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ABSTRACT 
End binding protein 1 (EB1) is a key element in the complex network of protein-protein inter-

actions at microtubule growing ends which has a fundamental role in microtubule polymeri-

sation. EB1 regulates the microtubule dynamic behaviour, through protein recruitment, and 

has been associated with several disease states, such as cancer and neuronal diseases. Diverse 

EB1 binding partners are recognised through a conserved SxIP motif within an intrinsically 

disordered region enriched with basic, serine and proline residues. Crystal structure of EB1 in 

complex with a peptide containing the SxIP motif demonstrated that the isoleucine-proline 

dipeptide is bound into a well-defined cavity of EB1 that may be suitable for small molecule 

targeting. 

The research described herein reports the use of a multidisciplinary approach for the discovery 

of the first small molecule scaffold to target the EB1 recruiting domain. This approach 

included virtual screening (structure and ligand based design) and multiparameter compound 

selection. Solution NMR structures of the C-terminal domain of EB1 in the free form and in 

complex with the small molecule are also reported. A key finding from these structures is that 

the hydrophobic binding pocket reported to be essential for recruiting SxIP proteins is not pre-

formed but highly dynamic in solution. This brings new insights to the protein recruitment 

mechanism regulated by EB1 and for the identification of new small molecule inhibitors for 

the EB1-SxIP protein interactions. 

The interaction of short length peptides containing the SxIP motif with EB1 was characterised 

through the use of solution NMR and ITC methods. The contributions for the binding of the 

SxIP motif and neighbouring residues to EB1 were quantified in terms of binding energy. A 

structural model shows that the binding pocket of EB1 is largely extended when in complex. 

This research describes not only the first chemical scaffold that targets EB1, it details 

important structural features of the interaction of this protein with SxIP containing peptides. 

This structural information provides fundamental understanding of this interaction that can be 

exploited in the future to discover higher affinity ligands. 
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INTRODUCTION  

1.1 Role of EB1 in +TIP targeting 

 Microtubules 

Cells undergo substantial changes in shape as they grow, divide and move, and the 

cytoskeleton is the principal molecular machinery responsible for these functions.1 The 

cytoskeleton due to its molecular complexity can be divided into three different 

functional subsystems – actin filaments, microtubules (MTs) and intermediate 

filaments.1 These cytoskeletal components interact dynamically to control 

fundamental processes including mitosis, cell division, intracellular transport, cell 

motility and the regulation of cell organization.2 To understand these mechanisms 

represents a challenge and is the focus of intense research. Furthermore, cytoskeletal 

proteins are implicated in many human pathological conditions, including cancer, 

infection, cardiovascular, inflammatory and neurodegenerative diseases.2  

Many of the cytoskeletal activities rely on MTs.2 These cellular polymers are key 

cytoskeleton components of eukaryotic cells playing important roles in many cellular 

processes, including intracellular transport, cell motility, meiosis and mitosis.3,4 Their 

functions include cell shape, cytoplasm organization by positioning organelles, cell 

transport of other cellular entities and cell polarity. In an interphase cell the MT 

cytoskeleton is also critical for cell motility and a key constituent of cilia and flagella. 

During cell division, the MT rearrange into a spindle structure that segregates 

chromosomes.5  

These functions rely on a specific MT ability of fast polymerization dynamics, with 

network-wide turnover rates on the order of minutes - known as “dynamic 

instability”.1,6 This “dynamic instability” comprises periods of persistent microtubule 

growth interrupted by occasional switching to rapid shrinkage – microtubule 

catastrophe – and then by switching back from shrinkage to growth – microtubule 

rescue.3,7  

Structurally, MTs are made from subunits of α and β-tubulin heterodimers which 

assemble, in a head to tail manner, into a polar protofilament.5 The lateral and parallel 
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association of ~13 protofilaments forms a hollow, polar cylinder. These lateral 

contacts are homotypic (α - α and β - β contacts), except at a single site or ‘‘seam’’ 

(with α - β and β - α contacts) (Figure 1.1).8 The polymerisation occurs upon the 

binding of guanosine triphosphate (GTP) to the nucleotide exchangeable site (E-site) 

in β-tubulin. The GTP bound at the N-site (non-exchangeable) in α-tubulin is buried 

at the intradimer interface where it plays a structural role.8 Only dimers bound to GTP 

can polymerise, but upon polymerisation the GTP is readily hydrolysed to guanosine 

diphosphate (GDP) – making these subunits very unstable.9,10 The MT structure is 

stabilised by the GTP subunits at the growing end and a possible loss of GTP-tubulin, 

allows the GDP-tubulin to curve, spreading out and the microtubule shrinks.9,11,12 – 

Figure 1.2.  

 

Figure 1.1 – Schematic representation of the MT structure. β-tubulin is represented in pink and α-tubulin 

in green. 

 

Figure 1.2 - Microtubules grow by addition of GTP-tubulin subunits (red) and microtubule shrinking 

by GDP-tubulin (blue) curving.   

In most cells, MT polymerization is initiated at specific locations (e.g., the centrosome), 

generating microtubule arrays of fixed polarity.13 Polymerization is a polar process 

that reflects the polarity of the tubulin dimer, which in turn dictates the polarity of the 

MT. In other words, purified tubulin polymerizes more quickly from one end, the plus 

end, which is terminated by the β-subunit. The opposite end can slowly grow in vitro, 

though in cells it is usually stabilised or serves as the site of disassembly. It is known 
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as the minus end, and is ended by the α-subunit.14 Both MT ends can interact with sets 

of specific factors that control their dynamic status, intracellular localization and 

attachment to cellular structures.15  

These cellular factors can stabilise or destabilise the MT polymer, controlling its 

dynamic behaviour and can be placed into two categories. The first category 

constituted by motors and microtubule associated proteins (MAPs) bind to MTs and 

alter MT properties in a non-covalent way; the second category includes tubulin post-

translational modification enzymes that chemically modify the tubulin subunits.9,16 For 

the scope of this project the focus will be only on the first category – MAPs. 

Microtubule stability is controlled, to a large extent, by MAPs. For instance, the 

mitotic centromere-associated kinesins (MCAKs) bind to MT ends, destabilising 

them.5 When MCAKs bind to MTs they induce the formation of the curl, weakening 

the association of the terminal GTP-tubulin dimer and promoting the release of GTP 

subunits from the end, which will release the GDP subunits constituent of the 

lattice.5,14 On the other hand, the plus-end-binding proteins (or +TIPs), a structurally 

and functionally diverse group of proteins that are distinguished by their specific 

accumulation at microtubule plus ends, stabilise MTs during their growth phase.14,17 

+TIPs also regulate interactions between MTs and other intracellular structures, for 

instance the anchorage of microtubules the kinetochore of chromosomes, or 

organelles.12,18,19 Loss or inhibition of these proteins compromises microtubule growth 

in many cell types.13  

 Microtubule plus end binding proteins - +TIPs 

As just described, +TIPs are a diverse group of proteins that accumulate specifically 

at the MT plus ends (growing ends). There are two general mechanisms by which 

proteins can target the plus ends of MTs, vectorial transport and direct recruitment. 

They are not mutually exclusive, and both may contribute to the plus-end targeting of 

proteins.20 First, kinesin motor proteins can power the vectorial transport of proteins 

along the MT body to the plus end. Second, a subset of +TIPs bind to unique structural 

features present at the plus end versus the body of the MT, and can recruit additional 

proteins to these sites. The prototypical example of this class of +TIPs are end-binding 

proteins (EBs), which are involved in recruiting binding partners.20  
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In order for +TIPs discriminate between MT lattice and the growing ends there must 

exist a structural difference. The presence of a GTP cap was initially reported as a 

possible structural feature for plus end recognition. However, +TIPs form a comet-like 

accumulation within 0.5–2 µm distance of the centre of the microtubule, a region larger 

than the supposed length of the GTP cap. Alternatively, +TIPs might recognize tubulin 

sheets or individual protofilaments due to their curvature, or might bind certain tubulin 

sites, that are hidden inside the tube or obscured by inter-protofilament contacts in the 

rest of the microtubule.2 

Since the discovery of cytoplasmic linker protein of 170 kDa - CLIP170, the first 

identified +TIP, several structurally unrelated families of +TIPs have been 

identified.2,14 There are more than 20 families of +TIPs, ranging in size from a few 

hundred up to thousands of residues, multi-domain and/or multi-subunit. Despite their 

diversity, they often co-localise and share common activities, being difficult to classify 

in terms of function. Alternatively, conserved modular binding domains, repeat 

sequences and motifs can be used to group these proteins.  

Table 1.1 - Principal +TIPs families and main interactions.12 

Family Examples Interactions 
EB proteins  EB1 

EB2 
EB3 

Other +TIPs 

   
CAP-Gly domain 
proteins 

CLIP-170 
CLIP-115 
p150glued 
KIF13B 

EB1, CLIP-170, CLIP-115, p150glued, MCAK, 
CLASP1 and 2 
EB1, CLIP-170, CLASP1 and 2 
EB1, CLIP-170 

   
SxIP proteins CLASP1/CLASP2 

APC 
MACF 
STIM1 
MCAK 

EB1, CLIP-170, CLIP-115, ACF7 
EB1, MCAK 
EB1, CLASP1 and 2 
EB1 
EB1, CLIP-170, APC 

   
TOG domain CLASPs 

XMAP215/Dis1 
EB1 

The detailed nature, specificity, and modes of regulation of their interactions are 

largely unknown. It has recently been established, however, that the protein-protein 

interaction scaffold of +TIP networks relies on a small number of protein modules and 

linear sequence motifs that are highly conserved throughout eukaryotic organisms. 

Prominent examples are the EB-like domain of end binding proteins, the cytoskeleton-

associated protein glycine-rich (CAP-Gly) domain, and short and acidic carboxy-

terminal sequence motifs – SxIP proteins. Therefore, the simplest way to classify 
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+TIPs into families is by using their domain composition – Table 1.1.2,18,21 

Figure 1.3 describes the main domains and +TIPs that will be described in the next 

sub-sections.  

 

Figure 1.3 – Main +TIPS and their conserved domains. White polygon means any other 

domains/structural features that are relevant for +TIPs interactions networks. 

1.1.2.1 End binding proteins 
Three end-binding family proteins – EB1, EB2 and EB3, have been reported. EB 

family members contain an N-terminal calponin homology (CH) domain that directly 

recognizes a structural feature of growing microtubule ends, and a C-terminal EB 

homology (EBH) domain that mediates binding to other +TIPs.2,22 EB1 was shown to 

promote MT polymerization and interacts directly with many other +TIPs and 

cytoskeletal proteins such as CLIP170, the dynactin large subunit p150Glued, the mitotic 

centromere-associated kinesin (MCAK), the microtubule-actin crosslinking factor 

(MACF) and the adenomatous polyposis coli (APC).23 EB1 and EB3 share a high 

sequence conservation and can form heterodimers.24 Moreover, EB3 binding site is 

very similar to the one observed for EB1 as demonstrated by the structure published 

in 2012 by Bjelić and co-workers – PDB code 3TQ7.24 EB2, opposite to what was 

observed to EB1 and EB3, does not bind to APC, indicating possible structural 

differences. 
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In terms of expression in different cell lines there are also differences. EB1 is 

expressed at constant levels in a variety of cell lines, whereas EB2 and EB3 vary. EB3 

is especially abundant in the central nervous system and in muscles.17,25 It is not 

completely clear what are the roles of EB2 and EB3, but all three end-binding proteins 

are expressed in mammalian cells. Depletion of EB1 had no effect on EB3 localisation, 

but led to the distribution of EB2. Depletion both EB2 and EB3 had no effect on the 

distribution of the remaining EBs. Finally, simultaneous depletion of EB1 and EB3 

caused a redistribution of EB2 similar to the one induced by depletion of EB1 alone.26  

1.1.2.2 CAP-Gly domain proteins 
The cytoskeleton-associated protein glycine rich (CAP-Gly) domain-containing 

proteins have an N-terminal CAP-Gly globular domain containing a unique 

hydrophobic cavity that encompasses the highly conserved GKNDG sequence motif 

and several characteristic glycine residues. The C-terminal region, can recruit various 

cargos, namely for CLIP170 that contains two tandemly repeated metal binding motifs 

(zinc knuckles) and a C-terminal EEY/F. The EEY/F motif is present in the end of the 

C-terminus tail of EB1 and was shown to be a recruiting domain for CAP-Gly 

domains.2,21,27  

Mutations in the CAP-Gly domain of p150Glued subunit of dynactin are associated with 

various neurological disorders. For example, a G59S point mutation has been 

identified in patients with distal spinal bulbar muscular atrophy (dSBMA). In vivo and 

in vitro studies suggest that this mutation causes misfolding of the CAP-Gly motif, and 

reduces the binding affinity of the mutant to microtubules. Five other mutations, G71A, 

G71E, G71R, T72P and Q74P, were identified in patients diagnosed with Perry's 

syndrome, a severe neurological disease whose manifestations are parkinsonism and 

weight loss accompanied by depression, social withdrawal and suicidal attempts. It 

was firstly hypothesized that, as the result of all these mutations, binding to 

microtubules was disrupted, but more recent studies indicate that the binding affinity 

to microtubules is very similar or even higher for these mutants. Instead, the binding 

to EB1 is abrogated.28  

The CAP-Gly domain seems to have two distinct regions that bind to EB1. The first 

comprises the GKNDG motif and several aromatic residues, Phe252, Trp57 and Phe88. 

This site, that has been predicted to interact with MTs, is also shown to be in contact 
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with the EEY motif of EB1. The second interface consists of the β2-β3 loop, 
49ATLFLAT54 showing interactions with the EB1-like motif, i.e. the hydrophobic 

cavity of EB1, with the Ala49 inserted in the pocket.  

Despite the existence of a binding site to MTs in the CLAP-Gly domain, the complete 

deletion of the binding sites in EB1 results in activation of MT polymerisation by EB1 

alone. An explanation is possibly the fact that the EB1 C-terminal acidic tail has a 

unique sequence – 262QEEQEEY268 – very similar to the α-tubulin C-terminus – 
445EEEGEEY451, and if the region that recognises this sequence of EB1 is deleted the 

MT recognition region is also lost.29 

1.1.2.3 SxIP proteins 
Several +TIPs do not appear to use a defined and structured domain for targeting the 

MT ends. Instead, they contain extensive sequence regions that are enriched with basic 

and serine residues. These regions, which are predicted to be flexible, contain a EB1-

binding motif – SxIP, and track the plus ends with EB1 dependency.12,30,31 These are 

known as the SxIP proteins. Included in this vast group one can find the cytoplasmic 

linker associated proteins (CLASPs), APC, MACF, the calcium sensor (STIM1) and 

MCAK.  

Sequence analysis for a large number of these proteins revealed that they are very 

diverse in terms of domain composition but contain low complexity sequence regions, 

rich in basic, serine and proline residues, usually towards the C-terminus.  The SxIP 

motif also termed as microtubule tip localization signal, also shows some variability 

across SxIP proteins21,31,32 and it is likely to occur in many more proteins than the 

+TIPs identified so far.12 The isoleucine (or leucine) and proline residues are involved 

in hydrophobic interactions and are the most important, being also more conserved.22 

The serine at position 1 contributes to hydrogen bonds with conserved residues 

surrounding the EB hydrophobic groove, but recent data indicate that it is not required 

for plus-end tracking.22 Table 3 demonstrates this variability in known, probable and 

potential SxIP motifs found in a wide range of proteins with different cellular functions. 

Less well conserved variations of the SxIP motif can mediate plus-end tracking, and 

many +TIPs contain multiple functional SxIP motifs that act in concert and increase 

the affinity for EB1. CLASP2, for example, contains two adjacent SxIP motifs, which 

increases the affinity of this +TIP for growing microtubule plus ends. CLASP2 is 
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monomeric and one CLASP2 molecule is therefore able to bind to the two EBH 

domains in an EB dimer.12,26  

Table 1.2 – EB1 recruited +TIPs containing confirmed or potential SxIP motifs. Adapted from  Kumar 

& Wittmann, 2012.22 

Protein SxIP motifs Uniprot 
identifier Proposed functions 

+TIPs with confirmed SxIP motifs 

CLASP1, CLASP2 SKIP 
SRIP 

Q7Z460 
O75122 

MT capture, dynamics and 
nucleation at the Golgi apparatus 

MACF1 SKIP Q9UPN3 MT capture 

APC SQIP P25054 MT capture; mutated in colon 
adenocarcinoma 

STIM1 TRIP Q13586 

ER-microtubule interactions; 
activator of store-operated Ca2+ 
entry; mutated in particular 
imunodeficiencies 

MCAK SKIP Q996610 MT depolymerase 

KIF18B SFLP 
SSLP Q86Y91 MT depolymerase 

SLAIN2 

GGIP 
SAIP 
SGLP 
GGIP 
RSLP 

Q9P270 MT dynamics; recruits 
XMAP215/ch-TOG to MT plus ends 

Sentin/SSP2 
(Drosophila) TGIP QVUA5 

MT dynamics; recruits 
XMAP215/ch-TOG homolog to MT 
plus ends 

CDK5RAP2 SRLP Q96SN8 
Centrossome maturation; mutated in 
autosomal recessive primary 
microcephaly 

Kebab (Drosophila) TKIP Q9VQ69 Kinetocore component; unknown 
function 

Ipl1 (S. cerevisae) SKIP 
SKIP P38991 Yeast Aurora kinase homolog 

+TIPs with probable SxIP motif 

Melanophilin SNLP Q9BV36 Melanosome transport; mutated in 
Griscelli syndrome 

P140CAP TSIP Q9C0H9 MT interactions in dendritic spines; 
Src kinase regulator 

MTUS2/TIP 

SRLP 
SNLP 
SRLP 
SLLP 

Q5JR59 MT dynamics; recruits MCAK to 
MT plus-ends 

FOP SKIP Q95684 Centrossome MT anchoring; 
mutated in some myeloid cancers 

NAVIGATOR1 
SRIP 
SGIP 
SLIP 

Q8NEY1 
(Q8IVL1, 
Q8IVL0) 

Neurite outgrowth 

DRhoGEF2 SKIP Q44381 RhoGTPase signaling 

Potential SxIP motif-containing EB-binding proteins; unconfirmed plus-end tracking activity 

PSRC1/DDA3 SAIP Q6PGN9 Mitotic regulator of MCAK 

Plexin-B3 SGIP Q9ULL4 Axon guidance 
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Honnapa and co-workers31, in 2009, assessed the role of the two SxIP motifs by 

replacing the Ile-Pro dipeptide of the two SxIP motifs individually or simultaneously 

by Ser-Ser. The replacement into either of the SxIP motif alone did not reduce binding 

to EB1, but significantly reduced accumulation of CLASP2 mutants at MT plus ends. 

When both Ile-Pro were mutated, CLASP2 had a strong reduction in EB1 binding and 

failed to localize to growing MT ends.31 These findings show that the presence of two 

SxIP motifs increases the affinity of +TIPs for the growing MT ends.   

The mode if interaction of these proteins with EB1 will be more detailed in section 

1.1.5, as it will be one of the main focus of this project. 

1.1.2.4 TOG domain proteins 
In addition to the SxIP motif, CLASPs have a Tumour-overexpressed gene (TOG) like 

domain, and are able to bind to tubulin through these domains. TOG domains are 250 

residue repeats found in several MAPs families allowing direct binding to MTs 

contrarily to what happens to SxIP proteins. 

 Members of the XMAP215/DIS1 family contain several TOG domains in their N-

terminal ends. XMAP215, which contains five TOG domains at its N terminus, 

functions as a processive MT polymerase, binding to tubulin dimers, through a 

conserved flat tubulin flat surface, to facilitate their incorporation into MT plus-

ends.33,34  

TOG-like domains in CLASPs have a convex tubulin-binding surface, suggesting that 

the recognition mechanism of tubulin by CLASPs differs from that of the 

XMAP215/Dis family. Functions of CLASPs are also different from XMAP215/Dis1 

families, including MT rescue and suppressing MT catastrophe events.33,35  

 

1.1.2.5 Main interactions at microtubule plus ends mediated by +TIPS 
As described in the previous sections, EB1 acts as a master regulator at MT plus ends 

protein interactions. However, CAP-Gly proteins despite having two binding motifs 

that bind to EB1 – GKNDG and ATLFLAT - can autonomously target MTs through 

the recognition of the EEY motif in tubulin - Figure 1.4. Both EBs and CLIPs are 

dimers and seem to require at least two tubulin-binding domains (CH or CAP-Gly, 

respectively) to track microtubule ends, suggesting that the affinity of individual sites 
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for microtubules or tubulin is relatively weak. The arrangement of these sites with 

respect to each other does not seem to be important because an artificial combination 

of a CH domain and a CAP-Gly domain is capable of plus-end tracking.2 CLIP170 has 

the EEY/F motif, meaning that, similarly to EB1, it can recruit other CAP-Gly domains. 

Additionally, CLIP170’s zinc knuckles can bind to CLIP170 and p150.  

CLASPs due to their TOG-like domain can directly bind to MTs. They can also bind 

to EB1 using their SxIP motif. In CLASP-depleted cells, EBs localize along the MT 

lattice in addition to plus ends. The MT-binding region of CLASP was sufficient for 

restoring normal EB localization.36 Similarly, XMAP215/DIS1 uses its TOG domain 

to bind directly to MTs. 

Finally, most of SxIP protein can only track the MTs plus ends through EB1 binding. 

These interactions are summarised in Figure 1.4 and Table 1.3.  

Table 1.3 – Summary of known domains and motifs interacting within the +TIP network. Adapted from 

Duellberg et al., 2014.29 

Domain/motif Found in Interacts with 

CH domain N-terminal part of EBs Growing MT plus ends 

EBH domain Part of C-terminal region of 
EBs 

SxIP motifs,  
CAP-Gly domains of p150 

EEY/F motif C-terminus of EBs, CLIP170 
and α-tubulin CLIP170 CAP-Gly domains 

Zinc knuckle CLIP170 CAP-Gly domains  
of p150 and CLIP-170 

SxIP motif Several unrelated EB-
dependent +TIPs EBH domains 

CAP-Gly domain CLIP170, CLIP115 and p150 EEY/F motifs and EBH domains 
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Figure 1.4 – Schematic representation of possible +TIPs networks at the MT plus ends. Binding of SxIP 

proteins to EBH domain is one of the most well documented interaction, followed by the CAP-Gly 

domain proteins interactions with the EEY motif of EB1. The interaction of the ATFLAT motif from 

CAP-Gly proteins with the EBH domain of EB1 has also been reported. EB1 is shown in green, SxIP 

proteins in red, TOG domain in blue, CAP-Gly proteins in purple. α-tubulin dimer is showed in grey 

and β-tubulin in light blue. 

Due to the importance of EB1 as a recruiting protein to the MT plus ends, a more 

detailed description of the structure features will be subsequently described. 

 Disease states associated with EB1 

EB1 was initially described as a protein that interacts with the C-terminus of APC that 

has a known tumour suppressor function and when mutated may result in colorectal 

cancer.12,37 Observations revealed that these mutations resulted, very often, in the 

truncation of APC leading to the loss of the region that interacts with EB1. It was, 

therefore, postulated that EB1-APC interaction may be important for the tumour 

suppression activity of APC.38 Later, EB1 overexpression has been reported in gastric 

adenocarcinoma, hepatocellular carcinoma, oesophageal squamous cell carcinoma and 

breast cancers.37 Conversely, the knockdown of EB1 expression promoted an increase 

in apoptosis. These functions were associated with the activation of the β-catenin 

pathway – promoting the growth and inhibiting apoptosis.25,37,39 

In addition to the above-mentioned relationship between EB1, APC and 

cancer/apoptosis regulation, EB1 deregulation can influence other biological processes 
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as it recruits a wide number of partners to the MT plus-ends. 40 

Another relevant example is MACF/ACF7, member of the spectraplakin family that 

through their binding to EB1 reinforce links between F-actin and MTs, acting as an 

integrator of MT-actin dynamics.41 Ablation of the ACF7 gene in mice results in 

embryonic lethality and various medical conditions and development defect arise from 

mutations in genes encoding spectraplakins, such as mental retardation, cancer and 

chronic skin blistering.41 

 Structural features of EB1 

EB1 binds to the MT plus ends with higher affinity (about 10-fold higher) when 

compared to the MT lattice, presenting also fast binding/unbinding kinetics.19 These 

characteristics are fundamental for the EB1’s functions at the MT plus ends. This 

protein has been structurally characterised by X-ray crystallography (both N and C-

terminal domains), nuclear magnetic resonance (NMR) spectroscopy (N-terminal 

domain) and small angle X-ray scattering (SAXS), combined with single-particle 

electron microscopy (for the model of the entire EB1 molecule).22,42 SAXS data shows 

the overall structure consists of two large domains, N- and C-terminal, joined via a 

less conserved linker sequence, forming a flexible Y shaped structure (Figure 

1.5).2,42,43 The same low resolution model of the EB1 molecule shows that despite 

being a homodimer, EB1 can be surprisingly asymmetric. The C terminal rod-like 

coiled coil is more closely associated with one of the CH domains and protrudes from 

the microtubule-binding domains at an angle of almost 45o.22 

The N-terminal domain is necessary and sufficient for MT binding. Its structure, 

solved by X-ray crystallography (PDB codes 2R8U (Huang, Lovelace, Smith, & 

Lebioda, unpublished), 1PA7 and 1UEG45 and solution NMR (PDB code 1V5K 

(Tomizawa, Kigawa, Koshiba, Inoue, & Yokoyama, unpublished), revealed a CH fold 

and consists of six helices.23,43 The architecture of the domain is dominated by four 

major α-helices (α1, α3, α4 and α6). The first helix (α1) forms an angle of ~75o with 

the central helices α3 and α4. Three helices α3, α4, and α6 form a parallel three helices 

bundle, giving rise to a hydrophobic core, α4 and α6 are partially exposed to the solvent, 

creating a conserved hydrophobic cleft that provides a potential protein-protein 

interaction surface.  
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Figure 1.5 - Representation of the overall structure of EB1, composed by two larger globular domains 

(N-terminal), joined via a flexible linker to a coiled-coil domain (C-terminal). This figure is a 

reproduction of the one published by Akhmanova & Steinmetz, 2008.2 

EB1 (and its fission yeast homolog Mal3) targets to growing MT ends by recognizing 

a nucleotide-dependent structural state. The binding mode of N-terminal domain of 

Mal3, the fission yeast EB, to MT plus ends was described as the interaction with four 

different tubulin dimers – Figure 1.6.  

 

Figure 1.6 – Suggested binding mode of EB1 CH domain to microtubules. The binding site is formed 

by two adjacent α-tubulin contacts (towards the microtubule plus end) and two adjacent β-tubulin 

contacts (towards the minus end). 

The CH domain binding site is formed by two adjacent α-tubulin contacts (towards the 

microtubule plus end) and two adjacent β-tubulin contacts (towards the minus end 

showing that Mal3 binds to four neighbouring tubulins, at the junction between two 

protofilaments and two longitudinal interfaces.19 Once polymerization occurs, the 
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interaction partners α and β tubulin align themselves in a favourable position and EB1 

may bind to these, stabilising the MTs promoting its MT polymerization.23 Cryo-EM 

structures of MTs co-assembled with EB3 show that the presence of EB promotes a 

compacted MT lattice with a unique lattice twist, which EB itself preferentially binds. 

It was proposed that stabilisation of MTs catalysed by EB is due to the strengthening 

lateral and longitudinal interactions between dimers that promote a more compact MT 

lattice. The compacted lattice could then speed up GTP hydrolysis. The strain 

generated in the tubulin subunit following GTP hydrolysis, will promote the breakage 

of lateral contacts, likely initiated at the weaker seam interface. EBs promote MT 

growth by binding at the intersection of lateral and longitudinal contacts and enforcing 

the proper geometry of contacts to facilitate seam closure.8  

The C-terminal domain of EB1 (EB1c) contains a parallel two-stranded coiled coil 

followed by the unique EB homology domain (EBH) domain containing a four-helix 

bundle and a disordered C-terminal region encompassing the EEY/F sequence motif 

(Figure 1.7).31  

 
Figure 1.7 - Four-helix bundled structure of the C-terminal of EB1 (PDB code 1WU9). Coloured in blue 

are the long helices (α1 and α’1), followed by a hairpin connection (coloured green) leading to a short 

second helix (α2 and α’2, coloured pink). Finally the  C-terminal disordered tail is coloured grey.43  

The two parallel α1-helices of EB1c wrap around each other in a slightly left-handed 

supercoil. The residues occupying the core a and d positions of the four heptad repeats 

(Figure 1.8) between Ala193 and Leu221 pack in a typical “knobs-into-hole” fashion.   
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Figure 1.8 – Sequence for the C-terminal domain of EB1 (EB1c). Coiled coil region shown in blue with 

positions a and d of the heptad repeats underlined. The connection hairpin between the two helices is 

represented in green. The shorter helix is shown in pink followed by the disordered C-terminus in grey. 

Uniprot47 code MAPRE1.  

The EBH domain is responsible for the dimerization of EB1 monomers and represents 

the +TIPs recruitment domain of EB1. This domain has a four-helix bundled structure, 

where the two coiled-coil helices, residues 219-229 (α1), diverge into a fork like 

structure. The following C-terminal helices, residues 237-247 (α2), of each monomer 

form a complementary fork, joining with the α1 helices (Figure 1.7).23 The large 

hydrophobic surface buried in this bundle is expected to significantly contribute to the 

stability of the dimeric structure of EB1c.43 First, the side chains forming the 

hydrophobic core of this bundle (equivalent residue pairs are 221/239, 224/242 and 

227/245) are highly conserved, additionally, mutation of Ile224 to alanine was shown 

to destabilise the four helical bundle and consequently abolish dimerization.27  

Residues 211-229 of the N-terminal region of the coiled coil are highly conserved 

across 13 representative EB1 family members, from yeast to vertebrates. This region 

includes three invariant residues Phe216, Tyr217 and Phe218’, forming the FYF’ motif. 

The configuration of the coiled coil dictates that the spatial FYF’ motif is comprised 

of Phe216 and Tyr217 from one chain and Phe218’ from the other chain of the dimer. 

Additional conserved residues at this junction are two solvent exposed residues of the 

α2 helix: Ile245 and Tyr247. This conserved surface is characterized by a hydrophobic 

character and a negative net charge contributed by the acidic residues Glu211, Glu213, 

Asp215 and Glu225. To evaluate the individual contribution of residues within the 

211-229 conserved region, single alanine mutations were prepared and mutant EB1 

proteins were analysed for MACF21595-1637 (SxIP containing protein) binding. The 

analysis revealed Glu211, Asp215, Phe216, Tyr217, Phe218, Arg222, Glu225 and 

Leu226 as the key binding residues. The FYF’ motif provided a critical contribution 

to the binding interaction since mutation of any of these three residues abolish binding 

- Figure 1.9.27  
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Figure 1.9 - Surface and cartoon representation of EB1. A - conserved residues are explicitly shown as 

sticks for a better visualisation and each monomer coloured differently, cyan and green.48. B – surface 

representation where the residues coloured in red were shown to be important for the binding to 

MACF21595-1637, trough single alanine mutagenesis experiments, as reported by Slep and co-

workers.27                                                                                                                                                                                                

Finally, the flexible C-terminal (Tyr247-Tyr268) tail of EB1 is unstructured and 

flexible, having a highly conserved acidic-aromatic C-terminus – the EEY/F sequence 

motif that is reminiscent of motifs that are found in α-tubulin and CLIP170.2 The 

entirety of the C-terminal disordered region was never characterised since the EBH 

domain of EB1 has only been studied by X-ray crystallography, unsuitable for 

unstructured regions. 

 Interaction between EB1 and SxIP motif proteins 

MT plus-ends protein interactions are very complex and not fully understood as 

previously described. SxIP proteins track the MT plus ends through EB1 recruitment 

and relevant examples of this interaction are MACF, STIM1, APC and CLASPs.5 

Crystal structure of EB1cΔ8-MACFp1 complex (PDB code 3GJO31) provides details 

on the SxIP motif recognition. In this crystal structure EB1c domain (residues 191-

268) and a short peptide (30 amino acid residues), derived from human MACF2, were 

used. There are two EBH homodimers in the asymmetric unit and consequently four 

independent binding sites. MACF2 binding region to EB1 is known as unstructured, 
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and from the 30 amino acids a maximum of 11 can be observed in one of the binding 

sites. Residues outside this SxIP-containing region are less well defined and do not 

participate in specific intermolecular interactions.31 A heptapeptide 5476PSKIPTP5482 

of the ligand is in a very similar conformation for three of them, meaning this sequence 

becomes more structured and less dynamic when bound to EB1 and therefore must be 

of great importance for the interaction. Residues of the SxIP motif make specific 

contacts with the protein. Ser5477 forms an extensive network of hydrogen bonds with 

the highly conserved Arg222, Glu225, Gln229 and Tyr247 residues of EB1 and a water 

molecule. The dipeptide Ile-Pro is buried within a cleft shaped by the residues Phe216-

Arg222, Glu225, Leu246 and Tyr247 of the hydrophobic cavity and Ala248-Pro256 

of the C-terminal tail. Further contacts between Thr5481 and Pro5482 with Phe253, 

Gly252 and Val254 are shown (Figure 1.10).31  

 

Figure 1.10 - Representation of the SxIP binding mode as shown by Honnappa et al.31. SxIP containing 

peptide is shown as light pink sticks, and the SxIP motif is highlights as bright pink sticks. EB1 is overall 

shown as cartoon and surface representation with important residues shown as sticks. The sign ‘ is used 

after the residue name to indicate it belongs to the other monomer. 

Buey et al. in 2012 made a systematic analysis of the important residues for the binding 

based on a 30 residue peptide derived from MACF2 – MACFp1 (the same fragment 

used to obtain the complex published by Honnappa et al., 200949) by mutating each 

one of the 30 positions at a time. They found that the 12 residues spanning the sequence 

region 5476PSKIPTPQRKSP5487 have a major contribution to the binding to EBH 
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domain of EB1. This region obviously includes the SxIP motif (SKIP), although it is 

noteworthy that the replacement of residues in this sequence by negatively charged 

glutamates or aspartates severely impaired the binding. Basic lysine and arginine 

residues are preferred, inclusively for the x position in the SxIP. Notably, this position 

does not tolerate many mutations, being arginine the only substitution that does not 

interfere with the binding. The side chain of this lysine is not pointing directly to the 

EB1 surface; instead, it seems to promote long range electrostatic attractive 

interactions with the negatively charged surface of the flexible C-terminal of EB1, e.g. 

Glu258. From the analysis of the possible replacements in the first position of SxIP, 

serine can only be replaced by threonine that also includes a hydroxyl group in its side 

chain. Regarding isoleucine at position 3, it only bears the replacement by the 

hydrophobic side chain of leucine, with significant reduction of the binding affinity. 

Finally, proline in position 4 cannot be replaced by any amino acid. The ring fills a 

hydrophobic pocket, and any other side chain would have the polar amide group from 

the backbone pointing into this hydrophobic region.49 These observations are 

supported by a sequence alignment of SxIP proteins in Figure 1.11. Sequences 

surrounding functional SxIP motifs are interspersed with positively charged amino 

acids and are particularly enriched in arginine residues. Sequence alignment of 30 

amino acid stretches around the reported microtubule tip localization signal (SxIP) 

shows the prevalence of serine and proline residues around these regions. There is also 

a very low content in negatively charged residues, with higher occurrence of positively 

charged residues (coloured in blue). 

SxIP motifs are required for plus-end tracking, since the mutation of this motif 

abolishes binding to EB1, but by themselves are not sufficient. The hydrophobic 

interaction surface of the SxIP motif, and consequently the binding free energy 

contribution of this interaction, are probably fairly small.22 
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Figure 1.11 - Sequence alignment for known SxIP proteins based on a 30 residue sequence 

encompassing the identified SxIP motif. The sequence is colour coded as: positively charged residues 

(arginine and lysine) coloured in blue, serine and threonine coloured in green, hydrophobic residues 

(isoleucine and leucine) coloured in yellow and proline coloured in orange. Intensity of the colour 

indicates the higher conservation in that position. Figure was made using JalView 2.8.2. 
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The structure of EB1 in complex with the peptide derived from MACF2 also 

demonstrates an additional feature of the interaction. Residues 250-257, which are not 

resolved in the crystal structure of the free EB1c dimer, become structured in complex 

and form a handle-shaped loop wrapped around the bound peptide.31 The EB1 C-

terminus region (Thr249-Tyr268) contains negatively charged residues, in a 19 residue 

span, eight are negatively charged (Figure 1.8). SxIP proteins have high propensity to 

have positively charged residues around the SxIP motif (Figure 1.11) and it is 

reasonable to assume that electrostatic interactions contribute significantly to +TIP 

interactions with EBs.22 In the case of CLASP2, there are indications that conserved 

arginine residues surrounding the SxIP motifs participate in extensive salt-bridge 

networks with negatively charged glutamates near the EB1 C-terminus. Such arginine–

glutamate salt bridges are highly favourable, but they can be efficiently disrupted by 

phosphorylation.22 These electrostatic interactions can be tuned by multisite 

phosphorylation through induction of intermolecular phosphoserine-arginine salt-

bridges as an alternative to the intermolecular interactions with EB1 glutamate 

residues, and this can be a way of controlling these dynamic networks.32 Therefore, 

the recruitment of SxIP motif containing +TIPS through EB1 binding depends on 

hydrophobic interactions of the SxIP motif, that determine specificity and on less 

specific electrostatic interactions that contribute largely to the binding free energy.22  

The SxIP containing regions are within intrinsically disordered regions (IDRs). 

GTSE1, for instance, a protein which secondary structure prediction revealed that it is 

a mostly intrinsically disordered protein (IDP), contains multiple potential ‘‘SKIP’’-

like (SxLP) EB1-interaction motifs surrounded by basic residues.50 At the same time, 

the C-terminal region following the EBH domain of EB1 and involved in the 

interaction with SxIP ligands is highly flexible and disordered. It has been reported 

that complexes involving IDRs are often highly dynamic and short lived.51 IDRs often 

participate in interactions with high specificity but low affinity (µM range), facilitating 

rapid exchange of binding sites between multiple interacting partners. These 

observations are in agreement with what has been reported for the SxIP-EB1 

interactions, where the EB1 binding affinities of many SxIP containing regions are in 

the low/medium micromolar range.49 

For the +TIPs networks mediated by EB1 the existence of IDRs seems to be 

fundamental. The inherent flexibility of IDRs allows for a degree of promiscuity in 
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interactions with cellular partners containing the SxIP motif that will give the 

specificity needed to the interaction, explaining, partly, how EB1 can act as an 

essential adaptor protein at the MT plus ends.  

Due to the important role as a master regulator of protein-protein interactions at the 

MT plus ends the design of small molecule modulators to target EB1 is very attractive. 

This poses a challenge for two reasons, the first related with targeting a protein-protein 

interaction and the second related with the existence of IDRs in both proteins. Both 

subjects, intrinsically disordered regions in intermolecular interactions and protein-

protein interactions, will be subsequently introduced. 

1.2 Protein-protein interactions: a biological challenge for drug target-

ing 

 Protein-protein interactions 

Protein-protein interactions (PPIs) play a central role in many biological processes.52 

With the recent developments in the area of genomics and proteomics, complete 

networks of PPIs within a cell (interactome) were identified, leading to major 

breakthroughs in understanding biological pathways, host-pathogen interactions and 

cancer development.  

It is estimate that 650000 protein-protein interactions exist in human interactome.53,54 

PPIs play a key role in nearly every biological function55, regulating numerous cellular 

processes including signalling pathways, morphogenic pathways and complex 

molecular machines.56 Furthermore, aberrant PPIs contribute to most disease states, 

representing a highly populated class of untouched potential targets for drug 

discovery.54 Thus, it is of great importance to use and develop new technologies to 

target these PPIs by discovering PPI modulators, both as inhibitors or probes to 

understand these complex processes.54,57  

Currently, three main classes of PPI modulators are known, antibodies, peptides and 

small chemical compounds, although nucleic acids and sugar molecules can also be 

used.54 Antibodies have high specificity and are stable in human serum. However, they 

are not cell permeable and do not have oral bioavailability, making it difficult to use 

in therapeutics. Despite that, monoclonal antibodies Avastin and Herceptin are 
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currently in use.52 Peptides usually suffer from poor metabolic stability, low 

bioavailability and can induce immune reactions.58 However, miniature proteins still 

hold a considerable promise given their enhanced conformational and proteolytic 

stability.52 The main advantage is due to its size (~20 residues), these peptides adopt a 

defined conformation improving its stability.57 From a medicinal chemistry and drug 

development perspective, small molecules, which are generally cheaper to 

manufacture than antibodies and peptides and have good oral bioavailability, are still 

the preferred option.58,59 The latter, small drug-like molecules, will be the main focus 

in this work.  

PPIs can occur between two structured protein domains, a structured domain and a 

relatively short peptide, or between two peptide stretches. In many cases, additional 

weak contacts distant to the defined interaction area contribute to binding, thereby 

adding complexity and complicating the prediction of PPI characteristics.60 Structural 

biology has shown that PPI interaction surfaces are generally large (~1500-3000 Å), 

flat61, and generally lack the grooves and pockets present at the surface of proteins that 

bind to small molecules.59 Moreover, most contact surfaces in protein-protein 

interfaces involve amino acid residues that are not contiguous.59 Unlike enzymes or G 

protein-coupled receptors (GPCRs), nature did not offer simple small molecules that 

can start a chemical discovery process and high-throughput screening (HTS) had not 

provided validated hits.62 The chemical space of traditional small-molecule libraries 

deviates from that of PPI inhibitors, thus leading to low hit rates when applied in 

screening for PPI inhibitors. This stimulated the search for alternative strategies 

involving fragment-based screens or natural product inspired libraries that contain 

molecules with relatively high molecular weights and a large number of stereogenic 

centres.60 

The investigation of numerous PPI interfaces revealed that a small subset of residues 

are the major contributors for the free energy of binding. These regions are generally 

called “hot-spots” and often overlap with structurally conserved regions and represent 

a common feature of PPI interfaces.57,60,61 Hot spots tend to cluster at the centre of the 

interface, cover an area comparable to the size of a small molecule, be hydrophobic 

and show conformational adaptivity.62 Using a hot-spot as the starting point for ligand 

identification is generally accepted as a useful strategy  for the discovery of PPI small 

molecule modulators.52  
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Small molecules inhibit PPIs through at least three different mechanisms: orthosteric 

inhibition, allosteric regulation, and interfacial binding/stabilization. The first 

mechanism, orthosteric inhibition, involves direct competition against the interacting 

partners, binding to sites in the target proteins that overlap with the areas used for 

interacting with the partner proteins. The allosteric regulation relies on ligand binding 

induced changes in the target protein. These small-molecule ligands bind to sites 

distinct from the macromolecular interface inducing changes in either the static 

conformation or the dynamic properties of the target protein(s) and hindering the 

native interaction. Finally, an interfacial inhibitor binds to a pocket at the 

macromolecular interface, which sometimes is only transiently formed in a transition 

state, and locks the complex into a conformation that cannot be targeted by the natural 

ligand.63 

Despite all the challenges and difficulties, in the past decade, an increasing number of 

successful cases of PPI inhibitors were reported.  

1.2.1.1 Success cases in modulating protein-protein interactions 
The cytokine interleukine-2 (IL-2) has a key role in the activation of T cells and in the 

rejection of tissues grafts, having a considerable medical interest. A series of small 

molecules that bind to IL-2 were discovered at Sunesis Pharmaceuticals, where 

SP4206 (Figure 1.12) showed to bind with high affinity. A fragment-based approach 

guided by X-ray structures and medicinal chemistry was used in this project since the 

structure of the IL-2-IL-2-Rα complex was not known by that time.59  

Another successful case in protein-protein interactions modulation is the B-cell 

lymphoma 2 (Bcl-2) family members. These are important regulators in apoptosis, and 

can form homo or heterodimers with other family members generating several 

combinations of pro-apoptotic and/or anti-apoptotic complexes. ABT737 (Figure 1.12) 

binds to Bcl-XL, inhibiting its anti-apoptotic activity.59  ABT-26364, a ABT737 

derivative has reached the clinical trials phase.53 This group of compounds was 

discovered using a fragment-based NMR method known as structure–activity 

relationships (SAR) by NMR, and their properties were improved by using NMR-

structure-guided medicinal chemistry.65 

A third success case, the human protein double minute 2 (HDM2) has emerged as an 

excellent drug target for cancer treatment. It binds to the tumour-supressor protein p53 
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and increases its degradation. A benzodiazepinedione and Nutlin-3 (Figure 1.12) 

were found to disrupt the HDM2-p53 complex. Both these scaffolds were discovered 

through HTS and further optimisation of the found hits.59  

These success stories elucidate some features about PPIs that can be useful in other 

drug discovery projects for PPI modulators. For instance, a common myth is that 

protein-protein interfaces are large and flat, often rigid and do not present cavities for 

small molecule binding. However, in all of the supramentioned cases the contact 

surfaces have some adaptability, and cavities that are not seen in structures of either 

the free protein or the protein–protein complex become available for binding.59 A 

single crystal structure may not reveal potential binding modes for small molecules.54 

Eyrish & Helms66 showed through molecular dynamics (MD) simulations that the 

protein surfaces of Bcl-XL, IL-2 and MDM2 form transient binding pockets that were 

not initially observed. 

 

Figure 1.12 – Examples of small molecules that inhibit protein-protein interactions.59  

All the examples described above included an empirical screening process, fragment 

screening or HTS.59 Unfortunately, assays to investigate PPIs are usually difficult to 

apply to HTS. Therefore, structure-based drug design, in silico screening and other 

chemoinformatics strategies need to be developed and applied to facilitate the 

development of PPIs modulators.58 However, given that the type of interactions for 
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PPIs differ from those typical for enzyme and receptor drug targets, exploration of the 

chemical space defined by PPIs requires different approaches not biased by earlier 

drug discovery campaigns.61 Commercial libraries of compounds used for screening 

are generally dominated by past drug discovery research into “druggable” targets, such 

as G-protein-coupled receptors or enzymes.59  

A balance between potency and selectivity required for a PPI modulator and drug-like 

properties for oral administration need to be found in order to successful target the vast 

range of PPIs. In other words, there is the need to find the chemical space of PPIs 

modulators, moving away from the libraries of compounds created primarily focused 

on other classes of targets. 

1.2.1.2 Drug discovery in protein-protein interactions 
To tackle the challenge of finding small molecule inhibitors to target protein-protein 

interactions many approaches were used in the past, biophysical methods (X-ray 

crystallography and NMR), fragment-discovery approaches as SAR by NMR and 

tethering, HTS, and in silico approaches, such as structure- or ligand-based virtual 

screening, protein–protein docking, hot-spot and druggable pocket prediction tools.67  

One of the most successful approaches applied to protein-protein interactions is 

fragment-based drug discovery. Fragment initial hits will have low affinity, but when 

tethered they allow novel areas of chemical space to be explored, creating diversity in 

chemical libraries.59 However, few fragment-based campaigns of PPIs have been 

reported in the literature, let alone advanced into the clinic.68 HTS of compound 

libraries has also been widely used.69 Unfortunately, this strategy requires a large 

physical compound library, a suitable screening method and a validation method. This 

approach has been mostly used in pharmaceutical companies but some academic 

groups have been using it. Nevertheless, it requires not only a suitable system to be 

screened (not all biological systems may be analysed using the same techniques) but 

also a great investment in the latest technologies for compound screening, screening 

libraries, etc. This approach can be also time consuming. Alternative inexpensive and 

fast methods may be the rational drug design/identification through computational 

methods. 

The first step in the rational drug design using computational methods, should be the 

creation and validation of a theoretical model, gathering information from the target 
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and known ligands.70 Identifying in silico virtual hit molecules – virtual screening – is 

usually the next step.  

1.2.1.2.1 Virtual Screening 
The virtual screening of chemical libraries aims to identify new small organic 

molecules that are able to interact with a specific target, modulating its activity.70 

Virtual screening is the in silico analogue of biological screening, with its aim being 

to identify hit molecules from a chemical library using one or more computational 

procedures, to help decide which compounds to screen, synthesise or purchase.71  

There are two main strategies that can be used in virtual screening – ligand-based and 

structure-based design. The ligand-based design approach is based on knowledge of 

known molecules that bind that target (e.g. pharmacophore search). While, when the 

structure of the target is known molecular docking can be performed in a structure-

based design approach72,73 – Table 1.4.  

Table 1.4 – General guidelines when making a decision on the method for computer aided drug design. 
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• Molecular docking De novo design 
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Ligand-based design 
• Similarity search 
• Pharmacophore 
• QSAR 

 

Ligand-based design is based on the availability of pharmacologically relevant agents 

and their bioactivities, i.e. known ligands for a certain target. Approaches include 

similarity searching, a host of machine learning methods including quantitative 

structure activity relationships (QSAR) and pharmacophore mapping. If just a single 

molecule is known similarity searching is an option. If some ligands are known it is 

possible to identify a common pharmacophore, followed by a 3D database search. 

When a large number of ligands have been tested for a certain target and there are 

active and inactive structures then machine learning methods and QSAR approaches 

can be used.71 Unfortunately, for EB1 there are no known active ligands, apart from 

the naturally occurring SxIP containing proteins. Therefore, the only ligand-based 

design method that can be applied to this system is the construction of a 

pharmacophore model based on the SxIP feature. A pharmacophore model is “an 

ensemble of steric and electronic features that is necessary to ensure the optimal 
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supramolecular interactions with a specific biological target and to trigger (or block) 

its biological response”.74 From the practical point of view, pharmacophores can be 

used to screen millions of high quality compound structures within a reasonable 

amount of time, particularly when approximations such as rigid pharmacophore fitting 

procedures are used.75 The positioning of key features like hydrogen-bonding and 

hydrophobic groups is summarised in a pharmacophore representation. It can be used 

as a template to select the most promising candidates from a library or as a filter before 

applying a structure-based virtual screening method, so that only 1–10% of the initial 

database has finally to be docked.76  

Structure-based virtual screening methods offer means to directly identify novel 

compounds that complement the target protein surface; these methods are not limited 

by the requirement for template compound(s) implicit to ligand-centric (mimicry) 

approaches.77 Docking is the most used tool for structure-based virtual screening.76 

The docking process involves the prediction of ligand conformation and orientation 

(pose) within a specific binding site.73 Docking algorithms pose small molecules in the 

binding site, being complemented by scoring functions that evaluate the interaction 

between the molecules and the target – scoring.73  

The success of structure-based drug design is well documented; it has contributed to 

the introduction of ~50 compounds into clinical trials and to numerous drug 

approvals.78 In the last years, diverse research groups proposed an integration of 

ligand- and structure-based strategies to increase the success of virtual screening 

processes. On one side pharmacophore information of ligands have been incorporated 

in docking studies, and on the other side docking studies have been carried out finding 

suitable conformations, inside the target binding cavity.79 These successes were 

achieved by using a combination of methods, molecular docking, pharmacophore 

search, application of filters, amongst others.80  

To illustrate the success of computational methods in drug discovery, Aggrastat 

(Figure 1.13), an antiplatelet drug that belongs to glycoprotein IIb/IIIa inhibitors class 

is one of the first commercialized drug whose discovery was influenced by virtual 

screening methods (in this case pharmacophore search).81  
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Figure 1.13 - Aggrastat, an antiplatelet drug of the glycoprotein IIb/IIIa inhibitors class whose discovery 

was influenced by virtual screening methods. 

1.2.1.3 The chemical space of PPI modulators 
The physicochemical properties of the novel chemical entities identified in virtual 

screening have become the subject of intense scrutiny from lead discovery to drug 

candidate. The selection of compounds with acceptable drug-like properties is often 

performed as a post-dock processing.56 In this section the focus will be on molecular 

properties important for drug-like compounds and how the traditional drug like 

properties compare with the PPI modulators, as many reports have found that small 

molecules targeting PPIs often fall outside the chemical space of the current drugs.62,82 

The meaning of ‘‘drug-like’’ is dependent on mode of administration. The original 

Rule of 5 (Ro5)83 deals with orally active compounds and defines four simple 

physicochemical parameter ranges:molecular weight (MW) ≤ 500; logP ≤ 5; H-bond 

donors ≤ 5 and H-bond acceptors ≤ 10; these rules are associated with 90% of orally 

active drugs that have achieved phase II clinical status.84 If a compound fails two or 

more of the Ro5 there is a high probability that the compound will display poor oral 

availability. However, passing the Ro5 is no guarantee that a compound is drug-

like.84,85 

In many cases, at least modifications of Lipinski’s rule-of-five have been allowed to 

account for the larger size and higher hydrophobic content of protein–protein 

interfaces. In fact, by analysing some physicochemical properties of known small 

molecule modulators of PPIs it is evident that some of the identified compounds 

violate one or two Lipinski’s rules, in particular, MW and/or logP and exhibit 

solubility issues.67 

Traditionally, affinity is the first aspect considered for hit selection and optimization. 

However, affinity alone can be misleading as it is often found to be linked with 

molecular size. Thus a focus on affinity leads to a bias towards a selection of bigger 

compounds. In addition, optimization of affinity during subsequent stages of drug 

discovery typically leads to a further increase in molecular weight.86 The idea of ligand 
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efficiency (binding energy/non-hydrogen atoms) has recently emerged as a useful 

guide to optimize fragment and lead selection in the discovery process. Moreover, the 

ligand efficiency coefficient used to analyse protein–ligand interactions during the 

course of drug discovery programs has been revisited for PPI modulators and estimated 

to be 0.24 kcal/mol per heavy atom.58,62 This is lower than most kinase inhibitors (0.3–

0.4 kcal/ mol) but on the same order of magnitude of many protease inhibitors (0.25–

0.35 kcal/mol). Consequently, a PPI modulator with a Kd of 10 nM is expected to have 

a molecular weight of approximately 645 g.mol-1 when regular orally available drugs, 

most of the time, are below 500 g.mol-1.58 There are other important issues for drug 

likeness, including lack of reactive functionality (except in prodrugs), cell 

permeability, and, for central nervous system compounds, brain/blood partitioning. An 

acceptable level of solubility is also critical to permit dissolution and absorption; 

virtually all drugs have aqueous solubility above 106 M (log S > – 6).78  

There have been several attempts to find the chemical space of PPI modulators. A 

study presented by Morelli and co-workers in 2011 suggest an adaptation of Lipinski’s 

Ro5 to a “rule of four”.53 After statistical analysis of the 39 inhibitors these authors 

report average values for molecular weight (547 ± 154 g.mol-1, thus MW > 400 g.mol-

1), ALogP (3.99 ± 2.37, thus ALogP > 4), number of rings (4.44 ± 1.02, thus #Rings > 

4) and number of hydrogen bond acceptors (HBA) (6.62 ± 2.60, thus #HBA > 4). 

Figure 1.14 shows a comparison between Ro5 and rule of four. 

Analysis of PPI focused libraries has suggested that, in addition to the features 

formerly presented, PPI modulators often present branched structures and have high 

content in multiple bonds, i.e. have a more tri-dimensional shape around a central 

scaffold.58 The preference towards a tri-dimensional and branched shape may be 

related with the fact that the hot spots on the target protein are commonly composed 

by two to three sub-pockets62 and a branched structure has more chances to fill in these 

sub-pockets. 
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Figure 1.14 – Comparison of Lipinski rule (rule of 5)83 and the values reported for the definition of a 

generic profile for PPI inhibitors (rule of 4) reported by Morelli et al.53 

When looking to protein-protein interfaces one of the interesting features of hot spots 

is their functional and structural adaptivity. Many proteins function by binding to 

multiple partners. An important point is that these proteins tend to use the same hot 

spot, which adapts to present the same residues in different structural contexts.87 

 

 Disorder and dynamics in protein-protein interactions 

For many protein–protein interactions, the apparent complementarity between the two 

surfaces involves a significant degree of protein flexibility and adaptivity.87 As 

presented previously the EBH domain of EB1 does not only bind to IDRs containing 

SxIP motifs, but itself contains an IDR that becomes structured upon complex 

formation (section 1.1.5).  

The binding process in dynamic/disordered regions is of great interest from both 

mechanistic and functional standpoints. Traditionally, there are two models focused 

on flexibility to describe binding processes, induced fit and conformer selection. The 

popular notion of induced fit assumes a passive mutual adaptation, but it does not 

explain specific recognition if the two protein structures are not complementary to start 

with. The opposing idea of conformer selection suggests recognition between the two 

bound conformations that are postulated to occur within the diverse structure 

ensembles of the two free proteins.88 Either the conformational change precedes the 
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binding (conformational selection) or occurs following the binding (induced fit). An 

alternative model that mixes both concepts have been proposed by Grünberg and co-

workers in 2004, were some conformations among the structure ensembles of unbound 

proteins are more prone to recognition than others.89  

Therefore, there might be binding-site conformations that are well-suited to small-

molecule binding yet are not visible in a single crystal structure.87 Solution methods 

for analysis of these complexes with dynamic regions seem to be fundamental to 

understand the underlying mechanisms of binding. 

 Screening techniques in drug discovery applied to protein-protein in-

teractions 

As pointed out before, many of the recent clinically approved drugs have originated 

from HTS campaigns, through the use of microtriter plate-based assays against 

libraries of small molecules.90 When it comes to hit validation, target-based 

biochemical assays have proven their value in PPI drug discovery projects, but cell 

based assays have significantly become more important. Despite that, target validation 

and understanding the underlying mechanisms of action can only be understood 

through target based assays.90 A summary of the assay methods, protein/reagent 

requirement and associated assay cost estimations are shown in Table 1.5. Post-

screening hit validation studies are employed to gain an understanding of the mode of 

action of the molecules. The low-throughput assays described are considered as being 

the most appropriate for this as they provide information such as Kd, kon, koff, 

identification of which protein within the PPI complex they bind to as well as their 

stoichiometry. Cell-based assays are also highly attractive during the hit validation 

phase as a positive outcome (e.g., inhibition of the PPI) assumes that the investigated 

compounds can penetrate the cell membrane and are not cytotoxic.90 

Some of the gold standard assay formats to monitor PPIs have a low-throughput and 

advances are being made to them so as to increase their capacities.90 A recent study 

based on an integrated biophysical approach for fragment screening has shown that the 

use of several different biophysical techniques was essential for the validation of hits 

proceeding from the thermal shift analysis. Whereas thermal shift provided a fast way 

to screen the entire library, NMR allowed the subsequent validation of the resulting 

hits. Thermal shift provided a >50% rate of false positives that were later verified not 
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to bind by NMR; however it significantly enriched the hit rate of the secondary NMR 

screen. Most fragments validated by NMR and isothermal titration calorimetry (ITC) 

were shown by X-ray crystallography to bind, making these techniques ideal for 

compound screening and hit validation.91 

 Table 1.5 - Screening techniques applied in drug discovery assays. This table was originally published 

by Gul & Hadian in 201490 

Technique Throughput Assay type Protein/reagent 
requirement Assay cost 

Isothermal titration calorimetry Low Biochemical High Low 
Surface plasmon resonance Low Biochemical Low Low/medium 
Microscale thermophoresis Low Biochemical Low Low/medium 
ELISA Low Biochemical Low Low 
Pull-down Low Biochemical Medium/high Low/medium 
NMR and X-ray 
crystallography Low Biochemical High Medium/high 

Amplified luminescent 
proximity homogeneous assay 
screen 

High Biochemical Low High 

Time-resolved Förster 
resonance energy transfer High Biochemical Low High 

Fluorescence polarisation High Biochemical Low Low 
Förster resonance energy 
transfer/biolumniscence High Cell-based Low Low 

Biomolecular fluorescence 
complementation High Cell-based Low Low 

In situ proximity ligation assay Medium/high Cell-based Low Medium/high 
Co-immunoprecipitation Low Cell-based Medium/high Low/medium 

In this project the HTS approach was replaced by a more directed virtual screening 

approach and therefore there is no need of a screening technique that can be applied to 

HTS. The focus of this section will be on the two main techniques used for compound 

screening – solution NMR and ITC.  

1.2.3.1 Nuclear magnetic resonance (NMR) 
The principles of this technique will not be described herein as this is a technique with 

a very wide range of applications and a description of the principles that can be applied 

to compound screening and protein analysis seem to be more appropriate in this 

context. 

NMR can provide a lot of information on a protein-protein or protein-ligand interaction. 

It can be used as a screening tool (with Kd determination possible even for weak 

interactions), structure determination of a complex and dynamic, kinetic and 

thermodynamic aspects of the interaction.92,93 

In recent years, NMR has become a valuable screening tool for the binding of ligands 
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to protein targets, and has the key advantages of being able to detect and quantify 

interactions with high sensitivity without requiring prior knowledge of protein 

function.94 An advantage of this technique is its versatility, as one can either observe 

the resonances of the ligand or the resonances of the target.92 The observation of the 

ligand resonances is usually applicable to ligands in the low-affinity range (high 

nanomolar to high millimolar range). This is commonly used when either the protein 

is too large to be observed by NMR(> 100 kDa), not available with the desired 15N or 
13C labelling pattern from in vitro production, or it aggregates in solution at high 

concentrations.92 Screening based on the observation of the target protein resonances 

relies on detection of chemical shifts changes of the protein upon titration of the 

ligand.92 In the standard experiment, one needs 15N-labelled protein plus an unlabelled 

ligand, which can be a small molecule or another macromolecule. The ligand is titrated 

into the protein, monitored at each stage of the titration by acquiring a 1H,15N-HSQC 

spectrum. The 1H,15N-HSQC spectrum is the easiest to assign, it is sensitive, and 

signals are usually well resolved, particularly in comparison with the 1H,13C-HSQC. 

The experiment detects just one signal per amino acid corresponding to the backbone 

HN-group (excepting proline), and a small number of side-chain signals (asparagine, 

glutamine and tryptophan, and sometimes, depending on the solution conditions, 

arginine and histidine). The chemical shifts are very sensitive to structural changes and 

can be measured very accurately, meaning that almost any genuine binding interaction 

will produce chemical shift changes in the target.94 If the structure and backbone 

assignment of the protein is known these chemical shift changes will indicate which 

residues are being affected upon binding. Moreover, the shape of the titration curve 

(chemical shift versus concentration of ligand) can often be fitted straightforwardly to 

obtain a value for the dissociation constant of the ligand, Kd. NMR titrations can, 

therefore, directly provide both a Kd value and a binding site from the same set of 

measurements.94 The calculation of Kd values by NMR will be detailed in Chapter 5 

(section 5.1.2). 

In addition to the mapping of the binding site, one of the first steps in any study of 

protein-ligand interactions by NMR is to establish to which region of exchange the 

spectrum corresponds (or, more correctly, the resonances of interest, since different 

resonances can, of course, show different exchange behaviour).93 

For a protein P binding reversibly to a ligand L at a single site,  
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	 , Equation 1.1 

characterised by rate constants for forward and back reactions of kon and koff, the 

dissociation constant Kd is equal to [P][L]/[PL], where [P], [L] and [PL] represent the 

concentrations of free protein, free ligand and complex (Equation1.1)	

, Equation 1.2 

Kd can be thought of as the concentration of the free ligand when half of the binding 

sites are occupied. The forward and back rates are given by [P][L]kon and [PL]koff 

respectively – Equation 1.2. At equilibrium the forward and back rates are equal, 

implying that the dissociation constant Kd is also equal to koff/kon. When exchange is 

fast, i.e. when koff is much greater than the chemical shift difference, then the signals 

in the 1H,15N-HSQC spectrum will move smoothly from their position in the free 

spectrum to those in the bound spectrum, with the frequency of the signal at any 

titration point being the weighted average of free and bound shifts – Figure 1.15, first 

panel. This is usually characteristic of a weak interaction. When the exchange rate is 

slow on the chemical shift timescale, or in other words when koff is significantly slower 

than the difference in Hz between the chemical shifts of free and bound protein, then 

as the ligand is titrated in, the free signal gradually disappears and the bound signal 

appears, the intensities of the two peaks reflecting the concentrations of free and bound 

protein – Figure 1.15, third panel. Slow exchange is usually a good indicator of strong 

binding. If the exchange rate is similar to the shift difference, then signals broaden and 

shift at the same time – intermediate exchange – Figure 1.15, middle panel.  

 

Figure 1.15 – Schematic representation of the effect of exchange regimes on signals in 1H,15N-HSQC 

spectra in a ligand titration into a target 15N labelled protein. First panel is an example of a fast exchange 

regime, middle panel intermediate exchange and third panel shows a system in slow exchange. 

This usually leads to broadening or disappearance of signals, especially in the 
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intermediate points of titration.94,95 

Analysis of the spectral changes described is sufficient for ligand screening. However, 

NMR also offers a possibility of structural analysis of a complex in solution. This 

usually requires stable isotope enrichment of the sample, 15N and 13C, and sometimes 

2H labelling for large proteins (> 30 kDa).95  

Data acquisition and resonance assignment is the first step of structure determination. 

For that, a wide range of 2D and 3D experiments need to be acquired. Three-

dimensional triple resonance experiments that correlate hydrogen (1H), nitrogen (15N) 

and carbon (13C) are fundamental for backbone and sequential assignment. Side-chain 

assignment is usually achieved by using 3D HCCH-total correlation spectroscopy 

(TOCSY) and HCCH-correlational spectroscopy (COSY). Once all backbone and 

side-chain assignments are complete, distance restraints are derived from nuclear 

Overhauser effect spectroscopy (NOESY) data. Intermolecular NOESY contacts 

(between the two elements that form the complex) can be acquired using isotope-

filtered NOESY experiments. These experiments remove coherences of protons 

attached to 15N or 13C, leaving only signals from protons of the unlabelled ligand 

detected in one or more dimensions. In contrast, edited experiments select signals of 

proton attached to 15N or 13C. The isotope-filtered NOE experiments are recorded in 

addition to the conventional 3D 13C- or 15N-edited NOESY experiments, and 

comparison with the latter allows separation of inter- from intramolecular contacts.95 

All the NOE data is converted into distance restraints to perform the structure 

calculation. Here, two problems arise, the NOE assignment and the calculation of 

structures that fulfil the conformational restraints derived from the NOE assignment. 

Molecular dynamics, minimisation and simulated annealing have been successfully 

applied to structure calculation. However, there are no robust methods for NOE 

assignment and this step is still very time consuming and laborious due to the large 

number of assignment possibilities, peak overlap and potential artefacts in the 

spectra.95,96 Programs for NOE automated assignment were developed, for instance 

CANDID/CYANA, AUTOSTRUCTURE or ARIA (Ambiguous Restraints for 

Iterative Assignment)96. The focus will be on ARIA as it was the program used in this 

project for automated NOE assignment. ARIA introduced a very important concept in 

NOE assignment – the use of ambiguous distance constraints. The majority of NOEs 

cannot be assigned unambiguously from chemical shift information alone and the 
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treatment of some distance restraints as ambiguous facilitate the assignment of NOEs 

as the same peak can be assigned to different spin systems. In a later stage (iteration), 

ARIA should be able, at least in theory, to refine the assignments accordingly with the 

lower energy structures obtained from previous iterations.97ARIA assigns NOE cross-

peaks by first deriving all possible assignments for each peak by matching a list of 

chemical shifts. Peak volumes are converted into distance restraints using the isolated 

spin pair approximation, which relates the volume to the inverse sixth power of the 

distance between the two interacting spins (Equation 1.3). 

, Equation 1.3 

where Vij is the volume and dij is the distance.95,96 Distance restraints are then 

calculated based on the cross-peak assignment and Equation 1.3. These restraints are 

subsequently used to calculate structures using Crystallography & NMR System 

(CNS)98 that employs a simulated annealing refinement method. Other restraints, not 

derived from NOE data can be introduced into the calculations to facilitate the process 

and give higher quality models. Examples are hydrogen bonds, J-couplings, residual 

dipolar couplings, disulphide bridges and dihedral angle restraints. Obtaining a correct 

initial fold at the outset of a de novo structure determination can be challenging 

because the powerful structure-based filters used for the elimination of erroneous cross 

peak assignments are not yet operational at that stage. It is of great help for the initial 

phase of the algorithm if the user can supply a limited number of already assigned 

long-range distance constraints, meaning the user still has to provide some assignments 

in order to get the correct protein fold.97 An overview of the whole process for structure 

determination using solution NMR can be found in Figure 1.16. 

 

Figure 1.16 – General overview of the process for structure determination using solution NMR. 
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There is still a long way until structure determination via solution NMR reaches the 

automation existing for more established methods such as X-ray crystallography. 

However, the importance of the information acquired using NMR for characterisation 

of complexes in solution is undeniable. 

1.2.3.2 Isothermal titration calorimetry (ITC) 
The ITC method measures energy (heat) changes that are associated with the binding 

reaction of two components. It is a method that can directly determine the binding 

affinity (Ka) and enthalpy (∆H), and using these values it is possible the calculation of 

free Gibbs energy (∆G) and entropy (T∆S). This is achieved by measuring stepwise 

changes in the heat changes during the course of a titration experiment. The underlying 

stoichiometry of an interaction can also be determined using this method.90,99 

Therefore, ITC has found widespread applicability in the study interaction analysis.99  

The experiment takes place inside a reaction cell containing one of the binding partners. 

Subsequently, the other binding partner (protein or ligand) is injected step-wise into 

the reaction cell (titration) until the required excess of the titrant is reached. The heat 

changes are determined by comparing the reaction cell to the reference cell.90 

Enthalpic and entropic factors can either contribute favourably or unfavourably to ∆G 

(Equation 1.4) resulting in the four possible modes: (i) ∆H>0, ∆S<0; (ii) ∆H<0, ∆S<0; 

(iii) ∆H<0, ∆S>0; and (iv) ∆H>0, ∆S>0. Only modes (ii–iv) yield negative ∆G values, 

leading to binding. While many protein-ligand binding events are driven by enthalpic 

factors, in some cases entropy can contribute favourably towards a negative change in 

free energy and, thus, result in binding.100 

, Equation 1.4 

The change in ∆H is determined by a variety of interatomic forces, including 

electrostatic, van der Waals, and hydrogen-bonding interactions, and the entropic 

contribution ∆S represents the change in the size of the conformational space available 

to the overall system, including the protein, ligand, and solvent molecules. 

Most of the entropically favourable interactions are hydrophobic in nature because of 

large positive solvation entropy changes on reduction of the exposed hydrophobic 

surfaces. Before interacting, the protein and ligand are each solvated separately. Upon 

binding, which in this context usually involves the burial of hydrophobic surfaces, 
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many water molecules from the separate hydration shells surrounding the protein and 

ligand are freed into bulk solvent. This process increases the number of conformational 

states of the water molecules and, thus, of the system as a whole, overcoming the loss 

of entropy due to restraining the molecule and binding site.100 

This method is immobilization-free (solution method and closer to native 

conformations) and has the advantage of not requiring any labelling of any investigated 

protein. ITC can be used to detect interactions between two proteins or between a 

protein and a small molecular weight ligand. However, sample consumption can be 

relatively high when using this technique and therefore it has limited applicability for 

proteins that are difficult to produce in relatively large amounts.90 Another limitation 

of the ITC experiment is having upper/lower limits of binding affinity of ~10 nM and 

~1 mM respectively. These limits are related with the ideal concentrations for the 

macromolecule. High affinity interactions (low Kd) should be studied at low 

concentrations: however, the minimum concentration that will typically cause a 

confidently measurable heat change for a 1:1 interaction is about 10 µM. Low affinity 

interactions (high Kd) should be studied at high concentrations, but the concentration 

that can be used may be limited by availability or solubility of the sample 

molecule.99,101 The development of competition (or ligand displacement) ITC 

experiments has led to binding parameter determination for very strong (or weak) 

binders.  

1.3 Research Aims  

EB1 is a key protein at the MT plus ends protein network, nevertheless, no small 

molecules ligands have been identified or designed to target EB1.  Targeting EB1 

using small molecules could bring immense benefits for a better understanding of its 

role in vivo or even stabilise/destabilise its binding to other molecules – protein-protein 

interaction modulators, ultimately making it “druggable”. 

The main aim of the project is to identify a chemical scaffold based on the SxIP motif 

that can target the EBH domain of EB1. This scaffold can be used for the design of 

molecules that can modulate the interaction of EB1 with SxIP proteins. To achieve this 

goal, intermediate aims were defined. These, include the definition of one or more 

virtual screening approaches to identify hit molecules and binding characterisation of 
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the identified hits using biophysical screening techniques, such as NMR. The 

understanding of how SxIP ligands interact with EB1, identifying which regions 

promote the specificity and which regions contribute to the affinity of the interaction 

will be also covered as this will help to characterise the native interaction and this 

information can be used for subsequent drug design campaigns - Figure 1.17. 

These aims will be covered in five chapters, where chapters 2, 3, 4 and 5 will be 

focused mainly in the two first aims (virtual screening and ligand binding 

characterisation) with Chapter 5 covering the characterisation of the native interaction. 

Chapter 2 will cover the initial attempt to identify EB1 ligands by using a molecular 

modelling approach including pharmacophore search based on the known SxIP motif 

and docking using a crystal structure of EB1. Compounds identified using this method 

will be screened for EB1 binding. 

 

Figure 1.17 – Main aim defined for this project and sub-aims needed to achieve the main goal. 

The next chapter (Chapter 3) includes structural characterisation, using solution NMR, 

of EB1 in the free form and bound to one of the ligands identified in the previous 

chapter. The aim of this chapter is to understand how these compounds interact with 

EB1. Differences between these structures will be described and this information used 

for another attempt to find small molecule inhibitors to target EB1 – Chapter 4, 

extending the contact region beyond the SxIP motif. 

Chapter 5 is a detailed study of short length peptides based on a SxIP protein native 

sequence and their interactions with EB1. The aim of this chapter is to understand the 
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contributions of different regions in the interaction between SxIP proteins and EB1. 

The final section of this chapter is the identification of higher affinity peptide 

sequences that can, in the future, be used to build a new pharmacophore and identify 

EB1 small molecule ligands. 

 

  



Identification of small molecule inhibitors 
  

73 
 

IDENTIFICATION OF 
NOVEL SMALL MOLECULE 

INHIBITORS  
Finding novel small molecule inhibitors that can bind to EB1 is the main aim of this 

chapter. As described in the introduction – Chapter 1, finding small molecule 

modulators for protein-protein interactions is considered one of the current challenges 

in drug discovery. Therefore, a highly comprehensive and targeted approach will be 

used. 

The crystal structure of a complex formed between the C-terminal of EB1 lacking the 

last eight C-terminal residues (EB1cΔ8) and a 30 residue peptide derived from the C-

terminal of human MACF2 (MACFp1)31 is available on the PDB102 with code 3GJO. 

With the complex structure available it is possible to use both ligand and structure-

based design approaches for identification of small molecule modulators. The natural 

ligand, MACFp1, allows to search for compounds that can establish similar 

interactions with the target, EB1cΔ8, whereas the target itself permits further 

refinement of a potential binder through molecular docking. Both pharmacophore-

based and docking based methods have proven to be successful in virtual screening 

projects; however none of the approaches is clearly superior.103 Therefore, the use of 

both approaches can be beneficial. Solution NMR will be the biophysical technique to 

screen the selected compounds. 

2.1 Virtual screening methods applied to identify hit molecules to target 

EB1 

The outcome of the screening process is highly dependent on the type of virtual library 

created.104 As described before the chemical space of PPI inhibitors has not been 

completely defined. There have been efforts to generate PPI focused libraries, for 

example, the 2P2I53,105,106 and TIMBAL107 databases. In order to enhance the chemical 

diversity a PPI focused library was not used, instead ZINC database108,109 was utilised 

to build the compound libraries for the structure-based design. With more than 35 

million purchasable molecules, ZINC, is the largest database of commercially 

available compounds for virtual screening.108 One of the reasons ZINC database was 

chosen is related to the fact that requirements as suitable for organic synthesis and/or 
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purchasability are very important.56,110 The second reason is related to a tool embedded 

with this database – ZINPharmer55. ZINCPharmer provides tools for constructing and 

refining pharmacophore hypotheses directly from molecular structure. Pharmer 

identifies hydrophobic, hydrogen bond donor/acceptor, positive/negative ions and 

aromatic pharmacophore features, searching in ZINC database for conformers that can 

satisfy these features. The concept of hot-spots in PPIs was previously presented. 

Despite there being no non-peptide compounds known to bind to EB1, the four residue 

peptide SxIP has been frequently reported as fundamental for the interaction with the 

EBH domain of EB1. Moreover, as shown before this motif targets a highly conserved 

hydrophobic pocket. By using this knowledge on the native interaction it is possible to 

reduce the number of compounds to be docked and analysed through structure-based 

design methods. 

In terms of molecular docking a clear propensity towards GOLD111–118 (Genetic 

Optimisation for Ligand Docking) has apparently emerged with respect to other 

docking software for PPI drug discovery projects.67 This may be due to two reasons. 

GOLD uses a genetic algorithm (GA) that can be applied to more flexible systems. It 

is known that during the physical binding, both the ligand and the protein adapt their 

conformations to each other (flexibility). As a consequence, docking algorithms 

should handle the flexibility of both ligand and protein. Almost all docking programs 

perform flexible ligand docking while the receptor is kept rigid. One of the exceptions 

is GOLD, which apply some flexibility to the protein during the docking, through 

active site chain rotations and, in a more global level, minimizations.76 This is done by 

using a GA. The GA works by using an evolutionary strategy in exploring the full 

conformational flexibility of the ligand with partial flexibility of the protein. It also 

satisfies the fundamental requirement that the ligand must displace loosely bound 

water on binding.112 The other reason may be the fact GOLD presents four scoring 

functions, allowing the score to a certain binding pose to be attributed based on a wide 

range of different parameters. The four scoring functions will be subsequently 

presented. 

Goldscore has a Van der Waals treatment of clash and dispersion terms and uses a 

crystal structure derived treatment of hydrogen bonding and metal terms 

Chemscore is an empirical scoring function parameterised from 82 complexes of 

known binding affinity. It has a lipophilic-lipophilic contact area term, a geometrically 
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constrained hydrogen bond term and a term to penalise excessive flexibility. 

ASP (Astex Statistical Potential) is a knowledge-based scoring derived from the  

Protein Data Bank (PDB)102  

ChemPLP (Piecewise Linear Potential) is the most recently introduced scoring 

function. This treats neutral and repulsive contacts with a piecewise linear potential 

(PLP). This simple potential has both an attractive and repulsive part for neutral 

contacts and solely a repulsive part for neutral contacts and solely a repulsive part for 

anti-complementary contacts (donor-donor, metal-donor and acceptor-acceptor). The 

Chemscore hydrogen bonding term is used for hydrogen bonds and the Chemscore 

internal energy term is also used. ChemPLP is fast to calculate in comparison to 

Goldscore (benchmarked at 23 seconds for ten times repeat dockings at default settings, 

compared to Goldscore, benchmarked at 90 seconds).119  

Among the available GOLD scoring functions, Chemscore is known to be suited for 

binding sites for which a significant part of the ligand affinity can be ascribed to 

hydrophobic interactions, as is often the case in protein–protein interfaces, while the 

complementary Goldscore is preferred for polar binding sites.67 Different scoring 

functions evaluate the binding using different parameters, having different deficiencies 

and strengths. Sometimes, it is desirable to combine different scoring functions in 

order to obtain better predictions. Thus, a recent trend, consensus scoring, has been 

introduced in molecular docking studies. Consensus scoring gathers information from 

different scoring functions improving the probability of identify “true” ligands.73 

Consensus scoring is recognized to increase hit rates by reducing the number of false 

positives and the errors in the scores/ranks and it should be considered as the most 

reasonable strategy when groping in the dark.67 In addition to a good virtual screening 

protocol, it is often important to prevent investing time and resources in compounds 

that will most likely fail at a later stage of the drug discovery process. One of the 

greatest challenges in the virtual screening remains the simultaneous prediction and 

optimization of both binding affinity and pharmacokinetic properties. In silico methods 

can also be used to predict and analyse molecular properties of the hit molecules, in a 

fast and inexpensive way. The prediction of properties related to drug-likeness, as 

taking onboard ADME (absorption, distribution, metabolism and excretion) 

consideration early in pre-clinical development, may help to avoid costly late-stage 

pre-clinical and clinical failures.78 
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The reasons for this failure have been widely described and may include poor 

pharmacokinetic properties, lack of efficacy or selectivity, toxicity and unexpected 

adverse effects.120 This cannot be totally avoided, although there is knowledge based 

on past experience that can help to flag these undesirable properties. These properties 

can be conflicting with other desirable features such as structure based design 

predictions or chemical diversity. To overcome these conflicting properties one can 

use a multi-objective analysis, where a pool of equivalent optima are obtained for all 

the objectives (properties).120,121 

2.2 Identification of small molecules based on SxIP motif 

It has been widely reported that a diverse a group of +TIPs, the SxIP proteins, contain 

conserved SxIP motifs in intrinsically disordered regions, enriched in basic, serine, 

and proline, residues. The SxIP motif binds, specifically, to the C-terminal domain of 

EB1 – EBH domain.31,49 The crystal structure confirms the most prominent contacts 

involve Ser5477, Ile5479 and Pro5480, positions 1, 3 and 4 of the SxIP motif. Ser5477 

forms an extensive network of hydrogen bonds with highly conserved Arg222, Glu225, 

Gln229 and Tyr247 through a water molecule – Figure 2.1A.31 Lys5478 is within a 

salt bridge distance (~4 Å) to Asp257; however the electron density is poorly defined 

for both side chains, indicating a dynamic region.31 More importantly, Ile5479 and 

Pro5480 are buried within a hydrophobic cavity formed by Lys220’, Leu221 and 

Leu246 and delimited by the aromatic rim at the bottom, Phe216’, Tyr217’ and Phe218, 

followed by Arg222, Glu225, Tyr247, and Ala248 – Figure 2.1B.31,43  

SxIP motif targets the hydrophobic pocket and surrounding areas of EB1c and it does 

seem a good starting point for the design of small molecules that can bind to EB1 and 

therefore block its interaction with other proteins. 
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Figure 2.1- A - Close-up view of the crystal structure of the complex EB1cΔ8-MACFp1. SxIP motif is 

coloured orange EB1 represented as cartoon ribbon (grey). MACFp1 is represented as sticks, with the 

SxIP motif coloured in orange and the remaining residues coloured in yellow. (PDB code 3GJO)15  The 

yellow dashed lines represent hydrogen bonds. B – IP motif (cyan) of MACFp1 and hydrophobic pocket 

of EB1c, formed by Lys220’, Leu221 and Leu246 (coloured in orange) and delimited by Phe216’, 

Tyr217’ and Phe218, followed by Arg222, Glu225, Tyr247, Ala248 (coloured in yellow). C-terminus 

residues (Thr249-Gly260) were removed for a better visualisation. 

2.3 Ligand-based design - Pharmacophore search 

A pharmacophore is the ensemble of steric and electrostatic features of different 

compounds which are necessary to ensure optimal supramolecular interactions with a 

specific biological target.122 In other words, a pharmacophore is an abstract concept 

that describes the common steric and electrostatic complementarities of bio-active 

compounds with the target.123 As referred before, ZINCPharmer was used as a tool for 

pharmacophore definition and database filtering and the SxIP motif was used as the 

starting point to define a pharmacophore model. Besides the type of the interaction 

(hydrogen bond acceptor/donor, hydrophobic, positive/negative ion and aromatic), 

other key information can be incorporated into the pharmacophore model such as the 

three-dimensional location of the interaction, if an interaction is directional (such as 

hydrogen bonding) and also its spatial orientation.123 ZINCPharmer considers that 

hydrogen bond acceptors/donors must be within 4 Å of a hydrogen bond 

donor/acceptor and a hydrophobic feature must be within 6 Å of at least three 

hydrophobic features of the receptor. The direction of the hydrogen bonding is 
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represented, by arrows, while the size of the hydrophobic regions is controlled by the 

radius of the respective sphere - Figure 2.2.55 In this case, since no receptor structure 

was uploaded for the search, radius values and bond directionality were independent 

of the receptor. 

Due to the polar interactions observed for Ser5477 (described in the previous section), 

two hydrogen bond acceptors were defined – Table 2.1. Three hydrophobic centroids 

were defined for Ile5479 and Pro5480 since these residues clearly make hydrophobic 

contacts. Lys5478 was not utilised for the definition of a pharmacophore model since 

it seems to make contacts with a more dynamic region and the aim at this stage is to 

find small molecules that can interact mainly with the hydrophobic cleft formed by the 

two monomers of EB1. In addition, backbone amide for Ile5479 and carbonyls for 

both Ile5479 and Pro5480 were included as hydrogen bond acceptor and donors, 

respectively – Figure 2.2 and Table 2.1. The inclusion of both hydrophobic contacts 

plus hydrogen bond contacts allow for a well-fitted molecule binding to the pocket, 

stabilised by hydrogen bonds.  

 

Figure 2.2 - Representation of the pharmacophore points found for Ser5477, Ile5479 and Pro5480 of 

the MACFp1 peptide. All pharmacophore features are shown in spheres, being the hydrogen bonding 

acceptors showed as orange mesh, hydrogen bonding acceptors in white mesh and hydrophobic as green 

mesh. Orange and grey arrows indicate the direction of the hydrogen bond donor/acceptor, respectively. 
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Table 2.1 - Pharmacophore points found based on Ser5477, Ile5479 and Pro5480 

Pharmacophore 

Class 

Coordinates 
radius residue 

x y z 

H donor -16.20 -30.47 21.17 0.50 Ile5479 

H acceptor -13.21 -33.20 21.86 0.50 Ser5477 

H acceptor -13.64 -30.55 34.37 0.50 Ser5477 

H acceptor -15.25 -28.40 30.36 0.50 Ile5479 

H acceptor -16.20 -25.55 29.38 0.50 Pro5480 

Hydrophobic -16.92 -26.78 32.96 1.00 Ile5479 

Hydrophobic -19.01 -27.81 29.06 1.00 Pro5480 

Hydrophobic -16.39 -28.30 35.09 1.00 Ile5479 

Since a ligand by itself does not provide information about the nature of an interaction, 

the result is not a true pharmacophore. Instead, the pharmacophore derived from a 

single ligand structure should be seen as a 3D similarity search.55  

The search for molecules within the ZINC database containing all these 

pharmacophore points, with a molecular weight smaller than 500 g.mol-1, gave no hits. 

Thus a systematic search was done, removing one, two and three pharmacophore 

points, yielding a total of 71 possible combinations. The result was that 40006 

molecules were found to fit at least five of the defined pharmacophore points. Since 

the number was high, another filter, Root Mean Square Deviation (RMSD) smaller 

than 0.5, was applied retrieving 3933 molecules, which is a much more reasonable 

number to perform molecular docking. Filtering by RMSD restricts the hits to those 

that have the best overall geometric match to the query.55 Since ZINCPharmer offers 

different conformations of the same molecules, repeated molecules were removed, 

retaining 3060 molecules for the docking studies. 

2.4 Molecular Docking studies 

 Molecular Docking method validation and general considerations 

Before performing the molecular docking studies method validation is needed to check 

that docking can predict accurately the binding modes of an interaction. 

Pose selection is a commonly used method for validation of docking methods and 

scoring functions. A compound with a known conformation and orientation, typically 
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from a crystal structure, is re-docked and the results given (poses) are evaluated in 

terms of similarity with the known conformation.124,125 Usually a RMSD lower than 2 

Å between the experimental (crystal structure) and the calculated poses is considered 

a successful validation.76,114 To validate the docking method the peptide fragment of 

MACFp1 – SKIP was used since the main aim of the molecular docking studies in this 

project was to make a virtual screening of small molecules, with a molecular weight 

and size closer to the SKIP motif rather than the 11 residue peptide presented in the 

crystal structure – KPSKIPTPQRK, i.e. ~443 g.mol-1 instead of ~1279 g.mol-1. 

Additionally, the importance of probing the hydration state of a protein binding pocket 

in the un-bound state has been demonstrated and should be a standard element of 

structure-based design.126 For this reason, the pose validation was also performed in 

the presence of a water molecule in the binding site. The crystal structure shows the 

presence of a water molecule that mediates hydrogen bond formation between MACF2 

and EB1.31 When water molecules are known or assumed to play a role in protein-

ligand recognition, the most common strategy is to perform separate docking runs in 

parallel, i.e., one in the absence of water molecules and a second in the presence of 

one or more water molecules.116 

Hydrogen bonds are the most important specific interactions in biological processes. 

Their geometries follow strict rules and therefore this is part of the information that 

can be extracted from crystal structures.126 Due to the importance of these interactions, 

and based on the information retrieved by the crystal structure 3GJO, the following 

hydrogen bond constraints were introduced in GOLD – Arg222, Glu225, Leu246, 

Tyr247, Val254 from chain A and Tyr217 from chain B.31 

Table 2.2 - The average and standard deviation calculated based on 10 docking solutions for the SxIP 

motif 

Rotatable bonds Fixed Not fixed 

 Score RMSD (Ȧ) Score RMSD (Ȧ) 

GoldScore 71.4 (±0.1) 0.25 (±0.02) 70 (±8) 2.3 (±0.9) 

ChemPLP 68.00 (±0.06) 0.48 (±0.02) 77 (±5) 3 (±2) 

ChemScore 34.6 (±0.2) 0.5 (±0.2) 22 (±2) 3 (±2) 

ASP 35.5 (±0.2) 0.45 (±0.08) 36 (±1) 5 (±2) 

 

Table 2.3 - The average and standard deviation calculated based on 10 docking solutions for the SxIP 
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motif, with a H2O molecule and hydrogen bonding constraints 

Rotatable bonds Fixed Not fixed 

 Score RMSD (Ȧ) Score RMSD (Ȧ) 

Goldscore 37.0 (±0.6) 0.40 (±0.03) 47 (±6) 3 (±2) 

ChemPLP 31.1 (±0.1) 0.47 (±0.03) 57 (±7) 3 (±2) 

Chemscore -5.5 (±0.1) 0.30 (±0.05) -9 (±4) 6 (±2) 

ASP -4.02 (±0.08) 0.33 (±0.04) -3 (±8) 7 (±2) 

Goldscore and ChemPLP were found to have a better performance when posing the 

natural ligand – SKIP - for this model. The first molecular docking study, without any 

constraints, gave a smaller RMSD for Goldscore, 0.25 Å when compared with 

ChemPLP, 0.48 Å. The same situation is observed when constraints are applied to the 

docking method, with Goldscore showing a slightly smaller RMSD value, 0.40 against 

0.47 Å obtained for ChemPLP. In this case the difference is much smaller and 

considering the standard deviation values, not significant. Based on both results it was 

decided to choose Goldscore as the scoring function for this study.  

The definition of the binding site was based on a radius of 6 Å around the ligand 

included in the crystal structure Table 2.4. EBH domain of EB1 is a homodimer and 

therefore the binding site is formed by residues belonging to both monomers – chain 

A and chain B.  

Table 2.4 - EB1 active residues used for GOLD for the docking of small molecules inhibitors. These 

residues were defined using a 6 Å radius around the ligand present in the crystal structure. 

Chain A Chain B 

Arg214, Phe218, Leu221, Arg222, Glu225, 

Leu226, Gln229, Leu246, Tyr247, Ala248, 

Thr249, Asp250, Glu251, Gly252, Phe253, 

Val254, Ile255, Pro256, Asp257 

Asp209, Glu213, Phe216, Tyr217, Lys220 

With this binding site definition the area of interaction was not restricted to the region 

were the SxIP motif binds but expands considerably further. This is an important 

feature since it is known that in order to enhance specificity and affinity, additional 

interactions, beyond those present in a single individual “hot spot” are required. 

Nearby residues that do not meet the criteria of a “hot spot" may also play an important, 

if not essential role in the interaction.127  



Identification of small molecule inhibitors 
 

50 
 

 Docking of virtual library obtained from ZINCPharmer 

Effective consideration of key ligand-target interactions, such as hydrogen bonds, and 

other environmental factors during docking, such as target flexibility, metal ions, and 

water molecules, can enhance the docking-based virtual screening performance.128  

Thus, four molecular docking studies were performed, evaluating the 3060 molecules 

and including different variants, like hydrogen bonding constraints and a presence of 

a water molecule. There could be several potential advantages to including water 

molecules in a protein-ligand docking program. First, if the compound interacts with 

the water molecule, including it could improve the predicted binding mode. Several 

studies have been reported in the literature where parallel dockings were done in the 

absence of water molecules and in the presence of some key water molecules. Some 

authors have reported significant improvements in docking performance when water 

molecules were included, whereas others found that including water molecules had 

little effect on the quality of the dockings.116 Regarding the hydrogen bonding 

constraints, GOLD allows the definition of key hydrogen bonds. Molecules that form 

these defined bonds will score higher. In this study the residues chosen from EB1 to 

form key hydrogen bonds with the ligand were: from chain A, Arg222, Glu225, 

Gln229, Val254 and Tyr247 and Tyr217,  from chain B, in agreement with what was 

shown by Honnapa and co-workers.31  

In the first docking study no hydrogen bonding constraints or water molecule were 

included. The second and third docking studies included hydrogen bonding constraints 

and a presence of a water molecule, respectively, while the fourth docking study 

included both features - Table 2.5. 

Table 2.5 - Summary of the considerations, presence of water molecules or definition of key hydrogen 

bonding, made for each docking study. 

 H2O molecule H bond constraints 

1 No No 

2 No Yes 

3 Yes No 

4 Yes Yes 

At this stage, due to the large number of molecules the poses and scores obtained were 

not directly inspected. Instead, an analysis of the whole dataset was performed, using 

an ensemble of techniques described subsequently. 
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2.5 Screening and selection of hit molecules 

 Consensus scoring 

Due to the inherent limitations of the scoring functions, and taking advantage of GOLD 

providing four different scoring functions, the best docked conformer of each 

compound was re-evaluated using other scoring functions – this procedure is known 

as Consensus Scoring.129 Compared to single scoring procedure, Consensus Scoring 

reduces the number of false positives, improving the hit-rates.129 This was one of the 

conclusions from the results of an extensive computational study, of docking 

collections of three-dimensional structures into three different enzymes of 

pharmaceutical interest: p38 MAP kinase, inosine monophosphate dehydrogenase, and 

HIV protease.130  

For this purpose, docking poses obtained using Goldscore were rescored using the 

alternative scoring functions: ASP, Chemscore and ChemPLP. 

 Ligand Efficiency 

Large molecules can form many hypothetical interactions in binding sites and 

therefore have the tendency to generate better scores than smaller compounds.131 

Ligand efficiency is a measurement of the binding energy per atom of a ligand to its 

binding partner, such as a receptor or enzyme. In the case there is no information on 

binding affinities or binding energies, but there is a docking predicted score that can 

be used instead. By normalizing the energy score obtained from the dockings studies 

a docking Ligand Efficiency (dLE) can be calculated:  

 , Equation 2.1 

 Docking descriptors calculation 

The protein-protein interfaces have large contact areas and are typically dominated by 

steric and hydrophobic interactions, although there are also electrostatic interactions 

and hydrogen bonds.56 The latter types of interactions may be considered desirable to 

include as they facilitate the selection of more specific inhibitors which bind through 

these specific interactions.56 Using GoldMine, a tool provided with GOLD that allows 
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the analysis of large quantities of docking information, some docking descriptors, 

including information of the predicted hydrogen bonds between the molecules and the 

protein, were calculated.  

Between the calculated descriptors, there was the number of total hydrogen bonds and 

the number of specific hydrogen bonds. This second descriptor was defined based on 

the hydrogen bonds of the following residues Arg222, Glu225, Gln229, Tyr247, 

Val254 from chain A and Tyr217 from chain B, in agreement with what was shown 

by Honnapa and co-workers31 and with the constraints defined for two of the four 

docking studies. Another descriptor, hydrogen bond efficiency, was calculated based 

on the ratio between the total number of hydrogen bonds and the specific hydrogen 

bonds. 

Using Knime132, and the rule engine node, when the total number of hydrogen bonds 

was the same than the number of specified hydrogen bonds, the hydrogen bond 

efficiency value given was 1. When these features did not match, the rule engine node 

would retrieve 0. 

 Multi-parameter optimization 

Many accomplishments in modern drug discovery are hindered by the lack of 

consideration of multiple molecular properties in the early stages of lead identification 

and optimization. Indeed, one of the common causes for lead compounds to fail in the 

later stages of drug discovery is the lack of consideration of multiple objectives (e.g., 

ADMET properties) at the early stage of optimization of candidate compounds. 

Improving the pharmacological profile of a candidate molecule requires the 

optimization of numerous, often competing objectives (i.e., biological or chemical 

properties), to discover the few improved molecules that represent the best 

compromise of the multiple criteria is determinant for a successful drug.133,121 Pareto-

based methods are capable of optimizing numerous properties simultaneously.121  

Using the Pareto Ranking tool offered by Knime, a multi objective analysis was 

performed in order to select the compounds which had a balance between scoring 

values from the docking and molecular properties. The 3060 docked molecules were, 

therefore, ranked using the following properties: 
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Consensus Scoring and Ligand Efficiency 

Drug-like properties83,134  

ALogP135 <= 5 

LogD <= 4 

180 <= MW <= 500 

Molecular solubility – the higher value the better 

Molecular Polar Surface Area <= 140 

Num of H bond acceptors <= 10 

Num of H bond donors <= 5 

Num of rotatable bonds <= 12 

Hydrogen bond 

Total H bond – the higher value the better 

Specific H bond – the higher value the better 

H bond efficiency – a match between total H bond and specific H bond was ranked 

higher 

After ranking the 3060 docked molecules using the above described Pareto Ranking 

approach, the top ranked 100 molecules were chosen to move forward in the virtual 

screening process. 

 Top ranked 100 molecules – selection of candidate compounds to 

synthesis and biological assays 

To confirm the good binding predictions given by the first docking studies, it was 

decided to perform a molecular docking study for the selected 100 compounds. Since 

the number of molecules is smaller, the best ten solutions instead of one were saved in 

the solution file. If multiple solutions are generated for a ligand it is possible to 

calculate the RMSD of atom positions between each pair of solutions, using GoldMine. 

A smaller RMSD value is indicative that the docking prediction is very similar for the 

ten solutions and consequently gives more strength to the predicted poses and scores. 

In addition, a visual inspection of the poses given by the 10 different solutions was 

performed. The hydrogen bonds formed between the molecules and the residues were 

inspected. These 100 molecules were shown to form hydrogen bonds with the 

following residues: Arg214, Arg222, Glu213, Gly252, Leu221, but more frequently 

with Ala248, Gln229 Glu225, Leu246, Lys220, Phe218, Pro256, Tyr217, Tyr247 and 
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Val254. This is a good indicator since some of these residues are frequently described 

in the literature27,31,43 as components of the EB1 C-terminal binding site. However, a 

critical analysis also shows that these residues are within the defined binding site for 

the molecular docking studies. 

The aqueous solubility of a compound is an important property that influences both 

the bioavailability as well as the magnitude of many ADME properties. However, 

solubilisation is a complicated process influenced by lipophilicity, hydrogen bonding 

formation, crystal packing and counterion.110 With this in mind, for the selection of 

the hit compounds for synthesis, biophysical and biological testing, solubility (logS) 

was a key factor. Within the 100 molecules list, only molecules with a solubility value 

higher than - 4 were selected leading to the selection of only nine molecules. 

Observing the way in which the molecules fit in the binding pocket and possible 

interactions with the target it was decided to select three molecules ZINC12677264, 

ZINC08389070, and ZINC71025726. 
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Table 2.6. ZINC12677264 showed to be the best ranked compound overall, especially 

based on the score/ligand efficiency ranking, rank #1, and hydrogen bonds formed, 

rank #3. The Goldscore fitness score is also the highest of these three candidate 

molecules. ZINC08389070, the third candidate molecule, has a very similar scaffold 

to ZINC12677264, performing better in terms of drug-like properties (rank #2), 

including slightly better solubility value and RMSD (rank #4) and indicating the 

calculated pose is very consistent. ZINC71025726, has the lowest Goldscore fitness 

value of the three compounds, but overall a very balanced position in all the ranks. 

ZINC12677264 and ZINC08389070 are result of the same pharmacophore definition, 

whereas ZINC71025726 results from a different ensemble of pharmacophore features. 

Both searches included three hydrophobic features for Ile5479 and Pro5480 and a 

hydrogen acceptor feature for Ile5479. However, the search that retrieved 

ZINC71025726 included a hydrogen acceptor feature based on the carbonyl of the 

Pro5480 rather than a hydrogen donor feature based on Ile5479 – Table 2.7 and Table 

2.8. 
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Table 2.6 - Summary of rankings and molecular properties for the three candidate molecules resulting from the first virtual screening approach to target EB1. Final rank 

corresponds to the Pareto analysis using rank 1, score and ligand efficiency, rank 2, drug-like properties, rank 3, hydrogen bonds and rank 4, RMSD between the obtained 

solutions. 

Molecule 
name 

Final 
Rank 

Rank 
1 

Rank 
2 

Rank 
3 

Rank 
4 Solubility Goldscore 

Fitness Structure Molecular properties 

ZINC12677264 1 5 7 2 10 -3.992 62.3789 

 

 

ZINC71025726 4 8 4 3 6 -3.785 55.3401 

 
 

 

ZINC08389070 9 11 6 5 4 -3.96 55.9363 
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Table 2.7 - Pharmacophore points used for the search that retrieved ZINC71025726. 

Pharmacophore Class residue 	

H acceptor Ile5479 

	

H acceptor Pro5480 

Hydrophobic Ile5479 

Hydrophobic Pro5480 

Hydrophobic Ile5479 

Table 2.8 - Pharmacophore points used for the search that retrieved ZINC08389070 and ZINC12677264. 

Pharmacophore Class residue 	

H donor Ile5479 

	

H acceptor Ile5479 

Hydrophobic Ile5479 

Hydrophobic Pro5480 

Hydrophobic Ile5479 

Despite these differences all molecules are based on pharmacophore features of 

Ile5479 and Pro5480. The conformation of ZINC71025726 is the most similar to the 

natural ligand when compared with other two molecules – Figure 2.3, left hand side 

panel. The RMSD value is, as expected, smaller, 0.275 Å when compared with 

ZINC08389070, 0.475 Å and ZINC12677264, 0.476 Å.  

Regarding the docking poses (right hand side panel of Figure 2.3) one can observe that 

for ZINC71025726 the best scored pose is not much different than the conformation 

obtained from ZINCPharmer. On the other hand, for the other hits the binding poses 

are significantly different from the result obtained from ZINCPharmer. Notable 

features from the highest scored docking poses are, that the aliphatic chain of 

ZINC71025726 seems to emulate the β-branched side chain of isoleucine and the 

proline ring present in this molecule superimposes with Pro5480. 

For ZINC08389070 the isoleucine hydrophobic chain is replaced by the cyclopentyl 

ring, and the Pro5480 replaced by a methyl group. The replacement of the isoleucine 

by a ring can still yield the expected hydrophobic contacts, but constricts the rotation, 

since the methyl groups were replaced by a more rigid group. The methyl replacing 

the proline does not seem to be a disadvantage also since the area where the proline of 

MACFp1 sits is quite small – Figure 2.1B. 
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Figure 2.3 - ZINCPharmer results versus Gold docking poses for the three hit molecules. On the left 

hand side, the results of the search based on the defined pharmacophore model in ZINCPharmer for A 

– ZINC71025726, C – ZINC08389070 and D – ZINC12677264. On the right hand side best scored pose 

for B - ZINC71025726, D – ZINC08389070 and F – ZINC12677264. The crystal structure of 

11MACFp1 is showed in grey, with Ser5477, Ile5479 and Pro 5480 highlighted in orange. 

Finally, ZINC12677264 best scored docking pose does not provide the same 

interesting features as the previous compound, despite the scaffold being very similar. 

However, if analysing the ten best docking poses for this compound four out of ten, 

present a similar conformation to ZINC08389070, and an aromatic π-π stacking 

interaction with Phe218 – Figure 2.4. 

Since, ZINC12677264 was not commercially available at the time, it was decided to 

test ZINC08389070, and ZINC71025726 and find alternatives to ZINC12677264. 

Despite being the best ranked molecule, ZINC12677264, has a very similar scaffold 

to ZINC08389070, and using this approach it is possible to increase the chemical 

diversity of the tested molecules.  
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Figure 2.4 - Alternative pose for ZINC12677264. The cyclopentane ring and the methyl group emulate 

Ile5479 and Pro5480, respectively. The aromatic ring seems to establish aromatic π-π stacking 

interaction with Phe218. 

 Alternative compounds to ZINC12677264 

As stated before, ZINC12677264 was not commercially available and its scaffold is 

very similar to ZINC08389070. Chemical diversity is desirable at an initial stage of 

the drug discovery projects, therefore it was thought to select the best looking and 

consistent pose for ZINC12677264, build a new pharmacophore model and search for 

alternatives in ZINC database. In addition of being the best ranked molecule, 

ZINC12677264, shows a consistent pose where the aromatic ring seems to be in the 

right position to from π-π stacking interactions with Phe218 – Figure 2.4. 

2.5.6.1 ZINCPharmer search 
Using the pose shown in Figure 2.4, one can observe hydrogen bond formation 

between one of the nitrogens in the tetrazole ring and Gln229 and between the NH and 

Glu225, in addition to the aromatic π-π stacking interactions with Phe218. Two 

different pharmacophore models were built based on these interactions – Figure 2.5. 

For the first one, A, only six hits were obtained; therefore, it was decided to remove 

two of the hydrogen bond acceptor groups within the tetrazole ring, leaving only the 

one that clearly seems to establish contact with Gln229 – B. For the latter 166 hits 

were retrieved. It is worth mentioning that the receptor crystal structure with the code 

3GJO, was also uploaded into ZINCPharmer so the interaction pharmacophore will be 

automatically generated based also on the receptor features, e.g. hydrogen bond 

directionality.55 Duplicated molecules were removed, giving a final list with 150 

molecules. 
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Figure 2.5 - representation of the two pharmacophore models built to find alternative molecules to 

ZINC12677264. 

The docking method was optimised in such a way molecules that pose in a similar way 

to ZINC12677264 would be favoured. Therefore, constraints were introduced 

including hydrogen bond constraints and a region constraint. The hydrogen bond 

constraint definition included: Arg222 (η-NH2), Glu225 (δ-CO2), Gln229 (ε- η-NH2), 

Gly252 (backbone CO) and Val254 (backbone NH and CO). The region constraint 

was based on an area of 3 Å around Phe218 and should privilege molecules that 

establish hydrophobic contacts with this region, specifically with aromatic ring. In 

terms of solutions, 100 best solutions were saved into the solutions file, since at this 

stage it was desirable to have a molecule that not only was positioned in a favourable 

way but also the pose was consistent enough to increase the levels of confidence about 

the chosen candidate. Compounds were docked using Goldscore and rescored using 

the remaining scoring options, similarly to what was done for the first set of molecules. 

To select the candidate molecule all molecules with a solubility value lower than – 4 

were removed, leaving only 29 candidate molecules. A multi-parameter analysis was 

then performed based on two ranks, ligand efficiency and RMSD, followed by a visual 

inspection. Unfortunately, none of the first ranked molecules seemed to pose in a way 

that would make possible the existence of aromatic π-π stacking interaction with 

Phe218. In reality, only the sixth ranked molecule (ZINC63526256) seemed to present 

some docking poses consistent with this interaction. Alternatively, most of them 

seemed to interact with Tyr247 instead. The second best ranked molecule, 

ZINC64398049, was chosen based on having a very similar rank position to the first 

hit but having slightly better drug-like properties (i.e. number of hydrogen donors) and 

also due to the most consistent docking pose show the interaction with the hydrophobic 

pocket in addition to an aromatic π-π stacking interaction with Tyr 247 – Figure 2.6. 

Finally, three compounds were selected to screen using solution NMR - 
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ZINC08389070, ZINC71025726 and ZINC64398049. ZINC08389070, 

ZINC71025726 were obtained through a pharmacophore search based on the SxIP 

motif, whereas the last one, ZINC64398049, was obtained through a pharmacophore 

based on the molecule ZINC12677264. This second method has the advantage of 

providing larger chemical diversity, but the specificity given by the pharmacophore 

built on the natural ligand SxIP may be lost. To evaluate the robustness of the virtual 

screening and compound selection methods employed the in vitro screening of these 

molecules will be subsequently described. 

 

Figure 2.6 - ZIN64398049, A – ZINCPharmer result (coloured in green), based on ZINC12677264 

(coloured in orange). B - Best scored pose. The aromatic ring is facing the ring of Tyr247 and is within 

a distance of 3-4 Å, suggesting the possibility of π-π stacking interaction. 
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Table 2.9 - Summary of rankings and molecular properties for the three candidate molecules resulting from a pharmacophore model based on ZINC12677264. Final rank 

corresponds to the Pareto analysis using rank 1, score and ligand efficiency, and rank 2, RMSD between the obtained solutions. 

Molecule Name Final Rank Rank 1 Rank 2 Solubility Structure Molecular Properties 

ZINC44549656 1 1 2 -1.546 
 

 

ZINC64398049 2 1 3 -2.793 

 

 

ZINC63526256 6 3 4 -2.375 
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2.6 NMR based screening for hit candidates based on SxIP motif 

In the initial stage three compounds were screened for binding to EB1cΔ8 using 
1H,15N-HSQC experiments – 1a, corresponds to ZINC08389070, 1b, based on 

ZINC71025726 synthesised in house and 1c, ZINC64398049. Compound 1d, 

ZINC12677264, was later purchased and tested due to the large similarity with 

compound 1a – Table 2.10.  

Table 2.10 - Summary of the candidate hit molecules resulting from virtual screening studies to be tested 

against EB1cΔ8 

 

The 1H and 15N resonances were fully assigned using complementary pairs of triple 

resonance NMR spectra - CBCA(CO)NH13>/HNCACB137 for Cα/Cβ and HNCO138–

140/HN(CA)CO141 for CO connectivities. Backbone resonance assignment will be 

detailed in the next chapter – Chapter 3. 

Ligand-induced chemical shift perturbations (CSPs) in NH resonances on addition of 

the ligand were used as an indication of ligand binding and location of the binding site. 

All compounds were shown to induce CSPs in the backbone of EB1cΔ8, with 1a and 

Code ZINC code Solubility Molecular 
Weight 

Gold-
Score Structure 

1a ZINC08389070 -3.96 321.4 55.9363 

 

1b ZINC71025726 -3.785 289.4 55.3401 

 

1c ZINC64398049 -2.793 314.3 52.4107 

 

1d ZINC12677264 -3.992 427.5 
 62.3789 
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1d displaying the largest spectral changes - Figure 2.7, Figure 2.8, Figure 2.9,Figure 

2.10 and Figure 2.11. No broadening was observed for the NH cross-peaks throughout 

the titration, indicating a fast exchange between the free and bound state and, therefore, 

weak interaction.  

 
Figure 2.7 - Overlay of 1H,15N-HSQC spectra recorded at 800 MHz – in black is presented EB1cΔ8 in 

the free form (50 µM) and in red the complex EB1cΔ8 (50 µM) – 1a (5000 µM). The insets show 

regions of interest and the spectra corresponding to the following 1a concentrations, 500, 1000, 1500, 

2000, 2500, 3000, 3500, 4000, 4500 and 5000 µM. 

Compound 1a shows two main regions where chemical shift changes are located -
247YAT249 and 219GKLR222. Overall, the NH resonance for Tyr247 is the most affected 

upon ligand binding, with Δδ = 0.42 ppm - Figure 2.7. 
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Figure 2.8 - Overlay of 1H,15N-HSQC spectra recorded at 600 MHz – in black is presented EB1cΔ8 in 

the free form (50 µM) and in red the complex EB1cΔ8 (50 µM) – 1b (5000 µM). 

For compound 1b, Tyr247 is again the most affected residue, followed by Thr249, 

Arg222 and Lys220 – Figure 2.8. All these CSPs are smaller than the ones observed 

for compound 1a, indicating this is a weaker binder. It is worth to mention that all the 

CSPs are close to the hydrophobic pocket of EB1cΔ8 
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Figure 2.9 - Overlay of 1H,15N-HSQC spectra recorded at 600 MHz – in black is presented EB1cΔ8 in 

the free form (50 µM) and in red the complex EB1cΔ8 (50 µM) – 1c (5000 µM). 

Compound 1c, seems to be the worst ligand and only promotes CSPs for Tyr247 – 

Figure 2.9. Of the three initially tested compounds, 1a, showed to be the most 

promising in terms of magnitude of CSPs and affected residues. Compound 1d 

presents a similar scaffold to 1a, and seems to perform better in terms of scoring in 

docking studies, especially the possible interaction of its aromatic ring with Phe218, 

that would significantly improve the potency of the molecule. 
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Figure 2.10 - Overlay of 1H,15N-HSQC spectra recorded at 600 MHz – in black is presented EB1cΔ8 in 

the free form (50 µM) and in red the complex EB1cΔ8 (50 µM) – 1d (5000 µM). The insets show 

regions of interest and the spectra corresponding to the following 1d concentrations, 500, 1000, 1500, 

2000, 2500, 3000, 3500, 4000, 4500 and 5000 µM. 

1H,15N-HSQC titration confirms partially this hypothesis. Tyr247 is, once again, the 

most affected residue, the CSPs still follows a fast exchange pattern, but the distance 

is larger when compared with 1a (Δδ = 0.66 ppm compared with 0.42 ppm obtained 

for 1a). Interestingly, 247YAT249 and 219GKLR222 are still the main regions where 

chemical shift changes are located. Additionally, Phe218, Phe216 and even Val254 

(Δδ is rather small, 0.06 ppm) are perturbed (Figure 2.10), indicating this compound 

interacts not only with the hydrophobic pocket usually occupied by the IP motif of 
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SxIP proteins but also with the aromatic rim just below it and in a smaller extent with 

the dynamic C-terminus. It is worth mentioning that Val254 seems to be an important 

residue for the interaction of EB1cΔ8 with other molecules, being involved in 

hydrogen bond contacts with MACFp1 as described by Honnapa et al.31 In Figure 2.11 

it is clear that compound 1d promotes the largest chemical shift changes followed by 

compound 1a. 

 
Figure 2.11 - Chemical shift changes plot for the four tested compounds and their distribution per 

EB1cΔ8 residue. 

NMR titration curves show significant deviation from a linear dependence at high 

ligand excess that allows for Kd estimation by fitting the curve into the two-state 

exchange model (Figure 2.12).  In agreement with the CSP amplitudes, the estimated 

binding affinity is higher for 1d (6 ± 1 mM) followed by compound 1a (10 ± 3 mM) - 

Table 2.11. 
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Figure 2.12 - Chemical shift changes plots for Tyr 247, upon titration with 1a (left hand side plot) and 

1d (right hand side panel). 

Table 2.11 – values used to estimate Kd values for interaction between EB1cΔ8-1a and 1d. 

1a  1d 

Residue Kd (mM)        Residue Kd (mM) 

Thr206 6.05  Tyr247 5.29 

Asp209 7.22  Ala248 7.37 

Asp2015 15   6.33 (±1.04) 

Arg241 10    

Tyr247 10    

 9.65 (± 3.09)    

Both best binding compounds 1a and 1d share the same scaffold (Figure 2.13). This 

scaffold has shown to have high specificity (chemical shift mapping and molecular 

docking predictions) to the IP binding site. Moreover, these are the first molecules 

reported to bind to EB1c indicating that the aims of the chapter were achieved. One 

can argue that the binding affinities are not very high (mM); however, it is very close 

to the one showed by the SxIP motif - Figure 2.14. The curvature is more pronounced 

for compound 1d, followed by 1a and finally SKIP peptide, indicating the latter is 

closer to linearity and therefore weaker binding. Full information on the titration of 

this peptide can be found in Chapter 5. Analysis of the docking poses obtained for 

these compounds during the virtual screening and comparison with the IP motif of 

MACFp1 in the crystal structure of the complex indicates that this scaffold may act as 

an IP motif mimetic. The hydrophobic side chain of the isoleucine is replaced by a 

cyclopentyl ring, and the hydrophobic proline ring is replaced by a methyl group - 

Figure 2.13. The tetrazole moiety acts as spacer between both hydrophobic regions 

giving rigidifying the scaffold. 
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Figure 2.13 – Left panel - 3D model for the IP motif and the IP motif mimetic. The IP motif tri-

dimensional representation is based on the crystal structure 3GJO. The IP mimetic compounds 1a (black) 

and 1d (green) are the binding poses predicted by our docking studies using 3GJO structure as the 

EB1cΔ8 model. In both representations the C-terminus tail was removed for clarity. Right panel - 2D 

structure of IP motif and IP mimetic scaffold. 

 
Figure 2.14 – Binding curve for residue Tyr247 for the titrations of the tetramer SKIP (red), compound 

1a (black) and compound 1d (green). Ligand concentration corresponds to the excess of ligand (e.g. 10 

fold excess, 20 fold excess) to the protein concentration (50 µM). The fitted curve performed through 

the equation y=A((B+4x-sqrt((B+4x)^2-(4x) is shown as black dashed line.  
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It is therefore very likely that this scaffold is very specific for this binding site. To 

validate the docking predictions and to gain a structural insight of the binding mode of 

the IP mimetic scaffold the three dimensional NMR structure of EB1cΔ8 bound to 

compound 1a was determined. Additionally, the structure of EB1cΔ8 in the free state 

was also elucidated in order to identify structural changes that may occur upon 

compound binding and to facilitate structure determination of the complex. These 

structures and other aspects considering the binding mode of compound 1a to EB1cΔ8 

will be the subject of the next chapter.
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STRUCTURAL 
CHARACTERISATION OF EB1C 

USING SOLUTION NMR  
It was reported, in the previous chapter, the identification of a IP mimetic scaffold. It 

is now fundamental to understand how this scaffold interacts with EB1 and gain 

structural information on this complex to help to develop higher affinity ligands. For 

that purpose, EB1c will be characterised in the free form and in complex with 

compound 1a. Comparison between the two forms and analysis of the binding mode 

of this scaffold will be also analysed.  

3.1 Design of EB1 fragments 

It has been reported the importance of C-terminal tail on EB1 binding. Therefore, and 

to satisfy the aims of the project it was decided to build two different gene constructs 

to express two versions of the C-terminal of EB1 (EB1c). EB1cΔ8 construct comprises 

residues 191-260 and EB1cΔ16 corresponds to residues 191-252. The choice of these 

two different constructs was based on the necessity of a better understanding of the 

role of flexible tail for the interaction. Full-length EB1c (191-268) was not used in this 

project as the literature indicate the EB1cΔ8 includes all the necessary amino acids for 

the interaction with SxIP proteins.  

3.2 Production of recombinant EB1cΔ8 and EB1cΔ16 

The necessary steps to obtain the two EB1c fragments – EB1cΔ8 (residues 191-260) 

and EB1cΔ16 (residues 191-252), such as cloning, transformation, expression and 

purification are described in more detail in Chapter 7. EB1c fragments were expressed 

in an N-terminal SUMO vector (pOPINS) and high levels of protein expression were 

achieved. The protein was subsequently purified with good yields – Figure 3.1. The 

purification process included Ni affinity chromatography, followed by removal of the 

histidine tag with the use of SUMO protease. This particular step required optimisation 

because the protease was not cleaving the tag with complete efficiency, leaving some 

SUMO-tagged EB1c. This problem was overcome by using a reducing agent, 2-

mercaptoethanol, performing the cleavage at room temperature and using higher 
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concentrations of the protease. Finally, ion exchange purification was performed. The 

SDS-PAGE gels in Figure 3.1 show the steps performed until pure protein was 

obtained. The first corresponds to the purification of EB1cΔ8 and the lanes represent 

the following: 1 – Ni2+ affinity column flow through, 2 - Ni2+ elution with high 

imidazole buffer, 3 – buffer exchange into no imidazole buffer, 4 – after SUMO 

protease cleavage, 5 – Ni2+ reverse purification, 6 – SUMO tag, 7 – pure protein after 

ion exchange chromatography. The second gel corresponds to EB1cΔ16 and the lanes 

follow the subsequent pattern: 1 – before Ni2+ affinity chromatography, 2 – Ni2+ 

affinity column flow through, 3 - Ni2+ elution with high imidazole buffer, 4 – after 

SUMO protease cleavage, 5 – Ni2+ reverse purification, 6 – SUMO tag, 7 – pure protein 

after ion exchange chromatography. The chromatograms obtained for Ni2+ affinity 

chromatography and ion exchange chromatography are shown in Figure 3.2. 

 

Figure 3.1- SDS-PAGE electrophoresis of purified EB1 fragments using 15% Tris-Glycine gels – 

EB1cΔ8 (8 kDa) and EB1cΔ16 (7.2 kDa). Molecular weights of the proteins expressed were predicted 

using ProtParam webserver14>. 

Unlabelled, 15N-labelled, 13C15N-labelled EB1cΔ8, as well as unlabelled and 15N-

labelled EB1cΔ16 samples were characterised using a range of NMR spectroscopic 

experiments. 1H 1-D spectra suggest that both fragments are folded in solution, 

showing an overall dispersion of chemical shifts in the methyl (0-2 ppm) and amide 

(8.5-10 ppm) regions - Figure 3.3 and Figure 3.4. 
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Figure 3.2 - Chromatograms for EB1cΔ8 and EB1cΔ16 purifications. Upper panel – Chromatogram obtained for Ni affinity chromatography for EB1cΔ8 (left hand side) and 

EB1cΔ16 (right hand side). Bottom panel – Chromatogram obtained for ion exchange chromatography for EB1cΔ8 (left hand side) and EB1cΔ16 (right hand side). Both proteins 

were used without further purification after ion exchange chromatography.
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Figure 3.3- 1H 1-D spectra of 15N-EB1cΔ8 at 100 µM acquired at 25oC, with a field strength of 600 
MHz, in 20 mM phosphate buffer pH 6.5, 50 mM NaCl, 0.5 mM TCEP, 0.02% NaN3. 

 
Figure 3.4 - 1H 1-D spectra of EB1cΔ16 at 50 µM acquired at 25oC, with a field strength of 600 MHz, 

in 20 mM phosphate buffer pH 6.5, 50 mM NaCl, 0.5 mM TCEP, 0.02% NaN3. 
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3.3 Characterisation of EB1c by NMR Spectroscopy 

The C-terminal domain of EB1 has been previously structurally characterised and 

described as a stable dimer with a parallel coiled coil31 Each monomer starts with a 

long smoothly curved helix (residues 191-230), followed by a loop region which 

connects to a shorter second helix (237-248) antiparallel to the longer helix, forming a 

parallel homodimer characterised by the existence of a coiled coil region followed by 

a four helix bundle. The four helix bundle is then followed by a highly disordered and 

flexible C-terminal region.27,31,43 Our construct EB1cΔ8 includes most of the C-

terminal flexible region since this region seems to establish contacts with ligands.31 

 

Figure 3.5 - 1H,15N-HSQC spectrum for EB1cΔ8 acquired at 25oC, with a field strength of 800 MHz, in 

20 mM phosphate buffer pH 6.5, 50 mM NaCl, 0.5 mM TCEP, 0.02% NaN3. The spectrum shows the 

protein is folded and the well dispersed peaks allowed a complete backbone assignment. 
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Both 1H,15N-HSQC spectra (Figure 3.5 and Figure 3.6) present large chemical shift 

dispersion for the NH resonances. The good dispersion is related to protein folding 

meaning that the secondary structure places the residues in defined regions, making 

each residue being in a unique position that will subsequently yield unique NMR 

resonance signals. The main difference is the existence of extra peaks in the EB1cΔ8’s 

spectrum as expected as this construct is larger.  

The 1H,15N-HSQC of EB1cΔ8 was fully assigned by using a sequential assignment 

methodology with complementary pairs of NMR spectra - CBCA(CO)NH/HNCACB 

for Cα/Cβ and HNCO/HN(CA)CO for CO assignment (Figure 3.7). The use of these 

spectra is based on their C correlation with the NH resonances. The 

CBCA(CO)NH/HNCACB relation of i/i-1 was used for the sequential assignment 

building residue connections. Additionally, by estimating the residue type using Cα/Cβ 

chemical shifts to it was possible to estimate possible sequences and integrate them in 

EB1cΔ8 in an iterative way, assigning larger residues stretches with the progress of 

the assignment.  

The HNCO/HN(CA)CO i/i-1 pair, was used to resolve possible ambiguities. In Figure 

3.7 one can observe the overall quality of the CBCA(CO)NH/HNCACB pair is good, 

with good dispersion and resolution of cross-peaks. However, the same region in the 

HNCO/HN(CA)CO pair has a much better quality, showing sharper peaks resolved 

and isolated from neighbouring peaks. It is important to mention that the CO chemical 

shifts can also be used to help predict secondary structure of the protein. The 

assignment procedures are described in Chapter 7. 

With the backbone assignment of EB1cΔ8, all NH resonances present in the 1H-15N-

HSQC were assigned with the exception for the side chains. The NH resonances for 

the other construct were easily assigned by superimposition of this spectrum on the 

previously assigned EB1cΔ8 1H,15N-HSQC. The C-terminal residues for EB1cΔ8 are, 

as expected, more intense – Figure 3.5, left hand side inset, residues Asp257 and 

Glu258 indicating this region is highly dynamic.  

Alternatively, the spectrum for the construct EB1cΔ16 only shows high intensity peaks 

for Asp250 and Glu251. As described before this construct lacks 16 C-terminal 

residues and therefore lacks the C-terminal flexible tail. The main purpose of this 

construct, EB1cΔ16, was to assess the role of the C-terminal flexible region – last eight 
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residues, in the interaction with other molecules. Therefore, the characterisation of this 

construct will not be as thorough (side chain assignment) as the one performed for 

EB1cΔ8 and subsequently presented. 

 
Figure 3.6 - 1H,15N – HSQC spectrum for EB1cΔ16 acquired at 25oC, with a field strength of 600 MHz, 

in 20 mM phosphate buffer pH 6.5, 50 mM NaCl, 0.5 mM TCEP, 0.02% NaN3. The spectrum shows 

the protein is folded and the well dispersed peaks allowed a complete backbone assignment. 

Using the HBHA(CO)NH experiment that correlates NH of i to Hα/Hβ of i-1 it is 

possible to assign Hα/Hβ resonances from the NH resonances. The assignment of this 

spectrum was also a confirmation of the NH resonances assignments since Hα/Hβ 

resonances also have characteristic values for each amino acid type and all i/i-1 links 

are confirmed since this experiment works on i/i-1 relation.143–14> 
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Figure 3.7 – Superimposition of the pairs - CBCA(CO)NH/HNCACB and HNCOHN(CA)CO.  
Left panel - the Cα/Cβ peaks of the CBCA(CO)NH spectrum are shown in black, with the Cα/Cβ peaks 
of the HNCACB spectrum are shown in green and red respectively. Right panel – the HN(CA)CO 
spectrum is shown in red, with the C’ peak of the preceding residue being less intense and matching 
the i-1 peak from the HNCO (black) spectrum.  

In general, it is not sufficient to obtain only the backbone assignments, since side 

chains are the major fraction of the protein. Moreover, no protein structure can be 

determined without side chain assignments.  

Hence, 1H,13C-HSQC (Figure 3.8) was assigned, starting with the known resonances 

for α/β resonances, previously obtained from the combination of 

CBCA(CO)NH/HNCACB and HBHA(CO)NH. Using these resonances and the 

through bond correlations given by H(C)CH-TOCSY experiment the remaining atoms 

in the side chain were assigned. Because the resolution of 1H,13C-HSQC is inferior to 

the 1H,15N-HSQC and there are more 1H/13C cross-peaks, the spectrum looks more 

crowded, with more overlapping, therefore, (H)CCH-TOCSY experiment was used to 

discriminate between signals with similar 1H resonances.  
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Figure 3.8 - 1H,13C-HSQC spectrum for EB1cΔ8 acquired at 25oC, with a field strength of 800 MHz, in 

20 mM phosphate buffer pH 6.5, 50 mM NaCl, 0.5 mM TCEP, 0.02% NaN3. The spectrum shows 

generally well dispersed peaks. Only methyl region assignments are shown for clarity. Positive contours 

are shown in black and negative contours in red. 

These experiments make use of the TOCSY (Total Correlation Spectroscopy) through-

bond coherence transfer to all coupled spins in a scalar-coupled network (e.g. all 13C 

or 1H atoms of a linear side-chain).  
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The methyl region of 1H,13C-HSQC is very crowded, especially methyl groups of 

valines and leucines. The region around 25-35 ppm in carbon dimension and 1-2.3 

ppm for hydrogen dimension is also very crowded and it was particularly difficult to 

assign. This region contains high density of peaks including β’s for a large number of 

residues – lysine, arginine, glutamic acid, glutamine, methionine, proline; γ’s for 

isoleucine, lysine, arginine, proline and δ’s for lysine. 

The aromatic residues resonances (Figure 3.9) were assigned using the Cα/Cβ and 

Hα/Hβ resonances and a combination of 2D and 3D NOESY spectra for the side chain 

assignment. The main reason for this approach was the poor quality of H(C)CH-

TOCSY spectra for the aromatic region. The signals of the aromatic side chains are 

not well dispersed and required a very careful analysis.  

 

Figure 3.9 - 1H,13C-HSQC spectrum for the aromatic residues of EB1cΔ8 acquired at 25oC, with a field 

strength of 800 MHz, in 20 mM phosphate buffer pH 6.5, 50 mM NaCl, 0.5 mM TCEP, 0.02% NaN3.  

Once side chain assignments were performed, the NOE spectra ‒ 15N-resolved-13C-
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decoupled-NOESY-HSQC and 13C-resolved-3D-NOESY-HSQC ‒ HSQC dimensions 

were assigned using the root resonances present in both 1H,15N-HSQC and 1H,13C-

HSQC, in a semi-automatic way, i.e. picking the peaks and propagating the 

assignments. 

An extra complication of the EB1c resonance assignment is the fact that is a symmetric 

parallel homodimer, making difficult to distinguish between intraresidue NOEs and 

intermonomer NOEs between the same residue belonging to different monomers. In 

other words, with the assignment of 15N-resolved-13C-decoupled-NOESY-HSQC and 
13C-resolved-3D-NOESY-HSQC one is assigning NOE cross-peaks for only one 

monomer. However, due to the short distance between both monomers it is possible 

that some of these peaks, especially in the methyl region, are intermonomer contacts. 

It was, therefore, of the utmost importance to acquire information about NOE distances 

between the two monomers and therefore position the monomers in respect to each 

other – intermonomer distance restraints. For that purpose, EB1cΔ8 and 15N13C- 

EB1cΔ8 equimolar solutions were mixed and incubated at 37oC for 16 hours. This 

procedure was previously described by De Groot et al14> for an EB1/EB3 heterodimer 

formation. A set of 15N,13C-filtered NMR NOE experiments were acquired permitting 

the calculation of distance restraints between residues located in separate monomers 

(isotopically labelled versus unlabelled). 

With the 15N and 13C resolved 3D-NOESY-HSQC root resonances fully assigned it is 

possible to introduce these chemical shifts and spectra into ARIA96 for an automated 

ambiguous automated assignment. ARIA uses an iterative protocol and the concept of 

ambiguous distance restrains and automatically assigns NOE cross peaks.96 In addition 

to NOE cross peaks and calculated interatomic distances the use of other restraints 

such as dihedral angle or hydrogen bond restraints can be very useful for NMR 

structure calculation. This will be the focus of the next section. 

3.4 Solution NMR structure of EB1cΔ8 

ARIA96 is a widely used automated NOESY assignment procedure that acts as an 

interface for the Crystallography and NMR system - CNS98. A very important concept 

introduced by ARIA is the use of ambiguous distance constraints, where a certain 

chemical shift can be assigned to more than one resonance and later resolved as the 
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calculation proceeds. The use of only unambiguously assigned NOEs hinders the 

automatic NOE assignment since the majority of NOEs are hard to assign 

unambiguously.97 More information on ARIA 2.0 can be found in NOE Assignment 

with ARIA 2.0.14> 

The EB1cΔ8 structure in the unbound state was determined from 2641 restraints from 

which 634 correspond to intermonomer distance restraints, supplemented by 64 

dihedral angle restraints derived from chemical 13C-chemical shift values. Statistics of 

the structure determination are presented in Table 3.1. The process is described in 

Chapter 7. From the 320 structures calculated for the last iteration, 30 were water 

refined. The overlay of the 20 lowest energy structures – Figure 3.10 – shows 

consistency across the 20 structures for the region 191-248 where a helical secondary 

structure can be observed. EB1c is a parallel 2-stranded coiled coil, where the side 

chain of an apolar residue from one chain is inserted into a hole formed by the apolar 

side chains of four residues from the opposing chain – “knob in the hole” like 

structure.14> The coiled coil is then followed by a four helix bundle where contacts 

between four helices can be observed. Finally, a disordered C-terminus region follows, 

where assignments need to be carefully and manually analysed since any wrong or 

highly ambiguous assignment can introduce a bias in this region yielding an incorrect 

structure model.  

The first difficulty encountered when trying to calculate an ensemble of structures 

using dihedral angles and distance restraints was, due to being a large continuous 

helical structure and to the ambiguity given by the large number of leucines and valines 

(11.4% and 8.6% of the total sequence respectively), the calculated monomer would 

invariably fold on itself. This structure yielded high number of violations and high 

energies being, in all aspects, an unfavourable conformation. However, there were not 

enough restraints to fold it without breaking the helix in the region between the leucine 

zipper and the four helical bundle structure (Leu210-Arg214). To overcome this 

problem it was thought that the introduction of hydrogen bond restraints could help to 

stabilise the helical structure of the protein. Therefore, a thorough analysis of the NOEs 

was carried out in order to confirm which regions of the protein have a helical 

conformation. A survey of the sequential and medium range NOEs states that for an 

α-helix secondary structure, NOE cross peaks for Hα of i and HN of i+2 and i+3 should 

be observed, as well as Hα for i and Hβ of i+3.15> 
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Table 3.1 – NMR distance and dihedral statistics and structure statistics determined for the 20 best 

structures of the ensemble of free EB1cΔ8. 

 EB1cΔ8 
Total restraints used 

NOE restraints*  
All 2641 
Protein-ligand NA 
Intermonomer 634 (99) 
Intraresidue 980 
Sequential (|i – j| = 1) 633 
Medium (1 < |i – j| ≤ 4) 850 
Long range (|i – j| > 4) 169 

Dihedral  
ϕ angles 64 
φ angles 64 

Hydrogen bonds 90 
Structure statistics 

Violations 
Distance (> 0.5 Å) 3 
Dihedral angle (> 50)  1 

Energies (cal/mol) 
Overall   -5688 (±169) 
Bond 26 (±2) 
Angle 150 (±7) 
Improper 307 (±50) 
Dihedral 697 (±9) 
Van der Waals -1293 (±12) 
Electrostatic -5576 (±158) 
NOE 352 (±45) 

Geometry – average Values  
Bond 3.45x10

-3
 (±1.14x10

-4
) 

Angle 0.49 (±0.018) 

Improper 1.34 (±0.11) 
Dihedral 40.83 (±0.25) 
Van der Waals 162.96 (±12.05) 

Average pairwise RMSD (Å)**  

Heavy atoms 5.36 (±1.13) 

Heavy atoms – helical region 0.89 (±0.09) 
Backbone  5.75 (±1.23) 
Backbone – helical region 0.32 (±0.07) 

Ramachandran statistics (%) ***  
Most favoured regions 90.8 (98.8) 

Additional allowed regions 8.8 (1.2) 

Generously allowed regions  0.4 (0) 

Disallowed regions 0.0 (0) 
*Number in brackets corresponds to the restraints assigned manually 
**Helical region corresponds to residues: Glu192-Glu230 and Pro237-Tyr247 
*** Values within brackets correspond to residues Glu192-Glu230 and Pro237-Tyr247 (helical region) 

Therefore, 13C and 15N resolved NOESY-HSQCs were then carefully inspected in 

order to confirm the existence of these NOEs and consequently the α-helical region – 

Appendix (A.1). After proving the structure obeyed this pattern, artificial hydrogen 

bond restraints were introduced for these regions in order to help the protein folding 
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during the calculations. The hydrogen bond restraints in addition to some resolved 

ambiguities during inspection of the 13C and 15N resolved NOESY-HSQCs finally 

yielded the expected helical monomer. 

 

Figure 3.10 – A – Superimposition of the ensemble of 20 lowest energy structures of EB1cΔ8 domain 

in the free form. B – Cartoon representation of the lowest energy structure for EB1cΔ8. 

When compared with heterodimers, homodimers have a larger surface area, fewer 

hydrogen bonds, higher hydrophobicity and typically C2 symmetry.15> The structure 

determination of symmetric homodimers by NMR is impeded by the fact that is 

intrinsically impossible to distinguish between inter and intramonomer NOEs. The 



Structural characterisation of EB1c using solution NMR 
 

86 

only way to resolve this ambiguity is by asymmetric labelling.152  

As expected, applying C2 symmetry restrains was not enough to obtain the homodimer. 

The structure obtained was, invariably two parallel monomers, side by side and not a 

coiled coil. To solve this problem, the inter chain contacts were identified by using 

inter molecular NOEs from a 13C,15N-filtered-NOESY-HSQC experiment performed 

in an isotopically labelled/unlabelled dimer. These NOE restraints were fundamental 

to determination of the correct structure since they give information on the interface 

between both monomers. Additionally, CNS protocols were modified in order to 

optimise these C2 symmetry restraints for a parallel homodimer alternatively to the 

standard definitions based on an antiparallel homodimeric structure - Figure 3.11. 

 

Figure 3.11 – representation of the C2 symmetry restraints used for structure calculation. The 2-fold 

symmetry axis of the dimer is indicated. The distances from i to j’ and from j to i‘ are of equal size. On 

the left hand side the original restraints (antiparallel) and on the right hand side the modified version 

(parallel) used in this project. 

Because of the leucine zipper structure for the lower region of the helical region, more 

difficulties arose. As referred before, the methyl region of 1H,13C-HSQC is highly 

populated and there are some overlapped peaks, especially the ones belonging to 

valines and leucines. This is due to the existence of a contiguous heptad repeat in the 

form abcdefg, where a is valine and d leucine. This repetition of motifs induces similar 

chemical environments for these side chains (residues Leu196-Leu210) – Figure 3.12.  
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Figure 3.12 - Heptad repeat for the coiled coil structure of EB1c, side chains forming the apolar contacts 

are shown as sticks. 

This helical region structurally characterised as a leucine zipper is immediately 

followed by a four helical bundle, from Arg214 to Ala248 with a loop (Asn232-Val238) 

connecting the antiparallel helices for each monomer. The four helix conformation 

creates additional difficulties for correct assignment and structure determination. 

Being A and B the two longer helices of EB1c, A’ and B’ correspond to two identical 

shorter helices running antiparallel to A/B. Consequently, there are two possible 

combinations of inter helices contacts: A – A’ (intramonomer), A – B’ (intermonomer) 

- Figure 3.13.  

 

Figure 3.13 – schematic representation of the four helical bundle of the EBH domain of EB1c and 

possible inter and intramonomer contacts. 

This creates additional difficulties as the contacts between A – A’ and A – B’ are 
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different, different faces of the helices. If the right interaction surfaces are not correctly 

assigned, the position of the four helix bundle will be incorrect. 

This required detailed analysis of these regions and manual assignment of important 

contacts. Distance restraints were then derived from this assignment and used in the 

calculations as absolute NOE restraints, i.e. not filtered out during the iterative 

assignment performed by ARIA, 

Outside the fully structured coiled coil region, 248-260, the protein becomes 

unstructured, being highly dynamic - Figure 3.10A. This trend is supported by the 

RMSD values – Figure 3.14. The RMSD values for both backbone and side chains 

increase sharply from Asp250 onwards. Extra support for this flexibility is given by 

the existence of only intra-residue and sequential (+1/-1) NOE contacts in this region 

(Figure 3.15) and the intensities of the backbone 1H,15N-HSQC (Figure 3.5) cross-

peaks dramatically increased for the corresponding residues.  

 

Figure 3.14 – RMSD calculated per residue for the ensemble of 20 structures that form the solution 

NMR ensemble for EB1cΔ8. In black are shown RMSD values for the backbone and in red for the side 

chains. 
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Figure 3.15 – Strips for the 13C-resolved-NOESY-HSQC for the methyl groups of the following residues 

of the C-terminus of EB1cΔ8 in the free form – Thr249, Val254 and Ile255. The contacts shown refer 

to the aliphatic region ~4.5 ppm to ~0.4 ppm and it is possible to observe the absence of inter-residue 

contacts, except for some sequential residues. 

As described in the previous section, 3.3, and shown in Figure 3.9 the aromatic side 

chain resonances are not very well dispersed, showing some overlap. The main reason 

for this signal clustering is related with the 216FYF218 motif – Figure 3.16, with Phe216’ 

and Phe218 with similar chemical shifts. The assignment of intermononer contacts for 

this region was also of extreme importance since the Phe216’ and Tyr217’ belong to 

one monomer, whereas Phe218 belongs to the other. This area is of particular interest 
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since it forms an aromatic patch at the bottom of the hydrophobic binding site.43  

 

Figure 3.16 – Representation of the aromatic rim of the binding pocket of EB1cΔ8 – the F’Y’F motif. 

 
Figure 3.17 - A – conformations for Arg222 and Tyr247 for all the 20 structures calculated for free 

EB1cΔ8 B - different conformations observed for Arg222 and Tyr247 in solution and how they affect 

the shape and size of the binding pocket. 

It was also observed that two residues part of the hydrophobic pocket, Arg222 and 

Tyr247, present a dynamic behaviour in solution – Figure 3.17. Side chain RMSD 

values for the NMR ensemble for these residues are 1.37 Å for Arg222 and 1.76 Å for 

Tyr247, whereas the average for residues between 193-248 is 0.78 Å. There are NOE 

contacts between the aromatic ring of Tyr247 and Val243, Asp244, Ile245, Leu246, 

and Ala248 in the immediate proximity of Tyr247, compatible with all the detected 

orientations of the side-chain. However, no NOE cross peaks were observed between 

Tyr247 and Gln240 or Glu225, expected for two of the lowest energy structures of the 

protein (Figure 3.18). Similarly, there were no NOEs suggesting a preferential 

conformation of Arg222 side-chain. In the free protein the side-chains of Arg222 and 
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Tyr247 are dynamic, due to the lack of any specific interactions that would stabilise 

their orientation. 

 
Figure 3.18 – Superimposition of the two lowest energy structures of the ensemble obtained for EB1cΔ8 

in the free form. In green it can be seen that Tyr247 is closer to Glu225, whereas in cyan it is closer to 

Gln240. The remaining residues that show distance restraints to Tyr247 are represented in grey sticks. 

Both Arg222 and Tyr247 are part of two of the outer walls of the hydrophobic pocket.31 

Different conformations of these side chains in solution have strong effect on the shape 

and size of the hydrophobic pocket and therefore on small molecule binding. This was 

clearly demonstrated in Figure 3.17B, where when both side chains are in an inner 

position the binding pocket is not formed, as these side chains occlude it. When both 

point outwards, Figure 3.17B, middle panel, the pocket is partially formed but the outer 

wall formed by Tyr247 is not defined. When Tyr247 points inwards and Arg222 

outwards there is a binding pocket defined where the lateral “walls” are defined by the 

side chains of these residues. 

This matter will be further discussed in section 3.6, but for now the solution NMR 

structure for EB1cΔ8 in complex with molecule 1a and differences between free and 

bound form will be analysed. 

3.5 Solution NMR structure of the complex EB1cΔ8-1a 

In the previous section the solution NMR structure of EB1cΔ8 was elucidated and 

described. Notable characteristics such as the side chain mobility of residues in the 

binding site were described. It is important to determine the similarities and differences 

900 
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between EB1cΔ8 in the free form and bound to a small molecule and make conclusions 

of the main structural changes occurring in EB1cΔ8 upon ligand binding. These 

aspects will be subsequently described. 

As described in Chapter 2, the NH resonances for EB1cΔ8 upon 1a titration are 

affected in a fast exchange manner being possible to follow the chemical shift changes 

and propagating the assignments. The same was possible for 1H,13C-HSQC. Most of 

the resonance assignments were possible to assign using this strategy. The resonances 

for the small molecule, 1a, were assigned using 13C, 15N-filtered-NOESY and TOCSY 

experiments. With all the assignments in place it is possible to calculate distance 

restraints and perform structure calculation, similarly to what happened with EB1cΔ8 

in the free form. 

Regarding the structure of the complex EB1cΔ8-1a an additional complication was 

introduced due to the presence of a ligand. Luckily, it was known from the subtle 

chemical shift changes in the 1H,15N-HSQC observed upon ligand addition that there 

were not major structural changes induced by ligand binding, and therefore the 

structure would not be very different from the free form. Hence, it was decided to use 

a simplified approach where the final restraints obtained for EB1cΔ8 were used as the 

initial distance restraints input and the intermolecular restraints between the ligand and 

the protein are introduced to place the ligand relatively to the protein. 

So far, for the free protein there were two combinations of intermolecular restraints – 

chain A to chain B and reciprocally chain B to chain A. Being a symmetric homodimer 

means also that EB1 will have two symmetrical and equivalent binding sites, both 

formed by residues from both monomers - A and B. With a ligand bound to each 

binding site – chains C and D, it is to expect the following combination of 

intermolecular contacts: A-B; A-C; B-C; A-D and B-D being a highly complicated 

system for structure determination using NMR - Figure 3.19. Again, in order to 

simplify the number of possible intermolecular combinations, only one ligand was 

introduced in the calculations to simplify the combination of restraints needed. This is 

a valid strategy as the calculated ligand will be symmetric in terms of binding mode to 

the second ligand. By doing this, the number of possible combinations for 

intermolecular restraints is reduced to: A-C, A-B, A-C and B-C.  

The restraints referring to free EB1c, incompatible with the intermolecular restraints 
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introduced for the complex were automatically removed by ARIA through filtering of 

incompatible restraints with the protein-ligand intermolecular restraints. Using this 

protocol, it was possible to obtain high quality and accurate structures.  

 

Figure 3.19 – Schematic representation of a ligand bound to EB1cΔ8 binding site. The binding site is 

formed by both A and B chains and two ligands can bind simultaneously, C and D. 

In Table 3.2, the parameters used for the calculation of both structures (free and 

complex) are shown. In ARIA, the user can choose between Cartesian and Torsion 

Angle dynamics. Both of these simulating annealing (SA) strategies have been 

optimised for ambiguous NOE-derived restraints. Torsion angle dynamics generally 

produces an increased convergence and leads to better local geometries.15> The 

parameter “temperature” in this context has no physical meaning, but is simply a 

measure of the probability of the macromolecule to cross an energy barrier (i.e., its 

kinetic energy). As mentioned before, to speed up the calculations it was decided to 

use the lower energy structure obtained for free EB1cΔ8 as the starting structure for 

the calculation instead of the extended polypeptide chain based only on the sequence 

of amino acids which is the default option. Therefore, some modifications in the SA 

parameters used for the calculation were necessary. The temperature used for the 

complex structure calculation was lower (2000 K) than the one used for calculation of 

free EB1 (10000 K). Because the structure of free EB1 was used as the initial structure, 

it was not desirable to use high temperatures that would make the simulations highly 

dynamic with possible loss of the introduced structure. Instead, the simulations should 
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have enough freedom only for the protein to adopt the conformation defined by the 

intermolecular restraints. The number of steps is higher for the structure of the complex 

since, in general, the larger the number of cooling steps, the higher the percentage of 

accurate calculated structures, and because the calculated structure was already very 

close to the final form it was important to make sure the selected parameters would 

give an accurate structure and satisfy all the intermolecular NOE restraints between 

the protein and the ligand. 

Table 3.2 – Simulating annealing parameters used for structure determination of free EB1cΔ8 and the 

complex EB1cΔ8/1a. 

 Free Complex 

Type Torsion angle Torsion angle 

Random seed 89764443 89764443 

TAD high temperature 10000.0 2000.0 

TAD time-step factor 9.0 9.0 

Cartesian High temperature 2000.0 2000.0 

Cartesian 1st iteration 0 0 

Time-step 0.00015 0.00075 

Cool1 final temperature 1000.0 1000.0 

Cool2 final temperature 50.0 50.0 

High-temp steps 20000 40000 

Refine steps 8000 16000 

Cool1 steps 10000 40000 

Cool2 steps 8000 32000 

Seventy-five intermolecular NOEs derived from 15N,13C filtered NOESY experiments 

were used for calculating structure of the complex. Statistics of the structure 

determination are presented in Table 3.3. This approach yielded a structure of a 

complex, within a reasonable time and seems a robust and quick way to obtain solution 

structures of weakly bound complexes. The overall structure is shown in Figure 3.20. 
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Table 3.3 - NMR distance and dihedral statistics and structure statistics determined for the 20 best 

structures of the ensemble of the complex EB1cΔ8-1a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Number in brackets corresponds to the restraints assigned manually 
**Helical region corresponds to residues: Glu192-Glu230 and Pro237-Tyr247 
*** Values within brackets correspond to residues Glu192-Glu230 and Pro237-Tyr247 (helical region) 

 EB1c-1a 
Total restraints used 

NOE restraints*  
All 2766 
Protein-ligand 75 
Intermonomer 648 (99) 
Intraresidue 1044 
Sequential (|i – j| = 1) 641 
Medium (1 < |i – j| ≤ 4) 866 
Long range (|i – j| > 4) 169 

Dihedral  
ϕ angles 64 
φ angles 64 

Hydrogen bonds 90 
Structure statistics 

Violations 
Distance (> 0.5 Å) 16 
Dihedral angle (> 50)  0 

Energies (cal/mol) 
Overall   -5716 (±163) 
Bond 38 (±1.5) 
Angle 167 (±5.5) 
Improper 298 (±32) 
Dihedral 713 (±7) 
Van der Waals -1298 (±10) 
Electrostatic -5635 (±17) 
NOE 1280 (±50) 

Geometry – average Values  
Bond	 4.65x10

-3	
(±1.18x10

-4
)	

Angle	 0.67	(±0.013)	
Improper	 1.31	(±0.071)	
Dihedral	 40.94	(±0.25)	
Van	der	Waals	 346.16	(±23.53)	

Average	pairwise	RMSD	(Å)**	  

Heavy	atoms	 4.54	(±9.28x10
-1
)	

Heavy	atoms	–	helical	region	 6.12x10
-1
	(±7.73x10

-2
)	

Backbone  4.92	(±1.12)	
Backbone – helical region 1.57x10

-1
	(±3.61x10

-2
)	

Ramachandran statistics (%)***   
Most	favoured	regions	 90.6	(98.1)	
Additional	allowed	regions	 9.3	(1.9)	
Generously	allowed	regions		 0.1	(0)	
Disallowed	regions	 0.0	(0)	
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Figure 3.20 - A – Superimposition of the ensemble of 20 lowest energy structures of EB1cΔ8 domain 

in complex with 1a. B – cartoon representation of the lowest energy structure for EB1cΔ8 in complex 

with 1a.  1a is shown in sticks, where red represents carbon, blue nitrogen and yellow sulphur. 

Analysis of the structure reveals two important features, the first is compound 1a binds 

to the same region reported to be targeted by the natural SxIP motif and second the 

fact that this structure is very similar to the free form. This last fact is also supported 

by the side chain RMSD values obtained for both ensembles and shown in Figure 3.21. 

The C-terminus remains largely flexible as shown by Figure 3.20A. Similarly, to what 
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was observed for free EB1cΔ8, RMSD values per residue across the 20 structures that 

compose the solution NMR ensemble for this complex show a sharp increase in these 

values is observed from Asp250 onwards – Figure 3.21. Moreover, the only residue 

outside of the structured region that has an intermolecular NOE cross-peak is Thr249, 

which occupies a region very close to the coiled coil. 

 

Figure 3.21 – RMSD values for EB1cΔ8 side chain for free (black) and bound to 1a (red) structures. 

In terms of intermolecular distance restraints between 1a and EB1cΔ8 in the final 

iteration they position the cyclopentyl ring close to Tyr217, Phe218, Leu221, Arg222, 

Leu246 and Tyr247 – all consistent with the hydrophobic binding site targeted by the 

IP motif of the SxIP proteins. The methyl group shows NOE cross-peaks to Tyr217, 

Phe218 and Tyr247, and additional contacts are made with Phe216 and Thr249, the 

latter outside the coiled coil region. Finally, the oxazole moiety does not show any 

intermolecular NOEs. CSP and molecular docking data – Chapter 2 - are, therefore, in 

agreement with the three-dimensional structure of the complex. 

Regarding the binding site dynamics, Arg222 and Tyr247 are now in a more fixed 

conformation when compared with the free form – Figure 3.22 (compare with Figure 

3.17). Side chain RMSD values are now 0.43 Å for Arg222 and 0.80 Å for Tyr247, 

whereas previously were 1.37 Å and 1.76 Å, respectively. Figure 3.21 shows a 

comparison of the RMSD values for amino acid side chains between EB1cΔ8 and 

EB1cΔ8-1a complex and the larger RMSD values for both Arg222 and Tyr247 can be 
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observed.  

 

Figure 3.22 – conformations for Arg222 and Tyr247 for all the 20 structures calculated for free EB1cΔ8 

bound to compound 1a.  

The existence of intermolecular NOEs observed between these residues and the 

cyclopentyl ring of 1a, Figure 3.23, confirms that 1a has a stabilising effect on these 

side-chains. As consequence, the binding pocket remains in the same conformation for 

the ensemble of structures obtained for this complex. 

 
Figure 3.23 - Selected regions of a 13C,15N filtered-2D-NOESY showing intra and intermolecular NOEs 

observed for EB1c-1a complex, acquired at 25oC. The intramolecular NOEs correspond to the aromatic 

protons of the oxazole moiety NOEs to the cyclopentyl ring. The intermolecular NOEs show the NOE 

contacts between the cyclopentyl ring and Phe218, Leu221, Arg222, Leu246 and Tyr247.  

The stabilisation of EB1’s binding pocket upon ligand binding has not been reported 

before. However, analysis of published X-ray crystal structures obtained for free and 

bound form of EB1c indicate that Arg222 and Tyr247 adopt two different 

conformations in the free (PDB codes 1YIG and 1WU927,43) and bound state, (PDB 

code 3GJO31) – Figure 3.24A.  
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These conformations clearly affect the shape of the binding site – Figure 3.24B.  In the 

absence of a ligand the binding pocket is dynamic, changing from the fully open state 

to the fully closed state (Figure 3.17B) with the open state characterised by Tyr247 

side-chain pointing outwards and Arg222 side-chain flattened against the surface of 

the helix leading to the absence of one of the outer walls of the binding pocket. This 

structure is stabilised in the crystallised free EB1c (Figure 3.24B). In the closed form, 

side-chains of Arg222 and Tyr247 point towards each other, completely blocking the 

binding site. This closed form is present in the NMR ensemble for the free protein 

(Figure 3.17B, top panel). Finally, the binding pocket is fully formed in the crystal 

structure of the complex (Figure 3.24B), complex with 1a and some of the structures 

of the free protein NMR ensemble (Figure 3.17B, bottom panel).  

 
Figure 3.24 - A - Two conformations for residues Arg222 and Tyr247 in free (yellow and navy, PDB 

codes 1YIG and 1WU9 respectively) and bound state (magenta, PDB code 3GJO). Leu221 and Leu246 

remain in a stable conformation as they are part of the coiled coil hydrophobic interface and are shown 

as reference points. On the right hand side the same representation with a 270o rotation on the x axis. B 

– Representation of the EB1 pocket shape based on the conformation of residues Arg222 and Tyr247, 

for unbound EB1c (PDB code 1YIG), and bound EB1c (PDB code  3GJO). 
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3.6 Analysis of the implications of the side chain dynamics for Arg222 

and Tyr247 and its influence on small molecule binding 

To further explore the potential effects of the binding pocket dynamics a simple 

experiment was designed where small molecule binding to EB1cΔ8 was re-evaluated 

using a variety of EB1c structures with different binding site conformations. It has 

been widely reported that the cross-docking of a ligand to an ensemble of protein 

structures increases the chances to find near-native solutions.89 Cross-docking consists 

of docking a ligand to an ensemble of different protein conformations.15> This 

approach is essential when targeting dynamic regions.155  

 Cross-docking approach                                                                                                                                                                                        

The four experimentally tested molecules were re-docked using the ensemble of 20 

NMR structures for the free form and three crystal structures – 1YIG27, 1WU943 and 

3GJO31. The first two are a three-dimensional model of EB1c in the absence of ligands 

whereas the latter represents EB1c bound to a SxIP motif containing peptide.  

Average docking score for the NMR ensemble for compound 1d was highest, 64, 

followed by 1a, 53, 1c, 48 and 1b with a score of 46. This ranking is in accordance 

with the in vitro screening, where 1d is the best binding compound, followed by 1a; 

compounds 1c and 1b have much weaker interactions. In contrast, when docked to the 

crystal structure of complex with the peptide (3GJO), compound 1b had a score of 59 

that was higher than for compound 1a (55), in clear disagreement with the 

experimental measurements. This suggests that docking to the NMR ensemble that 

accounts for the dynamics of the binding site, providing a more reliable prediction of 

the binding propensity than the docking to the fully formed binding site of the complex. 
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Figure 3.25 - Predicted docking scores for each compound, 1a, 1b, 1c and 1d, for the ensemble of the 

solution NMR structures of free EB1 (red), crystal structures of free EB1, 1WU9 (yellow) and 1YIG 

(navy), and crystal structure of EB1 in the bound state with SxIP protein, 3GJO (magenta). The score 

obtained for the reference structure where the initial docking calculations were performed – 3GJO, is 

defined by a black horizontal line to facilitate the comparison. 

The modelling indicates that compounds 1a and 1d can interact with a wide range of 

states, where binding site is partially formed, while 1b and 1c only bind to the fully 

formed binding pocket. In agreement with this, while all compounds had low scores 

when docked to the open binding pocket of the crystal structures of the free EB1c, the 

scores of the compounds 1a and 1d were significantly higher than the scores of the 

other two compounds (Figure 3.25). The docking results provide an explanation of 

why compound 1b, that apparently fits the binding pocket well, shows negligible 

interaction with EB1c. This compound can only interact with an extremely small 

population of EB1c where the binding site is fully formed spontaneously, while 

compounds 1a and 1d interact reasonably well with the majority of the configurations 

of the binding pockets, potentially inducing further binding pocket changes after an 

initial docking. Closer agreement with the experimental results suggests that the use 

of solution NMR structures and cross-docking can be a powerful tool in drug design 
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for dynamic regions. 

 Principal component analysis 

Principal component analysis (PCA) is a method to reduce the dimensionality of a data 

set to facilitate a quicker analysis of various variables at the same time, retaining the 

information contained in these variables. This allows for the conversion of possibly 

correlated variables into a set of linearly uncorrelate variables (principal components) 

that can give an insight into the relationships between variables.15> The first principal 

component explains the maximum variance in the data set, the second component 

describes the maximum of the remaining variance, and so on. Therefore, the majority 

of the information in most of data sets will be contained in the first few principal 

components.156 To relate the variations in the binding site geometry to the ligand 

binding properties, a set of geometric parameters that characterise binding site 

variation were calculated and used in PCA to isolate and compare the main 

configurations of the binding pocket. 

Since the main changes in the IP binding pocket are attributed to the Tyr247 and 

Arg222 side-chain dynamics, the distances between ζ groups of these residues, as well 

as between ζ of Arg222 and ζ of Tyr247 to the invariable γ groups of Leu221 and 

Leu246 respectively were measured. Additionally, CASTp15> was used to identify and 

characterise the binding pockets, in terms of size (area and volume), number of 

openings, sum arc length and corner points. 
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Table 3.4 - Parameters used for PCA analysis for the hydrophobic pocket shape and size analysis. NMR ensemble for free EB1cΔ8 is represented by a followed by a number 

where 1 is the lowest energy structure and 20 the highest energy structure. For the complex, EB1cΔ8-1a. the same approach was used but the letter b was used instead. 

 Distances in Å CASTp calculated parameters 

structure Y247-L246 Y247-R222 R222-L221 Number of 
mouth openings 

Area (Å2) Volume (Å3) sum arc 
length 

corner 
points Solvent 

accessible 
Molecular 

surface 
Solvent 

acessible 
Molecular 

surface 
a1 6.2 9.5 10.8 0 1.01 39.76 0.047 22.54 5.95 10 
a2 5.7 7.7 8.1 0 8.511 83.92 0.834 54.98 23.73 24 
a3 5.7 9 10.8 1 55.546 117.99 28.662 146.9 61.14 35 
a4 5.7 6.6 8.7 1 52.497 120.81 25.188 143.57 62.64 34 
a5 8.2 12.9 8.2 1 17.126 98.98 2.151 77.16 36.74 29 
a6 5.5 6.8 7.8 1 52.621 133.46 23.978 150.3 65.33 44 
a7 5.8 9.3 10.8 2 235.65 364.76 222.704 627.24 196.12 96 
a8 5.3 8.4 10.9 1 48.999 140.17 21.852 148.61 70.47 44 
a9 6.2 10.1 11 1 43.184 105.82 18.735 116.85 46.96 31 

a10 5.7 7.7 9.3 1 64.44 121 41.899 170.09 68.49 38 
a11 8.2 15.5 11 2 62.05 140.35 29.281 164.23 71.83 41 
a12 5.9 9.8 10.7 1 45.449 102.4 25.231 126.74 51.68 33 
a13 6.9 10.1 10.9 1 61.746 141.29 33.273 171.06 72.64 46 
a14 5.5 8.5 10.1 1 34.944 95.88 12.706 99.36 41.04 27 
a15 5.4 8.5 10.1 1 48.167 129.3 18.606 138.81 57.76 42 
a16 8.1 15.9 10.3 1 59.374 123.11 33.243 159.51 69.51 39 
a17 6.1 6.9 8.1 1 48.32 107.57 22.138 128.66 56.61 32 
a18 5.9 6.1 7 1 60.851 128.31 29.974 154.73 59.46 39 
a19 6.4 6.6 8.1 1 47.268 122.42 22.083 136.88 56.2 40 
a20 5.7 8.5 10.6 1 50.097 177.66 20.751 165.42 71.37 45 
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structure Y247-L246 Y247-R222 R222-L221 Number of 
mouth openings 

Area (Å2) Volume (Å3) sum arc 
length 

corner 
points Solvent 

accessible 
Molecular 

surface 
Solvent 

acessible 
Molecular 

surface 
b1 7.1 8.7 9.9 2 113.463 260.95 63.765 310.72 131.55 81 
b2 6.7 7.9 9.8 2 67.6 152.44 43.335 192.84 75.1 47 
b3 7 9.4 9.9 2 73.991 202.17 40.768 228.6 100.62 66 
b4 6.8 7.6 9.6 2 85.914 235.13 45.588 264.4 116.44 73 
b5 6.6 8 9.7 2 88.005 233.83 44.537 265.02 119.3 70 
b6 6.6 8.4 9.8 2 95.974 240.12 42.286 270.55 122.06 80 
b7 CASTp could not find the right pocket for this structure. It was, therefore, removed from the statistical analysis. 
b8 6.9 8.8 9.8 2 91.69 239.29 50.976 255.84 109.45 68 
b9 6.3 7.8 9.8 2 74.923 209.82 48.153 241.05 108.69 73 

b10 7.2 7.6 9.4 2 84.547 226.73 52.558 260.92 112.61 74 
b11 7.1 8.8 9.8 2 86.247 230.54 50.091 260.88 108.07 74 
b12 7 8.7 9.7 2 88.183 197.39 52.529 249.95 108.17 59 
b13 7 8.2 9.7 2 90.155 262.6 46.776 275.84 114.23 71 
b14 6.6 8.2 9.8 2 84.244 232.91 45.891 252.99 104.37 78 
b15 6.6 8.2 9.8 2 78.433 215.94 43.006 234.72 106.5 63 
b16 6.4 8 9.8 2 102.369 238.6 56.804 289.47 135.06 79 
b17 6.5 8 9.9 2 79.677 213.7 48.089 247.09 107.11 67 
b18 7 9.9 9.9 2 72.998 206.1 40.851 230.86 101.43 66 
b19 7 9.1 9.9 2 104.845 257.13 53.173 106.03 52.39 33 
b20 6.9 8.9 9.9 2 91.618 232.73 58.431 279.48 112.98 71 

1wu9 10.9 11.4 5.5 1 12.183 34.72 4.811 34.67 14.53 12 
1yiga 11.1 11.5 5.5 0 0 0 0 0 0 0 
3gjo 5.7 9.2 9.9 1 161.483 248.75 123.198 409.01 138.15 70 

aCASTp could not find any pocket for the second for the closed conformation for this structure.  
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These distances and calculated parameters are described in Table 3.4 and were then 

used to characterise the overall binding site geometry through PCA analysis. 

The first two components of PCA accounted for 86% of the total variation, 

demonstrating that they isolate the main binding site changes and can be reliably used 

for comparison. Notably, the distances of the Tyr247 and Arg222 side-chains have a 

larger contribution for PC2, while the overall binding site parameters calculated via 

CASTp for each pocket have a larger contribution for PC1 - Table 3.5. Thus, the 

location of the structure in the PC1, PC2 plane reflects the relationship between the 

state of the binding pocket and the orientation of the variable side-chains.  

Table 3.5  - PCA analysis results, including standard deviation, variance explained by each principal 

component and total variance explained. The following rows show the PCA loadings of each parameter 

to each principal component. 

Property PC1 PC2 PC3 

Standard Deviation 2.5422 1.4516 0.94879 

Variance Explained 0.64627 0.21071 0.090019 

Total Variance Explained 0.64627 0.85698 0.94700 

Y247-L246 -0.015618 0.61203 0.43986 

Y247-R222 0.032717 0.67285 -0.021162 

R222-L221 0.10616 0.32795 -0.87765 

Number of mouth openings 0.30574 0.22264 0.17339 

Area_SA 0.38862 -0.050398 0.015697 

Area_MS 0.38557 -0.055073 0.020567 

Volume_SA 0.37779 -0.058885 -0.013655 

Volume_MS 0.38932 -0.054128 0.0087726 

sum arc length 0.39108 -0.027500 0.028714 

corner points 0.38342 -0.053330 0.063138 

PCA analysis shows good separation between crystal structures of the free (navy and 

yellow) and peptide-bound (magenta) EB1c on both PC1 and PC2 axis, in agreement 

with the large differences in the binding site configuration. In the crystal structure of 

the free form the binding site is not formed, corresponding to low volumes of the 

pocket (5 Å3 for 1WU9) and low PC1 values. Side-chain of Tyr247 for this structure 

is pointing away from the binding pocket, with large distances and large values of PC2. 

In contrast, the binding pocket is fully formed for the crystal structure of the complex 

with the peptide, corresponding to large pocket volumes (123 Å3) and close distances 

between the side-chains of Tyr247 and Arg222, thus large PC1 and small PC2 values. 
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These structures provide references for the two opposite states of the binding pocket. 

 

Figure 3.26 - PCA analysis of a set of parameters collected to describe the EB1c binding pocket 

conformation. The analysis combines solution NMR structures and crystal structures – solution NMR 

structures for unbound form of EB1c are shown in red, for the complex with 1a are shown in green, 

1WU9 in yellow, 1YIG navy, 3GJO pink. (A total of 86% of the variance can be explained by the two 

principal components, PC1 and PC2 –Table 3.5). 

The structures of the complex with 1a (green) cluster close to the parameters for the 

peptide-bound conformation (3GJO, pink). This demonstrates that the binding pocket 

not only adopts a similar shape and size to the one induced by the natural ligand, but 

Tyr247 and Arg222 are in similar positions. The average volume of the pocket for the 

bound to 1a NMR conformations is 49 Å3 (± 6 Å3), reduced compared to the crystal 

structure of the peptide complex. 

The structures of the NMR ensemble of free EB1c in solution demonstrate the largest 

variation in the binding site characteristics. The majority of structures are located in 

the vicinity of the complex with 1a, however a number of structures are spread across 

the plane. The size of the binding pocket shows a high variability, changing from 0.04 

Å3 for the closed state to 223 Å3 corresponding to the transiently folded C-terminus, 

with the average of 32 Å3 (± 45 Å3). This variability is illustrated by the three 

representatives of the free form of EB1c (Figure 3.27, panels A, B and C), alongside 
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with three representatives of free and bound EB1c, (Figure 3.27, panels D, E and F).  

From the reduced dynamics of Tyr247 and Arg222 side-chains and their optimal 

orientation in the complex with 1a, the interactions at the IP binding site are largely 

utilised by the 1a scaffold, in agreement with the binding properties observed for the 

natural SxIP ligand. The identified IP motif mimetic can be used as a starting point for 

the design of more potent inhibitors to target EB1.  

 

Figure 3.27 - Representation of the binding pockets calculated by CASTp15> webserver – A, B and C, 

structures 1, 10 and 7 from the NMR ensemble for free EB1cΔ8. D, E and F 1WU9, structure 6 from 

NMR ensemble of the bound form and F 3GJO. 
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However, the volume of the binding pocket of the crystal structure with the SxIP 

containing peptide indicates that stabilisation of the Arg222/Tyr247 is not enough to 

maximise the size of the hydrophobic pocket. For the complex with the native SxIP 

containing peptide (structure 3GJO31) the C-terminal flexible region seems to fold on 

the ligand protecting it from the solvent and expanding the hydrophobic pocket. Thus, 

the next generation of the inhibitors should be aimed at extending the binding pocket 

by engaging the dynamic C-terminus and achieve a tighter interaction. That will be the 

focus of the next Chapter. 
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DESIGN AND 
IDENTIFICATION OF INHIBITORS 

BEYOND SXIP MOTIF 
Results obtained from the first generation of inhibitors suggested that it was possible 

to target EB1cΔ8 with small molecules based on IP motif of SxIP proteins. 

Subsequently, in Chapter 3, it was demonstrated that this scaffold stabilises the 

hydrophobic pocket of EB1 that is dynamic in solution. 

However, this did not appear to be sufficient to achieve a strong interaction with EB1c. 

Ideally, one would like to keep part of the scaffold shared between compounds 1a and 

1d, the 2-((1-cyclopentyl-1H-tetrazol-5-yl)thio)propanamide – Figure 4.1A, that is 

thought to replace IP motif, and further extend the molecule in order to gain further 

interactions and achieve tighter binding. Therefore, the aim of this chapter will be the 

design and identification of molecules that target the SxIP binding region and 

simultaneously extend the contact network outside this region. 

4.1 Rational design of a hybrid molecule combining the SxIP mimetic 

scaffold and a tri-peptide 

In order to identify which interactions beyond the SxIP motif are important, the crystal 

structure published by Honnappa et al.31 (PDB code 3GJO) was again examined, 

Figure 4.2. These authors reported that the heptapeptide 5476PSKIPTP5482 is invariably 

bound in very similar conformations, and residues outside this core segment are less 

well defined and do not participate in specific intermolecular interactions. Moreover, 

Thr5481 forms hydrogen bond contacts with Val254 of the mobile C-terminus, so it is 

likely to offer additional interactions. In-house acquired NMR data, NOE cross-peaks 

(Chapter 5), revealed that Thr5481, Pro5482 and Gln5483 are within ~5 Å distance to 

Phe253, Val254, Ile255 and Pro256 of EB1c. Therefore, the tri-peptide 5481TPQ5483 

includes important residues for the interaction with EB1c and can be used for the 

design and identification of molecules that can interact beyond the SxIP region.  

After selection of the docking pose obtained for 1a, and removal of the atoms that do 

not constitute the IP motif mimetic described in Chapter 2, Figure 4.1A, the addition 

of the tri-peptide described above to this anchor motif could potentially improve the 

chances of targeting a region outside of the hydrophobic pocket as shown by the 
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theoretical model in Figure 4.3A. The isoleucine side chain can be emulated by the 

five membered ring, whereas the methyl group occupies a similar position to the 

proline ring. Because both 1a and 1d have an amide bond after the methyl group one 

can make use of it to link it to the tri-peptide in a straightforward manner. Using the 

IP mimetic as an anchor, hopefully tighter binding will be achieved through the extra 

interactions with the dynamic C-terminus through contacts with the tri-peptide, as 

shown in the native interaction between EB1cΔ8-MACFp1. 

 

Figure 4.1 - Structures of A - 2-((1-cyclopentyl-1H-tetrazol-5-yl)thio)propanamide, IP mimetic, and B 

- 2-[(1-Cyclohexyl-1H-tetraazol-5-yl)sulfanyl]propanoic acid . 

 
Figure 4.2 - Representation of the crystal structure of the complex EB1cΔ8-MACFp1, EB1cΔ8 is shown 

as grey cartoon. MACFp1 residues 5475KPSK5477 and 5484RK5485 are shown in grey. MACFp1 residues 
5479IPTPQ5483 are shown in orange (carbon), blue (nitrogen) and red (oxygen). 
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Figure 4.3 – Rational for the design of the hybrid molecule A – IPTPQ, represented in orange (carbon) 

blue nitrogen, and red (oxygen) sticks and IP mimetic scaffold shown in green (carbon), blue (nitrogen), 

red (oxygen) and yellow (sulphur). B – IP shown in orange and hybrid molecule shown in green (carbon), 

blue (nitrogen), red (oxygen) and yellow (sulphur). 

It was, therefore, decided, to synthesise a molecule comprising the 2-((1-cyclopentyl-

1H-tetrazol-5-yl)thio)propanamide scaffold and couple it with a tri-peptide sequence 

corresponding to Thr5481-Pro5482-Gln5483 – Figure 4.3B. To achieve this goal solid 

phase peptide synthesis seems to be an ideal synthesis strategy since it relies on amide 

bond formation and due to a developed protection/deprotection scheme allows for a 

reduced number of side reactions and therefore side products. Additionally, and 

because the compound of interest is attached to a solid support (resin), excess of 

reagents and side products can be washed-off.15> Because this molecule encompasses 

a small molecule scaffold and a peptide moiety, it will be termed as hybrid molecule 

(2a). 

Unfortunately, only a six membered ring version, 2-[(1-Cyclohexyl-1H-tetraazol-5-

yl)sulfanyl]propanoic acid, of this scaffold was commercially available - Figure 4.1B. 

Docking results show the possibility of the six membered ring fit in the pocket, 

although only through biasing the docking prediction by constraint introduction. This 

matter will be further discussed in section 4.1.2. 
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 NMR based screening of the hybrid molecule – 2a 

Titration of compound 2a into EB1cΔ8, final ratio 100:1, promoted NH chemical shift 

changes, indicating chemical shifts of the protein backbone are perturbed upon 

addition of the ligand – Figure 4.4. Chemical shift changes are characteristic of a fast 

exchange regime, similar to what was observed for the first generation molecules. 

 
Figure 4.4 - Overlay of 1H-15N-HSQC spectra recorded at 600 MHz – in black is presented EB1cΔ8 in 

the free form (50 µM) and in red the complex EB1c (50 µM) – 2a (5000 µM). The insets show regions 

of interest and the spectra corresponding to the following 2a concentrations, 3000 (blue), 3500 (teal), 

4000 (green), 4500 (brown) and 5000 µM (red). 
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Figure 4.5 - Plot of the chemical shift perturbation distances between free EB1cΔ8 and in the presence 

of the respective first generation compound (1a (black) and 1d (green)). Hybrid molecule is shown in 

cyan and 2-[(1-Cyclohexyl-1H-tetraazol-5-yl)sulfanyl]propanoic acid in orange (2a and 2b, 

respectively).  

However, when comparing the chemical shift changes promoted by the hybrid 

molecule, compound 2a, with the IP mimetics identified in Chapter 2, it is clear that 

compound 2a does not target the same region of EB1cΔ8 and the most prominent 

chemical shift changes are within Leu210-Glu213 and Gln229-Ile242 regions – Figure 

4.5. The analysis of the chemical shift perturbations for the scaffold attached to the tri-

peptide, molecule 2b, reveals a similar pattern to the one observed to molecule 2a - 

Figure 4.6. Titration of the tri-peptide, Thr-Pro-Gln into EB1cΔ8 does not induce any 

chemical shift changes into EB1’s backbone resonances.  

This data indicates that the specificity of the IP mimetic scaffold was lost, 247YAT249 

and 219GKLR222 regions not affected by the addition of the ligand, contrarily to what 

happened to the first generation compounds – Chapter 2, section 2.6. Instead the 

chemical shift changes seem to be spread and non-specific - Figure 4.6. A possible 

cause can be the larger size of the ring, cyclohexyl instead of cyclopentyl, as this is the 

main difference between the scaffolds.  

To understand why the specificity for the IP binding site was lost it was decided to 

perform some docking predictions.  
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Figure 4.6 – Chemical shift perturbation mapping on the crystal structure (PDB accession code: 3GJO). 

Panel A corresponds to the chemical shift changes induced by the hybrid molecule (2a) and panel B to 

the changes induced by the scaffold attached to the tri-peptide, molecule (2b). The selected residues 

were selected by applying the following formula: remove all residues with chemical shift changes larger 

than standard deviation (σ) of the chemical shift changes multiplied by three, re-calculate the standard 

deviation (σ) of the chemical shift changes residues and select the residues presenting chemical shift 

changes above that value. Dashed circles represent areas affected by titration of 2a but not 2b. 

 Understanding of the loss of specificity to the IP binding site in the 

hybrid molecule  

Contrarily to what was expected after the design of the hybrid molecule, the cyclohexyl 

ring of the IP mimetic moiety does not occupy the hydrophobic binding pocket. Instead, 

docking pose with higher score prediction inserts the five membered ring of proline 

side chain inside the hydrophobic pocket of EB1cΔ8 – Figure 4.7A. This is not a 

surprise as the natural ligands reported for EB1 have invariably a proline in position 4 

of the SxIP motif and structural data shows this residues side chain should occupy the 

hydrophobic pocket. This analysis suggests the cyclohexyl ring may be too bulky for 

that pocket. To prove this further, it was decided to perform another set of molecular 

docking predictions biasing the insertion of this ring in the pocket.  
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In GOLD, restraints are available for biasing searches towards dockings containing a 

contact between a particular protein-ligand atom pair. There is reported evidence of 

the benefits of using constrains in virtual screening.15> The distance between a 

specified ligand and protein atom can be constrained to lie between minimum and 

maximum distance bounds. During a GOLD run, if a constrained distance is found to 

lie outside its bounds (i.e. between 1.5 and 5 Å), a spring energy term is used to reduce 

the fitness score:  

, Equation 4.1 

where: 

x is the difference between the distance and the closest constraint bound; 

k is a user-defined spring constant – in this case defined as 5. 

A distance constraint was defined where the distance between the six membered ring 

of 2a and the Leu246 side chain of the hydrophobic pocket should between 1.5 and 5 

Å. Solutions inserting the cyclohexyl ring in the hydrophobic pocket should be in 

agreement with this constraint and therefore scored higher than other solutions. As 

expected, the ring adopts the expected position when this constraint is used, indicating 

that despite not being the most natural solution, the cyclopentyl ring is small enough 

to fit in the hydrophobic pocket of EB1c – Figure 4.7B.  

However, the fact that the docking prediction only positioned the cyclohexyl ring in 

the pocket after the use of constraints and the first prediction re-oriented the molecule 

in a way that the proline ring of the tri-peptide was inserted in the pocket instead, gives 

support to the idea that the cyclohexyl ring is not binding in an energetically favourable 

way to the hydrophobic pocket of EB1c. 
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Figure 4.7 – Docking pose for compound 2a. A- docking without any constraints. B – docking 

restraining the cyclohexyl ring distance to Leu246 side chain to a value between 1.5-5 Ȧ. 

4.2 Identification of small molecules based on the hybrid molecule 

Since the in-house synthesised hybrid molecule, compound 2a, did not yield the 

expected results, due to the larger size of the ring, it was thought to use the original 

cyclopentyl hybrid design to build a new pharmacophore model, extending the targeted 

region beyond the IP binding region.  

 Virtual screening 

For this purpose, the hybrid molecule initial model, with a five membered ring was 

uploaded into ZINCPharmer. The uploaded structure was carefully built in order to 

maintain the 2-((1-cyclopentyl-1H-tetrazol-5-yl)thio)propanamide and the tri-peptide 

in the right spatial conformation – Figure 4.1A. When uploading the structure to 

ZINCPharmer, EB1c structure was also uploaded so only the points of contact between 

both molecules were defined as part of the pharmacophore model. Moreover, 

uploading the receptor (EB1c) offers the additional benefit of assigning directionality 

to the hydrogen bond acceptors/donors. Seven pharmacophore points were defined 

based on this approach: hydrophobic interaction for the cyclopentyl ring and methyl 

group, hydrogen bond acceptors for the CO present in the 2-((1-cyclopentyl-1H-

tetrazol-5-yl)thio)propanamide scaffold and the threonine backbone and, finally, three 
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hydrogen bond acceptors, corresponding to the NH from the 2-((1-cyclopentyl-1H-

tetrazol-5-yl)thio)propanamide, the OH of the threonine and the backbone NH of the 

glutamine – Figure 4.8, Table 4.1. 

 
Figure 4.8 – Seven pharmacophore points defined based on the favourable conformation of 2-((1-

cyclopentyl-1H-tetrazol-5-yl)thio)propanamide connected to a tri-peptide, threonine, proline and 

glutamine. Hydrogen bond acceptors indicated by orange arrows, hydrogen bond donors shown as light 

grey arrows and hydrophobic interactions represented as green spheres. The arrows represent the 

directionality of the hydrogen bonds defined by using the protein structure. 

Table 4.1 – Summary of the pharmacophore points defined based on the hybrid molecule model and its 

interaction with EB1cΔ8 

# Pharmacophore Class coordinates radius x y z 
1 Hydrophobic -16.08 -27.78 34.50 1 
2 Hydrophobic -18.42 -27.11 27.82 1 
3 Hydrogen acceptor -14.88 -25.70 25.15 0.5 
4 Hydrogen acceptor 16.07 -25.18 28.89 0.5 
5 Hydrogen donor -12.47 -27.21 26.93 0.5 
6 Hydrogen donor -13.70 -24.47 22.22 0.5 
7 Hydrogen donor -15.27 -26.67 27.35 0.5 

The pharmacophore was queried using all the contact points outlined above, but no 

hits were obtained. Therefore, a systematic search was performed, where all the 

possible combinations were searched for six, five and four pharmacophore points, in 

order to get the maximum number of molecules that can satisfy some of these spatial 

features. A total of 43388 results were yielded from this search, reducing it to 26887 

molecules, after removing duplicated molecules. By applying a filter to include only 

molecules between 400 and 800 g.mol-1, with a maximum number of rotatable bonds 

of 10 and a RMSD below 0.5 Å, the number of molecules was reduced to 2429. The 

molecular weight range choice was based on the fact that to extend the targeted region 

of EB1c there is the need for larger molecules. In addition, a study performed on 

successful cases of inhibitor design for protein-protein interactions propose a “rule of 
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four” as an alternative to the Lipinski’s rule of five.53 These authors propose the 

molecular weight threshold for small molecules that target PPI’s should be higher than 

400 g.mol-1 – Table 4.2. 

Table 4.2 – Comparison between rule of 5, proposed as a set of in silico guidelines applied to drug 

discovery to prioritize compounds with an increased likelihood of high oral absorption and rule of 4, 

conceived to filter databases and accelerate the process of hit identification for protein-protein 

interactions modulators. 

 Rule of 5 83 Rule of 4 53 

Molecular weight (g.mol-1) < 500 > 400 

LogP < 5 > 4 

Number Hbond acceptors < 10 > 4 

Number Hbond donors < 5 - 

Number rings - > 4 

 

The resulting 2429 molecules were then docked using GOLD and the scoring function 

Goldscore. As described in Chapter 2, Goldscore was the scoring function with better 

performance when docking the natural ligand, positioning the ligand in a similar 

conformation to the one shown in the crystallographic structure, 3GJO.  

The importance of water molecules in docking prediction was already described in 

Chapter 2. GOLD provides a clever approach to deal with water molecules in docking 

studies. Water molecules can be allowed to rotate or switch between on and off. 

Adding or “toggling on” a water molecule introduces an entropic penalty to the scoring 

function which needs to be offset by forming hydrogen bonds to the protein and the 

ligand. If the hydrogen bonds formed by the water molecules do not offset the entropic 

penalty introduced by adding the water molecule, then the water molecule will be 

deselected (removed) during the genetic algorithm run.116 It was decided to use this 

functionality offered by GOLD as it has been previously shown that there is a water 

molecule in EB1 binding site.31 No hydrogen bond constraints were included for these 

docking calculations.  

When using Automatic (Ligand-Dependent) Genetic Algorithm Parameter Settings in 

GOLD the Search Efficiency can be used to control the speed of docking and the 

predictive accuracy of the results, higher the efficiency more exhaustive and slower is 

the search. To speed up the process the Virtual Screening option for the GA settings 

in GOLD was chosen. This sets the search efficiency at 30% that can be used for 
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routine work and usually gives comparable predictive accuracy to the slower settings, 

unless the ligand has a large number of rotatable torsions.16>  

The ten best solutions were saved and visually inspected. The criterion used for visual 

inspection was that the pose included interactions outside the hydrophobic pocket, 

extending to a lower region occupied by the tri-peptide Thr-Pro-Gln. Through this 

process the number of molecules to be further studied was reduced to 106 molecules 

– Figure 4.9.  

 
Figure 4.9 – Process for selection of hit compounds that can target EB1c using as initial scaffold the IP 

motif mimetic attached to a tri-peptide. 

 Selection of candidate molecules 

The 106 molecules selected based on their binding pose were re-docked using a search 

efficiency of 200% and the 100 best solutions were saved into the result file for further 

refinement/analysis.  

Up to this stage no filters were used to remove molecules that reveal potential problems 

in terms of ligandibility. The rule of 4 used previously relates only with the capacity 

of being a protein-protein interaction modulator. The use of filters or alerts to remove 

or flag compounds that may not be suitable to become a drug, has been widely used 

by pharmaceutical companies.16> Therefore it was decided to use an online tool that 

could flag potential undesirable compounds before moving forward into candidate 

selection.  

The SmartsFilter (http://pasilla.health.unm.edu/tomcat/biocomp/smartsfilter)16> uses 

a wide set of filters that can be easily applied to a subset of candidate molecules. There 

are seven different filters, from which Blake162, Glaxo163, ALARM NMR164, Oprea165 

and PAINS – Pan-Assay Interference compounds166 were chosen to avoid molecules 

with undesirable characteristics at an early stage of the drug discovery process. 

The Blake filter16>, is based on the work of James Blake, and concerns a model of 

desirable properties for good oral bioavailability.  
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The Glaxo filter16> has three different subfilters, where only two were used to evaluate 

our subset of molecules, namely “unsuitable leads” and “reactive”. Whereas the first 

is clearly described by the name, the latter is based on the existence of reactive species 

that cannot be pooled together in HTS study. At this stage it was not known the number 

of candidate molecules to be screened and the pooling of compounds when performing 

HTS is commonly used to save time and money.  

Because solution-state NMR is the primarily chosen method for compound screening 

in this project, the filter ALARM NMR16> was also applied. This filter can be applied 

to identify potential false positive molecules in NMR based screenings, by reacting 

with protein’s thiol groups. The Oprea filter, developed by Tudor Oprea165, is based 

on a multi-objective analysis of drug-like properties. Finally, the PAINS filter166, 

developed by Jonathan Baell and Georgina Holloway, proposes a method to identify 

frequent hitters, promiscuous compounds, widely found in HTS assays. Compounds 

that did not successfully pass these filters were not removed. Instead, they were 

marked as “pass” or “fail” for each filter and this information used in the final 

assessment of suitable candidates to be screened. 

At this stage, there was sufficient knowledge about these compounds that would permit 

to make a decision of which should be tested. A multi-objective analysis was 

performed, assessing two parameters, the average Goldscore value for the 100 

obtained poses and solubility. In contrast to what was done before (Chapter 2) 

compounds with solubility lower than - 4 were still included for the final analysis. 

Three compounds were chosen based on their Pareto Rank position, availability for 

purchase and molecular diversity - Table 4.3. The method chosen to select these three 

candidate molecules has been summarised in Figure 4.9 and Figure 4.10. 

ZINC40017212 was the fifth best compound in terms of the multi-objective analysis. 

The average Goldscore for 100 poses was high, 66, with a top score of 75. It failed for 

three of the filters, unsuitable leads, ALARM NMR and PAINS, which can be 

attributed in part to its low solubility value, - 4.918. The pharmacophore model of this 

molecule includes the hydrophobic contacts of the cyclopentyl ring and the methyl 

group, in addition to a possible hydrogen bond acceptor (corresponding to the carbonyl 

of 2-((1-cyclopentyl-1H-tetrazol-5-yl)thio)propanamide) and a hydrogen bond donor 

(corresponding to the OH of Thr), respectively pharmacophore points 1, 2, 4 and 5 – 

Table 4.1; Figure 4.11A. 
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Table 4.3 – Selected molecules for testing from the pharmacophore model built from the hybrid molecule. Final rank indicates the overall position of each molecule after a 

Pareto ranking analysis of the 100 solutions for the 106 molecules. Log S refers to the logarithm of aqueous solubility value calculated by Pipeline Pilot16>. Unsuitable leads, 

reactive, ALARM NMR, Blake and Oprea columns state whether a compound passed (green symbol) or failed (red symbol) each filter. Finally, the molecular properties radar 

plot includes six molecular properties and the blue shaded area epresents the chemical space defined for PPI modulators.53 

Molecule 
name 

Final 
Rank 

Log 
S 

Unsuitable 
leads Reactive ALARM 

NMR Blake Oprea PAINS Structure Molecular properties 

ZINC40017212 5 -4.9 û ü û ü ü û 
 

 

ZINC31040053 71 -4.9 ü ü û ü ü û 
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Figure 4.10 – Process summarising the final selection of hit compounds to target EB1c based on the scaffold the IP motif mimetic attached to a tri-peptide. 

Molecule 
name 

Final 
Rank 

Log 
S 

Unsuita-
ble 

leads 
Reactive ALARM 

NMR Blake Oprea PAINS Structure Molecular properties 

ZINC12929029 101 -2.5 ü ü û û û ü 
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In terms of docking pose, ZINC40017212 seems to interact through hydrophobic 

contacts with the hydrophobic pocket of EB1c, Lys220, Arg222, Leu221, Glu225, 

Tyr247, Ala248 and Thr249, but also with a lower region of EB1c, including the 

aromatic patch, Phe216-Tyr-Phe218 and the C-terminal tail, Phe253, Val254 and 

Pro256 – Figure 4.12, A and B. 

ZINC31040053 presents a more modest average Goldscore value of 53 with a top 

score of 59. In terms of filters, fails for both ALARM NMR and PAINS. Again, its 

solubility value is quite low, – 4.911, and that can be a disadvantage for solution NMR 

screening techniques. In terms of pharmacophore model, this molecule coincides with 

pharmacophore points 1, 2, 3 and 5 – Table 4.1; Figure 4.11B. The best scored binding 

pose shows the existence of hydrophobic interactions within the hydrophobic pocket 

and aromatic patch, as well as hydrophobic interactions with C-terminus residues such 

as Val254, Ile255 and Pro256. The hydrophobic pocket seems to be almost invariably 

occupied by the phenyl ring, especially for the top scored solutions - Figure 4.12, 

panels C and D. 

ZINC12929029 shows the lowest Goldscore average value 45 with a top score of 55. 

The pharmacophore points emulated by this molecule are the same as for 

ZINC40017212, 1, 2, 4 and 5 - Table 4.1; Figure 4.11C. The genetic algorithm poses 

the tetrahydroisoquinoline moiety inside the hydrophobic pocket of EB1c. It is not 

clear whether this scaffold is not too bulky for the hydrophobic pocket of EB1c as 

previously reported for the cyclohexyl ring. The fact that this moiety, despite its larger 

size, is more planar and less flexible than the cyclohexyl ring may justify the fit inside 

the pocket. In addition, this molecule seems to bring extra interactions, namely two 

hydrogen bonds. One of the carbonyls act as hydrogen bond acceptor from the 

backbone NH of Val 254 at the same time the NH next to it functions as hydrogen 

bond donor to the carbonyl oxygen of Gly252 – Figure 4.12, panels E and F. 

These three molecules were therefore purchased and subjected to NMR screening, 

through 1H,15N-HSQC spectra analysis upon titration of each compound into EB1cΔ8. 

For clarity the molecules will referred to as 3a (ZINC40017212), 3b (ZINC31040053) 

and 3c (ZINC12929029). 
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Figure 4.11 – Molecules selected for screening based on the pharmacophore model created for the 

hybrid molecule. A – ZINC40017212, B – ZINC31040053 and C – ZINC12929029, represented as 

green sticks, superimposed with the ideal 3D structure designed for the hybrid molecule, showed as 

grey sticks. Areas highlighted in red correspond to the pharmacophore contacts emulated by these 

molecules. 
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Figure 4.12 – Top scored binding pose, left hand side panel, A- ZINC40017212 (3a), C – 

ZINC31040053 (3b) and E – ZINC12929029 (3c). 2D representation of the interactions predicted from 

the docking between B - ZINC40017212 (3a), D – ZINC31040053 (3b) and F – ZINC12929029 (3c). 
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 NMR based screening for hit candidates based on the hybrid mole-

cule 

NMR titrations were, once again, the chosen method to screen the three candidate 

molecules obtained from ligand-based design approach based on the hybrid molecule. 

The results indicate that only 3a and 3b promote chemical shift perturbations in the 

EB1cΔ8 backbone (NH). 

 
Figure 4.13 - Overlay of 1H,15N-HSQC spectra recorded at 600 MHz – in black is presented EB1cΔ8 in 

the free form (50 µM) and in red the complex EB1cΔ8 (50 µM) – 3a (1000 µM). Both samples contained 

4% DMSO-d6, to ensure solubility of 3a and for consistency (in the free protein sample). 

The addition of compound 3a - affects the chemical shifts of amino acids recognised 

as part of the EB1cΔ8 hydrophobic pocket – Leu246, Tyr247 and Thr249, being a 



Design and identification of inhibitors beyond SxIP motif 
 

127 
 

good indication that this compound, contrarily of what was observed with the six 

membered ring hybrid molecule, targets the desired region of EB1cΔ8 – Figure 4.13. 

Unfortunately, due to its poor aqueous solubility 3a was only tested up to a 

concentration of 1 mM. The final protein:ligand ratio obtained was  1:20, different 

from the ratios used for the first generation compounds (1:100). Therefore, the 

chemical shift changes observed are not as large as the ones observed for 1a and 1d – 

Chapter 2. 

.  

 
Figure 4.14 - Overlay of 1H,15N-HSQC spectra recorded at 600 MHz – in black is presented EB1cΔ8 in 

the free form (50 µM) and in red the complex EB1cΔ8 (50 µM) – 3b (1000 µM). Both samples contained 

2% DMSO-d6, to ensure solubility of 3b and for consistency (in the free protein sample). 
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Compound 3b promotes similar chemical shift changes in terms of affected amino 

acids and magnitude to the ones observed to 3a. These are mainly confined to the 

hydrophobic binding site of EB1cΔ8 – Figure 4.14. Similarly to the other compound, 

3a, due its poor aqueous solubility the final concentration was 1 mM, whereas the final 

concentration reached for the first generation molecules (Chapter 2) was 5 mM. 

Compounds 3a and 3b, with predicted aqueous solubility values of - 4.918 and -  4.911, 

respectively, interact with EB1cΔ8 but their aqueous solubility is a limitation to obtain 

a Kd value by NMR or even to study further through NOE experiments as it was done 

for compound 1a. 

 
Figure 4.15 - Overlay of 1H,15N-HSQC spectra recorded at 600 MHz – in black is presented EB1cΔ8 in 

the free form (50 µM) and in red the complex EB1cΔ8 (50 µM) – 3c (1000 µM). Both samples contained 
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2% DMSO-d6, to ensure solubility of 3c and for consistency (in the free protein sample). 

Finally, for compound 3c, no chemical shift changes were observed (Figure 4.15) at a 

final concentration of 1 mM, and despite this compound having a larger aqueous 

solubility predicted value (calculated logS = - 2.524), it was decided to not proceed 

with the titration since chemical shift changes were not observed at this concentration, 

it would be unlikely that they would be observed at higher concentrations. 

In terms of the distribution of the chemical shift perturbations for 3a and 3b, they 

follow the same pattern as observed for the molecules identified as IP mimetics – first 

generation compounds. Therefore the IP mimetic activity was regained. Analysis of 

the docking poses for these compounds, Figure 4.12, reveals the hydrophobic pocket 

is invariably occupied by a an aromatic ring, benzyl for compound 3a and 2-chloro-

benzyl for compound 3b. Despite its size, same number of carbons as the cyclohexyl 

group, being planar makes benzyl a tolerated chemical moiety for the hydrophobic 

pocket of EB1c, whereas the cyclohexyl, with additional hydrogens and a flexible tri-

dimensional conformation, is not. Moreover, one can observe the appearance of subtle 

chemical shift change for the C-terminus region Glu251-Val254 when comparing with 

the best compound resultant from the first generation inhibitors – Figure 4.17. 

 
Figure 4.16 - Plot of the chemical shift perturbation sum differences between free EB1cΔ8 and in the 

presence of the respective second generation compound (3a and 3b, respectively). 

In summary, the second generation compounds, based on the hybrid molecule scaffold 
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successfully target EB1c, not only the hydrophobic binding site – IP mimetic activity, 

as well the C-terminus, to a smaller extent. Despite their solubility proved to be a major 

limitation, the success of this approach gives extra support to the molecular modelling 

approach used in this project for the identification of small molecules that can bind to 

a protein-protein interface.  

 

 
Figure 4.17 - Plot of the chemical shift perturbation sum differences between free EB1cΔ8 and in the 

presence of the respective first and second generation compounds (1d, 3a and 3b, respectively). The 

chemical shift changes for 3a and 3b were normalised by a factor of five since the final concentration 

of these compounds was five times smaller than the final concentration for compound 1a. 

The hybrid molecule design, due to its novelty, can be considered as another type of 

approach to target protein-protein interactions. The addition of a peptide scaffold to an 

anchor scaffold based on an organic molecule may bring many advantages for the 

design of protein-protein modulators. Through this method, it is possible to target a 

larger area without loss of aqueous solubility due to the peptide moiety. The 

shortcomings of using a peptide scaffold are chemical instability, being prone to 

hydrolysis and oxidation, tendency for aggregation, short half-life and fast elimination, 

poor oral bioavailability and low membrane permeability.16> Multifunctional peptides 

can be used to overcome some of these disadvantages.168 However, that is outside of 

the scope of this project. 

In the next chapter, a detailed study of the interaction of EB1 with SxIP motif 
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containing peptides is described, since it is important to understand the contributions 

of each region for the interaction and this understanding can be used for the 

improvement of the design/identification of small molecules that can interact with EB1. 
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BIOPHYSICAL 
CHARACTERISATION OF 

PHYSIOLOGICAL EB1 INTERACTIONS 
INVOLVING MACF2 

From the previous data, Chapter 2, it is known that the SxIP motif provides specificity 

for EB1c targeting but it is not sufficient to achieve a high affinity interaction. In 

Chapter 4, attempts to extend the interactions beyond the SxIP motif were made with 

limited success.  

The aim of this chapter will be to investigate how does EB1c interact with a native 

ligand – MACF2(Uniprot47 accession number - Q03001), and how does each region 

of the peptide and the protein contribute into the binding affinity. The contribution of 

different ligand regions to the binding to EB1c was evaluated using three peptides 

containing the SxIP motif, SKIP (4MACF), SKIPTP (6MACF) and KPSKIPTPQRK 

(11MACF), respectively. The role of the C-terminal flexible tail of the protein was 

also studied by using two different EB1 C-terminal domain constructs with and 

without this region – EB1cΔ8 (191-260) and EB1cΔ16 (191-252). With this 

information new structural information will be provided and can be used for the design 

of new EB1 targeting scaffolds.  

Finally, higher affinity sequences based on the native sequence were designed through 

the use of mutants. These higher affinity sequences provide interesting insights on the 

binding mechanism to EB1c and provide guidance for future modulator/probe design. 

5.1 NMR screening of MACF2 peptides against EB1cΔ8 

Chemical shift perturbation (CSP) is the only technique that can directly provide an 

estimate of Kd values and location of the binding site from the same set of 

measurements94, hence, it was used to characterise the interaction of MACF2 based 

peptides with EB1cΔ8. Initial screening revealed that interactions between EB1c and 

4MACF and 6MACF are weaker that for the 11MACF. For that reason, the 

concentrations used for the titrations of the shorter ligands were 250, 500, 1000, 2500 

and 5000 µM, respectively 5, 10, 20, 50 and 100-fold excess to the protein. Resonances 

of both complexes with 4MACF and 6MACF are, generally, in fast exchange and the 

spectra presents an overall good dispersion of peaks it was possible to assign all 
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resonances just by following the peak changes from free protein. 

On the other hand, 11MACF seemed to have higher affinity for EB1c and therefore 

the used concentrations are much smaller, 12.5, 25, 75, 82.5, 100, 125, 150, 200 and 

400 µM. 

4MACF, corresponding to the SxIP motif, promotes relatively small, but specific 

chemical shift changes – Figure 5.1. 

 
Figure 5.1 - Overlay of 1H,15N-HSQC spectra of 15N-labelled EB1cΔ8 (50 µM) recorded at 600 MHz – 

in the free form (black) and in the presence of 4MACF (5000 µM, red). The insets show regions of 

interest and the spectra corresponding to the following 4MACF concentrations, 250, 500, 1000, 2500 

and 5000 µM. 

All chemical shift changes for 4MACF titration correspond to a fast exchange regime, 
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where a progressive change in peak position is observed at all ligand concentrations 

used without increase in line-width, indicating weak interaction. The observed 

chemical shift is therefore a weighted average of the chemical shifts for the free protein 

and the complex until the binding partner has been added to excess.94  

The 6MACF addition has much larger effect on the EB1c signals, compared to the 

shorter 4MACF peptide (Figure 5.2).  

 
Figure 5.2 - Overlay of 1H,15N-HSQC spectra of 15N-labelled EB1cΔ8 (50 µM) recorded at 600 MHz – 

in the free form (black) and in the presence of 6MACF (5000 µM). The insets show regions of interest 

and the spectra corresponding to the following 6MACF concentrations, 250, 500, 1000, 2500 and 5000 

µM. 

To the same ligand excess, the chemical shift changes are overall larger and affect a 
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larger number of residues that were not affected before. Tyr247 (Δδ = 0.86 ppm) is 

again the most affected residue with larger chemical shift change, and it is noteworthy 

the peak broadening at a 20-fold excess of the ligand (1000 µM). Glu213 also shows 

line width broadening, but subtler than the one observed for Tyr247. Peak broadening 

suggests this complex is closer to an intermediate exchange regime. Line broadening 

and the larger chemical shift changes are good indicators of stronger binding when 

compared with 4MACF.  

The addition of 11MACF has much larger effect on the EB1cΔ8 spectra than the 

shorter peptides (compare Figure 5.1, Figure 5.2 and Figure 5.3).  

 
Figure 5.3 - Overlay of 1H,15N-HSQC spectra of 15N-labelled EB1cΔ8 (100 µM) recorded at 600 MHz 

in the free form (black) and in the presence of 11MACF (400 µM, red). The insets show regions of 

interest and the spectra corresponding to the following 11MACF concentrations, 12.5, 25, 75, 82.5, 100, 

125, 150, 200 and 400 µM. 

At the 11MACF concentration of 12.5 µM (1:0.125 protein:peptide ratio) a large 
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number of resonances are severely broadened with a minimal change in chemical shifts 

(Figure 5.3, inserts). Despite good peak dispersion, due to the accentuated peak 

broadening it was not possible to simply follow the chemical shift changes. Therefore, 

the NH resonances of the complex were assigned using triple resonance experiments 

similarly to what was performed for free EB1c. Further increase in the peptide 

concentration leads to additional broadening and then disappearance of the cross-peaks 

above 25 µM (1:0.25 protein:peptide ratio). The cross-peaks reappear at 

concentrations above 100 µM (1:1 protein:peptide ratio) at new positions. These 

changes were observed for the chemical shift differences between the free and the 

bound state above 0.45 ppm; resonances of Lys220 (Δδ = 0.61 ppm), Tyr247 (Δδ = 

1.48 ppm), Ala248 (Δδ = 0.45 ppm), Thr249 (Δδ = 0.54 ppm) are shown as clear 

examples of such changes (Figure 5.3, insets). The described spectral changes 

correspond to the intermediate exchange regime.93 The majority of other resonances 

showed progressing shift changes on the peptide addition, often accompanied by a 

limited broadening of cross-peaks; this was observed for the chemical shift differences 

between the free and the bound state below 0.45 ppm. Above 1:1 protein:peptide ratio 

chemical shift changes were very limited, showing that nearly all protein was in the 

bound state; in contrast, significant spectral changes were observed for shorter peptides 

at the ratio as high as 1:100. Overall the resonances are in an intermediate exchange 

regime where extensive line broadening occurs accompanied by a progressive 

chemical shift change. The intermediate exchange and degree of the chemical shift 

changes demonstrate much higher affinity of 11MACF for EB1cΔ8 when compared 

with the shorter peptides. 

In order to slow the exchange rate between free EB1cΔ8 and when bound it was 

decided to perform another titration experiment at lower temperature, 10oC. The 

following protein-ligand ratios were used: 1:0, 1:0.5, 1:0.75, 1:1 and 1:1.5 – Figure 5.4 

and Figure 5.5. For Phe218 it is very clear the coexistence of two intermediate states 

in solution at the 1:0.5 ratio. The third column in Figure 5.5 (top panel) shows the 

existence of three peaks – one corresponds to free EB1, followed by two peaks of 

similar intensity, these correspond to a ligand molecule bound to only one of the 

symmetrical binding sites. Finally, it is still possible to see the existence of a smaller 

intensity peak corresponding to the fully saturated bound form, where the two binding 

sites are occupied by the ligand. Despite exhibiting quite a small chemical shift 
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perturbation upon ligand binding, Gly219, is also an interesting case where it can be 

seen the free protein peak (black, second column), splitting in two peaks with similar 

intensity (blue, third column), representing the two complexes with only one ligand 

bound. With more ligand added (between 1:0.75 and 1:1 ratio), the peak evolves then 

to a sharper conformation corresponding to a fully bound complex. 

 
Figure 5.4 - Overlay of 1H,15N-HSQC spectra recorded at 600 MHz at 10 oC – in black is presented 

EB1cΔ8  in the free form (400 µM) and in red the complex EB1cΔ8  (400 µM) – 11MACF (600 µM).  

Val254, on the other hand, shows a different profile, where one can observe a very 

sharp peak in the free form, indicating this residue is in a highly dynamic region in the 

unbound form. It gradually disappears in this position (decrease of the intensity). The 

opposite phenomenon is observed for the end position, where the peak gradually 

appears increasing in intensity until protein saturation, corresponding clearly to a slow 

exchange regime. In the bound form, this peak is not as sharp as in the free form 

indicating this region become constrained in terms of flexibility. It is noteworthy that 
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Val254 at room temperature presented the two states free and bound. At low 

temperature the same situation is observed with the difference that in the intermediate 

titration points (0.5 and 0.75 µM) is now possible to observe free and bound state at 

the same time. 

It is possible that this difference arises from the fact Val254 being located in the C-

terminal flexible region of EB1cΔ8, whereas Phe218 and Gly219 are closer to the 

binding site. For the residues located close the binding site the different complexes are 

observed because they are directly affected by the binding of the ligand. After the 

ligand binding one assumes the ligand stays in the binding site, and the C-terminus 

wraps around the ligand, reason why only two sets of peaks can be observed for Val254, 

there are no intermediate states. 

 
Figure 5.5 - Zoomed regions of 1H,15N-HSQC spectra recorded at 600 MHz, at 10oC for Phe218 (top 

panel), Gly219 (middle panel) and Val254 (bottom panel). The bottom panel is divided in two sections, 

top section shows the region where the initial Val254 peak appears and the bottom section shows the 

region where the final peak, referring to the bound form appears. First column shows the overlay of all 

spectra, and the consecutive columns show the spectra referring to EB1cΔ8 free at 400 µM, 

EB1cΔ8:11MAC 1:0.5 ratio, 1:0.75 ratio, 1:1 ratio and 1:1.5 ratio, respectively. 

Exchange regime shows that binding affinity increases from 4MACF to 11MACF. The 

use of large concentrations of the shorter length peptides (4MACF and 6MACF 

respectively) may induce non-specific binding. To address this issue, the next section 
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will be dedicated to identification of the affected regions upon ligand binding in 

EB1c’s structure.  

 Chemical shift changes and mapping 

The mapping of the residues affected upon ligand addition, which resonances present 

larger chemical shift changes, gives important information on the region(s) of the 

protein affected upon ligand binding. The chemical shift changes values (Δδ) were 

calculated using Equation 5.1  

, Equation 5.1 

were where, αN= Scaling Factor of 0.15. 

Upon addition of 4MACF, Tyr247 (Δδ = 0.35 ppm) was the most affected residue, 

followed by Thr249 (Δδ = 0.19 ppm). Glu213 (Δδ = 0.062 ppm), Phe218 (Δδ = 0.065 

ppm), Arg222 (Δδ = 0.056 ppm), Glu225 (Δδ = 0.056 ppm) and Ala248 (Δδ = 0.077 

ppm) also shown to be affected by ligand addition to the protein, but to a smaller extent. 

All these amino acid residues are within the region defined as the binding site for the 

SxIP motifs, indicating this small peptide fragment has the specificity for EB1c’s 

hydrophobic binding site despite being such a short sequence. Additional CSPs that 

are not located in the above-mentioned region are observed for Asn235 (Δδ = 0.065 

ppm) and Asp236 (Δδ = 0.078 ppm). Despite these two residues being located further 

away from the binding site but in a dynamic region it is likely that they are not directly 

affected by the ligand but as an allosteric result. These results prove that despite not 

being a very strong interaction, the SxIP sequence reveals a very high specificity for 

the hydrophobic binding site of EBH domain of EB1.  

6MACF induces chemical shift changes in a larger number of residues – Figure 5.7. 

Most of the residues are again located around the binding site for the SxIP motif - 

Arg214 (Δδ = 0.09 ppm), Phe218 (Δδ = 0.11 ppm), Lys220 (Δδ = 0.28 ppm) and 

Ala248 (Δδ = 0.19 ppm). The most affected residue is again Tyr247 (Δδ = 0.86 ppm), 

followed by Thr249 (Δδ = 0.48 ppm) and Val254 (Δδ = 0.40 ppm). Whereas the two 

first are in agreement with what was observed for 4MACF, Val254 is not. Asp250 (Δδ 

= 0.36 ppm) and Gly252 (Δδ = 0.22 ppm) give further evidence that the binding region 

is now more extended than previously. In addition to the extension of the binding 
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region towards the C-terminus of EB1c, the region immediately below the binding site 

– Lys212, Glu213 and Arg214, where the additional peptide residues are expected to 

be located in the complex is affected. This indicates that 6MACF in the complex is 

located in the similar position as the corresponding part of the full length ligand. 

 

Figure 5.6 – A - Histogram representing the chemical shift perturbations observed between free EB1cΔ8 

and bound to 4MACF (SKIP) using the Equation 5.1.  The secondary structure of the EB1 is given 

above the plot. B – Chemical shift changes mapping on the crystal structure (PDB accession code: 

3GJO), the selected residues were selected by applying the following formula: remove all residues with 

chemical shift changes larger than standard deviation (σ) of the chemical shift changes multiplied by 

three, re-calculate the standard deviation (σ) of the chemical shift changes residues and select the 

residues presenting chemical shift changes above that value.	 
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Figure 5.7 – A - Histogram representing the chemical shift perturbations observed between free EB1cΔ8 

and bound to 6MACF (SKIPTP) using the Equation 5.1. The secondary structure of the EB1 is given 

above the plot. B – Chemical shift changes mapping on the crystal structure (PDB accession code: 

3GJO), the selected residues were selected by applying the following formula: remove all residues with 

chemical shift changes larger than standard deviation (σ) of the chemical shift changes multiplied by 

three, re-calculate the standard deviation (σ) of the chemical shift changes residues and select the 

residues presenting chemical shift changes above that value. 
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Figure 5.8 – A – Histogram representing the chemical shift perturbations observed between free EB1cΔ8 

and bound to 11MACF (KPSKIPTPQRK) using the Equation 5.1. The secondary structure of the EB1 

is given above the plot. B – Chemical shift changes mapping on the crystal structure (PDB accession 

code: 3GJO), the selected residues were selected by applying the following formula: remove all residues 

with chemical shift changes larger than standard deviation (σ) of the chemical shift changes multiplied 

by three, re-calculate the standard deviation (σ) of the chemical shift changes residues and select the 

residues presenting chemical shift changes above that value. 

When analysing the chemical shift changes promoted by 11MACF to EB1cΔ8 the 

more immediate difference is, contrarily to what was observed for the shorter 

sequences, the residue experiencing the largest chemical shift change is not Tyr247 

but Val254 (Δδ of 1.48 and 2.7 ppm respectively), located in the C-terminal tail – 

Figure 5.8. In this region it is also possible to observe significant chemical shift 

changes for Asp250, Glu251, Gly252, Phe253 and Ile255. The remaining chemical 

shift changes are concentrated around the binding site for the SxIP – Phe218, Lys220, 



Biophysical characterisation of physiological EB1 interactions involving MACF2 

144 
 

Leu221, Glu225, Leu226, Asp244, Leu246, Tyr247, Ala248, Thr249, immediately 

below – Glu213 or immediately above – Cys228, Glu230. 

In a more general overview of the chemical shift changes plots it is clear that two main 

regions affected by the interaction with these ligands – the hydrophobic binding site 

and the C-terminal region, the latter with higher relevance for the stronger ligand – 

11MACF. For the first, it is important to mention that the 4MACF sequence (SKIP) is 

enough to achieve high specificity – no non-specific binding was observed. This is a 

highly relevant fact that shows that even for protein-protein interactions that usually 

present large interfaces it is possible to achieve specificity through such a short four 

residue sequence. Regarding the C-terminal region, the peaks observed for the 

resonances of this region (250–260) for free EB1cΔ8 are sharper and more intense, 

indicating more mobility in this region. However, analysis of the intensities of NH 

cross peaks for the complex formed between EBcΔ8 and each of the peptides shows 

that the intensities get attenuated for this region with the increasing length of the 

peptide – Figure 5.9.  This observation correlates with the fact that the stronger binder, 

11MACF, promoted chemical shift changes in residues in the C-terminal region, 

meaning that engaging of the C-terminus region is important to achieve a tighter 

interaction. 

The results obtained point to an increase in the binding affinity from the shorter 

(4MACF) to the longer peptide (11MACF). The next section will focus on 

determination of binding affinity values. 
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Figure 5.9 – plot of normalised (0-1) NH cross peaks intensities for free EB1cΔ8 (black), final titration 

point for 4MACF (green), 6MACF (blue) and 11MACF (red). 

 Determination of binding affinity by NMR spectroscopy 

The shape of the titration curve (chemical shift vs concentration of ligand) can often 

be fitted straightforwardly to obtain a value for the dissociation constant of the ligand, 

Kd. CSP is the only technique that can directly provide both a Kd value and a binding 

site from the same set of measurements, more details can be found in Chapter 1 

(section 1.2.3.1).94 Using the 1H,15N-HSQC spectra recorded previously, one can trace 

and fit the chemical shift changes using the following equation: 

, Equation 5.2 

where,  

This equation shows that a good estimate of Kd can only be obtained if the 

concentration of protein and ligand is somewhere close to Kd. The optimum value for 

the protein concentration is half of the Kd. Values up to a factor of ten less or more are 

still usable, as long as the range of concentrations of ligand is large enough, but the 

error in the fit rises dramatically away from these conditions. In particular, the ligand 
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should ideally span the range from 0.4 times protein concentration to ten times protein 

concentration (1/5 Kd to 5 times Kd).94 The lowest concentration of protein that can 

usefully be employed for HSQC titrations under optimum conditions of sensitivity is 

currently around 10 µM, implying that Kd values stronger than about 1 µM are too 

strong to be fitted from HSQC spectra. At the other end of the scale, CSP data can be 

used to fit dissociation constants as weak as 10 mM, which is close to the upper limit 

for biologically relevant affinities.94  

The resulting plot must have significant curvature in order to be able to fit effectively, 

if there is not enough curvature it means the binding is very far of reaching saturation.  

For 4MACF, high concentrations of the ligand were used in order to concentration of 

the ligand closer to the Kd value. At the last titration point (5 mM) the ligand 

concentration is about half of the Kd. Although this ligand range of concentrations is 

too low and therefore not ideal for Kd determination by NMR, a Kd value was still 

estimated from the use of Equation 5.2  

As expected, very weak binding is observed and therefore the fitting curve is almost a 

straight line – Figure 5.10. At the ratios below 1:20 the dependence of chemical 

changes on ligand concentration is linear, with a small deviation from the straight line 

at the higher concentrations.  

 

Figure 5.10 – Superposition of the experimental data (blue) and the results of the fitted Equation 5.2 

(red) for Tyr247 (left panel) and Thr249 (right panel) of EB1cΔ8 over the course of the 4MACF. These 

residues show very good agreement between the experimental and fitting function values and hence, 

were used in the Kd value determination process. The black straight line was introduced as a reference 

to facilitate the visualisation of the curvature. 
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Table 5.1 - The Kd values calculated for seven residues of EB1cΔ8 that best fitted the fitting function 

during the NMR titration with 4MACF. 

Residue Kd (mM) 

218F 8.92 ± 3.81 

220K 7.74 ± 2.16 

235N 9.90 ± 3.8 

244D 8.95 ± 3.23 

247Y 12.3 ± 0.91 

248A 8.7 ± 2.86 

249T 16 ± 3.53 

average 10.4 ± 2.90 

 

 

Figure 5.11 - Superposition of the experimental data (blue) and the results of the fitted Equation 1 (red) 

for Tyr247 (left panel), Thr249 (right panel) and Val254 (bottom centre) of EB1cΔ8 over the course of 

the 6MACF concentration titration (blue) and the corresponding fitting function (magenta). Similar 

good agreement between the experimental and fitting function values were observed for all peaks used 

in the Kd value determination. 
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Table 5.2 - The Kd values calculated for 13 residues of EB1cΔ8 that best fitted the fitting function during 

the NMR titration with 6MACF. 

Residue Kd (mM) 

212K 1.69 ±0.14  
213E 2.32 ± 0.46 
218F 1.54 ± 0.11 
221L 1.45 ± 0.08 
222R 1.49 ± 0.16 
224I 1.51 ± 0.14 
247Y 1.96 ± 0.26 
248A 1.67 ± 0.27 
249T 1.66 ± 0.27 
250D 1.96 ± 0.39 
252G 1.58 ± 0.25 
254V 1.81 ± 0.30 
255I 1.90 ± 0.33 
average 1.73 ± 0.24  

As described previously, this condition is far from optimal for accurate Kd 

determination, as the shift dependence does not show enough curvature. However, 

small systematic deviation from the linear dependence is sufficient for the consistent 

fitting of the titrations curves for the peaks with the largest chemical shit differences, 

giving an estimate for the Kd value of ~10 mM (Table 5.1). This value is comparable 

to the maximum concentration of the peptide used in the titration, further supporting 

the validity of the approach.  

Quantitative analysis of spectral changes for 6MACF titrations (see above) indicated 

higher affinity of the interaction with EB1cΔ8 than for 4MACF. In agreement with 

this we detected significant curvature in the titration curves, optimal for the fitting 

(Figure 5.11). The resulting Kd values were close for all the peaks with large chemical 

shift changes that can be reliably followed thought the titration (Table 5.2), giving the 

average value of 1.7 mM for this interaction. This value is significantly lower than the 

maximum peptide concentration used in the titration, making the titration conditions 

close to optimal. 

It was already shown that 11MACF is the strongest binder of the three tested peptides. 

Resonances in an intermediate exchange regime are not ideal for Kd determination 

using chemical shift changes, due to broadening and disappearance of peaks at certain 

ratios and complex concentration dependence of chemical shifts. Therefore, the peaks 

in fast exchange regime with minimal broadening were selected for the Kd estimation. 
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The titration curves for these peaks could be fitted well into the fast exchange model 

(Figure 5.12). However, the variation of the estimated Kd values was large with large 

associated errors (Table 5.3). This variation in the Kd estimates across the peaks 

indicates that the titration conditions are far from optimal. The average Kd value of 1.3 

µM is much smaller than the protein concentration of 100 µM used in the titration, 

leading to the limited curvature; additionally, a number of resonances used in the 

estimation demonstrated different degree of broadening at the intermediate titration 

points, explaining variations in the shape of the titration curves. All the fitting plots 

for these residues show clearly that the system reached saturation immediately above 

1:1 ratio (Figure 5.12) as expected for the estimated Kd value, validating the Kd 

estimation. 

 

Figure 5.12 - The fit curve produced for Phe216 (left upper panel), Phe218 (right upper panel), Leu246 

(left bottom panel) and Thr249 (right bottom panel) of EB1cΔ8 over the course of the 11MACF. These 

residues show very good agreement between the experimental and fitting function values and hence, 

were used in the Kd value determination process. The black straight line was introduced as a reference 

to facilitate the visualisation of the curvature. 

 

Table 5.3 - The Kd values calculated for seven residues of EB1cΔ8 that best fitted the fitting function 
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during the NMR titration with 11MACF. 

Residue Kd (µM) 

216F 0.822 ± 0.77 
218F 3.45 ± 1.26 
230E 0.547 ± 0.92 
244D 0.717 ± 1.70 
246L 1.38 ± 1.38  
248A 1.51 ± 1.86  
249T 0.818 ± 1.23 
average 1.32 ± 1.30 

6MACF titration is the only one that presents ideal conditions for fitting of Equation 

5.2. Despite this it was still possible to estimate Kd values for 4MACF and 11MACF. 

The extension of the SxIP motif by two residues, threonine and proline (SKIPTP), 

improved the binding to EB1cΔ8 by roughly 10 fold – 1.7 mM. Further extension, 

11MACF (KPSKIPTPQRK) has a remarkable effect in the binding affinity, enhancing 

it to about 1000 fold – 1.32 µM. Is this enhancement only result of the interaction of 

the C-terminus as postulated in the beginning of this chapter or are there extra 

contributions with the coiled coil region? To address this question, the next section 

will focus on the testing of the same peptides in the absence of the C-terminus. 

5.2 NMR screening of MACF peptides against EB1cΔ16 

From the previous experiments it was possible to observe that a stronger interaction 

with EB1cΔ8 affected the residues around SxIP binding site but also the residues in 

the C-terminus. To further investigate the role of the C-terminal it was decided to test 

the same set of ligands – 4MACF, 6MACF and 11MACF, in the absence of the eight 

C-terminal residues – EB1cΔ16. The same approach was used before, 1H,15N-HSQC 

titrations, since it involves relatively simple experiments but it gives valuable 

information on the strength and localisation of the interaction. The removal of the C- 

terminus had a minor effect on the NMR spectra, with the 1H,15N-HSQC spectrum 

exhibiting highly dispersed cross-peaks of uniform intensity that correspond to a stable 

coiled coil – section 3.3 – Chapter 3. 

For 4MACF - Figure 5.13, the chemical shift changes are overall smaller than the ones 

observed for the same ligand interaction with EB1cΔ8. However, the trend is similar 

to what was observed for the other construct, with Tyr247 being the most affected 
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residue, followed by Thr249. Glu225, Phe218 and Arg222, similarly to what was 

observed before were also affected upon ligand binding. Overall, the chemical shift 

changes distances were reduced to half of what was observed for EB1cΔ8. 

 

Figure 5.13 - Overlay of 1H,15N-HSQC spectra of 15N-labelled EB1cΔ16 (50 µM) recorded at 600 MHz 

- in the free form (black) and in the presence recorded of 4MACF (5000 µM, red) at 600 MHz The 

insets show regions of interest and the spectra corresponding to the following 4MACF concentrations, 

250, 500, 1000, 2500 and 5000 µM.  

When EB1cΔ16 chemical shift changes are measured upon the addition of 6MACF – 

Figure 5.14, the chemical shift changes distribution is very similar to the one observed 

for EB1cΔ8, with the exception obviously of Val254, not present in this construct. 

Therefore, Tyr247 (Δδ= 0.45 ppm) and Thr249 (Δδ= 0.29 ppm) are, once again the 

most affected residues, followed by Lys220 (Δδ= 0.13 ppm) and Arg222 (Δδ= 0.11 

ppm). Glu213 (Δδ= 0.09 ppm), Phe218 (Δδ= 0.06 ppm), Glu225 (Δδ= 0.09 ppm), and 

Ala248 (Δδ= 0.07 ppm). Similarly to what was observed for the previous ligand the 
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chemical shift changes distances are about half of the ones observed for EB1cΔ8. 

Another striking difference is the fact that a subtle peak broadening was observed for 

resonances such as the ones belonging to Glu213 and Tyr247 when the complex was 

formed with EB1cΔ8, whereas for this complex all resonances are clearly in a fast 

exchange regime. 

 
Figure 5.14 - Overlay of 1H,15N-HSQC spectra of 15N-labelled EB1cΔ16 (50 µM) recorded at 600 MHz 

- in the free form (black) and in the presence recorded of 6MACF (5000 µM, red) at 600 MHz The 

insets show regions of interest and the spectra corresponding to the following 6MACF concentrations, 

250, 500, 1000, 2500 and 5000 µM. 

For 11MACF – Figure 5.15, the removal of the C-terminal tail also moves the 

exchange regime towards fast exchange. This trend is very clear for Ala248 and 

Thr249. The chemical shift changes are now similar in terms of magnitude when 

compared with the complex formed with the previous construct. Ala248 shift change 

is now about five times smaller, Asp250 about two times, Tyr247 about 1.2 times and 

surprisingly the chemical shift change for Thr249 and Arg222 are now larger than the 
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ones observed for the complex with EB1cΔ8.  

 

Figure 5.15 - Overlay of 1H,15N-HSQC spectra of 15N-labelled EB1cΔ16 (100 µM) recorded at 600 

MHz - in the free form (black) and in the presence recorded of 11MACF (400 µM, red). The insets 

show regions of interest and the spectra corresponding to the following 11MACF concentrations, 12.5, 

25, 75, 82.5, 100, 200 and 400 µM.  

The binding is definitely weaker – no significant line broadening and therefore 

intermediate exchange observed, but the chemical shift changes distances are not as 

affected as what was observed for the shorter length peptides. The removal of part of 

the C-terminal flexible tail (residues 253-260) had an obvious effect in the interaction 

between EB1c and MACF2, diminishing the strength of the interaction as it was 

expected.  

 Chemical shift changes and mapping 

In terms of localisation of the binding all three peptides still target the hydrophobic 

binding site specific for the interaction with the SxIP motif, and therefore the absence 

of the C-terminus does not affect the specificity of the SxIP motif for EB1c. On one 
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hand the C-terminal tail seems to contribute for a stronger interaction with ligands, 

nevertheless it is the hydrophobic pocket that gives the specificity for the interaction. 

This was expected since it is widely described in the literature that the specificity for 

the EB1c – SxIP proteins interaction relies on SxIP motif and its interaction with the 

hydrophobic pocket. The extra interactions, away from the binding site, only stabilise 

the interaction.49 Tyr247 and Thr249 are now the residues more affected by the ligand 

interaction. The distribution pattern for the chemical shift changes is similar to the one 

observed before, with the existence of two majorly affected regions – Phe218 – Glu225 

and Tyr247-Thr249. 

The largest chemical shift change observed for the complex with 4MACF is Tyr247 

(Δδ = 0.16 ppm) - Figure 5.16. As described previously the magnitude of the distance 

is now smaller – previous Δδ = 0.35 pm. Similar trend is observed for Phe218, Δδ = 

0.03 vs 0.07 ppm, Arg222, Δδ = 0.03 vs 0.06 ppm, and Glu225, Δδ = 0.04 vs 0.06 ppm. 

When bound to 6MACF, EB1cΔ16 changes in chemical shift follow the same principle 

as for 4MACF - Figure 5.17. Tyr247 shows a Δδ of 0.45 ppm (whereas for EB1cΔ8 

was of 0.86 ppm). Arg214 Δδ changed from 0.16 to 0.08 ppm, Phe216 0.12 to 0.05 

ppm, Lys220 from 0.28 to 0.13 ppm, and finally Ala248 0.19 to 0.07 ppm and Thr249 

from 0.48 to 0.28 ppm. 

The complex with 11MACF does not show the same pattern as the one observed before, 

for the simple reason that some of the affected residues are now not present, e.g. 

Val254. Except for that region the chemical shift changes follow the same pattern, and 

opposite to what was observed for the shorter length peptides not all chemical shift 

distances were reduced. Thr249 has now a larger chemical shift change – Δδ = 0.69 

ppm, whereas previously was 0.55 ppm. Arg222 also has a bigger chemical shift 

change, Δδ = 0.31 ppm and previously 0.19 ppm. All other resonances seem to have 

the chemical shift distances reduced but not to such a noticeable magnitude as the one 

observed for the shorter length peptides. This is a clear effect of the exchange regime 

shifted from intermediate to fast, the binding is weaker but the chemical shift distances 

are not so affected. 
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Figure 5.16 - A - Histogram representing the chemical shift perturbations observed between free 

EB1cΔ16 and bound to 4MACF (SKIP) using the Equation 5.1. The secondary structure of the EB1 is 

given above the plot. B – Chemical shift changes mapping on the crystal structure (PDB accession code: 

3GJO), the selected residues were selected by applying the following formula: remove all residues with 

chemical shift changes larger than standard deviation (σ) of the chemical shift changes multiplied by 

three, re-calculate the standard deviation (σ) of the chemical shift changes residues and select the 

residues presenting chemical shift changes above that value. 
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Figure 5.17 - A - Histogram representing the chemical shift perturbations observed between free 

EB1cΔ16 and bound to 6MACF (SKIPTP) using the Equation 5.1. The secondary structure of the EB1 

is given above the plot. B – Chemical shift changes mapping on the crystal structure (PDB accession 

code: 3GJO), the selected residues were selected by applying the following formula: remove all residues 

with chemical shift changes larger than standard deviation (σ) of the chemical shift changes multiplied 

by three, re-calculate the standard deviation (σ) of the chemical shift changes residues and select the 

residues presenting chemical shift changes above that value. 
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Figure 5.18 – A - Histogram representing the chemical shift perturbations observed between free 

EB1cΔ16 and bound to 11MACF (KPSKIPTPQRK) using the Equation 5.1. The secondary structure of 

the EB1 is given above the plot. B – Chemical shift changes mapping on the crystal structure (PDB 

accession code: 3GJO), the selected residues were selected by applying the following formula: remove 

all residues with chemical shift changes larger than standard deviation (σ) of the chemical shift changes 

multiplied by three, re-calculate the standard deviation (σ) of the chemical shift changes residues and 

select the residues presenting chemical shift changes above that value. 

 Determination of binding affinity by NMR spectroscopy 

Determining the binding affinity for these interactions can be even more challenging 

than before, as these are even weaker than the ones reported for EB1cΔ8. It is 

noteworthy to reinforce the idea these are only approximations and with this approach 

one only wants to facilitate the comparison by attributing numerical values to the 

titrations.  
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Because for the previous Kd determination for the 4MACF-EB1cΔ8 the value was 

already on the upper limit for Kd determination by NMR (10 mM) it was decided to 

not make an attempt for this interaction between the same ligand and the truncated 

version of EB1c (EB1cΔ16) as the interaction is even weaker and the determined value 

would not be meaningful. 

For 6MACF, it is possible to observe that now the fitting curve presents a less 

pronounced curvature – Figure 5.19, very similar to the case observed for the 

interaction 4MACF- EB1cΔ8. The estimated Kd is almost seven times higher than 

before – Table 5.4, indicating that despite this peptide does not seem to make a large 

number of interactions with the C-terminus of EB1c, the removal of this region 

penalises the binding to a large extent. It is possible that the presence of the C-terminus 

shields the ligand from the solvent, leaving hydrophobic residues such as proline or 

isoleucine less solvent exposed. 

As expected, the same trend is observed for 11MACF- EB1cΔ16 – Figure 5.20, Table 

5.5. The estimated Kd is now 12 µM, about ten times higher than the one observed 

previously. Perhaps the lack of the flexible C-terminus is even more noticeable for this 

interaction as 11MACF CSPs indicated that important changes could be observed for 

the C-terminal region upon addition of this ligand. 

 

Figure 5.19 - The fit curve produced for 247Y (left panel), 249T (right panel) of EB1cΔ16 over the 

course of the 6MACF concentration titration (blue) and the corresponding fitting function (magenta). 

These residues show very good agreement between the experimental and fitting function values and 

hence, were used in the Kd value determination process. The black straight line was introduced as a 

reference to facilitate the visualisation of the curvature. 
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Table 5.4 - The Kd measured for five residues of EB1cΔ16 that best fitted the fitting function during the 

NMR titration with 6MACF and hence, were used in the estimation of the binding affinity. 

Residue Kd (mM) 
220K 7.54 ± 2.24 
222R 6.97 ± 2.61 
225E 5.87 ± 1.00 
247Y 8.67 ± 2.37 
249T 6.29 ± 1.17 
average 7.07 ± 1.88 

 

 

 

Figure 5.20 - The fit curve produced for 221L (left panel), 248A (right panel) of EB1cΔ16 over the 

course of the 11MACF concentration titration (blue) and the corresponding fitting function (magenta). 

These residues show very good agreement between the experimental and fitting function values and 

hence, were used in the Kd value determination process. 

Table 5.5 - The Kd measured for four residues of EB1cΔ16 that best fitted the fitting function during 

the NMR titration with 11MACF and hence, were used in the estimation of the binding affinity. 

Residue Kd (µM) 
218F 9.03 ± 3.09 
221L 11.8 ± 4.87 
246L 15 ± 3.74 
248A 13.3 ± 5.83 
average 12.3 ± 4.38 
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5.3 Isothermal titration calorimetry binding assays of 11MACF - 

EB1cΔ8 and 11MACF - EB1cΔ16 

In order to further characterise the complexes formed between 11MACF and EB1cΔ8 

and EB1cΔ16, isothermal titration calorimetry was used. The experimental 

considerations and methods used in this section are described in 7.4.2 – Chapter 7. 

As described in section 1.2.3.2 – Chapter I, ITC directly measures the heat released or 

absorbed during a biomolecular binding event, allowing the simultaneous 

determination of all thermodynamic parameters, including stoichiometry (n), 

equilibrium association constant (Ka), ∆H (enthalpy) and ∆S (entropy) for that 

particular binding interaction. These thermodynamic parameters can be used to 

calculate the Gibbs free energy (∆G) for a particular interaction between two 

macromolecules (Equation 5.3 and 5.4), where a negative value indicates that non-

covalent association is occurring. The binding affinity (Ka), is inverse to the 

dissociation constant (Kd), therefore smaller Kd tighter the binding (Equation 5.5). 

Obtaining all these parameters from one single method makes ITC an extremely useful 

biophysical technique for determination and comparison of biomolecular 

interactions.169,17> 

, Equation 5.3 

, Equation 5.4 

, Equation 5.5 
The interaction with 4MACF and 6MACF was too weak to be measured by ITC. 

However, the same is not true for the interactions of EB1c and the 11mer peptide – 

11MACF. At this stage it would be important to calculate accurately the Kd values for 

both EB1cΔ8 and EB1cΔ16 interactions with 11MACF. In addition, and making use 

of the versatility of this method to calculate parameters such as ∆H and ∆S, it would 

be of interest to know how the presence of the C-terminal flexible tail affects these 

parameters. The individual isotherms for these interactions are shown in Figure 5.21 

and Figure 5.22. A total of three experiments were used to calculate the 

thermodynamic parameters and respective associated errors showed in Table 5.6. 
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Figure 5.21 - The ITC isotherm (top) and resultant curve (bottom) produced by the ITC binding exper-
iment between 50 µM EB1cΔ8 (cell) and 750 µM 11MACF (syringe) in 20 mM phosphate, pH 6.5, 50 
mM NaCl, 0.5 µM TCEP, 0.02% NaN3 on an iTC200 Microcalorimeter (MicroCal) at 25oC. Fitting of 
the curve produced by the ITC experiment to a single set of sites curve-fitting model, using Origin7, 
resulted in a binding affinity (Kd) of 2 µM. 
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Figure 5.22 - The ITC isotherm (top) and resultant curve (bottom) produced by the ITC binding exper-
iment between 150 µM EB1cΔ16 (cell) and 2250 µM 11MACF (syringe) in 20 mM phosphate, pH 6.5, 
50 mM NaCl, 0.5 µM TCEP, 0.02% NaN3 on an iTC200 Microcalorimeter (MicroCal) at 25oC. Fitting 
of the curve produced by the ITC experiment to a single set of sites curve-fitting model, using Origin7, 
resulted in a binding affinity (Kd) of 26 µM. 
 
Table 5.6 - Thermodynamic parameters obtained for three ITC binding experiments to detect the inter-
actions of 11MACF with EB1cΔ8 and EB1cΔ16. Values shown in this table correspond to the average 
and associated error obtained for the three experiments. 

Interaction Kd (µM) ∆H (kcal mol-1) -T∆S (kcal mol-1) ∆G (kcal mol-1) 
EB1cΔ8 

11MACF 3.80 ± 0.82 -10.57 ± 0.63 3.15 ± 0.64 -7.42 ± 0.12 

EB1cΔ16 
11MACF 41.5 ± 8.84 -7.11 ± 0.44 1.11 ± 0.45 -6.00 ± 0.12 
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Figure 5.23 - The thermodynamic parameters (∆G (blue), ∆H (red) and -T∆S (green)) obtained from 

the binding interaction between the 11MACF and EB1cΔ8 (EB1d8, left hand side) and EB1cΔ16 

(EB1d16, right hand side).  

The interaction between EB1cΔ8 and the 11-residue peptide derived from MACF2, 

11MACF, it is in the low µM range, 3.80 ± 0.82 µM. This value is in agreement to 

what was reported previously for a longer peptide sequence (~26 amino acid residues) 

including this sequence, 3.5 µM. This value was obtained using fluorescence 

polarisation (FP) displacement.17> As expected, and in accordance with what was 

observed by NMR, the Kd for the interaction of the same peptide and EB1cΔ16 

(lacking eight C-terminal residues) is higher, indicating a weaker interaction – 41.5 ± 

8.84 µM, about 10 fold weaker. Once again, this is in agreement with the results 

obtained by NMR, where the estimated Kd changed from 1.32 µM to 12.3 µM. 

A similar effect was demonstrated by Honnappa and co-workers31 where a different 

SxIP containing peptide derived from APC was tested for interaction with EB1c 

lacking the 20 C-terminal residues (191-247). Because these authors removed 

important residues part of the binding pocket such as Ala248 and Thr249, the effect is 

more extreme with no binding observed.  

In terms of thermodynamic parameters contribution, Figure 5.23 represents a graphical 

output of the values present in Table 5.6. ∆G is made up of two different contributions, 

∆H and ∆S, and different combination of these values, in principle, elicit the same 
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binding affinity (i.e. the same ∆G and therefore the same Ka). The binding enthalpy 

(∆H) primarily reflects the strength of the interactions of the ligand with the target 

protein (e.g. van der Waals, hydrogen bonds, etc.) relative to those existing with the 

solvent. The entropy change (∆S), on the other hand, mainly reflects two contributions: 

changes in solvation entropy and changes in conformational entropy. Upon binding, 

desolvation at the binding interface occurs, water is released to bulk solution and a 

gain in solvent entropy is observed. This gain is particularly important for hydrophobic 

groups. At the same time, the ligand and certain groups in the protein lose 

conformational freedom, resulting in a negative change in conformational entropy.17> 

The removal of eight residues from EB1c’s C-terminal tail caused enthalpic 

contributions to be smaller, meaning that it is possible that hydrogen bonds and other 

non-covalent interactions formed between this region and 11MACF may have been 

lost. On the other hand, entropic contributions are more favourable when the majority 

of the C-terminal tail is absent. This may be related with when the C-terminal region 

is present it tends to become more structured upon binding to SxIP containing peptide. 

This observation was already described in this thesis – Figure 5.9. This loss of 

flexibility may cause unfavourable contributions to the system entropy. Despite this, 

the enthalpic loss for this complex outweighs the entropic gains due to the removal of 

the flexible region. 

The X-ray crystal structure published by Honnappa and co-workers in 200931 is the 

only structure published to date where part of the flexible C-terminus is observed, 

meaning this region should in principle be less dynamic when EB1c is bound to a 

peptide derived from a natural ligand. In order to get extra information on how EB1c 

binds to a SxIP containing peptide, it was decided to elucidate the structure in solution 

of the complex formed between EB1cΔ8 and 11MACF. This structure differs from the 

one supra in two main aspects, the first is a structural model in solution, the second is 

the fact the SxIP containing peptide is a shorter sequence, 11 residues instead of 30. 

5.4 Structural elucidation of the complex EB1cΔ8-11MACF using solu-

tion NMR 

In this thesis two solution NMR structures of EB1cΔ8 were already described for the 

free and bound form – Chapter 3. The structure described in this section aims to 
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represent the structural conformations of EB1cΔ8 when bound to a longer and higher 

affinity ligand. The first difference between this complex and the one previously 

elucidated between EB1cΔ8 and molecule 1a is the fact this complex is in intermediate 

exchange and therefore it was not possible to follow the chemical shift changes during 

the course of the titration from the resonances obtained for free EB1cΔ8. Therefore, 

all spectra were assigned in an identical manner to the one described for EB1cΔ8 in 

the free form – Chapter 3. The fact that the complex presents characteristics of an 

intermediate exchange regime, with extensive line broadening for some of the protein 

resonances, it was necessary to add excess of ligand (10:11 ratio) in order to get sharper 

peaks for the ligand without loss (broadening) of the protein resonances – Appendix 

(A.3). 

One hundred and eighty five intermolecular distance restraints were calculated using 

CcpNmr Analysis17> and introduced into the calculations of the complex. One hundred 

and ten distance restraints were iteratively assigned by ARIA174 yielding a total of 298 

distance restraints between the protein and the peptide. Additionally, 209 

intramolecular distance restraints for the peptide were also assigned and introduced –  

Table 5.7. This approach yielded a structure of a complex shown in Figure 5.24. 

Overall EB1cΔ8 maintains the coiled-coil structure composed by a leucine zipper and 

four helical bundle in the upper region. The most remarkable difference between this 

structure and the two previously reported (Chapter 3) is that the C-terminal tail is now 

in a stable and fixed conformation. 
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Table 5.7 - NMR restraints and structure statistics for the structures of EB1cΔ8 in complex with 

11MACF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Number in brackets corresponds to the restraints assigned manually 
**Helical region corresponds to residues: Glu192-Glu230 and Pro237-Tyr247 
*** Values within brackets correspond to residues Glu192-Glu230 and Pro237-Tyr247 (helical region) 

 

 EB1cΔ8-11MACF 
Total restraints used 

NOE restraints*  
All 3863 
Protein-ligand 298 
Intermonomer 924 
Intrapeptide  209 
Intraresidue	 1133 
Sequential (|i – j| = 1) 968 
Medium (1 < |i – j| ≤ 4) 1311 
Long range (|i – j| > 4) 177 

Dihedral  
ϕ angles 65 
φ angles 65 

Hydrogen bonds 90 
Structure statistics 

Violations 
Distance (> 0.5 Å) 42 (±5) 
Dihedral angle (> 50 )  7 (±1) 

Energies (cal/mol) 
Overall   -2179 (±208) 
Bond 119 (±9) 
Angle 479 (±21) 
Improper 242 (±29) 
Dihedral 868 (±14) 
Van der Waals -48 (±28) 
Electrostatic -5903 (±98) 
NOE 1906 (±119) 

Geometry – average Values  
Bond	 7.40x10-3	(±5.7x10-4)	
Angle	 0.91		(±9.96x10-2)	
Improper	 2.50	(±0.30)	
Dihedral	 41.56	(±0.24)	
Van	der	Waals	 428.93	(±83.98)	

Average	pairwise	RMSD	(Å)**	  

Heavy	atoms	 2.41	(±1.25)	
Heavy	atoms	–	helical	region	 1.51	(±0.99)	
Backbone 2.05	(±1.33)	
Backbone – helical region 1.08	(±0.93)	

Ramachandran statistics (%)***  
Most	favoured	regions	 87.0	(99.5)	
Additional	allowed	regions	 10.8	(0.3)	
Generously	allowed	regions	 1.0	(0.2)	
Disallowed	regions	 1.1	(0)	
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Figure 5.24 - A – Superimposition of the ensemble of 20 best structures of EB1cΔ8 domain in complex 

with 11MACF. B – Cartoon representation of the lowest energy structure for EB1cΔ8 in complex with 

11MACF shown in sticks, where green represents carbon, blue nitrogen and red oxygen. 
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The solution NMR structure of EB1cΔ8 in the unbound state elucidated the side chain 

mobility of two residues in the binding site, Arg222 and Tyr247. In the bound form to 

molecule 1a, these residues remained in a stable and fixed conformation. This was 

further proved by the existence of NOE cross peaks between the molecule and both 

residues of the protein. Similarly, for the complex formed between EB1cΔ8 and 

11MACF these residues remain in a stable conformation, with only little side chain 

variability for Arg222. Again, this is supported by the existence of NOE distance 

restraints - Table 5.8.  

Table 5.8 – NOE calculated distance restraints obtained for Arg222 

NOE distance restraints assigned and introduced in the calculations via CcpNmr Analysis 
A Arg222 Hα C Ile5479 Hδ1 4.3 Å 
A Arg222 Hα C Ile5479 Hδ1 4.6 Å 
A Arg222 Hδ1 C Ile5479 Hδ1 4.9 Å 

NOE distance restraints calculated by ARIA 
A Arg222 Hα C Ile5479 Hδ1 2.9 Å 
A Arg222 Hδ1 C Ile5479 Hδ1 4.2 Å 
A Arg222 Hβ1 C Ile5479 Hδ1 4.5 Å 

Table 5.9 - Parameters calculated via CASTp15> webserver for the hydrophobic pocket shape and size 

analysis. 

  Area (Å2) Volume (Å3)   

structure 
Number of 

 mouth 
openings 

Solvent 
accessible 

Molecular 
surface 

Solvent 
accessible 

Molecular 
surface 

sum 
arc 

length 

corner 
points 

1 1 328.791 434.47 320.387 855.13 264.74 110 
2 1 184.29 273.09 173.877 493.53 152.3 74 
3 2 382.843 519.29 445.541 1067.72 319.25 139 
4 2 244.428 351.41 198.826 612.02 200.48 105 
5 1 292.415 402.28 290.323 779.39 258.6 118 
6 1 239.808 353.61 209.158 623.31 211.9 106 
7 1 213.99 359.06 185.383 571.63 184.89 101 
8 2 245.327 390.99 195.283 627.09 220.03 111 
9 1 200.696 311.21 183.17 531.71 169.54 89 

10 1 237.233 366.56 209.798 617.6 185.16 95 
11 1 320.497 494.99 244.091 802.65 285.4 146 
12 1 315.463 426.35 287.722 805.96 255.98 124 
13 1 232.901 351.45 214.77 621.19 205.11 100 
14 1 187.433 265.69 200.472 515.31 147.34 70 
15 1 226.224 360.73 220.101 619.27 191.32 102 
16 1 182.231 266.67 159.245 468.69 146.49 73 
17 1 369.165 532.34 389.309 991.42 290.39 141 
18 1 301.724 397.48 326.503 817.38 245.4 114 
19 1 303.93 424.31 320.598 824.42 250.43 126 
20 1 285.503 384.62 325.76 782.8 216.56 107 

Average 1.2 264.7446 383.33 255.016 701.411 220.07 108 
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Standard deviation 0.4 58.87961 73.83241 76.783 161.532 48.581 20.9 

There are three structures where the arginine side chain occupies a more interior 

position (1, 2 and 4) and these still present large binding pocket volumes (Table 5.9), 

opposing to what was observed in the free form.  

Remarkably, the average binding pocket size for this complex is about five times larger 

than the average obtained for the complex with 1a – 49 Å3 (± 6 Å3) versus 255 Å3 (± 

77 Å3). The main reason this major difference in the binding site is the contribution of 

the C-terminal tail of EB1cΔ8 (residues 248-260). The C-terminus folds around the 

peptide protecting it from the solvent and therefore extending the binding site - Figure 

5.25. 

 

Figure 5.25 – Representation of the binding site of the lowest energy structure (structure 1) obtained for 

the complex EB1cΔ8-11MACF. Protein and ligand are both in cartoon representation, grey and green 

respectively. The binding pocket is represented as a grey mesh and was calculated using CASTp 

webserver (solvent accessible volume of 320 Å3. 

This conformation is observed across the ensemble of 20 calculated structures for this 

complex and further proved by the existence of intermolecular NOEs between the 

ligand and the C-terminus of EB1cΔ8. These contacts include Val254 to the sequence 
5480PTPQR5484, Ile255 to the sequence 5478KIPTP5482, Pro256 to the sequence 
5478KI5479-T5481, and finally Asp257 to Lys5478. Finally, Phe253 establishes most of 

the contacts with Pro5482, with fewer for Ile5479 and Thr5481. A detailed list of the 

distance restraints derived from the NOE data can be found in Appendix A.3. As 

mentioned above the C-terminus of EB1cΔ8 interacts with the peptide – residues 
5478KIPTPQR5484, but the majority of the contacts are within the region 5478KIPTP5482. 

Peptide side chains are therefore more restrained for this region and show good 
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superimposition - Figure 5.26. 

 

Figure 5.26 – Superimposition of the ensemble of structures obtained for the peptide in complex with 

EB1cΔ8 

Regarding the contacts between the peptide and the helical region of EB1cΔ8, small 

number of restraints – eight in total, are observed for Lys5475 and Pro5476 and 

residues Asn223, Glu225 and Leu226. Ser5477 only shows one distance restraint to 

Phe218 and this is quite large distance ~ 6.5 Å. The following residue, Lys5478 is 

solvent exposed making contacts only with the C-terminus of EB1cΔ8. Ile5479 shows 

the largest number of NOE distance restraints; these include the following residues 

from the coiled coil region of EB1cΔ8 – Tyr217, Phe218, Leu221, Arg222, Ile224, 

Glu225, Leu246 and Tyr247. Similarly to Ile5479, Pro5480 shows hydrophobic 

contacts to Tyr217, Phe218 and further down with Thr249. The following threonine 

(5481) is the only residue showing contacts to Phe216, making two additional contacts 

with other two aromatic side chains (Tyr217 and Phe218). Pro5482 is the last residue 

of the peptide making contacts with the coiled region of EB1cΔ8 – Thr249, already in 

the transition region to the C-terminal tail.  

The above contacts from the NMR structures are generally consistent to the ones 

described by Honnappa and co-workers and the structure is very similar to the crystal 

structure 3GJO31. However, the NMR structure gives a better understanding of the 

solution structure of the complex, reassuring that the C-terminus folds upon binding 

and that this region seemed to be fixed in the crystal structure is not derived from 
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crystal packing. It is now very clear that the C-terminal plays a fundamental role in 

ligand-EB1c interactions. It was, therefore, decided to make an attempt in finding a 

higher affinity ligand by introducing mutations that can favour the interaction between 

the ligand and the C-terminus. This process will be subsequently described. 

 
Figure 5.27 – representation of the residues forming the contact interface between EB1cΔ8 and 

11MACF, both shown in cartoon representation with side chain showed for all the residues involved in 

contacts between the two molecules. EB1cΔ8 is shown in grey and 11MACF in green, with oxygen 

shown in red and nitrogen shown in blue for both. 

5.5 Optimisation of the native interaction 

 Molecular modelling 

At this stage it was known the importance of targeting the flexible C-terminus of EB1c, 

therefore it was decided to find ligands that bind tighter to this region through peptide 

mutagenesis. The first step consisted in a literature search to identify possible amino 

acid replacements that would help to achieve a stronger interaction. A paper published 

in 2012 by Buey et al., 201249 shows through a SPOT analysis that 5481TPQ5483
 would 

tolerate mutations, especially if amino acid residues with hydrophobic side chains are 

introduced. Thr5481 can be replaced by histidine, isoleucine, leucine, methionine, 
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glutamine, arginine or valine. The following proline (Pro5482) tolerates phenylalanine 

and leucine, whereas the Gln5483 can be replaced by isoleucine, lysine, leucine or 

valine, being leucine the preferable mutation. 

Three versions of mutated peptides were built and analysed through molecular docking 

– KPSKIPLLLRK (11MACF-LLL), KPSKIPVLLRK (11MACF-VLL) and 

KPSKPILLRK (11MACF-ILL). Each pose was initially docked and evaluated using 

Goldscore scoring function (as described in section 8.1.2), and the results were later 

rescored using each scoring function present in GOLD – Chemscore, ChemPLP and 

ASP. Overall 11MACF-LLL obtained higher fitness scores for all scoring functions, 

followed by 11MACF-VLL. 11MACF (wild-type) and 11MACF-ILL seemed to 

compete for the third best overall score. These results are detailed in Table 5.10, Table 

5.11, Table 5.12and Table 5.13. 

Table 5.10 – Fitness scores obtained with Goldscore for the wild-type and mutated versions. 

 11MACF-wt 11MACF-LLL 11MACF-VLL 11MACF-ILL 

1 116.6972 99.0181 109.2072 147.3196 

2 95.596 98.691 103.7247 106.0801 

3 90.5117 97.5353 88.4816 103.5024 

4 86.0151 97.487 77.7022 102.2641 

5 75.067 95.2011 76.4867 95.2081 

6 68.4973 89.3229 44.6624 78.6898 

7 67.8119 84.465 42.4577 34.2308 

8 50.9331 57.7077 41.1628 22.3123 

9 -20.8909 52.4758 14.3184 -70.6193 

10 -34.9973 2.4104 8.3302 -241.4937 

average 59.5241 77.4314 60.6534 37.7494 

 

 

 

 

 

 
 
 
 



Biophysical characterisation of physiological EB1 interactions involving MACF2 
 

173 
 

 
 
 

Table 5.11 – Fitness scores obtained with Chemscore for the wild-type and mutated versions. 

 11MACF-wt 11MACF-LLL 11MACF-VLL 11MACF-ILL 

1 -22.7581 -9.5765 -17.2281 -5.7635 

2 -46.008 -19.7418 -26.6175 -17.1386 

3 -22.0417 -19.0367 -7.6088 -26.7014 

4 -45.7151 -11.024 -21.107 -11.639 

5 -41.8411 -13.8251 -44.2843 -12.9866 

6 -41.8287 -17.7299 -29.9582 -29.5592 

7 -43.758 -15.5714 -26.3761 -50.1637 

8 -38.263 -23.1886 -41.2771 -51.7802 

9 -44.3287 -29.5566 -47.0179 -55.7457 

10 -59.8753 -29.5404 -29.8831 -93.4951 

average -40.642 -18.879 -29.136 -35.497 

 

Table 5.12 - Fitness scores obtained with ChemPLP for the wild-type and mutated versions. 

 11MACF-wt 11MACF-LLL 11MACF-VLL 11MACF-ILL 

1 103.8213 -405.4915 94.0879 89.2584 

2 43.1355 90.8319 -1055.4376 95.9891 

3 88.657 91.1274 82.2654 -8942.0868 

4 55.8481 97.2031 75.0087 109.75 

5 -2938.9568 -10005.363 -465.8373 -979.9262 

6 32.0876 15.2989 35.0926 79.6759 

7 73.1813 88.985 65.077 29.6528 

8 -2977.9218 -539.0405 41.4024 26.4023 

9 72.9775 73.5982 -8.4312 21.6552 

10 17.0947 -8454.1646 65.6476 -63.757 

average -543.0076 -1894.702 -107.1125 -953.3386 
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Table 5.13 - Fitness scores obtained with ASP for the wild-type and mutated versions. 

 11MACF-wt 11MACF-LLL 11MACF-VLL 11MACF-ILL 

1 37.9338 19.4951 29.0991 30.3398 

2 6.7662 31.8461 28.7736 35.4951 

3 31.473 31.8952 24.2367 26.3963 

4 -15.557 34.8758 27.5771 23.7509 

5 28.6352 26.0728 18.879 18.5394 

6 17.517 33.6309 2.3211 22.9137 

7 15.0886 11.4932 22.6155 -23.579 

8 -0.3545 11.6971 -3.3258 -9.5648 

9 -12.055 18.9143 11.5336 -30.678 

10 3.7372 17.2829 10.1022 -49.704 

average 11.319 23.72 17.181 4.391 

Regarding the best scored pose for each peptide the most relevant differences that can 

be observed for the mutated region are graphically shown in Figure 5.28. The wild-

type peptide shows two hydrogen bond contacts between Thr5481 (T7) backbone and 

Val254 backbone.   Pro5480 (P6) carbonyl makes an extra hydrogen bond with the 

OH group of Tyr217 and Pro5482 (P8) is involved in hydrophobic interactions with 

Gly252 and Phe253.  

11MACF-LLL does not form the hydrogen bond previously observed between the 

threonine backbone and Val254. Instead Lys5478 (K4) establishes a hydrogen bond 

with Pro256 and the terminal Lys (K11) establishes a similar contact with Ile255. 

Despite loss of two hydrogen bonds with the valine two other contacts were formed 

with the two subsequent residues, Ile255 and Pro256. In terms of hydrophobic 

interactions Val254 is now accessible to make contacts with both side chains of 

Leu5482 (L8) and Lys5485 (K11). Leu 5482 (L8) can also make hydrophobic contacts 

with the hydropobic Phe253 ring and Leu5481 (L7) is accessible to make hydrophobic 

contact with Phe218. The docking prediction reveals that this mutant is likely to give 

extra hydrophobic contributions on EB1 binding, as it could be expected due to its 

hydrophobic nature. 
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Figure 5.28 – Best scored docking poses obtained for A – 11MACF-wt, B – 11MACF- LLL, C - 11MACF-VLL and D – 11MACF-ILL. Peptides carbon atoms are coloured in 
magenta, and EB1’s in light grey. Oxygen is shown in red and nitrogen in blue. Hydrogen bonds are shown as yellow dashed lines and hydrophobic interactions regions are 
identified by a green dashed line. 
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The replacement of Thr5481 by a valine instead of a leucine – 11MACF-VLL, does 

not affect the accessibility of the backbone to establish hydrogen bond contacts with 

Val254. The reason seems to be the size of the side chain. Whereas leucine is a γ 

branched hydrophobic side chain, valine is a β branched hydrophobic side chain 

similarly to threonine. This difference does not affect the spatial rearrangement of the 

peptide side chains in such a way that the backbone of position 7 is not accessible to 

establish hydrogen bond contacts with the backbone of Val254. In the same manner 

the hydrogen bond with the OH of Tyr217 is retained. However, and as expected, extra 

hydrophobic contributions are achieved in comparison with the wild type peptide. The 

side chain of V7 seems to be long enough to establish hydrophobic contacts with the 

side chain of Phe218, as previously observed for the leucine. Similarly to 11MACF-

LLL the side chain of Val254 seems to make hydrophobic contacts with both side 

chains of L8 and K11. 

Finally, 11MACF-ILL shows the same pattern of hydrogen bonds observed for both 

wild type and 11MACF-VLL (Val254 and Tyr217). The most prominent hydrophobic 

contacts between this peptide and the C-terminus of EB1 are between L8 and Phe253 

and K4 and Ile255. 

Overall and based on both fitness scores and predicted binding poses it was decided to 

test two peptides – 11MACF-LLL and 11MACF-VLL. The biophysical assays results 

obtained will be subsequently described in the next section. 

 NMR screening of MACF mutated peptides against EB1cΔ8 

The NMR titrations of 11MACF-LLL and 11MACF-VLL show the chemical shifts 

changes of the NH resonances are in slow exchange regime and therefore the 

complexes formed are tightly bound - Figure 5.29 and Figure 5.30. 

When 12.5 µM of ligand is added to EB1cΔ8, the intensity of the peaks of the protein 

in the free form start to decrease in intensity. Between 50-75 µM of ligand a peak 

correspondent to the bound form appears in a distinct position, and the intensity 

increases with ligand addition reaching saturation between around 1:1 ligand:protein 

ratio (100 µM) - Figure 5.31. 
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Figure 5.29 - Overlay of 1H,15N-HSQC spectra of 15N-labelled EB1cΔ8 (100 µM) recorded at 600 MHz 

- in the free form (black) and in the presence recorded of 11MACF-LLL (400 µM, red). The insets show 

regions of interest and the spectra corresponding to the following 11MACF-LLL concentrations, 12.5, 

25, 75, 82.5, 100, 200 and 400 µM. 
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Figure 5.30 - Overlay of 1H,15N-HSQC spectra of 15N-labelled EB1cΔ8 (100 µM) recorded at 800 MHz 

- in the free form (black) and in the presence recorded of 11MACF-VLL (400 µM, red). The insets show 

regions of interest and the spectra corresponding to the following 11MACF-VLL concentrations, 12.5, 

25, 75, 82.5, 100 and 200 µM. 
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Figure 5.31 – superimposition of the proton projection of Gly219 from 1H,15N-HSQC titration 

experiments performed for EB1cΔ8-11MACF-VLL. On the left hand side one can observe the decrease 

in intensity of the peak correspondent to the free form and sequential increase of intensity of the peak 

for the resonance of the complex (right hand side). 

 
Figure 5.32 – Evolution of the peak changes for Gly233 of EB1cΔ8 upon titration with 11MACF-VLL. 

The top square corresponds to the superimposition of all titration points, and below each titration point 

represented individually. The peaks are coloured in the following manner: free protein – black, followed 

by 12.5 (navy), 25 (blue), 50 (teal), 75 (olive), 82.5 (green), 100 (khaki), 125 (brown), 150 (orange) and 

finally 200 µM of ligand – red. 
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Interestingly, for some residues in the four bundle helix region such as Asn231 and 

Gly233, four resonances are observed in the intermediate titrations points (ligand 

concentration 12.5 – 82.5 µM) - Figure 5.32. Because EB1c is a homodimer and have 

two symmetric binding sites, it is possible that the extra two peaks observed before the 

complex reaches saturations belongs to the conformations of EB1cΔ8 with only one 

of the binding sites occupied by the ligand.  

Similarly to what was observed for 11MACF-wild type, the Val254 NH cross peak for 

both mutants, 11MACF-LLL and VLL, is the most affected upon ligand binding – Δδ 

= 2.9 ppm and Δδ = 3.4 ppm, respectively. Overall the chemical shift changes follow 

a similar pattern to the one obtained for the wild-type, with significant chemical shift 

changes in the C-terminus for Asp250 (Δδ = 1.8 and 1.7 ppm), Gly252 (Δδ = 1.7 and 

1.6 ppm) and Ile255 (Δδ = 0.7 and 1.3 ppm), around the binding site for the SxIP – 

Phe218 (Δδ = 0.4 and 0.5 ppm), Lys220 (Δδ = 0.5 ppm), Leu221 (Δδ = 0.3 ppm), 

Glu225 (Δδ = 0.6 ppm), Leu246 (Δδ = 0.3 ppm), Tyr247 (Δδ = 1.7 ppm), Ala248 (Δδ 

= 0.5 ppm), Thr249 (Δδ = 0.5 and 0.4 ppm), immediately below – Glu213 (Δδ = 0.5 

ppm) or immediately above – Cys228 (Δδ = 0.4 ppm). 

In terms of total distance observed for the chemical shift changes the general trend is 

11MACF-VLL promotes larger chemical shift changes. Good examples of this trend 

are Glu213, Arg214, Asp215, Phe216, Phe218, Arg222, Tyr247 and even more 

noticeable Val254 and other residues from the C-terminus such as Phe253 and Ile255. 

However, this is not true for all resonances, with Tyr217, Lys220 and Thr249 being 

examples were the chemical shift changes are larger for the wild-type peptide. 

The shape of the chemical shift changes also change from a complete linear evolution 

– Phe218, Ala248, to a curved shape – Phe216, Gly219 and Lys220 (Figure 5.33). 

Whereas a linear trend usually means that the binding mode between ligands is the 

same just different strength, the curvature indicates there are differences in binding 

mode between all three ligands. Val254 is an interesting case with the chemical shift 

change being very large for the wild-type and progressing in curved manner for the 

mutated peptides. This may mean this residue is affected in a different manner 

depending on the ligand, which is something to expect since the designed peptides are 

expected to interact with residue in different ways – 11MACF-LLL maximises the 

hydrophobic contacts and 11MACF-VLL should have the hydrophobic contacts 

enhanced similarly to the first mutant, but keep the hydrogen bonds present for the 
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wild-type. 

 

Figure 5.33 – Superimposition of 1H-15N-HSQC for free EB1cΔ8 (black) and final titration points for 
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11MACF-wt (red), 11MACF-LLL (green) and 11MACF-VLL (cyan). The dotted lines represent the 

trajectory of the chemical shift. 

 Isothermal titration calorimetry binding assays of MACF mutated 

peptides 

The NMR titrations indicate that both 11MACF-LLL and 11MACF-VLL bind tighter 

to EB1cΔ8 than the wild type 11MACF, indicating that the introduction of amino acid 

residues with hydrophobic side chains was beneficial to the binding. ITC can provide 

important information that can help to further understand the binding mechanism 

through determination of entropic and enthalpic contributions for the binding.  

 

Figure 5.34 - The ITC isotherm (top) and resultant curve (bottom) produced by the ITC binding 

experiment between 15 µM EB1cΔ8 (cell) and 225 µM 11MACF-LLL (syringe) in 20 mM phosphate, 

pH 6.5, 50 mM NaCl, 0.5 µM TCEP, 0.02% NaN3 on an iTC200 Microcalorimeter (MicroCal) at 25oC. 

Fitting of the curve produced by the ITC experiment to a single set of sites curve-fitting model, using 

Origin7, resulted in a binding affinity (Kd) of 340 nM. 



Biophysical characterisation of physiological EB1 interactions involving MACF2 
 

183 
 

 

 
Figure 5.35 - The ITC isotherm (top) and resultant curve (bottom) produced by the ITC binding 

experiment between 25 µM EB1cΔ8 (cell) and 250 µM 11MACF-VLL (syringe) in 20 mM phosphate, 

pH 6.5, 50 mM NaCl, 0.5 µM TCEP, 0.02% NaN3 on an iTC200 Microcalorimeter (MicroCal) at 25oC. 

Fitting of the curve produced by the ITC experiment to a single set of sites curve-fitting model, using 

Origin7, resulted in a binding affinity (Kd) of 163 nM. 

 

Table 5.14 - Thermodynamic parameters obtained for three ITC binding experiments to detect the 

interactions of 11-residue peptides with EB1cΔ8. Values shown in this table correspond to the average 

and associated error obtained for the three experiments. 

Interaction Kd (µM) ∆H (kcal mol-1) -T∆S (kcal mol-1) ∆G (kcal mol-1) 

EB1cΔ8-11MACF-wt 3.80 ± 0.82 -10.57 ± 0.63 3.15 ± 0.64 -7.42 ± 0.12 

EB1cΔ8-11MACF-LLL 0.030 ± 0.004 -8.26 ± 0.13 -0.65 ± 0.16 -8.91 ± 0.13 

EB1cΔ8-11MACF-VLL 0.015 ± 0.001 -10.50 ± 0.21 1.19 ± 0.21 -9.30 ± 0.03 
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Figure 5.36 - The thermodynamic parameters (∆G (blue), ∆H (red) and -T∆S (green)) obtained from 

the binding interaction between the 11MACF-wt (left hand side), 11MACF-LLL (middle), 11MACF-

VLL (right hand side) and EB1cΔ8.  

The replacement of the TPQ sequence in the wild type peptide by a leucine patch (LLL) 

yielded a binding affinity increase of 10 fold (Kd changed from 3 to 0.3 µM) – Figure 

5.34, Table 5.14 with ΔG value changing from -7.42 to -8.91 kcal mol-1. Due to the 

very significant improvement in the Kd value, one perhaps could expect a greater 

affinity in the overall energy of the reaction (ΔG). However, the enthalpic 

contributions for the binding are now smaller than for the wild type, penalising ΔG. A 

possible explanation can be the unfavourable position of the backbone of position 7 of 

the peptide to establish hydrogen bonds with the backbone of Val254 of the C-terminus 

– Figure 5.28. Entropic contributions underwent a notable improvement and these can 

be associated with the greater affinity of this interaction when compared with the wild 

type ligand – Figure 5.36. Again, molecular docking can justify partially these results. 

Figure 5.28, shows that this the residue in position 7, leucine, can now establish 

hydrophobic interactions with Phe218. In addition, hydrophobic contributions from 

the two subsequent leucine residues with Val254 and Phe253 may justify the higher 

entropic contribution for the formation of this complex (section 5.5.1). 

For the second peptide, 11MACF-VLL, a similar trend is observed, the introduction 

of hydrophobic side chains have a beneficial contribution for the binding. The Kd is 
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now about half that the one observed for 11MACF-LLL, meaning it binds about two 

times tighter – Table 5.14.  ΔG is now -9.30 kcal mol-1 and the lowest for the three 

tested peptides.  The enthalpic contribution improved regarding the complex with 

11MACF-LLL and it is now very close to the wild type. In terms of entropic 

contributions, this complex shows an improvement compared with the wild type (1.19 

kcal mol-1 compared with 3.15 kcal mol-1) but not as good as 11MACF-LLL (-0.65 

kcal mol-1). The size of the side chains of threonine and valine is similar, with the 

advantage of the later can provide extra hydrophobic interactions. It is still possible 

the existence of hydrophobic interaction between the valine in position 7 and Phe218. 

However due to the shorter length of valine side chain, this may not be as strong as the 

one provided by the leucine side chain. Hydrophobic interactions with Val254 are still 

possible, although the interaction with Phe253 seems to have been lost. 

The enthalpy/entropy compensation is a common issue and invariably accompanies 

protein-ligand associations, improving binding enthalpy or entropy changes does not 

guarantee enhanced binding affinity because gains in one thermodynamic parameter 

may be offset by losses in the other.16> With 11MACF-VLL a good balance between 

both entropic and enthalpic terms was achieved.  

Usually establishing strong interactions between polar groups on the ligand and the 

protein is difficult in practice because the energetics of these interactions (hydrogen 

bonds) are strongly distance and angle dependent. Non-directional van der Waals 

contacts are less directional, but dispersion forces are less specific and weaker than 

polar interactions.16>  

The contribution of the solvent to the enthalpic contributions brings extra complication 

to the analysis of thermodynamic contributions in a protein-ligand reaction. Another 

difficulty in optimising bimolecular associations of a protein and ligands using 

thermodynamic information analysis is the loss in rotational and translational entropy 

upon binding may have effects on the entropic term of the binding event. Therefore 

analysis of the influence of thermodynamic parameters and their effects on the binding 

is not a straightforward relationship.16> 
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5.6 Elucidation of the binding contributions to EB1c and the role of the 

C-terminus 

The results described in this chapter demonstrate clearly the importance of the C-

terminus tail in EB1c binding. In this section, the contributions from different regions 

of the protein and ligands for the interaction will be analysed in order to understand 

fully how EB1 recruits SxIP proteins and how that knowledge can be used to design 

higher affinity ligands. 

The short consensus sequence, SKIP, is sufficient and the key consensus sequence to 

specifically interact with EB1c’s hydrophobic cavity. Unfortunately, the binding 

affinity is very weak (10 mM) and consequently not enough to achieve a biological 

response – binding affinities reported for MACF and APC derived peptides (~30 

residues) of 3.5 and 5.8 µM respectively.31,49 Increasing the ligand length by two 

residues, SKIPTP, improves the binding constant to about six fold without losing the 

specific binding. The two additional residues, proline and threonine, seem to engage 

with the lower region of the four helix bundle, just below the SxIP binding site, with 

NOEs to the aromatic patch 216FYF218, and contacts with the C-terminus – 253FVIP256. 

This was expected as the crystal structure reported by Honnappa and co-workers in 

200931 described hydrogen bond formation between Val254’s backbone and Thr5481, 

indicating this residue could have an important role in the interaction. Interaction 

between this peptide (SKIPTP) and EB1cΔ8 seem to have a fair contribution from the 

C-terminus as the ΔG increases from -3.8 kcal.mol-1 to -2.9 kcal.mol-1 (0.9 kcal.mol-1) 

upon removal of the C-terminal tail of EB1c. Regarding the 11 residue peptide, with 

addition of two amino acids in the N-terminus (KP) and three in the C-terminus (QRK), 

the ΔG contribution almost doubles the one observed for the six residue peptide. 

Removal of the binding contributions of the C-terminus have now a larger effect in the 

ΔG, accounted as 1.42 kcal.mol-1, instead of 0.9 kcal.mol-1. In summary, the 

contributions of the peptide residues for the binding to EB1cΔ8 can be observed in 

Figure 5.37, where the SKIP sequence has a contribution of -2.73 kcal.mol-1, the TP 

give an extra contribution of -1.05 kcal.mol-1 (where -0.2 kcal.mol-1 come from 

interactions with the C-terminus of EB1cΔ8). Finally, the full 11 residue native 

sequence adds an extra -3.64 kcal.mol-1 where more than half, 2.22 kcal.mol-1 comes 

from interactions with the C-terminus. 
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Figure 5.37 – schematic representation of the contributions expressed in ΔG for the binding of a native 

sequence peptide derived from MACF2 to EB1cΔ8. Peptide corresponds to the green box and the 

protein is represented in grey, the C-terminal tail contributions are shown on top of the schematic 

representation of the C-terminus, and contributions independent of this region of EB1c are shown 

immediately on the right hand side of the peptide. Finally, in the box on the right hand side there is a 

representation of the total contributions per peptide length.  

Concerning the peptides designed to improve the contributions with the C-terminus of 

EB1c and therefore have higher affinities to EB1c, only one of the mutants, 11MACF-

LLL, was tested in the absence of the C-terminus (EB1cΔ16). The difference in ΔG is 

even larger than the one observed for the native sequence, 2.31 kcal.mol-1 compared 

with the previous 1.42 kcal.mol-1 - . This was expected as this peptide was designed to 

improve the hydrophobic interactions with the C-terminus and removing this region of 

the protein has a more pronounced effect in the binding when compared with other 

ligands. The last mutant to be tested, 11MACF-VLL, is the best ligand tested in the 

course of this project with a Kd of 150 nM and a ΔG of -9.3 kcal.mol-1, indicating that 
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hydrophobic side chains immediately after the SxIP motif seem to be beneficial to the 

binding to EB1c. 

 
Figure 5.38 – summary of Kd and ΔG values obtained using ITC and NMR methods for the tested 

peptides (wild-type and mutated) against EB1c with and without the C-terminus tail, EB1cΔ8, (black) 

and EB1cΔ16 (red), respectively. Top panel shows Kd values per peptide. NMR data is presented as a 

diagonal cross and ITC as a vertical cross. Bottom panel shows ΔG values for each peptide.  

The experiments conducted using different length peptides containing the SxIP motif 

and described in this chapter show that while the SxIP motif is sufficient to target EB1c, 

extra interactions, specifically with the flexible C-terminus are necessary to achieve 

higher affinity. This was further demonstrated by the higher affinity observed in 

peptides designed for enhanced interaction with the C-terminus – 11MACF-LLL and 

11MACF-VLL. With such optimised ligands it is possible to build another 

pharmacophore model and use it to find better small molecule ligands to interact with 

EB1cΔ8. For that, a three-dimensional structure model (X-ray or NMR) would ideally 

provide the information necessary for another iteration in small molecule identification. 
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Unfortunately, structural biology approaches to elucidate the three-dimensional 

structure of proteins are complicated processes and take long time. Therefore, this will 

be left outside the scope of this project and be considered for future work. 

Next Chapter will cover a final discussion/conclusion on what was learned during the 

development of this project and what can be done in the future not only to target the 

EB1-SxIP interaction but also for protein-protein interactions in general. 
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CONCLUSIONS AND 
FUTURE WORK 

 

For many years now the importance of the interactome—the complex network of 

protein-protein interactions—has been recognised as of great value for both biological 

systems and the development of disease states. Despite this, small-molecule drugs that 

act by directly disrupting or promoting the interaction between two proteins are 

relatively rare in comparison to other drug classes, and protein–protein interactions 

(PPIs) are viewed as challenging—in some cases essentially ‘undruggable’—targets.17> 

Nevertheless, the last decade has seen amazing progress in tackling PPI targets with 

synthetic molecules. More than 40 PPIs have now been targeted and several inhibitors 

have reached clinical trials.87  

The main aim of this project was to identify a chemical scaffold based on the SxIP 

motif that can target the EBH domain of EB1. For this purpose an initial virtual 

screening methodology was delineated based on the SxIP scaffold. The method 

developed used a multidisciplinary approach, with an initial pharmacophore model 

used for screening of a large virtual database, followed by molecular docking of the 

selected compounds and a final balanced ranking where docking scores and desirable 

molecular properties were taken into account. The approach proved to be successful 

as two molecules were found to bind specifically to the SxIP binding site. An 

advantage of this method is the fact that is highly targeted when compared with other 

methodologies such as high-throughput screening (HTS), meaning it is possible to 

obtain hit molecules in an inexpensive way, without needing large physical libraries 

of compounds, protein and developing a HTS assay.  

Experimental data on the binding mode of the compounds to the protein by X-ray or 

NMR methods is often important and of great use to understand the mode of binding 

and is crucial for ligand optimisation.17> Having two active hits with the same active 

scaffold prompted the structural elucidation of EB1cΔ8 in the free form and in 

complex with one of these molecules. The data shows that contrary to what was 

initially assumed based on the X-ray structure of EB1cΔ8 bound to 11MACFp131, the 

binding pocket for the IP motif is dynamic in solution and may be completely absent. 

However, the IP mimetic scaffold identified in a previous chapter (Chapter 2) seems 
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to stabilise the two dynamic side chains, Arg222 and Tyr247 that affect the binding 

pocket size and conformation, open vs closed.  

Despite the stabilisation of the binding pocket the compounds identified in Chapter 2 

do not have high affinity for EB1cΔ8 with values of  6-10 mM, having slightly higher 

affinity than the microtubule tip localization signal31 (SxIP), 14 mM. However, the 

same is not true regarding longer peptides containing the SxIP motif (~11-30 residues) 

with binding affinities in the low µM range. It is postulated, based on the structural 

information and the flexibility of the C-terminus tail of EB1cΔ8 that the key to achieve 

a stronger interaction may be to target an extended region beyond the IP binding site. 

Therefore, in Chapter 4, efforts were made in order to design a ligand that can interact 

beyond the IP motif binding site. As an initial approach, a hybrid molecule, composed 

by a small molecule scaffold followed by a peptide moiety was designed. The chemical 

scaffold was based on the previously identified IP mimetic and consequently known 

to be highly specific for EB1’s hydrophobic cavity. The peptide scaffold was based on 

a native ligand’s sequence, MACF2, and was composed by the three residues 

following the SxIP motif – threonine, proline and glutamine. The approach did not 

yield the expected results, and the specificity for EB1’s binding site was lost. A 

possible cause for this problem is the fact that the IP mimetic scaffold utilised was 

different from the one initially identified. It included a six-membered ring instead of a 

five-membered ring and a racemic mixture instead of the previously identified 

enantiomer. The reason to use a different scaffold from the one previously identified 

was due to the use of a commercially available scaffold to facilitate and speed up the 

hybrid molecule synthesis. Despite molecular docking studies demonstrated that the 

six membered ring would still fit in the binding pocket, it is believed that the loss of 

specificity to EB1c’s binding site was caused due to the larger size of the ring. Another 

possibility, is that the use of a proline in the peptide sequence attached to the small 

molecule scaffold could cause the displacement of any other group of the pocket, since 

the proline residue of the SxIP motif is the only absolutely conserved residue, and 

replacement of this residue will result in loss of affinity of the SxIP protein to EB1.17> 

Because the proline residue is flanked by two residues with polar side chains – 

threonine and glutamine, it is very unlikely any of these will go in the hydrophobic 

binding site of EB1c and therefore reducing the affinity and specificity for it. Finally, 

the fact that the tetrazole ring is in an axial position to the cyclopentyl group in the 



Conclusions and future work 
 

193 
 

original scaffold, but when using a cyclohexyl ring a bulky substituent will be 

positioned in equatorial position due to steric hindrance. This seems to be the main 

reason why the cyclohexyl group is not suitable to replace the cyclopentyl ring. The 

hybrid molecule approach is an interesting approach where a molecule incorporates a 

molecular scaffold composed by a fragment previously identified coupled with a 

peptide derived from a native ligand. Although the approach failed for the reasons 

outlined above, it would still be of great interest to synthesise another hybrid molecule 

using the exact fragment identified as the IP mimetic.  

Within the same chapter, the process to identify alternatives to the hybrid molecule 

was described. The methodology followed resembles the one used in Chapter 2, 

pharmacophore search, docking and multi-parameter analysis, with the main 

differences being the initial pharmacophore model was built based on the hybrid 

molecule and the use of rule of four53 instead of rule of five83 (please see description 

in Chapter 1, section 1.2.1.3) as guidelines for desirable molecular properties. Two 

additional ligands were identified using this method, but they posed limitations in 

terms of biophysical methods screening as these are larger molecules with poor 

aqueous solubility. Lipophilicity is well known to be the contrast of  aqueous solubility 

and lack of solubility has been a consistent problem for medicinal chemists, when it 

comes to bioavailability.85 Another reason to avoid large and lipophilic compounds 

has been demonstrated by Leeson and Springthorpe and postulates that compounds 

with logP higher than four have increased probability of being promiscuous.17 

Chapter 5 described in detail the interaction of short length peptide based on a native 

sequence of a SxIP protein. Contributions to the binding were calculated and detailed 

in the form of ΔG and Kd values. The SKIP corresponding to the SxIP motif 

contributes for ~37% of the binding. The extension of this short peptide by two 

residues, SKIPTP, yields a higher affinity interaction, part given by some extra 

interactions with the EB1cΔ8 C-terminus. The contribution of these two residues is 

approximately 14%. An eleven residue peptide encompassing the SxIP motif, 

KPSKIPTPQRK, improves largely the binding affinity from mM range to low µM 

range. These extra residues KP------QRK account for the remaining 49% of the 

interaction. Removing of the C-terminus has a large effect in the interaction of this 

peptide with EB1c, 19% of the affinity is lost. Based on the important role of the C-

terminus a series of three peptides was designed based on the native sequence with 
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replacements in three amino acids immediately after the SKIP sequence. The 

mutations involved the replacement of these three amino acids – threonine-proline-

glutamine – by hydrophobic amino acids, including leucine, valine and isoleucine. The 

rational was to increase the hydrophobic interactions and hence the number of contacts 

with the C-terminus improving the binding. After docking studies, two of these 

peptides were selected for testing, respectively KPSKIPLLLRK and KPSKIPVLLRK. 

Both showed an improved binding affinity with Kd values of 300 nM and 150 nM 

respectively. The main difference between these two peptide seems to be that the first 

leucine after the SKIP sequence seems to have a too bulky side chain, forcing the 

peptide to adopt a conformation where the backbone of this residue is not accessible 

to establish hydrogen bond contacts with the backbone of Val254 of the C-terminus, 

as the wild-type threonine does. The replacement of the leucine to a β-branched side 

chain residue such as valine seemed to yield the expected results as the enthalpic 

contributions were improved suggesting the gain of an extra hydrogen bond 

contribution. Additionally, and to prove the higher affinity of these peptides was 

achieved by enhancing the contributions with the C-terminus, the first mutant 

KPSKIPLLLRK was tested against the construct of EB1c lacking the 16 terminal 

residues – C-terminal tail, EB1cΔ16. Whereas for the wild type the difference in the 

binding with and without the C-terminus was from -7.42 kcal.mol-1 to 6 kcal.mol-1, the 

difference is now even larger, from -8.91 kcal.mol-1 to 6.6 kcal.mol-1 (26% instead of 

19%), indicating the C-terminus does indeed contribute for the higher affinity 

interaction observed for this mutant. 

Alternatively to this method, solution NMR was the method of choice for screening of 

all ligands in this project. Additionally, when possible, ITC measurements were also 

performed as they give complementary information that cannot be measured using 

NMR. NMR has become a valuable screening tool for the binding of ligands to protein 

targets, and has the key advantages of being able to detect and quantify interactions 

with high sensitivity without requiring prior knowledge of protein function. 

Furthermore, NMR can provide structural information on both the target and the ligand 

to aid subsequent optimization of weak-binding hits into high-affinity leads.17 

Important lessons were learned during the course of this project. A single high 

resolution structure of a protein may not provide all information needed for structure 

based design, and therefore an ensemble of structures should ideally be used. This is 
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especially true in proteins with dynamic regions. The detailed understanding of the 

native interaction in the beginning of the project would very likely yield higher affinity 

ligands that the ones identified, proving that the acquisition of structural biology data 

is fundamental for any protein-protein interaction targeting project and should not be 

dissociated from the drug discovery efforts, but used in an iterative way. This was a 

mostly iterative project where information obtained from a set of experiments was 

invariably included in the virtual screening methods. The structural information 

obtained from EB1c in its free and two different bound forms was fundamental for the 

understanding how this protein interacts with SxIP proteins. 

In terms of future work that can and should be done, in vivo biological assays of the 

11 residue peptides, wild-type and the two mutants would be certainly the next step. If 

the two mutants, with higher binding affinity measured using biophysical techniques 

can prove their value in vivo, disrupting the binding of SxIP protein to EB1 and 

therefore MT polymerisation, they would give an extremely valuable contribution in 

understanding the complex protein-protein interaction at the MT plus-ends. Structure 

elucidation of one or two of the complexes formed between EB1cΔ8 and the two 

mutants would also contribute for a better understanding of how EB1cΔ8 interacts 

with higher affinity ligands. These two peptides have higher affinities to EB1c than 

any of the natural ligands reported so far. Therefore, upon structural elucidation by 

solution NMR or X-ray crystallography, a high affinity pharmacophore model could 

be built and used for the design and identification of higher affinity small molecule 

modulators for the EB1-SxIP proteins interaction. 
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MATERIALS AND 
METHODS  

7.1 Molecular Modelling 

The crystal structure of a complex formed between the C-terminal of EB1 lacking the 

last eight C-terminal residues (EB1cΔ8) and a 30 residue peptide derived from the C-

terminal of human MACF2 (MACFp1)31, with code 3GJO, was downloaded from the 

RSCB Protein Data Bank (PDB)102. 

 Pharmacophore search 

Load the ligand and protein, if required, into ZincPharmer 

(http://zincpharmer.csb.pitt.edu)55, using Load Features option. Selected options 

included definition of Max RMSD value, molecular weight and number of rotatable 

bonds. The used parameters are defined in results section for each performed search. 

 EB1 Docking Protocol 

The crystal structure of the complex (3GJO) is composed of two homodimers, each 

one with two binding sites and two ligands. For the molecular docking studies just one 

of the homodimers was used. Additionally, crystal structures of free EB1 (PDB codes 

1WU9 and 1YIG) and the ensemble of solution NMR structures obtained during the 

duration of this project were used for the ensemble docking study described in Chapter 

3. 

• Protein-ligand molecular docking at the EB1 binding site performed using 

GOLD 5.0.1102,111–117  

• Wizard utilised to setup and performing docking calculations.  

• Load appropriate file of EB1 protein (pdb format). 

• Hydrogen atoms added to the protein using the protonation rules file provided 

with GOLD  

• When specified HOH19 water molecule was extracted for inclusion in docking 

calculation. All other crystallographic water molecules removed. 
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• Hydrophobic and hydrogen bonds constraints were used or not depending on 

the docking protocol. 

• MACFp1 ligand loaded and used to define the binding site, together with all 

atoms around the ligand within 6 Å.  

• Ligand file(s) loaded containing the compound(s) to be docked (sdf format). 

As standard, for each ligand 10 GA runs are performed.  

• Select the required fitness scoring function i.e. Goldscore. If rescoring is 

required then select an additional scoring method e.g. Chemscore. 

• Option for early termination turned off.  

• Search efficiency set to 200%. When screening a large number of compounds 

(e.g. PPI-NET library) the virtual screening option was used to speed the 

calculations. This option sets search efficiency to 30%. 

• All parameters left as standard, unless otherwise stated.  

• Submit calculation and review results 

 Methods used for screening and selection of target molecules 

7.1.3.1 Calculation of Molecular properties 
Using Pipeline Pilot Professional Client 8.516> a range of molecular properties were 

calculated using the following components ALogP, logD, Solubility, Surface Area and 

Volume, Molecular weight, Num H Acceptor Donors and Molecular Property Counts.  

Both input and output files utilised sdf format. 

 

Figure 7.1 – Protocol created in Pipeline Pilot to calculate diverse molecular properties. 
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7.1.3.2 Ligand Efficiency, calculation and ranking 
Using KNIME 2.6.3 and the Math Formula node with the formula “score”/number of 

atoms, ligand efficiency was calculated for each scoring function. The results were 

ranked in an ascendant order and a new column with a ligand efficiency ranking was 

added to the SD file. 

 

Figure 7.2 – Protocol created using Knime to calculate ligand efficiency for the score results obtained 

for each scoring function present in GOLD. 

7.1.3.3 Calculation of docking descriptors  
For the calculation of docking descriptors GoldMine was used. GoldMine is a tool 

embedded in GOLD for the analysis of large quantities of docking information. For 

that purpose a GoldMine Database was created and the docking results loaded. The 

following docking descriptors were calculated - Simple Descriptors, General contact 

descriptors, H-bond descriptors and Ligand surface area descriptors. Results were 

exported in sdf format. 

7.1.3.4 Multi-objective analysis  
Knime 2.6.3 was used for multi-objective analysis, by using the node Pareto Ranking 

to rank the different parameters required for the analysis. 

 

Figure 7.3 – Example of a multi-objective analysis protocol created using Knime and the use of Pareto 

Ranking node. 
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7.1.3.5 RMSD calculation 
Align molecules using substructure component from Pipeline Pilot was used for 

RMSD calculation between different docking poses. 

7.1.3.6 Application of SmartsFilter 
Upload a sdf format file into 

http://pasilla.health.unm.edu/tomcat/biocomp/smartsfilter and select the following 

options – Blake, Glaxo16>, ALARM NMR164 and PAINS166, include pass/fails in the 

output. Output as sdf format.  

 QSAR experimental procedures 

The following procedure was used to develop a QSAR model using Random Forest 

(RF) or Support Vector Machine (SVM). 

• A dataset of 18 molecules tested was re-docked using GOLD102,111–117 

• Different types of descriptors were calculated for this set of molecules 

o Molecular Fingerprints – FCFP_2, FCFP_4, FCFP_6, ECFP_2, 

ECFP_4, ECFP_6, Estate Keys and MDLPublicKeys were calculated 

using Pipeline Pilot’s16> components.  

o Physicochemical descriptors as ALogP, Solubility, Surface Area and 

Volume, Molecular weight, Num H Acceptor Donors and Molecular 

Property Counts were calculated in Pipeline Pilot as described 

previously in the Calculation of Molecular properties section. 

o Derived from docking: these can be divided in two sub-groups: based 

on the solution files given by GOLD and other descriptors calculated 

using GoldMine as described previously in the Calculation of docking 

descriptors section. These are shown in Appendix (A.4). 

o A set of other descriptors were calculated using Dragon 6 – in total 

3763 2D descriptors from which 330 were used and 4885 3D 

descriptors from which 327 were used.  

• Calculated descriptors on the set of known active/inactive ligands were used as 

the training dataset for a machine learning method by using the Pipeline Pilot 
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components Learn R SVM Model and Learn R Forest Model for Support Vector 

Machine and Random Forest models respectively. ROC scores were also 

calculated for cross-validation of the models for each set of descriptors.  

• A sdf format file containing the docking results for the set of compounds to be 

analysed by these models was uploaded into Pipeline Pilot, filtered using 

Model Applicability Filter, and then screened through each model created 

previously. 

7.2 Recombinant EB1 - cloning, expression and purification 

 Materials 

7.2.1.1 Water  
The methods described in this chapter required at least de-ionised, distilled quality 

water; this was provided by the Institute of Integrative Biology, University of 

Liverpool and is termed as RO water in this chapter. For the molecular biology 

methods detailed in this chapter, ultra-pure quality water was required and this was 

obtained by use of a Synergy Water Purification System (Millipore) fitted with a 

SynergyPak® cartridge and a MilliPak-20 Express system; this water is termed as 

MilliQ in the methods discussed subsequently.  

7.2.1.2 General Solvents  
Ethanol: Fisher Scientific  

Methanol: Fisher Scientific 

Isopropanol: Fisher Scientific 

Dimethylformamide: Sigma  

7.2.1.3 General Reagents  
Unless otherwise stated, all reagents used in the methods detailed in this were of 

laboratory grade and supplied by Sigma-Aldrich.  
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7.2.1.4 Cell lines 
Rosetta(DE3)pLacI, BL21 star (DE3) BL21 (DE3) pLysS, Stellar 

7.2.1.5 Antibiotic solutions 
Table 7.1 - antibiotic solution composition and concentrations used in this project. 

Antibiotic Stock solution Solvent Storage temperature Working concentration 

Kanamycin 32 mg/mL RO water -20 oC 32 µg/mL 

Chloramphenicol 34 mg/mL ethanol -20 oC 34 µg/mL 

Ampicillin 50 mg/mL RO water -20 oC 50 µg/mL 

7.2.1.6 Proteases  
The Small ubiquitin-like modifier (SUMO) protease was used to cleave the 

hexahistidine Ni2+ affinity tag in the pOPINS (OPPF-UK) vector. 

7.2.1.7 Media recipes/composition  
The recipes for the different growth media utilised in the methods in this chapter are:  

LB Agar  

• 37 g of LB agar “Miller” (Merck) per 1 L of RO water  

Super Optimal Broth with Catabolite Repression (SOC) medium  

• Tryptone (20 g, Fluka)  

• Yeast extract (5 g, Fluka)  

• NaCl (10 mM, Fisher Scientific)  

• KCl (250 mM, ProLabo) , autoclave and then add the following, after filtered 

sterilised, 

• MgSO4 (10 mM, BDH)  

• Glucose (20 mM, BDH)  

Lysogeny Broth (LB) medium 

• Tryptone 

• Yeast extract  

• NaCl  
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2YT medium 

• 16 g Tryptone 

• 10 g Yeast extract 

• 5 g NaCl 

Minimal medium - Solution A 

• 14.6 g Na2HPO4 

• 5.4 g of KHPO4 

• 1 g of 15NH4Cl2, then autoclave and solution B is added after filtered sterilised 

Minimal medium - Solution B 

• 0.1 M MgSO4 

• 7.5 mM CaCl2 

• 0.75 mM MnCl2 

• 0.25 mM FeSO4 (prepared extemporaneously) 

• 4 g of Glucose/2 g of 13C Glucose 

7.2.1.8 Buffers and other solutions 
TAE buffer (50x) 

• Tris base (2 M, Fisher Scientifc)  

• Glacial acetic acid (5.71% (v/v))  

• EDTA (5 mM) at pH 8.0  

CCMB80 buffer, pH 6.4 

• 10 mM KOAc 

• 80 mM CaCl2 

• 20 mM MgCl2 

• 10% Glycerol 

• Filter sterilise and keep at ~4oC 
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Ni2+ Affinity Chromatography binding buffer (Low imidazole buffer) 

• 20 mM Na2HPO4, pH 7.4 

• 0.5 M NaCl  

• 25 mM Imidazole 

Ni2+ Affinity Chromatography elution buffer (High Imidazole buffer)  

• 20 mM Na2HPO4, pH 7.4 

• 0.5 M NaCl  

• 0.5 M Imidazole 

Anion exchange - buffer A 

• 20 mM Tris, pH 8 

• 2 mM DTT 

Anion exchange - buffer B 

• 20 mM Tris, pH 8 

• 2 mM DTT 

• 150 mM NaCl 

SDS-PAGE gel - loading buffer  

• 50 mM Tris/HCl, pH 6.8 

• 10% glycerol (v/v) 

• 2% SDS (w/v) 

• 100 mM DTT 

• 0.1% bromophenol blue 

SDS-PAGE gel - running buffer (10x) 

• Glycine (1.92 M, Fisher Scientific) 

• Tris base (250 mM) 

• SDS (1% w/v) 
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Coomassie G250 Stain Solution  

• Coomassie blue G250 (0.1% (w/v))  

• methanol (45% (v/v))  

• RO water (45% (v/v))  

• acetic acid (10% (v/v))  

De-stain Solution  

• methanol (45% (v/v))  

• RO water (45% (v/v))  

• acetic acid (10% (v/v))  

7.2.1.9 Columns 
HisTrap HP, 5mL (GE Healthcare Life Sciences, 17-2548) 

HiTrap Q Sepharose FF (GE Healthcare Life Sciences, 17-5053) 

 Methods 

The methods presented in this section refer to the methods and techniques used to 

obtain recombinant EB1 to be used in this project. 

7.2.2.1 EB1's EBH Domain Construct Sequences 
The amino acid fragments of EB1 produced for the research described in this thesis 

are detailed in this sub-section and comprise the EBH domain (C-terminal domain), 

differing on the inclusion or not of the C-terminal flexible tail. The first construct, 

named as EB1cΔ8 for practical purposes, includes the sequence between Asp191 and 

Gly260, whereas the second construct, named as EB1cΔ16 comprises the sequence 

Asp191-Gly252 - Table 7.2 and Figure 7.4. 
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Table 7.2 – Parameters calculated using the ProtParam14> tool and the sequences presented in Figure 

7.4. 

 

 

 

 

 

Figure 7.4 – Sequences of the two constructs prepared for EB1c and used in this project. 

7.2.2.2 Molecular Biology 
All PCR fragments were integrated into the OPPF-UK vector suite; all vectors share 

the same enzyme restriction sites and were linearized using KpnI (NEB, #R31425) and 

HindIII (NEB, #R31045) restriction enzymes. EB1cΔ8 fragment cloned into pOPINS 

and pOPINF was provided by Dr Thomas Zacharchenko and EB1cΔ16 construct was 

cloned into pOPINS 

 EB1cΔ8 EB1cΔ16 

Number of amino acids 70 62 

Molecular weight (g.mol-1) 8043.0 7228.1 

Theoretical pI 4.11 4.21 

Extinction coefficient (ε) 2980 2980 
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7.2.2.2.1 Vectors used 
Table 7.3 - Details of the pOPIN vectors used in this project 

Vector Parent  

Vector 

Antibiotic  

resistance 

Forward Primer Extension Reverse Primer Extension 

pOPINF pTriEx2 Ampicillin AAGTTCTGTTTCAGGGCCCG ATGGTCTAGAAAGCTTTA 

pOPINS pET28a Kanamycin GCGAACAGATCGGTGGT ATGGTCTAGAAAGCTTTA 

7.2.2.2.2 Primer Design 
Primer extensions (Table 7.4) were added in the 3’ direction to facilitate integration in 

the same open reading frame as the fusion tag. Primers were designed to enable 

synchronous primer annealing to the template DNA with minimal CG content to 

prevent secondary structure DNA formation. The primers were required to have 

melting temperatures within 5oC of each other. Additionally, primers were required to 

be non-complementary to prevent primer dimerization.  

Table 7.4 - Primers designed to amplify EB1cΔ16 

Name Sequence (5'3') 
Melting 

temperature 
(oC) 

GC 
content 

(%) 
EB1Δ16-

Fwd 
GCGAACAGATCGGTGGTGATGAAGCAGCTGAATTGATGCAGCA 72 51 

EB1Δ16-

Rev 
ATGGTCTAGAAAGCTTTAGCCTTCATCTGTGGCATAAAGAAT 65 38 

7.2.2.2.3 Polymerase Chain Reaction (PCR) 
A PCR reaction was performed for EB1 [191-252] by preparing a 30 µM solution of 

the primers in nuclease free water and making a “master mix” on ice according with 

the following table. 

Table 7.5 - “Master mix” components and respective volumes used for the PCR reactions performed in 

this project. 

Component Volume (µL) 

10x KOD Hot Start Buffer 5 

DNTP mix (2 mM) 5 

MgSO4 (25 mM) 3 

Primers (30  µM) 2 

DNA template 0.5 

KOD Hot Start (1 U/µL) 1 

Mili Q water 31.5 

Total 50 
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Using a thermal cycler use the following methodologies 

Table 7.6 – temperatures and durations for each step in the PCR reaction. 

Step Temperature Time 

1. Polymerase activation 98oC 2 minutes 

2. Denaturation 
3. Annealing 
4. Extension 

95oC  
47oC 
7 oC 

30 seconds 
30 seconds 
1 minute  

30 cycles for steps 2-4 

5. Final Extension 72oC 10 minutes 

Hold 4oC  

Hot start polymerases are bound by an antibody and inactive, the initiation of the PCR 

reaction required pre-incubation for 98oC for 2 minutes, then 95oC for 2 minutes, 47oC 

- annealing temperature (this varied usually 3oC below the lowest melting temperature 

of the annealing primer) and a final 72oC extension cycle. The cycle was then repeated 

29 times exponentially multiplying the desired DNA fragment. PCR products samples 

were visualised using 2% (w/v) agarose gel.  

The method used was based on the method suggested by NEB 

(https://www.neb.com/protocols/2012/10/04/pcr-using-hot-start-taq-dna-polymerase-

m0495). 

7.2.2.2.4 Plasmid preparation 
The vector pOPINS was transformed into StellarTM Competent Cells in a kanamycin-

selective agar plate. 

A single colony from the transformed plate was then used to inoculate 10 mL of 

kanamycin-selective LB and incubated at 37oC for 14-18 hours, with shaking at 180 

rpm. The 10 mL culture was then used to inoculate 500 mL of kanamycin-selective 

LB and incubated at 37oC for nine hours, with shaking at 180 rpm. 500 µL of 

chloramphenicol (34 mg/mL) were added and the cultures were left to incubate for 

more 16 hours. When low-copy-number plasmids containing the pMB1 or ColE1 

origin of replication are prepared, the yield can be improved by adding 

chloramphenicol to amplify the copy number. The culture was pelleted by 

centrifugation and the pellets frozen at -80oC.  

The plasmid was extracted and purified using the Plasmid Maxi Kit (QIAGEN, cat no 

12162) to yield 100 uL of the plasmid, at the concentrations of 390 ng/µL. 
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To linearize the vector HindIII-HF and KpnI-HF restriction enzymes were used 

according with the standard procedure described for these enzymes. The linearized 

fragment (~5576 kbp) was isolated from a 0.8% Agarose and purified using a gel 

extraction kit (QIAGEN, cat no 28704). 

7.2.2.2.5 Agarose Gel Electrophoresis 
For the preparation of the gels for agarose gel electrophoresis (0.8% – 2% (w/v)) 100 

mL of 1x TAE buffer and 0.8 g – 2 g of powdered agarose (Bioline) were mixed 

gradually and heated with periodic swirling to ensure the agarose dissolved. The 

solution was allowed to cool to < 35oC and the cast for the subsequent gel was created 

by sealing the ends of the agarose gel plate; 10 µL of ethidium bromide (final 

concentration = 0.1µg/mL) was then added to the solution. The mixture was poured 

into the cast, with a sample well comb inserted and allowed to set. Samples to be 

analysed were mixed in 5:1 ratio with 5x loading buffer and the full volume was 

pipetted into individual wells. 1 kb standard DNA marker (New England Biolabs) was 

loaded in a separate well and the gel was run at 60V-90V using a BioRad PowerPac 

3000 for ~40 minutes. The gel was then viewed under trans UV light. 

7.2.2.2.6 In-Fusion Cloning 
For fast and efficient cloning of the PCR products into pOPINS an In-fusion® HD 

Cloning Kit (Clontech, cat no 011614) was used. Since the PCR products were not 

purified a treatment with Cloning Enhancer was performed prior to the In-Fusion 

Cloning reaction. The only difference to the standard protocol was the volume of the 

reaction, where a total of 5 µL was used instead of 10 µL – Table 7.7 

Table 7.7 – components and respective volumes used for the In-fusion reactions 

Component Volume ( µL) 

5X In-Fusion HD Enzyme Premix 1 

Linearized vector 1 

Purified PCR fragment 1 

dH2O 2 

Total 5 

7.2.2.3 Protein expression 
7.2.2.3.1 Competent Cells 
50 µL of commercial glycerol stocks of the BL21 StarTM (DE3) and StellarTM E. coli 

competent cells, were used to inoculate 10 mL of LB medium containing kanamycin 
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(for BL21 StarTM (DE3) cells) no antibiotic (for StellarTM cells) and incubated at 37oC 

for 14-18 hours, with shaking at 180 rpm. 5 mL were used to inoculate 250 mL of LB 

medium that was subsequently incubated at 37oC with shaking at 180 rpm until reach 

an optical density at 600 nm (OD600) of ~0.4. The culture was then centrifuged at 5000 

rpm for 10 minutes at 4oC and the resultant pellet was gently resuspended in 80 mL of 

CCMB80 buffer. This was then incubated at 0oC for 30 minutes before being 

centrifuged at 5000 rpm for 10 minutes at 4oC and resuspended in 10 mL of CCMB80. 

The cells were placed on ice, aliquoted into 50 µL quantities in pre-chilled eppendorfs 

and stored at -80oC for up to three years. 

7.2.2.3.2 Transformation 
~0.4 µL of the desired plasmid was added to 50 µL of competent cells, mixed well and 

incubated at 0oC for 30 minutes. The cells were then incubated at 42oC for 30 seconds 

before being incubated at 0oC for 5 minutes. 450 µL of SOC medium was then added 

and then incubated at 37oC for 1 hour with shaking at 180 rpm. The culture was then 

centrifuged at 400 rpm for 20 seconds and most of the supernatant was removed, 

resuspending the pellet in about 50 µL of the remaining supernatant. The transformed 

cells were then pipetted onto an agar plate (with the necessary antibiotics added, X-

Gal or glucose when needed), and spread evenly using an aseptic technique. The plates 

were then left to incubate at 37oC for ~14-18 hours, without shaking. The agar plates 

can be stored at 4oC for up to two weeks. 

7.2.2.3.3 Expression in 2YT medium 
A single colony from an agar plate was used to inoculate 10 mL of LB medium (with 

the right antibiotics added) and incubate it for 14-18 hours at 37oC with shaking at 180 

rpm. Using the 10 mL of starting culture inoculate 1 L of 2YT medium (with the right 

antibiotics added) and incubate it at 37oC with shaking at 180 rpm until the OD600 

reaches 0.7-0.8. Cool down the cultures for 30 minutes at 18oC and add IPTG (final 

concentration 1 mM), leaving cultures at 18oC for 14-18 hours, with shaking at 180 

rpm. 

The cells were then pelleted by centrifugation, 8000 rpm for 10 minutes at 4oC, 

discarding the supernatant and resuspending in low imidazole buffer and stored at -

80oC until purification. 

7.2.2.3.4 Expression in Minimal Medium 
A single colony from an agar plate was used to inoculate 1 mL of kanamycin-selective 
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LB and incubated at 37oC with shaking at 180 rpm, for 7 hours. 150 µL of the resultant 

cells were added to 20 mL of kanamycin-selective M9 medium and incubated for 14-

18 hours at 37oC, with shaking at 180 rpm. This cell suspension was then added to the 

1 L of kanamycin-selective M9 medium and incubated at 37oC until the OD600 

measured between 0.8 – 1. Cool down the cultures for 30 minutes at 18oC and add 

IPTG (final concentration 0.5 mM), leaving cultures at 18oC for 14-18 hours, with 

shaking at 180 rpm. 

The cells were then pelleted by centrifugation, 8000 rpm for 10 minutes at 4oC, 

discarding the supernatant and resuspending in low imidazole buffer and stored at -

80oC until purification. 

7.2.2.4 Protein Purification 
7.2.2.4.1 Cell Lysis 
The cells were gently thawed at room-temperature (20-25oC), and cocktail VII 

protease inhibitors EDTA free (Calbiochem), bovine deoxyribonuclease (Sigma) and 

2-mercaptoethanol (final concentration 1 mM) were added. Cells were mechanically 

lysed using a Stansted ‘Pressure Cell’ Homogeniser (SFP Ltd), at 1000 PSI. Cells were 

then centrifuged at 18000 rpm for 30 minutes and the supernatant subsequently filtered 

using a 0.22 µM filter.  

7.2.2.4.2 Ni2+ Affinity Chromatography 
A 5 mL HisTrap column (GE Healthcare) was initially washed with MilliQ and then 

equilibrated with low and high imidazole buffers, at 4 mL/min on an ÄKTApurifier10 

FPLC system (GE Healthcare). The filtered cell supernatant was then loaded onto the 

column at a flow rate of 4 mL/min. The bound contents of the column were then eluted 

with a gradient of increasing imidazole concentrations at 4 mL/min and fractionated 

into 5 mL fractions. The fractions were analysed by UV absorbance at 280 nm (A280) 

and those fractions that showed absorption levels above the baseline were analysed 

using SDS polyacrylamide gel electrophoresis (SDS-PAGE). The fractions that 

yielded the desired gel retardation band were combined. 

7.2.2.4.3 SUMO tag cleavage 
The combined fractions yielded from Ni2+ Affinity Chromatography were buffer 

exchanged into low imidazole buffer using a HiPrepTM Desalting column. The column 

was initially washed with MilliQ water and equilibrated using low imidazole buffer. 
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15 mL of sample were loaded onto the column and the protein was recovered with the 

same buffer by observing the UV absorbance at 280 nm, yielding a sample with a 

dilution of 1.2-3 fold. SUMO protease and dithiothreitol (final concentrations of 0.025 

µg/mL and 1 mM, respectively) were added to the eluted sample and left at room 

temperature (20-25oC) for 4 hours. After that time the sample was placed at 4oC for 

14-18 hours. 

7.2.2.4.4 Reverse Purification 
The sample was loaded into a 5 mL HisTrap column (GE Healthcare) at a 4 mL/min 

flow rate and readily collected by observing the UV absorbance at 280 nm. The SUMO 

tag was then eluted by using an increasing concentration of imidazole. 

7.2.2.4.5 Ion exchange chromatography  
The sample was exchanged into 20 mM Tris pH 8, 2 mM dithiothreitol, using a HiPrep 
TM Desalting column and a procedure similar to the one described previously. The 

sample was then loaded into a 5 mL HiTrap Q (GE Healthcare) column at a flow rate 

of 4ml/min. The bound contents of the column were then eluted with a linear gradient 

of 20 mM Tris pH 8, 2 mM dithiothreitol, 1 M NaCl at 4 mL/min and fractionated into 

5 mL fractions. The fractions were analysed by UV absorbance at 280 nm (A280) and 

those fractions that showed absorption levels above the baseline were analysed using 

SDS polyacrylamide gel electrophoresis (SDS-PAGE). The fractions that yielded the 

desired gel retardation band were combined. 

7.2.2.4.6 Concentration of Protein Sample 
Concentration of the combined protein fractions from ion exchange chromatography 

was carried out using Amicon Ultra Centrifugal Filter units with a 3 kDa molecular 

weight cut-off and volume capacity of 15 mL (Millipore). The concentration unit 

membrane was washed by centrifugation (5000 g, swinging bucket rotor) with MilliQ 

and equilibrated with 20 mM Tris pH 8, 2 mM Dithiothreitol. The protein was then 

applied to the unit and centrifuged at 5000 g until the desired final volume of sample 

was achieved. The solution that passed through the membrane (flow through) was 

analysed by UV absorbance at 280 nm to ensure that there was no membrane failure 

and hence, that none of the protein of interest had passed through. After use, the 

concentration units were centrifuged at 5000 g with MilliQ, then 2% (w/v) NaN3 and 

left at 4oC in that solution. 
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7.2.2.4.7 Buffer Exchange of Protein Sample 
The concentrated fractions from the Ion exchange chromatography were then buffer 

exchanged into 20 mM phosphate pH 6.5, 50 mM NaCl, 0.5 mM tris(2-

carboxyethyl)phosphine (TCEP), 0.02% (w/v) NaN3 using a Sephadex G-25 Medium 

Gravity-Flow PD-10 Column (GE Healthcare). The PD-10 column was initially 

washed with 25 mL of MilliQ and then 25 mL of 20 mM phosphate pH 6.5, 50 mM 

NaCl, 0.5 mM TCEP, 0.02% (w/v) NaN3 to equilibrate the column. A maximum of 

2.5 mL of the protein sample was applied to the column - for sample volumes less than 

2.5 mL, add equilibration buffer to adjust the volume up to 2.5 mL after the sample 

has entered the packed bed completely.  The flow through was discarded and the 

sample was eluted by addition of 3.5 mL of 20 mM phosphate pH 6.5, 50 mM NaCl, 

0.5 mM TCEP, 0.02% (w/v) NaN3. The final protein solution was flash frozen with 

liquid nitrogen and stored at -80oC. 

7.2.2.5 Protein concentration determination 
Protein concentration was determined by absorbance at 280 nm using a nano-drop 

3000 and calculated extinction coefficient of respective proteins determined by Prot-

Param14>. 

7.2.2.6 SUMO-Protease production   
Recombinant SUMO protease was produced by using a plasmid provided by Dr Paul 

Elliott in Rosetta pLacI in a ampicilin/chloramphenicol-selective agar plate. One 

single colony was used to inoculate 20 mL of LB medium and incubated at 37oC for 

14-18 hours. 1 L of 2YT medium (ampicilin/chloramphenicol-selective) was 

inoculated using the starting culture and incubated until the OD600 reached 0.6 and then 

induced using IPTG (final concentration of 500 µM) and incubated at 18oC for 14-18 

hours. Cells were pelleted by centrifugation and re-suspended in low imidazole buffer 

containing 10% glycerol, and later lysed as described previoulsy. After nickel affinity 

chromatography protein was exchanged into 50 mM Tris pH 8, 150 mM NaCl, 3 mM 

DTT, 5 mM EDTA, 20% glycerol and flash frozen and stored at -80oC. Activity of the 

protease was tested with and verified using SDS-PAGE. 
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7.3 Organic synthesis methods 

The materials and methods described in this section relate with the synthesis of 

molecules tested in this project – compounds 1b and 2a. 

All reactions were carried out in dry conditions under a nitrogen atmosphere unless 

otherwise stated.  

 Materials 

Elemental analysis was performed by the microanalysis service at the University of 

Liverpool. Mass spectra were collected using Micromass LCT Mass Spectrometer or 

Agilent QTOF 7200 by the mass spectrometry laboratory at the University of 

Liverpool. 1H-NMR spectra were recorded on a Bruker AMX 400 (400 MHz) 

spectrometer, as were 13C-NMR spectra in solutions of CDCl3 and MeOD. The 

chemical shifts are in parts per million (ppm), with tetramethylsilane as the internal 

reference and the coupling constants in hertz (Hz). TLC was performed on silica plates, 

and columns were run on silica gel specifically for flash chromatography. Reagents 

were purchased from SigmaAldrich and Merck. 

 Methods 

7.3.2.1 Compound 1b 
Compound 1b was obtained through a three-step synthesis, as described in Figure 7.5. 

Each reaction will be described in the next subsections. 

 

Figure 7.5 – general scheme for the synthesis of compound 1b. 
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7.3.2.1.1 Synthesis of 3 
Proline benzyl ester (1) (556 mg, 2.3 mmol), 4-methyl valeric acid (327 µL, 2.6 mmol, 

1.1 eq.) and HOBt (398 mg, 2.6 mmol, 1.1 eq.) were dissolved in ~30 mL of anhydrous 

DCM. After ten minutes EDCI (500 mg, 2.6 mmol, 1.1 eq.) were added, followed by 

DIEA ten minutes later (881 µL, 5.06 mmol, 2.20 eq.). The reaction was allowed to 

stir overnight. The DCM was removed and the residue was dissolved in EtOAc. The 

organic layer was washed three times with 1N HCl, three times with saturated NaHCO3 

and three times with brine. The organic layer was dried with Na2SO4, filtered through 

filter paper, and concentrated. The product was purified by column chromatography. 

Fractions were analysed by TLC, concentrated and characterized. 411 mg of product 

were obtained as a colourless oil (59% yield) 1H NMR (400 MHz, CD3OD)δ: 7.35 (br 

d, 5H), 5.14 (d, 2H, J=5.7 Hz), 4.47 (m, 1H), 3.63 (m, 2H) 2.36 (m, 2H), 1.96 (m, 4H), 

1.58 (m, 1H), 1.47 (m, 2H) 0.91 (dd, 6H, J=6.6, 0.98Hz) m/z (LCMS, CI): found 

304.19 (M+H)+, C18H25NO3 , requires 303.18. 

7.3.2.1.2 Synthesis of 4 
The ester 3 was dissolved in MeOH in a Parr bottle. The bottle was flushed with argon 

and 0.050 eq. of 10% Pd/C. The Parr bottle was placed on a Parr hydrogenation 

apparatus and subjected to three charge/purge cycles with H2. The reaction was then 

charged with 5-10 bar hydrogen and shaken. After four and a half hours no starting 

material was observed. The product was dried and 266 mg were obtained as white 

crystals (92% yield). 1H NMR (400 MHz, CD3OD)δ: 4.42 (m, 1H), 3.62 (m, 2H), 2.36 

(m, 2H), 2.24 (m, 2H), 2.02 (m, 2H), 1.61 (m, 2H), 1.52 (m, 2H), 0.93 (d, 6H, J=6.52 

Hz) CHN analysis: C 59.90%, H 8.58% and N 6.62%. C11H19NO3   m/z (LCMS, CI): 

found 214.14 (M+H)+, requires 213.14 

7.3.2.1.3 Synthesis of 6 
Compound 4 (266 mg) and 2-aminopiridine (5) (118 mg, 1.25 mmol, 1 eq.) were 

dissolved in ~7 mL of DCM. The solution was cooled to 0oC, and then DCC (516 mg, 

2.5 mmol, 2 eq.) was added. The solution was stirred at 0oC for two hours and at room 

temperature for another 16 hours. Then the solution was placed in the refrigerator (~ 

4oC) for two hours, and the white solid was filtered. After removal of solvent under 

reduced pressure, the residue was purified by column chromatography. 102 mg of a 

white solid were obtained (29% yield).  
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1H NMR (400 MHz, CDCl3)δ: 9.68 (br s, 1H), 8.29 (d, 1H, 4.0Hz), 8.15 (d, 1H, 8.3 

Hz), 7.66 (td, 1H, J=7.7, J=1.80 Hz), 7.00 (dt, 1H, J=5.3, J=1.80 Hz), 4.79 (dd, 1H, 

J=8.19, J=1.86 Hz), 3.63 (m, 1H), 3.50 (m, 1H), 2.50 (m, 1H), 2.36 (t, 2H, J=7.5Hz) 

2.06 (m, 4H), 1.60 (m, 2H), 0.91 (d, 6H, J=5.92 Hz) 

13C NMR (100 MHz, CDCl3)δ: 175.70, 171.31, 149.27, 139.58, 120.97, 115.45, 62.19, 

49.00, 34.80, 34.07, 29.26, 28.66, 26.47, 23.81, 23.73 

CHN analysis C 66.02%, H 8.01%, N 13.62%, C16H23N3O2 m/z (LCMS, CI): found 

290.18 (M+H)+, requires 289.18 

Total yield - 16% 

7.3.2.2 Compound 2a 
7.3.2.2.1 Synthesis of the tri-peptide 2c 
All glassware/solvents used for this procedure were thoroughly dried. The dry 2-

chlorotrityl resin (resin loading 1.51 mmol/g, 0.755mmol) was swelled in 2.5 mL of 

dry DCM for 15 min. Fmoc-Gln (7) (445 mg, 1.6 eq.) was dissolved in 2 mL of dry 

DCM with ~0. 5mL of DMF (for solubility) and added to the resin. DIPEA (842 µL, 

4 eq. to the amino acid) was added and stirred for two hours. The solvents were then 

filtered and 0.2 mL of MeOH were added to endcap any remaining trityl groups and 

stirred for 15 minutes. The resin was then washed twice with DMF, DCM and MeOH 

(three times). A sample was taken at this stage and checked using the Kaiser test. 

The deprotection of the Fmoc group was made by addition of 2 mL of 20% 

Piperidine/DMF (v/v), followed by a gentle stir for three minutes, removal of the 

solvent and then a second addition of 20% Piperidine/DMF (v/v), stirred for seven 

minutes. The solvent was removed by filtration again and 2 mL of DMF were added 

and left to stir for 30 seconds. This last step was carried out four times. A Kaiser test 

was performed again at this stage. 

The first coupling step was made by addition of Fmoc-Pro (10) (1.55g, 6 eq.) in 6 mL 

DMF with DIC (600 µL, 5 eq.) and HOBt (518 mg, 5eq.) and left overnight, with 

gentle agitation. Another deprotection step was performed, using the same method 

described before. 

Fmoc-Thr (13) (1.57 mg, 6 eq.) were added to 6mL of DMF with DIC (600 µL, 5 eq.) 

and HOBt (518 mg, 5 eq.), and left with agitation for three hours. Another removal of 
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Fmoc group was performed at this stage. 

 

 

Figure 7.6 – general scheme of the method employed for the synthesis of the tri-peptide TPQ, molecule 

2c (15), using solid phase peptide synthesis. 

. 
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7.3.2.2.2 Attachment of 2b 

 

Figure 7.7 – general scheme of the reactions performed to attach the molecule 2b (16) to molecule 2c 

(15), obtaining 2a (17). 

169 mg (0.168 mmol) of the tri-peptide (TPQ-resin) resulted from the previous 

coupling reaction were swelled in DCM for 15 minutes and 50 mg (0.195 mmol, 1.2 

eq.) of molecule 16, DIC (26 mg, 0.195 mmol, 1.2 eq.), HOBt (33 µL, 0.195 mmol, 

1.2 eq.) were added and left to stir overnight.  

Cleavage from the resin was performed by using TFE/acetic acid/DCM (1:1:8). The 

product was purified by preparative HPLC. m/z (LCMS, ESI): found 583.3 (M+H)+, 

requires 582.3 

1H NMR (800 MHz, H2O/2H2O)δ: 7.9 (br d, 1H), 7.6 (s, 1H), 7.2 (br s, 1H 3.5-3.3 (m, 

1H), 2.2-2 (m), 1.9-1.5 (m, 4H), 1.35 (dd, J=0.3 Hz, J=0.2Hz, 10H), 0.9 (dd, J=0.2 Hz, 

J=0.3 Hz, 3H), 0.83 (d, J=0.1 Hz, 3H) 

 

Total Yield – 18% 
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7.4 Protein-ligand interactions 

This section refers to the materials and methods involved in screening and binding 

characterisation of the interaction of different ligands and EB1. The ligands tested 

include peptides and small molecules. The stock solutions prepared for these ligands 

were used for both NMR and ITC. 

Synthetic peptides derived from the C-terminus of the MACF2 (GL Biochem and 

ChinaPeptides, China) were directly resuspended into the identical buffer as the 

protein  - 20 mM phosphate pH 6.5, 50 mM NaCl, 0.5 mM TCEP, 0.02% (w/v) NaN3 

- and minimal pH adjustments were made if required. 

100-250 mM stock solutions of the potential EB1 binder were prepared by dissolving 

the appropriate mass of the organic compound in the necessary amount of 

hexadeuterodimethyl sulfoxide (DMSO-d6). 

 NMR Spectroscopy  

7.4.1.1 General  
Samples to be examined by NMR spectroscopy of volumes 600 µL were pipetted into 

Wilmad 5 mm 175 mm 800 MHz Precision Pyrex Glass NMR Tubes (Goss Scientific). 

Samples of limited volume were pipetted into Shigemi Advanced NMR Microtube 

Assembly – Matched with 2H2O, bottom L 8 mm tubes (Sigma-Aldrich).  

The NMR spectra were acquired at 25oC, unless otherwise stated, on either a Bruker 

AVANCE II+ 600 MHz Ultrashield or 800 MHz US2 spectrometer, equipped with 

triple resonance cryoprobes. The Bruker TopSpin programme version 3.1 was used to 

process the resultant NMR spectra and the Collaborative Computational Project for 

NMR Analysis (CcpNmr Analysis)17> software was used for interactive spectral 

analysis and assignment.  

7.4.1.2 Ligand Binding Screening by NMR Spectroscopy 
1D 1H179,18> and 2D 1H-15N HSQC179–181 NMR experiments were performed using 

0.05 mM or 0.1 mM of 15N-labelled EB1 in 20 mM phosphate pH 6.5, 50 mM NaCl, 

0.5 mM TCEP, 0.02% (w/v) NaN3. Two different methods were used, one for the first 

set of tested molecules and another for all the remaining compounds. 
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For the first set of molecules the required volume of each organic compound stock 

solution was added to the protein sample to achieve the desired ratios.  This method 

was also used for the longest peptide sequences tested – 11 residues (11MACF, 

11MACF-LLL and 11MACF-VLL). 

For all the remaining molecules, the method was altered in order to facilitate the 

comparison between experiments by keeping the volume of DMSO-d6 constant. This 

method consisted by preparing two samples with the same concentration of DMSO-

d6, one without ligand and the other with the maximum ligand concentration, and by 

mixing them in the right proportions obtain a range of titration points. The maximum 

DMSO-d6 concentration achieved was 4% (v/v).  For the shorter length peptides – 

4MACF and 6MACF a similar method was used however without any DMSO added. 

Because these are weaker binders when compared with 11MACF, the volume to be 

added to achieve the highest ratio would dilute the sample and therefore affect the 

results. 

The obtained spectra were then assigned by transfer of the previously determined 

unbound backbone assignments of EB1 and analysed to identify which residue(s) had 

been perturbed. The chemical shift perturbation value (∆δ ppm) for each residue was 

then calculated – Equation 8.194,18>, 

, Equation 8.1 

were where, αN= Scaling Factor of 0.15. 

7.4.1.3 Binding Affinity Determination by NMR Spectroscopy 
To determine the binding affinity (Kd) by NMR spectroscopy the same experiments 

used to screen the ligands were used – see previous section. 

The individual residue chemical shifts for each titration point were assigned and fitted 

using Equation 8.2183,18>, 

, Equation 8.2 

where,  
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 Isothermal Titration Calorimetry (ITC) 

All isothermal titration calorimetry experiments were carried out at 25oC on an iTC200 

Microcalorimeter (GE Healthcare) with a 200 µL cell capacity and 40 µL syringe 

volume. For all experiments protein, either EB1cΔ8 or EB1cΔ16 in 20 mM phosphate 

pH 6.5, 50 mM NaCl, 0.5 mM TCEP, 0.02% (w/v) NaN3 were in the cell, and the 

ligand was in the syringe. The ITC titration data collected was analysed using the 

Origin®7 software. 

The lyophilised peptides were directly resuspended into the same buffer as the protein 

and minimal pH adjustments were made if required. 

Table 7.8 - Conditions for ITC experiments performed with EB1cΔ8 

ligand 
ligand 

concentration 
(µM) 

protein 
concentration 

(µM) 

injection 
volumes 

(µL) 

number of 
injections 

11MACF 750 50 1.5 25 
11MACF_LLL 225 15 1.5 25 
11MACF_VLL 250 25 1.5 25 

Table 7.9 - Conditions for ITC experiments performed with EB1cΔ16 

ligand 
ligand 

concentration 
(µM) 

protein 
concentration 

(µM) 

injection 
volumes 

(µL) 

number 
of 

injections 
11MACF 2250 150 1.5 25 

11MACF_LLL 2250 150 1.5 25 

 Octet® RED96 

The compounds screened by this method belong to a library of compounds – PPI-Net 

library, and each compound was at a concentration of 10 mM in DMSO. One hundred 

thirty-five compounds were screened at a final concentration of 0.5 mM – Figure 7.8. 
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   - 20 mM PO4, 50 mM NaCl, 0.5 mM TCEP, 0.02% NaN3 + 0.01% TWEEN +5% DMSO 
   - Plate 20000604 + 20 mM PO4, 50 mM NaCl, 0.5 mM TCEP, 0.02% NaN3 + 0.01% TWEEN 
   - Plate 20000605 + 20 mM PO4, 50 mM NaCl, 0.5 mM TCEP, 0.02% NaN3 + 0.01% TWEEN 

Figure 7.8 – schematic representation of the plate prepared for Octet® RED96 screening. 

 NMR based structure calculation 

For this section the materials and equipment are the same as described in section 

7.4.1.1. 

7.4.4.1 Resonance assignment for backbone and side-chain 
3D HNCO, HN(CA)CO, HNCA, HNCACB and CBCACONH experiments were used 

for the sequential assignment of the backbone NH, N, CO, Cα and Cβ resonances. Side 

chain assignments were obtained using 3D HBHA(CO)NH, H(C)CH-TOCSY and 

(H)CCH-TOCSY experiments. Aromatic side-chains were assigned using 2D-NOESY 

and 13C-resolved 3D NOESY-HSQC. The resonances of the ligands were assigned 

using 13C,15N-filtered 2D TOCSY and NOESY experiments. 

The HNCACB136,139,18> experiment correlates each NH group in the protein with its 

own 13Cα and 13Cβ chemical shifts and the respective 13Cα/β chemical shifts of the 

preceding residue (i-1 and i); the CBCACONH139,186 correlates a particular NH group 

in the protein with the 13Cα and 13Cβ chemical shifts of the preceding residue (i-1) 

(Figure 7.9). The correlation observed in this complementary set of spectra allowed 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
A A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A2 A3 A4 A5 A6 A7 A8
B
C B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B2 B3 B4 B5 B6 B7 B8
D
E C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C2 C3 C4 C5 C6 C7 C8
F
G D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D2 D3 D4 D5 D6 D7 D8
H
I E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E2 E3 E4 E5 E6 E7 E8
J
K F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F2 F3 F4 F5 F6 F7 F8
L
M G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G2 G3 G4 G5 G6 G7 G8
N
O H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H2 H3 H4 H5 H6 H7 H8
P
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the sequential linking of one NH group to the next (Figure 7.9, top panel).  The 

assignment of the 13C (carbonyl) was accomplished using a similar approach. 

HNCO138,140,187,188 shows the correlation between NH and the carbonyl for the 

preceding residue and HN(CA)CO141,188 correlates the NH with the respective residue 

and the preceding (i-1 and i) - Figure 7.10. By superimposing the two later spectra we 

can link the NH resonances of the residues. The HNCA138,140,189 shows for each NH 

strip the Cα for the respective residue and for the preceding one (i-1 and i) and it is 

useful to complement the assignment, this experiment was only used for backbone 

assignment of the EB1-11MACF complex.   

 

Figure 7.9 - Top panel – Schematic representation of the pair CBCA(CO)NH/HNCACB. 

CBCA(CO)NH spectrum is shown in black, with the Cα/Cβ peaks of the HNCACB spectrum are shown 

in green and red respectively. The bottom panel refers to the resonances that can be observed when 

using this pair of experiments and how are they linked to perform sequential assignment. 
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Figure 7.10 - Top panel – Schematic representation of the pair HN(CA)CO/HNCO used for CO 

assignment performed by sequential assignment; the HN(CA)CO spectrum is shown in red, with the 

CO peak of the preceding residue being less intense and overlapped with the HNCO spectrum showed 

in black. The bottom panel refers to the resonances that can be observed using this pair of experiments 

and how are they linked to perform sequential assignment. 

7.4.4.2 Structure calculation of free EB1cΔ8 
A 1 mM of uniformly isotopically labelled 13C, 15N-EB1 was prepared in 20 mM 

phosphate pH 6.5, 50 mM NaCl, 0.5 mM TCEP, 0.02% (w/v) NaN3. A large number 

of experiments were acquired using this sample and are detailed in Table 7.10. Because 

EB1 is a symmetric homodimer the intermonomer contacts of the coiled coil/leucine 

zipper are fundamental for structure elucidation and characterisation. Therefore, a 

sample of 13C, 15N-EB1 and unlabelled EB1 at equimolar concentrations was prepared 

and incubated for 16 hours at 37oC.42 The spectra acquired to characterise the 
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intermonomer contacts are detailed in Table 7.11. 

Table 7.10 – Spectra acquired in a double labelled sample (15N, 13C) for EB1cΔ8 resonance assignment 

NMR experiment No. of 
Scans 

Mixing 
time 
(ms) 

No. of points 
digitized FID resolution (Hz) Spectrometer 

frequency 
F1 F2 F3 F1 F2 F3 

1D 1H178,17 64 - 8192 - - 2.06 - - 600 MHz 

1D 1H –  
Excitation Sculpting 18 

16 - 32768 - - 0.59 - - 600 MHz 

1H-15N-HSQC 179–18> 4 - 512 1400 - 19.00 9.43 - 600 MHz 
1H-13C-HSQC 
(aliphatic) 19> 

4 - 180 1200 - 105.63 11.00 - 600 MHz 

1H-13C-HSQC-
constant time 
(aliphatic) 19> 

4 - 458 1200 - 41.52 11.00 - 600 MHz 

1H-13C-HSQC 
(aromatic) 

8 - 64 1024 - 94.33 11.74 - 600 MHz 

1H-13C-TROSY 
(aromatic)19> 

8 - 88 1024 - 68.60 11.74 - 600 MHz 

3D-HNCO (nus) 
140,187,18> 

2 - 128 76 1200 23.58 43.21 10.02 600 MHz 

3D-HNCACO 141,18> 2 - 128 76 1200 10.00 27.00 10.02 600 MHz 

3D-CBCACONH 
136,139,18> 

2 - 114 80 1200 57.00 27.00 10.02 600 MHz 

3D-HNCACB (nus) 
137,139,18> 

4 - 1280 80 1200 143.36 41.05 10.02 600 MHz 

3D-HBHACONH 
139,18> 

8 - 200 76 1100 33.01 41.61 13.11 600 MHz 

H(C)CH-TOCSY 193–

19> 
4 - 300 128 1024 23.21 146.19 10.57 600 MHz 

(H)CCH-TOCSY 4 - 128 128 1024 146.19 146.19 10.57 600 MHz 
15N-resolved-13C-
decoupled-NOESY-
HSQC 196,19> 

2 100 512 160 1400 31.26 26.36 11.45 800 MHz 

13C-resolved-NOESY-
HSQC 196,19> 

2 200 512 180 1400 31.26 138.64 11.45 800 MHz 

13C-resolved-NOESY-
HSQC (aromatic) 

8 100 450 52 1200 35.57 154.82 13.36 800 MHz 
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Table 7.11 - Spectra acquired in an unlabelled/labelled sample for intermonomer resonance assignment. 

NMR experiment 
No. 
of 

Scans 

Mixing 
time 
(ms) 

No. of points 
digitized 

FID resolution (Hz) Spectrometer 
frequency 

F1 F2 F3 F1 F2 F3 
15N,13C-filtered-13C-
decoupled-2D-NOESY 

80 200 512 2048 - 31.26 7.83 - 800 MHz 

15N,13C-filtered-2D-NOESY 48 200 400 2048 - 40.01 7.83 - 800 MHz 

2D-NOESY* 72 200 512 2048 - 31.26 7.83 - 800 MHz 
15N,13C-filtered-13C-resolved-
NOESY-HSQC 

8 200 440 68 1400 32.74 165.73 11.45 800 MHz 

15N,13C-filtered-13C-resolved-
NOESY-HSQC* 

8 200 440 64 1400 32.74 176.09 11.45 800 MHz 

15N,13C-filtered-13C-resolved-
NOESY-HSQC (aromatic) 

8 200 400 48 1024 40.02 142.56 12.52 800 MHz 

*spectra acquired in 100% 2H2O (all other experiments acquired with 5-10% 2H2O) 

The majority of restraints for NMR structure calculations are provided by NOESY 

derived distance restraints. However, the NOE assignment is tedious due to the large 

number of assignment possibilities, peak overlap and potential artefacts in the spectra.  

Manual assignment is time consuming and may not provide an accurate structure due 

to human error. In order to hasten the process and reduce the risk of errors, NOE 

assignment was carried out using the program ARIA 2.3.1 (Ambiguous Restraints for 

Iterative Assignment)96. ARIA uses an iterative protocol and the concept of ambiguous 

distance restraints (ADR)19> to automatically assign NOE cross-peaks. It does not 

perform the structure calculations itself but assigns NOE cross-peaks by first deriving 

all possible assignments for each peak by matching a list of chemical shifts with 

frequency ‘windows’ centred around the position of a peak in an iterative structure 

calculation scheme. Structures are calculated using the program CNS (Crystallography 

& NMR System)98,199, ARIA then analyses the conformers obtained in order to update 

the restraints and obtain a set of improved conformer. 

For structure calculation using ARIA two main methods for generation of distance 

restraints can be generally used: restraints can be generated by ARIA itself or restraints 

can be generated in CcpNmr Analysis17> and imported into ARIA. In this project a 

combination of both was used. 

EB1 cross-peaks and peak lists were imported from CcpNmr Analysis into ARIA, and 

restraints generated by ARIA for the 15N-resolved-13C-decoupled-NOESY-HSQC, 
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13C-resolved-NOESY-HSQC, 15N, 13C-filtered-13C-resolved-NOESY-HSQC (inter-

monomer contacts), 13C-resolved-NOESY-HSQC for aromatic resonances. The 

tolerances for direct proton, indirect proton and heteronuclear dimensions were 

defined to 0.02, 0.04 and 0.5, respectively. Spin diffusion correction was also used, by 

inputting the spectrometer frequency, mixing time and correlation time for each 

spectrum –Table 7.12. 

Table 7.12 – Spectra used in ARIA for NOE iterative assignment and distance restraints calculation. 

 

15N-resolved-13C-
decoupled-

NOESY-HSQC 

13C-resolved-
NOESY-

HSQC 

15N,13C-filtered-13C-
resolved-NOESY-

HSQC 

13C-resolved-
NOESY-HSQC 

(aromatics) 
Use manual 
assignments 

Yes Yes Yes Yes 

Enable structural 
rules 

Yes No No No 

To
le

ra
nc

es
 Proton 1 0.02 

Hetero 1 0.5 
Proton 2 0.04 
Hetero 2 0.5 

Molecule 
correlation time 

(ns) 
10 

Spectrometer 
frequency (MHz) 

800 

Mixing time 
(ms) 

100 200 200 100 

Ambiguity level 
(for multimers) 

Intra-molecular 
only 

Unknown Intermolecular only Unknown 

 

All NOESY peaks were picked semi-automatically in CcpNmr Analysis with noise 

and artefact peaks removed manually. Cross-peak intensities were used to evaluate the 

target distances. The ambiguity of these restraints derived from the NOE cross peaks 

was resolved in the ARIA cycles with the violation tolerances set to 3.0-0.1 Å for 

iterations 1-8, respectively.  

As mentioned before, distance restraints generated in CcpNmr Analysis were also 

directly used for the structure calculation, namely dihedral angles, restraints hydrogen 

bond restraints and intermonomer restraints.  
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Table 7.13 – Distance restraints derived by CcpNmr Analysis and imported to ARIA to perform the 

structure calculations. 

Restraint type Number of restraints 
Dihedral 128 
Hydrogen bond 90 
Intermonomer – aliphatic region 83 
Intermonomer – aromatic region 16 

 

Dihedral restraints (φ/ψ) were generated using DANGLE (Dihedral ANgles from 

Global Likelihood Estimates)20> module of CcpNmr Analysis software. DANGLE 

predicts protein backbone φ and ψ angles and secondary structure assignments solely 

from amino acid sequence information, experimental chemical shifts and a database 

of known protein structures and their associated shifts. A total of 128 restraints were 

obtained using DANGLE. 

Hydrogen bond restraints between the N-H group of an amino acid and the C=O group 

of the amino acid four residues earlier (i + 4 → i) were manually inserted in CcpNmr 

Analysis for the regions where the secondary structure is defined as alpha-helical – 

[191-231] and [237-247]. There is a strong reasoning for the use of these “artificial” 

restraints. First of all the NOE data and dihedral angles data were used to predict the 

secondary structure in CcpNmr Analysis and the prediction is not only in accordance 

with previous EB1 published structures24,27,31,44,48,20>, but also with experimental data 

acquired. The 90 restraints included the default “N-H..O=C” and their co-linear 

restraints.  

Distance restraints between atoms in chain A and chain B – intermonomer, were 

generated from assigned peaks from the isotope filtered 13C-NOESY-HSQC and 2D 

NOESY. In total, 99 restraints were used.  

Finally, 320 structures were calculated, 30 best refined in the presence of explicit water 

molecules as described in Table 7.14, 20 lowest structure used for the analysis and 

PDB deposition. For speed, structures are typically calculated “in vacuum” which can 

result artefacts as a result of the simplified treatment of non-bonded forces and missing 

solvent contacts.  ARIA provides the option of refining structures in a shell of water 

molecules for a defined number of structures from the final iteration with a full 

molecular dynamics force field incorporating electrostatics. This refinement helps to 

avoid unrealistic side chain packing and unsatisfied hydrogen bond donors or receptors. 
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To ensure there are no systematic differences that could influence validation results, 

the force fields used for water refinement (file PARALLHDG 5.3) are consistent with 

the force fields used for structure calculation and validation.20> 

Table 7.14 – Parameters used for each iteration of structure calculation, including number of structures 

calculated, use or not of spin diffusion, violation tolerance, and ambiguity cut-off. 

Iteration No. of 
Structures 

Keep n best 
structures 

Use best n 
structures 

Spin 
diffusion 

Violation 
tolerance Å 

Partial 
assignment – 
ambiguity cut-
off 

0 64 10 7 No 3.0 1.0 

1 64 10 7 No 3.0 0.9999 

2 64 10 7 No 3.0 0.999 

3 64 10 7 No 1.0 0.99 

4 64 10 7 No 1.0 0.98 

5 64 10 7 Yes 1.0 0.96 

6 64 10 7 Yes 0.5 0.93 

7 160 10 7 Yes 0.5 0.9 

8 320 20 7 Yes 0.1 0.8 

Water 
refinement 

30 - - - - - 

 
Table 7.15 - Simulating annealing parameters used for structure determination of free EB1cΔ8 

Type Torsion angle 

Random seed 89764443 

TAD high temperature 10000.0 

TAD time-step factor 9.0 

Cartesian High temperature 2000.0 

Cartesian 1st iteration 0 

Time-step 0.00015 

Cool1 final temperature 1000.0 

Cool2 final temperature 50.0 

High-temp steps 20000 

Refine steps 8000 

Cool1 steps 10000 

Cool2 steps 8000 
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7.4.4.3 Structure calculation of EB1cΔ8 – 1a complex 
For this complex it was known, from acquired data – e.g. NH intensities, secondary 

structure prediction, NOEs – that the structure would not be very different from the 

free protein.  

Table 7.16 - Spectra acquired in a double-labelled sample (15N, 13C) for EB1cΔ8-1a complex resonance 

assignment. 

NMR experiment No. 
of 

Scans 

Mixing 
time 
(ms) 

No. of points 
digitized FID resolution (Hz) Spectrometer 

frequency 

F1 F2 F3 F1 F2 F3 

1D 1H 64 - 8192 - - 2.54 - - 800 MHz 

1D 1H – Excitation 
Sculpting 

32 - 32768 - - 0.78 - - 800 MHz 

15N,13C-filtered-1D 1H* 256 - 8192 - - 2.73 - - 800 MHz 
1H-15N-HSQC 4 - 360 1600 - 11.72 11.00 - 800 MHz 

3D-CBCACONH 4 - 156 102 1400 147.06 41.35 11.45 800 MHz 

3D-HBHACONH 2 - 200 102 1400 44.01 41.35 11.45 800 MHz 
1H-13C-HSQC (aliphatic) 8 - 200 1400 - 12.58 126.90 - 800 MHz 
1H-13C-HSQC-constant 
time 
(aliphatic) 

4 - 612 1400 - 12.58 41.47 - 800 MHz 

1H-13C-HSQC (aromatic) 16 - 64 1200 - 13.36 125.79 - 800 MHz 
1H- 13C-TROSY 
(aromatic) 

16 - 1200 118 - 13.36 68.23 - 800 MHz 

H(C)CH-TOCSY 2 - 128 48 1024 23.21 146.19 11.74 800 MHz 

HCCH-TOCSY 4 - 128 128 1024 146.19 146.19 11.74 800 MHz 
15N-resolved-13C-
decoupled-TOCSY-HSQC 

2 45 400 102 1024 40.02 37.76 15.65 800 MHz 

15N-resolved-13C-
decoupled-NOESY-
HSQC 

2 150 512 112 1400 31.26 36.21 11.45 800 MHz 

13C-resolved-NOESY-
HSQC 

2 200 512 180 1200 31.26 138.54 13.36 800 MHz 

13C-resolved-NOESY-
HSQC* 

4 100 512 80 1400 28.14 140.87 11.45 800 MHz 

13C-resolved-NOESY-
HSQC (aromatic) 

4 200 450 48 1200 35.57 167.72 13.36 800 MHz 

13C-decoupled-2D-
TOCSY* 

96 45 512 2048 - 31.26 7.83 - 800 MHz 

13C-decoupled-2D-
NOESY* 

128 200 600 2048 - 31.25 7.83 - 800 MHz 

15N,13C-filtered-13C-
decoupled-2D-NOESY 

96 200 400 2048 - 40.00 7.83 - 800 MHz 

15N,13C-filtered-13C-
decoupled-2D-NOESY* 

64 200 512 2018 - 31.25 7.83 - 800 MHz 
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15N,13C-filtered-13C-
resolved-NOESY-HSQC 

8 200 380 64 1400 37.92 176.16 11.45 800 MHz 

*spectra acquired in 100% 2H2O (all other experiments acquired with 5-10% 2H2O) 

 

Therefore we used the final set of restraints – ambiguous and unambiguous - from the 

calculation of the structure of the free protein and introduced intermolecular restraints 

between the small molecule and the protein. Concerning the dihedral angles restraints 

and hydrogen bond restraints the same principle applies. The key for the calculation 

of the structure of this complex is to use as best as we can the intermolecular NOEs 

(protein – small molecule). Topology file for  the small molecule 1a was obtained via 

CcpNmr ACPYPE Portal20>. 

The 15N,13C-filtered-13C-resolved-NOESY-HSQC was carefully assigned and the 

restraints directly used without any filtering. Regarding the intermolecular NOEs from 
15N,13C-filtered-13C-decoupled-2D-NOESY experiment, the assigned restraints were 

also used but it was allowed to ARIA to filter not compatible restraints due to the 

absence of a carbon dimension and the inherent ambiguity. In addition to these 

restraints, restraints derived from assigned peaks of 13C-decoupled-2D-NOESY for the 

aromatic region were also used.  

Table 7.17 – Parameters used for each iteration of structure calculation, including number of structures 

calculated, use or not of spin diffusion, violation tolerance, and ambiguity cut-off. 

Iteration No. of 
Structures 

Keep n best 
structures 

Use best n 
structures 

Spin 
diffusion 

Violation 
tolerance Å 

Partial 
assignment – 
ambiguity 
cut-off 

0 32 0 7 No 3.0 1.0 

1 32 0 7 No 3.0 0.9999 

2 32 0 7 No 3.0 0.999 

3 32 0 7 No 1.0 0.99 

4 32 0 7 No 1.0 0.98 

5 32 0 7 No 1.0 0.96 

6 32 0 7 No 0.5 0.93 

7 32 0 7 No 0.5 0.9 

8 160 0 20 No 0.1 0.8 

Water 
refinement 

20 - - - - - 

For this calculation an initial structure model was also included. This model came from 



Materials and methods 
 

232 
 

previous attempt for determine the structure of this complex and had an overall energy 

of -4703 kcal. For that reason it was necessary to modify some dynamic parameters 

related with the simulating annealing protocol, as decreasing the temperature from 

10000 to 2000, and increasing the cooling steps Table 7.18. It has been shown slower 

SA cooling protocols improves the quality of the structures obtained and therefore the 

success of the structure calculation.15> 

Table 7.18 - Simulating annealing parameters used for structure determination of free EB1cΔ8 

Type Torsion angle 

Random seed 89764443 

TAD high temperature 2000.0 

TAD time-step factor 9.0 

Cartesian High temperature 2000.0 

Cartesian 1st iteration 0 

Time-step 0.00075 

Cool1 final temperature 1000.0 

Cool2 final temperature 50.0 

High-temp steps 40000 

Refine steps 16000 

Cool1 steps 40000 

Cool2 steps 32000 
 

7.4.4.4 Structure calculation of EB1cΔ8 - 11MACF complex 
To 277 µL of 1.15 mM uniformly 13C, 15N-EB1cΔ8 in 20 mM phosphate pH 6.5, 50 

mM NaCl, 0.5 mM TCEP, 0.02% (w/v) NaN3, 73 µL of 11MACF stock solution (5.35 

mM) were added, making a final ratio of 1:1. To this sample more 11MACF was then 

added in order to get a 1:2 ratio. A second sample of 1.15 mM uniformly 13C, 15N-

EB1cΔ8 was prepared in 20 mM phosphate pH 6.5, 50 mM NaCl, 0.5 mM TCEP, 0.02% 

(w/v) NaN3 and the following samples were prepared by adding the necessary amount 

of 5.35 mM 11MACF in a sequential manner: 
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Table 7.19 – titration of 11MACF into 13C, 15N-EB1cΔ8 and unlabelled EB1cΔ8 in order to obtain the 

best quality spectra possible for both protein and ligand resonances, i.e. the line broadening is minimised. 

13C, 15N-EB1cΔ8:11MACF ratio EB1cΔ8:11MACF ratio 

10:1 10:9 

10:2 10:10 

10:4 10:11 

10:9  

10:10  

10:11  

For each ratio both 1D 1H and 15N,13C-filtered-1D 1H were acquired in order to find a 

ratio where both protein and peptide peaks were sharp enough to acquire NOE data. 

The 10:11 ratio showed the best compromise in terms of sharp peaks for the peptide 

and sharp peaks for protein (Appendix A.3).  

Table 7.20 - Spectra acquired in a double labelled sample (15N, 13C) for EB1cΔ8-11MACF complex at 

different ratios for resonance assignment. 

NMR experiment Ratio 
No. 
of 

Scans 

Mixing 
time 

No. of digitised 
points FID resolution (Hz) Spectrometer 

frequency 
F1 F2 F3 F1 F2 F3 

1D 1H 1:1 64 - 8192 - - 2.54 - - 800 MHz 
15N,13C-filtered-1D 
1H 

1:1 64 - 8192 - - 1.96 - - 800 MHz 

1H-15N-HSQC 1:1 4 - 360 1600 - 11.72 11.00 - 800 MHz 
1H-13C-HSQC 
(aliphatic) 

1:1 4 - 200 1400  126.90 12.58 - 800 MHz 

1H-13C-HSQC-
constant time 
(aliphatic) 

1:1 4 - 612 1400 - 41.47 12.58 - 800 MHz 

1H-13C-HSQC 
(aromatic) 

1:1 8 - 64 1024 - 94.35 11.74 - 600 MHz 

1H-13C-TROSY 
(aromatic) 

1:1 8 - 88 1024 - 68.60 11.74 - 600 MHz 

3D-HNCO (nus) 1:1 2 - 128 100 1400 31.45 42.17 11.45 800 MHz 

3D-HNCACO 1:1 2 - 96 100 1400 41.93 42.17 11.45 800 MHz 

3D-CBCACONH 
(nus) 

1:1 2 - 156 102 1400 147.06 41.35 11.45 800 MHz 

3D-HNCACB (nus) 1:1 2 - 156 102 1400 147.06 12.58 12.58 800 MHz 

3D-HBHACONH 1:1 2 - 230 102 1400 38.27 41.35 11.45 800 MHz 

H(C)CH-TOCSY 1:1 2 - 300 128 1024 23.21 146.30 10.57 600 MHz 

HCCH-TOCSY 1:1 4 - 128 128 1024 146.30 146.30 10.57 600 MHz 
15N,13C-filtered-13C-
decoupled-2D-

1:1 80 45 512 2048 - 31.25 7.83 - 800 MHz 
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TOCSY 
15N,13C-filtered-13C-
decoupled-2D-
NOESY 

1:1 96 200 512 2048 - 31.25 7.83 - 800 MHz 

1D 1H 1:2 64 - 8192 - - 2.54 - - 800 MHz 
15N,13C-filtered-1D 
1H 

1:2 64 - 8192 - - 1.96 - - 800 MHz 

15N-resolved-HSQC 1:2 2 - 360 1600 - 11.72 11.00 - 800 MHz 
13C-resolved-HSQC 
(aliphatics) 

1:2 4 - 200 1400 - 63.06 12.58 - 800 MHz 

13C-resolved-HSQC-
constant time 
(aliphatics) 

1:2 4 - 612 1400 - 63.06 11.00 - 800 MHz 

3D-CBCACONH 1:2 8 - 156 102 1400 147.06 41.35 11.45 800 MHz 

3D-HNCA 138,140,18> 1:2 8 - 80 98 1400 138.36 43.03 11.45 800 MHz 
15N,13C-filtered-13C-
decoupled-2D-
TOCSY 

1:2 80 45 512 2048 - 31.25 7.83 - 800 MHz 

15N,13C-filtered-13C-
decoupled-2D-
NOESY 

1:2 96 200 512 2048 - 31.26 7.83 - 800 MHz 

15N-resolved-13C-
decoupled-NOESY-
HSQC 

1:2 2 150 512 152 1400 31.25 27.75 11.45 800 MHz 

1D 1H 10:11 64 - 8192 - - 2.54 - - 800 MHz 

1D 1H – Excitation 
Sculpting* 

10:11 128 - 8192 - - 2.73 - - 800 MHz 

15N,13C-filtered-1D 
1H 

10:11 256 - 8192 - - 2.73 - - 800 MHz 

15N,13C-filtered-1D 
1H* 

10:11 256 - 8192 - - 2.73 - - 800 MHz 

1H-15N-HSQC 10:11 2 - 360 1600 - 11.72 11.00 - 800 MHz 
1H-15N-HSQC* 10:11 4 - 360 1600 - 11.72 11.00 - 800 MHz 
1H-13C-HSQC 
(aliphatic) 

10:11 8 - 200 1400 - 126.79 12.58 - 800 MHz 

1H-13C-HSQC-
constant time 
(aliphatic) 

10:11 4 - 612 1400 - 41.43 12.58 - 800 MHz 

1H-13C-HSQC-
constant time 
(aliphatic)* 

10:11 4 - 612 1400 - 41.47 12.58 - 800 MHz 

1H-13C-HSQC 
(aromatic) 

10:11 16 - 64 1200 - 125.80 13.36 - 800 MHz 

1H-13C-TROSY 
(aromatics) 

10:11 16 - 118 1200 - 68.23 13.36 - 800 MHz 

13C-decoupled-2D-
NOESY* 

10:11 16 60 512 1440 - 31.25 11.13 - 800 MHz 

15N,13C-filtered-13C- 10:11 80 45 512 2048 - 31.25 7.83 - 800 MHz 
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decoupled-2D-
TOCSY 
15N,13C-filtered-13C-
decoupled-2D-
TOCSY* 

10:11 64 40 512 1440 - 31.25 11.13 - 800 MHz 

15N,13C-filtered-2D-
NOESY 

10:11 48 200 512 2048 - 31.25 7.83 - 800 MHz 

15N,13C-filtered-13C-
decoupled-2D-
NOESY 

10:11 48 200 512 2048 - 31.25 7.83 - 800 MHz 

15N,13C-filtered-13C-
decoupled-2D-
NOESY* 

10:11 80 200 512 1440 - 31.25 11.13 - 800 MHz 

13C-resolved-
NOESY-HSQC 

10:11 2 200 512 172 1400 31.25 144.99 11.45 800 MHz 

13C-resolved-
NOESY-HSQC* 

10:11 2 200 512 80 1400 28.14 140.87 11.45 800 MHz 

13C-resolved-
NOESY-HSQC 
(aromatics) 

10:11 4 200 450 56 1200 35.56 143.78 13.36 800 MHz 

15N,13C-filtered-13C-
resolved-NOESY-
HSQC 

10:11 8 200 440 68 1400 32.83 165.79 11.45 800 MHz 

15N,13C-filtered-13C-
resolved-NOESY-
HSQC* 

10:11 8 200 440 80 1400 32.75 140.87 11.45 800 MHz 

*spectra acquired in 100% 2H2O (all other experiments acquired with 5-10% 2H2O) 

In order to perform the structure calculation of the complex the parameters used for free EB1cΔ8 were 

used (Table 7.14 and Table 7.15). Three spectra were iteratively assigned by ARIA, 15N-resolved-13C-

decoupled-NOESY-HSQC and two 13C-resolved-NOESY-HSQC experiments with two different 

mixing times, 200 and 100 ms -  

Table 7.21. In terms of restraints introduced into ARIA as CcpNmr Analysis calculated 

restraints from manual assignments or obtained from previous structure calculations 

as .tbl files can be found in Table 7.22. These include dihedral and hydrogen bond 

restraints, similarly to what was described for the previous structures, intermolecular 

restraints between EB1 and 11MACF assigned from filtered experiments and 

intermonomer restraints. The latter include the 99 restraints used in the calculations of 

free EB1cΔ8 resultant from manual assignments but also 249 restraints resultant from 

the final iteration of the same structure, yielding a total of 348 intermonomer restraints. 

 

 

Table 7.21 – Spectra used in ARIA for NOE iterative assignment and distance restraints calculation. 



Materials and methods 
 

236 
 

 
15N-resolved-13C-decoupled-

NOESY-HSQC 

13C-resolved-
NOESY-HSQC 

13C-resolved-
NOESY-HSQC 

Use manual 
assignments 

Yes Yes Yes 

Enable structural rules Yes No No 

To
le

ra
nc

es
 Proton 1 0.02 

Hetero 1 0.5 
Proton 2 0.04 
Hetero 2 0.5 

Molecule correlation 
time (ns) 

10 

Spectrometer frequency 
(MHz) 

800 

Mixing time (ms) 100 200 100 
Ambiguity level (for 

multimers) 
Intra-molecular only Unknown Unknown 

Table 7.22 – Distance restraints derived from CcpNmr Analysis or ARIA (calculation of the structure 

of free EB1cΔ8) to perform the structure calculations of the complex. 

Restraint type Number of restraints 
Dihedral 130 
Hydrogen bond 90 
Intermonomer – aliphatic region 83 
Intermonomer – aromatic region 16 
Intermonomer* 249 
Intermolecular  185 

*obtained from ARIA assignment for free EB1cΔ8. 
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APPENDIX 

A.1 Structure determination of free EB1cΔ8 

 

Figure 1 – Secondary structure prediction obtained from the chemical shifts of the EB1cΔ8 obtained using CcpNmr Analysis. 
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A.2 Structure determination of the complex EB1cΔ8-1a 

 
Figure 2 – structure of molecule 1a and respective atom labels used for NMR resonance assignment. 

Table 1 – intermolecular restraints between EB1cΔ8 and molecule 1a obtained through manual 

assignment and directly input into ARIA. 

Chain Residue Atom Chain Atom Distance 
(Å) 

B Phe216 Hε C H* 4.8 
A Arg222 Hδ C H3/H5 4.1 
A Arg222 Hγ C H5 4.4 
A Arg222 Hγ C H3/H5 4.5 
A Arg222 Hδ C H4/H6 4.4 
A Arg222 Hδ C H* 4.4 
A Arg222 Hα C H3/H5 4.1 
A Arg222 Hγ C H2/H8 4.4 
A Arg222 Hδ C H3/H5 4.1 
A Arg222 Hα C H4/H6 4.4 
A Arg222 Hδ C H3/H5 4.1 
A Arg222 Hδ C H4/H6 4.4 
A Glu225 Hγ C H3/H5 4.6 
A Leu246 Hδ2 C H4/H6 3.9 
A Leu246 Hδ2 C H3/H5 4 
A Leu246 Hδ1 C H2/H8 4.2 
A Leu246 Hδ1 C H1 4.2 
A Leu246 Hδ1 C H4/H6 3.4 
A Leu246 Hδ1 C H3/H5 3.7 
A Thr249 Hγ C H* 3.1 
A Thr249 Hγ C H9 4.2 
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Table 2 – intermolecular restraints between EB1cΔ8 and molecule 1a obtained through the iterative 

assignment performed by ARIA 

Chain Residue Atom Chain Atom Distance 
(Å) 

A Arg222 Hδ C H4/H6 4.9 
A Leu246 Hδ1 C H3/H5 3.7 
A Leu246 Hδ1 C H4/H6 3.4 
A Leu246 Hδ2 C H4/H6 3.8 
A Leu246 Hδ2 C H3/H5 3.9 
A Leu246 Hδ1 C H2/H8 4.3 
A Leu246 Hδ2 C H1/H7 4.9 
A Leu246 Hδ2 C H2/H8 4.6 
A Leu246 Hδ1 C H1 4.2 
A Tyr247 Hε C H4/H6 4.1 
A Tyr247 Hε C H2/H8 3.8 
A Tyr247 Hδ C H3/H5 4.6 
A Tyr247 Hδ C H4/H6 4.3 
A Tyr247 Hδ C H1/H7 4.7 
A Tyr247 Hδ C H2/H8 4.3 
A Tyr247 Hε C H3/H5 3.9 
A Tyr247 Hε C H1/H7 4.6 
A Tyr247 Hδ C H* 4.2 
A Tyr247 Hδ C H14/H15 4.9 
A Tyr247 Hε C H 4.5 
A Tyr247 Hε C H* 4.6 
A Tyr247 Hε C H9 4.9 
A Thr249 Hγ2 C H* 3.4 
A Thr249 Hγ2 C H9 4.4 
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A.3 Structure determination of the complex EB1cΔ8-11MACF

 

Figure 3 – 1D 1H acquired for the following protein:peptide ratios – 10:1, 10:2, 10:4, 10:9, 10:10, 10:11. 
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Figure 4 – 15N,13C-filtered-1D 1H acquired for the following protein:peptide ratios – 10:1, 10:2, 10:4, 10:9, 10:10, 10:11. 
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Table 3 – intermolecular restraints between EB1cΔ8 and 11MACF obtained through manual assignment 

and directly input into ARIA. 

Chain Residue Atom Chain Residue Atom Distance 
(Å) 

B Phe216 Hζ C Thr5481 Hγ2 5.5 
B Phe216 Hε C Thr5481 Hγ2 6.4 
B Tyr217 Hε C Ile5479 Hγ2 4.9 
B Tyr217 Hδ C Ile5479 Hγ2 5.1 
B Tyr217 Hε C Ile5479 Hδ1 5.8 
B Tyr217 Hε C Ile5479 Hβ 6.1 
B Tyr217 Hδ C Ile5479 Hδ1 6.2 
B Tyr217 Hδ C Ile5479 Hβ 6.2 
B Tyr217 Hε C Pro5480 Hβ1 5.5 
B Tyr217 Hδ C Pro5480 Hβ1 5.7 
B Tyr217 Hε C Pro5480 Hγ2 6.2 
B Tyr217 Hδ C Pro5480 Hγ2 6.2 
B Tyr217 Hε C Pro5480 Hβ2 6.5 
B Tyr217 Hε C Thr5481 Hγ2 5.5 
B Tyr217 Hδ C Thr5481 Hγ2 5.7 
A Phe218 Hε C Ser5477 Hβ2 6.5 
A Phe218 Hε C Ile5479 Hγ2 3.8 
A Phe218 Hε C Ile5479 Hγ2 4.1 
A Phe218 Hδ C Ile5479 Hγ2 4.3 
A Phe218 Hε C Ile5479 Hδ1 4.4 
A Phe218 Hε C Ile5479 Hβ 4.5 
A Phe218 Hζ C Ile5479 Hγ2 4.7 
A Phe218 Hζ C Ile5479 Hδ1 4.9 
A Phe218 Hζ C Ile5479 Hβ 5.0 
A Phe218 Hδ C Ile5479 Hγ2 5.0 
A Phe218 Hδ C Ile5479 Hδ1 5.4 
A Phe218 Hδ C Ile5479 Hβ 5.7 
A Phe218 Hε C Ile5479 Hα 6.3 
A Phe218 Hε C Ile5479 Hγ1 6.4 
A Phe218 Hζ C Ile5479 Hγ1 6.5 
A Phe218 Hε C Pro5480 Hγ2 6.3 
A Phe218 Hε C Pro5480 Hβ1 6.5 
A Phe218 Hε C Thr5481 Hγ2 3.9 
A Phe218 Hζ C Thr5481 Hγ2 3.9 
A Phe218 Hε C Thr5481 Hγ2 4.0 
A Phe218 Hζ C Thr5481 Hγ2 4.4 
A Phe218 Hδ C Thr5481 Hγ2 4.5 
A Phe218 Hδ C Thr5481 Hγ2 5.1 
A Phe218 Hε C Thr5481 Hβ 6.3 
A Leu221 Hδ2 C Ile5479 Hδ1 4.1 
A Leu221 Hδ2 C Ile5479 Hγ2 4.2 
A Leu221 Hδ2 C Ile5479 Hγ2 4.4 
A Leu221 Hδ1 C Ile5479 Hγ2 4.5 
A Leu221 Hδ1 C Ile5479 Hδ1 4.5 
A Leu221 Hδ2 C Ile5479 Hδ1 4.6 
A Leu221 Hα C Ile5479 Hδ1 4.8 
A Leu221 Hα C Ile5479 Hδ1 5.0 
A Leu221 Hγ C Ile5479 Hδ1 5.0 
A Leu221 Hα C Ile5479 Hγ2 5.2 
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A Arg222 Hα C Ile5479 Hδ1 4.3 
A Arg222 Hα C Ile5479 Hδ1 4.6 
A Arg222 Hδ1 C Ile5479 Hδ1 4.9 
A Leu246 Hδ1 C Ile5479 Hδ1 3.8 
A Leu246 Hδ1 C Ile5479 Hγ2 4.1 
A Leu246 Hδ2 C Ile5479 Hδ1 4.1 
A Leu246 Hδ2 C Ile5479 Hγ2 4.3 
A Leu246 Hδ1 C Ile5479 Hδ1 4.6 
A Leu246 Hδ1 C Ile5479 Hγ2 4.8 
A Leu246 Hδ1 C Ile5479 Hβ 4.9 
A Leu246 Hδ2 C Ile5479 Hγ1 5.3 
A Leu246 Hδ2 C Ile5479 Hα 5.6 
A Tyr247 Hε C Lys5478 Hβ2 4.0 
A Tyr247 Hε C Lys5478 Hβ1 4.2 
A Tyr247 Hε C Lys5478 Hβ1 4.7 
A Tyr247 Hε C Lys5478 Hε2 5.1 
A Tyr247 Hε C Lys5478 Hα 5.2 
A Tyr247 Hε C Lys5478 Hβ2 5.4 
A Tyr247 Hε C Lys5478 Hδ2 5.5 
A Tyr247 Hε C Lys5478 Hγ2 5.5 
A Tyr247 Hε C Ile5479 Hγ2 3.8 
A Tyr247 Hε C Ile5479 Hα 3.9 
A Tyr247 Hε C Ile5479 Hδ1 4.0 
A Tyr247 Hε C Ile5479 Hβ 4.2 
A Tyr247 Hε C Ile5479 Hγ2 4.4 
A Tyr247 Hε C Ile5479 Hδ1 4.7 
A Tyr247 Hε C Ile5479 Hβ 5.1 
A Tyr247 Hε C Ile5479 Hα 5.2 
A Tyr247 Hδ C Ile5479 Hγ2 5.4 
A Tyr247 Hε C Ile5479 Hγ12 5.5 
A Tyr247 Hδ C Ile5479 Hα 6.0 
A Ala248 Hβ C Pro5480 Hβ1 4.8 
A Thr249 Hγ2 C Lys5478 Hδ1 4.6 
A Thr249 Hγ2 C Pro5480 Hβ1 3.4 
A Thr249 Hγ2 C Pro5480 Hβ2 3.7 
A Thr249 Hγ2 C Pro5480 Hγ2 3.7 
A Thr249 Hγ2 C Pro5480 Hα 4.8 
A Thr249 Hγ2 C Thr5481 Hβ 4.7 
A Phe253 Hε C Ile5479 Hγ2 5.3 
A Phe253 Hε C Ile5479 Hδ1 5.9 
A Phe253 Hδ C Thr5481 Hγ2 5.8 
A Phe253 Hδ C Thr5481 Hα 5.8 
A Phe253 Hε C Thr5481 Hγ2 5.9 
A Phe253 Hε C Thr5481 Hα 6.2 
A Phe253 Hδ C Thr5481 Hβ 6.3 
A Phe253 Hε C Thr5481 Hβ 6.3 
A Phe253 Hε C Pro5482 Hγ2 5.3 
A Phe253 Hδ C Pro5482 Hα 5.6 
A Phe253 Hε C Pro5482 Hβ1 5.7 
A Phe253 Hε C Pro5482 Hα 5.8 
A Phe253 Hδ C Pro5482 Hβ1 5.9 
A Phe253 Hδ C Pro5482 Hγ2 6.0 
A Phe253 Hδ C Pro5482 Hγ1 6.1 
A Phe253 Hδ C Pro5482 Hβ2 6.1 
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A Phe253 Hε C Pro5482 Hγ1 6.1 
A Phe253 Hε C Pro5482 Hβ2 6.1 
A Phe253 Hε C Pro5482 Hδ1 6.2 
A Phe253 Hδ C Pro5482 Hδ1 6.3 
A Phe253 Hε C Pro5482 Hδ2 6.4 
A Phe253 Hδ C Pro5482 Hδ2 6.6 
A Val254 Hγ1 C Thr5481 Hγ2 4.0 
A Val254 Hγ2 C Thr5481 Hγ2 4.5 
A Val254 Hγ1 C Thr5481 Hγ2 4.6 
A Val254 Hγ2 C Thr5481 Hγ2 5.3 
A Val254 Hγ1 C Pro5482 Hα 4.0 
A Val254 Hγ2 C Pro5482 Hα 4.1 
A Val254 Hγ2 C Pro5482 Hβ1 4.7 
A Val254 Hγ1 C Gln5483 Hα 3.1 
A Val254 Hγ2 C Gln5483 Hγ2 3.1 
A Val254 Hγ1 C Gln5483 Hα 3.1 
A Val254 Hγ2 C Gln5483 Hα 3.3 
A Val254 Hγ1 C Gln5483 Hγ2 3.3 
A Val254 Hγ2 C Gln5483 Hβ2 3.3 
A Val254 Hγ2 C Gln5483 Hγ2 3.5 
A Val254 Hγ2 C Gln5483 Hβ1 3.5 
A Val254 Hγ1 C Gln5483 Hγ2 3.5 
A Val254 Hγ2 C Gln5483 Hα 3.6 
A Val254 Hγ1 C Gln5483 Hβ2 3.6 
A Val254 Hγ1 C Gln5483 Hβ1 3.7 
A Val254 Hγ2 C Gln5483 Hβ2 3.7 
A Val254 Hγ2 C Gln5483 Hε21 3.8 
A Val254 Hγ1 C Gln5483 Hβ2 3.8 
A Val254 Hγ2 C Gln5483 Hβ1 3.9 
A Val254 Hγ2 C Gln5483 Hε22 3.9 
A Val254 Hγ1 C Gln5483 Hβ1 4.0 
A Val254 Hγ2 C Gln5483 HN 4.0 
A Val254 Hγ1 C Gln5483 HN 4.1 
A Val254 Hγ1 C Gln5483 Hε2 4.3 
A Val254 Hγ1 C Gln5483 Hε22 4.5 
A Ile255 Hγ2 C Lys5478 Hβ1 3.3 
A Ile255 Hγ2 C Lys5478 Hα 3.4 
A Ile255 Hγ2 C Lys5478 Hε2 3.6 
A Ile255 Hδ1 C Lys5478 Hβ1 3.6 
A Ile255 Hγ2 C Lys5478 Hδ1 3.8 
A Ile255 Hγ2 C Lys5478 Hβ2 3.8 
A Ile255 Hδ1 C Lys5478 Hε2 3.8 
A Ile255 Hδ1 C Lys5478 Hα 3.8 
A Ile255 Hγ2 C Lys5478 Hδ2 3.8 
A Ile255 Hγ2 C Lys5478 Hε1 4.0 
A Ile255 Hδ1 C Lys5478 Hβ1 4.0 
A Ile255 Hδ1 C Lys5478 Hε2 4.1 
A Ile255 Hδ1 C Lys5478 Hα 4.2 
A Ile255 Hδ1 C Lys5478 Hδ1 4.2 
A Ile255 Hδ1 C Lys5478 Hε1 4.2 
A Ile255 Hδ1 C Lys5478 Hβ2 4.4 
A Ile255 Hδ1 C Lys5478 Hδ2 4.4 
A Ile255 Hδ1 C Lys5478 Hε1 4.4 
A Ile255 Hδ1 C Lys5478 Hβ2 4.5 
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A Ile255 Hδ1 C Lys5478 Hδ2 4.6 
A Ile255 Hδ1 C Lys5478 Hγ2 5.0 
A Ile255 Hδ1 C Ile5479 Hα 4.7 
A Ile255 Hδ1 C Pro5480 Hβ1 3.7 
A Ile255 Hδ1 C Pro5480 Hβ2 4.3 
A Ile255 Hγ2 C Pro5480 Hβ1 4.4 
A Ile255 Hδ1 C Pro5480 Hγ2 4.4 
A Ile255 Hγ2 C Pro5480 Hβ2 4.6 
A Ile255 Hγ1 C Pro5480 Hβ1 4.8 
A Ile255 Hδ1 C Pro5480 Hα 4.9 
A Ile255 Hγ1 C Pro5480 Hβ1 5.0 
A Ile255 Hγ2 C Pro5480 Hγ2 5.1 
A Ile255 Hγ2 C Thr5481 Hγ2 4.3 
A Ile255 Hγ2 C Thr5481 HN 4.7 
A Ile255 Hδ1 C Thr5481 Hγ2 4.9 
A Ile255 Hδ1 C Thr5481 HN 5.1 
A Pro256 Hγ2 C Lys5478 Hα 3.6 
A Pro256 Hβ1 C Lys5478 Hα 4.4 
A Pro256 Hγ2 C Lys5478 Hβ1 4.4 
A Pro256 Hβ2 C Lys5478 Hα 4.5 
A Pro256 Hδ2 C Lys5478 Hα 4.6 
A Pro256 Hδ1 C Lys5478 Hα 4.8 
A Pro256 Hγ2 C Lys5478 Hδ2 5.0 
A Pro256 Hβ1 C Lys5478 Hβ1 5.0 
A Pro256 Hγ2 C Ile5479 Hγ2 4.6 
A Pro256 Hγ2 C Thr5481 Hγ2 3.7 
A Pro256 Hβ2 C Thr5481 Hγ2 4.5 
A Pro256 Hδ2 C Thr5481 Hγ2 4.7 

Table 4 – intermolecular restraints between EB1cΔ8 and 11MACF obtained through the iterative 

assignment performed by ARIA 

Chain Residue Atom Chain Residue Atom Distance 
(Å) 

A Phe218 Hα C Ile5479 Hδ1 4.4 
A Leu221 Hδ2 C Ile5479 Hγ2 3.2 
A Leu221 Hα C Ile5479 Hγ2 3.7 
A Leu221 Hδ2 C Ile5479 Hδ1 3.8 
A Leu221 Hδ1 C Ile5479 Hδ1 3.4 
A Leu221 Hα C Ile5479 Hδ1 3.8 
A Leu221 Hγ C Ile5479 Hδ1 4.4 
A Leu221 Hγ C Ile5479 Hδ1 4.4 
A Arg222 Hα C Ile5479 Hδ1 2.9 
A Arg222 Hδ1 C Ile5479 Hδ1 4.2 
A Arg222 Hβ1 C Ile5479 Hδ1 4.5 
A Asn223 Hα C Lys5475 Hγ2 3.4 
A Ile224 Hδ1 C Ile5479 Hγ2 3.7 
A Ile224 Hγ2 C Ile5479 Hγ2 3.9 
A Ile224 Hδ1 C Ile5479 Hγ2 3.6 
A Ile224 Hδ1 C Ile5479 Hδ1 3.0 
A Glu225 Hβ2 C Ile5479 Hβ 3.6 
A Glu225 Hγ1 C Pro5476 Hβ2 3.8 
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A Glu225 Hα C Ile5479 Hδ1 4.1 
A Glu225 Hγ1 C Ile5479 Hδ1 4.3 
A Glu225 Hγ2 C Ile5479 Hδ1 4.5 
A Leu226 Hδ2 C Lys5475 HE2 4.0 
A Leu226 Hδ1 C Pro5476 Hδ2 4.1 
A Leu226 Hδ1 C Lys5475 HE2 3.8 
A Leu226 Hα C Lys5475 Hγ2 3.0 
A Leu226 Hγ C Lys5475 Hγ2 3.2 
A Leu226 Hδ1 C Lys5475 Hγ2 2.8 
A Leu226 Hβ1 C Lys5475 Hγ2 2.9 
A Leu246 Hδ1 C Ile5479 Hγ1 3.1 
A Leu246 Hδ2 C Ile5479 Hγ2 3.5 
A Leu246 Hβ1 C Ile5479 Hγ1 3.7 
A Leu246 Hδ2 C Ile5479 Hδ1 3.0 
A Leu246 Hα C Ile5479 Hγ2 3.6 
A Leu246 Hδ1 C Ile5479 Hγ2 4.1 
A Leu246 Hδ1 C Ile5479 Hδ1 3.3 
A Thr249 Hα C Pro5480 Hβ2 4.0 
A Thr249 Hγ2 C Pro5480 Hβ2 2.5 
A Thr249 Hγ2 C Pro5480 Hγ2 3.2 
A Thr249 Hγ2 C Pro5480 Hβ1 2.8 
A Thr249 Hβ C Pro5480 Hβ1 3.7 
A Thr249 Hα C Pro5480 Hβ1 3.2 
A Thr249 Hα C Pro5480 Hγ2 3.3 
A Val254 Hγ1 C Pro5482 Hδ2 4.2 
A Val254 Hγ1 C Pro5480 Hβ2 3.4 
A Val254 Hγ2 C Gln5483 Hβ1 3.0 
A Val254 Hγ2 C Arg5484 Hγ1 4.0 
A Val254 Hγ2 C Thr5481 Hγ2 3.2 
A Val254 Hγ2 C Arg5484 HN 2.8 
A Val254 Hγ1 C Gln5483 Hβ1 3.2 
A Val254 Hγ1 C Arg5484 Hγ1 3.9 
A Val254 Hγ1 C Thr5481 Hγ2 3.7 
A Val254 Hγ1 C Thr5481 HN 2.8 
A Val254 Hγ1 C Gln5483 HE2 3.9 
A Val254 Hβ C Thr5481 HN 3.2 
A Val254 Hβ C Pro5482 Hγ2 3.8 
A Val254 Hγ2 C Gln5483 Hβ1 4.1 
A Val254 Hγ1 C Gln5483 Hα 2.4 
A Val254 Hγ1 C Thr5481 Hγ2 3.7 
A Val254 Hγ1 C Thr5481 Hβ 3.8 
A Val254 Hγ2 C Gln5483 Hα 2.9 
A Val254 Hγ2 C Gln5483 Hγ2 2.8 
A Val254 Hγ2 C Gln5483 Hβ2 2.7 
A Val254 Hγ2 C Gln5483 HE2 3.2 
A Val254 Hγ2 C Gln5483 HE2 3.3 



 

xxiii 
 

A Val254 Hγ1 C Gln5483 Hγ2 3.0 
A Val254 Hγ1 C Gln5483 Hβ2 3.0 
A Val254 Hγ1 C Gln5483 HN 3.3 
A Val254 Hγ1 C Gln5483 HE2 3.8 
A Val254 Hγ2 C Pro5482 Hα 3.6 
A Val254 Hγ1 C Pro5482 Hα 3.4 
A Val254 Hγ2 C Thr5481 Hβ 3.8 
A Ile255 Hγ2 C Pro5480 Hβ2 4.5 
A Ile255 Hβ C Pro5480 Hβ1 5.5 
A Ile255 Hα C Thr5481 HN 3.2 
A Ile255 Hγ1 C Pro5480 Hβ1 3.7 
A Ile255 Hδ1 C Pro5480 Hβ1 3.0 
A Ile255 Hδ1 C Lys5478 Hα 3.3 
A Ile255 Hγ2 C Lys5478 Hγ2 3.5 
A Ile255 Hδ1 C Lys5478 Hδ1 3.8 
A Ile255 Hδ1 C Ile5479 Hγ2 3.8 
A Ile255 Hγ2 C Lys5478 HE2 3.1 
A Ile255 Hγ2 C Lys5478 Hβ1 2.8 
A Ile255 Hδ1 C Lys5478 HE2 3.3 
A Ile255 Hγ2 C Lys5478 Hδ1 2.6 
A Ile255 Hγ2 C Lys5478 Hα 2.4 
A Ile255 Hγ2 C Pro5480 Hγ2 4.2 
A Ile255 Hγ2 C Pro5480 Hβ2 3.8 
A Ile255 Hγ2 C Lys5478 Hβ2 3.2 
A Ile255 Hγ1 C Pro5480 Hβ1 3.5 
A Ile255 Hδ1 C Pro5480 Hα 3.9 
A Ile255 Hδ1 C Pro5480 Hγ2 3.7 
A Ile255 Hδ1 C Pro5480 Hβ2 3.5 
A Ile255 Hγ2 C Lys5478 Hδ2 3.8 
A Pro256 Hδ2 C Thr5481 Hγ2 3.9 
A Pro256 Hδ2 C Lys5478 Hα 3.0 
A Pro256 Hγ2 C Lys5478 Hδ1 3.5 
A Pro256 Hγ2 C Ile5479 Hγ2 3.5 
A Pro256 Hγ2 C Lys5478 Hγ2 3.5 
A Pro256 Hβ1 C Lys5478 Hγ2 3.8 
A Pro256 Hδ2 C Thr5481 HN 3.7 
A Pro256 Hδ1 C Thr5481 Hγ2 4.1 
A Pro256 Hα C Thr5481 Hγ2 3.8 
A Pro256 Hγ2 C Lys5478 Hβ2 3.6 
A Pro256 Hγ2 C Lys5478 Hβ1 3.4 
A Pro256 Hγ2 C Thr5481 Hγ2 3.5 
A Pro256 Hγ2 C Thr5481 HN 3.7 
A Pro256 Hβ2 C Thr5481 Hγ2 3.6 
A Pro256 Hγ2 C Lys5478 Hα 2.3 
A Asp257 Hβ2 C Lys5478 Hα 2.9 
A Asp257 Hβ1 C Lys5478 Hα 3.0 
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A.4 Screening of a PPI focused library 
 

It has been shown that successful inhibitors of protein− protein interactions tend to 

have certain properties that distinguish them from more traditional drugs designed for 

more conventional target classes, such as enzymes, G protein-coupled receptors, ion 

channels, nuclear hormone receptors, etc.20> It has been shown that these compounds 

tend to be larger and more three-dimensional.205 A more detailed description of the 

properties identified for this class of molecules has been detailed in Chapter 1, section 

1.2.1.3. 

Over the past few years there have been efforts in building chemical libraries enriched 

in small molecules with these desirable properties. A compound library containing 

1534 compounds reported to have chemical properties within the chemical space of 

PPI modulators was made available during the course of this project – PPI-Net 

compound library. The library was obtained through the “Protein-Protein Interactions 

Network” (PPI-Net) and funded by EPSRC grants (EP/I037210/1 and EP/I037172/1) 

and GlaxoSmithKline (GSK).  

The strategy applied to screen this library and described herein is different from what 

was performed in the previous chapters but it is a valid complementary approach for 

identification of PPI modulators. 

A.4.1  Virtual screening of the PPI-Net library 

The entirety of the PPI-Net library (1534 molecules) was subjected to an initial in 

silico screen using a structure-based virtual screening approach – docking. For that 

purpose GOLD111–118 was used. An important use of protein–ligand docking programs 

is virtual screening of large libraries where each compound in turn is docked into a 

target binding site and scored for their predicted strength of binding. Ideally, the 

docking needs to be quick but the results reliable. Speeding up a docking protocol is 

often done at the cost of sampling fewer binding modes, which can lead to reduced 

success rates.114 The default genetic algorithm (GA) parameters in GOLD result in 

thorough but relatively slow searches per processing core, acceptable for individual 

ligand docking but not of much use for large libraries, unless many cores are used in 

parallel.20> In virtual high throughput screening (HTS) it is more important to predict 

relative ligand binding affinities than accurate binding poses. Therefore, the choice of 



 

xxv 
 

scoring function is clearly important. It has been reported that Goldscore outperforms 

Chemscore in predicting affinities, especially at fast search settings. In addition, the 

search efficiency (from GA settings) can be used to further control the speed of 

docking and the predictive accuracy (i.e. the predictivity) of the results. With the 

search efficiency set at 100% GOLD will attempt to apply optimal settings for each 

ligand. For a ligand with five rotatable bonds this will be around 30000 GA operations. 

If the search efficiency is set to 50%, then GOLD will perform around 15000 

operations thereby speeding up the docking by a factor of two, but the search space 

would be less well explored. The virtual screening option offered by GOLD sets the 

search efficiency at 30%. This setting is suitable for routine work and usually gives 

comparable predictive accuracy to the slower settings, unless the ligand has a large 

number of rotatable torsions.160 Therefore, the 1534 compounds were screened using 

this option.  

After structure-based screening it is necessary to perform a virtual hit compound 

selection. There are several ways of achieving this, and some of these were described 

in the previous chapters, e.g. ligand efficiency, Pareto ranking, etc. In order to 

complement these approaches and as there was already some information about which 

molecules formed favourable interactions with the target protein – we used 

quantitative structure-activity relationship (QSAR) analysis was complemented with 

compound plate selection. These approaches will be subsequently described. 

A.4.2  Quantitative structure-activity relationship (QSAR) analysis 

Drug discovery is an iterative process with a cycle of design, synthesis and testing. 

Analysis of the results from one iteration provides information and knowledge that 

will be introduced in the next cycle, enhancing it and yielding more results.71 At this 

stage of the project there were a small number of molecules tested, some with “positive” 

data (i.e. interaction with EB1) and some with “negative” data. As described in the 

introductory chapter – section 1.2.1.2.1 – when a number of active and inactive 

compounds are known it is possible to perform a QSAR analysis. QSAR analysis refers 

to the use of machine learning methods to correlate structural or physiochemical 

properties (molecular descriptors) of a molecule with a measured property, such as 

biological or chemical reactivity.71 Classical QSAR methods rely on structural features 

or lipophilicity, polarizability, electronic and steric properties (Hansch analysis). With 
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the advance of structural biology methods such as X-ray protein crystallography, 

additional information from the three dimensional structures could be integrated into 

the QSAR models – 3D QSAR. The comparative molecular field analysis – CoMFA 

method was the first real 3D QSAR method. A CoMFA analysis identifies regions in 

three-dimensional space that are favourable or unfavourable for a ligand-target 

interaction.20> A group of chemically related compounds with the same mechanism of 

action are selected. In contrast with classical QSAR methods these should share a 

common pharmacophore and not the same molecular scaffold.207  

Norfloxacin is one of the first examples of success of application of QSAR methods. 

This scaffold was found through 2D-QSAR studies made on the antibacterial activities 

of monosubstituted 1-ethyl-1,4-dihydro-4-oxo-quinoline-3-carboxylic acids - Figure . 

Donepezil hydrochloride is another successful application of QSAR methods, where 

X-ray crystallography and molecular modelling studies where used in combination 

with QSAR analysis - Figure .20> 

 

Figure 1 – Examples of molecules currently used as drug that were found through the successful 

application of QSAR methods. 

The first step in the QSAR analysis is to compile all the tested compounds against 

EB1cΔ8, and classify them as active/inactive – Table 1. Compounds that promoted 

significant NMR chemical shift changes in the NH resonance of EB1cΔ8 are 
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considered as active and therefore have a green mark. Inactive compounds that did not 

promote chemical shift changes in NH resonances of EB1cΔ8 are marked as red 

crosses. The first generation compounds correspond to the virtual screening and in 

vitro testing described in Chapter 2. Compound ZINC12677264 (1d) is not included 

since at the time of this analysis the compound had not been tested. Second generation 

compounds correspond to the work described in Chapter 4. Finally, in-house 

compounds, correspond to a small compound collection existent prior to the start of 

this project that was screened using the same method used for the previous compounds 

– chemical shift perturbations upon ligand titration. 

Table 1 – Molecules previously tested against EB1cΔ8.  

Code Structure Binding to 
EB1cΔ8  

ZINC08389070 

 

ü First generation 

ZINC71025726 

 

û First generation 

ZINC64398049 

 
û 

First generation 

ZINC40017212 

 

ü 
Second generation 

ZINC31040053 

 

ü 
Second generation 

ZINC12929029 

 

û 
Second generation 
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ZINC50136319 

 

û 
In-house compounds 

ZINC51305175 

 
û 

In-house compounds 

ZINC56787233 

 
û 

In-house compounds 

ZINC64898686 

 
û 

In-house compounds 

ZINC66121638 

 
û 

In-house compounds 

ZINC02638973 

 
û 

In-house compounds 

ZINC67146994 

 
û 

In-house compounds 

ZINC67208611 

 

û 
In-house compounds 

ZINC67846598 

 
û 

In-house compounds 

ZINC67962567 

 

û 
In-house compounds 

ZINC68228234 

 

û 
In-house compounds 

ZINC68451427 

 

û 
In-house compounds 
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For the QSAR ligand-based design it is necessary to calculate a set of molecular 

descriptors which capture numerically the structure and properties of each compound. 

These descriptors vary in complexity, from molecular weight to quantum mechanical 

derived values, and their complexity is usually associated with a better discriminatory 

capability.71  

A.4.3  QSAR descriptors 

The descriptors selected cover not only properties intrinsically related with the 

molecular structure (ligand based) but also with the predicted binding mode for each 

compound – docking based descriptors. These are schematically represented in Figure 

2 and detailed in Chapter 7 – section 7.1.4. 

The 2D descriptors are based on the two-dimensional and three-dimensional structure 

of the molecules, whereas 3D descriptors are based on the conformation of the 

molecule in its predicted binding mode. Fingerprints and physicochemical properties 

were both calculated using Pipeline Pilot16>. Molecular fingerprints define the 

structure of a molecule using a series of binary digits (bits) that represent the presence 

or absence of particular substructures in the molecule.209 Dragon descriptors were 

calculated using Dragon 6210, a software that can calculate up to 4885 molecular 

descriptors. Given the large number of molecular descriptors available, selection 

procedures can be used to identify those descriptors which best represent the data. 

Some molecular descriptors calculated using Dragon 6 correspond to molecular 

properties and therefore overlap with physicochemical properties (e.g. molecular 

weight). Finally, the three-dimensional descriptors, based on binding prediction and 

derived from the docking results can be divided in two groups: based on GOLD 

solutions and descriptors calculated through GoldMine based on docking predictions. 

In the first group one can encounter descriptors such as predicted binding score, scores 

from hydrogen bond formation between the ligand and the protein, i.e., the output 

present in a Gold solution file. The second group includes the descriptors calculated in 

GoldMine based on the docking output. Examples are number of hydrogen bond 

contacts, hydrophobic buried area, number of all contacts between the ligand and the 

protein (general contact count), etc. Both sets of 3D descriptors are detailed in Table 

2 and 3. 
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Figure 2 – Types of molecular descriptors calculated on a set of 18 molecules previously tested against 

EB1cΔ8. Top scheme shows the descriptors calculated only based on the chemical structure of the 

molecules. Bottom scheme represents the two sets of descriptors calculated based on the docking results 

– these include parameters relative to the molecular structure of the ligands but also regarding the pose 

obtained from docking calculations. 
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Table 2 – Molecular descriptors obtained directly from GOLD docking solutions. 

A
SP

 

Gold.ASP.ASP 
Gold.ASP.DEClash 
Gold.ASP.DEInternal 
Gold.ASP.Fitness 

Gold.ASP.Internal.Correction 
Gold.ASP.Map 
Gold.ASP.SBar 

C
he

m
sc

or
e 

Gold.Chemscore.DEClash 
Gold.Chemscore.DEClash.Weighted 
Gold.Chemscore.DEInternal 
Gold.Chemscore.DEInternal.Weighted 
Gold.Chemscore.Fitness 
Gold.Chemscore.Hbond 
Gold.Chemscore.Hbond.Weighted 
Gold.Chemscore.Internal.Correction 
Gold.Chemscore.Internal.Correction.Weighted 

Gold.Chemscore.Internal.Hbond 
Gold.Chemscore.Internal.Hbond.Weighted 
Gold.Chemscore.Lipo 
Gold.Chemscore.Lipo.Weighted 
Gold.Chemscore.Metal 
Gold.Chemscore.Metal.Weighted 
Gold.Chemscore.SBar 
Gold.Chemscore.Zero.Coef 

G
ol

ds
co

re
 

Gold.Goldscore.External.Hbond 
Gold.Goldscore.External.Hbond.Weighted 
Gold.Goldscore.External.Vdw 
Gold.Goldscore.External.Vdw.Weighted 
Gold.Goldscore.Fitness 
Gold.Goldscore.Internal.Correction 
Gold.Goldscore.Internal.Correction.Weighted 

Gold.Goldscore.Internal.Hbond 
Gold.Goldscore.Internal.Hbond.Weighted 
Gold.Goldscore.Internal.Torsion 
Gold.Goldscore.Internal.Torsion.Weighted 
Gold.Goldscore.Internal.Vdw.Weighted 

C
he

m
PL

P 

Gold.PLP.Chemscore.CHOScore 
Gold.PLP.Chemscore.Hbond 
Gold.PLP.Chemscore.Internal.Correction 
Gold.PLP.Chemscore.Metal 
Gold.PLP.Fitness 
Gold.PLP.PLP 
Gold.PLP.SBar 

Gold.PLP.ligand.clash 
Gold.PLP.ligand.torsion 
Gold.PLP.part.buried 
Gold.PLP.part.hbond 
Gold.PLP.part.metal 
Gold.PLP.part.nonpolar  
Gold.PLP.part.repulsive 

Table 3 – Molecular descriptors calculated using GoldMine for solutions obtained for each scoring 

function, ASP, Chemscore, Goldscore and ChemPLP. 

Contact 
descriptors 

General contact count 
Hydrogen bond contact count 
Hydrophobic buried area 
Hydrophobic contacts contact count 

Simple descriptors 

Exposed hydrophobic count 
Ligand acceptor count 
Ligand clash count 
Ligand donor count 
Ligand hbond count 
Molecular weight 
Occluded ligand acceptor count 
Occluded ligand donor count 
Occluded ligand polar count 
Occluded protein acceptor count 
Occluded protein donor count 
Occluded protein polar count 
Occluded rotatable bond count 

Surface Area Ligand Buried Surface Area 
Docked 
Undocked 
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Given the large amount of information it is likely that some of this information may 

be redundant, therefore, descriptor selection is an integral part of QSAR development. 

It should help to reduce the vast number of descriptors, increasing the chance of 

finding a significant QSAR model, i.e. only a small number descriptors are actually 

correlated with biological activity.71,20> The first type of descriptors to remove will be 

the constant values, as nothing is gained from their inclusion. Correlated descriptors 

should be also removed. Lastly, they should be evenly distributed and without outliers. 

This may require scaling some descriptors.71 For example, from the descriptors 

calculated for Goldscore from the solution output file 12 descriptors were removed, 

such as “protein active residues”, common to all the docking runs and therefore 

contained no discriminatory information, keeping a final number of 12 used 

descriptors. 

A.4.4  Method validation 

With the first step of QSAR analysis, encoding molecular properties into numeric 

values, accomplished the next step was to build a predictive model. Random Forest 

(RF) and Support Vector Machine (SVM) were used as machine learning methods to 

build the predictive models. RF is based on an ensemble, or forest, of decision trees. 

The trees are built using a training sample of a reduced size selected at random with 

replacement from original data. Using the new training sample, a tree is grown with 

randomly selected descriptors. The remaining training data is used to estimate error 

and variable importance. RF is easy to use, as the user needs to fix only two parameters: 

the number of trees in the forest and the number of descriptors in each tree. A large 

number of trees should be grown, and the number of descriptors to be taken is the 

square root of the total number of descriptors.211,21> SVM maps the data into a high-

dimensional space, using a kernel function that is typically nonlinear. An optimal 

separation between two classes is achieved by maximising the margin between the 

closest points, known as support vectors.211,212 Both seem to perform well in terms of 

classification models, performing similarly when compared. These methods have been 

widely used in chemoinformatics, and are easily accessible via platforms such as R213, 

making them a good starting point for machine learning methods. 

One of the dangers in QSAR analysis is building a model that lacks both explanatory 

and predictive ability, being essentially meaningless. Because of this risk, it is 
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important to validate the built models and, if necessary, make adjustments to methods 

or parameters to improve their quality.21> Therefore, the resulting datasets were 

validated using cross validated receiver operator curve area under the curve (ROC 

AUC) score. A cross-validation method excludes a fraction of the training data from 

the model building process and makes predictions for the left-out data using the model 

built from the remaining data. ROC curve is a visual illustration of the success and 

error observed in a classification model. A perfect model will score 1.0 meaning that 

there is a 100% true positive rate and a 0% false positive rate. When a score is 0.5 the 

test becomes useless as it makes a random prediction, 50% true positive versus 50% 

false positive, meaning that a “useful” ROC score needs to be between 0.5 and 1.215 

Based on the ROC scores, from the descriptors mentioned in Table 4, only the ones 

calculated based on the binding pose (GOLD) were used for analysis as they proved 

to be able to perform a better discrimination in both machine learning models (ROC >> 

0.5). Therefore, three models were calculated for each scoring function – one based on 

the parameters calculated for each docking solution (i.e. solutions), the second was 

based on descriptors calculated using GoldMine (i.e. calculated descriptors) but not 

the direct output from the docking. A third model that combines both sets of 

descriptors was also calculated (solutions and calculated descriptors). 

Most of the so-called classification models are really ranking models. That is, their 

basic prediction is not a specific class assignment but instead a score (or set of scores) 

that indicates the relative likelihood that a sample is in one class as opposed to 

another.21> To turn a ranker into a true classifier requires specification of a cut-off 

value for the score. For score values below the cut-off, one classification is attributed 

(e.g. inactive); for scores above the cut-off they are classified alternatively (e.g. active). 

The cut-off value chosen for a given model depends on our relative preference for true 

positives versus false positives, or specificity versus sensitivity. In this case, molecules 

with a score predicted to be higher than 0.5 were classified as active. 
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Table 4 – ROC scores obtained for cross validation of the models built based on each set of descriptors 

as an evaluation of the applicability of each set of descriptors and model.  

Descriptors 
Random Forest 

ROC score 

Support Vector Machine 

ROC score 

Molecular Fingerprints 

FCFP_2 0.60 0.60 

FCFP_4 0.64 0.51 

FCFP_6 062 0.56 

ECFP_2 0.60 0.82 

ECFP_4 0.78 0.56 

ECFP_6 0.58 0.51 

Estate keys 0.93 0.51 

MDL public keys 0.56 0.62 

Physicochemical descriptors 

Pipeline Pilot 0.76 0.60 

GOLD 

Chemscore – solutions 0.99	 0.99	

Chemscore – GoldMine descriptors 0.99 0.99 

Chemscore - solutions & GoldMine descriptors 0.99 0.99 

Goldscore – solutions 0.99 0.99 

Goldscore – GoldMine descriptors 0.99 0.99 

Goldscore - solutions & GoldMine descriptors 0.99 0.99 

ASP – solutions 0.99 0.97 

ASP – GoldMine descriptors 0.99 0.99 

ASP – solutions & GoldMine descriptors 0.99 0.99 

ChemPLP – solutions 0.99 0.97 

ChemPLP – GoldMine descriptors 0.99 0.99 

ChemPLP - solutions & GoldMine descriptors 0.99 0.99 

Dragon descriptors 

2D 0.67 0.56 

3D 0.64 0.56 

 

Finally, and because not all molecules may be suitable to be evaluated using these 

models the model applicability filter node of Pipeline Pilot was used to remove 

molecules that are outside the models’ applicability domain.21> Because the model 

was built on a training set, molecules outside the chemical space defined by the 

training set are not suitable to be screened using these models. A total of 208 (out of 

1534) molecules passed the model applicability filter, from which only 49 had 
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solubility values (logS) higher than -4. As reported in previous chapters (Chapters 2 

and 4) -4 is an acceptable cut off value for aqueous solubility so the molecules can be 

screened using biophysical methods such as solution NMR and ITC. These were 

ranked using a Pareto ranking approach based on the probability of a molecule being 

active calculated by each model and aqueous solubility. Next section will describe this 

analysis. 

A.4.5  Pareto rank 

As described above three models based on descriptors obtained from docking solutions, 

GOLD solutions, GoldMine descriptors and both, were built for each scoring function 

and for each machine learning method – SVM and RF. Each model defined the 

molecules in terms of the probability of being active (true) or inactive (false) and 

attributed a score to each molecule. The molecules were then ranked using a 

multiobjective analysis – Pareto ranking. 

A Pareto ranking node was created for each model based on descriptors obtained from 

the docking using each scoring function – Goldscore, Chemscore, ChemPLP and ASP.  

Molecules with a higher probability to be active were ranked higher, followed by 

aqueous solubility ranking (higher the value of log S the better) – Figure 3. 

 

Figure 3 – Scheme describing the Pareto ranking approach used to rank the compounds from the PPI-
Net library using the scores obtained from the QSAR models. 

This approach was adopted for both SVM based and RF based models. As mentioned 

before a total of 49 molecules passed the model applicability filter and had a solubility 

values higher than -4, and therefore only these molecules were ranked in this manner. 

Analysis of the ranks obtained for both RF and SVM models reveals that for the ten 

best ranked molecules, eight are common to both ranks – Table 5. The presence of 

aromatic rings is high, 17 in total from which four are heteroaromatic.  
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Table 5 – Ten best ranked compounds for both RF and SVM models. 

ID	 RF	
rank	

SVM	
rank	 Structure	 ID	 RF	

rank	
SVM	
rank	 Structure	

777	 1	 1	

	

1219	 7	 8	

	

1428	 2	 2	

	

871	 -	 8	

	

367	 3	 3	

	

454	 8	 -	

	

675	 4	 6	

	

603	 9	 -	

	

1372	 5	 5	

	

661	 -	 9	

	

75	 6	 10	

	

668	 10	 4	
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Three of the compounds have macrocycles, between seven and eight membered rings. 

In terms of solubility values these vary between -3.08 and -3.96, still within an ideal 

range for biophysical methods (NMR and ITC) testing.  

At this time there was the opportunity of testing a large number of compounds using a 

HTS method - Octet® RED96 System. Consequently, an alternative virtual screening 

method was used in order maximise the number of compounds with the highest 

probability of success tested in a short period of time. This method will be 

subsequently described. 

A.4.6  Selection of compounds for high throughput screening method - 

Octet® RED96 System 

Virtual screening has been largely mentioned in this thesis as a way of ranking a library 

of compounds from best to worst and it also can be used to facilitate the biological 

screening of the compounds, and one of the ways described herein has been related 

with the choice of molecules with adequate aqueous solubility values.  

When screening a large library of compounds one must be aware of the time 

consuming step of sample preparation for biological screen. In principle, sample 

preparation of a whole 96 well plate is quicker than selecting samples from 96 wells 

from different plates. Therefore, it was decided to develop a virtual screening method 

that will indicate the 96-well plate(s) out of 20 which contains the highest number of 

virtual hits. 

To start, all compounds were docked, using GOLD, and two methods used were 

normal docking and biased docking. These are more detailed in the methodology 

chapter - Chapter 7. At this stage some important binding features of EB1 were already 

known and the bias of docking studies can improve the hit rate by introducing some 

restraints that will rank higher compounds establishing desired contacts, occupying 

desired positions.15> Specifically, the two restraints included at this stage were a region 

constraint and a hydrogen bond constraint. The first will rank higher molecules that 

pose in a way that hydrophobic atoms are within a region defined as 3.5 Å region 

around Leu221 and Leu246, since these two residues are part of the hydrophobic cavity 

thoroughly characterised in Chapter 3. The second will favour scaffolds that make a 

hydrogen bond contact with the backbone of Val254 (Figure 4), also mentioned in this 
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thesis as a fundamental contact with the C-terminus of EB1c. This aspect is mostly 

addressed in Chapter 5. The reasoning for the use of these two constraints is to give 

higher scores to compounds that, when bound to EB1, make hydrophobic contacts with 

Leu221/Leu246 and/or hydrogen bond contacts with Val254, and are therefore, similar, 

to the native interactions. 

 

Figure 4 – Constraints used for the biased docking method. The yellow sphere represents a 3.5 Å radius 

around the coordinates -19.61, -26.09, 37.19. The sphere was designed in order to accommodate most 

of leucine side chains for Leu221 and Leu2446. The two green spheres represent hydrogen bond 

constraints with atoms number 515 and 518, corresponding to NH and CO of Val254 respectively.  

Therefore, two different docking studies were performed, both using Goldscore as 

scoring function. Because the first docking study was performed without any docking 

constraint will be termed as “normal”, whereas the second with the two described 

constraints will be termed as “biased”. Subsequently, the poses obtained for each 

docking study using the GA and scored using Goldscore, were rescored using the three 

alternative scoring functions: ASP, Chemscore and ChemPLP – Figure 5. 
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Figure 5 – Diagram summarising the method used to obtain fitness scores for the 1534 compounds of 

the PPI-Net library. 

Ten GA runs were performed and stored for each compound. Despite a prediction of 

a good fitness score by the scoring function being important, the consistent calculation 

of relatively high scored poses across several GA runs is also important. Consequently, 

for each compound, and each scoring function two values were attributed: the best 

fitness and the average obtained across the ten GA runs. 

Finally, and because the compound library is relatively diverse, with compounds from 

two different suppliers, with molecular weights ranging from 232.21 to 530.51 g.mol-

1, it was decided to apply a normalisation factor so scores obtained would be more 

homogeneous and less affected by the size/structure of the molecule. Therefore, ligand 

efficiency (LE) was calculated. This approach was utilised before and is described in 

Chapter 2 (score/number of heavy atoms). 

At this moment the 1534 molecules were organised in four different ranks: 

1. LE Rank – normal docking: rank calculated based on the ligand efficiency 

values obtained for the best score 

2. Average LE Rank – normal docking: rank calculated based on the ligand 

efficiency values obtained for the average score 

3. LE Rank – biased docking: rank calculated based on the ligand efficiency 

values obtained for the best score 

4. Average LE Rank – biased docking: rank calculated based on the ligand 

efficiency values obtained for the average score 
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It is not clear which rank will give more meaningful discrimination between active and 

inactive compounds. Ideally, all of them should be incorporated into the analysis. A 

method used frequently in this project to rank compounds through a balanced selection 

of different parameters, Pareto ranking, was again used. In addition to rank higher the 

best molecules in each previously described rank, aqueous solubility was again 

introduced as part of the balanced selection. 

At this stage compounds were ranked based on docking predicted scores and aqueous 

solubility. The next step will be selecting the 96-well plate with probability of having 

more active hits. For this selection two considerations were taken into account. The 

first is obviously related with the Pareto ranking, the plate with more compounds in 

the top ranked positions should, in principle, be considered for testing. A box plot was 

created based on the values obtained from Pareto ranking per plate barcode. The results 

are in Figure 6 and show plates 2000604-607 occupy not only in a lower position in 

the plot, indicating small values for the Pareto ranking and therefore higher hierarchy 

in the rank, but also the boxes are smaller indicating a smaller dispersion of values.   
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Figure 6 – Box plot based on the Pareto ranking obtained for the 1534 compounds of PPI-Net library. 

The ends of the whiskers represent the 95th and 5th percentiles, the ends of the boxes represent the 75th 

and 25th percentiles, the horizontal line represents the median and the white circle represents the mean 

value. Outliers are shown as red squares. 

The second is related with chemical diversity, as when performing an initial screening 

a diverse set of molecules with different properties is desirable as it improves the 

chances of not only finding hits but also gives better possibilities for hit optimisation. 

To evaluate chemical diversity DataWarrior21> was used. DataWarrior is a multi-

purpose data analysis tool where data can be filtered on structural motives, views are 

chemistry aware, molecule properties can be predicted from chemical structures, and 

specialized chemoinformatics methods explore the relationship between chemical 

structure and measured properties. Compounds belonging to plates (20000)604-607 

(for clarity the prefix 20000 from each barcode will be omitted from now on) were 

grouped according with their structure similarity, based on SkelSpheres descriptor, 

described as the most accurate descriptor for calculating similarities of chemical 

graphs in DataWarrior. The map obtained is in Figure 7, where plate 604 seems to be 
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clustered four big clusters of chemical structure similarity, meaning the compounds 

within this plate are not very diverse using the SkelSpheres descriptor. Solubility 

analysis was also incorporated to help plate selection – see legend in Figure 7. Plate 

604 solubility is mostly between green (logS around -4 and -5) and yellow (logS 

around -6). Plate 605 is well dispersed with fewer connections between compounds 

belonging to the same plate. Solubility values are now better, varying between cyan 

(logS ~ -3) and yellow (logS ~ -6). Compounds in the plate 606 show good diversity 

as well. Solubility wise, it looks this plate contain highly soluble compounds. Finally, 

plate 607 also shows good dispersion. However, few small clusters of structurally 

related compounds can be observed. Overall, these compounds seem to have good 

solubility values.  

A first analysis would possibly dictate that plates 605, 606 and 607 would probably 

the most suitable for in vitro screening, because they have better solubility values. 

However, in Figure 6 considerations about aqueous solubility were already included 

in the analysis. It was therefore decided to make a balance between predicted affinity 

and solubility. Plate 605 is clearly the plate with higher ranked compounds based on 

binding affinity prediction and solubility. In terms of the plate with compounds 

predicted to bind tighter to EB1c, plate 604 is clearly the front-runner. Finally, it was 

decided to select these two plates 604 and 605 for Octet® RED96 System screening. 

It is worth mentioning that four compounds included in these plates are found in the 

final compound selection obtained from QSAR approach, namely 1030, 1057 and 

1071 from plate 604 and 1081 from plate 605. 
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Figure 7 – Dispersion map based for the four 96-well plates to be analysed. Each square represents a different compound, coloured by plate. Connection lines are for neighbour 

compounds, i.e. compounds with similar structures. Background colour is related with the molecular solubility (logS). As an example, the two compounds on the right hand 

side corresponds to the two compounds from plate 606 selected in the map. These compounds have a SkelSpheres similarity value of 0.83. The figure was produced using 

DataWarrior21>. 
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A.4.7  Octet® RED96 System screening 

From the PPI-Net library 135 compounds, corresponding to plates 604 and 605 were 

tested using the Octet® RED96 System. This method is based on attachment of the 

target protein to a surface support (biosensor) through biotinylation reaction and then 

dipping the chip (biosensor) in ligand solution. The measurements provide kinetic 

parameter parameters such as Ka and Kd. 

This technique normally relies on biosensors that can be re-used.21> Upon binding of 

a ligand to a protein one should observe two distinct processes: the association and the 

dissociation. Figure 8 shows an ideal situation where the association phase can be 

observed up to 90 seconds followed by dissociation. Aspects related with this method 

will not be further detailed as this was an exploratory project which aim was to try to 

find a HTS method that could be applied for protein-protein interactions, as an 

alternative to biophysical techniques used (NMR and ITC).  

From the previous section results, it was decided to test all the compounds present in 

plates 604 and 605, yielding a total of 135 compounds. A 384-well plate was used to 

screen the selected compounds, where each well containing compound was 

accompanied with a blank well (without ligand) with dissociation buffer. Ligand 

concentration in each well was 500 µM. 

Nineteen compounds were selected as possible ligands for EB1cΔ8, 11 from plate 604 

and eight from plate 605 – Table 6. The average molecular weight for the selected 

compounds is 435 ± 16 g.mol-1. In terms of aqueous solubility these are more diverse, 

with logS values from -4.4 to -7.0, indicating that some of these compounds may not 

be suitable for testing using NMR or ITC due to their poor aqueous solubility. These 

compounds show a profile consistent with the association/dissociation pattern 

expected for a favourable interaction with the protein – Figure 9. None of these 

compounds correspond to the four compounds common to the QSAR final dataset and 

the tested compounds.  
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Figure 8 – Example of association/dissociation data normally obtained from Octet® RED96 System. 

The image was obtained from the supplier’s website http://www.fortebio.com/octet-RED96.html. 

Table 6 – Compounds selected as active after Octet® RED96 System screening. 

Octet Well Plate barcode 
PPI-Net 

plate well 
Vendor ID PPI-Net ID 

A9 20000604 A10 BDH34136166 1064 

C6 20000604 B7 BDH32350590 1041 

C7 20000604 B8 BDG34020588 1049 

C9 20000604 B10 LAS34137204 1065 

E1 20000604 C2 LAS34122636 1002 

E2 20000604 C3 LAS34124173 1010 

I8 20000604 E9 BDG34020575 1060 

K7 20000604 F8 BDG34020582 1053 

K8 20000604 F9 BDH34136185 1061 

O7 20000604 H8 BDH32352181 1055 

O8 20000604 H9 BDG34137236 1063 

A12 20000605 A3 BDG340205579 1088 

C13 20000605 B4 BDG34127776 1105 

C14 20000605 B5 BDG34018779 1097 

E13 20000605 C4 BDG340020587 1098 

E17 20000605 C8 BDG34125650 1130 

I15 20000605 E6 BDG34136119 1116 

K17 20000605 F8 LAS34135965 1133 

O14 20000605 H5 BDG34129080 1111 
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The remaining compounds showed either no response or the curve obtained was not 

consistent with association/dissociation pattern. Some showed only association and no 

dissociation and for some the association/dissociation curve gave opposite responses 

to the ones expected. A possible explanation may be non-specific binding to the 

surface. 

Unfortunately, many of the association/dissociation plots were inconclusive since 

some biosensors, when reused, were contaminated by ligands that failed to dissociate 

at the wash stage, thus affecting the subsequently analysed ligands using the same 

biosensor. This problem shows two limitations of this technique for HTS. The first is 

related with the speed and automation of the technique. In order to be a good HTS 

method it should be fast and automated.21> Replacing the contaminated sensors would 

require stopping the analysis which would need both time and supervision. Secondly, 

the reusability of the biosensors was one of the manufacturer’s selling point and from 

a HTS point of view one wants not only a reliable technique that can screen many 

compounds in a short period of time but also inexpensive enough to be a HTS 

technique. Buying a biosensor for each compound is expensive not only in terms of 

consumables but in terms of protein used.  

Another difficulty found when testing Octet® RED96 System is the low limit for 

compound concentration. This may be a complication when doing a first HTS in order 

to find active compounds. One does not expect, at least at a very initial stage to have 

highly active compounds. Alternatively, and because this technique allows for the 

calculation of parameters such as Ka, Kd, this technique seems to be suitable for hit 

validation, and in that case as a complementary method to a HTS screening. However, 

when testing the active molecules found to bind to EB1cΔ8 by solution NMR the 

results showed these compounds did not interact with EB1. A possible reason for that 

is the fact that high concentrations of these molecules are needed to have an interaction 

since these are weak binders. Ideally, one would like select some of these compounds, 

both active and inactive, do the opposite test, screening them using solution NMR. 

Additionally, testing molecules 1030, 1057, 1071 and 1081, by NMR could be another 

interesting, since these are common to both virtual screening approaches used to screen 

this library.  
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Figure 9 – Data obtained from Octet® RED96 System screening for compounds 1064 (top panel) and 

1053 (bottom panel) as examples of positive hits for EB1c binding. 

 

 

 

 

 

 

 

 

 


