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ABSTRACT 

Blastocystis is a common single-celled parasite of humans and other animals 

comprising at least 13 genetically distinct small subunit ribosomal RNA lineages (subtypes 

(ST)). In this study we investigated intra-subtype genetic diversity and host specificity of two 

of the most common subtypes in humans, namely ST3 and ST4, by analysing and comparing 

over 400 complete and partial nuclear SSU-rDNAs and data from multilocus sequence typing 

(MLST) of the mitochondrion-like organelle (MLO) genome of 132 samples. Inferences from 

phylogenetic analyses of nuclear SSU-rDNA and concatenated MLST sequences were 

compatible.  

Human ST3 infections were restricted to one of four identified MLO clades except where 

exposure to non-human primates had occurred. This suggests relatively high host specificity 

within ST3, that human ST3 infections are caused predominantly by human-to-human 

transmission, and that human strains falling into other clades are almost certainly the result of 

zoonotic transmission. ST4 from humans belonged almost exclusively to one of two SSU-

rDNA clades, and only 5 MLST sequence types were found among 50 ST4s belonging to 

Clade 1 (discriminatory index: 0.41) compared to 58 MLST sequence types among 81 ST3s 

(discriminatory index: 0.99).  

The remarkable differences in intra-subtype genetic variability suggest that ST4 has a 

more recent history of colonising humans than ST3. This is congruent with the apparently 

restricted geographical distribution of ST4 relative to ST3. The implications of this 

observation are unclear, however, and the population structure and distribution of ST4 should 

be subject to further scrutiny in view of the fact ST4 is being increasingly linked with 

intestinal disease. 
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1. INTRODUCTION 

Blastocystis is a parasitic protist and the most common non-yeast eukaryotic organism 

in the intestinal tract of humans and many other animals (Stenzel and Boreham, 1996; 

Stensvold et al., 2009c). The genus Blastocystis can be divided into at least 13 small subunit 

ribosomal RNA (SSU-rDNA) lineages, termed subtypes (ST), which are genetically so 

distinct that they could be considered separate species (Stensvold et al., 2007b; Stensvold et 

al., 2009a, 2009c; Parkar et al., 2010). 

Humans are mainly colonised by ST1-ST4 and rarely by ST5-ST9; ST10-ST13 have 

not been found in humans to date (Stensvold et al., 2009a; Parkar et al., 2010). The public 

health significance of Blastocystis and the potential for zoonotic transmission are subjects 

currently under intense scrutiny (Parkar et al., 2007; Stensvold et al., 2009a, 2009b, 2009c), 

and it is possible that differences in clinical outcome of Blastocystis infection are related to 

genetic differences on the subtype- or strain-level (Stensvold et al., 2009c; Stensvold et al., 

2011). 

In addition to humans, ST3 is also found in a variety of non-human hosts, including 

non-human primates (NHPs) and ungulates (Stensvold et al., 2009a; Alfellani et al., in 

preparation), whereas ST4 appears to be restricted to primates and rodents. Moreover, ST3 

appears to have a cosmopolitan distribution, whereas ST4 may be restricted primarily to 

Europe and North America (Malheiros et al., in press; Forsell et al., in press).  

The molecular epidemiology of Blastocystis is incompletely known and novel 

subtypes are still being discovered (Stensvold et al., 2009a; Parkar et al., 2010; Alfellani et 

al., in preparation). Very little is known about genetic variation in Blastocystis except for the 

nuclear SSU-rDNA, and no investigations of diversity within subtypes have been reported. 

Multilocus sequence typing (MLST) has been central to many studies seeking to 

unravel the molecular epidemiology of pathogenic microorganisms (Sullivan et al., 2005). 
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Although initially developed for studying haploid organisms (specifically bacteria), diploid 

sequence types have been described for Trypanosoma cruzi (Yeo et al., 2011), and some 

fungi, such as Aspergillus fumigatus and nosocomial Candida albicans strains (Bain et al., 

2007; Bougnoux et al., 2002), but in diploid organisms the MLST alleles can be difficult to 

interpret. Therefore, use of a sequence like the mitochondrial DNA (mtDNA) is advantageous 

as it is equivalent to a haploid genome. Blastocystis possesses mitochondrion-like organelles 

(MLOs) rather than classical mitochondria (Lantsman et al., 2008; Stechmann et al., 2008; 

Wawrzyniak et al., 2008), and MLO genomes of three subtypes (ST1, ST4 and ST7) have 

already been published (Pérez-Brocal and Clark, 2008; Wawrzyniak et al., 2008). 

In this study, we have developed a MLST scheme for ST3 and ST4 based on MLO 

genome sequence data and applied it to 132 samples from these subtypes. We have analysed 

nuclear SSU-rDNAs from GenBank and from our laboratories and compared them with 

sequence type data obtained by MLST. The results reveal remarkable differences in diversity 

within subtypes and suggest interesting conclusions on host specificity.  

 

2. MATERIALS AND METHODS 

 

Nuclear SSU-rDNA sequences obtained from GenBank, previous studies and new 

samples were analysed in order to detect intra-subtype nucleotide sequence variation. 

Candidate Blastocystis isolates for complete sequencing of MLO genomes were selected 

based on these results. All samples included in the present study are given in Tables 1 and 2 

with references.  

 

2.1. GenBank SSU-rDNA sequences and unpublished sequences from previous studies 



6 
 

Complete and partial ST3 and ST4 SSU-rDNAs were downloaded from GenBank. 

Hosts were recorded for each sequence; where no host was indicated in the entry or 

associated publication, it was assumed that the sequence was from a human sample. Since 

hundreds of ST3 sequences have been deposited in GenBank, only sequences that cover the 

barcode region (Scicluna et al., 2006) were included.  

Unpublished sequences from completed or ongoing studies by Stensvold et al. (2011), 

Alfellani et al., (in preparation), Rene et al. (2009), Forsell et al. (in press), and Onuoha et al. 

(unpublished) were also included (Tables 1 and 2). 

 

2.2. Original SSU-rDNA sequences 

Genomic DNAs from human and NHP faecal samples or cultures were mainly 

barcoded (Scicluna et al., 2006), but some sequences were obtained using primers targeting 

other parts of the gene. Samples from human hosts were obtained mainly from the UK and 

Denmark and NHP samples were from UK zoos (Tables 1 and 2). Consistent information on 

the clinical status of patients was not available, but most of the ST4 samples were from 

patients attending irritable bowel syndrome clinics. Blastocystis cultures of samples with the 

prefix ‘MA’ and ‘DMP’ (Tables 1 and 2) were established and maintained according to the 

method described by Clark and Diamond (2002) and discontinued after use.  

DNA from cultures was extracted as follows: cells were harvested by centrifugation, 

washed x3 in phosphate-buffered saline, and lysed in 0.25% SDS/0.1M EDTA pH 8. DNA 

was purified from lysates using the Puregene Core Kit A (QIAGEN, Hilden, Germany) 

according to the manufacturer’s instructions (including a proteinase K step). DNA was 

extracted directly from stool using the QIAamp DNA Stool Mini Kit (QIAGEN, Hilden, 

Germany) according to the recommendations of the manufacturer. 
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Five SSU-rDNA sequences were submitted to GenBank: DMP/04-872 (HQ909898), 

DMP/08-1040 (HQ909890), DMP/08-1043 (HQ909891), DMP/10-212 (JN682513), and 

GP_KVL (JN682512). 

 

2.3. Alignment and analysis of SSU-rDNA sequences 

For ST3, the 5’-terminal 500—600 base pair (bp) ‘barcode’ region (Scicluna et al., 

2006) was analysed for SNPs in an alignment of 217 sequences, of which 171 were from 

humans, 44 from NHPs and two from non-primate hosts (Table 1). For ST4, all available 

positions in 183 complete and partial sequences were analysed in a similar way; 170 

sequences were from humans, 3 from NHPs (lemurs), 7 from rats, and 3 from guinea pigs 

(Table 2). Alignments were generated using MultAlin, an alignment program with 

hierarchical clustering (Corpet, 1988) (Supplementary Fig. 1 and 2).  

 

2.4. Mitochondrion-like organelle (MLO) genome sequences 

For ST3, two human isolates (DMP/IH:478 and DMP/08-326) and a NHP isolate with 

a distinct SSU-rDNA (DMP/08-1043), all still available in culture, were chosen for complete 

MLO genome sequencing. For ST4, the human sample DMP/10-212 was chosen for whole 

MLO genome sequencing, since it represented the rarer Clade 2; DMP/02-328 from a human 

representing Clade 1 was previously sequenced by Pérez-Brocal and Clark (2008) (for an 

introduction to the clade system in ST4, please refer to Stensvold et al., 2011). 

All four MLO genomes were assembled using the Staden software package (Staden et 

al., 2000). Several primer pairs used in a previous study of the ST1 and ST4 MLO genomes 

(Pérez-Brocal and Clark, 2008) were re-used to obtain partial sequences of the ST3 genome, 

and the remaining sequence was covered by “primer walking”. PCR conditions (Biomix, 

Bioline, London, UK) and sequencing procedures were similar to those described previously 
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(Pérez-Brocal and Clark, 2008). Briefly, the amplification profile comprised an initial 

denaturing step at 94 °C for 2 min, followed by 10 cycles of touch-down PCR (denaturation 

at 94 °C for 30 sec, annealing at 60 °C, decreasing by 0.5 °C per cycle, and extension at 68 

°C for 4 min) followed by 20 cycles of conventional PCR, including a denaturation step at 94 

°C for 30 sec, an annealing step at 55 °C for 30 sec, and an extension step at 68 °C for 4 min. 

Purification of PCR products was performed using the GeneJET™ PCR Purification Kit 

(Fermentas, York, UK). Sequencing was performed on an ABI3730 with ABI Prism 

BigDye® Terminator v3.1 reagents (Applied Biosystems, Warrington, UK) using the PCR 

primers as sequencing primers.  

Further details and analyses of the MLO genomes of Blastocystis will be published 

separately. 

 

2.5. Selection of gene targets for MLST schemes 

Complete MLO genomes obtained for ST3 isolates DMP/IH:478, DMP/08-326 and 

DMP/08-1043 were aligned using MultAlin (Corpet, 1988) to locate clustered nucleotide 

sequence differences. Seven regions covering 300-600 bp with at least 2-3 polymorphisms in 

each between the three isolates were chosen for initial investigation as ST3 MLST locus 

candidates. Similarly, the ST4 MLO genomes of DMP/02-328 and DMP/10-212 were aligned 

to identify seven regions of polymorphism. For both MLST schemes, loci were chosen 

without regard to whether the regions to be sequenced were coding or non-coding.  

 

2.6. MLST PCR and sequencing of gene targets from multiple samples  

Initial screening and validation of MLST candidates was performed in individual 

tubes. The majority of the samples, however, were processed in PCR plates (Life Science 

Products, Scientific Laboratory Supplies, Ltd., Nottingham, UK) using the same PCR 



9 
 

conditions indicated above. PCR products in plates were purified using the SureClean 

protocol (Bioline, London, UK). Bidirectional sequencing of PCR products was performed as 

above using the amplification primers in 96 well sequencing plates (Micro-Amp®, Applied 

Biosystems, Cheshire, UK). DNA samples processed by MLST are given in Tables 1 and 2.  

For ST3, MLST sequences were submitted to GenBank in batches as follows: Locus 

1: HQ909892-HQ909974, locus 2: HQ909975-HQ910056, locus 3: HQ910057-HQ910138, 

locus 4: HQ910139-HQ910221, and locus 5: HQ909804-HQ909885 (for loci 1 and 4, 83 

sequences were submitted, however, complete data across all loci were available for 81 

samples only). For ST4, MLST sequences were given the following accession nos.: Locus 1: 

JN682212-JN682261, locus 2: JN682262-JN682311, locus 3: JN682312-JN682361, locus 4: 

JN682362-JN682411, locus 5: JN682412-JN682461, and locus 6: JN682462-JN682511. 

Sequences were also uploaded to a sequence typing database (Jolley and Maiden, 

2010) at http://pubmlst.org/blastocystis/, which is now open for ST3 and ST4 MLST 

sequence submission as well as SSU-rDNA sequence submission (18S database).   

 

2.7. Sequence editing, sequence type identification and discriminatory index  

Sequences were edited, assembled and analysed using Chromas version 2.33 

(Technelysium Pty. Ltd., Australia) and the Staden software package and entered into locus-

specific files. Multiple sequence alignments were performed using the ClustalW algorithm 

with default parameters in MEGA5 (Tamura et al., 2011), and alleles calculated by haplotype 

analysis using DNAsp v5 (Librado and Rozas, 2009) including sites with alignment gaps. 

Concatenated sequences from all loci were aligned, and sequence type identification and 

discriminatory index were calculated by haplotype analysis as above. 

 

2.8. Annotation of sequence types 
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Sequence types in MLST data sets are usually identified by the acronym “ST”. 

However, since “ST” is a widely accepted acronym for “subtype” in the Blastocystis 

literature, we chose not to change this. Instead, we propose that sequence types are annotated 

by numbers following the subtype (e.g. ST3.1, ST3.2, etc.).  

 

2.9. Phylogenetic analysis 

Concatenated nucleotide sequences from all MLST loci were produced for each 

sample and aligned. Maximum Likelihood (ML) analysis of aligned concatenated sequences 

was performed in Phyml v.2.4.5 (Guindon and Gascuel, 2003), using the General Time 

Reversible (GTR) model of nucleotide substitution with four categories of among-site rate 

variation, the proportion of invariant sites estimated from the data, and 1,000 bootstrap 

replicates. Bayesian inference analysis was carried out using MrBayes v3.1.2 (Huelsenbeck 

and Ronquist, 2001), the GTR model, four Markov chain Monte Carlo (MCMC) strands, and 

1,000,000 generations with trees sampled every 100 generations, after which the average 

standard deviation of split frequencies stabilised below 0.01. A consensus tree was produced 

after excluding an initial burn-in of 25% of the samples (Fig. 1A). 

In a similar way an alignment of partial ST3 SSU-rDNA sequences corresponding to 

those samples for which MLST data were available was submitted to manual editing and 

subsequent phylogenetic analysis using Bayesian and ML analysis as described above (Fig. 

1B).  

Finally, an alignment of 217 ST3 sequences (Table 1) was submitted to Maximum 

Likelihood analysis as above (Supplementary Fig. 3). 

 

3. RESULTS 
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Data obtained by using the MLST assay and results of studies of intra-subtype 

variability will be described below separately for the two subtypes. Due to extensive genetic 

divergence in the Blastocystis MLO genome between subtypes, it proved impossible for us to 

identify a common set of primers for MLST analysis that could be applied to all subtypes, 

and so it seems likely that a distinct set of MLST loci will need to be developed for analysis 

of each subtype. However, one advantage of developing subtype-specific markers is that the 

problem of analysing samples containing mixtures of subtypes will be overcome.  

 

3.1.1. ST3 MLST assay and intra-subtype variability 

Two of the initial seven MLST locus candidates were discarded; one (rps11) due to a 

homopolymer of 11-12 adenine bases present in the middle of the locus that frequently 

hampered successful bidirectional sequencing, and the other (rps4) due to reliability problems 

with amplification. None of the 81 DNAs tested failed to amplify at any of the remaining five 

loci. This indicates high assay sensitivity for ST3 from primates, whether using DNA 

extracted directly from stool or from cultures. MLST primer sequences, locus sizes and 

genome positions are given in Table 3. 

A total of 185 polymorphic sites were identified among the 1,448 positions in the 

concatenated alignment (12.9% diversity). Fifty-eight sequence types were detected and the 

overall discriminatory power based on analysis of the 81 sequences was 0.99. A 

discriminatory index of > 0.90 is necessary for MLST data to be interpreted with confidence 

(Hunter, 1990; Hunter and Gaston, 1998). Even within MLO Clade 1 (in which most of the 

human sequences were found, see below) the discriminatory index was 0.99. Sixteen 

sequence types were present in more than one sample. Three sequences included in the study 

were retrospectively identified as being from the same individual sampled at different times 

and sequence type ST3.3 was obtained for all three samples, indicating high MLST assay 
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reproducibility. A list of alleles linked to sample IDs and sequence types is available in 

Supplementary Table 1. 

Phylogenetic analysis of concatenated nucleotide sequences of the 81 samples 

revealed the existence of four MLO clades (Fig. 1A, Table 1)). MLO Clade 1 comprised 4 

sequences from NHPs and all but two the human sequences; these two exceptions were from 

NHP keepers. MLO Clade 2 comprised only two sequences, one from a patas monkey and 

one from a NHP keeper; the keeper was not affiliated with the zoo that hosts the patas 

monkey. MLO Clades 3 and 4 each included 4 sequences; Clade 3 comprised sequences from 

a colobus monkey, two macaques and a chimpanzee, while Clade 4 comprised sequences 

from two baboons, a macaque and a NHP keeper, who again was not affiliated with the zoo 

hosting the three NHPs in this clade. 

A large number of the DNA polymorphisms are silent and do not affect the amino 

acid sequences. However some polymorphisms cause quite significant protein changes. 

Sample MA320 shows a 15 bp deletion in rps3 (locus 2), which maintains the same reading 

frame but shortens the Rps3 protein by 5 amino acids. Additionally, variation in the number 

of adenine bases in a homopolymer within the rps12 gene (locus 5) was observed. A 

homopolymer of either 9, 10 or 11 adenines is found towards the 3’ end of the gene leading 

to the Rps12 protein differing in length by up to 10 amino acids at the C-terminus due to the 

varying position of the stop codon; in all three variants the latter is located within a tRNA-

Asn gene. This variation was not linked to host or geographic origin (data not shown). 

Similar variation has not been reported for other Blastocystis STs to date, but may also be 

found when intra-subtype diversity is investigated; a homopolymer in the same location is 

indeed present in the single ST1, ST4 and ST7 genomes sequenced so far. Interestingly, the 

rps12 coding region of ST7 (CU914152) is 441 bp long, whereas it is 378 bp in both ST1 
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(EF494740) and ST4 (EF494739) and 408bp in ST3 (DMP/IH:478), consistent with similar 

variation existing.  

  Phylogenetic analyses (Bayesian and ML) of the corresponding nuclear SSU-rDNAs 

showed a topology compatible with the one obtained for MLO data (Fig. 1B). SSU Clades 1 

and 2 were congruent with MLO Clades 1 and 2, respectively, and SSU Clade 3 

corresponded to MLO Clades 3 and 4. No samples representing SSU Clades 4 and 5 were 

available for MLST analysis. At position 131—133 in the ST3 alignment, five different SNP 

configurations were observed (Table 1; Fig. 1; Supp Fig. 1). The base triplet GAA (SSU 

Clade 1) was the most common and seen in humans (n=164) from the UK, Denmark, 

Sweden, France, Italy, Libya, Egypt, Tanzania, Vietnam, Japan and the Philippines, NHPs 

(n=11), and 2 large mammals (pig and cattle). Seven sequences from 5 NHPs and 2 humans 

had GTA (SSU Clade 2). ATG (SSU Clade 3) was seen in 32 sequences from 30 NHPs and 2 

humans, one of whom was known to be a NHP keeper, and two human sequences from 

France and Japan had ATC (SSU Clade 4). A colobus monkey from Tanzania had AAA 

(SSU Clade 5) (for a phylogenetic tree illustration of all ST3 SSU-rDNAs included in Table 1 

see Supplementary Fig. 3). The data indicate that the short fragment of the SSU-rRNA gene 

including the base pair triplet in position 131—133 is prognostic for intra-subtype variation 

in ST3 MLOs. 

  

3.1.2. ST4 MLST assay and intra-subtype variability  

 All 51 ST4 DNAs tested amplified consistently across all loci. The overall 

discriminatory power of the assay was only 0.43 and only 6 sequence types were detected 

(Table 2; Supplementary Table 2). The two clades identified at SSU-rDNA level were 

reflected in the MLO genome sequences (data not shown). In Clade 1, only 5 sequence types 

could be identified, and 38/51 (74.5%) ST4s included in the study were sequence type ST4.1, 
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one of which was from a rodent host (GP-KVL). Since the seventh locus targeting the orf143 

did not provide further discrimination, the number of loci in the assay was kept to 6. MLST 

primer sequences, locus sizes and positions are given in Table 3. No variation was found 

across the SSU-rRNA gene among the 50 ST4 Clade 1 sequences. 

DMP/10-212 was the only DNA sample available representing ST4 Clade 2, and 

when excluded from the dataset, the discriminatory power of the assay was reduced to 0.41, 

and only 12/2,318 positions in the concatenated alignment (0.5%) exhibited polymorphism 

(Table 2 and 3; Supplementary Fig. 4). Of these, only 3 were in coding regions: In locus 2, a 

lysine was present at amino acid position 79 in rps13 of sequence type ST4.5, whereas ST4.1 

had a glutamine. In locus 4, at position 15 in orf192 sequence type ST4.5 had an alanine and 

ST4.1 a valine. At locus 6, one SNP was present in a tRNA-Met: at position 47 a ‘C’ was 

present in sequence type ST4.1, whereas ST4.5 had ‘T’. Sequence type ST4.5 was 

represented by 5 DNAs with 12 polymorphisms relative to sequence type ST4.1. Sequence 

types 4.2—4.4 were represented by only one DNA sample each, and each of these shared 

their polymorphisms with either ST4.1 or ST4.5. 

Including DMP/10-212 (sequence type ST4.6) remarkably raised the amount of 

polymorphism to 13.5% across the six loci (Table 3), which was comparable to the amount of 

variation seen within ST3. SNPs in sequence type ST4.6 resulted in a protein with 14 amino 

acid changes in rps13 (locus 2) and that was 9 amino acids longer than that of the remaining 

sequence types. Due to the divergence of DMP/10-212, substantial differences in amino acid 

sequences in the other MLST loci were also observed (data not shown). 

In the alignment of the 183 ST4 SSU-rDNAs (Table 2), it appeared that each 

belonged to one of two clades, and 19 consistent SNPs across the entire gene separated the 

two clades (Supplementary Fig. 2). A total of 177 (97%) of the sequences analysed had the 

Clade 1 SNP configuration (Table 2). Only 3/170 sequences from humans (from Denmark, 
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Turkey and USA) had the Clade 2 configuration, one of which was represented by the North-

American sample DMP/10-212. Variation among the few SSU Clade 2 sequences included 

additional polymorphisms shared by more than one sequence, suggesting that Clade 2 might 

be more genetically diverse than Clade 1, in which only few sporadic SNPs were detected 

across 167 sequences (Supplementary Fig. 2). The 167 human ST4 sequences belonging to 

Clade 1 were from Denmark, Sweden, UK, Ireland, France, Spain, Nigeria, Australia, Japan, 

and North America. 

 

4. DISCUSSION 

Following the introduction of a consensus subtyping system for Blastocystis 

(Stensvold et al., 2007b) dozens of studies have aimed to characterise the distribution of 

Blastocystis subtypes in humans and other animals. This study, however, is the first to 

thoroughly investigate intra-subtype diversity of Blastocystis using genetic markers other 

than the SSU-rRNA gene. By analysing comprehensive and complex sequence data sets, our 

results clearly highlight the importance and value of investigating intra-subtype diversity in 

epidemiological and evolutionary studies of Blastocystis.  

 Although lower in amount, the SSU-rDNA variation seen in each subtype mirrors the 

variation seen in MLO genome sequences. Moreover, the phylogenetic inferences are more or 

less the same no matter which of the two datasets is used, although only low to modest 

statistical support is obtained in the analysis of partial SSU-rDNAs.  

 

4.1. Substantial intra-subtype diversity in ST3 and indications of frequent human-to-human 

transmission.  

The uncovering of phylogenetically distinct clades within ST3 is important. Although 

more data are needed, they clearly indicate that human infections are restricted to MLO Clade 
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1 except where exposure to NHPs has occurred (Fig. 1A). This suggests relatively high host 

specificity within ST3 and that human strains falling into MLO Clades 2—4 (= SSU Clades 2 

and 3) are almost certainly the result of zoonotic transmission (Fig. 1A, Table 1).  

This is the first study to report cryptic host specificity within a Blastocystis subtype. 

Relatively few DNAs from NHPs were analysed in the study, but the fact that they segregated 

into four different clades suggests that the diversity among strains from NHPs may be even 

more extensive than observed here. In addition to humans and NHPs, ST3 is hosted by a 

variety of other mammals, including pigs, cattle and dogs (Stensvold et al., 2009a) and 

rodents (Alfellani et al., in preparation). Assuming the present MLST assay is applicable to 

all ST3s of non-primate origin, data from the analysis of such strains will assist in identifying 

whether further cryptic host specificity can be identified. If the MLST primers do not amplify 

such samples, this could be indicative of significant divergence between primate and non-

primate ST3 sequences and make zoonotic transmission an even less likely contributor to 

human Blastocystis infection. Until more SSU-rDNA and MLST data are available for non-

primate hosts, we can only conclude that most ST3 infections in humans are the result of 

human-to-human transmission. The hypothesis introduced by Noël et al. (2005) about ST3 

being of human origin cannot be supported in view of our data. Incidentally, Petrasova et al. 

(2011) concluded based on the analysis of SSU rDNAs that zoonotic transmission of ST1 and 

ST2 was unlikely among syntopic human and NHPs on the Rubondo Island, Tanzania; hence 

evidence is growing for anthroponotic transmission of Blastocystis in general. 

 

4.2. Homogeneity of ST4 and aspects of host spectrum and geographical distribution. 

The host range of ST4 identified so far is restricted to humans, a few rodents, NHPs, 

and one Australian opossum (Stensvold et al., 2009a; Parkar et al., 2007). To date, no major 

differences in the host spectrum of the two clades within ST4 have been identified; however, 
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very few sequences are available for ST4 SSU Clade 2; three of the samples are from 

humans, two from NHPs and five from rodents (Table 1). The much more common Clade 1 is 

mainly seen in humans, but NHPs and rodents are known hosts as well (Table 1) and, 

moreover, the Clade 1 sequence from an opossum apparently showed no divergence when 

compared to reference sequences (Parkar et al., 2007). Conspicuously, genetic variation 

within ST4 Clade 1 appears to be practically absent across the globe irrespective of the host. 

Surprisingly, ST4 is rarely reported in several Asian and Middle Eastern Blastocystis 

subtype surveys, while ST4 appears to be common in Europe, at least in patients with 

intestinal symptoms (Forsell et al., in press; Stensvold et al, 2011; Souppart et al., 2009; 

Domínguez-Márquez et al., 2009). Many of the studies from the Middle East and Asia have 

been based on the methodology introduced by Yoshikawa et al. (1998, 2000, 2003) which 

makes use of subtype-specific sequence tagged site (STS) primers (Dogruman-Al et al., 

2009a and 2009b; Dogruman-Al et al., 2008; Eroglu et al., 2009, Eroglu and Koltas, 2010; 

Hussein et al., 2008; Iguchi et al., 2007; Li et al., 2007a; Li et al., 2007b; Tan et al., 2008; 

Tan et al., 2009; Yakoob et al., 2010; Yan et al., 2006; Yan et al., 2007; Yoshikawa et al., 

2009). The application of a STS primer panel is theoretically advantageous since mixed 

infections are more easily detected when compared to other methods, including direct 

sequencing of PCR products amplified by genus-specific primers as used here; however, the 

primer pair SB337 used to amplify ST4 in the STS method does not amplify ST4 Clade 1 in 

our hands (unpublished observations). It did, however, amplify our Clade 2 sample DMP/10-

212. SB337 was originally developed using the RN94-9 strain (Yoshikawa et al., 1998) from 

the ST4 Clade 2, and later validated using NIH:1295:1 (GB acc. no. U51152), a Clade 1 

strain from a guinea pig (Yoshikawa et al., 2003), and therefore, theoretically, neither of the 

two clades should be missed using this primer pair. However, the failure of Clade 1 

amplification in our lab using the SB337 primer pair means that Clade 1 could be overlooked 
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where these primers are used. It may be that the few ST4s reported in Asian studies using the 

STS primers all belong to Clade 2. Interestingly, in a study from Japan, Kaneda et al. (2001) 

used RFLP on PCR products amplified by general eukaryotic primers (RD5/RD3) and 

reported quite a few ST4s (RLFP nomenclature: Ribodeme 3; Stensvold et al., 2007b). What 

is more, Noël et al. (2005) published three ST4 sequences from Singaporean rats; all three 

belonged to ST4 Clade 1, which is evidence of this clade being present in Asia. We have 

recently reported the absence of ST4 in Brazilian indigenous people in the Mato Grosso 

region (Malheiros et al., in press) using the barcoding method. Studies of samples from 

Colombia, Philippines and Thailand using a similar methodology also do not report ST4 

(Leelayoova et al., 2008; Rivera, 2008; Santin et al., 2011). Hence, while ST4 appears to be 

absent or very rare in certain sampled regions, in South America, the Middle East and Asia, 

the reliability of the STS primers should be scrutinised; the absence of ST4 in some regions 

should be validated by using sequencing methods. 

 

4.3. Implications of differences in intra-subtype genetic variability for parasite epidemiology 

and evolution.  

The low genetic variation in ST4 SSU Clade 1 is reflected in the MLO genome. 

Among 50 Clade 1 DNAs, only 5 sequence types were detected, and a total of only 12 SNPs 

could be identified across six loci covering more than 2,300 bp. This has several implications. 

Practically, this means that the current MLST assay is not an appropriate tool for 

investigating ST4 Clade 1. It may be that SSU Clade 1 strains are genetically very similar 

across the entire nuclear genome also, in which case the search for useful genetic variation is 

a futile quest. As yet, no studies have been done on microsatellites in Blastocystis, and it may 

be so that such studies will prove valuable in terms of identifying variation in ST4. Since 
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only one DNA representing Clade 2 was available for analysis, it is impossible at present to 

comment on the discriminatory power of the assay for analysis of Clade 2 strains.  

More generally, the present data and observations allow us to speculate on a number 

of points: not only are subtypes of Blastocystis separated by great genetic distance (Stensvold 

et al., 2007b; Stensvold et al., 2009a; Parkar et al., 2010), they also appear very different in 

terms of intra-subtype variation. The almost clonal population structure of ST4 Clade 1 

combined with its high prevalence relative to ST4 Clade 2 is consistent with this clade having 

expanded in humans relatively recently compared to ST3. This is also supported by the 

emerging data on the infrequency or total absence of human ST4 in some parts of the world. 

Assuming faecal-oral transmission for all subtypes of Blastocystis, it is interesting that a 

parasite widespread in Europe is rare or absent in parts of the world where faecal-orally 

transmitted parasites are much more prevalent than in Europe. Importantly, ST4 has been 

associated with intestinal disease and pathogenicity in a number of recent surveys (Stensvold 

et al., 2011; Domínguez-Márquez et al., 2009) and in-vitro studies (summarised by Stensvold 

et al., 2009c). Since ST4 Clade 1 sequences from rats, guinea pigs, opossums and most 

humans appear genetically identical it is impossible to discard a hypothesis of zoonotic 

transmission of ST4. The data at present support the theory that rodents may be a reservoir 

for human Blastocystis infections, as also proposed by Noël et al. (2005).  

Our analyses, combined with phylogenetic studies of nucleotide sequences coding for 

elongation factors, hsp70 and an ATPase (Ho et al., 2001; Arisue et al., 2002), provide 

evidence for the SSU-rRNA gene being a robust and highly informative genetic marker for 

phylogenetic inferences in Blastocystis. However, MLST will prove a powerful tool in 

studies aiming to characterise ST3 transmission patterns and to survey strains in a host over a 

prolonged period (e.g. pre- and post-treatment). Currently, MLST schemes for ST1 and ST2 

are under development (Alfellani et al., in preparation). Our study shows that the inclusion of 
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SSU-rDNA and MLO MLST analyses of Blastocystis from various cohorts (symptomatic and 

asymptomatic individuals) and hosts (humans, NHP and non-primate hosts) from different 

parts of the world will be crucial in future attempts to establish the epidemiology and clinical 

significance of the parasite. 
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FIGURE LEGENDS 

 

Fig. 1. Phylogenetic analyses of 81 concatenated sequences (1,448 bp) obtained by MLST of 

Blastocystis ST3 (Fig. 1A) and their corresponding SSU-rDNAs (309 bp) (Fig. 1B) from 

humans (n=69) and non-human primates (n=12); NHP samples are indicated by solid black 

circles. Maximum Likelihood trees are shown. Statistical support is given only for relevant 

nodes, and posterior probabilities/bootstrap values < 0.85/85 are not shown 

(Bayesian/Maximum Likelihood). In Fig. 1B, ‘MA25’ and ‘MA135’ have not been included 

(see footnote in Table 1). Diagnostic SSU-rDNA SNP configurations (three consecutive 

bases at positions 131—133) are given for each of the clades (see text for details). 
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Table 1. ST3 samples analysed in the study  
 

SSU 
clade1 

MLO 
genome 

clade 

Sequence 
type 

Host Geographic 
origin 

DNA sample and/or 
GenBank Acc. no 

Reference 

1 1 ST3.1 Homo sapiens Sweden JF2815 Forsell et al., in press 
  ST3.2 Homo sapiens UK   MA4, MA9, MA279 Alfellani et al., in preparation 
  ST3.2 Homo sapiens Sweden JF375 Forsell et al., in press 
  ST3.3 Homo sapiens Denmark 25548, 25556, 25562 Present study 
  ST3.4 Homo sapiens Denmark FD5 Present study 
  ST3.5 Homo sapiens Denmark 44010 Present study 
  ST3.6 Homo sapiens UK   MA62 Alfellani et al., in preparation 
  ST3.7 Homo sapiens UK MA108 Alfellani et al., in preparation 
  ST3.8 Homo sapiens UK MA38 Alfellani et al., in preparation 
  ST3.9 Homo sapiens UK   MA126 Alfellani et al., in preparation 
  ST3.10 Homo sapiens (NHP keeper) UK   MA32, MA132 Alfellani et al., in preparation 
  ST3.11 Homo sapiens UK MA18 Alfellani et al., in preparation 
  ST3.12 Homo sapiens Denmark M30515 Present study 
  ST3.13 Homo sapiens UK MA110, MA142 Alfellani et al., in preparation 
  ST3.14 Homo sapiens UK   MA45 Alfellani et al., in preparation 
  ST3.15 Homo sapiens UK MA266, MA274 Alfellani et al., in preparation 
  ST3.16 Homo sapiens UK MA29 Alfellani et al., in preparation 
  ST3.17 Homo sapiens UK   MA42, MA268 Alfellani et al., in preparation 
  ST3.18 Homo sapiens UK   DMP/IH:478 Present study 
  ST3.19 Homo sapiens UK MA118 Alfellani et al., in preparation 
  ST3.20 Homo sapiens UK MA41 Alfellani et al., in preparation 
  ST3.21 Homo sapiens UK   MA262 Alfellani et al., in preparation 
  ST3.22 Homo sapiens UK   MA278 Alfellani et al., in preparation 
  ST3.23 Homo sapiens UK   MA66 Alfellani et al., in preparation 
  ST3.24 Homo sapiens UK   MA86, MA98 Alfellani et al., in preparation 
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  ST3.25 Homo sapiens UK MA92 Alfellani et al., in preparation 
  ST3.26 Homo sapiens Denmark 51702 Present study 
  ST3.27 Nomascus gabriellae UK (zoo) MA141 Alfellani et al., in preparation 
  ST3.28 Homo sapiens UK MA15, MA54 Alfellani et al., in preparation 
  ST3.29 Homo sapiens UK   MA50 Alfellani et al., in preparation 
  ST3.30 Homo sapiens UK   MA317 Alfellani et al., in preparation 
  ST3.31 Homo sapiens UK   MA261 Alfellani et al., in preparation 
  ST3.32 Homo sapiens UK   MA79, MA80 Alfellani et al., in preparation 
  ST3.32 Homo sapiens Denmark 46288, 57438 Present study 
  ST3.33 Lagothrix lagotricha UK (zoo) MA140 Alfellani et al., in preparation 
  ST3.34 Homo sapiens UK   DMP/08-326 Present study 
  ST3.35 Homo sapiens UK   MA81, MA130 Alfellani et al., in preparation 
  ST3.35 Callithrix jacchus UK (zoo) MA87 Alfellani et al., in preparation 
  ST3.36 Homo sapiens UK MA14, MA270 Alfellani et al., in preparation 
  ST3.37 Homo sapiens UK   MA284 Alfellani et al., in preparation 
  ST3.38 Homo sapiens UK MA302 Alfellani et al., in preparation 
  ST3.39 Homo sapiens UK MA20, MA83-4 Alfellani et al., in preparation 
  ST3.40 Homo sapiens UK MA30, MA134 Alfellani et al., in preparation 
  ST3.41 Homo sapiens UK   MA75 Alfellani et al., in preparation 
  ST3.42 Homo sapiens UK   MA282 Alfellani et al., in preparation 

mixed ST3 and ST12 ST3.42 Homo sapiens UK MA135 Alfellani et al., in preparation 

  ST3.43 Homo sapiens UK MA287 Alfellani et al., in preparation 
  ST3.44 Homo sapiens UK MA280 Alfellani et al., in preparation 
  ST3.45 Homo sapiens (NHP keeper) UK   MA16 Alfellani et al., in preparation 
  ST3.46 Homo sapiens UK MA311 Alfellani et al., in preparation 
  ST3.47 Homo sapiens UK   MA312 Alfellani et al., in preparation 
  ST3.48 Homo sapiens UK   MA313 Alfellani et al., in preparation 
  ST3.49 Colobus sp. UK (zoo) MA291 Alfellani et al., in preparation 

Mixed  ST3.50 Homo sapiens UK MA25  Alfellani et al., in preparation 
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ST32 

      
2 2 ST3.51 Erythrocebus patas UK (zoo) MA299 Alfellani et al., in preparation 
  ST3.52 Homo sapiens (NHP keeper) UK  MA46 Alfellani et al., in preparation 
      

3 3 ST3.53 Macaca sylvanus UK (zoo) MA119 Alfellani et al., in preparation 
  ST3.53 Pan troglodytes UK (zoo) MA65 Alfellani et al., in preparation 
  ST3.54 Colobus abyssinicus UK (zoo) DMP/08-1043 Alfellani et al., in preparation 
      

3 4 ST3.55 Papio sp. UK (zoo) MA257 Alfellani et al., in preparation 
  ST3.56  MA305 Alfellani et al., in preparation 
  ST3.56 Macaca nigra UK (zoo) MA314 Alfellani et al., in preparation 
  ST3.57 Homo sapiens (NHP keeper) UK MA94 Alfellani et al., in preparation 
  ST3.58 Macaca sylvanus UK (zoo) MA320 Alfellani et al., in preparation 
      

1   Homo sapiens Japan AB070986, AB070988, 
AB0701233-5 

Arisue et al., 2003 

   Thailand AY618268  Thathaisong et al., unpublished 
   UK DQ232780, DQ232793, 

DQ232798, DQ232801-4, 
DQ232811, DQ232817, 
DQ232819, DQ232820, 
DQ232822, 
DQ232844DQ232840, 
DQ232839, DQ232827, 
DQ232825,  

Scicluna et al., 2006 
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    MA2, MA217, MA219, 
MA300B, MA303B, MA308, 
MA310, MA370, MA387, 
MA389, MA397, MA404, 
MA406, MA412-3, MA418, 
MA421, MA430-1, MA435, 
MA437 

Alfellani et al., in preparation 

   Philippines EU4454936 Rivera et al., 2008 
   France AY135402 Noël et al., 2003 
    FJ666842, FJ666848-51, 

FJ666853, FJ666862, 
FJ666866, FJ666870-2, 
FJ666877, FJ666889, 
FJ666892-4, FJ666896 

Souppart et al., 2009 

   Egypt GU130223, GU130225, 
GU130232-4, GU130236-7, 
GU130243, GU130246-7 

Souppart et al., 2010 

   Italy JF274669, JF274680, 
JF274682-3, JF274685-6, 
JF274696-9 

Meloni et al., 2011 

   Libya MALI6 Alfellani et al., in preparation 
   Vietnam VIET-DK227, VIET-DK233-

4, VIET-DK236-7 
Present study 

   Tanzania JF792494 Petrasova et al., 2011 
   Homo sapiens (NHP keeper) UK DQ232823, DQ232834 Scicluna et al., 2006 
    MA12, MA13, MA367 Alfellani et al., in preparation 
   Colobus polykomos UK (zoo) 08/1016 Alfellani et al., in preparation 
   Macaca fuscata Italy (zoo) A740 Alfellani et al., in preparation 
   Chlorocebus aethiops 

pygerythrus 
Tanzania HQ286908 Petrasova et al., 2011 

   Lagothrix lagotricha UK (zoo) DQ462722, DQ462724 Scicluna et al., 2006 
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   Sus scrofa Japan AB107963 Abe, 2004 
   Bos taurus Japan AB107965 Abe, 2004 
      

2   Homo sapiens UK DQ232784 Scicluna et al., 2006 
   Tanzania JF792495 Petrasova et al., 2011 
   Erythrocebus patas UK (zoo) MA399 Alfellani et al., in preparation 
   Pan troglodytes UK (zoo) MA116 Alfellani et al., in preparation 
   unidentified primate UK (zoo) MA372 Alfellani et al., in preparation 
      

3   Homo sapiens UK MA214 Alfellani et al., in preparation 
   Cercocebus torquatus UK (zoo) 09/0805 Alfellani et al., in preparation 

   Macaca nigra UK (zoo) 09/0493 Alfellani et al., in preparation 
   Macaca sylvanus UK (zoo) 09/1070 Alfellani et al., in preparation 
   Italy (zoo) A796 Alfellani et al., in preparation 
   Macaca arctoides UK (zoo) DQ232797 Scicluna et al., 2006 
   Macaca sp. UK (zoo) MA369, MA380 Alfellani et al., in preparation 
   Trachypithecus francoisi UK (zoo) 09/1259 Alfellani et al., in preparation 
   Allenopithecus nigroviridis UK (zoo) 09/1327, MA433 Alfellani et al., in preparation 
   Lagothrix lagotricha UK (zoo) 09/1620, 09/1624, MA429 Alfellani et al., in preparation 
   UK (zoo) DQ462716 Scicluna et al., 2006 
   Erythrocebus patas UK (zoo) MA405 Alfellani et al., in preparation 
   Semnopithecus sp. UK (zoo) MA424, MA426 Alfellani et al., in preparation 
   unidentified primate UK (zoo) DQ232788-DQ232792 Scicluna et al., 2006 
   Philippines EU445489 Rivera et al., 2008 
      

4   Homo sapiens Japan AB070992 Arisue et al., 2003 
   France FJ666873 Souppart et al., 2009 
      

5      Colobus guereza Tanzania HQ286916 Petrasova et al., 2011 
1 SSU Clade based on SNP configuration at position 130-132; see text for details. 
2Chromatograms showed mixed sequences and therefore no unambiguous sequence was available for alignment and phylogenetic analyses 
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— =  data not available 
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Table 2. Blastocystis ST4 samples analysed in the study. 
 

SSU 
rDNA 
clade1 

MLO 
genome 

clade 

SQT Host (Species or 
common name) 

Geographic origin DNA sample/ GenBank Acc. 
no 

Reference 

1 1 ST4.1 Cavia porcellus Denmark GP_KVL Present study 
      Homo sapiens Denmark F4130, T66888 Stensvold et al., 2011a 
          T51586, W54277 Rene et al., 2009 
        UK DMP/02-328 Pérez-Brocal and Clark, 2008 

          MA24, MA52, MA61, MA70, 
MA100, MA136-7, MA164, 
MA167, MA179, MA181-2, 
MA187, MA192, MA321, 
MA328, MA335, MA341, 
MA355-6, MA366, MA368, 
MA371, MA375-7, MA388, 
MA392, MA401, MA415, 
MA420 

Alfellani et al., in preparation 

        Nigeria SL3 Onuoha et al., in preparation 
  ST4.2 Homo sapiens UK MA49, MA72, MA93, MA96, 

MA114       
Alfellani et al., in preparation 

  ST4.3 Homo sapiens UK MA145        Alfellani et al., in preparation 
  ST4.4 Homo sapiens UK MA333        Alfellani et al., in preparation 
  ST4.5 Homo sapiens Denmark T8428 Stensvold et al., 2011a 
        UK MA59, MA112, MA144, 

MA158 
Alfellani et al., in preparation 

              
2 2 ST4.6 Homo sapiens USA DMP/10-212 Present study 
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1 — — Homo sapiens Sweden 454, 560, 575, 885, 1542, 
1842, 1859, 2042, 2109, 3025, 
4321 

Forsell et al., in press 

        Denmark 1922, 3058, 4009, 5002, 5023, 
8024, 8032, 26825, 26861, 
36582, 66842, 68507 

Stensvold et al., 2011a 

          AM118079, AM275389-93 Stensvold et al., 2006 
          MAUMR      Alfellani et al., in preparation 

        Ireland AM992465, AM992467-8 Scanlan and Marchesi, 2008 

        Germany AY244619-20 Yoshikawa et al., 2004 

        Japan AY244621 Yoshikawa et al., 2004 

        UK DQ232781, DQ232812, 
DQ232813, DQ232815, 
DQ232816, DQ232818, 
DQ232826, DQ232831, 
DQ232835, DQ232837, 
DQ232838, DQ232841, 
DQ232846 

Scicluna et al., 2006 
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          MA001, MA3, MA010, 
MA19, MA22, MA51, MA82, 
MA85, MA88, MA107, 
MA131, MA147, MA151, 
MA155, MA165, MA189, 
MA197, MA205, MA208, 
MA217, MA219-20, MA231, 
MA245, MA265, MA267, 
MA269, MA272, MA283, 
MA285, MA295, MA300, 
MA301, MA329, MA332, 
MA343, MA347, MA436, 
MA438-9, MA441, MA447, 
MAAB114, MAAB135, 
MAAB138, MAAB151, 
MAAB153, MAAB161, 
MAAB163, MAAB170, 
MAAB175, MAAB183, 
MAAB186, MAAB190-91, 
MAG1 

Alfellani et al., in preparation 

        USA HQ641622 (ATCC 50608) Santin et al., 2011 
          EU679347  Whipps et al., 2010 
          EU482085, EU482087 

(ATCC 50608, ATCC 50753) 
Jones et al., 2008 

          EF494741 (ATCC 50608) Stechmann et al., 2008 
        France FJ666840, FJ666852, 

FJ666868, FJ666869, 
FJ666885        

Souppart et al., 2009 

        Australia RJT51AUSTRALIA Traub et al., in preparation 

      Lemura catta Spain HQ641652      Santín et al., 2010 

      Rattus norvegicus Singapore AY590111, AY590113-4    Noël et al., 2005 
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      Cavia porcellus USA U51152       Silberman et al., 1996 
              
2 — — Homo sapiens Denmark AM712466       Stensvold et al., 2007a 
        Turkey AM778994        Özyurt et al., 2008 

      Lemura catta Denmark (zoo) RL081_Ringtailedlemur, 
RL083_Ringtailedlemur      

Stensvold et al., 2009 

      Rattus norvegicus France AY135407 -8 Noël et al., 2003 
        Japan AB071000, AB091251 Arisue et al., 2003 

      Cavia porcellus USA U26177 (ATCC 50578) Leipe et al., 1996 
 
 
— =  data not available 
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Supplementary figure legends: 

 

Supp. Fig. 1. Alignment of all ST3 SSU-rDNAs included in the study (Table 1) except for 

MA 25 and MA135 (see footnote in Table 1). The alignment was generated using MultAlin 

(Corpet, 1988). Three consecutive bases (GAA, GTA, ATG, ATC, AAA) at positions 131—

133 have been identified as diagnostic markers for host-specific clades (see text for details). 

The image can be viewed using Microsoft Office Picture Manager.  

 

Supp. Fig. 2. Alignment of the 183 SSU-rDNA sequences of Blastocystis ST4 (Table 1). The 

alignment was generated using MultAlin (Corpet, 1988). Nineteen consistent SNPs along the 

entire gene are diagnostic markers for the two clades so far identified within ST4 (positions 

relative to the alignment: 78, 221, 234, 803, 1336, 1345, 1349, 1350, 1351, 1352, 1468, 1474, 

1672, 1682, 1687, 1690, 1691, 1693, and1700 ). The image can be viewed using Microsoft 

Office Picture Manager. 

 

Supp. Fig. 3. Maximum Likelihood analysis of all ST3 SSU-rDNAs included in the study 

(Table 1) except for MA25 and MA135 (see footnote in Table 1). A total of 309 bp were 

available for analysis. Symbol code: No symbol = human host; Black circle = Non-human 

primate (NHP) host; Black triangle = non-primate host. Sequences segregated into clades 

according to the three consecutive SNPs (GAA, GTA, ATG, ATC and AAA) illustrated in 

Supplementary Fig. 1. The image can be viewed using Windows Picture and Fax Viewer. 

 

Supp. Fig. 4. Alignment of the 51 concatenated sequences obtained by MLST analysis of 

ST4. The alignment was generated using MultAlin (Corpet, 1988). The image can be viewed 

using Microsoft Office Picture Manager. 


