor needs to be

processed before the �nal allocation is made. Nevertheless, the results for *MinCost are

also straight-forward and a distinct observation, similar to *MinActiveCount. Figures

4.16 and 4.17 show some results with respect to average job size and average inter-arrival

time, respectively.

The same trend observed in *MinActiveCount continues here with *MinCost too.

When ratio of unit work to time is 4 or less, single processor and multi-processor per-

formance is quite the same. However, above this threshold, we observe an even larger

performance boost, compared to *MinActiveCount, with using multiple processors.

The performance boost is up to 42 times, as shown in Figure 4.19(a). This is around

double the performance boost observed with *MinActiveCount.

4.4.4.4 *MinSize

This processor allocation strategy gives priority to the processor with the least amount

of work. Figures 4.16 and 4.17 show some simulation results with respect to average job

size and average inter-arrival time, respectively.

As with the results from other processor allocation strategies discussed so far, the same

trend continues. That is, the bene�t of using multiple processors over a single processor

only begin to manifest when the ratio of average job size to average inter-arrival time is

greater than 4. However, in Figures 4.20(c) and 4.21(a), *MinSize shows a performance

boost of up to 49 times when using 16 processors over a single processor. This is the

best performance ratio we have observed so far.

4.4.5 Conclusion

In this chapter, we presented an empirical study of the problem of minimizing �ow time

plus energy on single and multiple processors. We implemented and evaluated several

strategies for job selection, speed selection and processor allocation.

Job selection strategies. For job selection strategies, we considered SJF and SRPT.

Our simulations con�rm that, although both are close in performance, SRPT is better

than SJF in both single and multiple processor con�gurations. This result is an emperical

Chapter 4. Energy-E�cient Flow Time Scheduling 58

RoundRobin *MinActiveCount *MinCost *MinSize

2 processors 3.4 3.08 3.39 3.39
4 processors 9.87 7.11 10.83 10.25
8 processors 21.62 12.77 24.76 22.58
16 processors 46.05 21.53 42.11 49.87

Table 4.1: Summary of the best performance ratios for all processor allocation strate-
gies.

con�rmation of result that is already known in literature which presents SRPT as an

optimal job selection strategy [90].

Speed functions. In this round of experiments we considered a speed-scaling heuristic,

AJC, and several other �xed speed heuristics including a semi-clairvoyant �xed speed

heuristic, *Sd. Our results from the simulations conducted with AJC and *Sd show that,

if some knowledge of the incoming jobs is known, it is possible to design a much simpler

�xed-speed heuristic that can perform quite close to AJC. In practice, AJC might be

computationally intensive to implement and a processor has to be able to support a wide

speed spectrum with the capability to select an arbitrary speed within this spectrum.

Furthermore, our results also show that some form of speed scaling is required in order

to minimize the cost of total �ow time plus energy. This was clearly demonstrated by the

performance of AJC in our simulations when compared to other �xed speed heuristics.

Processor allocation strategies. Our simulations on multi-processor allocation

strategies included the comparison of RoundRobin, *MinActiveCount, *MinCost

and *MinSize. The performance of multiple processor con�guration was compared to

a single processor con�guration with respect to minimizing total �ow time plus energy.

Our results clearly show that adding more processors can help to minimize total �ow

time plus energy, especially when job density is quite high. An interesting observation,

however, for all four processor allocation heuristics is that we only begin to observe the

ben�ts of multiple processors when the ratio of average job size to average inter-arrival

time is larger than 4. Another interesting observation is that the simplest heuristics,

RoundRobin and *MinSize, performed better than the other two, more sophisticated

heuristics. A summary of results is shown in Table 4.1.

Chapter 4. Energy-E�cient Flow Time Scheduling 59

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and SD for average job size of 1 (Uniform distribution).

Flow time

Energy

Flow time + energy

(a) Performance ratio for average job size of 1 with varying inter-
arrival time.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and SD for average job size of 16 (Uniform distribution).

Flow time

Energy

Flow time + energy

(b) Performance ratio for average job size of 16 with varying inter-
arrival time.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and SD for average job size of 512 (Uniform distribution).

Flow time

Energy

Flow time + energy

(c) Performance ratio for average job size of 512 with varying inter-
arrival time.

Figure 4.10: Speed scaling vs. semi-clairvoyant �xed speed function: Measurement
shows the ratio of total �ow time plus energy between AJC and a �xed speed function
that has some information about the job set. Results are grouped according to average
job size.

Chapter 4. Energy-E�cient Flow Time Scheduling 60

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC and SD for average inter-arrival time of 1 (Poisson arrival).

Flow time

Energy

Flow time + energy

(a) Performance ratio for average inter-arrival time of 1 with varying
job size.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC and SD for average inter-arrival time of 16 (Poisson arrival).

Flow time

Energy

Flow time + energy

(b) Performance ratio for average inter-arrival time of 16 with varying
job size.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC and SD for average inter-arrival time of 512 (Poisson arrival).

Flow time

Energy

Flow time + energy

(c) Performance ratio for average inter-arrival time of 512 with varying
job size.

Figure 4.11: Speed scaling vs. semi-clairvoyant �xed speed function: Measurement
shows the ratio of total �ow time plus energy between AJC and a �xed speed function
that has some information about the job set. Results are grouped according to average
inter-arrival time.

Chapter 4. Energy-E�cient Flow Time Scheduling 61

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and AJCAVG and AJCMAX for average job size of 1
(Uniform distribution).

Ratio AJCAVG / AJC for avg. job size = 1

Ratio AJCMAX / AJC for avg. job size = 1

AJC

(a) Performance ratio for average job size of 1 with varying inter-
arrival time.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and AJCAVG and AJCMAX for average job size of 16
(Uniform distribution).

Ratio AJCAVG / AJC for avg. job size = 16

Ratio AJCMAX / AJC for avg. job size = 16

AJC

(b) Performance ratio for average job size of 16 with varying inter-
arrival time.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and AJCAVG and AJCMAX for average job size of 512
(Uniform distribution).

Ratio AJCAVG / AJC for avg. job size = 512

Ratio AJCMAX / AJC for avg. job size = 512

AJC

(c) Performance ratio for average job size of 512 with varying inter-
arrival time.

Figure 4.12: E�ectiveness of AJC speed spectrum: Comparison of AJC to a �xed
speed function that uses, as �xed speed values, the average and maximum speeds ob-
tained from a prior AJC run. Results show the performance ratio of the total �ow time
plus energy of �xed speed functions vs. AJC.

Chapter 4. Energy-E�cient Flow Time Scheduling 62

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC with AJCAVG and AJCMAX for average inter-arrival time of 1
(Poisson arrival).

Ratio AJCAVG / AJC for avg. inter-arrival time = 1

Ratio AJCMAX / AJC for avg. inter-arrival time = 1

AJC

(a) Performance ratio for average inter-arrival time of 1 with varying
job size.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC with AJCAVG and AJCMAX for average inter-arrival time of 16
(Poisson arrival).

Ratio AJCAVG / AJC for avg. inter-arrival time = 16

Ratio AJCMAX / AJC for avg. inter-arrival time = 16

AJC

(b) Performance ratio for average inter-arrival time of 16 with varying
job size.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC with AJCAVG and AJCMAX for average inter-arrival time of 512
(Poisson arrival).

Ratio AJCAVG / AJC for avg. inter-arrival time = 512

Ratio AJCMAX / AJC for avg. inter-arrival time = 512

AJC

(c) Performance ratio for average inter-arrival time of 512 with varying
job size.

Figure 4.13: E�ectiveness of AJC speed spectrum: Comparison of AJC to a �xed
speed function that uses, as �xed speed values, the average and maximum speeds ob-
tained from a prior AJC run. Results show the performance ratio of the total �ow time
plus energy of �xed speed functions vs. AJC.

Chapter 4. Energy-E�cient Flow Time Scheduling 63

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 1
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(a) Average job size of 1 with varying inter-arrival time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 16
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(b) Average job size of 16 with varying inter-arrival time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 512
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(c) Average job size of 512 with varying inter-arrival time

Figure 4.14: Results for RoundRobin in terms of average job size comparing the
performance ratio of total �ow time plus energy for a single processor vs. multiple
processors.

Chapter 4. Energy-E�cient Flow Time Scheduling 64

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Single-processor vs. multi-processor comparison for average inter-arrival time of 1
(Poisson arrival).

2 processors

4 processors

8 processors

16 processors

(a) Average inter-arrival time of 1 with varying job size

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Single-processor vs. multi-processor comparison for average inter-arrival time of 16
(Poisson arrival).

2 processors

4 processors

8 processors

16 processors

(b) Average inter-arrival time of 16 with varying job size

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Single-processor vs. multi-processor comparison for average inter-arrival time of 512
(Poisson arrival).

2 processors

4 processors

8 processors

16 processors

(c) Average inter-arrival time of 512 with varying job size

Figure 4.15: Results for RoundRobin in terms of average inter-arrival time com-
paring the performance ratio of total �ow time plus energy for a single processor vs.
multiple processors.

Chapter 4. Energy-E�cient Flow Time Scheduling 65

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson distribution)

Single-processor vs. multi-processor comparison for average job size of 1
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(a) Average job size of 1 with varying inter-arrival time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson distribution)

Single-processor vs. multi-processor comparison for average job size of 16
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(b) Average job size of 16 with varying inter-arrival time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson distribution)

Single-processor vs. multi-processor comparison for average job size of 512
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(c) Average job size of 512 with varying inter-arrival time

Figure 4.16: Results for *MinActiveCount in terms of average job size comparing
the performance ratio of total �ow time plus energy for a single processor vs. multiple
processors.

Chapter 4. Energy-E�cient Flow Time Scheduling 66

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Single-processor vs. multi-processor comparison for average inter-arrival time of 1
(Poisson distribution).

2 processors

4 processors

8 processors

16 processors

(a) Average inter-arrival time of 1 with varying job size

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Single-processor vs. multi-processor comparison for average inter-arrival time of 16
(Poisson distribution).

2 processors

4 processors

8 processors

16 processors

(b) Average inter-arrival time of 16 with varying job size

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Single-processor vs. multi-processor comparison for average inter-arrival time of 512
(Poisson distribution).

2 processors

4 processors

8 processors

16 processors

(c) Average inter-arrival time of 512 with varying job size

Figure 4.17: Results for *MinActiveCount in terms of average inter-arrival time
comparing the performance ratio of total �ow time plus energy for a single processor
vs. multiple processors.

Chapter 4. Energy-E�cient Flow Time Scheduling 67

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 1
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(a) Average job size of 1 with varying inter-arrival time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 16
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(b) Average job size of 16 with varying inter-arrival time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 512
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(c) Average job size of 512 with varying inter-arrival time

Figure 4.18: Results for *MinCost in terms of average job size comparing the perfor-
mance ratio of total �ow time plus energy for a single processor vs. multiple processors.

Chapter 4. Energy-E�cient Flow Time Scheduling 68

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Single-processor vs. multi-processor comparison for average inter-arrival time of 1
(Poisson arrival).

2 processors

4 processors

8 processors

16 processors

(a) Average inter-arrival time of 1 with varying job size

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Single-processor vs. multi-processor comparison for average inter-arrival time of 16
(Poisson arrival).

2 processors

4 processors

8 processors

16 processors

(b) Average inter-arrival time of 16 with varying job size

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Single-processor vs. multi-processor comparison for average inter-arrival time of 512
(Poisson arrival).

2 processors

4 processors

8 processors

16 processors

(c) Average inter-arrival time of 512 with varying job size

Figure 4.19: Results for *MinCost in terms of average inter-arrival time comparing
the performance ratio of total �ow time plus energy for a single processor vs. multiple
processors.

Chapter 4. Energy-E�cient Flow Time Scheduling 69

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 1
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(a) Average job size of 1 with varying inter-arrival time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 16
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(b) Average job size of 16 with varying inter-arrival time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 512
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(c) Average job size of 512 with varying inter-arrival time

Figure 4.20: Results for *MinSize in terms of average job size comparing the perfor-
mance ratio of total �ow time plus energy for a single processor vs. multiple processors.

Chapter 4. Energy-E�cient Flow Time Scheduling 70

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Single-processor vs. multi-processor comparison for average inter-arrival time of 1
(Poisson arrival).

2 processors

4 processors

8 processors

16 processors

(a) Average inter-arrival time of 1 with varying job size

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Single-processor vs. multi-processor comparison for average inter-arrival time of 16
(Poisson arrival).

2 processors

4 processors

8 processors

16 processors

(b) Average inter-arrival time of 16 with varying job size

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Single-processor vs. multi-processor comparison for average inter-arrival time of 512
(Poisson arrival).

2 processors

4 processors

8 processors

16 processors

(c) Average inter-arrival time of 512 with varying job size

Figure 4.21: Results for *MinSize in terms of average inter-arrival time comparing
the performance ratio of total �ow time plus energy for a single processor vs. multiple
processors.

Chapter 5

Background on Parallel Computing

with General Purpose GPUs

5.1 Introduction

The modern graphics processing unit (GPU) has evolved to become a more general-

purpose, programmable parallel processor in contrast to the earlier generations of spe-

cialized, �xed-function processors. However, regardless of the generation, GPUs have

always possessed substantial amounts of processing power and computational resources.

The di�cult aspect has always been a matter of how to leveraging the vast compute

resources on the GPU for general-purpose, high performance computing. Earlier ap-

proaches relied on writing programs structured according the GPU rendering pipeline

and the use of graphics APIs. This means that programs were written in a style very

similar to those used in rendering graphics and may not allow for a lot of �exibility

and convenience. However, with the introduction of these new GPUs with uni�ed (pro-

grammable) shaders, programmers now have adequate access to the core computational

resources without the details of the �xed-function, rendering pipelines. In the description

of the GPU hardware, we will focus on the programmable aspects of the GPU pipeline

only because these are the parts we are concerned with when writing general purpose

applications that make use of the GPU.

5.2 Comparison of CPU and GPU Hardware Architecture

In this chapter, we begin with a brief introduction to describe the main architectural dif-

ferences between a CPU and GPU from a hardware point of view. Next, we discuss the

71

Chapter 5. Background on Parallel Computing with General Purpose GPUs 72

GPU hardware implementation o�ered by the leading GPU vendors, AMD and NVIDIA.

Finally, we describe the concepts and models in the parallel computing framework we

use for application development on GPUs. The aim of this chapter is to provide some

background knowledge on some of the main working principles and fundamental di�er-

ences between a CPU and GPU. We shall also discuss some key architectural intricacies

associated with the computer system controlled by the CPU.

5.2.1 Memory management in a computer system

In a modern computer application, the actual hardware details of the underlying memory

subsystem and medium is abstracted from the user through using what is referred to as

virtual memory. The virtual memory maps the virtual addresses used by a computer

program into physical addresses on the computer's physical memory or storage medium.

This process makes data byte addressable regardless of its location. When a process

is launched, the operating system is responsible for allocating a virtual address space

for that process as well as the assignment of the physical address space to the virtual

address space. This address management is handled by a hardware unit in the CPU

often referred to as a memory management unit (MMU). One of the functions of the

virtual memory is that it enables a process to execute without the need for its code to be

resident in the system's main memory. It also relieves the burden of managing a shared

memory space with other running processes.

Paging in virtual memory. Another bene�t of virtual memory is that it enables a

process to be able to utilize more memory than is physically possible through a technique

known as paging. The virtual address space is divided into �xed-sized blocks referred to

as pages. Likewise, the physical address space is also divided into �xed-sized blocks called

frames so that each page of virtual memory can �t into a frame. These virtual pages

can either be mapped to any frame in the system's main memory or secondary storage

or can also be pending allocation. However, in order to access data contained within a

page, the CPU requires that this data already resides in main memory frame. It is the

responsibility of the MMU to intervene and provide the appropriate mapping whenever

an instruction uses virtual memory. A page fault occurs when the data being requested

in virtual memory is not yet available in main memory, therefore, the process is halted

while the mapping is created after data has been made available in main memory.

Direct Memory Access (DMA).When designing a program that uses discrete GPUs,

it is important to know how the operating system's memory management techniques

a�ects the program because data transfer between the GPU device and system's main

memory can be a costly operation in such a program. This is where the technique known

Chapter 5. Background on Parallel Computing with General Purpose GPUs 73

as direct memory access (DMA) comes into the picture. Any peripheral device, such

as a GPU, attached to a computer system will require the help of the CPU in order to

access data stored in main memory. DMA o�ers an e�cient mechanism through which

peripheral devices can access data in memory without the intervention of the CPU. DMA

requires that the data being accessed is already resident in main memory and will not

be moved by the operating system before the operation can be initiated. When the

operating system is not allowed to move a page, the page is often described as pinned.

During a DMA operation, a physical address is supplied by a device driver from the

CPU to the DMA engine on the GPU. This allows the discrete GPU to perform memory

operations while the CPU is free to do other useful work. When the DMA operation is

complete the page(s) can then be unmapped from main memory.

5.2.2 Stream processing hardware implementation

Modern GPU architectures from both AMD and NVIDIA are based around the idea

of a scalable collection of streaming multiprocessors (SMs). These multiprocessors are

designed to achieve substantial amounts of parallelism individually with the capability

to execute tens to hundreds of threads concurrently. This is made possible because each

SM is made up of arrays of execution units commonly referred to as processing elements

(PEs). Each PE contains a number of arithmetic and logic units (ALUs), each capable

of executing single-precision �oating-point and integer operations. Each PE executes an

instance of the program being run on the GPU and can handle both scalar and vector

instructions. Despite the fact that a single GPU can hold hundreds to thousands of

processing elements, it is still about the same size as a CPU in terms of die size and one

might wonder how this is possible?

The architectural design goal of a CPU is to minimize latency, hence, a CPU aims

at minimizing the number of execution cycles required to perform a task. Threads

executing on a CPU are expected to be quite responsive and in the case of multiple

threads executing simultaneously, the CPU is able to manage this by switching very

rapidly between threads. The CPU relies heavily on its cache memory and so a vast

amount of transistors is devoted to memory and this takes up a considerable amount of

die space. In addition, the CPU also devotes a signi�cant amount of transistors on the

control unit which is responsible for tasks such as fetching data, decoding instructions,

managing execution and storage of results.

On the other hand, the GPU is designed to achieve high rates of throughput and paral-

lelism. In order to accomplish this it becomes rather imperative that a signi�cant amount

of transistors is dedicated to execution units, as illustrated in Figure 5.1(b). As a result,

Chapter 5. Background on Parallel Computing with General Purpose GPUs 74

(a) CPU (b) GPU

Figure 5.1: A fundamental di�erence between a CPU and a GPU is that the GPU
dedicates majority of its transistors to execution units.

GPUs are typically equipped with very small caches (fast, on-chip memory) compared to

a CPU and since there is not much execution management involved, in comparison to the

CPU which has to deal with things like branch conditions and predictions, control units

consume a small amount of die space. Threads executing on a GPU are considered to be

light-weight when compared to CPU threads and as a result, context-switching between

threads on the GPU is extremely fast and this enables the GPU to `hide latency' by

swapping out threads while they perform memory read/write operations. We shall see

more details when we discuss scheduling in the next subsection.

Furthermore, the memory subsystem on a GPU is optimized for throughput as well be-

cause, given the SIMD nature of execution on the stream processors, memory operations

occur in bulk. This means that memory transactions are coordinated in such a way

that requests made to consecutive memory addresses are serviced in a single transaction

depending on the width of the memory controller. A GPU usually consists of multi-

ple memory controllers each capable of handling separate memory transactions, hence,

providing a high level of throughput and memory bandwidth. As a result, the memory

subsystem on GPUs usually have peak bandwidths orders of magnitude higher than can

be achieved between the CPU and RAM.

5.2.3 Scheduling - threads, warps and wavefronts

In a computer system, an application executing on the CPU usually consists of execu-

tion fragments commonly referred to as threads. A thread refers to the smallest unit of

execution that can be in�uenced by the scheduler process of the operating system. A

process is an instance of an application running on a computer system and it contains

the program code for that particular application. A process can invoke multiple threads

to handle its tasks and these threads can share common system resources such as main

Chapter 5. Background on Parallel Computing with General Purpose GPUs 75

memory or RAM, however, threads from di�erent processes cannot share the same por-

tion of memory. Each thread within a process can execute di�erent paths through the

program code of the application and can also access data di�erent memory locations in

memory. At any given time a CPU core can only execute a single thread, therefore, a

single-core CPU can only execute a single thread or process at a time. However, for the

case of Intel CPUs with Hyper-Threading� [46, 110] technology, a physical CPU core can

be viewed as two virtual or logical cores by the operating system allowing the operating

system to schedule more than one task to the virtual cores so that the single physical

core can execute up to two threads simultaneously. This feature is made possible because

the Hyper-Threaded processor can duplicate parts of the CPU responsible for storing the

architectural state only. A typical computer system usually runs a host of applications

at the same time which in most cases exceed the number of processors available in the

system and given that each application can have one or more processes, each with a

number of threads, how does the system cope such a work load?

The CPU is capable of processing multiple threads, in order words, multi-task, by im-

plementing what is known as time-division multiplexing. Signals are propagated over a

single path using synchronized switches to achieve time-sharing of the available band-

width and this is the main idea behind context switching, which allows the CPU to switch

between threads and allowing each one a fraction of the CPU time for execution. During

the process of a context switch, the state of the running process is saved so that it can be

restored at a later point in time when the process needs to resume execution. A context

switch typically involves saving the state of a register, stack, thread or even a process.

The process usually happens quite rapidly and is so quick that it gives the user the

impression that the processes or applications are being executed simultaneously. This is

the basic idea behind how the CPU handles threads and processes in order to respond

to user applications on a computer system, however, the mode of operation on the GPU

is quite di�erent from a general perspective.

An application executing on the GPU also comprises of threads but in contrast to the

CPU, and due to the SIMD (single instruction multiple data) pattern of execution, the

smallest unit of execution that �ow control can a�ect is a group of threads instead of a

single thread. This group of threads, referred to as a wavefront and warp for AMD and

NVIDIA hardware respectively, usually comprises of a �xed number of threads subject

to hardware design. For instance, a wavefront is made up of 64 threads while a warp

consists of 32 threads. Any given application executing on the GPU can be made up

of one or more thread groups. All threads in execute the same piece of code but the

data processed individually by each thread can be di�erent. Threads in the same group

are usually scheduled on the same streaming multiprocessor by the GPU scheduler and

each thread executes on the individual processing elements. When threads are created

Chapter 5. Background on Parallel Computing with General Purpose GPUs 76

each one is assigned a unique serial number that serves as a unique index for each thread

and this unique index can be queried from the piece of code that particular thread is

executing, hence, a thread is aware of its own index. Since the scheduler on the GPU

does not schedule each thread individually like the CPU does and given the fact that the

GPU does not dedicate a lot of transistors to control units, managing branch conditions

and predictions in a GPU program becomes more involving compared to a CPU program.

Although all threads execute the same piece of code while working on possibly di�erent

data, there are cases where some threads might be required to execute a path of the code

di�erent from other threads. The more critical case is a situation where some threads

within a wavefront/warp execute a path of the code di�erent from the rest due to some

branch condition in the code and we refer to this as thread divergence. It may appear as

though the threads are carrying out their individual tasks concurrently, however, since

the GPU is not optimized for handling branching in program codes, an extra step is

incorporated during execution when thread divergence occurs. Firstly, all threads within

a warp/wavefront will execute all paths of the code and the unwanted outcomes or results

are `masked' out so that only the valid operations are maintained. Let us consider the

example illustrated in Figure 5.2.

Figure 5.2: Thread divergence occurs as a result of threads within a wavefront/warp
taking di�erent code paths.

In this example, the program code requires that threads with indices that are even

numbers perform a di�erent task from the odd-numbered threads. Regardless of the

GPU hardware, this sort of program code will result in thread divergence as half of the

wavefront/warp will be executing a di�erent code path from the other half and as a

result, the whole group will need to make two passes in order to execute each branch. In

the �rst pass, the threads with even indices indicated by the green (unshaded) arrows

are activated to perform their operations while the threads with odd indices shown in red

(shaded) are deactivated. In the second pass, the process is inverted so that the threads

with odd indices become activated while the remaining threads with even indices are

deactivated.

Chapter 5. Background on Parallel Computing with General Purpose GPUs 77

Note that thread divergence occurs when the branch granularity of the GPU hardware

is not maintained when assigning tasks to threads. Branch granularity is simply the

number of threads that must be executed during a branching procedure and this number

is typically equivalent to the size of a wavefront/warp [2]. This means that it is still

possible to allow some threads to execute a di�erent portion of the program code as long

as the branch granularity is not broken. Let us consider the following example illustrated

in Figure 5.3.

Figure 5.3: Thread divergence can be avoided if branch granularity of the GPU
hardware is maintained.

Recall that the wavefront size for AMD hardware is 64 threads while the warp size for

NVIDIA hardware is 32 threads. In this example, threads numbered 0 to 63 are assigned

a di�erent task from the rest of the threads. In this case, regardless of the hardware

whether AMD or NVIDIA, we can observe that branch granularity is maintained. For

the AMD hardware the �rst wavefront will execute the �rst part of the control statement

while for NVIDIA hardware, it is the �rst two warps. Since the branch granularity is

maintained both parts of the branch condition can be executed concurrently and the

extra operation required to mask out invalid operations will not be required. Hence, it is

important that thread divergence is avoided as much as possible when writing program

codes for GPUs.

Another important factor that must be taken into account when designing algorithms

that leverage GPUs is the arithmetic intensity of the program code, in other words,

the ratio of arithmetic operations to memory operations. Accessing the GPU's video

memory usually incurs a considerable amount of clock cycles which usually results in

stalling during execution process. The GPU is highly optimized for throughput and

programs with very high arithmetic intensity will usually perform better compared to

a program that is mostly memory bound. However, the GPU scheduler is quite robust

in terms of dealing with such cases where a wavefront/warp is stalled due to memory

transactions using a technique regarded as hiding latency. This involves swapping out

wavefronts/warps that have stalled as a result of a memory transaction so that idle

ones can continue with their tasks. We illustrate the concept of hiding latency with

the example illustrated in Figure 5.4. In this example, four groups of threads are shown

Chapter 5. Background on Parallel Computing with General Purpose GPUs 78

labelledW0,W1,W2 andW3, and they are meant to be executing on the same streaming

multiprocessor.

Figure 5.4: The GPU is able to hide latency by swapping out wavefronts/warps that
stall during memory operations.

Let us assume that execution begins at time t0. During execution, the �rst group, W0,

encounters a memory operation at time t1 and stalls as a result while waiting for data

to be read/written to memory. While the memory transactions are being handled by

the memory controller, the GPU scheduler immediately swaps out group W0 for group

W1 and execution continues. Subsequently, group W1 will reach the same point in

the code that requires the same memory transactions and the GPU again swaps out

group W1 for the next group W2 at time t2 and the process continues as long as there

idle wavefronts/warps. In this example, we can easily observe that there isn't enough

arithmetic intensity in the program code to hide the latency incurred during memory

transactions, however, there is a considerable amount of work to keep the GPU busy

with su�cient wavefronts/warps to hide latency. In this case, we say we have achieved

maximum occupancy for the GPU which refers to the ratio of active wavefronts/warps

in �ight to the hardware limit for the maximum number of wavefronts/warps that can

execute concurrently. When a program code is implemented correctly, it is still very

possible to achieve high amounts of throughput from the GPU hardware. One can also

improve memory operations and overall performance even further by coordinating the

memory access patterns from the threads.

The memory controllers on the GPU can only transfer a given amount of data, measured

in bits (or bytes), when processing a memory request and this is usually referred to

as the memory bus width. The memory bus width is often equivalent in size to the

cache line width and a similar setup exists between the CPU and the system main

memory. When a request is made to, for instance, fetch data from a particular location

in memory, the memory controller will return data equivalent to the size of its bus width

per request. In order get the best possible performance out of the memory controllers on

the GPU it is imperative that memory access patterns are coalesced, which simply means

that consecutive threads should be made to access consecutive locations in memory.

Chapter 5. Background on Parallel Computing with General Purpose GPUs 79

The example shown in Figure 5.5 illustrates a non-optimal memory access pattern from

threads in a wavefront/warp.

Figure 5.5: Non-coalesced memory access patterns can result in poor performance on
the GPU hardware.

Here, the last thread, n, is requesting data from a location that is non-contiguous with

the rest of the threads in the group. Given that the memory controller will return data

equal to the size of the bus width or word segment, the unused data is wasted and

the whole group will have to be serviced in two memory transactions. However, if the

memory requests are coalesced so that threads access consecutive locations in memory

as shown in Figure 5.6, data fetched by the memory controller will be fully utilized by all

threads and will only require a single memory transaction thereby avoiding the expensive

overheads related to memory operations.

Figure 5.6: Coalesced memory access patterns can improve performance on the GPU
hardware.

5.3 Vendor-speci�c SIMD implementations

So far in this chapter we have discussed some aspects of the GPU hardware but from a

general perspective. In this section we shall be discussing the hardware implementations

on o�er from AMD and NVIDIA, the leading GPU vendors. Precisely, we shall discuss

the implementation details of their latest hardware architecture and will be focusing on

the parts that are directly related to running general purpose applications on the GPU.

Chapter 5. Background on Parallel Computing with General Purpose GPUs 80

Figure 5.7: Generalized block diagram of AMD's GCN architecture.

5.3.1 The Graphics Core Next architecture (AMD)

The Graphics Core Next (GCN) architecture was �rst introduced by AMD during their

Fusion Developer Summit (AFDS) in 2011 [102, 109] and later launched with their South-

ern Island devices with model names in the form of Radeon� HD 7xxx. For instance, at

the time of launch, their �agship model was the HD 7970 GPU model. The GPU devices

based on the GCN architecture are available as discrete peripheral devices or part of

their system-on-chip line of products called accelerated processing units (APU), which is

a combination of a GPU and a CPU on the same die to provide a heterogeneous solution

for computing tasks.

At the heart of the GCN architecture are the streaming multiprocessors and, without loss

of generality, Figure 5.7 depicts a simple block diagram of a GPU with four streaming

multiprocessors. Each multiprocessor comprises of processing elements grouped into

what is known as vector units and each vector unit is made up of 16 processing elements.

There are a total of 4 vector units in each streaming multiprocessor which amounts to

a total of 64 processing elements per multiprocessor. At any point in time during the

execution of a program code on the GPU, a vector unit is responsible for executing a

wavefront, hence, each thread in the wavefront is assigned to a single processing element.

However, a wavefront is scheduled quarterly so only 16 threads gets scheduled at a time

until eventually all 64 threads in the wavefront are scheduled.

Each processing element consists of its own private memory or registers visible only to

the thread it is executing. A form of high-speed, low-latency memory, known as local

Chapter 5. Background on Parallel Computing with General Purpose GPUs 81

Figure 5.8: Generalized block diagram of NVIDIA's Kepler architecture.

data store (LDS), also exists on each multiprocessor and it is visible to all threads in

a group executing on the multiprocessor. The LDS provides support for scatter and

gather operations and a means for threads to share data with each other. The frame

bu�er or video memory resides o�-chip and provides huge amounts of storage but incurs

the highest amount of latency. A robust memory controller provides high-speed and

high-bandwidth access for the streaming multiprocessors to the frame bu�er with several

memory channels. To put this into perspective, let us consider an actual GCN device

like the AMD Radeon� HD 7970 GPU. This GPU features 32 SMs which equates to a

total of 2,048 PEs. Each SM has a LDS size of 32 kB and the reference design has a 3

GB GDDR5 frame bu�er with a 384-bit wide memory interface.

5.3.2 The Kepler architecture (NVIDIA)

NVIDIA's Kepler architecture is a successor to the previous Fermi architecture and was

introduced with the NVIDIA GeForce� GTX 6xx series. They are also available as

discrete GPUs or embedded devices, like their Tegra� line of mobile GPUs. The Kepler

architecture is also based around the streaming multiprocessor, which NVIDIA refers to

as SMX [82]. The block diagram in Figure 5.8 illustrates how the compute components

are arranged from a general point of view.

The heart of the Kepler architecture for compute lies in the Graphics Processor Cluster

(GPC) and a single GPU comprises a number of these. The GPC is simply a group of

2 streaming multiprocessors. Each SMX in a GPC is made up of 6 CUDA (Compute

Uni�ed Device Architecture) arrays and each CUDA array further consists of 32 CUDA

cores. A CUDA array is akin to the vector unit in the AMD's GCN architecture and

Chapter 5. Background on Parallel Computing with General Purpose GPUs 82

the CUDA cores are simply the processing elements. This implies that a single SMX

consists of 192 CUDA cores or processing elements. The CUDA array is responsible for

executing a warp with a single thread being executed by one CUDA core.

A shared memory also exists for each SMX which is only accessible to warps executing

on that SMX. The shared memory also supports scatter and gather operations and

allows warps on the same SMX to share data. Each CUDA core also has registers which

are private to the thread executing on each of them. As usual, a large video memory

resides o�-chip and a memory interface provides high-speed, high-bandwidth access for

the multiprocessors.

As an example, the NVIDIA GeForce� GTX 680 GPU features 4 GPCs which equates

to 8 SMX for a total of 1,536 CUDA cores. Standard video memory con�guration is 2

GB GDDR5 memory with a 256-bit wide memory interface.

5.4 GPU Computing Framework

In this section, we shall discuss the parallel computing framework and model around

which applications are developed that leverage computing resources of the GPU. Such

a framework allows regular computer programs to interact with the GPU and o�oad

compute-intensive tasks where necessary. This thesis is primarily based on the OpenCL

parallel computing framework so we will be focusing on it in this section.

5.4.1 The Open Computing Language

The Open Computing Language (OpenCL) is a cross-platform API for writing programs

intended to take advantage of heterogeneous and multi-core systems. It was initially

developed by Apple Inc. who submitted the �rst proposal to the Khronos Group. This

proposal was re�ned in collaboration with technical teams at AMD, IBM, Qualcomm,

Intel and NVIDIA and the �rst public release after review by members of Khronos Group

was on December 8, 2008. The API is built on the C programming language. Existing

parallel computing frameworks includes CUDA by NVIDIA for writing programs for its

GPUs as well as vendor-speci�c OpenCL implementations from AMD, Intel and IBM.

Language bindings and wrappers also exist for programming languages like C++, C#,

Python and Java [30, 48, 89, 105].

OpenCL is built around a hierarchy of models that make up its foundation and these are

the platform, execution, memory and programming models.

Chapter 5. Background on Parallel Computing with General Purpose GPUs 83

Figure 5.9: Block diagram illustrating the major components of the OpenCL platform.

5.4.1.1 Platform model

The platform model provides a de�nition that encapsulates a hardware system the sup-

ports heterogeneous computing with the OpenCL framework. It aims to consolidate

di�erent devices including CPUs, GPUs, DSPs and other discrete devices under a single

platform. The block diagram in Figure 5.9 illustrates the components of the OpenCL

platform.

The OpenCL application is executed by the host, which typically refers to the computer

system including the CPU, its main memory and secondary storage like hard drives.

The host is connected to one or more OpenCL devices and such a device is referred to

as a compute device. A compute device is simply any device that supports the OpenCL

speci�cations like the modern GPUs. A CPU can also be seen as a compute device,

hence, OpenCL can also be used to leverage multi-threading capabilities of multi-core

CPUs. A compute device is further divided into one or more compute units. For instance,

a streaming multiprocessor in a GPU is a compute unit. Furthermore, the compute unit

is also divided into one or more processing elements and computations within a compute

device happens within the processing elements.

The OpenCL application running on the host can be written in any native programming

language such as C, C++, Python and so on. The host application coordinates program

execution normally and interacts with the compute device by submitting commands that

are then interpreted by the compute device usually through software drivers installed with

the device.

Chapter 5. Background on Parallel Computing with General Purpose GPUs 84

Figure 5.10: Decomposition of an OpenCL index space into work-groups and work-
items.

5.4.1.2 Execution model

Under the platform model, we mentioned the OpenCL application, or host program,

that runs on the host. However, the actual program code that executes on the compute

device is usually written separate from the host code and it is known as a kernel. A

just-in-time compilation method is used to compile the kernel to produce the program

binary to be executed on the compute device. A kernel is written as a data-parallel

code, that is, parallelism is achieved through spatial distribution of data across threads

running on parallel processors. This idea is part of the core principles behind an OpenCL

application, so, how does it work?

To execute a kernel, OpenCL de�nes an index space called an NDRange and this repre-

sents an N-dimensional index space where N can be 1, 2 or 3. An instance of a kernel

executes at each point in this index space. This kernel instance is known as a work-

item and each work-item can be uniquely identi�ed in this index space by a global ID.

Each work-item executes the same code, however, the path through the code and data

operated on might vary among work-items. Furthermore, work-items are organized into

work-groups which o�ers a coarse-grained division of the NDRange. Consequently, each

work-item can be uniquely identi�ed in the NDRange through its global ID, and within

a work-group through a local ID. Work-groups can also be uniquely identi�ed using IDs

which means that a work-item can also be uniquely identi�ed by a combination of its

local ID and its work-group ID. On the compute device, a work-group is assigned to a

single compute unit and each work-item in the work-group executes on a processing ele-

ment. Figure 5.10 illustrates how the OpenCL NDRange is decomposed into work-items

and work-groups.

Chapter 5. Background on Parallel Computing with General Purpose GPUs 85

Figure 5.11: Illustration of the OpenCL memory model.

5.4.1.3 Memory model

OpenCL de�nes four di�erent memory regions each of which vary in size, speed of access

and accessibility by work-items in the NDRange.

1. Global memory. This region of memory is accessible to all work-items in the

NDRange and it is usually the largest region. Depending on the compute device

capabilities, read/write operations from/to this memory region may be cached. On

a GPU, for instance, the global memory maps to the video memory.

2. Constant memory. This is a region of memory that remains constant during

execution. Data stored in constant memory is initialized by the host and cannot

be modi�ed by the kernel.

3. Local memory. This region of memory is private to a single work-group and is

accessible to all work-items in that work-group. Work-items can allocate and share

variables using this memory region. On the GPU this region of memory usually

maps to the LDS (AMD)/shared memory (NVIDIA) that resides in each compute

unit.

4. Private memory. This region of memory is private to a single work-item execut-

ing on a processing element. Variables declared in a work-item's private memory

cannot be accessed by other work-items.

Memory consistency in OpenCL is relaxed which implies that the state of memory is not

guaranteed to be consistent across all work-items in the NDRange. To be precise, the

state of the local memory is guaranteed to be consistent for all work-items in a work-

group after a work-group barrier (synchronization point). However, OpenCL does not

guarantee a consistent state for global memory across work-groups.

Chapter 5. Background on Parallel Computing with General Purpose GPUs 86

5.4.1.4 Programming model

Parallelism in an OpenCL program is mainly achieved through data-parallel program

code that utilizes the SIMD units in a compute device. However, OpenCL also supports

a task-parallel approach where a single instance of a kernel is enqueued without the notion

of an index space. This is equivalent to executing a kernel with only one work-item in a

work-group on a compute unit. In this approach parallelism is usually achieved at instruc-

tion level via vector data types or by enqueuing multiple kernels.

Chapter 6

Parallel Algorithms for

Heterogeneous Systems with

GPGPUs

6.1 Introduction

In this chapter, we present an extensive study of the development of applications for

heterogeneous systems that consists of one or more graphics processing units (GPU)

as the main form of co-processor or accelerator. The massively parallel nature of the

GPU architecture makes them more than capable candidates for o�oading portions of

an application that are computationally intensive. In order to fully bene�t from the

huge compute resources available on these GPU devices, the portion of code that is

being targeted on for the GPU device must exhibit some parallel substructure. As a

result not all applications can bene�t from using a GPU. To be precise, applications that

bene�t the most from GPU devices are those that can be formulated into a data-parallel

application where data locality is very important and communication between processing

nodes is almost non-existent. This is because GPUs are optimized for high throughput

data manipulation as seen in image processing and graphics rendering.

Developing applications that leverage the GPU device as an accelerator is quite di�erent

from writing applications for the conventional CPU because there are aspects of the

GPU hardware that need to be taken into consideration, as discussed in Chapter 5.

As a result, it is di�cult and quite challenging to predict how a program will perform

on various GPU devices given the number of factors in play. To demonstrate these

intricacies, we present four applications that can be grouped into two subcategories

consisting of dynamic programming and n-body method based on Berkeley's 13 dwarfs

87

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 88

of scienti�c computing [6, 27]. A dwarf is meant to classify important applications

based on their pattern of computation and communication with the aim of providing an

optimized and common way of designing parallel formulations. We design and implement

these applications from ground up and evaluate their performance on di�erent hardware

con�gurations. In addition, we de�ne a number of performance metrics that help to

capture several system parameters as they interact with each speci�c application. Since

the aim of an accelerator is to help improve overall application performance compared

to using only the CPU, we also implement single-threaded and multi-threaded (task-

parallel) versions of each application so that we can also compare and contrast their

performance.

The highlights of our results in this chapter include,

� We present a true data-parallel implementation of GapsMis, a tool for sequence

alignment with bounded number of gaps. Further details are described in 6.5.1. The

data-parallel implementation presented in this chapter decomposes the problem to

achieve higher degree of parallelism on GPUs, compared to what was achieved

in the original implementation [3]. We also present detailed and comprehensive

analysis of our implementations, such that, when comparing the CPU vs. GPU

implementations, we analyze the system as a whole and highlight several factors

that could impede or improve performance. The CPU implementations include

both single and multi-threaded versions for a thorough comparison.

� We study two dynamic programming formulations, serial monadic and non-serial

monadic, and two n-body related algorithms and show that the GPU can achieve

better energy e�ciency, in addition to speedup, compared to the CPU. We also

present performance data showing how these di�erent algorithms can be a�ected

by several factors involved with GPGPU applications, such as, device-host memory

communication, multi-threading on GPU and memory usage on the GPU.

� In addition to comparing GPU performance to the CPU, we also present multi-GPU

implementations. We show that, although certain algorithms perform particularly

well on a single GPU, some do scale well when more GPUs are added to the system.

This can further improve speedup and energy e�ciency.

This chapter is organized as follows. We begin with a description of the theoretical

analysis for parallel algorithms in Section 6.2. Then we present a detailed description

of each application and corresponding algorithms in Sections 6.4, 6.5, 6.6 and 6.7. The

methods employed in the empirical evaluation process including performance metrics

and hardware con�gurations are discussed in Section 6.8. Our observations and results

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 89

are presented in Section 6.9. Final remarks, conclusion and possible future works are

discussed in Section 6.10.

6.2 Theoretical analysis of parallel algorithms

Sequential algorithms. The time and space complexity of a sequential algorithm is

typically expressed using the big O notation. The big O notation for a given algorithm

characterizes that algorithm according to its time and space requirements depending on

the size of the input. As an implication it can be used to classify algorithms according

to their growth rate relative to their input size and provides an upper bound on the

computational complexity for an algorithm. For example, consider a naive algorithm

that �nds a given element in a collection of n elements by checking each individual

element in the collection. The time complexity for such an algorithm can be expressed

as O(n) because in the worst case, the algorithm needs to perform a comparison test

on all n elements. In terms of space complexity, we can say that the algorithm requires

constant space, written as O(1). This is because, apart from the space required to store

the input, the space required to evaluate the �nal result does not depend on the size of

the input.

Parallel algorithms. In order to theoretically analyse our parallel solutions, we use

the following terms described in literature such as [50, 52]. Consider a problem with an

input size, n, then

Time complexity t(n) This denotes the running time of the parallel algorithm.

Processor complexity p(n) This is the number of processors used by the parallel

algorithm.

Work complexity w(n) This denotes the aggregate amount of work done by all pro-

cessors involved in a parallel computation. In other words, it is the product

t(n) · p(n).

According to [50], a parallel algorithm is considered to be e�cient if it performs the same

amount of work as the sequential algorithm to within a constant factor. Furthermore, a

parallel algorithm is considered optimal if it is both e�cient and w(n) serializes into a

sequential algorithm with time complexity O(T (n)).

Example 6.1.

Consider a problem X with an input size denoted by n. Assume A is the best available se-

quential algorithm that solves X in O
(
n2
)
time. On the other hand, A′ is a parallel coun-

terpart that solves the same problem in O(n) time using n processors. A′ is considered

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 90

to be optimal because it is both e�cient and work complexity w(n) = O(T (n)) = O
(
n2
)
.

On the other hand, another parallel algorithm that solves X in O(log n) time using n2

processors is not considered to be optimal because of its work complexity of O
(
n2log n

)
.

6.3 Naming convention and notations

We introduce a simple naming convention that will be used to distinguish between the

di�erent implementations of an algorithm. The following symbols will be pre�xed by the

name of a given algorithm.

s This will be used to denote the sequential implementation of an algorithm.

t This will be used to denote the task-parallel implementation of an algorithm.

d This will be used to denote the data-parallel implementation of an algorithm.

This convention will be adopted throughout this chapter for all the algorithms discussed

herein.

6.4 DPS: energy-aware scheduler for precedence-constrained

jobs on parallel machines

The DPS tool is an application that encompasses the sequential implementation of the

dynamic programming scheduler discussed in Chapter 3. In addition it also includes a

task-parallel version for multi-core CPUs and data-parallel version for GPUs which is

also robust enough to scale automatically to bene�t from multiple GPU devices.

The dynamic programming formulation behind DPS can be described as serial monadic.

This means that solving the subproblem at a given level in the algorithm only requires

solution to the subproblem at the immediately preceding level. In this case, in order to

compute schedule for job j, we only have to refer to the solution for job j − 1.

6.4.1 Sequential approach

The pseudo code in Algorithm 2 describes DPS-s, a sequential or single-threaded imple-

mentation of DPS. The formulation is a pseudo-polynomial time algorithm with a time

complexity of O(nm2 · dmax), where n is the number of jobs, m is the number of ma-

chines and dmax is the largest deadline among all job deadlines. In order to optimize

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 91

Algorithm 2 DPS-s: single-threaded version of DPS

1: procedure DPS-s(n,m, CE , CT ,PE ,PT)
{For the �rst job only}

2: j ← 0 . j is set to zero to indicate the �rst job
3: isFeasible← False
4: for i← 0 to m do

5: for t← 0 to dj do . dj is the deadline of job j
6: tidx← t− PT [i, j]
7: if tidx ≥ 0 then
8: S[i, j, t]← PE [i, j]
9: isFeasible← True

10: else

11: S[i, j, t]← 0 . Zero value indicates infeasibility

12: if isFeasible == False then return S . Report infeasibility and terminate

13: for j ← 1 to n do . For the remaining jobs
14: isFeasible← False
15: for i← 0 to m do

16: for t← 0 to dj do
17: minEnergy ←∞
18: for k ← 0 to m do . Check all migration costs
19: tidx← t− PT [i, j]− CT [k, i]
20: if tidx ≥ 0 then
21: tidx← min{tidx, dj−1}
22: if S[k, j − 1, tidx] > 0 then
23: e← PT [i, j] + CE [k, i] + S[k, j − 1, tidx]
24: minEnergy ← min{e,minEnergy}
25: if minEnergy 6=∞ then

26: S[i, j, t]← minEnergy . job j can �nish at t− 1 on machine i
27: isFeasible← True
28: else

29: S[i, j, t]← 0

30: if isFeasible == False then
31: break . Report infeasibility and terminate

return S

the application, we exploit the fact that for each job we only need to store energy values

for the time points t ∈ {0, . . . , dj} on each machine. This greatly reduces the memory

footprint of the application as well as the running time.

The algorithm consists of two parts. The �rst part, described by lines 2 to 11, computes

all possible assignments for the �rst job. This is simply a case of checking for the

completion time of the �rst job on each machine and assigning the processing energy

value for each corresponding machine. The last part of the algorithm, lines 13 to 29,

computes all possible assignments for the remaining jobs. Since the table of possible

assignments for each job is truncated at the deadline of each corresponding job, it is

important to validate the time value used to lookup entries from preceding jobs. This

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 92

is taken care of by limiting the this time value to the deadline of the preceding job, as

shown in line 21.

6.4.2 Task-parallel approach

We present a very simple task-parallel formulation, DPS-t, that exploits the serial monadic

nature of DPS-s in order to further optimize the running time of the application by taking

advantage of multi-core processors. When we examine the structure of the algorithm from

a very broad perspective, one can easily observe that the algorithm can be subdivided

into n levels of computation, where n is the number of jobs. In order to compute energy

entries for the j-th level the algorithm only needs to lookup values from the preceding

level. This implies that computation for each job can be parallelized. When we consider

the pseudo code given in Algorithm 2, there are two possible ways to achieve a task-

parallel formulation.

Algorithm 3 DPS-t: multi-threaded version of DPS

1: procedure DPS-t(n,m, CE , CT ,PE ,PT)
2: p← unique thread ID

{For the �rst job only}
3: j ← 0
4: for i in Mp do . Mp is the number of machines allocated to CPU thread p
5: for t← 0 to dj do
6: tidx← t− PT [i, j]
7: if tidx ≥ 0 then
8: S[i, j, t]← PE [i, j]
9: else

10: S[i, j, t]← 0

11: for j ← 1 to n do . For the remaining jobs
12: for i in Mp do

13: for t← 0 to dj do
14: minEnergy ←∞
15: for k ← 0 to m do

16: tidx← t− PT [i, j]− CT [k, i]
17: if tidx ≥ 0 then
18: tidx← min{tidx, dj−1}
19: if S[k, j − 1, tidx] > 0 then
20: e← PT [i, j] + CE [k, i] + S[k, j − 1, tidx]
21: minEnergy ← min{e,minEnergy}
22: if minEnergy 6=∞ then

23: S[i, j, t]← minEnergy
24: else

25: S[i, j, t]← 0
return S

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 93

The �rst can be achieved by sharing the workload in the loop de�ned on line 15 such

that each CPU core takes care of one machine. This is possible because the computation

for each machine is independent of the others. Therefore, we can exploit this fact and

compute the entries for several machines concurrently for each job. The second possibility

exploits the fact that for each machine, the computation of the energy entry at each point

in time is independent of other time points. Therefore, we can achieve a similar task-

parallel formulation by computing several entries concurrently.

The task-parallel formulation requires only a very slight modi�cation of DPS-s as illus-

trated in Algorithm 3. In fact, we need only modify lines 15 and 4 of DPS-s in order to

come up with a simple task-parallel formulation.

Analysis of DPS-t. Using the methodology described in Section 6.2, let us evaluate

the theoretical performance of DPS-t. Firstly, assuming we use a total of λ processors

or concurrent CPU threads, where λ ≤ m, then t(n, λ) = O
(
nm · dmax · mλ

)
. Next

we consider the work complexity, w(n) = O(nm · dmax) · O
(
m
λ

)
, which evaluates to

O
(
nm2·dmax

λ

)
where p(n, λ) = m

λ . Finally, we can conclude that DPS-t is an optimal

parallel algorithm.

6.4.3 Data-parallel approach

In Section 6.4.2, we mentioned two possible ways of achieving a parallel formulation for

DPS-s, namely, via parallelizing the for loops in lines 15 and 16 of Algorithm 2. DPS-t

achieved this by performing the computation involved in the for loop at line 15 of Algo-

rithm 2 concurrently across several CPU threads. Although the DPS-t algorithm provides

a single layer of parallelism, it is possible to achieve an extra layer of parallelism by par-

allelizing both loops and the GPU device has the capability to meet this requirement.

We present DPS-d, a data-parallel formulation for DPS-s that takes advantage of general

purpose GPU devices.

De�ning the NDRange for DPS-d. An important aspect of any data-parallel imple-

mentation on GPU devices is de�ning the NDRange (see Section 5.4.1.2). Recall that

at the heart of modern general purpose GPUs lies an array of compute units, each of

which can be further decomposed into arrays of processing elements. Each processing

element is capable of executing an instance of a kernel. Our data-parallel formulation

aims to fully utilize this structure in order to enable us simultaneously parallelize the

loops mentioned earlier.

As part of the input parameters, the number of jobs, n, and machines, m, are speci�ed.

The �rst step in the process is to choose an appropriate work-group size, say W . Then

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 94

in order to run the iterations in the �rst for-loop simultaneously we de�ne the size of

our NDRange as W ·m. As a result each machine in the input is mapped directly to a

work-group in our NDRange. Within the work-group, each work-item is then mapped

to a time index.

Figure 6.1: Illustration of how the NDRange is de�ned so that work-groups are
mapped to machines in the input and a work-item maps to a time index.

This mapping is illustrated in Figure 6.1. In this �gure, we assume that there are 8 work-

items per work-group. The �rst work-item is labelled k0 and it starts by computing the

energy entry for time t = 0, which corresponds to its local ID of 0, in the �rst iteration.

Then for subsequent iterations, it progresses by computing the energy entry for everyW -

th time index, in this case {t = 8, 16, . . .}. For work-item with local ID 1, it computes for

t = {1, 9, . . .}. All work-items in the work-group follows this same pattern and continue

as long as their current time index is no more than the deadline of the current job, dj .

Memory management. This problem is very memory intensive in the sense that a

large amount of memory is required to store the table S. Therefore, depending on the size
of the problem instance, we can quickly and easily use up the entire global memory on the

GPU device. However, we can observe that in the structure of the dynamic programming,

the computations for job j only depends on job j − 1, hence, it is not necessary to store

S on the GPU device. Instead we employ a double-bu�ering technique. Assume that we

have two bu�ers, A and B. Say the table for jobs Jj−1 and Jj are stored in bu�er A

and B respectively. Before the computations for job Jj+1 starts, we rotate the bu�ers

so that the results for Jj+1 are written to A while utilizing the values in B. This is a

constant time operation and it is as easy as swapping kernel arguments.

The lookup tables CE , CT , PE and PT are stored in global memory of the GPU device.

In order to better utilize the global memory bandwidth, we make use of vector data type

so that tables CE and CT are merged into a single array and likewise, tables PE and PT .
Figure 6.2 illustrates an example for tables CE and CT . Since it costs a considerable

amount of clock cycles to process memory requests, using vectors helps us reduce the

amount of access by two-fold.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 95

(a) Without vectors (b) With vectors

Figure 6.2: An example showing the advantage of using vector data type. (a) Without
vectors, work-items need 4 memory accesses in order to retrieve values from tables. (b)
Using vectors, two read operations are merged into a single read.

Analysis of DPS-d. Following the data-parallel formulation given above, we achieve an

SIMD kernel with time complexity O
(
dmax
W ·m

)
per work-item, whereW is the size of the

work-group. Depending on the GPU hardware limits, let us assume that the maximum

number of work-groups that can execute concurrently is λ. Then the time complexity

for the GPU kernel is O
(
dmax
W ·m · mλ

)
. Finally, since we execute for each job, we arrive

at a time complexity t(n,W, λ) of O
(
n · dmaxW ·m · mλ

)
. Now consider a GPU device with

su�cient amount of compute units and work-items per work-group. The parallel time

complexity can be expressed as follows.

lim
(W,λ)→(dmax,m)

O

(
n · dmax

W
·m · m

λ

)
= O(nm)

Consequently, if we regard the total number of �processors" used by the GPU device to

be W · λ, then the work complexity evaluates to O
(
nm2dmax

)
. Hence, our data-parallel

algorithm is also an optimal parallel algorithm.

6.5 GapsMis: a tool for sequence alignment with bounded

number of gaps

6.5.1 Introduction

GapsMis is a tool for performing pairwise global and semi-global sequence alignment that

allows for a bounded number of gaps. It is the work of Barton et al.[13] as an extension

of a previously developed algorithm, GapMis, that performs pairwise sequence alignment

with a single gap[3, 29]. In addition to the sequential version of the GapMis algorithm,

the authors also developed parallel versions for CPUs (optimized further with SSE) and

GPUs. However, the GPU version of the algorithm is implemented such that parallelism

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 96

is achieved through a task-parallel approach on the GPU. Results of their implemen-

tations demonstrate that GapMis is faster and more accurate compared to EMBOSS

needle [93], which is a tool that implements the Needleman-Wunsch algorithm [79] for

semi-global alignment.

6.5.2 Problem de�nition

In order to provide a de�nition of the problem, we need to present some de�nitions and

describe some notations. Consider an alphabet Σ, which is a �nite and non-empty set

of elements known as letters. A �nite sequence of letters formed from Σ is known as a

string. A zero-letter or empty string, denoted by ε, is a string that does not contain any

letters. The length of a string x, denoted by |x |, is the length of the sequence associated

with string x. The letter at index i of x is denoted by x [i], for all 1 ≤ i ≤ |x|.

Consider a string y such that y = uxv. In this case, x is referred to as a substring of y.

Furthermore, x is a pre�x of y if u = ε. Similarly, x is the su�x of y if v = ε. We say a

given pair of letters, (a, b), is an aligned pair where (a, b) ∈ Σ ∪ {ε} × Σ ∪ {ε}/{ε, ε}.

Consider a gap sequence or gap, which is a �nite non-empty maximal sequence of aligned

pairs. A gap consists of one or more gap characters, where a gap character is denoted

by *. An aligned pair of letters can be further described as consisting of at most a single

gap character. Hence, (a, b) ∈ Σ ∪ {∗} × Σ ∪ {∗} \ {∗, ∗}.

In the alignment of two strings x and y, the pair of letters (x [i], y [i]) matches if x[i] = y[i].

A substitution is when x [i] substitutes y [i] and x[i] 6= y[i] and x[i], y[i] 6= ∗. The letter

y [i] is said to inserted if it is not present in x, and y [i] is said to deleted if it is present

in y.

The quality of the alignment between two strings, x and y , for a pair of letters, x [i],

y [i], can be measured using a score function, denoted by δ(x[i], y[i]). The score function

de�nes a value that describes the similarity between the pair of letters, and also including

gap character *. Furthermore, the score of the alignment of two strings x and y , denoted

by δ(x, y), is the sum of δ(x[i], y[i]) over all i. Observe that we can simply count the

number of matches between x and y if δ(x[i], y[i]) = 1, for x[i] = y[i], and δ(x[i], y[i]) = 0,

for x[i] 6= y[i].

A gap opening penalty is the score assigned to the insertion of a gap. A gap extension

penalty is the score assigned to the extension of an existing gap. Hence, the penalty for a

gap of length ` > 0 is de�ned as gap opening penalty+ (`− 1)× gap extension penalty.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 97

G C G A T T C A

| | - - - -

G C A T C A

Figure 6.3: Alignment with no gap.

G C G A T T C A

| | | | | - -

G C * A T C A

Figure 6.4: Alignment with 1 gap.

G C G A T T C A

| | | | | | | |

G C * A * T C A

Figure 6.5: Alignment with 2 gaps.

De�nition 6.1. Given a text x of length n, a pattern y of length m ≤ n, an integer `,

such that 0 ≤ ` ≤ k, the problem is to �nd a pre�x of x , x′, such that δ(x′, y) is maximum

and the corresponding alignment z = z0g0z1g1 · · · gβ−1zβ , is such that β ≤ `.

Example 6.2.

Consider the text, GCGATTCA, and pattern, GCATCA. The Figures 6.3, 6.4 and 6.5 show

alignment results with 0, 1 and 2 gaps, respectively.

6.5.3 Sequential GapsMis Algorithm

The pseudocode presented in Algorithm 4 describes the GapMis algorithm, which com-

putes matrices G1 and H1 for the �rst gap, given strings x and y with lengths n and

m respectively. Then the algorithm for GapsMis described in Algorithm 5 is applied to

further compute the remaining gaps as required.

The dynamic programming formulation for GapsMis is non-serial monadic. This implies

that the solution to the current subproblem depends on both a subset of the solution in

the current subproblem, and, the solution to the previously computed subproblem.

6.5.4 Task-parallel approach

In a typical alignment tool, the application is usually able to perform tens of millions of

alignment tasks in a single run. Hence, our application is designed with this in mind. In

this section we describe a task-parallel implementation for GapsMis, which we will label

as GapsMis-t.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 98

Algorithm 4 GapMis: Computes matrices G1 and H1

{Initialize matrices G1 and H1}
1: procedure GapMis(x, n, y,m)
2: for i← 0 to n do
3: G1[i, 0]← i
4: H1[i, 0]← i

5: for j ← 0 to m do

6: G1[0, j]← j
7: H1[0, j]← −j
{Compute matrices G1 and H1}

8: for i← 1 to n do
9: for j ← 1 to m do

10: if i < j then
11: u← G1[i− 1, j − 1] + δE(x[i], y[j])
12: v ← G1[i, i] + (j − i)
13: G[i, j]← min{u, v}
14: if v < u then
15: H1[i, j]← i− j
16: else

17: H1[i, j]← 0

18: if i > j then
19: u← G1[i− 1, j − 1] + δE(x[i], y[j])
20: v ← G1[j, j] + (i− j)
21: G[i, j]← min{u, v}
22: if v < u then
23: H1[i, j]← i− j
24: else

25: H1[i, j]← 0

26: if i = j then
27: G1[i, j]← G1[i− 1, j − 1] + δE(x[i], y[j])
28: H1[i, j]← 0

return G1 and H1

Since the application is built to accomplish multiple sequence alignment tasks, it is

quite intuitive to realize that this quickly becomes an embarrassingly parallel problem.

The reason is that the alignment of each pair of sequences is a completely independent

task on its own. Therefore, we can simply formulate a task-parallel algorithm where an

alignment task is assigned to each available processing core or CPU thread. The only

thing we need to consider is how utilize memory e�ciently, because, given the scale of

performing millions of alignment tasks, space requirement can easily explode if not well

managed. Luckily, the solution is quite trivial.

For instance, consider a case of Q query sequences and T target sequences. Now suppose

that we have to perform a total of P = Q ·T alignment tasks. Let the length of the texts

and patterns be n and m respectively, and the number of gaps to insert is `. Suppose we

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 99

Algorithm 5 GapsMis: Computes matrices G2,··· ,l and H2,··· ,`

{Initialize matrices G2,··· ,` and H2,··· ,`}
1: procedure GapsMis(x, n, y,m)
2: for s← 2 to ` do
3: for i← 0 to n do
4: G1[i, 0]← i
5: H1[i, 0]← i

6: for j ← 0 to m do

7: G1[0, j]← j
8: H1[0, j]← −j
{Compute matrices G2,··· ,` and H2,··· ,`}

9: for s← 2 to ` do
10: minI[0 · · ·m]← 0
11: for i← 1 to n do
12: minJ← 0
13: for j ← 1 to m do

14: newMinI← 0
15: if Gs−1[i, j] < Gs−1[minI[j], j] then
16: minI[j]← i
17: newMinI← 1
18: u← Gs−1[minI[j], j] + i−minI[j]
19: newMinJ← 0
20: if Gs−1[i, j] < Gs−1[i,minJ] then
21: minJ← j
22: newMinJ← 1
23: v ← Gs−1[i,minJ] + j −minJ
24: w ← Gs[i− 1, j − 1] + δE(x[i], j[j])
25: Gs[i, j]← min{u, v, w}
26: if u = min{u, v, w} and newMinI = 1 then
27: Hs[i, j]← i−minI[j]
28: else

29: Hs[i, j]← Hs−1[i, j]

30: if v = min{u, v, w} and newMinJ = 1 then
31: Hs[i, j]← −(j −minJ)
32: else

33: Hs[i, j]← Hs−1[i, j]

34: if w = min{u, v, w} then
35: Hs[i, j]← 0

return G1,··· ,` and H1,··· ,`

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 100

intend to store the entire matrices for each alignment in memory, then we end up with

space complexity O(2Pnm`).

Figure 6.6: Block diagram showing the memory requirement for matrix G for each
processor in GapsMis-t when executing for a 2-gap alignment.

On the other hand, we do not need to store the entire matrix instead, we could re-

use allocated memory blocks. Figure 6.6 illustrates an example for ` = 2. Since each

alignment task requires just O(2nm`) memory in total for matrices G and H, we simply

allocate this amount of memory for each processor. The allocated space is re-used in

each subsequent alignment task and this greatly reduces the memory footprint to 2λnm`,

where λ is the number of processors.

Analysis of GapsMis-t. The approach in terms of task-parallelism in GapsMis-t is quite

di�erent in the sense that, instead of trying to parallelize the actual algorithm, we focus

on the running time of the application as a whole. When we have multiple alignment

tasks to perform, the tasks are distributed across the available processors. Hence each

processor still has a running time t(n, λ) = O(nm`).

6.5.5 Data-parallel approach

Data dependencies. In order to formulate a data-parallel algorithm for GapsMis it is

imperative to understand the structure of the data dependency and how much commu-

nication is required between processing nodes. When we consider the general structure

of GapsMis, the data dependency between cells of matrix G can be grouped into three

di�erent cases, (a), (b) and (c), for illustration purposes as shown in Figure 6.7. This

grouping is directly related to the three cases found within the algorithm for determining

value of G[i, j].

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 101

(a) Case i > j (b) Case i < j (c) Case i = j

Figure 6.7: Illustration of the data dependencies among cells in the three cases within
the GapsMis algorithm.

The algorithm progresses in a row-major order, however, the values in the �rst row and

�rst column do not need to be computed but rather pre-initialized. In all three cases

computation for a cell depends on data from the row that directly precedes the row in

which the cell resides. In addition, the cases illustrated in Figures 6.7(a) and 6.7(b) each

depends on an already computed cell on the diagonal. This extra data dependency in

the �rst two cases means that we have a non-serial monadic DP formulation. In order

to achieve maximum parallelism for each row, we must somehow overcome this data

dependency.

In our implementation the solution is quite simple. For case (a), on each row, all work-

items compute the value for the cell on the diagonal and this eliminates the need to

rely on the work-item located on the diagonal. In addition to eliminating the data-

dependency, it also eliminates writing code that will cause thread divergence which is

advantageous with regards to performance of the kernel. Before progressing to the next

row, the cell value on the diagonal is cached so that it can be re-used for case (b).

The �nal data dependency to consider is between the ` matrices in an `-gap alignment

where ` > 1. For example, the current matrix being computed, Gi for i ≤ `, only depends
on the matrix that directly precedes it, i.e, Gi−1.

De�ning the NDRange for GapsMis-d and memory management. Considering

the scale of alignment tasks that GapsMis-d can perform it is not possible to store all the

matrices in the GPU memory. Therefore, GapsMis-d is designed to be robust enough to

handle this situation by executing the alignment tasks in batches. The size of a batch is

simply the number of pairs of sequences the GPU device should process. The batching

process is handled intelligently. The GPU device is �rst queried for the size of its global

memory. Then using this information GapsMis-d computes the largest possible batch

size such that all data required to execute a batch can �t into the GPU's global memory.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 102

Once we have computed a batch size we can then determine the total number of work-

items in our NDRange asW ·P , whereW is the size of the work-group and P is the batch

size. Within each work-group, all work-items are working on the same row of the matrix.

However, the columns are distributed among the work-items. Figure 6.8 illustrates how

alignment tasks are mapped onto the GPU device.

Figure 6.8: Illustration of how GapsMis-d maps alignment tasks to the GPU device
across work-groups.

In addition we can further reduce the memory footprint by storing only the necessary

data. Recall that the computation of a matrix depends on the matrix that directly

precedes it for each gap. Hence, we do not need to store all the matrices on the GPU

device. For this purpose, we make use of the double-bu�ering technique described earlier

in Section 6.4.3.

Analysis of GapsMis-d. The GPU device not only enables us to achieve parallelism

across the multiple alignment tasks, it also allows use to achieve a layer of parallelism

within the algorithm. Since the algorithm cannot be parallelized row-wise, we have

shown that is possible to achieve parallelism column-wise. Let us consider a single work-

group with a total of W work-items. Each work-item will process m
W columns, hence,

the running time of our GapsMis-d kernel is O
(
n · mW · `

)
. With processor complexity

p(n) = O(W) this implies that the work complexity w(n,W) = O(nm`), therefore,

GapsMis-d is an optimal parallel algorithm.

6.6 Velvet: Velocity-Verlet integrator

We present an application which we would like to refer to as Velvet, an implementation of

the Velocity-Verlet algorithm [104] that is used for the numerical integration of Newton's

equations of motion. It is commonly used in molecular dynamics to simulate motions

and for calculating trajectories of interacting particles. This algorithm falls under the

category of n-body method according to Berkeley's 13 dwarfs.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 103

The Velocity-Verlet method of integration consists of three distinct computation phases

- computation of forces, positions update and velocities update. The most compute-

intensive of these three phases is the phase that computes the forces. In this phase, we

must evaluate the pair-wise interactions between all particles in order to determine the

forces related to that particle. This phase needs to be repeated twice in each iteration,

hence, we can identify this phase as a hot spot in our application such that speeding up

this phase directly improves the performance of the application as a whole.

6.6.1 Sequential approach

The initial step of the Velvet integrator considers the random placement of particles in

3-dimensional space. However, in order to reduce numerical inaccuracies, it is important

that particles are not placed too close to each other or superimposed. For this purpose

we project the initial, random positions of each particle inside 3-ball. The screenshot

shown in Figure 6.9 captures the placement of particles in a 3-ball. The other part of

the initialization step is to randomly assign initial velocities to each particle.

Figure 6.9: A screenshot of Velvet capturing the starting positions of 32,768 particles
projected inside a 3-ball. This sample is running on an NVIDIA GTX 680 GPU.

Once we have �nished with the initialization phase the �rst step in the integration loop

is to compute the forces interacting with each particle. These forces are used to update

the positions of the particles. Computation of forces requires pair-wise interaction for all

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 104

particles, however, this process can be optimized by taking advantage of Newton's third

law of motion. According to the third law, the force exerted by a body on a second body

is equal in magnitude and opposite in direction to the force exerted by the second body

on the �rst body. The implication of this is that we can reduce the number of pair-wise

interactions from O
(
n2
)
to O

(
n(n−1)

2

)
.

Algorithm 6 Velvet-s

1: procedure Compute-Forces(n, pos, newForces, masses)
2: for p← 1 to n− 1 do
3: for q ← p+ 1 to n do
4: sqrDist← ‖ ~pos[q]− ~pos[p]‖

5: gravity ← (masses[p] · masses[q])

(
√
sqrDist · sqrDist)

6:
~newForces[p]← ~newForces[p] + gravity · (~pos[q]− ~pos[p])

7:
~newForces[q]← ~newForces[q]− gravity · (~pos[q]− ~pos[p])

8: procedure Compute-Positions(n, δ, pos, newForces, oldForces, vel, masses)
9: for p← 1 to n do

10: acc← δ ∗ 0.5/masses[p] . δ is the integration time step

11:
~pos[p]← ~pos[p] + δ ∗ (~vel[p] + acc ∗ ~newForces[p])

12:
~oldForces[p]← ~newForces[p]

13: procedure Compute-Velocities(n, δ, newForces, oldForces, vel, masses)
14: for p← 1 to n do
15: acc← δ ∗ 0.5/masses[p]

16:
~vel[p]← ~vel[p] + (~newForces[p] + ~oldForces[p])

17: procedure Run-Integrator(n, δ, pos, newForces, oldForces, vel, masses)
18: Compute-Forces(n, pos, newForces, masses)
19: Compute-Positions(n, δ, pos, newForces, oldForces, vel, masses)
20: Compute-Forces(n, pos, newForces, masses)
21: Compute-Velocities(n, δ, newForces, oldForces, vel, masses)

Algorithm 6 is the pseudo code for Velvet-s showing all three procedures for calculating

force, positions and velocities. Line 17 shows the order in which the di�erent procedures

are called during the integration process. The total running time for computing the

velocities and positions is O(2n), which brings the total running time for Velvet-s to

O(2(n(n− 1)) + 2n) = O
(
2n2
)
.

6.6.2 Task-parallel approach

When we consider each of the three procedures involved in the integration process, we

can easily observe that the Velocity-Verlet algorithm is embarrassingly parallel in nature.

However, this is without taking advantage of Newton's third law of motion as doing this

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 105

will introduce data dependencies. In that case we simply parallelize the computation of

all pair-wise interactions. With this in mind, achieving a task-parallel implementation is

relatively straight-forward. The particles are distributed across the available processors

during the execution of each procedure. So given, say λ processors, the parallel running

t(n) for the Compute-Forces procedure will be O

(
n2

λ

)
. Together with the running

time for Compute-Positions and Compute-Velocities procedures, the total parallel

running time for an iteration of the Run-Integrator procedure is O

(
2n2

λ
+

2n

λ

)
.

Analysis of Velvet-t. The analysis of Velvet-s and Velvet-t is interesting because

Velvet-s takes advantage of an optimization that we cannot apply in the implementation

of Velvet-t. This optimization does not only reduce the running time but it also reduces

the amount of work completed by Velvet-s. Recall that T (n) = O
(
2n2
)
. For Velvet-t,

p(n) = O(λ) if λ processors are used, therefore, work complexity for Velvet-t is given by

w(n, λ) = O
(
2n2 + 2n

)
> O(T (n)). So, although we have an e�cient parallel algorithm

in Velvet-t, it is not optimal because w(n, λ) > O(T (n)).

6.6.3 Data-parallel approach

De�ning the NDRange for Velvet-d. The data-parallel algorithm is similar to the

task-parallel algorithm with respect to the layers of parallelism a�orded to us by the

algorithm. The data-parallel version does not also include the optimization applied in

Velvet-s for the Compute-Forces procedure. However, the GPU device does o�er

more processors which could in turn increase the amount of speed-up achievable.

In de�ning the NDRange, we initialize a total of n work-items such that each individ-

ual work-item is mapped to an individual particle. In terms of achieving parallelism

alone with the NDRange, the size of work-group is irrelevant in this case. The whole

computation is split among three kernels, one for each procedure.

Memory management. In application such as this, the simulation process typically

involves running the integrator procedure continuously in a loop until either a set number

of iterations is reached or the simulator is terminated. The pleasing feature of this

algorithm is that, depending on the number of particles being simulated, the memory

requirement is relatively small. For Velvet-d running on a GPU device, this is good

because we need to copy data back from the GPU device memory at the end of each

iteration in order to update the simulation on screen with the latest positions. For this

reason, we take advantage of the bene�ts of having pinned memory in order to fully utilize

DMA capabilities of GPU-host communications. We only need to pin the memory block

for storing positions data in the host since this is the only data required to update the

simulation screen.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 106

Analysis of Velvet-d. Since each work-item is responsible for computing the forces

interacting with a single particle, the time complexity for each work-item is given by

t(n, λ) = 2n · nλ , where λ ≤ n is the total number of work-items, computing the forces.

Computing the positions and velocities are done in O(1) by each work-item. Using λ

work-items, then w(n, λ) = O
(
2n2+2n

λ

)
. Hence, w(n, λ) > O(T (n)), which means that

Velvet-d is also not an optimal parallel algorithm.

6.7 FDGV: Force-directed graph visualizer

Our fourth and �nal application, FDGV, is a tool that enables the visualization of graphs.

It is based on the force-directed algorithm designed by Fruchterman and Reingold [32].

The idea takes inspiration from a physical system where each vertex is considered as

a ring and edges are considered as springs. The rings are made to repel each other,

however, a spring connecting a pair of rings will pull both rings together. It is a simple

concept yet it is capable of producing decent visualizations of various types of graphs.

Figure 6.10 shows a series of screenshots capturing various phases of the visualization

process.

6.7.1 Sequential approach

The algorithm consists of three phases - computation of vertex displacements (repulsion),

computation of edge displacements (attraction) and computation of vertex positions.

Algorithm 7 lists the pseudo code for all phases in FDGV-s.

The Repulsion procedure is very similar to the Compute-Forces procedure discussed

in Section 6.6, in terms of running time and computation pattern. Due to the sequential

mode of calculation we are once again able to apply the Newton's third law of motion

in the Repulsion procedure. This allows the sequential algorithm to compute the

displacement on a pair of vertices in each iteration and without the need to iterate

through all possible pairs. This means that the sequential algorithm can save some time

during the repulsion phase.

Given a graph containing V vertices and E edges, the running time of the Repulsion

procedure is O

(
V (V − 1)

2

)
, and forAttraction and Compute-Positions, it is O(E)

and O(V) respectively. Therefore, the time complexity of the sequential algorithm is

given by T (n) = O

(
V (V − 1)

2
+ E + V

)
.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 107

Figure 6.10: FDGV running a visualization of a graph with a grid-like structure con-
sisting of 6,400 vertices and 12,640 edges.

6.7.2 Task-parallel approach

This algorithm is also embarrassingly parallel so to achieve parallelism in the computa-

tion phases one only need to distribute tasks across available processors. However, the

optimization used in the Repulsion procedure of FDGV-s cannot be applied to its ver-

sion in FDGV-t, hence, all possible pairs must be considered. However, when we consider

the Repulsion procedure, we will notice that the positions of the vertices that consti-

tute an edge has to be updated in order to re�ect the displacement cause by attraction.

The issue is that individual processors can each compute partial displacement values for

a single vertex. In the end they will need to update the displacement value for that

particular vertex. If all processors attempt to write their values concurrently, then we

will end up with inaccurate values. To prevent this issue, known as data-race, we must

guard the writes to memory such that access is allowed to only one processor at any

given time. This can be accomplished via various means and constructs depending on

the programming language and threading implementation being used.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 108

Algorithm 7 FDGV-s

1: procedure Repulsion(V , pos, disp, k) . k is spring constant
2: for p← 1 to V − 1 do
3: for q ← p+ 1 to V do

4: α← ~pos[p]− ~pos[q]

5:
~disp[p]← ~disp[p] +

~α

‖~α‖
· k

2

‖~α‖
. displacement for vertex p

6: β ← ~pos[q]− ~pos[p]

7:
~disp[q]← ~disp[q] +

~β

‖~β‖
· k

2

‖~β‖
. displacement for vertex q

8: procedure Attraction(E, edges, pos, disp, k)
9: for e← 1 to E do

10: ~∆← ~edges[e].from− ~edges[e].to . Distance between vertices linked by e

11: ~d←
~∆

‖~∆‖
· ‖
~∆‖2

k

12: disp[from]← disp[from]− ~d . from refers to index of source vertex
13: disp[to]← disp[to] + ~d . to refers to index of destination vertex

14: procedure Compute-Positions(V , pos, disp, s) . s is dampening factor
15: for v ← 1 to V do

16:
~pos[v]← ~pos[v] + ~disp[v] · s

‖ ~disp[v]‖

Analysis of FDGV-t. For a graph containing V vertices and E edges, the parallel time

complexity of FDGV-t is given by t(n, λ) = O

(
V 2 + E + V

λ

)
, where p(n) = O(λ). The

work complexity w(n, λ) = O
(
V 2 + E + V

)
implies that FDGV-t is not an optimal parallel

algorithm.

6.7.3 Data-parallel approach

In order to formulate a data-parallel algorithm, there are two main issues to consider. The

�rst issue involves choosing a data structure to represent a graph in order to maximize

performance of our GPU kernels. The second issue is about achieving a true data-parallel

formulation for the Attraction procedure.

Choosing a suitable data structure is important because the memory access patterns of

the work-items is very crucial to achieving high performance on the GPU device as we

discussed in Chapter 5, Section 5.2.3. For this purpose, a graph is stored as two simple

arrays in memory, one to represent the vertices and the other for storing information

about the edges. The edges are laid linearly in memory such that pairs of vertices that

make up the edge appear contiguous. This is to enable us use vector data types in

our kernels to access edge information for each work-item thereby making better use

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 109

of available memory bandwidth. This is similar to the technique used in Section 6.4.3.

Once we have achieved this memory structure we can then be able to tackle the problem

of synchronization in our kernel implementation of the Attraction procedure.

In the FDGV-t we were able to serialize write accesses for the processors. However, we

cannot a�ord to this in the GPU device given the way the architecture of the hardware

because we will incur greater performance degradation. As a result, instead of updat-

ing the displacement for each node during the attraction phase, each work-item only

computes a partial displacement and stores it in memory. Then during the phase for

updating the positions, each work-item will accumulate the partial displacements for the

vertex it is assigned to. Consequently, we eliminate the need for communication and

synchronization at the expense of extra computation step because each work-item will

need to iterate through the list of edges.

De�ning the NDRange for FDGV-d. The total number of work-items required for

computation in each phase of the algorithm varies. The kernels for Repulsion and

Compute-Positions procedures require that a work-item is assigned to each vertex

while for Attraction procedure, a work-item is assigned to each edge of the graph.

In terms of computational requirements the size of the work-group chosen is irrelevant

in this case. Therefore, for a graph consisting of V vertices and E edges, V work-items

are used for Repulsion and Compute-Positions while E work-items are used for

Attraction.

Memory management. The application can be executed with or without visualization

and their is a slight di�erence between these options. Running the application without

visualization makes it unnecessary to copy the positions of the vertices from the GPU

memory to host memory after each iteration. However, if visualization is enabled we need

to optimize the data transfer process between GPU device and host by using pre-pinned

memory, similar to our discussion in Section 6.6.3. All other data will remain on the

GPU device.

Analysis of FDGV-d. When we consider the kernel for Compute-Positions proce-

dure, each work-item needs to iterate through all edges in order to accumulate the

displacements due to edge connections for the vertex it is assigned. Using v ≤ V

work-items, the parallel time complexity for this kernel is O
(
V
v

)
. The parallel time

complexity for the Repulsion (using v work-items) and Attraction procedures (us-

ing e ≤ E work-items) is O
(
V · Vv

)
and O

(
E
e

)
, respectively. Hence, work complexity

w(n, v, e) = O
(
V 2

v + E
e + V E

v

)
. This means that the FDGV-d is doing more work com-

pared to the other two versions and therefore not optimal. In Section 6.9 we shall

investigate how the performance of all three implementations compare to each other

given the varying amount of work being performed by each version.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 110

6.8 Preliminary discussion

6.8.1 Evaluation model and performance metrics

In this section we describe the model that governs our empirical investigations. Develop-

ing a standard model will enable us make the evaluation process consistent and seamless

across the di�erent systems we employ in our experiments.

Our model consists of a host system or just host. A host refers to a standalone, het-

erogeneous computer system or machine. The main components of the host include a

central processing unit (CPU), one or more compute devices (e.g GPU), primary storage

(random-access memory or RAM) and secondary storage (hard disk). A host program

executing on the host is controlled by the CPU and it refers to the implementation of

a particular algorithm or application being considered. It also comprises of one or more

kernels. There are two types of kernels, namely, host kernel and compute kernel. A

host kernel is an implementation of the algorithm in question that executes on the CPU,

whereas, a compute kernel executes on a compute device. In addition, the host program

is also responsible for coordinating execution of compute kernels on the compute devices.

The primary storage of the host is used as a staging area where input data to the host

program resides, as well as the �nal output data. Based on this model we de�ne the

following performance metrics, which are inspired by similar metrics from the HPEC

Challenge [59].

i Latency. This performance metric measures the amount of time that elapses between

the start of a kernel execution and completion and is measured in seconds. It does not

take into account time required to perform additional tasks such as transferring data

from/to primary storage. In the case were there are multiple kernel invocations, the

latency is simply the time taken to complete each execution on the compute device.

ii E�ective latency. This measures the sum of latency incurred executing a kernel and

time required for the �nal output data to become available in the primary storage.

In most cases, there is no di�erence between the latency and e�ective latency for the

host kernel since the CPU reads and writes to primary storage during execution.

iii Communication latency. The communication latency is associated with a compute

device and it measures the total amount of time required to transfer data from/to

primary storage.

iv Throughput. This performance metric measures the rate at which work is done

during the execution of a kernel. The unit of measurement depends on the type of

application. For instance, the throughput for the dynamic programming applications

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 111

measures the amount of cell updates per second (CUPS), and for the n-body methods,

it measures the amount of �oating-point operations per second (FLOPS). It is derived

using the latency metric.

v E�ective throughput. This can be considered as the rate at which work is done

by the whole application and it is derived using the e�ective latency performance

metric.

vi Power. The power metric measures the amount of electrical power, in Watts, re-

quired by a compute device or CPU to execute a kernel. It represents an isolated

reading and does not take into account the total power consumption of the host.

vii Energy. Expressed in Watt-second, this performance metric measures the amount

of power consumed during the execution of a kernel. Since it is isolated to within a

CPU or compute device, it is derived using latency metric.

viii E�ciency. This performance metric measures the e�ciency of a CPU or compute

device with respect to the ratio of its throughput to power consumption.

6.8.2 Hardware and software speci�cations

The hardware setup for our experiments consists of a total of four host systems. The

hardware speci�cation for each host is listed in Table 6.1.

CPU GPU 1 GPU 2 RAM (GB) HDD (TB)

AMDAHL

AMD FX-8350

8 cores

@ 4.0 GHz

AMD HD 7970

32 CUs (2,048 PEs)

@ 925 MHz

AMD HD 7970

32 CUs (2,048 PEs)

@ 925 MHz

16 7

KEPLER

Intel i7-3930K

6 cores (12 w/ HT)

@ 3.2 GHz

NVIDIA GTX 680

8 CUs (1,536 PEs)

@ 1,006 MHz

NVIDIA GTX 680

8 CUs (1,536 PEs)

@ 1,006 MHz

32 7

TESLA

AMD A10 5800K APU

4 cores

@ 3.8 Ghz

NVIDIA GTX 650

2 CUs (384 PEs)

@ 1,058 MHZ

NVIDIA GTX 650

2 CUs (384 PEs)

@ 1,058 MHZ

16 6

VOLTA

AMD A10 5800K APU

4 cores

@ 3.8 Ghz

AMD HD 7750

8 CUs (512 PEs)

@ 820 MHz

AMD HD 7750

8 CUs (512 PEs)

@ 800 MHz

16 6

Table 6.1: Table listing hardware speci�cations of all host systems used in the exper-
iments.

The hosts can be classi�ed as high end (AMDAHL and KEPLER) or mid range (TESLA and

VOLTA). Although there are four CPUs available, we will only be making use of Intel

i7-3930K CPU as a point of reference for our CPU implementations. This CPU consists

of 6 physical cores and 12 logical cores with Intel's Hyper-Threading Technology [46]

enabled. Also, some experiments might require the measurement of a metric that is only

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 112

system dependent, that is, metric depends on some capability of the host rather than the

attached compute device. In this case, we will designate KEPLER as our reference machine

for conducting such experiments. Notice the slight di�erence in the base frequencies of

the GPUs in VOLTA. The reason is that the GPUs come from di�erent vendors, in this case

GPU 1 is from ASUS and GPU 2 is from MSI. All host systems are running Microsoft

Windows 7 Enterprise 64-bit operating system with service pack 1.

The algorithms in our applications are implemented using the C++ programming lan-

guage. Our task-parallel implementations are realized using the OpenMP API for par-

allel programming [84], which consists of several compiler directives that can be enabled

certain programming languages including C++. The OpenCL API is used for all data-

parallel implementations on the GPUs. OpenCL is selected because of its cross-platform

support regardless of the hardware vendor. It is written in C, however, we use the C++

wrapper[105] provided by the Khronos Group.

In order to obtain pro�ling information related to power consumption for our CPU and

GPU devices, we use AIDA64 Extreme software, version 4.60.3100, from FinalWire [28].

Note that in our experiments, we will not include power and energy pro�les for the NVIDIA

GTX 650 and AMD HD 7750 GPUs. The reason is because these GPUs do not come

equipped with hardware sensors that provide such information to a software program.

6.8.3 Input data for experiments

In this section, we outline the process of acquiring the input data used for each applica-

tion. Our input data consists of both synthetic and real data or a combination of both.

In some applications the size of the input data is limited by the capabilities of our hosts.

Note that all input data to all the applications are stored in �les in secondary storage

and re-used on each of the host systems.

DPS. The input data for our DPS application is wholly synthetic. The number of ma-

chines is de�ned as an integer value from the setM = {16, 32, 64, 128, 256}. The number
of jobs is also an integer value de�ned in the set J = {100, 200, 400, 800, 1600, 3200}.

The input data for the lookup tables CE , CT , PE and PT consist of integers generated

uniformly at random based on the intervals shown in Table 6.2.

The CE and CT lookup tables are generated once for each i ∈ M. This means that we

have a total of 10 data instances, 5 each for CE and CT . For example, instance CE16
consists of a lookup table with 16 rows and 16 columns corresponding to communication

energy costs among 16 machines, in both directions.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 113

Minimum Value Maximum Value

Communication time, CT 1 2

Communication energy, CE 2 10

Processing time, PT 1 4

Processing energy, PE 4 30

Table 6.2: Intervals used in data generation for DPS. These intervals are inclusive in
the resulting data.

A similar approach is used for PE and PT . Again, the lookup tables are generated once

for each possible combination of (i ∈ M, j ∈ J). Therefore, for instance, PE16,100 is

a 16x100 lookup table showing the processing energy costs of 100 jobs on 16 machines.

Therefore, we have a total of 60 instances, 30 each for PE and PT .

The job data instances is simply a list of integers representing the job deadlines. Each

deadline is generated such that there is some reasonable gap between consecutive dead-

lines. To achieve this reasonable gap between deadlines, de�ne three constants - com-

munication frame (Fc), processing frame (Fp) and window. Communication frame is

derived from the maximum possible communication time, in this case, it has a value of

2 (Table 6.2). Similarly, processing frame is derived from the maximum processing time

plus 1, hence, it has a value of 5. The window is the summation of Fc and Fp. With

these parameters, the deadline for a given job, Jj for j > 0, is generated uniformly at

random in {Imin, Imin + window}, where Imin = deadlinej−1 + Fc. For the �rst job,

J0, this interval is de�ned as {Fc + 2, window + 2}. Finally the deadline of the last job,

Jn, is always de�ned as deadlinen−1 rounded up to the nearest integer divisible by 256.

This is so that we can always have a value divisible by the number of work-items when

computing a solution on the GPU since, for NVIDIA GPUs with OpenCL 1.0, the total

number of work-items must be divisible by the work-group size.

GapsMis. The input data consists of a combination of synthetic (derived from processing

real data) and real data obtained from GenBank FTP [78], which contains sequence

databases in ASN.1 format. The length of the target sequences are �xed at 250 while

the length of the query sequences can be selected from four con�gurations - 75, 100,

150 and 200. In order to get the desired length for our input sequences, real sequences

sequences are sampled and processed. For instance, in order to get an input sequence

of 75 characters, a real sequence containing more than 75 characters is chosen uniformly

at random from the database and characters are deleted from random positions until we

are left with a sequence with 75 characters. Some real input data contain thousands of

characters so it is possible to re-use the same sequence to generate multiple synthetic

input sequences. The information listed in Table 6.3 shows the details of the exact

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 114

databases used. The databases selected, when combined, provides us with enough data

to generate our input data.

Name of database

file

Number of

sequences

Length of

longest

sequence

Length of

shortest

sequence

gbbct10.fsa_aa 151,777 16,990 100

gbbct11.fsa_aa 172,113 14,474 100

gbbct24.fsa_aa 164,027 13,362 100

Table 6.3: Information for GenBank databases used to generate input sequences for
GapsMis.

The substitution matrix used is the BLOSUM62 matrix [77] for aligning protein se-

quences. A gap open penalty and gap extension penalty of 10.0 and 0.5, respectively,

were used for all executions of the experiments. Finally, the experiments were conducted

for an alignment that allowed for 2 gaps and then repeated for 3 gaps.

Velvet. The input data is a collection of particles. Each particle is characterized by a

mass, position and velocity. The position and velocity properties are 3-dimensional vector

quantities while the mass is a scalar quantity. The values that make up the velocity vector

are generated using a uniform distribution based on minimum and maximum values. For

the experiments, we use a minimum value of −10.00 and maximum of 10.00 for the

uniform distribution. All values are real numbers.

The starting positions of the particles are obtained using a method for generating uni-

formly distributed random points within an n-ball [70]. To achieve this, for each particle,

we generate a 3-dimensional vector consisting of real numbers in (0, 1). Next we calcu-

late the radius for the position vector. Suppose the position is given by the vector

~p = (x, y, z), the radius, r, is computed as r =
√
x2 + y2 + z2. The position on the

surface of the n-ball is given by 1
r · ~p. The �nal position of a particle within the n-ball is

given by u
1
n · ~p. In our simulations n = 3 which gives an ordinary ball.

The problem sizes include ensembles of 2048, 4096, 8192, 16384, 32768 and 65536 parti-

cles and the simulation is repeated for each size. For all devices, the integrator is set to

run for 10 iterations in total.

FDGV. The input data for the graphs consists of a combination of synthetic and real data.

The real data graphs are available from Stanford Network Analysis Platform (SNAP) [63].

The details of the exact datasets used are listed in Table 6.4

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 115

Name of dataset file ID Vertices Edges

p2p-Gnutella08 GNUT 1 6,301 20,777

p2p-Gnutella24 GNUT 2 26,518 65,369

Table 6.4: Details of the real graph data obtained from SNAP.

Our synthetic graph data consists of three types of graphs which are complete graphs, grid

graphs and trees. The complete graphs and grid graphs were generated by the application

while the igraph[44] tool was used to generate the tree graphs. The properties of the

graphs used as inputs are listed in Table 6.5.

Type of graph ID Vertices Edges

Complete COMP 1 100 4,950

COMP 2 200 19,900

COMP 3 400 79,800

Grid GRID 1 10,000 19,800

GRID 2 20,000 39,700

GRID 3 40,000 79,500

Tree TREE 1 10,000 9,999

TREE 2 20,000 19,999

TREE 3 40,000 39,999

Table 6.5: Details of the synthetic graph data generated for FDGV application.

The three graph types are chosen to represent three distinct cases with respect to the

number of vertices and edges that make up each graph type. The complete graph is

characterized as having an edge count that outnumbers the number of vertices in the

graph. The number of vertices and edges in a tree graph is almost equal. And for the

grid graph, the number of edges is almost twice as much as the number of vertices. The

combination of the real and synthetic graph data provides us with a considerable amount

of data variety for testing out our FDGV application. For our runs the application is set

to complete 10 iterations of the graph layout process.

6.8.4 Aims of experiments conducted

Device-Host communication overheads. In designing a data-parallel algorithm

that makes use of a GPU device it is quite possible to under-estimate the impact of

communication overhead between the host and GPU device. This is particularly impor-

tant when working with discrete GPUs, that is, a GPU that exists as a peripheral device

within the host. All the GPUs used in our experiments are discrete GPUs. A limiting

factor with discrete GPUs is the need for explicit memory allocation and transfer be-

tween host and device and this is due to the fact that they do not have access to the host

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 116

system's virtual memory. Apart from concerns with memory transactions, another factor

to consider is the overhead associated with making API calls, for instance, launching a

kernel or initiating a copy operation. Sometimes the time taken to make these API calls

might dominate the overall running time of the application. These are the kind of issues

we need to take into account when designing a heterogeneous application. However, there

are cases where the nature of an algorithm makes it di�cult to avoid these drawbacks.

For instance, a dynamic programming algorithm is usually associated with high memory

requirement in order to compute one or more tables. Since GPUs usually have limited

memory capacities, computation is usually divided into portions and data is batched in

order to �t into the GPU device. Another example is an algorithm that requires global

synchronization points during computation in order to synchronize data across all work-

items involved. In these two cases we cannot avoid interacting with the host during

computation.

In our experiments, we investigate the e�ect how these kinds of overhead can really

impact on the overall performance of an application. Such impact varies greatly between

applications depending on the structure of the underlying algorithm. We expect to

demonstrate the impact of device-host communication overhead, most especially, in our

GapsMis.

Importance of work-group size. The size of a work-group in a data-parallel appli-

cation plays an important role in the performance of the application on the target GPU

hardware. Depending on the architecture, a certain work-group size is often generally

recommended. However, the performance of an algorithm could vary greatly depending

on the size of the work-group chosen. To maximize performance of the GPU device, it

must be a multiple of the number of threads the hardware scheduler can manage con-

currently (see Section 5.2.3). If a work-group is too small, there might not be enough

work-items to schedule in order to hide latency. On the other hand, it is too large,

kernel occupancy will degrade as a result of the GPU hardware not being able to reach

maximum number of work-items that can execute concurrently.

In our experiments, we investigate how various work-group sizes can a�ect the perfor-

mance of our applications. We hope to demonstrate this using our DPS and Velvet

applications.

E�ects of using local memory. Depending on the GPU hardware, knowing when

to use and when to use local memory can be a challenge because it is di�cult to predict

exactly how a particular algorithm will perform on a particular GPU. It is often bene�cial

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 117

to use local memory in cases where there is a high degree of data re-use. Since it

is quicker for work-items to access data stored in local memory than global memory, it

helps to save some valuable time by avoiding repeated access to global memory. However,

a kernel that requires a considerable amount of local memory storage often leads to

degraded application performance. This is because the number of work-groups that can

be scheduled concurrently depends on the amount of available local memory, and then

the amount speci�ed by the hardware limit.

We shall investigate how local memory can a�ect application performance on a GPU

through our DPS, Velvet and FDGV applications. In these applications, it is possible to

implement decide whether or not to use local memory so we implement a kernel for each

version.

Bene�ts of pre-pinned memory and DMA. This is particularly related to ap-

plications with a reasonably low amount of memory footprint, like Velvet and FDGV.

These are applications are characterized by the frequent need to update some data in

host memory in order to accomplish a purpose. In the case of Velvet and FDGV, the

display needs to be refreshed with the latest positions during the simulations. However,

in order to maximize the bene�ts of pre-pinned memory, the host must support DMA so

that the CPU is allowed to do other valuable work while data transfers are carried out

in the background. We hope to investigate if we can improve the performance of such

applications and if so by how much.

Application scaling using multiple GPUs. An application that can scale with the

addition of more GPU devices usually stands a good chance to bene�t from the potential

performance boost. Depending on the structure of underlying algorithm, introducing

more GPU devices may introduce additional complexity into the application and this

could lead to a counter-productive scenario. For example, the nature of the Velvet

application will require constant communication between the GPU devices involved and

the allocation of additional memory for synchronizing data. These reasons coupled with

the complexity introduced into the code means that the Velvet will not scale e�ciently

across multiple GPU devices.

However, we can evaluate the performance of other applications to determine how well

they scale by comparing their performance on a single GPU with their performance on

dual GPU devices.

Comparison of CPU vs. GPU performance. The aim of this experiment is to

evaluate the amount of gain in performance that is achievable when GPUs are used to

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 118

accelerate an application. We compare the amount of speed-up, in terms of time, that a

GPU can o�er for each application as well as the throughput too. In addition, we would

also evaluate the energy e�ciency of these devices by pro�ling the power consumption

for each device during execution. This is to enable us investigate how e�cient a device

is and not just focusing on the power consumption �gures because a device with a low

power rating might not necessarily be e�cient in performing a particular task.

6.9 Discussion of experiment results

We would like to state that the results presented in this section do not necessarily depict

the overall performance of the GPU devices. This is particularly true for the NVIDIA

GPUs which we believe could perform better if NVIDIA's parallel computing platform,

known as CUDA (Compute Uni�ed Device Architecture), was used since NVIDIA stopped

OpenCL support as early as OpenCL version 1.0.

6.9.1 Results on device-host communication overheads

Among the performance metrics discussed earlier in Section 6.8.1, the one that we need

to focus on that captures the device-host communication overhead is the e�ective latency.

All our applications are evaluated for this purpose.

DPS-d. Since all the data required to compute the dynamic programming table for each

can conveniently �t into the GPU memory, we expect that the di�erence between the

latency and e�ective latency will not be too large. This is primarily due to the relatively

small amount of data that is transferred from the GPU device to the host in each itera-

tion. This is, in fact, the case for all our host systems and GPU devices. Figure 6.11(a)

and Figure 6.11(b) show the results comparing latency and e�ective latency for sim-

ulation with 1,600 jobs and 3,200 jobs, respectively. As expected, we observe that the

e�ective latency across all GPU devices is up to 18% more than the recorded latency. For

instance, for the problem with 256 machines, this translates to roughly 1 second extra

for 1,600 jobs and 3 seconds extra for 3,200 jobs. Since we are able to store the entire

table for our problem instances in primary storage, we can exclude the time required

for back-tracing from the e�ective latency. In addition, DPS-s will need to perform the

back-tracing step separately after the whole computation step is complete, hence, the

time required for back-tracing is not included in the running time of DPS-s.

On the other hand, when we consider performance from throughput point of view, we

observe that the e�ective throughput (considering total running time on host and GPU)

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 119

is around 16% lower than the throughput of the compute kernel on the GPU. This trans-

lates to a di�erence of around 25 MCUPS for problem size with 16 machines up to 100

MCUPS for problem size with 256 machines. These results are shown in Figures 6.12(a)

and 6.12(b).

We can conclude that, from a practical perspective, DPS-d can bene�t from using the

GPU without su�ering signi�cant performance hit that might arise from communication

overheads with the host system.

GapsMis-d. Using the sequential implementation, GapsMis-s, as a point of reference,

the e�ective latency for GapsMis-d includes the time required for the CPU to perform

the back-tracing step on each batch of tables returned by the GPU device in order to

determine the �nal results. This is because GapsMis-s interweaves both computation

and back-tracing during execution. As a result of this unavoidable cooperation between

the host and compute device, we should expect a signi�cantly large amount of overhead.

Figures 6.13 and 6.14 shows the comparison between the latency and e�ective latency

for the execution of GapsMis-d allowing 2 and 3 gaps, respectively.

The impact of device-host communication in this algorithm is very signi�cant. For

instance, when we look at the results for the high-end AMD HD 7970 GPU for simulation

with more than 5 million alignment tasks, only 20% of the total execution time is spent

on the GPU compute kernel. To be more precise, considering Figure 6.13, the latency

for the AMD HD 7970 GPU is around 407 seconds while the e�ective latency is around

1614 seconds. A similar trend can also be observed across other GPU devices used in the

simulation, that is, only 20% to 30% of the total execution time is spent on the GPU.

This is due to the batching process and back-tracing work that is o�oaded to the CPU.

This demonstrates the fact that, although some compute intensive algorithms could

bene�t from using the GPU device, current limitations in hardware architecture could

introduce extra complexities that must be taken into account when designing a data-

parallel application for the GPU device. In our case, the architectural limitation is due to

the fact that we need to perform explicit memory transactions between host and compute

device. However, judging from these results, there is room for improvement especially as

GPU devices continue to evolve along with current computer system architecture.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 120

 0

 14

 28

 42

 56

 70

 84

 98

 112

 126

 140

16 32 64 128 256

T
im

e
el

ap
se

d
(s

ec
on

ds
)

Number of machines

Comparison of latency and effective latency for DPS running 1600 jobs in single GPU mode.
(Work-group size = 256, Local memory : YES)

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

(a) 1600 jobs (Time)

 0

 14

 28

 42

 56

 70

 84

 98

 112

 126

 140

16 32 64 128 256

T
im

e
el

ap
se

d
(s

ec
on

ds
)

Number of machines

Comparison of latency and effective latency for DPS running 1600 jobs in single GPU mode.
(Work-group size = 256, Local memory : YES)

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

(b) 3200 jobs (Time)

Figure 6.11: Comparison of latency vs. e�ective latency for single GPU performance.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 121

 0

 55

 110

 165

 220

 275

 330

 385

 440

 495

 550

16 32 64 128 256

T
hr

ou
gh

pu
t (

M
C

U
P

S
)

Number of machines

Comparison of throughput and effective throughput for DPS running 1600 jobs in single GPU mode.
(Work-group size = 256, Local memory : YES)

GTX 680 throughput
GTX 680 eff. tput.

HD 7970 throughput

HD 7970 eff. tput.
GTX 650 throughput

GTX 650 eff. tput.

HD 7750 throughput
HD 7750 eff. tput.

(a) 1600 jobs (Throughput)

 0

 55

 110

 165

 220

 275

 330

 385

 440

 495

 550

16 32 64 128 256

T
hr

ou
gh

pu
t (

M
C

U
P

S
)

Number of machines

Comparison of throughput and effective throughput for DPS running 3200 jobs in single GPU mode.
(Work-group size = 256, Local memory : YES)

GTX 680 throughput
GTX 680 eff. tput.

HD 7970 throughput

HD 7970 eff. tput.
GTX 650 throughput

GTX 650 eff. tput.

HD 7750 throughput
HD 7750 eff. tput.

(b) 3200 jobs (Throughput)

Figure 6.12: Comparison of throughput vs. e�ective throughput for single GPU per-
formance.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 122

 0

 600

 1200

 1800

 2400

 3000

 3600

 4200

 4800

 5400

 6000

 6600

 7200

 7800

 8400

10,000
20,000

40,000
80,000

160,000
320,000

640,000
1,280,000

2,560,000
5,120,000

T
im

e
el

ap
se

d
(s

ec
on

ds
)

Total number of pairs

Comparison of latency and effective latency for execution of GapsMis allowing 2 gaps in alignment
The effective latency includes time required for performing back-tracing on the host

(text width = 250, pattern width = 150)

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

(a) 250×150, 2 gaps

 0

 600

 1200

 1800

 2400

 3000

 3600

 4200

 4800

 5400

 6000

 6600

 7200

 7800

 8400

10,000
20,000

40,000
80,000

160,000
320,000

640,000
1,280,000

2,560,000
5,120,000

T
im

e
el

ap
se

d
(s

ec
on

ds
)

Total number of pairs

Comparison of latency and effective latency for execution of GapsMis allowing 2 gaps in alignment
The effective latency includes time required for performing back-tracing on the host

(text width = 250, pattern width = 200)

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

(b) 250×200, 2 gaps

Figure 6.13: Comparison of the latency and e�ective latency for GapsMis-d running
on a single GPU device performing alignments allowing 2 gaps.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 123

 0

 600

 1200

 1800

 2400

 3000

 3600

 4200

 4800

 5400

 6000

 6600

 7200

 7800

 8400

10,000
20,000

40,000
80,000

160,000
320,000

640,000
1,280,000

2,560,000
5,120,000

T
im

e
el

ap
se

d
(s

ec
on

ds
)

Total number of pairs

Comparison of latency and effective latency for execution of GapsMis allowing 3 gaps in alignment
The effective latency includes time required for performing back-tracing on the host

(text width = 250, pattern width = 150)

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

(a) 250×150, 3 gaps

 0

 600

 1200

 1800

 2400

 3000

 3600

 4200

 4800

 5400

 6000

 6600

 7200

 7800

 8400

10,000
20,000

40,000
80,000

160,000
320,000

640,000
1,280,000

2,560,000
5,120,000

T
im

e
el

ap
se

d
(s

ec
on

ds
)

Total number of pairs

Comparison of latency and effective latency for execution of GapsMis allowing 3 gaps in alignment
The effective latency includes time required for performing back-tracing on the host

(text width = 250, pattern width = 200)

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

(b) 250×200, 3 gaps

Figure 6.14: Comparison of the latency and e�ective latency for GapsMis-d running
on a single GPU device performing alignments allowing 3 gaps.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 124

Velvet-d. The Velvet-d application is well-suited for the GPU device mainly because

of its minimal interaction with the host. As a result of this we do not expect any

signi�cant overhead in terms of time required to copy the positions of the particles from

the GPU device to the host for display purposes. Our expectations are realized by the

results shown in Figure 6.15.

There is almost no di�erence between the latency and e�ective latency �gures. For in-

stance, the latency on the AMD HD 7970 GPU is around 0.8977 seconds (Figure 6.15(a))

while the e�ective latency is around 0.9004 seconds. Overall, the maximum di�erence

observed between latency and e�ective latency across all GPUs is around 0.003 seconds.

Since this application is characterized more for its high compute requirements than its

data requirements, there is almost no additional costs in terms of time associated with

copying the positions data from the compute device to host after all iterations have been

completed. This result demonstrates an almost best case scenario of an application that

can leverage the compute resources of a GPU device without incurring excessive amount

of overhead, which is particularly the case for applications classed as n-body methods.

FDGV-d. As an n-body method, similar to Velvet-d, we do not expect to see too much

di�erence between the latency and e�ective latency for this application. Recall that the

only data we need to copy from the device after all iterations are complete consists of

the positions of the vertices in the graph. Figures 6.16 to 6.19 show the results for the

four categories of graphs used in our simulation.

If we consider the simulation with the largest input size, grid graph with 40,000 vertices

and 79,500 edges (Figure 6.18), e�ective latency for the AMD HD 7970 GPU is around

0.5332, of which the latency is around 0.5319. Across all GPU devices, the maximum

di�erence observed between e�ective latency and latency for this same problem size is

observed to be around 0.003 seconds. The latency and e�ective latency are almost the

same due to very little overhead in copying position data of vertices back from the GPU.

Given the practical nature of FDGV-d as a tool that can be integrated into the pipeline

of an application that visualizes graphs and other similar networks, we should expect

huge performance boosts with data-parallel implementation since it is mainly a compute

intensive application.

Conclusion. From the results that we have seen so far in this experiment, we can con-

clude that, although the performance of the kernel on the compute device is important,

the communication overhead between host and compute device must be considered as

equally important as this dictates the overall performance of an application. This fact

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 125

 0

 1

 2

 3

 4

 5

 6

 7

2,048 4,096 8,192 16,384 32,768 65,536

T
im

e
el

ap
se

d
(s

ec
on

ds
)

Total number of particles

Comparison of latency and effective latency for GPU versions of the Velocity-Verlet integrator.
Effective latency includes kernel execution time and time required to copy data from GPU device to host

(Work-group size = 256)

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

(a) Latency and E�ective latency results.

 0

 116

 232

 348

 464

 580

 696

 812

 928

 1044

 1160

2,048 4,096 8,192 16,384 32,768 65,536

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Total number of particles

Comparison of throughput and effective throughput for GPU versions of the Velocity-Verlet integrator.
Effective throughput includes kernel execution time and time required to copy data from GPU device to host

(Work-group size = 256)

GTX 680 throughput
GTX 680 eff. tput.

HD 7970 throughput

HD 7970 eff. tput.
GTX 650 throughput

GTX 650 eff. tput.

HD 7750 throughput
HD 7750 eff. tput.

(b) Throughput and E�ective throughput results.

Figure 6.15: Results comparing the latency and e�ective latency of executing Velvet-
d for all problem sizes (Figure 6.15(a)). Resulting throughput performance is shown in
Figure 6.15(b). Here, due to the small data to computation ratio, the communication
time between host and compute device is marginal.

is clearly demonstrated by GapsMis-d where the communication overhead dominates the

overall execution time of the application.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 126

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Number of vertices = 400. Number of edges = 79,800

T
im

e
el

ap
se

d
(s

ec
on

ds
)

Comparison of latency and effective latency for a complete graph sample.
Effective latency includes kernel time plus data transfer from GPU to host.

(Work-group size = 256)

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

Figure 6.16: Comparison of latency vs. e�ective latency for complete graph (400
vertices, 79,800 edges)

6.9.2 Results on e�ects of work-group size

In this experiment, we evaluate the performance of DPS-d, Velvet-d and FDGV-d while

varying the size of the work-group used in each run. The performance metrics that we

are interested in are latency and throughput as these directly measure the performance

of the kernel and GPU device. For our NVIDIA GPUs the experiments are run using

work-group sizes of 64, 128, 256, 512 and the maximum supported size of 1024, while

for our AMD GPUs we use work-group sizes 64, 128 and the maximum supported size

of 256.

DPS-d. When we consider how the time indices are distributed among the work-items

in a work-group, one would expect that the larger the size of the work-group a GPU

device can support, the quicker it can complete the iterations. This particular experi-

ment becomes interesting because the NVIDIA GPUs can support a larger work-group

size, up to 1024, than the AMD GPUs with a limit of 256 work-items per work-group.

However, supporting a larger work-group size does not necessarily guarantee a supe-

rior performance. In addition, the amount of data needed by each work-group does not

depend on the number of work-items and is therefore constant. This is because for a

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 127

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Number of vertices = 26,518. Number of edges = 65,369

T
im

e
el

ap
se

d
(s

ec
on

ds
)

Comparison of latency and effective latency for the ‘‘p2p-gnutella24" graph sample.
Effective latency includes kernel time plus data transfer from GPU to host.

(Work-group size = 256)

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

Figure 6.17: Comparison of latency vs. e�ective latency for Gnutella p2p network
graph (26,518 vertices, 65,369 edges)

given work-group we only need to cache a row each of communication tables, CE and

CT , related to that particular work-group and the size of this data is the same for all

work-groups.

Figures 6.20 to 6.23 show the results obtained using the various supported work-group

sizes with respect to how they a�ect latency.

When we analyse these results we can clearly observe that, regardless of the GPU hard-

ware architecture and problem size, the GPU devices perform signi�cantly worse with

a work-group size of 64. For instance, in Figure 6.20, we see the results for 3,200 jobs

on the NVIDIA GTX 680 GPU where the latency when using a work-group size of 64 is

cut by around 44% compared to using a work-group size of 128. The same observation

can be seen on the AMD HD 7970 where the di�erence is up to 53% (Figure 6.22). This

is possibly due to the fact that the number of work-items in a work-group is too small

which implies that each work-item will have more work to do. Most importantly, using a

work-group size of 64 means that there is not enough work-items to hide latency during

execution.

The other consistent observation is that on the AMD GPUs, a work-group size of 256

performs best overall regardless of the problem size and GPU model. In order to have

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 128

 0

 1

 2

 3

 4

 5

 6

 7

Number of vertices = 40,000. Number of edges = 79,500

T
im

e
el

ap
se

d
(s

ec
on

ds
)

Comparison of latency and effective latency for a grid graph sample.
Effective latency includes kernel time plus data transfer from GPU to host.

(Work-group size = 256)

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

Figure 6.18: Comparison of latency vs. e�ective latency for grid graph (40,000 ver-
tices, 79,500 edges)

a clearer picture so that we can put all the results into perspective, Figures 6.24 to 6.27

show the results based on the throughput of the DPS-d kernel. The most signi�cant result

involves the small problem sizes, for instance with 16 machines, where the NVIDIA GTX

680 is able to achieve around 1600 MCUPS using a work-group size of 1024 work-items.

The NVIDIA GTX 680 is only able to manage around 149 MCUPS when the work-group

size is 64. The AMD HD 7970 GPU is able to achieve around 330 MCUPS for the same

problem size with a work-group size of 256, which is around 283% improvement from

using a work-group size of 64, achieving a throughput of around 86 MCUPS.

However, although both NVIDIA GPUs record the highest amount of throughput for the

problem consisting of 16 machines, what is even more interesting is that they achieve

this with di�erent work-group sizes. The high-end GTX 680 prefers a work-group size of

1024 while the GTX 650 prefers a work-group size of 256. But as the problem size gets

larger, performance from both NVIDIA GPUs begin to converge to a work-group size of

128.

Velvet-d. For this application we are mainly concerned with the kernel responsible for

computing the forces since this is where majority of the GPU time is spent during each

iteration. Unlike the DPS-d kernel, the size of the work-group for Velvet-d relates to both

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 129

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Number of vertices = 40,000. Number of edges = 39,999

T
im

e
el

ap
se

d
(s

ec
on

ds
)

Comparison of latency and effective latency for a tree graph sample.
Effective latency includes kernel time plus data transfer from GPU to host.

(Work-group size = 256)

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

Figure 6.19: Comparison of latency vs. e�ective latency for tree graph (40,000 ver-
tices, 39,999 edges)

work distribution among work-items and the amount of data stored for each work-group

by a compute unit. This relationship makes it quite a challenge to predict which factor

will take precedence in determining performance for two reasons. Firstly, we know that

when the size of data stored for each work-group grows as the work-group size grows,

the compute unit �ts less and less work-groups which implies that fewer work-groups are

scheduled to run concurrently. Lastly, when computation depends on distributing work

among work-items in a work-group, we want to have the largest possible work-group in

order to �nish the work quicker. In addition, these reasons are complicated by the fact

that if the work-group size is too small, then performance might su�er.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 130

 0

 6

 12

 18

 24

 30

 36

 42

 48

 54

 60

16 32 64 128 256

La
te

nc
y

(s
ec

on
ds

)

Number of machines

Effect of work-group size on latency for DPS running 3200 jobs on NVIDIA GTX 680 GPU.

Work-group size = 64
Work-group size = 128

Work-group size = 256
Work-group size = 512

Work-group size = 1024

Figure 6.20: Latency for DPS-d with 3,200 jobs with varying work-group sizes on
NVIDIA GTX 680 GPU.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

16 32 64 128 256

La
te

nc
y

(s
ec

on
ds

)

Number of machines

Effect of work-group size on latency for DPS running 3200 jobs on NVIDIA GTX 650 GPU.

Work-group size = 64
Work-group size = 128

Work-group size = 256
Work-group size = 512

Work-group size = 1024

Figure 6.21: Latency for DPS-d with 3,200 jobs with varying work-group sizes on
NVIDIA GTX 650 GPU.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 131

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

16 32 64 128 256

La
te

nc
y

(s
ec

on
ds

)

Number of machines

Effect of work-group size on latency for DPS running 3200 jobs on AMD HD 7970 GPU.

Work-group size = 64 Work-group size = 128 Work-group size = 256

Figure 6.22: Latency for DPS-d with 3,200 jobs with varying work-group sizes on
AMD HD 7970 GPU.

 0

 8

 16

 24

 32

 40

 48

 56

 64

 72

 80

16 32 64 128 256

La
te

nc
y

(s
ec

on
ds

)

Number of machines

Effect of work-group size on latency for DPS running 3200 jobs on AMD HD 7750 GPU.

Work-group size = 64 Work-group size = 128 Work-group size = 256

Figure 6.23: Latency for DPS-d with 3,200 jobs with varying work-group sizes on
AMD HD 7750 GPU.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 132

 0

 160

 320

 480

 640

 800

 960

 1120

 1280

 1440

 1600

16 32 64 128 256

T
hr

ou
gh

pu
t (

M
C

U
P

S
)

Number of machines

Effect of work-group size on throughput for DPS running 3200 jobs on NVIDIA GTX 680 GPU.

Work-group size = 64
Work-group size = 128

Work-group size = 256
Work-group size = 512

Work-group size = 1024

Figure 6.24: Throughput for DPS-d with 3,200 jobs with varying work-group sizes on
NVIDIA GTX 680 GPU.

 0

 160

 320

 480

 640

 800

 960

 1120

 1280

 1440

 1600

16 32 64 128 256

T
hr

ou
gh

pu
t (

M
C

U
P

S
)

Number of machines

Effect of work-group size on throughput for DPS running 3200 jobs on NVIDIA GTX 650 GPU.

Work-group size = 64
Work-group size = 128

Work-group size = 256
Work-group size = 512

Work-group size = 1024

Figure 6.25: Throughput for DPS-d with 3,200 jobs with varying work-group sizes on
NVIDIA GTX 650 GPU.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 133

 0

 160

 320

 480

 640

 800

 960

 1120

 1280

 1440

 1600

16 32 64 128 256

T
hr

ou
gh

pu
t (

M
C

U
P

S
)

Number of machines

Effect of work-group size on throughput for DPS running 3200 jobs on AMD HD 7970 GPU.

Work-group size = 64 Work-group size = 128 Work-group size = 256

Figure 6.26: Throughput for DPS-d with 3,200 jobs with varying work-group sizes on
AMD HD 7970 GPU.

 0

 160

 320

 480

 640

 800

 960

 1120

 1280

 1440

 1600

16 32 64 128 256

T
hr

ou
gh

pu
t (

M
C

U
P

S
)

Number of machines

Effect of work-group size on throughput for DPS running 3200 jobs on AMD HD 7750 GPU.

Work-group size = 64 Work-group size = 128 Work-group size = 256

Figure 6.27: Throughput for DPS-d with 3,200 jobs with varying work-group sizes on
AMD HD 7750 GPU.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 134

Based on these reasons it is di�cult to know what to expect from our GPU devices for

this application. This is further justi�ed by the results shown in Figures 6.28 to 6.31 for

each GPU device.

 0

 0.18

 0.36

 0.54

 0.72

 0.9

 1.08

 1.26

 1.44

 1.62

 1.8

2,048 4,096 8,192 16,384 32,768 65,536

La
te

nc
y

(s
ec

on
ds

)

Total number of particles

Comparison of the latency for Velocity-Verlet integrator with varying work-group sizes on the NVIDIA GTX 680 GPU.

Work-group size = 64
Work-group size = 128

Work-group size = 256
Work-group size = 512

Work-group size = 1024

Figure 6.28: Latency for Velvet-d with varying work-group sizes on NVIDIA GTX
680 GPU.

When we consider the performance of the NVIDIA GPU devices, there is a consistent

trend that seems to suggest that a larger work-group is better especially for the larger

problem sizes which correlates with having work-items �nish computation quicker. In ad-

dition, a work-group size of 64 performs worse and this has been a consistent observation

so far for our NVIDIA GPUs. For instance, in Figure 6.28 showing the results for the

NVIDIA GTX 680 GPU, the latency for a simulation with 65,536 particles descreases

by around 15% when the work-group size is changed from 64 to 1024. However, for

the AMD GPUs, the results show that a work-group size of 128 performs slightly worse

by a margin of between 0.4% and 0.5%. Figures 6.32 to 6.35 shows the throughput

performance for all GPU devices.

With respect to throughput performance, it becomes clearer that the NVIDIA GTX 680

prefers smaller work-group sizes for the smaller problem sizes but larger work-group is

preferred for the larger problem sizes. As shown in Figure 6.32, for a simulation with

2,048 particles, and work-group size of 64, the NVIDIA GTX 680 GPU is able to reach

a throughput of around 181 GFLOPS. But with a work-group size of 1024 it could only

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 135

 0

 0.75

 1.5

 2.25

 3

 3.75

 4.5

 5.25

 6

 6.75

 7.5

2,048 4,096 8,192 16,384 32,768 65,536

La
te

nc
y

(s
ec

on
ds

)

Total number of particles

Comparison of the latency for Velocity-Verlet integrator with varying work-group sizes on the NVIDIA GTX 650 GPU.

Work-group size = 64
Work-group size = 128

Work-group size = 256
Work-group size = 512

Work-group size = 1024

Figure 6.29: Latency for Velvet-d with varying work-group sizes on NVIDIA GTX
650 GPU.

manage a throughput of around 133 GFLOPS. For large problem size of 65,536 particles,

the NVIDIA GTX 680 GPU is able to achieve a throughput of around 653 GFLOPS

with work-group size 1024 compared to a throughput of around 577 GFLOPS with a

work-group size of 64. On the other hand, the smaller GTX 650 consistently prefers

a larger work-group size as seen in Figure 6.33 but the di�erence between the various

work-group sizes is very small. The di�erence is up to 1.5%. Meanwhile, both AMD

GPUs are consistent in preferring work-group sizes of 64 and 256 as opposed to a work-

group size of 128 (Figure 6.34 and Figure 6.35). When the work-group is set to 256, the

AMD HD 7970 GPU is able to achieve a throughput of around 1, 025 GFLOPS, which

is marginally more than it is able to achieve with a work-group size of 64. This margin

is less than 1%.

FDGV-d. Among the three kernels that make up FDGV-d, only the kernel responsible for

repulsion of vertices provides the option of having work-items in a work-group iterate

through vertex data in global memory or cache them to local memory for re-use. Al-

though this application is very similar to Velvet-d, one might expect similar behaviour

from the GPU devices. However, unlike Velvet-d, each kernel in FDGV-d has a di�erent

running time and this factor can a�ect the overall outcome with respect to the latency

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 136

 0

 0.11

 0.22

 0.33

 0.44

 0.55

 0.66

 0.77

 0.88

 0.99

 1.1

2,048 4,096 8,192 16,384 32,768 65,536

La
te

nc
y

(s
ec

on
ds

)

Total number of particles

Comparison of the latency for Velocity-Verlet integrator with varying work-group sizes on the AMD HD 7970 GPU.

Work-group size = 64 Work-group size = 128 Work-group size = 256

Figure 6.30: Latency for Velvet-d with varying work-group sizes on AMD HD 7970
GPU.

of all three kernels. This makes it quite a challenge to determine a suitable work-group

size and then predict the outcome. However, from our previous results from Velvet-d

we would expect that using a work-group size of 64 may not produce the best results

for our NVIDIA GPUs and, likewise, using a work-group size of 128 on the AMD GPU

devices. Figures 6.36 to 6.39 shows the latency performance results for FDGV-d and they

con�rm our expectations.

Both AMD GPUs seem to prefer a work-group size of 64 or 256 work-items over 128 work-

items. On the AMD HD 7970, for instance, the latency when using a work-group size of

64 or 256 is around 18% smaller. However, this di�erence is mostly observed with the

grid and tree graphs as no signi�cant di�erence can be observed with the complete graph

and Gnutella real graph data. Meanwhile, Figure 6.36 and Figure 6.37 show slightly

di�erent results for the NVIDIA GPUs. The margin of di�erence is almost the same

for the complete graph simulation, and, with work-group size of 64, both GPUs perform

worse for other three graph simulations. The NVIDIA GTX 680 performs better, in

general, with a work-group size of 512 work-items and worse with work-group size of 64

or 1024. When the work-group size is set to 512, we observe an improvement in latency

of around 30%. On the other hand, the GTX 650 only performs worse when work-group

size is 64, incurring an additional 50% approximate increase in latency compared to using

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 137

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

2,048 4,096 8,192 16,384 32,768 65,536

La
te

nc
y

(s
ec

on
ds

)

Total number of particles

Comparison of the latency for Velocity-Verlet integrator with varying work-group sizes on the AMD HD 7750 GPU.

Work-group size = 64 Work-group size = 128 Work-group size = 256

Figure 6.31: Latency for Velvet-d with varying work-group sizes on AMD HD 7750
GPU.

other work-group sizes. This di�erence translates to around 3 additional seconds for the

grid graph and around 1.7 seconds for the tree graph.

Figures 6.36 to 6.39 put the results into perspective and show how the total throughput

of the kernels is a�ected. The margins observed in latency performance re�ects directly

in the throughput results as expected.

Conclusion. Finally, we can conclude that choosing the best work-group size for a

data-parallel application in order to achieve the best result in all possible application

con�gurations can be quite a challenge. In most cases, there is no de�nitive work-group

size that can guarantee optimal performance for a given GPU device. The results on

the NVIDIA GPUs show that even for the same GPU architecture, results can still

vary signi�cantly across GPU models belonging to the same GPU family. In addition,

the decision on work-group size becomes more di�cult when designing a cross-vendor

heterogeneous application which seems to suggest that �ner and more speci�c application

tuning is necessary if aiming for the best possible performance results.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 138

 0

 105

 210

 315

 420

 525

 630

 735

 840

 945

 1050

2,048 4,096 8,192 16,384 32,768 65,536

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Total number of particles

Comparison of the throughput for Velocity-Verlet integrator with varying work-group sizes on the NVIDIA GTX 680 GPU.

Work-group size = 64
Work-group size = 128

Work-group size = 256
Work-group size = 512

Work-group size = 1024

Figure 6.32: Results showing the throughput performance of Velvet-d as work-group
size varies on the NVIDIA GTX 680 GPU.

6.9.3 Results on e�ects of local memory

This experiment involves DPS-d, Velvet-d and FDGV-d. For the kernels with the possi-

bility for work-items to cooperate and share data by caching data to local memory, we

implement a variant where work-items read data directly from global memory instead.

Depending on the operation being performed by the work-items, one option might be

preferable over the other for best performance.

DPS-d. In this application, we have the option of caching partial data from the CE and
CT tables in the kernel. Since the work-items use values from these tables repeatedly

over the course of the computation, we expect that caching data to local memory will

help to improve performance across all the GPU devices from both AMD and NVIDIA.

Figures 6.44 and 6.45 show the results for latency for problem sizes of 1,600 and 3,200

jobs, respectively.

The results are quite consistent for all GPU devices regardless of the problem size.

When data is cached to local memory, we observe a performance bene�t of around 25%

compared to using data from directly global memory.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 139

 0

 105

 210

 315

 420

 525

 630

 735

 840

 945

 1050

2,048 4,096 8,192 16,384 32,768 65,536

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Total number of particles

Comparison of the throughput for Velocity-Verlet integrator with varying work-group sizes on the NVIDIA GTX 650 GPU.

Work-group size = 64
Work-group size = 128

Work-group size = 256
Work-group size = 512

Work-group size = 1024

Figure 6.33: Results showing the throughput performance of Velvet-d as work-group
size varies on the NVIDIA GTX 650 GPU.

We can observe that there is a signi�cant di�erence in performance between caching data

to local memory and reading directly from global memory. Accessing global memory is

much slower than local memory and depending on the structure of the computation being

performed, it is imperative to re-use data where possible by caching to local memory. Fig-

ures 6.46 and 6.47 show the throughput performance results. Throughput performance

gain for all GPU devices is around 25% when data is cached to local memory.

Velvet-d. For the kernel that computes the forces for the particles, we have the option

to cache positions data to local memory in order to allow work-items within the same

work-group to re-use data. We will expect that caching data to local memory will help to

improve the performance of the kernel, similar to what is achieved with DPS-d. However,

Figures 6.48 and 6.49 show that this is not exactly the case. Note that we have adjusted

these results based on the results we obtained regarding work-group sizes in Section 6.9.2

to show the best performing con�guration for the GPUs.

These results are very interesting because, although the results for the NVIDIA GPUs

meet our expectations, the opposite is exactly the case for the AMD GPUs. For example,

in the simulation with 65,536 particles, the NVIDIA GPUs perform around 24% better

when data is cached to local memory. On the other hand, the AMD GPUs actually prefer

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 140

 0

 105

 210

 315

 420

 525

 630

 735

 840

 945

 1050

2,048 4,096 8,192 16,384 32,768 65,536

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Total number of particles

Comparison of the throughput for Velocity-Verlet integrator with varying work-group sizes on the AMD HD 7970 GPU.

Work-group size = 64 Work-group size = 128 Work-group size = 256

Figure 6.34: Results showing the throughput performance of Velvet-d as work-group
size varies on the AMD HD 7970 GPU.

not to cache data to local memory. In the same simulation, the AMD GPUs perform

around 10% better when data is read directly from global memory without caching to

local memory.

FDGV-d. When we take into account the similarities between Velvet-d and FDGV-d, in

addition to the results obtained in this experiment for Velvet-d, it is safe to expect that

the same trend will continue for this application. Figures 6.50 and 6.51 con�rm that this

is in fact the case. We have also adjusted the results so that we use the best performing

work-group size for each GPU. In this case, a work-group size of 512 and 256 work-items

were used for the NVIDIA and AMD GPUs, respectively.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 141

 0

 105

 210

 315

 420

 525

 630

 735

 840

 945

 1050

2,048 4,096 8,192 16,384 32,768 65,536

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Total number of particles

Comparison of the throughput for Velocity-Verlet integrator with varying work-group sizes on the AMD HD 7750 GPU.

Work-group size = 64 Work-group size = 128 Work-group size = 256

Figure 6.35: Results showing the throughput performance of Velvet-d as work-group
size varies on the AMD HD 7750 GPU.

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

La
te

nc
y

(s
ec

on
ds

)

Effects of work-group size on latency for FDGV running on a single NVIDIA GTX 680 GPU.

Work-group size = 64
Work-group size = 128

Work-group size = 256
Work-group size = 512

Work-group size = 1024

Figure 6.36: Results showing latency performance FDGV-d as work-group size varies
for NVIDIA GTX 680 GPU.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 142

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

La
te

nc
y

(s
ec

on
ds

)

Effects of work-group size on latency for FDGV running on a single NVIDIA GTX 650 GPU.

Work-group size = 64
Work-group size = 128

Work-group size = 256
Work-group size = 512

Work-group size = 1024

Figure 6.37: Results showing latency performance FDGV-d as work-group size varies
for NVIDIA GTX 650 GPU.

 0

 0.065

 0.13

 0.195

 0.26

 0.325

 0.39

 0.455

 0.52

 0.585

 0.65

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

La
te

nc
y

(s
ec

on
ds

)

Effects of work-group size on latency for FDGV running on a single AMD HD 7970 GPU.

Work-group size = 64 Work-group size = 128 Work-group size = 256

Figure 6.38: Results showing latency performance FDGV-d as work-group size varies
for AMD HD 7970 GPU.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 143

 0

 0.21

 0.42

 0.63

 0.84

 1.05

 1.26

 1.47

 1.68

 1.89

 2.1

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

La
te

nc
y

(s
ec

on
ds

)

Effects of work-group size on latency for FDGV running on a single AMD HD 7750 GPU.

Work-group size = 64 Work-group size = 128 Work-group size = 256

Figure 6.39: Results showing latency performance FDGV-d as work-group size varies
for AMD HD 7750 GPU.

 0

 81

 162

 243

 324

 405

 486

 567

 648

 729

 810

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Effects of work-group size on throughput for FDGV running on a single NVIDIA GTX 680 GPU.

Work-group size = 64
Work-group size = 128

Work-group size = 256
Work-group size = 512

Work-group size = 1024

Figure 6.40: Results showing throughput performance FDGV-d as work-group size
varies for NVIDIA GTX 680 GPU.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 144

 0

 81

 162

 243

 324

 405

 486

 567

 648

 729

 810

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Effects of work-group size on throughput for FDGV running on a single NVIDIA GTX 650 GPU.

Work-group size = 64
Work-group size = 128

Work-group size = 256
Work-group size = 512

Work-group size = 1024

Figure 6.41: Results showing throughput performance FDGV-d as work-group size
varies for NVIDIA GTX 650 GPU.

 0

 81

 162

 243

 324

 405

 486

 567

 648

 729

 810

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Effects of work-group size on throughput for FDGV running on a single AMD HD 7970 GPU.

Work-group size = 64 Work-group size = 128 Work-group size = 256

Figure 6.42: Results showing throughput performance FDGV-d as work-group size
varies for AMD HD 7970 GPU.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 145

 0

 81

 162

 243

 324

 405

 486

 567

 648

 729

 810

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Effects of work-group size on throughput for FDGV running on a single AMD HD 7750 GPU.

Work-group size = 64 Work-group size = 128 Work-group size = 256

Figure 6.43: Results showing throughput performance FDGV-d as work-group size
varies for AMD HD 7750 GPU.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

16 32 64 128 256

La
te

nc
y

(s
ec

on
ds

)

Number of machines

Effect of using local memory on latency for DPS running 1600 jobs in single GPU mode.
(Work-group size = 256)

GTX 680 w/ cache
GTX 680 no cache

HD 7970 w/ cache
HD 7970 no cache

GTX 650 w/ cache
GTX 650 no cache

HD 7750 w/ cache
HD 7750 no cache

Figure 6.44: Comparison of latency for 1,600 jobs with and without using GPU local
memory.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 146

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

16 32 64 128 256

La
te

nc
y

(s
ec

on
ds

)

Number of machines

Effect of using local memory on latency for DPS running 3200 jobs in single GPU mode.
(Work-group size = 256)

GTX 680 w/ cache
GTX 680 no cache

HD 7970 w/ cache
HD 7970 no cache

GTX 650 w/ cache
GTX 650 no cache

HD 7750 w/ cache
HD 7750 no cache

Figure 6.45: Comparison of latency for 3,200 jobs with and without using GPU local
memory.

 0

 55

 110

 165

 220

 275

 330

 385

 440

 495

 550

16 32 64 128 256

T
hr

ou
gh

pu
t (

M
C

U
P

S
)

Number of machines

Effect of using local memory on throughput for DPS running 1600 jobs in single GPU mode.
(Work-group size = 256)

GTX 680 w/ cache
GTX 680 no cache

HD 7970 w/ cache
HD 7970 no cache

GTX 650 w/ cache
GTX 650 no cache

HD 7750 w/ cache
HD 7750 no cache

Figure 6.46: Comparison of throughput for 1,600 jobs with and without using GPU
local memory. Throughput is measured in millions of cell updates per second (MCUPS).

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 147

 0

 55

 110

 165

 220

 275

 330

 385

 440

 495

 550

16 32 64 128 256

T
hr

ou
gh

pu
t (

M
C

U
P

S
)

Number of machines

Effect of using local memory on throughput for DPS running 3200 jobs in single GPU mode.
(Work-group size = 256)

GTX 680 w/ cache
GTX 680 no cache

HD 7970 w/ cache
HD 7970 no cache

GTX 650 w/ cache
GTX 650 no cache

HD 7750 w/ cache
HD 7750 no cache

Figure 6.47: Comparison of throughput for 3,200 jobs with and without using GPU
local memory. Throughput is measured in millions of cell updates per second (MCUPS).

0

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 148

 0

 0.8

 1.6

 2.4

 3.2

 4

 4.8

 5.6

 6.4

 7.2

 8

2,048 4,096 8,192 16,384 32,768 65,536

La
te

nc
y

(s
ec

on
ds

)

Total number of particles

Comparison of the latency for Velocity-Verlet integrator between caching and not caching data
(Work-group size is 1024 for NVIDIA GPUs and 256 for AMD GPUs)

GTX 680 no cache
GTX 680 w/ cache

HD 7970 no cache
HD 7970 w/ cache

GTX 650 no cache
GTX 650 w/ cache

HD 7750 no cache
HD 7750 w/ cache

Figure 6.48: Results showing the e�ect of local memory on the latency performance
of Velvet-d for all GPU devices. The work-group sizes in these results are 1024 for
NVIDIA GPUs and 256 for AMD GPUs.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 149

 0

 116

 232

 348

 464

 580

 696

 812

 928

 1044

 1160

2,048 4,096 8,192 16,384 32,768 65,536

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Total number of particles

Comparison of the throughput for Velocity-Verlet integrator between caching and not caching data
(Work-group size is 1024 for NVIDIA GPUs and 256 for AMD GPUs)

GTX 680 no cache
GTX 680 w/ cache

HD 7970 no cache
HD 7970 w/ cache

GTX 650 no cache
GTX 650 w/ cache

HD 7750 no cache
HD 7750 w/ cache

Figure 6.49: Results showing the e�ect of local memory on the throughput perfor-
mance of Velvet-d for all GPU devices. The work-group sizes in these results are 1024
for NVIDIA GPUs and 256 for AMD GPUs. Throughput is measured in billions of
�oating-point operations per second.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 150

 0

 0.65

 1.3

 1.95

 2.6

 3.25

 3.9

 4.55

 5.2

 5.85

 6.5

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

La
te

nc
y

(s
ec

on
ds

)

Effects of using local memory on the performance of FDGV based on latency for all GPU devices

GTX 680 no cache
GTX 680 w/ cache

HD 7970 no cache
HD 7970 w/ cache

GTX 650 no cache
GTX 650 w/ cache

HD 7750 no cache
HD 7750 w/ cache

Figure 6.50: Results showing the e�ect of local memory on latency performance of
FDGV-d for all GPU devices. The work-group sizes in these results are 512 for NVIDIA
GPUs and 256 for AMD GPUs.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 151

 0

 85

 170

 255

 340

 425

 510

 595

 680

 765

 850

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Effects of using local memory on the performance of FDGV based on throughput for all GPU devices

GTX 680 no cache
GTX 680 w/ cache

HD 7970 no cache
HD 7970 w/ cache

GTX 650 no cache
GTX 650 w/ cache

HD 7750 no cache
HD 7750 w/ cache

Figure 6.51: Results showing the e�ect of local memory on latency performance of
FDGV-d for all GPU devices. The work-group sizes in these results are 512 for NVIDIA
GPUs and 256 for AMD GPUs. Throughput is measured in billions of �oating-point
operations per second.

The latency performance for the AMD GPUs show that for each respective GPU, the

di�erence between using local memory or not is almost negligible. However, throughput

performance somewhat magni�es the di�erence and shows that not caching data local

memory yields a very marginal gain. This is around 4% di�erence. The NVIDIA GPUs,

on the other hand, perform around 10% better when local memory is used to cache data.

Conclusion In this section, we have seen some interesting results on how an an appli-

cation can improve its performance on the GPU device by caching data to local memory

in cases where there is a high volume of data re-use within the kernel. This is the true

for DPS-d on all the GPU devices we tested. In addition, we have also seen a case where

the same application performs di�erently across di�erent GPU architectures. The n-

body method applications, Velvet-d and FDGV-d seem to perform better on the NVIDIA

hardware with local memory while the AMD hardware performs better without using

local memory. This highlights the extent to which architectural di�erences might a�ect

speci�c types of applications.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 152

6.9.4 Results on bene�ts of pre-pinned memory and DMA

In this section, we will be considering the two applications, Velvet-d and FDGV-d, that

have the possibility of bene�ting from using pre-pinned memory and DMA. Recall that

we can only use pre-pinned memory when the memory block to be pinned is not too

large, hence, we are unable to do this with GapsMis-d and DPS-d. Here, we will be

directly measuring the amount of time required to transfer data from the GPU device

back to the host, that is, the communication latency, after execution has been completed.

Since this experiment does not depend on a feature of the GPU devices, it is conducted

using our designated reference machine, KEPLER.

Although the data being copied back from the device to host is relatively small, we do

expect to observe a smaller transfer when using pre-pinned memory since the overhead

associated with pinning memory is eliminated. Figures 6.52 and 6.53 illustrate the impact

that DMA can have on performance of Velvet-d and FDGV-d, respectively, by measuring

the time spent during data transfer from host to GPU global memory and vice versa.

We observe a signi�cant performance gain when using pinned memory.

 0

 160

 320

 480

 640

 800

 960

 1120

 1280

 1440

 1600

2,048 4,096 8,192 16,384 32,768 65,536

T
im

e
el

ap
se

d
(m

ic
ro

se
co

nd
s)

Total number of particles

Benefits of using pre-pinned memory in execution of Velocity-Verlet integrator on our reference machine (KEPLER)

with pinned memory without pinned memory

Figure 6.52: Results showing the bene�ts of using pre-pinned memory for Velvet-d
and FDGV-d running on our designated reference machine. Time elapsed is given in
microseconds.

Considering the Velvet-d application (Figure 6.52), the communication latency can be

reduced by up to 88% by using pinned memory. While, for FDGV-d (Figure 6.53), this

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 153

 0

 51

 102

 153

 204

 255

 306

 357

 408

 459

 510

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

T
im

e
el

ap
se

d
(m

ic
ro

se
co

nd
s)

Benefits of using pre-pinned memory in execution of FDGV on our reference machine (KEPLER)

with pinned memory without pinned memory

Figure 6.53: Results showing the bene�ts of using pre-pinned memory for Velvet-d
and FDGV-d running on our designated reference machine. Time elapsed is given in
microseconds.

performance gain in communication latency is around 83%, especially for the grid and

tree graphs. Clearly, we can observe that having a pre-pinned memory on the host prior

execution and copying data helps to speed up data transfer.

6.9.5 Results on application scaling with multi-GPUs

GapsMis-d. This application is designed to be able to, not just take advantage of mul-

tiple GPU devices, but can also distribute work evenly based on the global memory

capacities of available GPUs. In essence, GPU devices with larger global memory are

given more work in the form of a larger batch size than others with a smaller memory

capacity. The aim is to have as much work as possible in the GPU devices in order to

minimize e�ective latency incurred during device-host communications. In this case, the

total number of pairs to be aligned is distributed among available GPU devices based on

this condition.

Figure 6.53 shows the results based on throughput of GapsMis-d when using a single

GPU compared to the throughput with dual GPUs.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 154

 0

 0.45

 0.9

 1.35

 1.8

 2.25

 2.7

 3.15

 3.6

 4.05

 4.5

10,000
20,000

40,000
80,000

160,000
320,000

640,000
1,280,000

2,560,000
5,120,000

T
hr

ou
gh

pu
t (

G
C

U
P

S
)

Total number of pairs

Throughput for single GPU vs. dual GPU execution of GapsMis allowing 3 gaps in alignment
(text width = 250, pattern width = 150)

GTX 680 Single
GTX 680 Dual

HD 7970 Single
HD 7970 Dual

GTX 650 Single
GTX 650 Dual

HD 7750 Single
HD 7750 Dual

(a) 250×150, 3 gaps (throughput)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

10,000
20,000

40,000
80,000

160,000
320,000

640,000
1,280,000

2,560,000
5,120,000

R
at

io

Total number of pairs

Comparison of single GPU vs. dual GPU performance of GapsMis in terms of throughput.
(text width = 250, pattern width = 150, gaps = 3)

NVIDIA GTX 680 AMD HD 7970 NVIDIA GTX 650 AMD HD 7750

(b) 250×150, 3 gaps (ratio)

When we consider Figure 6.54(b) and Figure 6.54(d) that quantify the performance di�er-

ence between single and dual GPU modes, the �rst major observation is that GapsMis-d

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 155

scales better on the NVIDIA GPUs. We record a boost in throughput of around 80%

to over 100% for the mid-range NVIDIA GTX 650 in dual GPU mode. In general, the

results are very impressive and promising as we observe a boost in throughput of around

60% to over 100% when running GapsMis-d in dual GPU mode for all GPU devices.

For a tool like GapsMis-d with the potential to be a very practical tool among software

used for alignment and sequencing, it is good to see that the application can scale properly

and perform better when more GPU devices are available to it. This becomes very viable

and useful especially when the amount of alignment task is huge.

DPS-d. The �rst layer of parallelism in DPS-d is achieved by mapping each machine to

a work-group. As we already know by now, the higher the number work-groups that

can execute concurrently the quicker the GPU can complete a compute task. Therefore,

DPS-d takes advantage of multiple GPU devices such that the number of machines in

the problem is distributed across the combined work-groups de�ned on all GPU devices.

However, the addition of more GPU devices does not always necessarily translate to

a boost in performance due to reasons that relate to the problem instance. We hope

to demonstrate this and analyse the reason why this could be the case for DPS-d. We

present the results comparing the throughput of DPS-d in single GPU mode with with

the throughput when using dual GPU devices in Figures 6.54 and 6.55.

Let us focus our attention on the high-end GPUs, GTX 680 and HD 7970. We observe

that there is not much performance gain in adding a second GPU when the number

of machines is below 256 for the HD 7970 and 128 for the GTX 680. For instance,

when the number of machines is 16, the NVIDIA GTX 680 GPU achieves 10% more

throughput in single GPU con�guration compared to the dual GPU con�guration. This

is not particularly surprising because these two GPU devices have enough compute units

to accommodate that many work-groups running concurrently. For this reason, a single

GPU still o�ers the same (or even better) performance than dual GPU devices. Then

when the number of machines is large enough we begin to notice a considerable boost in

performance of up to 85%, or even above 100%, as is the case with the mid-range GTX

650 GPU, as shown in Figure 6.54(b) and Figure 6.55(b). In general, the overall results

demonstrate that when the problem instance is large enough, DPS-d can scale well with

the addition of more GPU devices.

FDGV-d. In order to take advantage of a second GPU, we simply share the total number

of vertices and edges between the two GPU devices. As we observed earlier in the analysis

of DPS-d with regards to the relationship between problem size and GPU device usage,

using more than one GPU when the size of the graph is small will only a�ect performance

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 156

in a negative way. This is illustrated in the results shown in Figure 6.56, especially for

our complete graph sample.

Figure 6.56(b) shows that our complete graph sample is too small to bene�t from an

extra GPU, thus demonstrating the fact that adding extra GPU devices will not always

yield a boost in performance. From a general point of view, these results show that the

GPU devices are capable of handling these graphs when running in a single device mode.

This is con�rmed when we observe the results for the GPU with the least amount of

compute resources, that is, the GTX 650. When two GTX 650 GPU devices are used we

gain a performance boost in throughput of up to 100%. The other GPUs gain around

50% to 70% in performance suggesting that the combined compute resources on both

GPUs have not been saturated yet.

Conclusion. In this section we investigate how applications can scale with the addition

of more GPU devices. The results obtain are consistent for each type of application and

the rate at which these applications scale is nearly linear in the number of GPU devices

used. In some few cases we even observed performance improvement of over 100% when

running with two GPUs. However, the amount of performance boost achievable is still

strongly related to the application.

6.9.6 Results on comparison of CPU vs. GPU performance

In Section 6.3 we discussed the implementation details of the applications discussed in

this chapter and also presented some theoretical analysis of the parallel implementations

to determine how e�cient and/or optimal they are. For this section, we present an empir-

ical analysis of the sequential, task-parallel and data-parallel implementations. However,

our main focus will be on how our data-parallel implementations compare with the im-

plementations on the CPU. In other words our aim is to evaluate how much performance

boost we can achieve for these algorithms if the GPU device is used. Our comparison

will be based on execution time and energy e�ciency.

In order to obtain an estimate of the amount of power a device consumes during the

execution of a particular application, we execute each application repeatedly for a set

amount time, enough for the software pro�ler tool to log the power readings to �le. We

take this approach because during the experiment phases, some problem instance �nish

to quickly before a reliable power reading can be recorded. Figure 6.57 shows the power

consumption pro�le for each application.

For the experiments, these �gures are used to compute the energy consumption, in Watt-

second, of a device after execution as a product of power consumed and latency.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 157

6.9.6.1 GapsMis

The GapsMis tool focuses on performing millions of alignment tasks in a single execution

in order to save time. Since the algorithm itself is not particularly compute-intensive

when we consider the alignment of a single pair of sequences, this makes it well suited for

a task-parallel implementation as well as for a data-parallel implementation. However,

the data-parallel implementation does o�er that extra layer of parallelism within the

computation portion itself.

Although we expect to see signi�cant amounts of speed-up when we compare latency

on the GPU device versus latency of the CPU implementations, we expect that overall

performance will be very close when we compare e�ective latency.

As expected, the GPU devices achieve a considerable amount of speed-up on latency

over the CPU especially in the case of the sequential implementation and a single GPU

device. Figure 6.58(a) shows that the high-end GPU devices are between 10 and 17 times

quicker than the GapsMis-s with 1 CPU thread. On the other hand, the high-end GPU

devices are only around 2.5 to 5 times faster, when paired up, compared to GapsMis-t

with 12 CPU threads. However, when we compare the overall application performance

(Figure 6.58(b) and Figure 6.59(b)), we observe that performance is nearly the same due

to the massive amounts of overhead incurred when the backtrack phase is being carried

out on the CPU. The preformance gain when using dual high-end GPU devices is only

between 20% and 48%. This is the main bottle-neck in this application and only the

high-end GPUs o�er some speed-up.

Since the computation of the �nal results, that is backtracking phase, is o�oaded to the

CPU after the matrices have been computed by the GPU, it is di�cult to get an accurate

comparison in terms of energy consumption. For that reason we will not include energy

results for this application.

6.9.6.2 DPS

The DPS application can be considered a compute-intensive application when we consider

the number of cells to compute in the dynamic programming table. Since we are able to

achieve very signi�cant amounts of parallelism in the data-parallel implementation, we

expect to achieve huge amounts of speed-up for this application when using the GPU

device, even when we consider the overall application performance. Figure 6.57 shows

the results comparing CPU running time with running time on GPU and it con�rms our

expectations.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 158

The fact that the GPU devices perform very well in this application is not particularly

surprising because it demonstrates the fact that if a true data-parallel formulation exists

for an algorithm, it can bene�t greatly from using a GPU device. This fact is demon-

strated in Figure 6.60(b) and Figure 6.58(e), where we see that even a single GPU device

performs better than the task-parallel implementation by a signi�cant margin. For ex-

ample, the entry-level AMD HD 7750 GPU achieved a speed-up of around 10 times, in

single GPU con�guration, over DPS-t using 12 CPU threads. In addition, the overall

performance of an application will also be improved greatly when the GPU device can

perform vast majority of the computation involved.

Since we have now established that the data-parallel implementation gives us massive

amounts of performance boost over the sequential and task-parallel implementations, we

will now compare how energy-e�cient these implementations are. Figure 6.57 shows the

e�ciency of the implementations in terms of performance-per-watt and energy consumed.

The results show that the GPU devices are indeed very energy e�cient and watt-for-watt

comparison with the CPU shows that the GPU does considerably more work per watt

than the CPU implementations, illustrated in Figure 6.58(d). Here we observe that the

GPU devices are able to achieve between 1 and 5 MCUPS per Watt in both single and

dual con�gurations, compared to the CPU which was able to achieve around 1.2 MCUPS

per Watt but in the smallest problem size of 16 machines.

This is mainly down to the fact that the GPU devices are very quick in performing

computations. Therefore, energy e�ciency does not necessarily depend only on the power

consumption rating of a device but also how much work a device is able to perform for

each unit amount of power.

6.9.6.3 Velvet

Being an n-body method, we expect to achieve huge amounts of performance gain because

the requirement of the underlying algorithm is very well suited to the massively parallel

architecture of the GPU device. Given the high amounts of throughput the GPU can

achieve in these types of applications, we expect that the GPU device will be very energy-

e�cient too. Figure 6.58(a) shows the results for the amount of speed-up achieved in

terms of latency, and in Figure 6.58(b), we compare the e�ciency of both devices.

In Figure 6.58(a), we observe that the single GPU con�guration achieves massive amounts

of speed-up. For example, in the simulation with 65,536 particles, the entry-level AMD

HD 7750 GPU is around 40 times quicker than the multi-threaded Velvet-t with 12 CPU

threads. In the same simulation, the high-end GPUs are around 380 times to 700 times

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 159

quicker. These results demonstrate the fact that this application is best run on a device

like a GPU because of its demand for high levels of throughput, which is what a GPU

architecture is optimized for. We present the energy consumption results for both devices

in Figure 6.57. The GPU devices are not just quicker but highly energy-e�cient too.

We observe that the GPU devices are able to reach between 1 GFLOPS per Watt and

10 GFLOPS per Watt. However, the CPU is only able to peak at around 1.1 GFLOPS

per Watt.

6.9.6.4 FDGV

For this application, we also expect to achieve very signi�cant amount of performance im-

provement with the GPU devices over the CPU implementations. However, the amount

of performance gain that can be achieved is expected to vary with the size of the graph

and even the type of graph. For instance, considering our previous evaluation of Velvet

in Section 6.9.6.3, we expect that execution of graphs with a considerably large amount

of vertices will perform a lot better on the GPU than it will on the CPU. On the other

hand, a graph with very small amount of vertices but has a large amount of edges might

result in very similar performance on both CPU and GPU devices. This is because the

work-items in the GPU implementation require an extra step to iterate through the edge

list in order to accumulate all the partial edge displacements computed during the attrac-

tion phase. In Figure 6.57, we present the results comparing the ratio of the execution

time of CPU implementations with the latency and e�ective latency of the data-parallel

implementation.

As we expected, the results show that there is not a lot of di�erence between the per-

formance of the CPU and the GPU device for our complete graph sample, even when

comparing with the sequential implementation. This CPU is quick enough to iterate

through the edges of this graph. However, when we compare performance on other

graph types then the GPU device pulls away signi�cantly because of their high vertex

count. For instance, in Figure 6.58(b), we observe that the single GPU device is around

94 times quicker than FDGV-t in the grid graph simulation, and, around 126 times and 69

times quicker in the tree and Gnutella network simulations, respectively. Once again this

demonstrates how application of this type is highly suited to a GPU device. When we

compare the overall application performance when using the GPU device, using e�ective

latency performance metric, we still achieve very similar performance gain because all

computation is done on the GPU and the amount of data transferred after execution is

very small. Figure 6.57 shows the results for energy consumption and e�ciency.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 160

 0

 0.45

 0.9

 1.35

 1.8

 2.25

 2.7

 3.15

 3.6

 4.05

 4.5

10,000
20,000

40,000
80,000

160,000
320,000

640,000
1,280,000

2,560,000
5,120,000

T
hr

ou
gh

pu
t (

G
C

U
P

S
)

Total number of pairs

Throughput for single GPU vs. dual GPU execution of GapsMis allowing 3 gaps in alignment
(text width = 250, pattern width = 200)

GTX 680 Single
GTX 680 Dual

HD 7970 Single
HD 7970 Dual

GTX 650 Single
GTX 650 Dual

HD 7750 Single
HD 7750 Dual

(c) 250×200, 3 gaps (throughput)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

10,000
20,000

40,000
80,000

160,000
320,000

640,000
1,280,000

2,560,000
5,120,000

R
at

io

Total number of pairs

Comparison of single GPU vs. dual GPU performance of GapsMis in terms of throughput.
(text width = 250, pattern width = 200, gaps = 3)

NVIDIA GTX 680 AMD HD 7970 NVIDIA GTX 650 AMD HD 7750

(d) 250×200, 3 gaps (ratio)

Figure 6.53: Comparison of how GapsMis-d scales with the addition of a second GPU
device. Results shown here are for an alignment that allows 3 gaps. Throughput is
measured in billions of cell updates per second (GCUPS)

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 161

 0

 55

 110

 165

 220

 275

 330

 385

 440

 495

 550

16 32 64 128 256

T
hr

ou
gh

pu
t (

M
C

U
P

S
)

Number of machines

Comparison of single GPU throughput vs. dual GPU throughput for DPS running 1600 jobs

GTX 680 single
GTX 680 dual

HD 7970 single
HD 7970 dual

GTX 650 single
GTX 650 dual

HD 7750 single
HD 7750 dual

(a) 1600 jobs (throughput)

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

16 32 64 128 256

R
at

io

Number of machines

Ratio of dual GPU throughput to single GPU throughput for DPS running 1600 jobs

NVIDIA GTX 680 AMD HD 7970 NVIDIA GTX 650 AMD HD 7750

(b) 1600 jobs (ratio)

Figure 6.54: Throughput performance comparison of how DPS-d scales with the addi-
tion of a second GPU device for simulation with 1,600 jobs. The work-group size used
for these results is 256 for all GPU devices.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 162

 0

 55

 110

 165

 220

 275

 330

 385

 440

 495

 550

16 32 64 128 256

T
hr

ou
gh

pu
t (

M
C

U
P

S
)

Number of machines

Comparison of single GPU throughput vs. dual GPU throughput for DPS running 3200 jobs

GTX 680 single
GTX 680 dual

HD 7970 single
HD 7970 dual

GTX 650 single
GTX 650 dual

HD 7750 single
HD 7750 dual

(a) 3200 jobs (throughput)

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

16 32 64 128 256

R
at

io

Number of machines

Ratio of dual GPU throughput to single GPU throughput for DPS running 3200 jobs

NVIDIA GTX 680 AMD HD 7970 NVIDIA GTX 650 AMD HD 7750

(b) 3200 jobs (ratio)

Figure 6.55: Throughput performance comparison of how DPS-d scales with the addi-
tion of a second GPU device for simulation with 3,200 jobs. The work-group size used
for these results is 256 for all GPU devices.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 163

 0

 130

 260

 390

 520

 650

 780

 910

 1040

 1170

 1300

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

T
hr

ou
gh

pu
t (

G
F

LO
P

S
)

Comparison of single GPU throughput vs. dual GPU throughput for FDGV

GTX 680 single
GTX 680 dual

HD 7970 single
HD 7970 dual

GTX 650 single
GTX 650 dual

HD 7750 single
HD 7750 dual

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

R
at

io

Ratio of single GPU throughput vs. dual GPU throughput for FDGV

NVIDIA GTX 680 AMD HD 7970 NVIDIA GTX 650 AMD HD 7750

(b) Ratio

Figure 6.56: Comparison of how FDGV-d scales with the addition of a second GPU
device. The results for NVIDIA GPUs are obtained using a work-group size of 512
and using local memory. The AMD GPUs use a work-group size of 256 and without
using local memory. Throughput is measured in billions of �oating-point operations
per second.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 164

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

GapsMis DPS FDGV Velvet

P
ow

er
 (

W
at

ts
)

Application name

Power consumption profile of all applications

Intel i7-3930K 1 thread
Intel i7-3930K 12 threads

GTX 680 single
GTX 680 dual

HD 7970 single
HD 7970 dual

(a) Power consumption in Watts

Figure 6.57: Results of power consumption pro�ling for each application on each
device con�guration.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 165

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

10,000
20,000

40,000
80,000

160,000
320,000

640,000
1,280,000

2,560,000
5,120,000

R
at

io
 (

1
C

P
U

 th
re

ad
 /

1
G

P
U

 d
ev

ic
e)

Total number of pairs

Comparison of GapsMis latency between using 1 CPU thread vs single GPU.
(text width = 250, pattern width = 200, gaps = 3)

GTX 680 Single HD 7970 Single GTX 650 Single HD 7750 Single

(a) Latency (1 CPU thread vs 1 GPU)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

10,000
20,000

40,000
80,000

160,000
320,000

640,000
1,280,000

2,560,000
5,120,000

R
at

io
 (

1
C

P
U

 th
re

ad
 /

1
G

P
U

 d
ev

ic
e)

Total number of pairs

Comparison of GapsMis effective latency between using 1 CPU thread vs single GPU.
(text width = 250, pattern width = 200, gaps = 3)

GTX 680 Single HD 7970 Single GTX 650 Single HD 7750 Single

(b) E�ective latency (1 CPU thread vs 1 GPU)

Figure 6.58: Latency performance of GapsMis-s vs GapsMis-d on single GPU for a
3-gap alignment. The length of target sequences is 250 and 200 for query sequences.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 166

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

10,000
20,000

40,000
80,000

160,000
320,000

640,000
1,280,000

2,560,000
5,120,000

R
at

io
 (

12
 C

P
U

 th
re

ad
s

/ 2
 G

P
U

 d
ev

ic
es

)

Total number of pairs

Comparison of GapsMis latency between using 12 CPU threads vs dual GPU devices.
(text width = 250, pattern width = 200, gaps = 3)

GTX 680 Single HD 7970 Single GTX 650 Single HD 7750 Single

(a) Latency (12 CPU threads vs 2 GPUs)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

10,000
20,000

40,000
80,000

160,000
320,000

640,000
1,280,000

2,560,000
5,120,000

R
at

io
 (

12
 C

P
U

 th
re

ad
s

/ 2
 G

P
U

 d
ev

ic
es

)

Total number of pairs

Comparison of GapsMis effective latency between using 12 CPU threads vs dual GPU devices.
(text width = 250, pattern width = 200, gaps = 3)

GTX 680 Single HD 7970 Single GTX 650 Single HD 7750 Single

(b) E�ective latency (12 CPU threads vs 2 GPUs)

Figure 6.59: Latency performance of GapsMis-t with 12 CPU threads vs GapsMis-d
on dual GPUs for a 3-gap alignment. The length of target sequences is 250 and 200 for
query sequences.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 167

 0

 12

 24

 36

 48

 60

 72

 84

 96

 108

 120

16 32 64 128 256

R
at

io
 (

1
C

P
U

 th
re

ad
 /

1
G

P
U

 d
ev

ic
e)

Number of machines

Ratio of latency for using 1 CPU thread vs. single GPU device for DPS running 3200 jobs

NVIDIA GTX 680 AMD HD 7970 NVIDIA GTX 650 AMD HD 7750

(a) Latency (1 CPU thread vs 1 GPU)

 0

 12

 24

 36

 48

 60

 72

 84

 96

 108

 120

16 32 64 128 256

R
at

io
 (

12
 C

P
U

 th
re

ad
s

/ 1
 G

P
U

 d
ev

ic
e)

Number of machines

Ratio of latency for using 12 CPU threads vs. single GPU device for DPS running 3200 jobs

NVIDIA GTX 680 AMD HD 7970 NVIDIA GTX 650 AMD HD 7750

(b) Latency (12 CPU threads vs 1 GPU)

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 168

 0

 12

 24

 36

 48

 60

 72

 84

 96

 108

 120

16 32 64 128 256

R
at

io
 (

12
 C

P
U

 th
re

ad
s

/ 2
 G

P
U

 d
ev

ic
es

)

Number of machines

Ratio of latency for using 12 CPU threads vs. dual GPU devices for DPS running 3200 jobs

NVIDIA GTX 680 AMD HD 7970 NVIDIA GTX 650 AMD HD 7750

(c) Latency (12 CPU threads vs 2 GPU)

 0

 12

 24

 36

 48

 60

 72

 84

 96

 108

 120

16 32 64 128 256

R
at

io
 (

1
C

P
U

 th
re

ad
 /

1
G

P
U

 d
ev

ic
e)

Number of machines

Ratio of effective latency for using 1 CPU thread vs. single GPU device for DPS running 3200 jobs

NVIDIA GTX 680 AMD HD 7970 NVIDIA GTX 650 AMD HD 7750

(d) E�ective latency (1 CPU thread vs 1 GPU)

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 169

 0

 12

 24

 36

 48

 60

 72

 84

 96

 108

 120

16 32 64 128 256

R
at

io
 (

12
 C

P
U

 th
re

ad
s

/ 1
 G

P
U

 d
ev

ic
e)

Number of machines

Ratio of effective latency for using 12 CPU threads vs. single GPU device for DPS running 3200 jobs

NVIDIA GTX 680 AMD HD 7970 NVIDIA GTX 650 AMD HD 7750

(e) E�ective latency (12 CPU threads vs 1 GPU)

 0

 12

 24

 36

 48

 60

 72

 84

 96

 108

 120

16 32 64 128 256

R
at

io
 (

12
 C

P
U

 th
re

ad
s

/ 2
 G

P
U

 d
ev

ic
es

)

Number of machines

Ratio of effective latency for using 12 CPU threads vs. dual GPU devices for DPS running 3200 jobs

NVIDIA GTX 680 AMD HD 7970 NVIDIA GTX 650 AMD HD 7750

(f) E�ective latency (12 CPU threads vs 2 GPU)

Figure 6.57: Comparison of CPU vs GPU performance of DPS for a problem size
consisting of 3200 jobs.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 170

 0

 12000

 24000

 36000

 48000

 60000

 72000

 84000

 96000

 108000

 120000

16 32 64 128 256

E
ne

rg
y

co
ns

um
pt

io
n

(W
at

t-
se

co
nd

)

Number of machines

Energy consumption for CPU device implementations of DPS running 3200 jobs

i7-3930K CPU (1 thread) i7-3930K CPU (12 threads)

(a) Energy consumption (CPU)

 0

 350

 700

 1050

 1400

 1750

 2100

 2450

 2800

 3150

 3500

16 32 64 128 256

E
ne

rg
y

co
ns

um
pt

io
n

(W
at

t-
se

co
nd

)

Number of machines

Energy consumption for single and dual GPU device modes for DPS running 3200 jobs

GTX 680 single GTX 680 dual HD 7970 single HD 7970 dual

(b) Energy consumption (GPU)

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 171

 0

 0.6

 1.2

 1.8

 2.4

 3

 3.6

 4.2

 4.8

 5.4

 6

16 32 64 128 256

E
ffi

ci
en

cy
 (

M
C

U
P

S
 /

W
at

t)

Number of machines

Efficiency of CPU device implementations of DPS running 3200 jobs

i7-3930K CPU (1 thread) i7-3930K CPU (12 threads)

(c) E�ciency (CPU)

 0

 0.6

 1.2

 1.8

 2.4

 3

 3.6

 4.2

 4.8

 5.4

 6

16 32 64 128 256

E
ffi

ci
en

cy
 (

M
C

U
P

S
 /

W
at

t)

Number of machines

Efficiency for single and dual GPU device modes for DPS running 3200 jobs

GTX 680 single GTX 680 dual HD 7970 single HD 7970 dual

(d) E�ciency (GPU)

Figure 6.57: Comparison of energy consumption and e�ciency for CPU and GPU
devices for DPS. Energy consumption is given in Watt-second while e�ciency is given
in millions of cell updates per second per Watt.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 172

 0

 70

 140

 210

 280

 350

 420

 490

 560

 630

 700

2,048 4,096 8,192 16,384 32,768 65,536

R
at

io

Total number of particles

Comparison of single GPU latency vs CPU implementations of Velocity-Verlet integrator.

GTX 680 vs CPU ST
GTX 680 vs CPU MT

HD 7970 vs CPU ST
HD 7970 vs CPU MT

GTX 650 vs CPU ST
GTX 650 vs CPU MT

HD 7750 vs CPU ST
HD 7750 vs CPU MT

(a) Performance ratio for latency

 0

 1.1

 2.2

 3.3

 4.4

 5.5

 6.6

 7.7

 8.8

 9.9

 11

2,048 4,096 8,192 16,384 32,768 65,536

E
ffi

ci
en

cy
 (

G
F

LO
P

S
 /

W
at

t)

Total number of particles

Efficiency of single GPU device for Velocity-Verlet integrator.

Intel i7-3930K CPU w/ 1 thread
Intel i7-3930K CPU w/ 12 threads

NVIDIA GTX 680
AMD HD 7970

(b) E�ciency

Figure 6.57: (a) Ratio of CPU performance to single GPU performance with respect
to latency. (b) Comparison of CPU vs. GPU in terms of e�ciency measured in billions
of �oating-point operations per Watt.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 173

 0

 3500

 7000

 10500

 14000

 17500

 21000

 24500

 28000

 31500

 35000

2,048 4,096 8,192 16,384 32,768 65,536

E
ne

rg
y

co
ns

um
pt

io
n

(W
at

t-
se

co
nd

)

Total number of particles

Energy consumption of CPU implementations for Velocity-Verlet integrator.

Intel i7-3930K CPU w/ 1 thread Intel i7-3930K CPU w/ 12 threads

(a) CPU energy consumption

 0

 28

 56

 84

 112

 140

 168

 196

 224

 252

 280

2,048 4,096 8,192 16,384 32,768 65,536

E
ne

rg
y

co
ns

um
pt

io
n

(W
at

t-
se

co
nd

)

Total number of particles

Energy consumption of single GPU device for Velocity-Verlet integrator.

NVIDIA GTX 680 AMD HD 7970

(b) GPU energy consumption

Figure 6.57: Comparison of energy consumption for CPU and GPU devices for
Velvet. Energy consumption is measured in Watt-second.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 174

 0

 65

 130

 195

 260

 325

 390

 455

 520

 585

 650

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

R
at

io
Ratio of single GPU latency and effective latency vs. sequential CPU implementation for FDGV

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

0.246916

448.983152

598.194773

327.842198

(a) 1 CPU thread vs. 1 GPU

 0

 65

 130

 195

 260

 325

 390

 455

 520

 585

 650

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

R
at

io

Ratio of single GPU latency and effective latency vs. task-parallel CPU implementation for FDGV

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

1.171586

94.899857

126.201535

69.744185

(b) 12 CPU threads vs. 1 GPU

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 175

 0

 65

 130

 195

 260

 325

 390

 455

 520

 585

 650

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

R
at

io

Ratio of dual GPU latency and effective latency vs. task-parallel CPU implementation for FDGV

GTX 680 latency
GTX 680 eff. lat.

HD 7970 latency
HD 7970 eff. lat.

GTX 650 latency
GTX 650 eff. lat.

HD 7750 latency
HD 7750 eff. lat.

1.160731

145.015677

192.799641

103.979985

(c) 12 CPU threads vs. 2 GPUs

Figure 6.57: Comparison of CPU vs. GPU execution times for FDGV. The largest
value for each graph is shown in the labels within the plot.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 176

 0

 1360

 2720

 4080

 5440

 6800

 8160

 9520

 10880

 12240

 13600

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

E
ne

rg
y

co
ns

um
pt

io
n

(W
at

t-
se

co
nd

)

Energy consumption for CPU device for FDGV

i7-3930K CPU (1 thread) i7-3930K CPU (12 threads)

2.095671

12975.211213 12980.436346

5704.969949

(a) Energy consumption for CPU

 0

 22

 44

 66

 88

 110

 132

 154

 176

 198

 220

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

E
ne

rg
y

co
ns

um
pt

io
n

(W
at

t-
se

co
nd

)

Energy consumption for GPU devices for FDGV

GTX 680 single GTX 680 dual HD 7970 single HD 7970 dual

(b) Energy consumption for GPU

It is interesting to observe that energy consumption is lower when using a single AMD

HD 7970 GPU compared to using two of them. This also translates to higher e�ciency

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 177

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

COMP 3
(V=400, E=79,800)

GRID 3
(V=40,000 E=79,500)

TREE 3
(V=40,000 E=39,999)

GNUT 2
(V=26,518 E=65,369)

E
ffi

ci
en

cy
 (

G
F

LO
P

S
 /

W
at

t)

Comparison of CPU efficiency with GPU efficiency for FDGV

i7-3930K CPU (1 thread)
i7-3930K CPU (12 threads)

GTX 680 single
GTX 680 dual

HD 7970 single
HD 7970 dual

(c) E�ciency of CPU and GPU

Figure 6.57: Comparison of CPU vs. GPU energy consumption and e�ciency for
FDGV. Energy consumption is measured in Watt-second and e�ciency is measured in
GFLOPS/Watt.

as well in terms of performance-per-watt. In general, and as expected, both GPU devices

o�er superior energy e�ciency than the CPU for the graphs with large number of vertices.

Figure 6.58(c) shows that the GPU devices are able to achieve e�ciency of between 7.4

and 9.8 GFLOPS per Watt while the CPU achieves less than 0.5 GFLOPS per Watt

even in multi-threaded con�guration.

Conclusion In this experiment, we compare the performance of sequential and task-

parallel implementations on the CPU with the data-parallel implementation on GPU in

order to evaluate the amount of performance gain we can achieve with the GPU, evaluate

energy consumption of both devices and e�ciency. We have shown that the applications

bene�t greatly from using the GPU in saving both time and energy for almost all problem

instances. This fact is somewhat better appreciated when we consider the amount of work

the GPU devices are able to do with respect to power consumed (performance-per-watt).

Finally, we have also shown that a device performs better when the compute demands

of an application is better suited to the architecture of that device, as is demonstrated

by the performance of the GPU devices and the n-body method applications.

Chapter 6. Parallel Algorithms for Heterogeneous Systems with GPGPUs 178

6.10 Conclusion and future work

In this chapter we presented a data-parallel implementation of GapsMis on the GPU.

The GapsMis tool is a practical application that could someday be integrated into the

pipeline of already existing sequencing and alignment tools. Unfortunately, due to the

time constraint in carrying out this PhD project, we were unable to fully explore some

possible improvements to our implementation and so there is room for improvement

regarding the heterogeneous implementation that uses both CPU and GPU devices.

The �rst aspect of this improvement has to do with executing the back-tracking routine

on the results returned by the GPU for each batch. In our current implementation,

this phase is single-threaded, hence, back-tracking is done sequentially by a single CPU

thread for all results in a batch. This process can be greatly improved by managing the

thread pool more intelligently. So if there are more than one available CPU threads,

apart from the CPU threads responsible for coordinating the GPU command queues,

the back-tracking work-load should be shared by these threads.

The other aspect involves the GPU architecture and parallel computing framework. The

GapsMis application is written with OpenCL 1.0 support in order to provide support for

both NVIDIA and AMD GPUs. However, a future direction will be to have a version

optimized for each hardware using CUDA from version 6 [81] for NVIDIA GPUs and

the OpenCL from version 2.0 [40] for AMD GPUs (both CUDA and OpenCL versions

were released very recently). One of the new features in the latest versions of CUDA

and OpenCL allows the new GPU devices, like the AMD Kaveri APUs and NVIDIA

700 series GPUs, to have a uni�ed view of memory with the CPU device. This helps

to greatly minimize the amount of explicit copy operations necessary between compute

device and host since both devices now have the same view of host memory to some

considerable extent.

Another aspect we were unable to explore in our project is the use of Streaming SIMD

Extensions (SSE) in our implementation of Velvet and FDGV on the CPU. SSE enables

modern CPUs to handle SIMD data instructions which is bene�cial when the same

instruction needs to be performed on multiple data, similar to what the GPU does.

It will be interesting to see how using SSE will a�ect the performance of both CPU

implementations.

Appendix A

More Experiment Results for

Energy-E�cient Flow Time

Scheduling

179

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 180

A.1 Results on job selection strategies

A.1.1 Single processor simulations

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 181

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of SJF and SRPT with a fixed average job size of 1

SJF / SRPT for avgerage job size = 1

(a) Performance ratio for average job size of 1.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of SJF and SRPT with a fixed average job size of 16

SJF / SRPT for avgerage job size = 16

(b) Performance ratio for average job size of 16.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of SJF and SRPT with a fixed average job size of 512

SJF / SRPT for avgerage job size = 512

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 182

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of SJF and SRPT with a fixed average inter-arrival time of 1

SJF / SRPT for avg. inter-arrival time = 1

(d) Performance ratio for average inter-arrival time of 1.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of SJF and SRPT with a fixed average inter-arrival time of 16

SJF / SRPT for avg. inter-arrival time = 16

(e) Performance ratio for average inter-arrival time of 16.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of SJF and SRPT with a fixed average inter-arrival time of 512

SJF / SRPT for avg. inter-arrival time = 512

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: Comparison of the performance ratio based on total �ow time plus energy
of AJC when using SJF vs. SRPT on a single processor. Inter-arrival times are given
by Poisson distribution and job sizes are given by uniform distribution.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 183

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of SJF and SRPT with a fixed average job size of 1

SJF/SRPT for avg. size = 1

(a) Performance ratio for average job size of 1.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of SJF and SRPT with a fixed average job size of 16

SJF/SRPT for avg. size = 16

(b) Performance ratio for average job size of 16.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of SJF and SRPT with a fixed average job size of 512

SJF/SRPT for avg. size = 512

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 184

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of SJF and SRPT with a fixed average inter-arrival time of 1

SJF/SRPT for avg. inter-arrival time = 1

(d) Performance ratio for average inter-arrival time of 1.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of SJF and SRPT with a fixed average inter-arrival time of 16

SJF/SRPT for avg. inter-arrival time = 16

(e) Performance ratio for average inter-arrival time of 16.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of SJF and SRPT with a fixed average inter-arrival time of 512

SJF/SRPT for avg. inter-arrival time = 512

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: Comparison of the performance ratio based on total �ow time plus energy
of AJC when using SJF vs. SRPT on a single processor. Uniform distribution is used
for both inter-arrival times and job sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 185

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of SJF and SRPT with a fixed average job size of 1

SJF/SRPT for avg. size = 1

(a) Performance ratio for average job size of 1.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of SJF and SRPT with a fixed average job size of 16

SJF/SRPT for avg. size = 16

(b) Performance ratio for average job size of 16.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of SJF and SRPT with a fixed average job size of 512

SJF/SRPT for avg. size = 512

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 186

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of SJF and SRPT with a fixed average inter-arrival time of 1

SJF/SRPT for avg. inter-arrival time = 1

(d) Performance ratio for average inter-arrival time of 1.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of SJF and SRPT with a fixed average inter-arrival time of 16

SJF/SRPT for avg. inter-arrival time = 16

(e) Performance ratio for average inter-arrival time of 16.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of SJF and SRPT with a fixed average inter-arrival time of 512

SJF/SRPT for avg. inter-arrival time = 512

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: Comparison of the performance ratio based on total �ow time plus energy
of AJC when using SJF vs. SRPT on a single processor. Uniform distribution is used
for job sizes while Poisson distribution is used for inter-arrival times.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 187

A.1.2 Multi-processor simulations

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 188

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of SJF and SRPT on 4 processors with a fixed average job size of 1
(Uniform distribution)

Round Robin

MinCost

MinSize

MinActiveCount

(a) Performance ratio for average job size of 1.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of SJF and SRPT on 4 processors with a fixed average job size of 16
(Uniform distribution)

Round Robin

MinCost

MinSize

MinActiveCount

(b) Performance ratio for average job size of 16.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of SJF and SRPT on 4 processors with a fixed average job size of 512
(Uniform distribution)

Round Robin

MinCost

MinSize

MinActiveCount

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 189

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average inter-arrival time of 1
(Poisson arrival)

Round Robin

MinCost

MinSize

MinActiveCount

(d) Performance ratio for average inter-arrival time of 1.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average inter-arrival time of 16
(Poisson arrival)

Round Robin

MinCost

MinSize

MinActiveCount

(e) Performance ratio for average inter-arrival time of 16.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average inter-arrival time of 512
(Poisson arrival)

Round Robin

MinCost

MinSize

MinActiveCount

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: Comparison of the performance ratio based on total �ow time plus energy
for AJC when using SJF vs. SRPT on 4 processors. Poisson distribution is used for
the inter-arrival times while uniform distribution is used for the jobs sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 190

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average job size of 1 (Uniform distribution)

Round Robin
MinCost
MinSize

MinActiveCount

(a) Performance ratio for average job size of 1.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average job size of 16 (Uniform distribution)

Round Robin
MinCost
MinSize

MinActiveCount

(b) Performance ratio for average job size of 16.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average job size of 512 (Uniform distribution)

Round Robin
MinCost
MinSize

MinActiveCount

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 191

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average inter-arrival of 1 (Uniform distribution)

Round Robin
MinCost
MinSize

MinActiveCount

(d) Performance ratio for average inter-arrival time of 1.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average inter-arrival of 16 (Uniform distribution)

Round Robin
MinCost
MinSize

MinActiveCount

(e) Performance ratio for average inter-arrival time of 16.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average inter-arrival of 512 (Uniform distribution)

Round Robin
MinCost
MinSize

MinActiveCount

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: Comparison of the performance ratio based on total �ow time plus energy
for AJC when using SJF vs. SRPT on 4 processors. Uniform distribution is used for
both the inter-arrival times and jobs sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 192

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average job size of 1 (Poisson distribution)

Round Robin
MinCost
MinSize

MinActiveCount

(a) Performance ratio for average job size of 1.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average job size of 16 (Poisson distribution)

Round Robin
MinCost
MinSize

MinActiveCount

(b) Performance ratio for average job size of 16.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average job size of 512 (Poisson distribution)

Round Robin
MinCost
MinSize

MinActiveCount

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 193

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Poisson distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average inter-arrival of 1 (Uniform distribution)

Round Robin
MinCost
MinSize

MinActiveCount

(d) Performance ratio for average inter-arrival time of 1.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Poisson distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average inter-arrival of 16 (Uniform distribution)

Round Robin
MinCost
MinSize

MinActiveCount

(e) Performance ratio for average inter-arrival time of 16.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Poisson distribution)

Comparison of SJF and SRPT on 4 processors with a fixed average inter-arrival of 512 (Uniform distribution)

Round Robin
MinCost
MinSize

MinActiveCount

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: Comparison of the performance ratio based on total �ow time plus energy
for AJC when using SJF vs. SRPT on 4 processors. Uniform distribution is used for
the inter-arrival times and Poisson distribution is used for jobs sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 194

A.2 Results on speed functions

A.2.1 E�ectiveness of speed scaling

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 195

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and SF for average job size of 1 (Uniform distribution).

Flow time

Energy

Flow time + energy

(a) Performance ratio for average job size of 1.

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and SF for average job size of 16 (Uniform distribution).

Flow time

Energy

Flow time + energy

(b) Performance ratio for average job size of 16.

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and SF for average job size of 512 (Uniform distribution).

Flow time

Energy

Flow time + energy

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 196

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC and SF for average inter-arrival time of 1 (Poisson arrival).

Flow time

Energy

Flow time + energy

(d) Performance ratio for average inter-arrival time of 1.

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC and SF for average inter-arrival time of 16 (Poisson arrival).

Flow time

Energy

Flow time + energy

(e) Performance ratio for average inter-arrival time of 16.

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

 165

 180

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC and SF for average inter-arrival time of 512 (Poisson arrival).

Flow time

Energy

Flow time + energy

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: E�ectiveness of speed scaling : Comparison of the performance ratio based
on total �ow time plus energy between AJC and a �xed speed heuristic that uses a �xed
speed of 1 on a single processor. Poisson distribution is used for inter-arrival times and
uniform distribution is used for job sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 197

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and SF for average job size of 1 (Uniform distribution).

Flow time
Energy

Flow time + energy

(a) Performance ratio for average job size of 1.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and SF for average job size of 16 (Uniform distribution).

Flow time
Energy

Flow time + energy

(b) Performance ratio for average job size of 16.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and SF for average job size of 512 (Uniform distribution).

Flow time
Energy

Flow time + energy

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 198

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of AJC and SF for average inter-arrival time of 1 (Uniform distribution).

Flow time
Energy

Flow time + energy

(d) Performance ratio for average inter-arrival time of 1.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of AJC and SF for average inter-arrival time of 16 (Uniform distribution).

Flow time
Energy

Flow time + energy

(e) Performance ratio for average inter-arrival time of 16.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of AJC and SF for average inter-arrival time of 512 (Uniform distribution).

Flow time
Energy

Flow time + energy

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: E�ectiveness of speed scaling : Comparison of the performance ratio based
on total �ow time plus energy between AJC and a �xed speed heuristic that uses a �xed
speed of 1 on a single processor. Uniform distribution is used for both inter-arrival times
and job sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 199

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and SF for average job size of 1 (Poisson distribution).

Flow time
Energy

Flow time + energy

(a) Performance ratio for average job size of 1.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and SF for average job size of 16 (Poisson distribution).

Flow time
Energy

Flow time + energy

(b) Performance ratio for average job size of 16.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and SF for average job size of 512 (Poisson distribution).

Flow time
Energy

Flow time + energy

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 200

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Poisson distribution)

Comparison of AJC and SF for average inter-arrival time of 1 (Uniform distribution).

Flow time
Energy

Flow time + energy

(d) Performance ratio for average inter-arrival time of 1.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Poisson distribution)

Comparison of AJC and SF for average inter-arrival time of 16 (Uniform distribution).

Flow time
Energy

Flow time + energy

(e) Performance ratio for average inter-arrival time of 16.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Poisson distribution)

Comparison of AJC and SF for average inter-arrival time of 512 (Uniform distribution).

Flow time
Energy

Flow time + energy

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: E�ectiveness of speed scaling : Comparison of the performance ratio based
on total �ow time plus energy between AJC and a �xed speed heuristic that uses a �xed
speed of 1 on a single processor. Uniform distribution is used inter-arrival times and
Poisson distribution is used for job sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 201

A.2.2 Speed scaling vs. semi-clairvoyant �xed speed function

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 202

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and SD for average job size of 1 (Uniform distribution).

Flow time

Energy

Flow time + energy

(a) Performance ratio for average job size of 1.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and SD for average job size of 16 (Uniform distribution).

Flow time

Energy

Flow time + energy

(b) Performance ratio for average job size of 16.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and SD for average job size of 512 (Uniform distribution).

Flow time

Energy

Flow time + energy

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 203

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC and SD for average inter-arrival time of 1 (Poisson arrival).

Flow time

Energy

Flow time + energy

(d) Performance ratio for average inter-arrival time of 1.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC and SD for average inter-arrival time of 16 (Poisson arrival).

Flow time

Energy

Flow time + energy

(e) Performance ratio for average inter-arrival time of 16.

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC and SD for average inter-arrival time of 512 (Poisson arrival).

Flow time

Energy

Flow time + energy

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: Speed scaling vs. semi-clairvoyant �xed speed function: Comparison of
the performance ratio based on total �ow time plus energy between AJC and a �xed
speed function that has some information about the job set. Poisson distribution is
used for inter-arrival times and uniform distribution is used for job sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 204

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and SD for average job size of 1 (Uniform distribution).

Flow time
Energy

Flow time + energy

(a) Performance ratio for average job size of 1.

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and SD for average job size of 16 (Uniform distribution).

Flow time
Energy

Flow time + energy

(b) Performance ratio for average job size of 16.

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and SD for average job size of 512 (Uniform distribution).

Flow time
Energy

Flow time + energy

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 205

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of AJC and SD for average inter-arrival time of 1 (Uniform distribution).

Flow time
Energy

Flow time + energy

(d) Performance ratio for average inter-arrival time of 1.

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of AJC and SD for average inter-arrival time of 16 (Uniform distribution).

Flow time
Energy

Flow time + energy

(e) Performance ratio for average inter-arrival time of 16.

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of AJC and SD for average inter-arrival time of 512 (Uniform distribution).

Flow time
Energy

Flow time + energy

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: Speed scaling vs. semi-clairvoyant �xed speed function: Comparison of
the performance ratio based on total �ow time plus energy between AJC and a �xed
speed function that has some information about the job set. Uniform distribution is
used for both inter-arrival times and job sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 206

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and SD for average job size of 1 (Poisson distribution).

Flow time
Energy

Flow time + energy

(a) Performance ratio for average job size of 1.

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and SD for average job size of 16 (Poisson distribution).

Flow time
Energy

Flow time + energy

(b) Performance ratio for average job size of 16.

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and SD for average job size of 512 (Poisson distribution).

Flow time
Energy

Flow time + energy

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 207

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Poisson distribution)

Comparison of AJC and SD for average inter-arrival time of 1 (Uniform distribution).

Flow time
Energy

Flow time + energy

(d) Performance ratio for average inter-arrival time of 1.

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Poisson distribution)

Comparison of AJC and SD for average inter-arrival time of 16 (Uniform distribution).

Flow time
Energy

Flow time + energy

(e) Performance ratio for average inter-arrival time of 16.

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Poisson distribution)

Comparison of AJC and SD for average inter-arrival time of 512 (Uniform distribution).

Flow time
Energy

Flow time + energy

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: Speed scaling vs. semi-clairvoyant �xed speed function: Comparison of
the performance ratio based on total �ow time plus energy between AJC and a �xed
speed function that has some information about the job set. Uniform distribution is
used for inter-arrival times and Poisson distribution is used for job sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 208

A.2.3 E�ectiveness of AJC speed spectrum

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 209

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and AJCAVG and AJCMAX for average job size of 1
(Uniform distribution).

Ratio AJCAVG / AJC for avg. job size = 1

Ratio AJCMAX / AJC for avg. job size = 1

AJC

(a) Performance ratio for average job size of 1.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and AJCAVG and AJCMAX for average job size of 16
(Uniform distribution).

Ratio AJCAVG / AJC for avg. job size = 16

Ratio AJCMAX / AJC for avg. job size = 16

AJC

(b) Performance ratio for average job size of 16.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Comparison of AJC and AJCAVG and AJCMAX for average job size of 512
(Uniform distribution).

Ratio AJCAVG / AJC for avg. job size = 512

Ratio AJCMAX / AJC for avg. job size = 512

AJC

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 210

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC with AJCAVG and AJCMAX for average inter-arrival time of 1
(Poisson arrival).

Ratio AJCAVG / AJC for avg. inter-arrival time = 1

Ratio AJCMAX / AJC for avg. inter-arrival time = 1

AJC

(d) Performance ratio for average inter-arrival time of 1.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC with AJCAVG and AJCMAX for average inter-arrival time of 16
(Poisson arrival).

Ratio AJCAVG / AJC for avg. inter-arrival time = 16

Ratio AJCMAX / AJC for avg. inter-arrival time = 16

AJC

(e) Performance ratio for average inter-arrival time of 16.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average job size (Uniform distribution)

Comparison of AJC with AJCAVG and AJCMAX for average inter-arrival time of 512
(Poisson arrival).

Ratio AJCAVG / AJC for avg. inter-arrival time = 512

Ratio AJCMAX / AJC for avg. inter-arrival time = 512

AJC

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: E�ectiveness of AJC speed spectrum: Comparison of AJC to a �xed speed
function that uses, as �xed speed values, the average and maximum speeds obtained
from a prior AJC run. Results show the performance ratio of the total �ow time plus
energy of �xed speed functions vs. AJC. Poisson distribution is used for inter-arrival
times and uniform distribution is used for job sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 211

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and AJCAVG and AJCMAX for average job size of 1 (Uniform distribution).

Ratio AJCAVG / AJC for avg. job size = 1
Ratio AJCMAX / AJC for avg. job size = 1

AJC

(a) Performance ratio for average job size of 1.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and AJCAVG and AJCMAX for average job size of 16 (Uniform distribution).

Ratio AJCAVG / AJC for avg. job size = 16
Ratio AJCMAX / AJC for avg. job size = 16

AJC

(b) Performance ratio for average job size of 16.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and AJCAVG and AJCMAX for average job size of 512 (Uniform distribution).

Ratio AJCAVG / AJC for avg. job size = 512
Ratio AJCMAX / AJC for avg. job size = 512

AJC

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 212

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of AJC with AJCAVG and AJCMAX for average inter-arrival time of 1 (Uniform distribution).

Ratio AJCAVG / AJC for avg. inter-arrival time = 1
Ratio AJCMAX / AJC for avg. inter-arrival time = 1

AJC

(d) Performance ratio for average inter-arrival time of 1.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of AJC with AJCAVG and AJCMAX for average inter-arrival time of 16 (Uniform distribution).

Ratio AJCAVG / AJC for avg. inter-arrival time = 16
Ratio AJCMAX / AJC for avg. inter-arrival time = 16

AJC

(e) Performance ratio for average inter-arrival time of 16.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Uniform distribution)

Comparison of AJC with AJCAVG and AJCMAX for average inter-arrival time of 512 (Uniform distribution).

Ratio AJCAVG / AJC for avg. inter-arrival time = 512
Ratio AJCMAX / AJC for avg. inter-arrival time = 512

AJC

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: E�ectiveness of AJC speed spectrum: Comparison of AJC to a �xed speed
function that uses, as �xed speed values, the average and maximum speeds obtained
from a prior AJC run. Results show the performance ratio of the total �ow time plus
energy of �xed speed functions vs. AJC. Uniform distribution is used for both inter-
arrival times and job sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 213

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and AJCAVG and AJCMAX for average job size of 1 (Poisson distribution).

Ratio AJCAVG / AJC for avg. job size = 1
Ratio AJCMAX / AJC for avg. job size = 1

AJC

(a) Performance ratio for average job size of 1.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and AJCAVG and AJCMAX for average job size of 16 (Poisson distribution).

Ratio AJCAVG / AJC for avg. job size = 16
Ratio AJCMAX / AJC for avg. job size = 16

AJC

(b) Performance ratio for average job size of 16.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Comparison of AJC and AJCAVG and AJCMAX for average job size of 512 (Poisson distribution).

Ratio AJCAVG / AJC for avg. job size = 512
Ratio AJCMAX / AJC for avg. job size = 512

AJC

(c) Performance ratio for average job size of 512.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 214

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Poisson distribution)

Comparison of AJC with AJCAVG and AJCMAX for average inter-arrival time of 1 (Uniform distribution).

Ratio AJCAVG / AJC for avg. inter-arrival time = 1
Ratio AJCMAX / AJC for avg. inter-arrival time = 1

AJC

(d) Performance ratio for average inter-arrival time of 1.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Poisson distribution)

Comparison of AJC with AJCAVG and AJCMAX for average inter-arrival time of 16 (Uniform distribution).

Ratio AJCAVG / AJC for avg. inter-arrival time = 16
Ratio AJCMAX / AJC for avg. inter-arrival time = 16

AJC

(e) Performance ratio for average inter-arrival time of 16.

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32 64 128 256 512

R
at

io

Average job size (Poisson distribution)

Comparison of AJC with AJCAVG and AJCMAX for average inter-arrival time of 512 (Uniform distribution).

Ratio AJCAVG / AJC for avg. inter-arrival time = 512
Ratio AJCMAX / AJC for avg. inter-arrival time = 512

AJC

(f) Performance ratio for average inter-arrival time of 512.

Figure A.0: E�ectiveness of AJC speed spectrum: Comparison of AJC to a �xed speed
function that uses, as �xed speed values, the average and maximum speeds obtained
from a prior AJC run. Results show the performance ratio of the total �ow time plus
energy of �xed speed functions vs. AJC. Uniform distribution is used for inter-arrival
times and Poisson distribution is used for job sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 215

A.3 Results on processor allocation strategies

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 216

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson distribution)

Single-processor vs. multi-processor comparison for average job size of 1
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(a) *MinActiveCount

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 1
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(b) *MinCost

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 1
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(c) *MinSize

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 217

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 1
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(d) RoundRobin

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson distribution)

Single-processor vs. multi-processor comparison for average job size of 16
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(e) *MinActiveCount

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 16
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(f) *MinCost

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 218

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 16
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(g) *MinSize

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 16
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(h) RoundRobin

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson distribution)

Single-processor vs. multi-processor comparison for average job size of 512
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(i) *MinActiveCount

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 219

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 512
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(j) *MinCost

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 512
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(k) *MinSize

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52

1 2 4 8 16 32 64 128 256 512

R
a

ti
o

Average inter-arrival time (Poisson arrival)

Single-processor vs. multi-processor comparison for average job size of 512
(Uniform distribution).

2 processors

4 processors

8 processors

16 processors

(l) RoundRobin

Figure A.-2: Results on processor allocation strategies in terms of average job size:
Figures A.1(a) to A.1(d) show the performance ratios for average job size of 1. Results
for average sizes of 16 and 512 are shown in Figures A.0(g), A.0(h), A.1(e) and A.1(f)
and Figures A.-1(j) to A.-1(l) and A.0(i) respectively. Results measure the performance
ratio of total �ow time plus energy for a single processor vs. multiple processors. Poisson
distribution is used for inter-arrival times and uniform distribution is used for job sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 220

 0

 3

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 1 (Uniform distribution).

2 processors
4 processors
8 processors

16 processors

(a) *MinActiveCount

 0

 5

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 1 (Uniform distribution).

2 processors
4 processors
8 processors

16 processors

(b) *MinCost

 0

 5

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 1 (Uniform distribution).

2 processors
4 processors
8 processors

16 processors

(c) *MinSize

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 221

 0

 5

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 1 (Uniform distribution).

2 processors
4 processors
8 processors

16 processors

(d) RoundRobin

 0

 3

 6

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 16 (Uniform distribution).

2 processors
4 processors
8 processors

16 processors

(e) *MinActiveCount

 0

 5

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 16 (Uniform distribution).

2 processors
4 processors
8 processors

16 processors

(f) *MinCost

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 222

 0

 5

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 16 (Uniform distribution).

2 processors
4 processors
8 processors

16 processors

(g) *MinSize

 0

 5

 10

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 16 (Uniform distribution).

2 processors
4 processors
8 processors

16 processors

(h) RoundRobin

 0

 3

 6

 9

 12

 15

 18

 21

 24

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 512 (Uniform distribution).

2 processors
4 processors
8 processors

16 processors

(i) *MinActiveCount

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 223

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 512 (Uniform distribution).

2 processors
4 processors
8 processors

16 processors

(j) *MinCost

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 512 (Uniform distribution).

2 processors
4 processors
8 processors

16 processors

(k) *MinSize

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 512 (Uniform distribution).

2 processors
4 processors
8 processors

16 processors

(l) RoundRobin

Figure A.-4: Results on processor allocation strategies in terms of average job size:
Figures A.-1(a) to A.-1(d) show the performance ratios for average job size of 1. Results
for average sizes of 16 and 512 are shown in Figures A.-2(g), A.-2(h), A.-1(e) and A.-1(f)
and Figures A.-3(j) to A.-3(l) and A.-2(i) respectively. Results measure the performance
ratio of total �ow time plus energy for a single processor vs. multiple processors.
Uniform distribution is used for both inter-arrival times and job sizes.

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 224

 0

 3

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 1 (Poisson distribution).

2 processors
4 processors
8 processors

16 processors

(a) *MinActiveCount

 0

 5

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 1 (Poisson distribution).

2 processors
4 processors
8 processors

16 processors

(b) *MinCost

 0

 5

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 1 (Poisson distribution).

2 processors
4 processors
8 processors

16 processors

(c) *MinSize

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 225

 0

 5

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 1 (Poisson distribution).

2 processors
4 processors
8 processors

16 processors

(d) RoundRobin

 0

 3

 6

 9

 12

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 16 (Poisson distribution).

2 processors
4 processors
8 processors

16 processors

(e) *MinActiveCount

 0

 5

 10

 15

 20

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 16 (Poisson distribution).

2 processors
4 processors
8 processors

16 processors

(f) *MinCost

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 226

 0

 5

 10

 15

 20

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 16 (Poisson distribution).

2 processors
4 processors
8 processors

16 processors

(g) *MinSize

 0

 5

 10

 15

 20

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 16 (Poisson distribution).

2 processors
4 processors
8 processors

16 processors

(h) RoundRobin

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

 33

 36

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 512 (Poisson distribution).

2 processors
4 processors
8 processors

16 processors

(i) *MinActiveCount

Appendix A. More Results for Energy-E�cient Flow Time Scheduling 227

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 512 (Poisson distribution).

2 processors
4 processors
8 processors

16 processors

(j) *MinCost

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 512 (Poisson distribution).

2 processors
4 processors
8 processors

16 processors

(k) *MinSize

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

1 2 4 8 16 32 64 128 256 512

R
at

io

Average inter-arrival time (Uniform distribution)

Single-processor vs. multi-processor comparison for average job size of 512 (Poisson distribution).

2 processors
4 processors
8 processors

16 processors

(l) RoundRobin

Figure A.-6: Results on processor allocation strategies in terms of average job size:
Figures A.-3(a) to A.-3(d) show the performance ratios for average job size of 1. Results
for average sizes of 16 and 512 are shown in Figures A.-4(g), A.-4(h), A.-3(e) and A.-3(f)
and Figures A.-5(j) to A.-5(l) and A.-4(i) respectively. Results measure the performance
ratio of total �ow time plus energy for a single processor vs. multiple processors.
Uniform distribution is used for inter-arrival times and Poisson distribution is used for
job sizes.

Bibliography

[1] Advanced Micro Devices Inc. AMD Cool 'n' Quiet� technology. http:

//www.amd.com/us/products/technologies/amd-powernow-technology/Pages/

amd-powernow-technology.aspx. Online; 2012.

[2] Advanced Micro Devices Inc. (2013). AMD Accelerated Parallel Processing OpenCL

Programming Guide (chapter 2.1.3).

[3] Alachiotis, N., Berger, S., Flouri, T., Pissis, S. P., and Stamatakis, A. (2013). lib-

gapmis: extending short-read alignments. BMC bioinformatics, 14(Suppl 11):S4.

[4] Albers, S. and Fujiwara, H. (2007). Energy-e�cient algorithms for �ow time mini-

mization. ACM Transactions on Algorithms (TALG), 3(4).

[5] Alidaee, B. and Womer, N. K. (1999). Scheduling with time dependent processing

times: Review and extensions. Journal of the Operational Research Society, 50(7):711�

720.

[6] Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer,

K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., et al. (2006). The

landscape of parallel computing research: A view from berkeley. Technical report,

Technical Report UCB/EECS-2006-183, EECS Department, University of California,

Berkeley.

[7] Atkins, L. (2014). Algorithms for power savings. PhD Thesis, 3:32�57.

[8] Avrahami, N. and Azar, Y. (2003). Minimizing total �ow time and total comple-

tion time with immediate dispatching. In Proceedings of the �fteenth annual ACM

Symposium on Parallel Algorithms and Architectures, pages 11�18. ACM.

[9] Awerbuch, B., Azar, Y., Leonardi, S., and Regev, O. (1999). Minimizing the �ow

time without migration. In Proceedings of the thirty-�rst annual ACM Symposium on

Theory of Computing, pages 198�205. ACM.

228

http://www.amd.com/us/products/technologies/amd-powernow-technology/Pages/amd-powernow-technology.aspx
http://www.amd.com/us/products/technologies/amd-powernow-technology/Pages/amd-powernow-technology.aspx
http://www.amd.com/us/products/technologies/amd-powernow-technology/Pages/amd-powernow-technology.aspx

Bibliography 229

[10] Bader, D. A. and Agarwal, V. (2007). Fftc: fastest fourier transform for the ibm

cell broadband engine. In High Performance Computing�HiPC 2007, pages 172�184.

Springer.

[11] Bansal, N., Chan, H., Lam, T., and Lee, L. (2008). Scheduling for speed bounded

processors. International Colloquium on Automata, Languages and Programming,

pages 409�420.

[12] Bansal, N., Pruhs, K., and Stein, C. (2007). Speed scaling for weighted �ow time.

In 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 805�813.

[13] Barton, C., Flouri, T., Iliopoulos, C. S., and Pissis, S. P. (2013). Gapsmis: Flexible

sequence alignment with a bounded number of gaps. In Proceedings of the International

Conference on Bioinformatics, Computational Biology and Biomedical Informatics,

BCB'13, pages 402:402�402:411, New York, NY, USA. ACM.

[14] Baskiyar, S. and Abdel-Kader, R. (2010). Energy aware dag scheduling on hetero-

geneous systems. Cluster Computing, 13(4):373�383.

[15] Bender, M. A., Cli�ord, R., and Tsichlas, K. (2008). Scheduling algorithms for

procrastinators. Journal of Scheduling, 11(2):95�104.

[16] Brooks, D., Bose, P., Schuster, S., Jacobson, H., Kudva, P., Buyuktosunoglu, A.,

Wellman, J., Zyuban, V., Gupta, M., and Cook, P. (2000). Power-aware microarchi-

tecture: Design and modeling challenges for next-generation microprocessors. Micro,

IEEE, 20(6):26�44.

[17] Browne, S. and Yechiali, U. (1990). Scheduling deteriorating jobs on a single pro-

cessor. Operations Research, 38(3):495�498.

[18] Bunde, D. (2006). Power-aware scheduling for makespan and �ow. In Proceedings

of the eighteenth annual ACM Symposium on Parallelism in Algorithms and Architec-

tures, pages 190�196. ACM.

[19] Chekuri, C., Goel, A., Khanna, S., and Kumar, A. (2004). Multi-processor schedul-

ing to minimize �ow time with ε resource augmentation. In Proceedings of the thirty-

sixth annual ACM Symposium on Theory of Computing, pages 363�372. ACM.

[20] Chekuri, C., Khanna, S., and Zhu, A. (2001). Algorithms for minimizing weighted

�ow time. In Proceedings of the thirty-third annual ACM Symposium on Theory of

Computing, pages 84�93. ACM.

[21] Chen, T., Raghavan, R., Dale, J. N., and Iwata, E. (2007). Cell broadband en-

gine architecture and its �rst implementation�a performance view. IBM Journal of

Research and Development, 51(5):559�572.

Bibliography 230

[22] Cheng, M. B. and Sun, S. J. (2007). A heuristic mbls algorithm for the two semion-

line parallel machine scheduling problems with deterioration jobs. Journal of Shanghai

University, 11(5):451�456.

[23] Cheng, T. C. E. and Ding, Q. (1998). The complexity of single machine scheduling

with release times. Information Processing Letters, 65(2):75�79.

[24] Cheng, T. C. E., Ding, Q., and Lin, B. M. T. (2004). A concise survey of scheduling

with time-dependent processing times. European Journal of Operational Research,

152(1):1�13.

[25] Donald, E. K. (1999). The art of computer programming. Sorting and searching,

3:426�458.

[26] Farkas, K., Grunwald, D., Levis, P., Morrey III, C., and Neufeld, M. (2000). Policies

for dynamic clock scheduling. In Proceedings of the 4th conference on Symposium on

Operating System Design & Implementation-Volume 4, pages 6�6. USENIX Associa-

tion.

[27] Feng, W.-c., Lin, H., Scogland, T., and Zhang, J. (2012). Opencl and the 13 dwarfs:

a work in progress. In Proceedings of the 3rd ACM/SPEC International Conference

on Performance Engineering, pages 291�294. ACM.

[28] FinalWire. AIDA64 Extreme. http://www.aida64.com/product/

aida64-extreme/overview. Online; Accessed 29-April-2014.

[29] Flouri, T., Frousios, K., S Iliopoulos, C., Park, K., P Pissis, S., and Tischler, G.

(2013). Gapmis: a tool for pairwise sequence alignment with a single gap. Recent

patents on DNA & gene sequences, 7(2):84�95.

[30] Foundation, P. S. Python wrapper for OpenCL. https://pypi.python.org/pypi/

pyopencl. Online; Accessed 29-April-2014.

[31] Frishman, Y. and Tal, A. (2007). Multi-level graph layout on the gpu. Visualization

and Computer Graphics, IEEE Transactions on, 13(6):1310�1319.

[32] Fruchterman, T. M. and Reingold, E. M. (1991). Graph drawing by force-directed

placement. Software: Practice and experience, 21(11):1129�1164.

[33] Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman, San Francisco.

[34] Gawiejnowicz, S. (2008). Time-Dependent Scheduling. Springer-Verlag, Berlin.

http://www.aida64.com/product/aida64-extreme/overview
http://www.aida64.com/product/aida64-extreme/overview
https://pypi.python.org/pypi/pyopencl
https://pypi.python.org/pypi/pyopencl

Bibliography 231

[35] Graham, R., Lawler, E., Lenstra, J., and Kan, A. R. (1977). Optimization and ap-

proximation in deterministic sequencing and scheduling: a survey. Proceedings Discrete

Optimization.

[36] Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell System

Technical Journal, 45(9):1563�1581.

[37] Greb, A. and Zachmann, G. (2006). Gpu-abisort: Optimal parallel sorting on stream

architectures. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.

20th International, pages 10�pp. IEEE.

[38] Green500. The Green500 List - June 2014. http: // www. green500. org/ news/

green500-list-june-2014 . [Online; accessed 17-Sept-2014].

[39] Gregg, C. and Hazelwood, K. (2011). Where is the data? why you cannot debate

cpu vs. gpu performance without the answer. In Performance Analysis of Systems and

Software (ISPASS), 2011 IEEE International Symposium on, pages 134�144. IEEE.

[40] Group, K. O. W. (2014). The opencl speci�cation. (version: 2.0. document revision:

26). https: // www. khronos. org/ registry/ cl/ specs/ opencl-2. 0. pdf . [Online;

accessed 15-December-2014].

[41] Gupta, J. N. D. and Gupta, S. K. (1988). Single facility scheduling with nonlinear

processing times. Computers and Industrial Engineering, 14(4):387�393.

[42] Harish, P. and Narayanan, P. (2007). Accelerating large graph algorithms on the

gpu using cuda. In High performance computing�HiPC 2007, pages 197�208. Springer.

[43] Ho, K. I., Leung, J. Y., and Wei, W. (1993). Complexity of scheduling tasks with

time-dependent execution times. Information Processing Letters, 48(6):315�320.

[44] igraph core team. igraph c library by the igraph core team. http: // igraph. org/

c/ . [Online; accessed 15-December-2015].

[45] Intel Corporation. Enhanced Intel® SpeedStep® Technology for the Intel®

Pentium® M Processor. http://download.intel.com/design/network/papers/

30117401.pdf. Online white paper; Accessed 27-May-2014.

[46] Intel Corporation. Intel Hyper-Threading Technology. http://www.intel.

com/content/www/us/en/architecture-and-technology/hyper-threading/

hyper-threading-technology.html. Online; Accessed 21-May-2014.

[47] Ishihara, T. and Yasuura, H. (1998). Voltage scheduling problem for dynamically

variable voltage processors. In Low Power Electronics and Design, 1998. Proceedings.

1998 International Symposium on, pages 197�202. IEEE.

http://www.green500.org/news/green500-list-june-2014
http://www.green500.org/news/green500-list-june-2014
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
http://igraph.org/c/
http://igraph.org/c/
http://download.intel.com/design/network/papers/30117401.pdf
http://download.intel.com/design/network/papers/30117401.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html

Bibliography 232

[48] JogAmp. Java Binding for the OpenCL API. http://jogamp.org/jocl/www/.

Online; Accessed 29-April-2014.

[49] Kang, L. Y. and Ng, C. T. (2007). A note on a fully polynomial-time approximation

scheme for parallel-machine scheduling with deteriorating jobs. International Journal

of Production Economics, 109(1):180�184.

[50] Karp, R. M. and Ramachandran, V. (1989). A survey of parallel algorithms for

shared-memory machines.

[51] Kononov, A. (1997). Scheduling problems with linear increasing processing times. In

Zimmermann U, e. a., editor, Operations Research Proceedings 1996. Selected Papers

of the Symposium on Operations Research (SOR 96), pages 208�212, Berlin. Springer.

[52] Kruskal, C. P., Rudolph, L., and Snir, M. (1990). A complexity theory of e�cient

parallel algorithms. Theoretical Computer Science, 71(1):95 � 132.

[53] Kunnathur, A. S. and Gupta, S. K. (1990). Minimizing the makespan with late start

penalties added to processing times in a single facility scheduling problem. European

Journal of Operational Research, 47(1):56�64.

[54] Kurzak, J., Buttari, A., and Dongarra, J. (2008). Solving systems of linear equations

on the cell processor using cholesky factorization. Parallel and Distributed Systems,

IEEE Transactions on, 19(9):1175�1186.

[55] Kurzak, J. and Dongarra, J. (2009). Qr factorization for the cell broadband engine.

Scienti�c Programming, 17(1):31�42.

[56] Kwon, W. and Kim, T. (2005). Optimal voltage allocation techniques for dynami-

cally variable voltage processors. ACM Transactions on Embedded Computing Systems

(TECS), 4(1):211�230.

[57] Lam, T., Lee, L., To, I., and Wong, P. (2012). Improved multi-processor scheduling

for �ow time and energy. Journal of Scheduling (JoS), 15(1):105�116.

[58] Lawler, E. L. (1973). Optimal sequencing of a single machine subject to precedence

constraints. Management science, 19(5):544�546.

[59] Lebak, J., Reuther, A., and Wong, E. (2005). Polymorphous computing architecture

(pca) kernel-level benchmarks. Technical report, DTIC Document.

[60] Lee, W., Wu, C., and Chung, Y. (2008). Scheduling deteriorating jobs on a single

machine with release times. Computers and Industrial Engineering, 54(3):441�452.

[61] Lenstra, J. K. and Rinnooy Kan, A. (1978). Complexity of scheduling under prece-

dence constraints. Operations Research, 26(1):22�35.

http://jogamp.org/jocl/www/

Bibliography 233

[62] Leonardi, S. and Raz, D. (1997). Approximating total �ow time on parallel machines.

In Proceedings of the twenty-ninth annual ACM Symposium on Theory of Computing,

pages 110�119. ACM.

[63] Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data.

[64] Leung, J. (2004). Handbook of scheduling: algorithms, models, and performance

analysis, volume 1. CRC Press.

[65] Li, M. and Yao, F. (2005). An e�cient algorithm for computing optimal discrete

voltage schedules. SIAM Journal on Computing, 35:658�671.

[66] Liu, C., Wong, T., Wu, E., Luo, R., Yiu, S., Li, Y., Wang, B., Yu, C., Chu, X.,

Zhao, K., et al. (2012). SOAP3: ultra-fast gpu-based parallel alignment tool for short

reads. Bioinformatics, 28(6):878�879.

[67] Liu, Y., Wirawan, A., and Schmidt, B. (2013). Cudasw++ 3.0: accelerating smith-

waterman protein database search by coupling cpu and gpu simd instructions. BMC

bioinformatics, 14(1):117.

[68] Ma, Y., Chu, C., and Zuo, C. (2010). A survey of scheduling with deterministic

machine availability constraints. Computers & Industrial Engineering, 58(2):199�211.

[69] Maeurer, T. and Shippy, D. (2005). Introduction to the cell multiprocessor. IBM

journal of Research and Development, 49(4):589�604.

[70] Marsaglia, G. (1972). Choosing a point from the surface of a sphere. Ann. Math.

Statist., 43(2):645�646.

[71] McCullough, J. and Torng, E. (2004). SRPT optimally utilizes faster machines to

minimize �ow time. In Proceedings of the �fteenth annual ACM-SIAM Symposium on

Discrete Algorithms, pages 350�358. Society for Industrial and Applied Mathematics.

[72] Merrill, D., Garland, M., and Grimshaw, A. (2012). Scalable gpu graph traversal.

In ACM SIGPLAN Notices, volume 47, pages 117�128. ACM.

[73] Mosheiov, G. (1991). V-shaped policies for scheduling deteriorating jobs. Operations

Research, 39(6):979�991.

[74] Mosheiov, G. (1994). Scheduling jobs under simple linear deterioration. Computers

& operations research, 21(6):653�659.

[75] Mosheiov, G. (1998). Multi-machine scheduling with linear deterioration. INFOR:

Information Systems and Operational Research, 36(4):205�214.

http://snap.stanford.edu/data

Bibliography 234

[76] Mudge, T. (2001). Power: A �rst-class architectural design constraint. Computer,

34(4):52�58.

[77] National Center for Biotechnology Information (NCBI) (2014a). ftp://ftp.ncbi.

nih.gov/blast/matrices/BLOSUM62.

[78] National Center for Biotechnology Information (NCBI) (2014b). GenBank FTP.

ftp://ftp.ncbi.nih.gov/ncbi-asn1.

[79] Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the

search for similarities in the amino acid sequence of two proteins. Journal of Molecular

Biology, 48(3):443 � 453.

[80] Ng, C., Li, S., Cheng, T. E., and Yuan, J. (2010). Preemptive scheduling with simple

linear deterioration on a single machine. Theoretical Computer Science, 411(40):3578�

3586.

[81] NVIDIA. Uni�ed memory in cuda 6. http: // devblogs. nvidia. com/

parallelforall/ unified-memory-in-cuda-6/ . [Online; accessed 15-December-

2014].

[82] Nvidia Corporation (2013). CUDA C Programming Guide.

[83] Ojiaku, J., Thomas, D., and Wong, P. (2013). Energy-e�cient �ow time scheduling

: An experimental study. In 11th Workshop on Models and Algorithms for Planning

and Scheduling Problems.

[84] OpenMP®. The OpenMP API speci�cation for parallel programming. http://

openmp.org/wp/. Online; Accessed 31-Jan-2014.

[85] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., and Phillips, J. C.

(2008). Gpu computing. Proceedings of the IEEE, 96(5):879�899.

[86] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E.,

and Purcell, T. J. (2007). A survey of general-purpose computation on graphics hard-

ware. In Computer graphics forum, volume 26, pages 80�113. Wiley Online Library.

[87] Phillips, C., Stein, C., Torng, E., and Wein, J. (1997). Optimal time-critical schedul-

ing via resource augmentation. In Proceedings of the twenty-ninth annual ACM Sym-

posium on Theory of Computing, page 149. ACM.

[88] Pillai, P. and Shin, K. (2001). Real-time dynamic voltage scaling for low-power

embedded operating systems. In ACM SIGOPS Operating Systems Review, volume 35,

pages 89�102. ACM.

ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM62
ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM62
ftp://ftp.ncbi.nih.gov/ncbi-asn1
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://openmp.org/wp/
http://openmp.org/wp/

Bibliography 235

[89] Project, C. Cloo. http://cloo.sourceforge.net/. Online; Accessed 29-April-

2014.

[90] Pruhs, K. (2007). Competitive online scheduling for server systems. ACM SIG-

METRICS Performance Evaluation Review, 34(4):52�58.

[91] Pruhs, K., Sgall, J., and Torng, E. (2004). Online scheduling. In Leung, J., editor,

Handbook of Scheduling: Algorithms, Models, and Performance Analysis, pages 15.1�

15.42. Chapman and Hall, Boca Raton.

[92] Ren, C. R. and Kang, L. Y. (2007). An approximation algorithm for parallel machine

scheduling with simple linear deterioration. Journal of Shanghai University, 11(4):151�

154.

[93] Rice, P., Longden, I., and Bleasby, A. (2000). Emboss: the european molecular

biology open software suite. Trends in genetics, 16(6):276�277.

[94] Satish, N., Harris, M., and Garland, M. (2009). Designing e�cient sorting algorithms

for manycore gpus. In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE

International Symposium on, pages 1�10. IEEE.

[95] Schmidt, G. (2000). Scheduling with limited machine availability. European Journal

of Operational Research, 121(1):1�15.

[96] Sengupta, S., Harris, M., Zhang, Y., and Owens, J. D. (2007). Scan primitives for

gpu computing. In Graphics Hardware, volume 2007, pages 97�106.

[97] Shari�, M., Shahrivari, S., and Salimi, H. (2013). Pasta: a power-aware solution

to scheduling of precedence-constrained tasks on heterogeneous computing resources.

Computing, 95(1):67�88.

[98] Shi, H., Schmidt, B., Liu, W., and Muller-Wittig, W. (2009). Accelerating error

correction in high-throughput short-read dna sequencing data with cuda. In Parallel &

Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, pages

1�8. IEEE.

[99] Sidney, J. B. (1975). Decomposition algorithms for single-machine sequencing with

precedence relations and deferral costs. Operations Research, 23(2):283�298.

[100] Sintorn, E. and Assarsson, U. (2008). Fast parallel gpu-sorting using a hybrid

algorithm. Journal of Parallel and Distributed Computing, 68(10):1381�1388.

[101] Smith, T. F. and Waterman, M. S. (1981). Identi�cation of common molecular

subsequences. Journal of molecular biology, 147(1):195�197.

http://cloo.sourceforge.net/

Bibliography 236

[102] Smith, R. AMD's Graphics Core Next Preview: AMD's New

GPU, Architected For Compute. http://www.anandtech.com/show/4455/

amds-graphics-core-next-preview-amd-architects-for-compute. Online;

Accessed 22-May-2014.

[103] Sutter, H. (2005). The free lunch is over: A fundamental turn toward concurrency

in software. http://www.gotw.ca/publications/concurrency-ddj.htm.

[104] Swope, W. C., Andersen, H. C., Berens, P. H., and Wilson, K. R. (1982). A com-

puter simulation method for the calculation of equilibrium constants for the formation

of physical clusters of molecules: Application to small water clusters. The Journal of

Chemical Physics, 76(1):637�649.

[105] The Khronos Group. Khronos OpenCL Registry. https://www.khronos.org/

registry/cl/. Online; Accessed 29-April-2014.

[106] Top500. Top 500 List - June 2014. http: // www. top500. org/ list/ 2014/ 06/ .

[Online; accessed 17-Sept-2014].

[107] Vineet, V. and Narayanan, P. (2008). Cuda cuts: Fast graph cuts on the gpu.

In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW'08. IEEE

Computer Society Conference on, pages 1�8. IEEE.

[108] Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., and Yelick, K. (2006).

The potential of the cell processor for scienti�c computing. In Proceedings of the 3rd

conference on Computing frontiers, pages 9�20. ACM.

[109] Woligroski, D. AMD Radeon HD 7970: Promising Perfor-

mance, Paper-Launched. http://www.tomshardware.com/reviews/

radeon-hd-7970-benchmark-tahiti-gcn,3104.html. Online; Accessed 22-May-

2014.

[110] Xbit Laboratories. Intel Pentium 4 3.06GHz CPU with Hyper-Threading Technol-

ogy: Killing Two Birds with a Stone... http://www.xbitlabs.com/articles/cpu/

display/pentium4-3066.html. Online; Accessed 21-May-2014.

[111] Yao, F., Demers, A., and Shenker, S. (1995). A scheduling model for reduced cpu

energy. In 36th IEEE Symposium on Foundations of Computer Science, pages 374�382.

[112] Yu, S., Ojiaku, J., Wong, P., and Xu, Y. (2012). Online makespan scheduling of

linear deteriorating jobs on parallel machines. In Theory and Applications of Models

of Computation, pages 260�272. Springer Berlin Heidelberg.

http://www.anandtech.com/show/4455/amds-graphics-core-next-preview-amd-architects-for-compute
http://www.anandtech.com/show/4455/amds-graphics-core-next-preview-amd-architects-for-compute
http://www.gotw.ca/publications/concurrency-ddj.htm
https://www.khronos.org/registry/cl/
https://www.khronos.org/registry/cl/
http://www.top500.org/list/2014/06/
http://www.tomshardware.com/reviews/radeon-hd-7970-benchmark-tahiti-gcn,3104.html
http://www.tomshardware.com/reviews/radeon-hd-7970-benchmark-tahiti-gcn,3104.html
http://www.xbitlabs.com/articles/cpu/display/pentium4-3066.html
http://www.xbitlabs.com/articles/cpu/display/pentium4-3066.html

Bibliography 237

[113] Yung, L. S., Yang, C., Wan, X., and Yu, W. (2011). Gboost: a gpu-based tool for

detecting gene�gene interactions in genome�wide case control studies. Bioinformatics,

27(9):1309�1310.

[114] Zhou, Y., Liepe, J., Sheng, X., Stumpf, M. P., and Barnes, C. (2011). Gpu accel-

erated biochemical network simulation. Bioinformatics, 27(6):874�876.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview
	1.2 Background on Scheduling
	1.2.1 Inputs and outputs
	1.2.2 The || scheduling notation
	1.2.3 Classes of scheduling problems
	1.2.4 Input structure and constraints

	1.3 Problems Studied and related work
	1.3.1 Online scheduling of deteriorating jobs on parallel machines
	1.3.2 Energy-efficient scheduling of precedence-constrained jobs on parallel machines
	1.3.3 Energy-efficient flow time scheduling
	1.3.4 Parallel and heterogeneous computing with graphics processors

	1.4 Contribution of thesis

	2 Online Scheduling of Linear Deteriorating Jobs on Parallel Machines
	2.1 Introduction
	2.2 Preliminaries
	2.2.1 Problem definition
	2.2.2 Property of simple linear deterioration

	2.3 New lower bounds in online-time model
	2.3.1 List Scheduling on m parallel machines
	2.3.2 Lower bounds for deterministic online scheduling

	2.4 Conclusion

	3 Energy-Efficient Scheduling of Jobs with Precedence Constraints
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Problem definition

	3.3 Discussion
	3.3.1 A dynamic programming solution
	3.3.2 Algorithm DPS

	3.4 Conclusion and future work

	4 Energy-Efficient Flow Time Scheduling
	4.1 Introduction
	4.2 Problem Definition
	4.3 Heuristics
	4.3.1 Job selection strategies
	4.3.2 Speed functions
	4.3.3 Processor allocation strategies

	4.4 Simulations Conducted and Results
	4.4.1 Preliminaries
	4.4.2 Results on job selection strategies
	4.4.3 Results on speed functions
	4.4.4 Results on processor allocation strategies
	4.4.5 Conclusion

	5 Background on Parallel Computing with General Purpose GPUs
	5.1 Introduction
	5.2 Comparison of CPU and GPU Hardware Architecture
	5.2.1 Memory management in a computer system
	5.2.2 Stream processing hardware implementation
	5.2.3 Scheduling - threads, warps and wavefronts

	5.3 Vendor-specific SIMD implementations
	5.3.1 The Graphics Core Next architecture (AMD)
	5.3.2 The Kepler architecture (NVIDIA)

	5.4 GPU Computing Framework
	5.4.1 The Open Computing Language

	6 Parallel Algorithms for Heterogeneous Systems with GPGPUs
	6.1 Introduction
	6.2 Theoretical analysis of parallel algorithms
	6.3 Naming convention and notations
	6.4 DPS: energy-aware scheduler for precedence-constrained jobs on parallel machines
	6.4.1 Sequential approach
	6.4.2 Task-parallel approach
	6.4.3 Data-parallel approach

	6.5 GapsMis: a tool for sequence alignment with bounded number of gaps
	6.5.1 Introduction
	6.5.2 Problem definition
	6.5.3 Sequential GapsMis Algorithm
	6.5.4 Task-parallel approach
	6.5.5 Data-parallel approach

	6.6 Velvet: Velocity-Verlet integrator
	6.6.1 Sequential approach
	6.6.2 Task-parallel approach
	6.6.3 Data-parallel approach

	6.7 FDGV: Force-directed graph visualizer
	6.7.1 Sequential approach
	6.7.2 Task-parallel approach
	6.7.3 Data-parallel approach

	6.8 Preliminary discussion
	6.8.1 Evaluation model and performance metrics
	6.8.2 Hardware and software specifications
	6.8.3 Input data for experiments
	6.8.4 Aims of experiments conducted

	6.9 Discussion of experiment results
	6.9.1 Results on device-host communication overheads
	6.9.2 Results on effects of work-group size
	6.9.3 Results on effects of local memory
	6.9.4 Results on benefits of pre-pinned memory and DMA
	6.9.5 Results on application scaling with multi-GPUs
	6.9.6 Results on comparison of CPU vs. GPU performance

	6.10 Conclusion and future work

	A More Experiment Results for Energy-Efficient Flow Time Scheduling
	A.1 Results on job selection strategies
	A.1.1 Single processor simulations
	A.1.2 Multi-processor simulations

	A.2 Results on speed functions
	A.2.1 Effectiveness of speed scaling
	A.2.2 Speed scaling vs. semi-clairvoyant fixed speed function
	A.2.3 Effectiveness of AJC speed spectrum

	A.3 Results on processor allocation strategies

	Bibliography

