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ABSTRACT 
Molecular ecology of chigger mites (Acari: Trombiculidae)                                                      

and associated bacteria in Thailand  
Kittipong Chaisiri 

 Chiggers are the tiny six-legged larval stage of mites in the family 
Trombiculidae. These mites, particularly the genus Leptotrombidium, act as 
important vectors of Orientia tsutsugamushi, the causative agent of scrub typhus 
disease in the Asia-Pacific region (including Thailand). Although the medical impact 
of these mites has been recognized in the country due to the increasing incidence of 
the disease in humans, knowledge of the ecology and epidemiological role of these 
mites is still very limited to date. 
 A systematic review of mite-associated bacteria was conducted from 193 
publications (1964 - January 2015) providing a reference database of bacteria found 
in mites of agricultural, veterinary and medical importance. Approximately 150 
bacterial species were reported from 143 mite species with Cardinium, Wolbachia 
and Orientia as the dominant genera.    
 Nationwide field sampling of small mammals from 13 locations in Thailand 
revealed a high diversity of chigger mites. From approximately 16,000 mites 
isolated from 18 host species examined (1,574 individual animals), 38 chigger 
species were found including three species new to science (i.e., Trombiculindus 
kosapani n. sp., Helenicula naresuani n. sp. and Walchia chavali n. sp.) and 10 new 
records for the first time in the country. Brief taxonomic information for the 
morphological identification of chiggers is provided. A combination of 
autofluorescent and brightfield microscopy was demonstrated to be a novel 
approach to study both the morphology and DNA profile of the same individual 
chigger.      
 Most chigger species showed low host specificity. The diversity of chiggers 
on hosts was influenced by host intrinsic (i.e., host phylogeny and maturity) and 
extrinsic factors (i.e., habitat and geographical location). Chigger species richness 
and host-chigger network connectance were found to be interrelated variables 
explaining human scrub typhus incidence in Thailand.      
 Chigger-associated bacteria were investigated for the first time using an 
Illumina MiSeq 16S rRNA amplicon sequencing approach. DNA of O. tsutsugamushi 
was detected in the chigger population as expected. In addition to O. 
tsutsugamushi, Borrelia and Mycobacterium were identified aspotential pathogens 
of human and animals. Potential symbiotic bacteria of arthropods; e.g., Candidatus 
Cardinium, Pseudonocardia, Rickettsiella and Wolbachia were also discovered for 
the first time in chiggers. An important technical limitation was that chigger DNA 
starting quantity (individual specimens versus pooled mites) was found to have a 
significant impact on the apparent microbiome profile. 
 These outcomes from the studies of chigger taxonomy and the ecology of 
host-chigger interactions, as well as the composition of the microbiome in chiggers, 
are of key importance to the chigger research field, providing essential information 
for disease epidemiology with vector control implications. 
 
Keywords: Chiggers, Trombiculidae, molecular ecology, microbiome, bacteria, 16S 
rRNA amplicon sequencing, Illumina MiSeq, Thailand 



iv 
 

ACKNOWLEDGEMENTS 

 This PhD thesis would be impossible to finish without the help and support 

from several people and organizations. First, I would like to express my gratitude to 

my primary supervisor, Dr Ben Makepeace for his patience in supervising me along 

the 4 years of this PhD programme. Although we faced a number of difficulties 

working with the challenging issues of specimens and laboratory procedures, he 

remained behind me until the PhD thesis was finally completed. I would like to 

equally thank also my two co-supervisors, Dr John McGarry and Prof. Steve 

Paterson for their great help and support.         

 I am indebted to Prof. Serge Morand (Centre d’Infectiologie Christophe 

Mérieux of Laos), my formal MSc supervisor who has taught me and offered great 

scientific/academic opportunities since 2008, when his research projects, CERoPath 

(Community Ecology of Rodents and Their Pathogens in Southeast-Asia, granted 

from French National Research Agency: ANR 07BDIV 012) and BioDivHealthSEA 

(Local Impacts and Perceptions of Global Changes: Health, biodiversity and 

zoonoses in Southeast Asia, granted from French National Research Agency: ANR 

11CPEL 002) commenced in Thailand. I would like to take this opportunity to 

acknowledge the two projects providing chigger specimens and allowing me to 

participate in extensive field surveys across the region. In addition to Prof. Serge 

Morand, I credit the following people from the CERoPath dream team for their 

contribution in the field surveys: Dr Vincent Herbreteau, Dr Alexis Ribas, Yannick 

Chaval, Khomson Satchasataporn, Noppawan Thaprathom, Praphaiphat Siribat, 



v 
 

Anamika Karnchanabanthoeng, Sompote Temchuen, as well as others who are not 

mentioned here. 

 I acknowledge provincial and local public health offices as well as primary 

health care units (Ministry of Public Health Thailand) and their staff for great 

support during my fieldwork. I also acknowledge the Bureau of Epidemiology 

Thailand, and would like to particularly thank to Dr Soawapak Hinjoy who provided 

data of human scrub typhus incidence in Thailand for epidemiological analysis in 

this thesis. 

 I owe a big thank you to Dr Alexandr Stekolnikov (Zoological Institute of 

Russian Academy of Sciences, Saint-Petersburg) for the critical help identifying 

chigger materials and describing the three new species. Although we have never 

met in person, his contribution was very important for the whole thesis work. Also, I 

would like to show my appreciation to Dr Ratree Takhampunya and Sommai 

Promsathaporn (Armed Forces Research Institute of Medical Sciences, Bangkok) for 

allowing me to be trained on the basics of chigger preparation and identification at 

their Institute. 

 I also owe a lot of thanks to Prof. Daniel Paris (Mahidol-Oxford Research 

Unit, Bangkok) for a great collaboration and his innovative idea of UV- and 

fluorescent-microscopy applications for chigger imaging. 

 Heartfelt thanks should also be expressed to the others who supported me 

in data analysis and laboratory work while I was based in the University of 

Liverpool: Christina Gill (Institute of Infection & Global Health) and Dr Alistair Darby 



vi 
 

(Institute of Integrative Biology) for their bioinformatics advice in the microbiome 

analysis; Dr Alison Beckett (Institute of Translational Medicine) for chigger specimen 

processing for electron microscopy (both SEM and TEM); Dr Luca Lenzi (Institute of 

Integrative Biology) for analysing whole genome data of Leptotrombidium deliense; 

Dr Catherine Hartley (Institute of Infection & Global Health) for specimen 

importation and a lot of help in the laboratory; as well as people in the Veterinary 

Parasitology group and other colleagues in the Department of Infection Biology for 

their help and encouraging words.                  

 Importantly, I would like to acknowledge Mahidol-Liverpool Chamlong 

Harinasuta PhD Scholarships 2013 (University of Liverpool, Liverpool, UK and 

Mahidol University, Bangkok, Thailand) for financial support and an invaluable 

opportunity to do my PhD at the University of Liverpool, as well as the Faculty of 

Tropical Medicine, Mahidol University (my affiliation), that allowed me to take 

educational leave for the whole period of the PhD programme. 

 Last but not least, I would like to express appreciation to my family: parents, 

brother, precious wife and children, as my PhD would never have been completed 

without their love and patience. 

 

 

 

 

 



vii 
 

 

 

 

 

 

 

 

 

DEDICATION 

This work is dedicated to my parents, wife and children for their love and patience 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

TABLE OF CONTENTS 

 

Title .............................................................................................................................................. i 

AUTHOR’S DECLARATION ............................................................................................................. ii 

ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGEMENTS ................................................................................................................ iv 

DEDICATION .............................................................................................................................. vii 

TABLE OF CONTENTS ................................................................................................................. viii 

LIST OF TABLES ........................................................................................................................... xii 

LIST OF FIGURES ........................................................................................................................ xiv 

LIST OF ABBREVIATIONS .......................................................................................................... xviii 

CHAPTER 1: GENERAL INTRODUCTION:  CHIGGER BIOLOGY AND MEDICAL IMPORTANCE ............... 1 

1.1 General morphology ...................................................................................................... 2 

1.2. Life cycle and behaviour ............................................................................................... 3 

1.3 Ecology and geographical distribution ........................................................................... 8 

1.4 Taxonomy and classifications ........................................................................................ 9 

1.5. Chigger diversity in Southeast Asia ............................................................................. 11 

1.6 The public health importance of chiggers ................................................................... 14 

1.7 General aim and objectives of the thesis ..................................................................... 21 

CHAPTER 2: SYSTEMATIC REVIEW OF MITE-ASSOCIATED BACTERIA ............................................. 23 

2.1 Introduction ................................................................................................................. 25 

2.2 Materials and methods ................................................................................................ 27 

2.2.1 Literature search ................................................................................................... 27 

2.2.2 Mite classification ................................................................................................. 28 

2.2.3 Bacterial classification ........................................................................................... 28 

2.2.4 Statistical analysis ................................................................................................. 29 

2.3 Results & Discussions ................................................................................................... 32 

2.3.1 Methodological approaches to the identification of bacteria in mites ................ 32 

2.3.2 Bacterial diversity in mites .................................................................................... 35 



ix 
 

2.3.3 Patterns of mite-bacterial association .................................................................. 45 

2.3.4 Outcomes and perspectives .................................................................................. 46 

CHAPTER 3: CHIGGER IDENTIFICATION AND DIVERSITY IN THAILAND .......................................... 50 

3.1 Introduction ................................................................................................................. 51 

3.1.1 Diversity of chiggers in Thailand ........................................................................... 51 

3.2 Important taxonomic characters for identification ..................................................... 52 

3.2.1 Gnathosoma .......................................................................................................... 53 

3.2.2 Scutum .................................................................................................................. 55 

3.2.3 Body Chaetotaxy ................................................................................................... 57 

3.2.4 Legs ....................................................................................................................... 58 

3.3 Morphometry ............................................................................................................... 60 

3.4 Materials and methods ................................................................................................ 63 

3.4.1 Animal trapping, location and habitat categorization .......................................... 63 

3.4.2 Animal handling and euthanasia ........................................................................... 65 

3.4.3 Chigger isolation and specimen preparation ........................................................ 66 

3.4.4 Chigger identification ............................................................................................ 68 

3.4.5 Scanning electron microscopy to visualise ultrastructure of chiggers ................. 68 

3.4.6 Molecular procedures for individual chigger samples .......................................... 69 

3.4.7 Statistical analysis ................................................................................................. 72 

3.5 Results .......................................................................................................................... 72 

3.5.1 Chigger infestation on small mammals in Thailand .............................................. 72 

3.5.2 Genetic analysis of mitochondrial COI from individual chigger DNA .................... 79 

3.6 Discussion ..................................................................................................................... 85 

CHAPTER 4: ECOLOGY OF CHIGGERS AND EPIDEMIOLOGY OF SCRUB TYPHUS IN THAILAND ......... 91 

4.1 Introduction ................................................................................................................. 92 

4.2 Materials and methods ................................................................................................ 97 

4.2.1 Analysis of chigger diversity according to different habitats, season, site and host 

attributes........................................................................................................................ 98 

4.2.2 Association between dominant chigger species and habitat ............................... 99 

4.2.3 Network analysis of host-chigger interaction ....................................................... 99 

4.2.4 Multiple regression models of independent variables explaining chigger species 

richness and scrub typhus incidence in the human population .................................. 101 

4.3 Results ........................................................................................................................ 104 



x 
 

4.3.1 Chigger diversity in Thailand ............................................................................... 104 

4.3.2 Host-chigger network analysis ............................................................................ 110 

4.3.3 Independent variables explaining chigger species richness and scrub typhus 

epidemiology in Thailand ............................................................................................. 121 

4.4 Discussion ................................................................................................................... 127 

4.4.1 Chigger diversity in different habitats, season, site and host attributes ............ 127 

4.4.2 Host-chigger interaction through ecological network analyses ......................... 132 

4.4.3 Effect of independent variables explaining scrub typhus epidemiology in Thailand

 ..................................................................................................................................... 137 

4.5 Conclusion .................................................................................................................. 138 

CHAPTER 5: INVESTIGATION OF MICROBIOME PROFILE IN CHIGGERS USING A 16S RRNA 
AMPLICON SEQUENCING APPROACH ........................................................................................ 139 

5.1 Introduction ............................................................................................................... 140 

5.2 Materials and methods .............................................................................................. 144 

5.2.1 Genomic DNA preparation of chigger samples ................................................... 144 

5.2.2 Library preparation and next generation sequencing of 16S rRNA gene for 

microbiome investigation ............................................................................................ 147 

5.2.3 Post-sequencing bioinformatic processes .......................................................... 153 

5.2.4 Comparative analyses of microbiome data ........................................................ 158 

5.2.5 Verification of Geobacillus OTUs in chiggers and background controls ............. 160 

5.2.6 Geobacillus culture from chigger specimens ...................................................... 163 

5.2.7 Determination of GC content in 16S rRNA sequences ........................................ 164 

5.3 Results ........................................................................................................................ 164 

5.3.1 Sequencing results .............................................................................................. 164 

5.3.2 Microbiome profiling .......................................................................................... 165 

5.3.3 Verification of Geobacillus in individual chiggers ............................................... 175 

5.3.4 Bacterial diversity analyses ................................................................................. 180 

5.3.5 Visualisation of bacteria on chiggers using scanning electron microscopy ........ 183 

5.4 Discussion ................................................................................................................... 186 

5.4.1 Bacterial profiles between individual and pooled chigger species ..................... 186 

5.4.2 Potential pathogenic and symbiotic bacteria in chiggers ................................... 191 

5.4.3 Potential contaminating OTUs from background controls ................................. 196 

5.5 Conclusions ................................................................................................................ 196 

 



xi 
 

CHAPTER 6: PRELIMINARY STUDIES AND DIRECTIONS FOR FURTHER RESEARCH ......................... 198 

6.1 The draft genome of Leptotrombidium deliense ....................................................... 199 

6.2 DNA microsatellite characterization of Leptotrombidium deliense ........................... 201 

6.3 Modified in-situ hybridization detecting intracellular bacteria of Leptotrombidium 

deliense with transmission electron microscopy ............................................................. 202 

6.4 Results and Discussions ............................................................................................. 204 

CHAPTER 7: FINAL CONCLUSION, PERSPECTIVES AND FUTURE WORK ........................................ 207 

7.1 Final discussion and conclusions ................................................................................ 208 

7.1.1 Diversity of chiggers in Thailand ......................................................................... 208 

7.1.2 Towards a combined morphometric and molecular approach to chigger 

identification ................................................................................................................ 210 

7.1.3 Ecology of chigger parasitism and scrub typhus epidemiology in Thailand ....... 211 

7.1.4 Chigger-associated microbiome.......................................................................... 214 

7.2 Other future works and potential implications ......................................................... 217 

REFERENCES ............................................................................................................................. 221 

APPENDIX ................................................................................................................................ 272 



xii 
 

LIST OF TABLES 
 

Table 1.1 List of chigger genera reported on different vertebrate host groups in 
Southeast Asia………………………………………………………………...………………………….......... 12 

Table 2.1 Summary of selected mite taxa extracted from the literature review of 
mite-associated bacteria……………………………………………………………........................... 30 

Table 2.2 Phylogenetic distribution of bacteria detected in mite taxa....................  40 

Table 3.1 Abbreviations of taxonomic terms and morphometric formulae used in 
this thesis…………………………....……………………………………………………………………………… 62 

Table 3.2 Infestation status of chigger in 13 studied locations in Thailand during 
2008 – 2015…………………………………..……………………………………………………………………. 75 

Table 3.3 Infestation status, observed and estimated diversity of chigger on 
small mammal species……………………………………………………………………………………...... 76 

Table 3.4 The prevalence (%) and infestation details of 38 trombiculid species 
found on small mammals in Thailand………………………………………………………………….. 77 

Table 3.5 NCBI BLASTn results of mitochondrial COI sequences of individual 
chigger species, only the best matching are presented……………………………………….. 80 

Table 3.6 List of trombiculid species and their geographical distribution in 
Thailand.................................................................................................................... 83 

Table 4.1 Diversity observation and estimation of chigger infestation on small 
mammals in Thailand……………………………………………………………………………………....... 106 

Table 4.2 Species specificity index of trombiculid chiggers on small mammal 
hosts in Thailand…………………………………………………………………………………………………. 113 

Table 4.3 Bipartite network parameters of host-chigger interaction in the 13 
studied sites in Thailand……………………………………………………………………………………... 115 

Table 4.4 Comparison of the generalized linear models (GLM) testing the effect 
of various independent variables on individual chigger species richness (GLM 
with Poisson distribution)……………………………………………………………………………………. 119 

Table 4.5 Generalized linear models of individual chigger species richness (with 
Poisson distribution)…………………………………………………………………………………………… 120 

Table 4.6 Human scrub typhus case number and environmental information at 
the district level for 13 studied sites in Thailand…………………………………………………. 125 

 



xiii 
 

Table 4.7 Comparison of the general linear models (GLM) to test the effect of 
various independent variables to scrub typhus human case number (GLM with 
Poisson distribution)……………………………………………………………………………………….... 

 

126 

Table 5.1 Primers for 16S rRNA nested PCR library preparation for microbiome 
investigations……………………………………………………………………………………………………. 149 

Table 5.2 Comparison of rarefaction statistics among different sequence 
depths (100 – 100,000 reads/sample)……………………………………………………………….. 160 

Table 5.3 Selected bacterial taxa of public health importance, potential 
symbionts of arthropods, and other dominant OTUs detected in individual and 
pooled chiggers in comparison to soil and background controls……………………….. 172 

Table 5.4 The 34 dominant OTUs (more than 5% proportional read count in a 
single control) present in background controls…………………………………………………. 174 

Table 5.5 Alpha-diversity estimation of bacterial OTUs among sample groups 
and categories…………………………………………………………………………………………………... 182 

Table 6.1 Primer sequences of 17 L. deliense microsatellite loci designed from        
L. deliense draft whole genome sequencing data………………………………………………. 206 

  

  

 

 

 

 

 

 

 

 

 



xiv 
 

LIST OF FIGURES 

Figure 1.1 General appearance of dorsal and ventral views of chiggers……………. 4 

Figure 1.2 Parasitic and free-living life cycle of different stages of chiggers……… 5 

Figure 1.3 Taxonomic ranking of Family Trombiculidae……………………………………. 10 

Figure 1.4 Phylogeny of tribes within the family Trombiculidae……………………….. 11 

Figure 1.5 Endemic area of scrub typhus disease, also known as the 
“Tsutsugamushi tringle”, and geographical distribution of the four main 
trombiculid species of medical importance………………………………………………………. 18 

Figure 2.1 The number of publications reporting mite-associated bacteria……… 33 

Figure 2.2 The top-ranked 15 bacterial genera detected in mites…………………….. 37 

Figure 2.3 Proportions (%) of the most abundant bacterial groups in the 3 
principal mite orders………………………………………………………………………………………… 38 

Figure 2.4 Correspondence analysis of 10 mite superfamilies associated with 
the categorized bacterial groups………………………………………………………………………. 47 

Figure 2.5 Analysis of differences in bacterial species richness among mite taxa 
with multiple pairwise comparisons after Kruskal–Wallis test for all bacterial 
species combined…………………………………………………………………………………………..... 48 

Figure 3.1 Dorsal and ventral view of the gnathosoma of Leptotrombidium 
deliense.................................................................................................................  54 

Figure 3.2 Various forms of cheliceral blades of trombiculid larvae…………………. 55 

Figure 3.3 Example of scutal variation in trombiculid genera…………………………… 56 

Figure 3.4 Dorsal and ventral aspects of L. deliense showing body chaetotaxy… 58 

Figure 3.5 Leg segmentation and setae of Leptotrombidium deliense……………… 59 

Figure 3.6 Measuring approach for the main features of trombiculid larvae…… 61 

Figure 3.7 Map of Thailand showing the 13 study locations……………………………… 64 

Figure 3.8 Cluster of chiggers infesting inside the ear, on the body, and macro 
photography of a chigger cluster in the inner ear pinna of an infested rodent…. 67 

Figure 3.9 SEM micrographs show ultrastructural morphology of chiggers……... 78 

 
 



xv 
 

 

Figure 3.10 Neighbour joining (NJ) phylogenetic tree of chigger mitochondrial 
COI sequences using the maximum composite likelihood method…………………… 

 

81 

Figure 3.11 Fluorescence microscopy of whole body and legs of L. deliense, 
dorsal setae of L. deliense, and coxal setae of Walchia micropelta………….......... 81 

Figure 3.12 Comparison of flourescence and bright-field microscopy of chigger 
scuta……………………………………………………………………………………………………......…….. 82 

Figure 4.1 Chigger species accumulation curve of an overall 1,395 examined 
small mammal hosts……………………………………………………………………………………...... 107 

Figure 4.2 Bar plot showing positive correlation between chigger species 
richness in the 13 studied sites and latitudinal gradients in Thailand……………….. 107 

Figure 4.3 Effect of habitat types to chigger species richness…………………………... 108 

Figure 4.4 Correspondence analysis (2D Plot) showing the association between 
the 12 dominant chigger species within the 4 categorized habitats…………………. 109 

Figure 4.5 Chigger species accumulation curves between dry and wet season…. 110 

Figure 4.6 Nestedness matrix and bipartite graph of host-chigger associations 
based on presence-absence data……………………………………………………………………... 112 

Figure 4.7 Unipartite network graph and Eigenvector centrality scores 
illustrate pattern of chigger sharing among 18 small mammal hosts in 
Thailand……………................................................................................................... 114 

Figure 4.8 Correlation plots showing relationship between chigger species 
richness and network connectance; and between network modularity and 
nestedness NODF.................................................................................................. 116 

Figure 4.9 Unipartite network graphs illustrate pattern of host-chigger 
community (individual host level) in the 11 studied sites in Thailand…………….... 116 

Figure 4.10 Model-averaged importance terms of independent variables used 
to explain chigger species richness and scrub typhus human case…………………... 123 

Figure 4.11 Correlation plots showing relationship between scrub typhus 
human case and chigger species richness; and between scrub typhus case and 
network connectance…………………………………………………………………………………....... 125 

Figure 5.1 Schematic diagram shows selection of individual and pooled chigger 
samples for DNA extraction……………………………………………………………………………... 146 

 



xvi 
 

Figure 5.2 Image of agarose gel electrophoresis presenting an example of 
variation of 16S rRNA product densities after the second round PCR in the 
library preparation step…………………………………………………………………………………... 

 

152 

Figure 5.3 Schematic diagram shows 16S rRNA library preparation workflow of 
the 4 plates of MiSeq Illumina sequencing………………………………………………...…….. 153 

Figure 5.4 Schematic diagram showing post-sequencing bioinformatics 
workflow of data filtering and microbiome profiling with QIIME platform……….. 157 

Figure 5.5 The bar chart shows a comparison of sample removal among 
different sample groups (individual, pooled chiggers and soil samples) after 
sample-control similarity check (Bray-Curtis dissimilarity) at 10% and 20% cut-
offs………………….....................................................................................................   166 

Figure 5.6 Stacked bar charts show the relative abundance of bacterial OTUs in 
background controls and individual chiggers from different taxa……………………… 168 

Figure 5.7 Stacked bar charts show relative abundance of bacterial OTUs in 
background controls and pooled samples of different chigger species…………….. 169 

Figure 5.8 Stacked bar charts show relative abundance of bacterial OTUs in 
background controls and pooled samples of different study sites……………………. 170 

Figure 5.9 Stacked bar charts show relative abundance of bacterial OTUs in 
background controls and soil samples from Thailand and Lao PDR…………………… 171 

Figure 5.10 Boxplot shows significant difference (two sample t-test) in mean 
GC content of 16S rRNA gene sequences between individual and pooled 
chigger samples…………………………………………………………………………………………........ 176 

Figure 5.11 Boxplot showing analysis of differences in mean 16S rRNA gene 
copy among different sample groups as determined by qPCR………………………….. 178 

Figure 5.12 Maximum likelihood (ML) tree of partial 16S rRNA sequences 
among different sample groups……………………………………………………………………….. 179 

Figure 5.13 Boxplot shows analysis of difference in mean alpha diversity of 
bacterial OTUs (whole-tree phylogenetic diversity index) among different 
sample groups after non-parametric Kruskal-Wallis test with post-hoc 
Bonferroni correction……………………………………………………………………………….……… 181 

Figure 5.14 The PCoA plot was calculated from weighted UniFrac metric, and 
shows significant separation among sample groups…………………………………………. 183 

Figure 5.15 The PCoA plots were calculated from the unweighted UniFrac 
metric showing bacterial community clustering of individual and pooled 
chiggers among different sample categories………………………………………………….... 184 



xvii 
 

Figure 5.16 SEM micrographs showing evidence of vegetative cells of bacteria 
on body surface of chiggers……………………………………………………………………………… 185 

Figure 6.1 Gel electrophoresis illustrates genomic DNA of a 50-pooled 
L.deliense sample extracted using DNeasy Blood & Tissue Kit………………………….. 200 

 



xviii 
 

LIST OF ABBREVIATIONS 

 AICc   Akaike’s information criterion adjusted for sample size 

 ANOSIM  analysis of similarity 

 ANOVA  analysis of variance 

 BioDivHealthSEA Local impacts and perceptions of global changes:  

    Health, biodiversity and zoonoses in Southeast Asia 

    project 

 biom   biological observation matrix 

 BLASTn  Nucleotide basic local alignment search tool 

 bp   base pair 

 C   central 

 CA   correspondence analysis 

 CEGMA  core eukaryotic genes mapping approach 

 CERoPath  Community ecology of rodents and their pathogens in 

    Southeast Asia project 

 cf.   compare or see also; commonly used for open 

    nomenclature 

 CGR   Center for Genomic Research, University of Liverpool 

 Chao1   Chao1 non-parametric richness estimator   

 CO2   carbon dioxide 

 COI   cytochrome oxidase subunit 1 gene 

 CSR   chigger species richness  

 ddH2O   double-distilled water 

 df   degree of freedom 

 DNA   deoxyribonucleic acid 

 dNTPs   deoxynucleotide triphosphates 

 dsDNA   double stands deoxyribonucleic acid 

 E   east 

 e.g.   for example 

 EM   electron microscope 



xix 
 

 epank1   Ehrlichia phagocytophila protein gene in Ankyrins  

    family  

 et al.   and others 

 etc.   and other things 

 E-value   expected value (in BLAST) 

 F1   filial generation 1 

 F2   filial generation 2 

 FITC   fluorescein isothiocyanate 

 ftsZ   filamenting temperature-sensitive mutant Z gene 

 GC content  guanine-cytosine content 

 GenBank  National genetic sequence data base 

 GLM   Generalized linear models 

 gltA   citrate synthase gene 

 GPS   Global Positioning System 

 groEL   chaperonin gene 

 gyrb   DNA gyrase subunit B 

 H’   Shannon diversity index 

 HTS   high throughput sequencing 

 IBM   International Business Machines Corporation 

 ID   identity 

 i.e.   that is 

 IPTG   Isopropyl β-D-1-thiogalactopyranoside 

 ITS   intergenic spacer 

 Jack1   first-orderd Jackknife estimator 

 K   the number of estimated variables in AICc model  

    selection 

 kDa   kilodalton 

 km2   square kilometre 

 KOGs   key orthologs for eukaryotic genomes 

 KW   non-parametric Kruskal-Wallis test 

 Lao PDR  Lao People's Democratic Republic  

 LB   Luria-Bertani medium 



xx 
 

 Log-like  log likelihood function 

 MaIT   Model-averaged importance of term 

 m   metre 

 M   molar 

 min   minute 

 ml   millilitre 

 ML   Maximum likelihood 

 MLST   multilocous sequence typing 

 mm   millimetre 

 mM   millimolar 

 MPR   minimum positive rate 

 N   north 

 NCBI   National Center for Biotechnology Information 

 NE   northeast 

 ng   nanogram 

 NJ   neighbour joining 

 nm   nanometre 

 nmol   nanomole 

 No.   number of 

 NODF   Nestedness metric based on overlap and decreasing 

    fill 

 n. sp.   specimen new or undescribed 

 OpPath  opportunistic pathogen 

 opt   optimal 

 OTU   operational taxonomic unit   

 Path   pathogen 

 PCA   principle component analysis 

 PCoA   principle coordinate analysis 

 PCR   polymerase chain reaction 

 pg   picogram  

 Polymerase LD DNA polymerase enzyme with low bacterial DNA  

 PPLO   pleuropneumonia-like organisms (mycoplasma)  



xxi 
 

 p or p-value  calculated value probability 

 QIIME   Quantitative Insights into Microbial Ecology software 

    package 

 qPCR   quantitative polymerase chain reaction 

 RDP   Ribosomal Database Project 

 rpm   round per minute  

 RT-PCR   real-time polymerase chain reaction 

 S   south 

 Sap   saprophyte 

 SEA   Southeast Asia 

 SEATO   Southeast Asian Treaty Organisation 

 sec   second  

 SEM   scanning electron microscope 

 SMRT   single molecule real-time sequencing 

 SNPs   single nucleotide polymorphisms  

 sp.   species (singular form) 

 spp.   species (plural form) 

 STRs   short tandem repeats 

 SymA   symbiont (arthropod) 

 SymN   symbiont (nematode) 

 TEM   transmitted electron microscope 

 TSA   Trypticase soy agar 

 TSB   Tyrpticase soy broth 

 W   west 

 WGS84   World Geodetic System 1984 

 WHO   World Health Organization 

 Wr   Akaike’s weight 

 wsp   Wolbachia surface protein gene 

 UK   The United Kingdom 

 UniFrac  unique fraction phylogenetic-based measurement  

    methods 

 USA   The United States of America 



xxii 
 

 V   voltage 

 VIF   variance inflation factor 

 vs   versus 

 X-gal   5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 

 16S rDNA  16 Svedberg ribosomal deoxyribonucleic acid 

 16S rRNA  16 Svedberg ribosomal ribonucleic acid 

 56-KDa TSA  56 Kilodalton type-specific antigen 

 α   alpha 

 β   beta 

 γ   gamma 

 µl   microlitre 

 µm   micrometre (micron)  

 µM   micromolar 

 oC   Celsius degree 

 %   percentage 

  

Abbreviations of chigger morphometry methods are given separately in CHAPTER 3 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

1 
 

 

 

 

 

 

 

 

 

 

CHAPTER 1 

GENERAL INTRODUCTION:  CHIGGER BIOLOGY AND MEDICAL 

IMPORTANCE 

 

 

 

 

 



 
 

2 
 

   CHAPTER 1 

General Introduction:  Chigger Biology and Medical Importance 

 Chigger is the common colloquial term used in parts of Asia for the tiny 

larval stages of trombiculid mites, also known as ‘redbugs’ (America), ‘harvest 

mites’ (Europe), ‘scrub itch mite’ (Australia), and ‘tsutsugamushi’ or ‘kedani’ 

(Japan). Chiggers have been recognised as vectors of Orientia tsutsugamushi 

(formerly known as Rickettsia tsusugamushi), causative agent of ‘scrub typhus 

disease’ in the Asia-Pacific region since the 1930s (Rapmund 1984; Kelly et al. 2009), 

and their bites result in intense irritation and dermatitis in humans and animals. 

They are important vectors of serious human disease and thus the subject of 

medical entomology research, and the nature of their enigmatic life cycle - existing 

as a parasite in the larval stage only, with other stages predating on other 

arthropods also makes these mites fascinating topics of ecological and behavioural 

studies. 

1.1 General morphology 

 When unfed, the chigger is very small (<1 mm in length), hairy, oval to 

round-shaped, and varies in colour from white, cream, orange, brown to red 

(Nadchatram & Dohany 1974). The exoskeleton is thin and soft. Its body can be 

divided into 2 main parts: (1) The gnathosoma or head/mouthparts  comprises 

specialized appendages (chelicera, palp and galea) for feeding and with a sensory 

function; and (2) idiosoma (abdomen and thorax) which is the major part of the 



 
 

3 
 

body supporting the eyes, scutum (antero-dorsal plate), body setae (hair) and legs 

(Vercammen-Grandjean & Langston 1975), (Figure 1.1). Larvae possess 3 pairs of 

legs, and other instars 4 pairs, starting with the deutonymph stage. Combinations of 

characteristic details and their measurements are very important for taxonomic 

classification and identification; more details are described in CHAPTER 3. 

1.2. Life cycle and behaviour 

 The general life cycle of chiggers was firstly postulated by Nagayo et al. 

(1917), subsequent to detailed life cycle studies being possible when laboratory 

rearing of colonies become practicable decades later (Wharton & Carver 1946). The 

mites have 7 life cycle stages: egg, deutovum (pre-larval), larva, protonymph, 

deutonymph, tritonymph and adult (Shatrov & Kudryashova 2006). Only the larval 

instar is parasitic, feeding on a wide range of vertebrates and incidentally on 

humans; whereas adults and nymphs live in soil and are predators of soft-bodied 

arthropods (Figure 1.2). Life cycle duration of chiggers depends on the species, and 

is influenced significantly by environmental factors, i.e. temperature, humidity or 

abundance of food and nutrition in their territory (Nadchatram & Dohany 1974). 

Local climate influences the number of chigger generations in a year. For example, a 

single generation is usual in chigger populations in temperate areas (North America, 

Europe or East Asia), but in warmer zones as found in tropical countries, there tend 

to be multiple generations, with up to 5 or more within each year (Jones 1951; Sasa 

1961; Hahn & Ascerno 2008). The life cycle of trombiculid mites is briefly described 

below. 
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Figure 1.1 General appearance of dorsal and ventral views of chigger larva 

(modified from Nadchatram and Dohany, 1974) 

 Focussing in tropical areas, nymphal and adult stages comprise much of the 

lifespan duration, averaging 400-600 days (99%) as free-living in the environment, 

while the larval stage appears to occupy normally around 1% of life cycle time as an 

ectoparasite (Shatrov 1992). However, in temperate zones with harsher seasonal 

conditions, a recent study reported evidence of Hirsutiella zachvatkini in prolonged 

contact on rodent hosts through autumn and winter months until environmental 

conditions favour dropping-off and further development (Moniuszko & Mąkol 

2016).  Adults and nymphs hunt arthropods and their eggs; i.e., Collembola, Diptera, 

Hemiptera, and Lepidoptera (Lipovsky & Schell 1951; Lipovsky 1954), as well as 

feeding on soil nematodes for food (Morishita & Nakamatsu 1958). Nymphs are 



 
 

5 
 

morphologically similar to adults but smaller in size, and sexual organs are not fully 

developed. Adult sexes can be recognized by appearance of specialized setae 

around the genital area of the male which are completely absent in females. The 

mites reproduce sexually with indirect copulation; the unique insemination process 

of some mite and tick taxa (Lipovsky et al. 1957; Oldfield et al. 1970; Alberti et al. 

2000). However, there is evidence for parthenogenesis (asexual reproduction 

whereby the embryo can develop directly from unfertilized eggs in the absence of 

males) inpopulations of Leptotrombidium arenicola and L. deliense (Kaufmann & 

Traub 1966; Liu & Hsu 1985 cited in Stekolnikov 2013). The process of sexual 

reproduction described by Lipovsky et al. (1957) starts when the male deposits a 

spermatophore (a sac of sperm) onto a substrate, and when the female encounters 

the spermatophore she pushes it through her ventral genital opening, so that 

fertilisation occurs. 

 

Figure 1.2 Parasitic and free-living life cycle of different stages of chiggers 

 A couple of weeks after fertilization, the female starts to lay eggs in soil or 

vegetation and continues to oviposit for a month, producing up to 400 eggs in a 

lifetime (Nadchatram & Dohany 1974). The deutovum (pre-larval stage) develops 
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inside the egg for 6-10 days before the active larva, the “chigger”, hatches out. Its 

parasitic life begins at this point. Unfed chiggers are usually found as motionless 

clusters or “chigger islands” waiting for their host in shaded areas on the ground or 

a few inches above the ground; i.e., on vegetation, dry leaves, grasses, twigs or soil 

debris. Their static behaviour, waiting for an opportunity to bite a host, was realized 

as the most important bionomic aspect of public health importance (Sasa 1961). 

 Several publications have proved that chiggers exhibit diurnal activity, being 

most active in the day time, particularly in the morning or evening when the ground 

temperature is not as high as in midday or early afternoon (Audy 1961; Kohls et al. 

1954). Chiggers detect the approach of a vertebrate host in their area by reacting to 

air movements and the level of CO2 in the air current, and then immediately crawl 

up onto the top of an object for a chance to attach onto the host. However, Sasa et 

al. (1957) proposed that CO2 acts as a chemical stimulant, which awakes their 

parasitic instinct from the resting stage, rather than a guide to navigate direction 

towards the host.  

 There appears to be some misunderstanding of chigger feeding behaviour 

on mammals. They are neither blood sucking nor burrowing mites. Rather, chiggers 

cause a serious bite by using strong blade-liked mouthparts, the chelicerae, to 

pierce the host’s skin. During feeding, extra-oral digestion is a key process of the 

feeding behaviour of the trombiculid mites. A feeding tube-like cavity called the 

“stylostome” is developed from chigger saliva, constructing a complex glycoprotein 

structure from the stratum corneum into the host’s epidermis or dermis tissue 

(Hase et al. 1978; Shatrov 2009). Powerful enzymes from the salivary gland are 
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released into the wound, and the larvae are then able to feed on the digested 

tissue, lymphoid and cellular components by pumping the lysate into their body. 

Shatrov (2015) found that the salivary glands of newly hatched chiggers contain 

efficient secretory granule enzymes, suggesting the potential ability to feed on a 

host very soon after hatching. 

 In general, small terrestrial mammals (rodents and insectivores) are the 

most preferred hosts for chiggers. Nevertheless, some other vertebrates; i.e., bats, 

birds, amphibians or reptiles that live in the same microhabitat can be attacked, as 

low host specificity is commonly found in trombiculids (Loomis 1956; Shatrov & 

Kudryashova 2008). With their wide-host feeding habit, this could be one of 

explanations for the occurrence of huge diversification of Orientia tsutsugamushi 

strains in nature (Kelly et al. 2009; Paris et al. 2013).     

 Typically, larvae attach and feed for about 3-5 days on their host (Shatrov 

1992). However, the length of feeding time can be different depending on host 

type. There is some evidence revealing different periods of chigger feeding on 

reptiles (up to 30-65 days on horned lizards), birds (a week on wild birds or 

chickens), and mammals (a couple of days on rodents and humans) (Melvin et al. 

1943; Harrison 1953; Sasa et al. 1957). In a situation where hosts are scarce or 

unavailable, unfed larvae can survive more than 200 days without food and are able 

to feed again when hosts become available (Shatrov & Kudryashova 2006). 

 Engorged chiggers detach from their host after feeding, and become 

quiescent for 2 - 3 days under protected objects in the environment. The larvae 
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develop into a quiescent pupating stage or “protonymph” (similar to 

nymphochrysalis in other mites) inside the old larval cuticle, and then “8-legged 

deutonymphs” develop soon after within period of a month. Deutonymphs become 

active again, hunting soil arthropod eggs and larvae for food, and then re-enter 

another quiescent stage. Lastly, the tritonymph (imagochrysalis) emerges as the 

final transitional stage before developing into an adult to complete the life cycle. 

The whole life cycle (from egg-to-egg) can take around 150 – 400 days in chiggers 

from the northern hemisphere (Shatrov & Kudryashova 2006), whereas tropical 

species tend to exhibit a shorter period, on average 72 days (Womersley & Heaslip 

1943; Neal & Barnett 1961; Nadchatram & Dohany 1974). 

1.3 Ecology and geographical distribution 

 Chiggers are cosmopolitan mites, and are highly diversified across various 

habitat types throughout the world; i.e., forest, woodland, grassland, scrub 

vegetation, agricultural land, swamp and seacoast. Besides these biotypes, some 

chigger species may be found in extreme environments such as at high altitude 

levels (Himalayas and Andes), desert biomes, or extremely cold regions in Alaska, 

Russia, Korea and the north of Japan (Traub et al. 1967; Traub & Wisseman 1968; 

Kudryashova 1998; Takahashi et al. 2012).  

 Considering the Trombiculidae as a whole, chiggers are best represented in 

the Oriental, Australasian and Afrotropical regions compared to the other areas 

(Wharton 1952). Some chigger genera are widely represented in several 

zoogeographical regions; e.g., Leptotrombidium is widespread (Oriental, Palearctic, 
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Australasia, Afrotropical and Nearctic) but not in Neotropical, Antarctic, 

Madagascan and Oceania regions; Blankaartia is found in the Nearctic, Neotropical, 

Palearctic, Afrotropical and Oriental regions; Eutrombicula is found in the Western 

hemisphere, Nearctic and Neotropical regions; Neotrombicula is found in temperate 

zones, the Nearctic and Palearctic; and Ascoshoengastia in the Oriental, 

Australasian and Afrotropical regions (Wharton 1952; Halliday 1998; Brown 2002; 

Daniel & Stekolnikov 2004; Stekolnikov 2013; Stekolnikov et al. 2014). Other genera 

are restricted in distribution; e.g., Trombiculindus and Lorillatum have been 

reported only in the Oriental region; and Womersia is limited to the Americas 

(Wharton 1947; Vercammen-Grandjean & Langston 1975).  

1.4 Taxonomy and classifications   

 The systematics and taxonomy of chiggers are almost entirely based on 

morphology, with the sclerotized structure of larvae having a specific terminology, 

“nepophylogeny” (Vercammen-Grandjean et al. 1973). The mites are classified in 

the family Trombiculidae of the subclass Acari. Details of their present taxonomic 

position are showed in Figure 1.3. 

 The number of newly discovered species has increased greatly to around 

3,000 species, particularly after World War II (Sasa 1961; Brennan & Goff 1977). In 

parallel with other complex taxa in the Acari, the classification system within 

Trombiculidae is still unclear and largely debatable due to their morphological 

variation, high diversity, worldwide distribution and low host specificity. The most 

recent phylogeny of Trombiculidae was proposed by Shatrov & Kudryashova (2008) 
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comprising 4 subfamilies: (1) Leeuwenhoekiinae; (2) Apoloniinae; (3) Gahrliepiinae 

and (4) Trombiculinae (Figure 1.4).  

PHYLUM: Arthropoda 

            CLASS: Arachnida 

                            SUBCLASS: Acari 

                                        SUPERORDER: Acariformes 

                                                    ORDER: Trombidiformes 

                                                              SUBORDER: Prostigmata 

                                                                          COHORT: Parasitengonina 

                                                                                     SUBCOHORT: Trombidiae 

                                                                                                 SUPERFAMILY: Trombiculoidea 

                                                                                                              FAMILY: Trombiculidae 

Figure 1.3 Taxonomic ranking of Family Trombiculidae (Krantz & Walter 2009) 

 Terminology and morphological characters of trombiculid larvae were 

initially described by Ewing (1949), and continually improved thereafter (Wharton 

et al. 1951; Vercammen-Grandjean & Langston 1975; Brennan & Goff 1977; Goff et 

al. 1982). A number of morphological characteristic features are used in 

combination to discriminate Trombiculidae from the other Acari; i.e. the presence 

of a single dorsal scutum (with a pair of sensillae) on the anterior part of the 

idiosoma; coxae I and II close together; urstigma located on the postero-lateral 

margin of coxa I; two claws and empodium on the tip of each leg; constant setation 

formula or hair number as 1-1-3 on the palp segments: femur, genu and tibia, 
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respectively; and setation pattern on the idiosoma usually organized in regular rows 

(A B Shatrov & Kudryashova 2008). 

 

Figure 1.4 Phylogeny of tribes within the family Trombiculidae following Shatrov 

and Kudryashova (2008).  

1.5. Chigger diversity in Southeast Asia    

 Southeast Asia (SEA) comprises 11 countries located in two different 

geographical sub-regions: mainland or Indo-China Peninsula (Cambodia, Lao PDR, 

Myanmar, Thailand, Vietnam, and West Malaysia); and the Malay Archipelago 

(Brunei, East Malaysia, Indonesia, Philippines, Singapore and Timor). The region has 

been realized as one of the world’s hotspots of biodiversity, particularly for 

mammals (Myers et al. 2000; Schipper et al. 2008). In addition, parasite diversity 

and emerging infectious diseases are also prevalent in accordance with the high 

diversity of available hosts in this region (Jones et al. 2008; Morand et al. 2014).   

 Undoubtedly, a diversity of chigger species in SEA is also highly evident and 

this part of the world was hypothesized as a focus of speciation of some trombiculid 
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species (Stekolnikov 2014). Nadchatram & Dohany (1974) summarized practical 

information on diversity and keys to the subgenera of Trombiculidae in SEA, with 

approximately 350 species from over 40 subgenera found to parasitize different 

vertebrate host groups (reptiles, birds, bats and small mammals). Subsequently, a 

number of continually updated works on the descriptions of new species/genera of 

Trombiculidae in the region were published (Hadi & Carney 1977; Suzuki 1980; 

Nadchatram 1989; Tanskul 1991; Brown 1992; Tanskul & Linthicum 1997; 

Nadchatram 2006; Stekolnikov 2014; Chaisiri et al. 2016). Details of Trombiculidae 

diversity are shown in Table 1.1. 

Table 1.1 List of chigger genera reported on different vertebrate host groups in 

Southeast Asia (Nadchatram & Dohany 1974). 

Subfamily Genus 
Small 

mammal 
Bat Bird Reptile 

Leeuwenhoekiinae Odontacarus  X  X  

 Whartonia  X   

Gahrliepiinae Gahrliepia X    

 Schoengastiella X    

 Walchia X    

Trombiculinae Ascoschoengastia X    

 Babiangia    X 

 Blankaartia X  X  

 Cheladonta X    

 Chiroptella  X   

 Cricacarus X    

 Diplectria  X   

 

 



 
 

13 
 

Table 1.1 (continued) 

Subfamily Genus 
Small 

mammal 
Bat Bird Reptile 

 Doloisia X    

 Eltonella    X 

 Eutrombicula X  X X 

 Fonsecia    X 

 Guntherana X    

 Heaslipia X  X  

 Helenicula X  X  

 Herpetacarus X   X 

 Kayella X    

 Laotrombicula X    

 Leptotrombidium X  X  

 Lorillatum X    

 Neoschoengastia   X X 

 Neotrombicula   X  

 Mackiena   X  

 Microtrombicula X X  X 

 Myotrombicula  X   

 Riedlinia  X   

 Rudnicula  X   

 Sasatrombicula  X   

 Schoengastia X  X  

 Schoutedenichia X    

 Siseca X  X X 

 Susa X    

 Toritrombicula   X  

 Trisetica  X   

 Trisetoisia X    
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Table 1.1 (continued) 

Subfamily Genus 
Small 

mammal 
Bat Bird Reptile 

 Trombicula  X   

 Trombiculindus X    

 Trombigastia  X   

 Vatacarus    X 

 Vercammenia    X 

 Walchiella X    

 

1.6 The public health importance of chiggers 

 In relation to human public health, there are 2 main problems of medical 

importance: (1) The mites cause skin irritation and intense itching through their bite 

and (2) they are vectors of microbial pathogens.      

 In the first aspect, trombidiosis or trombiculiasis is an itching dermatitis 

condition due to feeding by trombiculid chiggers (Krantz & Walter 2009). The 

victims are usually bitten during outdoor activity; e.g., when resting on grass, 

working on farmland or walking past bushes where a cluster of chiggers has 

gathered. A number of cases has been reported in Europe, America and occasionally 

in Asia during summer and autumn when the larval chiggers become active 

(Pogacnik & Kansky 1998; Schulert & Gigante 2014). Neotrombicula autumnalis and 

Eutrombicula alfreddugasi are the important chigger species known to bite humans 

and cause trombidiosis in Europe and America, respectively. More than other 50 

species have been reported to attack humans, such as Eushoengastia 
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serothermobia, E. koreaensis, Hirsutiella zachvatkini, Kepkatrombicula desaleri, 

Leptotrombidium akamushi, L. deliense, Neotrombicula japonica and Trombicula 

toldti, along with unspecified species of various chigger genera: Blankaartia, 

Leptotrombidium, Gahrliepia and Schoengastia (Finnegan 1945; Wharton 1952; Sasa 

1961; Pogacnik & Kansky 1998; Shatrov & Stekolnikov 2011; Santibáñez et al. 2015). 

These researchers pointed out that the species attacking humans normally 

parasitized a broad host range (i.e., they exhibit low host specificity) and affect 

mammals, birds and reptiles. 

 An itchy rash consisting of maculo-papular lesions develops at the point of 

attachment, and is caused by host hypersensitivity responses to the chiggers’ 

salivary antigens. The itchy spots start from minute red macules and develop into 

itchy-watery papules within 24 - 48 hours. The period of irritation can remain for up 

to a week, whereas skin lesions with a dark pigmentation scar present for longer, up 

to a month. In some cases, severe scratching, particularly at the papule stage, may 

lead to secondary bacterial infection (Pogacnik & Kansky 1998; Juckett 2013). 

 The second public health impact of chiggers relates to their role as potential 

vectors of human pathogens. Apart from the well-known bacterium, Orientia 

tsutsugamushi, transmitted by chiggers, the mites have also been reported to bear 

some other microbial pathogens; e.g., Bartonella spp. (Kabeya et al. 2009; Loan et 

al. 2015), Rickettsia spp. (Choi et al. 2007) and Hantaan virus (Zhang et al. 2003; Yu 

& Tesh 2014). As the most notable role that chiggers play as vectors is in the 

transmission of O. tsutsugamushi, causative agent of scrub typhus, this review will 

focus primarily on this disease field. 
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 Scrub typhus or Tsutsugamushi disease has been recognised as one of the 

most under-diagnosed and under-reported febrile illnesses in the Asia-Pacific region 

(WHO 1999; Paris et al. 2013). It had a dramatic impact during World War II and the 

Vietnam conflict, when the disease became better known to the Western world. 

There were several thousand cases of the disease in the Allied forces and in 

Japanese soldiers with hundreds of deaths: mortality rates ranged from 1 - 33.5% 

after troops had landed and settled in scrub-vegetation areas in Southeast Asia and 

the Pacific islands (Peterson 2009; Kelly et al. 2009). The outbreak was reported as a 

mysterious and fearsome phenomenon to the operating soldiers; indeed, “They 

were often more afraid of clumps of grass than they were of the enemy" (Traub & 

Wisseman 1968). 

 The geographical distribution of the disease covers approximately 

13,000,000 km2 ranging from Afghanistan in the west, China and Siberia in the 

north, Korea and Japan in the east; alongside all of the Southeast Asian countries in 

the south and down to the northern part of Australia (Kelly et al. 2009). This area is 

the so-called “Tsutsugamushi Triangle” (see Figure 1.5), where over a half of the 

World’s population lives at risk inside this endemic zone, with one million cases 

reported every year (Zhang et al. 2010; Watt & Parola 2003). In addition to the 

endemic areas, there are sporadic reports of scrub typhus cases in Africa (People’s 

Republic of Congo, Cameroon) and South America (Chile) (Osuga et al. 1991; 

Ghorbani et al. 1997; Balcells et al. 2011). Furthermore, a new Orientia species, O. 

chuto, was also discovered in the Middle East (Dubai) (Izzard et al. 2010), reflecting 

that the distribution range may be even larger than previously thought. 
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 The scrub typhus agent, O. tsutsugamushi is a Gram-negative alpha-

proteobacterium, closely related to Rickettsia, the intracellular pathogenic or 

invertebrate symbiotic bacteria in the family Rickettsiaceae. The bacterium was 

separated from the genus Rickettsia based on differences in the ultrastructure of 

the outer membrane envelope, and the organism lacks peptidoglycan and 

lipopolysaccharide components. These characteristics led to re-classification in a 

novel separate genus “Orientia” (Tamura et al. 1995). However, the bacterium still 

exhibits conserved properties similar to other Rickettsia, such as obligate 

intracellular parasitism and the ability to survive in either vertebrate or arthropod 

hosts.                

 Leptotrombidium spp. are the important vectors transmitting the scrub 

typhus agent to humans under natural conditions (Traub & Wisseman 1968; 

Stekolnikov 2013). The two species, L. akamushi and L. deliense and the other 

morphologically related species (the akamushi-deliense complex) have been 

recognized as the major vectors in the Asia and Pacific regions (Sasa 1961). The first 

species probably occupies the temperate region of the endemic zone comprising 

Eastern China, Japan, Korea and the northern islands of the Philippines, whereas the 

latter is responsible for the disease transmission in tropical areas represented by 

the South and Southeast Asian countries. Although over 45 chigger species have 

been reported to harbour O. tsutsugamushi; e.g., Ascoshoengastia indica, 

Blankaartia acuscutellaris, Gahrliepia saduski, Helenicula miyagawai, 

Leptotrombidium arenicola, L. fletcheri, L. imphalum, L. pallidium, L. palpale, L. 

scutellare, Shoengastiella ligula and Walchia pacifica (Frances et al. 2001; Fournier 
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et al. 2008; Ogawa & Ono 2008; Kuo et al. 2011; Lee et al. 2011; Tilak et al. 2011; 

Phasomkusolsil et al. 2012; Zhang et al. 2013; Shin et al. 2014; Santibáñez et al. 

2015; Park et al. 2015), Leptotrombidium spp. is the only taxon proven to transmit 

O. tsutsugamushi (Santibáñez et al. 2015), and further investigations on the 

vectorial role of the other chigger genera are required. In addition, Nadchatram & 

Dohany (1974) noticed that the scrub typhus agent is usually transmitted by orange-

coloured species of chiggers rather than the white or yellow species. 

 

Figure 1.5 Endemic area of scrub typhus disease, also known as the “Tsutsugamushi 

tringle” (dashed line), and geographical distribution of the four main trombiculid 

species of medical importance. 

 Orientia is maintained and circulated in the environment through chiggers 

and several vertebrate hosts, particularly in rodents and other small mammals that 

chiggers feed on. The majority of publications reported Orientia in association with 

chiggers parasitizing small mammals, i.e., rodents and insectivores, whereas the 

status of chiggers and Orientia infection on some other host groups are less well 

defined. This reflects a potential knowledge gap regarding to the role of other 
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vertebrates; e.g., birds, reptiles, bats and large mammals as a host for chiggers and 

potential reservoirs of O. tsutsugamushi in the wild. 

 Similar to chiggers, rodents can act as an appropriate reservoir for Orientia 

as they can maintain infection for a long period, and also boost the chigger 

population by providing food for the larval mites (Frances et al. 2000). This is 

probably the reason why a huge diversification of the bacteria occurred, with more 

than 20 serotypes and over 70 antigenic strains discovered in human and reservoir 

animals (Kelly et al. 2009; Santibáñez et al. 2015). The massive antigenic strain 

diversity of O. tsutsugamushi (i.e., based on the 56-KDa type specific antigen gene) 

has been linked with evolutionary processes resulting from selective mutation 

driven by the complexity of either the chiggers’ or rodents’ host immune responses 

to the bacterial infection (Ohashi et al. 1992; Takhampunya et al. 2014). The 

bacteria use not only transovarial or vertical transmission, passing from infected 

females to offspring as an essential route to maintain their infection in mites, but 

also the transtadial route, so that the organism remains within the mites 

throughout their different life stages (Traub & Wisseman 1974; Frances et al. 2001; 

Phasomkusolsil et al. 2009; Shin et al. 2014). Thus, using transmission electron 

microscopy, O. tsutsugamushi was observed in various tissues of L. pallidum: the 

reproductive organs of male and female adults; i.e., spermatogonia, spermatocyte, 

spermatid, oogonia and oocyte; the rudimentary reproductive organs of larvae; and 

the somatic cells and eggs after oviposition (Urakami et al. 1994).           

 Based on different molecular detection methods such as conventional PCR, 

nested PCR and RT-PCR of specific gene targets (16S rRNA and the 56 kDa type-
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specific antigen), the rate of Orientia infection in field-collected mites ranged from 

0.2 – 5.9% (Lee et al. 2011; Seto et al. 2013; Zhang et al. 2013). This is in accordance 

with the data of Audy (1958) who previously estimated that the bacterial infection 

rate of L. deliense in the field was low, at only 0.1 – 10%. In laboratory-reared 

colonies, vertical transmission rates declined gradually from the parent generation 

(wild collection) to the F1 and F2 generations (Phasomkusolsil et al. 2009).  

 There is some evidence of the potential effect of O. tsutsugamushi infection 

on the mite’s development and reproduction by delaying generation time of their 

metamorphoses and reducing egg production (Roberts et al. 1977; Phasomkusolsil 

et al. 2012); nevertheless no developmental effects were found in L. deliense 

colonies (Frances et al. 2001). In some cases, O. tsutsugamushi infection can 

produce sex-ratio distortion; males were rarely found in infected colonies of L. 

arenicola and L. fletcheri (Roberts et al. 1977; Rapmund et al. 1972). Takahashi et al. 

(1997) suggested that the appearance of O. tsutsugamushi in the mite’s gonad may 

suppress male development, and a sex ratio closer to parity can be rescued by 

application of antibiotic treatment. In conclusion, O. tsutsugamushi appears to be a 

symbiont of trombiculid mites that can mediate reproductive phenotypes.  

 The occurrence of scrub typhus disease and its widely diversified strains in 

endemic areas are assumed to be associated with the four main players which are 

(1) the bacterial agent Orientia itself, (2) chiggers as vector of the disease, (3) 

vertebrate animals as hosts for chigger feeding and vehicles for bacterial horizontal 

transmission, and (4) humans as accidental host of chiggers and the role of humans 

in habitat alteration, which could increase the risk of exposure to chiggers. 
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However, there are still many unresolved points in the research field, with a 

number of research questions that could be raised, particularly interactions among 

the bacteria, vectors, reservoir hosts and humans on the basis of the ecology and 

epidemiology of the disease. 

1.7 General aim and objectives of the thesis               

 The main aim of this thesis is to define chiggers and their microbiome 

diversity in relation to ecology and scrub typhus epidemiology in Thailand. To 

address the main aim, the study can be divided into two primary research 

objectives.  

 The first objective is to understand the diversity and ecology of chiggers in 

relation to scrub typhus epidemiology. This includes research questions such as 

what is the diversity of chigger species on wild small mammals in Thailand? How are 

chigger species distributed across the country? What are the ecological factors 

influencing chigger diversity? Are there specific host-chigger interaction patterns? 

How does host-chigger parasitism impact on the ecology and epidemiology of scrub 

typhus disease? 

 The second objective is to characterize chigger-associated bacteria. A 

number of questions are relevant here, such as what is the diversity of the 

microbiome of chiggers? Do chiggers harbour other potential pathogens or bacterial 

symbionts apart from Orientia? Is Orientia infection limited only to known vector 

species? Does the chigger microbiome vary between chigger species, studied sites 

or habitat?  
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 This thesis is conducted under the context of “from-field-to-lab”, and spans 

local field studies, specimen collection and transportation, classical systematic and 

taxonomic studies, database management, molecular biology and next generation 

sequencing to bioinformatics. In CHAPTER 2, a systematic review of the literature 

regarding mite-associated bacteria worldwide is provided with a compilation of 

bacterial genera found in different mites of medical, veterinary and agricultural 

importance. Biological characteristics of the bacteria such as saprophytic, 

pathogenic and symbiotic bacteria associated with mites are discussed. In CHAPTER 

3, I introduce the systematics and taxonomy of trombiculid chiggers, including 

morphological identification criteria. The diversity of chiggers on small mammals in 

Thailand is also reported within this chapter. In CHAPTER 4, an ecological study of 

chiggers, host-chigger interaction networks and the implications for the 

epidemiology of scrub typhus in our studied sites are analysed and discussed. In 

CHAPTER 5, a microbiome analysis of chiggers using the 16S rRNA amplicon 

sequencing approach is presented for both individual and pooled chiggers. 

Preliminary works that set the scene for future studies, including whole genome 

sequencing of L. deliense, characterization of microsatellite markers for L. deliense 

population genetic studies, and in situ hybridization with immunogold-TEM to 

detect intracellular bacteria in chiggers are presented in CHAPTER 6. Finally, an 

overall conclusion and potential perspectives for future studies are provided in 

CHAPTER 7. 

 

 



 
 

23 
 

 

 

 

 

 

CHAPTER 2 

SYSTEMATIC REVIEW OF MITE-ASSOCIATED BACTERIA 

 

 

 

 

 

 

 



 
 

24 
 

CHAPTER 2 

Systematic review of mite-associated bacteria 

 This chapter presents the systematic review of mite-associated bacteria, 

which has been published in Chaisiri et al. (2015). A dataset of bacterial diversity 

found in mites was compiled from 193 publications (from 1964 to January 2015). A 

total of 143 mite species belonging to the 3 orders (Mesostigmata, Sarcoptiformes 

and Trombidiformes) were recorded and found to be associated with approximately 

150 bacteria species (in 85 genera, 51 families, 25 orders and 7 phyla). From the 

literature, the intracellular symbiont Cardinium, the scrub typhus agent Orientia and 

Wolbachia (the most prevalent symbiont of arthropods) were the dominant mite-

associated bacteria, with approximately 30 mite species infected by each. 

Moreover, a number of bacteria of medical and veterinary importance were also 

reported from mites, including species from the genera Rickettsia, Anaplasma, 

Bartonella, Francisella, Coxiella, Borrelia, Salmonella, Erysipelothrix and Serratia. 

Significant differences in bacterial infection patterns among mite taxa were 

identified. These data will not only be useful for raising awareness of the potential 

for mites to transmit disease, but also enable a deeper understanding of the 

relationship of symbionts with their arthropod hosts, and may facilitate the 

development of intervention tools for disease vector control. This review provides a 

comprehensive overview of mite-associated bacteria and is a valuable reference 

database for future research on mites of agricultural, veterinary and/or medical 

importance. 
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2.1 Introduction   

 Mites are classified in the subclass Acari (class Arachnida) of the phylum 

Arthropoda. Although approximately 48,200 species have been described (Halliday 

et al. 2000), a further half-million species are believed to exist worldwide (Kettle 

1984). More so than any other arthropod group, mites are found in highly diverse 

habitats: terrestrial, marine, freshwater and even in the upper atmosphere due to 

dispersal through aerial currents (Krantz & Walter 2009). Whereas most mite 

species live freely in the environment, some species have evolved to be parasitic on 

other animals or on plants and are therefore of great agricultural and veterinary 

importance, although their medical impact is generally more modest. Some species 

are significant destructive pests of stored food products; while others (such as 

house dust mites) produce faecal allergens, inducing asthma in human. Mites can 

also produce serious skin conditions by feeding on the skin of domestic animals 

(mange) and can cause dermatitis in humans. Finally, some species act as important 

vectors of pathogenic microorganisms of medical and veterinary importance (Arlian 

et al. 2003; Brouqui & Raoult 2006; Valiente Moro et al. 2009). 

 The relationship between bacteria and arthropods can be divided into 2 

main aspects, which are not mutually exclusive: (1) bacteria recognized as 

pathogens transmitted by an arthropod vector, and (2) bacteria residing as 

symbionts within their arthropod host. The study of the first aspect usually concerns 

surveillance for emerging or re-emerging diseases and interactions between the 

arthropod vector, environment, wildlife, domestic animals and humans. In contrast, 

the second research area concerns other bacteria that may influence the physical, 
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ecological and evolutionary traits of their arthropod host, usually without 

transmission of these organisms to a second host in which disease may occur. These 

studies are often designed to characterize and define symbiont–arthropod 

interactions. For example, the nutritional mutualist, Buchnera aphidicola, 

synthesizes essential amino acids for its aphid host (Acyrthosiphon pisum) that 

feeds on plant phloem, which has a very low essential amino-acid content (Gunduz 

& Douglas 2009). Pea aphids also harbour defensive mutualists such as Regiella 

insecticola, which protects the host population from a natural enemy (the 

pathogenic fungus, Pandora neoaphidis) by reducing the sporulation rate in aphid 

cadavers, thus reducing the probability of pathogen transmission to other aphids 

(Scarborough et al. 2005). Other bacterial genera are capable of manipulating their 

hosts’ reproduction: Wolbachia, Cardinium, Spiroplasma and Rickettsia induce 

detrimental phenotypes in their arthropod hosts such as cytoplasmic 

incompatibility, parthenogenesis induction, feminization and male killing 

(Stouthamer et al. 1999; Tinsley & Majerus 2006; Enigl & Schausberger 2007; 

Giorgini et al. 2009). These findings may be utilized to enhance prospects for 

biological control since there is the potential to manipulate arthropod populations 

of agricultural, medical or veterinary importance. 

 Recently, the number of publications on arthropod-associated bacteria has 

substantially increased, particularly for the Diptera, Hemiptera and Hymenoptera 

(Baumann 2005; Crotti et al. 2010; Martinson et al. 2011; Taylor et al. 2011; Martin 

et al. 2012; Zucchi et al. 2012; Skaljac et al. 2013). In parallel, studies on mite-

bacterial relationships have also increased, but to a lesser extent compared with the 
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insect orders above. Moreover, sources of information with respect to mites and 

their pathogens and symbionts are widely distributed in the literature, and the 

compilation of data in terms of review publications is still very limited. Accordingly, 

the aims of this literature review are (1) to obtain an overview of bacterial diversity 

in mites and its potential applications, and (2) to provide comparative data for mite-

associated bacteria of agricultural, veterinary and medical importance to stimulate 

hypothesis driven research. 

2.2 Materials and methods 

2.2.1 Literature search 

 This review focuses on reports of bacteria found in mites across the world. 

The publications were extracted by searching from 2 major scientific literature 

databases, PubMed (www.ncbi.nlm.nih.gov/pubmed) and Web of Knowledge 

(www.webofknowledge.com). Three main mite orders (Mesostigmata, 

Sarcoptiformes, Trombidiformes), some common names of mites (e.g., gamasid 

mite, dust mite, itch mite, spider mite, harvest mite, free-living mite, chigger etc.) or 

scientific names (e.g., Dermanyssus, Dermatophagoides, Leptotrombidium or 

Tyrophagus), were used in combination with the term “bacteria” or “bacterium” as 

the keywords and applied to the title field or abstracts in those databases. From the 

obtained literature, the number of bacterial taxa (genus and species level) was 

recorded for each mite species. Only the publications reporting a minimum of 

genus-level identifications of bacteria were included in the database for statistical 

analyses. Bacterial scientific names obtained from the literature were checked for 
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taxonomic assignment following the NCBI Taxonomy Browser 

(http://www.ncbi.nlm. nih.gov/Taxonomy/Browser/wwwtax.cgi), while for the 

latest mite taxonomic classifications, Krantz & Walter (2009) was consulted. 

2.2.2 Mite classification 

 Taxonomically, the mites were classified into 3 orders and 14 superfamilies. 

In addition, for the purposes of the present investigation, mites were also grouped 

into 4 types based on life history (Krantz & Walter 2009): (1) “Vertebrate parasite” 

was defined as a mite species which at some lifecycle stage feeds on vertebrate 

animals or are confirmed as disease vectors; (2) “Invertebrate predator” was 

defined as a mite species which at some lifecycle stage hunts or feeds upon other 

invertebrates (some of which are used as biological pest control in agricultural 

practice); (3) “Plant parasite” was defined as a mite species that feeds on live plant 

tissues (with some species responsible for economic losses in agricultural products); 

and (4) “House pest and allergen” are those mites which spoil stored foodstuffs or 

contain powerful allergens that induce detrimental immune responses in humans 

and/or animals (Table 2.1). 

2.2.3 Bacterial classification 

 For bacteria, apart from taxonomic classification, 4 bacterial groups were 

categorized due to their biological characteristics. Following the scheme of Valiente 

Moro et al. (2009), the different categories were defined as: (1) “Saprophyte” – 

examples are bacteria which have not been described as being pathogenic; (2) 

“Opportunistic pathogen” – species in this category cause disease in compromised 
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vertebrate hosts but not in healthy hosts; (3) “Pathogen” – most species in the 

genus are pathogens of vertebrates; and (4) “Symbiont” – bacteria that strictly live 

in association with an arthropod host. 

2.2.4 Statistical analysis 

 In order to visualize the distribution of the bacteria found in each mite 

superfamily, a correspondence analysis (CA) was performed using R freeware (R 

Core Team 2015) with the “ade4” package (Dray & Dufour 2007). The CA was 

calculated by counting the number of bacterial genera positively reported in each 

mite taxon. Before starting the analysis, data from 4 mite superfamilies (Oppioidea, 

Rhodacaroidea, Erythraeoidea and Eviphidoidea) were removed due to only one 

record of bacteria each that could cause analysis bias (outliers).  

 To investigate the difference of the 4 biological types of mite on bacterial 

diversity, the species number of bacteria (species richness) in each order was 

recorded across the 4 mite categories. This was analysed using the non-parametric 

Kruskal–Wallis test, and multiple pairwise comparison tests were performed with 

SPSS version 21.0 software (IBM Corporation, Armonk, New York, USA), applying 

95% confidence intervals. P-values were adjusted for multiple comparisons. 
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Table 2.1 Summary of selected mite taxa extracted from the literature review of 

mite-associated bacteria. The Oppioidea (*) are exclusively free-living, and 

therefore lie outside our mite life history classification scheme. Abbreviation: VP = 

Vertebrate parasite, IP = Invertebrate parasite, PP = Plant parasite and HA = House 

pest & allergen 

Order Superfamily         

(number of species) 

Mite species Importance 

Mesostigmata Dermanyssoidea (46) Andreacarus sp., A. petersi, Androlaelaps 

casalis, A. fahrenholzi, A. jamesoni,  

Cameronieta strandmanni, Chiroptonyssus 

hematophagus, Dermanyssus sp., D. gallinae, 

D. hirundinis, Eugamasus sp., Eulaelaps 

stabularis,  Haemogamasus sp., H. ambulans, 

H. criceti, H. hirsutus, H. nidi, H. reidi, 

Haemolaelaps sp.,H. glasgowi,  Hirstionyssus 

isabellinus, H. musculi, Hyperlaelaps 

amphibious, H. arvalis, Ichoronyssus miniopteri, 

Laelaps sp., L. agilis, L. dearmasi, L. hilaris,        

L. multispinosus, L. muris, L. pavlovskyi, 

Liponyssoides sanguineus, Myonyssus gigas, 

Ophionyssus natricis, Ornithonyssus bacoti,     

O. sylviarum, Periglischrus iherngi, 

Pneumonyssus sp., Raillietia caprae,    

Spinturnix sp., S. myoti, S. psi, Steatonyssus sp., 

S. furmani, S. occidentalis 

VP, IP 

 Eviphidoidea (1) Macrocheles subbadius IP 

 Phytoseioidea (10) Euseius finlandicus, Galendromus annectens, 

Metaseiulus occidentalis, Neoseiulus barkeri,  

N. bibens, N. californicus, N. cucumeris, 

Phytoseiulus longipes, P. persimilis, 

Proprioseiopsis lenis 

IP 

 Rhodacaroidea (1) Euryparasitus emarginatus VP 

Sarcoptiformes Acaroidea (7) Acarus siro, Aleuroglyphus ovatus, Rhizoglyphus 

robini, Sancassania berlesei, Tyroborus lini, 

Tyrophagus sp., T. putrescentiae 

VP, PP, HA 

 Analgoidea (2) Dermatophagoides farina, D. pteronyssinus HA 
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Table 2.1 (continued)  

Order Superfamily         

(number of species) 

Mite species Importance 

Sarcoptiformes Glychyphagoidea (5) Aeroglyphus robustus, Blomia tropicalis, 

Chortoglyphus arcuatus, Glycyphagus 

domesticus, Lepidoglyphus destructor 

HA 

 Hemisarcoptoidea (1) Carpoglyphus lactis HA 

 Oppioidea* (1) Oppiella nova  

 Sarcoptoidea (2) Psoroptes cuniculi, P. ovis VP 

Trombidiformes Cheyletoidea (8) Cheyletus eruditus, Demodex sp., 

Syringophilopsis turdi, S. sturni Torotrogla 

cardueli, T. lusciniae, T. merulae, T. rubeculi  

VP, IP 

 Erythraeoidea (2) Leptus lomani, L. sayi IP 

 Tetranychoidea (23) Brevipalpus sp., B. californicus, B. obovatus,   

B. phoenicis, Bryobia berlesei, B. kissophila,   

B. praetiosa, B. rubrioculus,  B. sarothamni, 

Eotetranychus suginamensis, E. uncatus, 

Oligonychus gotohi, Panonychus mori, 

Petrobia harti, Schizotetranychus cercidiphylli, 

Tetranychus cinnabarinus,  T. kanzawai,         

T. parakanzawai, T. phaselus, T. piercei,         

T. pueraricola, T. truncates, T. urticae 

PP 

 Trombiculoidea (34) Aschoshoengastia sp., A. indica, Blankaartia 

acuscutellaris, Eushoengastia sp.,                    

E. koreaensis, Gahrliepia saduski, 

Leptotrombidium sp., L. akamushi,                   

L. arenicola, L. chiangraiensis, L. deliense,      

L. fletcheri, L. fuji, L. himizu, L. imphalum,       

L. intermedium, L. kawamura, L. kitasatoi,     

L. linhuaikongense,  L. orientale, L. palladium, 

L. palpale, L. pavlovskyi, L. scutellare,              

L. taishanicum, L. umbricola, Miyatrombicula 

kochiensis, Neotrombicula sp., N. autumnalis,   

N. japonica, Schoengastia sp., Schoengastiella 

ligula, Trombicula gaohuensis, Walchia 

pacifica    

VP 
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2.3 Results & Discussions  

2.3.1 Methodological approaches to the identification of bacteria in 

mites 

 A total of 193 publications were included in this systematic review from 

1964 until January 2015. The number of publications reporting mite-associated 

bacteria was found to increase gradually over this period (Figure 2.1). However, we 

estimated that the total volume of literature describing mite-bacteria associations is 

5 times smaller than that for ticks and 20 times smaller than that for insects (data 

not shown).The eligible publications covered 143 mite species belonging to 3 orders 

and 14 superfamilies (Table 2.1). The most studied mite taxon was Dermanyssoidea 

(46 species), followed by Trombiculoidea (34 species), Tetranychoidea (23 species) 

and Phytoseioidea (10 species). 

 Clearly, prior to the early 1990s (Figure 2.1), analyses of bacteria in mites 

were restricted to non-molecular methods such as conventional bacterial cultures 

with biochemical characterization, inoculations of laboratory animals and 

serological tests. For example, Mycoplasma spp. were isolated from goats’ ear 

mites, Psoroptes cuniculi and Raillietia caprae, by culturing the crushed mites in 

PPLO agar supplemented with pig serum, and then the bacteria were identified by 

biochemical characteristics (Cottew & Yeats 1982). Similarly, the red poultry mite, 

Dermanyssus gallinae, was studied for its potential vectorial role for Salmonella 

gallinarum and Erysipelothrix rhusiopathiae transmission in the poultry industry by 

culturing mite extracts in selective enrichment media, selenite broth (Zeman et al. 
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1982) and crystal-violet sodiumazide broth (Chirico et al. 2003), respectively. In the 

scrub typhus research field, a number of studies have used mouse passages to 

amplify Orientia tsutsugamushi from wild chigger mites fed on the rodents, and 

different strains of the bacterium were indirectly detected by various serological 

methods (e.g., fluorescence antibody assays, immunoperoxidase staining and 

complement fixation tests (Kitaoka et al. 1974; Roberts et al. 1977; Dohany et al. 

1978; Shirai et al. 1982; Ree et al. 1992; Frances et al. 2001; Lerdthusnee et al. 

2002; Phasomkusolsil et al. 2009). Of course, such specific methods allow the 

identification of the target organism only, and unculturable bacteria would not be 

detected. 

 

Figure 2.1 The number of publications reporting mite-associated bacteria. Numbers 

within bars refer to a breakdown of publications by methodology. Curve represents 

an exponential line of best fit.  

 With the advent of the molecular era, the development of specific PCR 

assays and conventional and next-generation sequencing techniques revealed a 
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significantly higher microbial diversity than was previously estimated by culture-

dependent approaches (Hugenholtz et al. 1998; Yun et al. 2014; Hubert et al. 2015). 

In particular, use of 16S rDNA PCR with bacterial species-specific primers has been 

widely used for bacterial taxonomic studies in mites (Figure 2.1). Additionally, 

several publications used specific PCR to amplify other bacterial genes of interest. 

For example, the protein-coding genes: ftsZ, groEL, wsp and citrate synthase (gltA) 

were used in Wolbachia studies (Hong et al. 2002; Gotoh et al. 2005; Yu et al. 2011; 

Zhu et al. 2012; Ros et al. 2012; Suh et al. 2015; Glowska et al. 2015; Zhang et al. 

2015); outer membrane protein B gene, 17 KDa antigenic gene and gltA were used 

for Rickettsia spp. (Reeves et al. 2006; Reeves et al. 2007; Choi et al. 2007; Tsui et al. 

2007); the 16S–23S intergenic spacer (ITS) and gltA were used for Bartonella spp. 

(Kabeya et al. 2009; Kamani et al. 2013); gyrB was used for Cardinium (Ros et al. 

2012; Zhu et al. 2012); the 5S–23S ITS was used for Borrelia spp. (Literak et al. 

2008); the epank1 gene was used for Anaplasma phagocytophilum (Literak et al. 

2008); and the 56-kD type-specific antigen gene was used extensively for O. 

tsutsugamushi (Tamura et al. 2000; Pham et al. 2001; Khuntirat et al. 2003; Lee et 

al. 2011; Liu et al. 2013; Seto et al. 2013; Shin et al. 2014; Takhampunya et al. 2014). 

 An alternative approach has been the use of conserved primers to amplify 

16S rRNA products in an unbiased fashion (Figure 2.1), followed by cloning and 

sequencing of selected clones for taxonomic assignment (Hogg & Lehane 1999; 

Hogg & Lehane 2001; Hoy & Jeyaprakash 2005; Hubert et al. 2012; Tang et al. 2013; 

Murillo et al. 2014; Hubert et al. 2015). However, to the best of our knowledge, only 

one publication has used the Roche 454 pyrosequencing platform targeting 16S 
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rRNA amplicons to reveal the bacterial community of a mite species (in this case, 

the bulb mite, Rhizoglyphus robini; Zindel et al. 2013). In a more recent study, 

bacterial genomic sequences from 100 species (predominantly enterobacteria) 

were identified during assembly of the Dermatophagoides farinae (dust mite) 

genome (Chan et al. 2015). 

2.3.2 Bacterial diversity in mites 

 Mite species were found to be associated with 85 bacterial genera 

(approximately 150 identified species) belong to 7 phyla (plus 3 classes of 

Proteobacteria) and 25 orders (Table 2.2). Cardinium (in 31 mite species), 

Wolbachia (31 hosts) and Orientia (32 hosts) were the most prevalent bacteria; 

followed by Bartonella, Anaplasma and Rickettsia, with 16, 14 and 11 mite species 

reported, respectively (Figure 2.2). Among the 7 bacterial phyla and the 3 classes of 

Proteobacteria (α, β and γ), Bacteriodetes, Firmicutes, Tenericutes and 

Actinobacteria were reported in all 3 mite orders (Figure 2.3). However, Chlamydiae 

were reported only in mites from the order Mesostigmata, and Spirochaetes were 

found in the Mesostigmata and Trombidiformes, but not in the Sarcoptiformes 

(Figure 2.3). 

 Symbionts can be obligatory or facultative, live inside or outside host cells, 

and can affect their host negatively, positively, or have no discernible phenotype. 

Some symbiotic bacteria may provide benefits to the host in particular 

environments, but can be disadvantageous under different circumstances (Hoy & 

Jeyaprakash 2008). A number of bacteria were reported as potential mite symbionts 
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in this literature survey, including Wolbachia, Cardinium, Acaricomes, Spiroplasma, 

Snodgrassella, Serratia, Rickettsiella and Schineria. Wolbachia and Cardinium have 

been relatively well studied in terms of effects on their mite hosts, which manifest 

as reproductive alterations. However, the phenotypes (if any) induced by the other 

potential symbionts remain unknown. Wolbachia and Cardinium manipulate mite 

reproduction by inducing cytoplasmic incompatibility, parthenogenesis, sex-ratio 

distortion (e.g., male-killing and feminization), and an increase in female fecundity 

(Breeuwer & Jacobs 1996; Weeks & Breeuwer 2001; Chigira & Miura 2005; Gotoh et 

al. 2005; Groot & Breeuwer 2006; Gotoh et al. 2007; Novelli et al. 2008; Zhu et al. 

2012; Zhao, et al. 2013; Suh et al. 2015; Zhang et al. 2015). These reproductive 

manipulation strategies facilitate vertical transmission through the female line and 

drive the spread of the symbionts into mite populations (Zhao, et al. 2013). 

 Wolbachia is the most prevalent arthropod symbiont (infecting 

approximately 40% of terrestrial species; Zug & Hammerstein 2012) and is also 

found in some species of filarial nematodes (Ferri et al. 2011). In mites, although 31 

species were positively reported for Wolbachia infection, the bacteria occurred only 

in 5 of 14 studied superfamilies: the Dermanyssoidea (various parasitic mites of 

vertebrates), Phytoseioidea (fungivorous, pollenophagous and predatory mites), 

Oppioidea (in an oribatid free-living mite, Oppiella nova), Cheyletoidea (parasitic 

mites of birds, but not in Demodex spp.), and Tetranychoidea (phytophagous mites). 

Interestingly, Cardinium was also found in 31 mite species but these were 

distributed across 8 superfamilies, representing a much broader host range than 

Wolbachia (Table 2.2). According to these findings, Cardinium appears to be a more 
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important symbiont for mites than it is for other arthropods (Zug & Hammerstein 

2012). 

 Apart from these reproductive symbionts, another symbiotic bacterium, 

Acaricomes phytoseiuli, has been isolated from the predatory species, Phytoseilus 

persimilis, which is widely used for biological control of spider mites (major 

agricultural pests), (Pukall et al. 2006). Plants damaged by feeding spider mites 

release volatiles to attract predacious mites when hunting their prey. Schütte et al. 

(2008) reported that A. phytoseiuli caused P. persimilis to become refractory to 

plant volatile attraction, leading to a high tendency to miss their prey (the so-called 

“non-responding syndrome”). Moreover, infected mites developed symptoms such 

as body shrinkage, cessation of oviposition and even death. Accordingly, the 

bacterium was realized as a potential pathogen of predatory mites (Schütte & Dicke 

2008; Schütte et al. 2008).  

 

Figure 2.2 The top-ranked 15 bacterial genera detected in mites. 
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Figure 2.3 Proportions (%) of the most abundant bacterial groups in the 3 principal 

mite orders 

 Mites are often overlooked as vectors of diseases when compared with ticks 

or haematophagous insects, but a number of pathogenic bacteria have been 

reported in the vertebrate-parasitic mite superfamilies Dermanyssoidea, Acaroidea, 

Cheyletoidea and Trombiculoidea. In terms of veterinary importance, mites have 

been reported as potential vectors and reservoirs of several pathogenic bacteria of 

livestock. E. rhusiopathiae, the causative agent of erysipelas, and S. gallinarum, 

causing fowl typhoid, were reported in the poultry red mite, D. gallinae (Zeman et 

al. 1982; Chirico et al. 2003; Wales et al. 2010; Brännström et al. 2010; Valiente 

Moro et al. 2011). These diseases rapidly spread in infected flocks with moderate to 

high morbidity, resulting in significant economic damage (Takahashi et al. 2000; 

Shah et al. 2005). With respect to mammalian livestock, Anaplasma spp., such as A. 

phagocytophilum (causing tick-borne fever in ruminants) were found in various mite 

species of the superfamily Dermanyssoidea (Fernandez-Soto et al. 2001; Reeves et 
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al. 2006); whereas the opportunistic pathogen Serratia marcescens was found in the 

scab mites, Psoroptes ovis and P. cuniculi, although a role for this bacterium in the 

pathogenesis of psoroptic mange has not been demonstrated (Mathieson & Lehane 

1996; Hogg & Lehane 1999; Perrucci et al. 2005). 

 For human public health, the most researched mite-associated bacterium is 

the scrub typhus agent, O. tsutsugamushi. This Rickettsia-like bacterium has been 

mainly found in chiggers (the larval stage of trombiculid mites), with more than 30 

species reported as hosts (Kitaoka et al. 1974; Shirai et al. 1982; Ree et al. 1992; 

Kelly et al. 1994; Urakami et al. 1999; Frances et al. 2001; Jensenius et al. 2004; Tilak 

et al. 2011; Phasomkusolsil et al. 2012; Seto et al. 2013). Thus, in contrast with 

Cardinium and Wolbachia (Zug & Hammerstein 2012), Orientia appears to be a 

highly specialized symbiont of a single mite superfamily. Three genera of chiggers, 

Leptotrombidium, Schoengastia and Blankaartia, were also implicated in having a 

vectorial role for Bartonella tamiae, one of several Bartonella spp. that cause illness 

in Asian populations (Kosoy et al. 2008; Kabeya et al. 2009). Moreover, Bartonella 

spp. have been detected in other mite taxa; i.e., the Dermanyssoidea, Acaroidea, 

Glycyphagoidea and Cheyletoidea (Reeves et al. 2006; Kopecký et al. 2014; Murillo 

et al. 2014). Bradley et al (2014) reported strong evidence of the tropical rat mite 

(Ornithonyssus bacoti) in Bartonella transmission, as two dogs and their owner 

were infected by B. henselae after being exposed to the mite. Thus, we suggest that 

parasitic mites could play an important role as vectors or reservoirs of human 

bartonellosis in addition to the main blood-feeding arthropod vectors such as 

sandflies and fleas. 
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Table 2.2 Phylogenetic distribution of bacteria detected in mite taxa 

Bacterial Taxons 

Bacterial 
biology* 

No. 
Mite 
spp 

No. 
Ref 

Mite Taxa (number of mite species in literatures) 

Phylum Order Genus 
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Actinobacteria Actinomycetales Brevibacterium Sap. 3 3 X    X   X       

Corynebacterium Sap., Path. 2 2        X   X    

Acaricomes SymbA. 1 2  X             

Kocuria Sap. 4 3     X X X X       

Micrococcus Sap. 1 1      X         

Sanguibacter Sap. 1 1        X       

Microbacterium Sap. 1 1        X       

Mycobacterium OpPath. 1 1 X              

Propionibacterium OpPath. 2 2          X X    

Streptomyces Sap. 1 1 X              

Tsukamurella OpPath. 1 1 X              

Tenericutes Entomoplasmatales Spiroplasma SymbA., OpPath. 9 7 X X  X X       X X  

Mycoplasmatales Mycoplasma Sap., OpPath. 2 1 X         X     

Firmicutes Erysipelotrichales Erysipelothrix Path. 1 6 X              

Clostridiales Eubacterium Sap., OpPath. 1 1 X              

Lactobacillales Aerococcus Path. 1 1 X              

Alloiococcus Sap., OpPath. 1 1          X     

Enterococcus Op.Path 3 3 X     X  X       

Vagococcus Sap., OpPath. 1 1 X              

Lactobacillus Sap. 1 1 X              

Leuconostoc Sap. 1 1        X       

Weissella Sap. 1 1 X              

Lactococcus Sap. 1 1     X          

Streptococcus Op.Path. 3 3      X  X   X    
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Firmicutes Bacillales Bacillus Sap. 9 12 X    X X X X   X  X  

Lysinibacillus Sap. 1 1     X          

Oceanobacillus Sap. 2 2     X   X       

Virgibacillus Sap. 1 1     X          

Listeria Path. 1 1 X              

Sporolactobacillus Sap. 1 1        X       

Jeotgalicoccus Sap. 1 1 X              

Staphylococcus Sap., OpPath. 10 7 X    X X X X  X X    

Spirochaetes Spirochaetales Borrelia Path. 10 5 X  X           X 

Bacteroidetes Bacteroidales Bacteroides Sap., OpPath. 1 1        X       

Prevotella Op.Path 1 1       X        

Cytophagales Cardinium SymbA. 31 26 X X   X X X X X    X  

Ohtaekwangia Sap. 1 1     X          

Flavobacteriales Myroides Sap., OpPath. 2 2 X    X          

Elizabethkingia Op.Path. 1 1        X       

Chlamydiae Chlamydiales Chlamydia Path. 2 2 X              

Proteobacteria (α) Rhizobiales Bartonella Path. 16 12 X    X X X    X   X 

Afipia Sap. 1 1        X       

Ochrobactrum Sap. 1 1           X    

Devosia Sap. 1 1 X              

Rhizomicrobium Sap. 1 1     X          

Phyllobacterium Sap. 1 1          X     

Rhizobium Sap. 3 3     X X  X       

Rhodobacterales Paracoccus Sap. 1 1        X       

Rickettsiales Anaplasma Path. 14 2 X          X    
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Table 2.2 (continued) 
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Proteobacteria (α) Rickettsiales Ehrlichia Path. 1 2              X 

Rickettsia Path., SymbA. 11 13 X X            X 

Orientia Path. 32 61              X 

Wolbachia SymbA., SymbN. 31 38 X X       X  X  X  

Sphingomonadales Sphingomonas Sap. 1 1        X       

Proteobacteria (β) Burkholderiales Alcaligines Sap., OpPath. 2 2 X    X          

Delftia Sap. 1 1 X              

Pelomonas Sap. 1 1     X          

Polaromonas Sap. 1 1 X              

Duganella Sap. 1 1           X    

Massilia Sap. 1 1        X       

Neisseriales Snodgrassella SymbA. 1 1           X    

Proteobacteria (γ) Chromatiales Curacaobacter Sap. 1 1          X     

Enterobacteriales Enterobacter OpPath. 2 2  X    X         

Erwinia Sap. 1 1        X       

Escherichia OpPath. 4 4 X     X     X    

Ewingella OpPath. 1 1        X       

Klebsiella Sap., OpPath. 1 1      X         

Morganella OpPath. 1 1        X       

Proteus Sap., OpPath. 1 1 X              

Pantoea Sap., OpPath. 3 3     X   X  X     

Providencia Sap., OpPath. 3 2 X     X X        

Salmonella Sap., Path 8 8 X     X         

Serratia SymbA, OpPath. 6 10  X   X   X  X     

Xenorhabdus SymbN,  2 1      X X        
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Table 2.2 (continued) 

Bacterial Taxons 

Bacterial 
biology* 
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Proteobacteria (γ) Enterobacteriales Yersinia Path. 1 1 X              

Legionellales Coxiella Path. 9 5 X              

Rickettsiella SymbA. 2 5 X X             

Pasteurellales Haemophilus OpPath. 1 1           X    

Pasteurella Path. 1 3 X              

Pseudomonadales Acinetobacter Sap. 5 4 X     X  X   X    

Psychrobacter Sap. 2 2 X       X       

Pseudomonas Sap., OpPath. 5 5 X    X X  X       

Thiotrichales Francisella Path. 10 7 X              

Xanthomonadales Stenotrophomonas Sap., OpPath. 1 1     X          

Schineria SymbA. 1 1 X              

*Bacteria were grouped according to their biological characteristics: OpPath. = Opportunistic Pathogen (vertebrate), Path. = Pathogen (vertebrate), Sap. = 

Saprophyte, SymbA = Symbiont (Arthropod), SymbN = Symbiont (Nematode). 
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 In addition to the poultry pest D. gallinae, members of the superfamily 

Dermanyssoidea that may feed on humans have been found to be infected with 

pathogenic bacteria of medical importance. For example, the intracellular 

pathogens, Rickettsia akari (causing rickettsial pox) was isolated from the mouse 

and rat mites, Liponyssoides sanguineus and Ornithonyssus bacoti (Jensenius et al. 

2004; Brouqui & Raoult 2006; Reeves et al. 2007); Rickettsia typhi (causing murine 

typhus) was also found in O. bacoti (Grabrarev et al. 2009); and Rickettsia 

prowazekii (the causative agent of epidemic typhus) was isolated from Androlaelaps 

fahrenholzi and Haemogamasus reidi in addition to the main louse vector of the 

disease (Kettle 1984; Jensenius et al. 2004; Bitam 2012). Moreover, another 

intracellular pathogen, Coxiella burnetii (the causative agent of Q-fever) was 

detected in L. sanguineus, O. bacoti, D. gallinae, Eulaelaps stabularis, Androlaelaps 

spp. and Haemogamasus spp. (Zemskaya & Pchelnika 1968; Kettle 1984; Kocianova 

1989; Reeves et al. 2007); the spirochete, Borrelia burgdorferi (a causative agent of 

Lyme disease) was found in O. bacoti, Myonyssus gigas, Laelaps agilis, E. stabularis, 

Euryparasitus emarginatus, Eugamasus sp. and Haemogamasus spp. (Lopatina et al. 

1999; Netusil et al. 2005; Netusil et al. 2013); and a further highly-virulent 

pathogenic bacterium in humans and other mammals, Francisella tularensis 

(causative agent of tularaemia), was isolated from O. bacoti, Hirstionyssus spp., 

Haemogamasus spp. and Laelaps spp. (Timofeeva 1964; Petrov 1971; Zuevskii 1976; 

Lysy et al. 1979). 
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2.3.3 Patterns of mite-bacterial association 

 The correspondence analysis revealed well-separated associations between 

the mite taxa (10 superfamilies) and bacterial types, with the first and second 

dimensions explaining 96% of the total variance (Figure 2.4). Trombiculoidea were 

reported to be strongly associated with pathogenic bacteria, whereas symbiotic 

bacteria were clustered with mites from the Phytoseioidea and Tetranychoidea. 

However, the remainder of mite taxa (Dermanyssoidea, Acaroidea, Analgoidea, 

Glycyphagoidea, Hemisarcoptoidea, Sarcoptoidea and Cheyletoidea) were less 

strongly associated with opportunistic pathogens and saprophytes. Undoubtedly, in 

part these data reflect important biases related to bacteria-specific studies, such as 

the exclusive focus on the Trombiculoidea as vectors of O. tsutsugamushi; or the 

fact that the relationship between symbiotic bacteria and mites has been better 

studied in the Phytoseioidea and Tetranychoidea than in the other mite taxa. 

 Of 25 bacterial orders, only 7 taxa showed significant differences in bacterial 

species richness among the 4 biological mite groups: Actinomycetales (Chi-square = 

24.97, p < 0.0001), Bacillales (Chi-square = 30.64, p < 0.0001), Cytophagales ( Chi-

square = 79.21, p < 0.0001), Entomoplasmatales (Chi-square = 19.33, p < 0.0001), 

Pseudomonadales (Chi-square = 24.77, p < 0.0001), Rhizobiales (Chi-square = 17.69, 

p = 0.001) and Rickettsiales (Chi-square = 21.82, p < 0.0001) (Figure 2.5). However, 

there were no significant differences in total bacterial species richness among the 4 

mite groups (Chi-square = 5.72, p = 0.126). Mites in the ‘pest and allergen’ group 

showed higher total bacterial richness than mites in the other groups (significantly 

so for Actinomycetales, Bacillales, Cytophagales, Pseudomonadales and 
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Rhizobiales); however, Rickettsiales were completely absent there (Figure 2.5H). 

Mite species in this category are well recognized as generators of allergens and 

carriers of some pathogenic fungi in human stored food products (Franzolin et al. 

1999; Hubert et al. 2004; Hubert et al. 2012). Invertebrate-predator mites 

harboured a high number of Entomoplasmatales (Figure 2.5E), although these were 

exclusively derived from the genus Spiroplasma. The bacteria in this genus are 

known as reproductive manipulators of insect predators and plant pests (Enigl & 

Schausberger 2007; DiBlasi et al. 2011; Rivera et al. 2013), demonstrating that 

predacious and phytophagous mites and their plant hosts form an important 

habitat for maintaining Spiroplasma in nature. 

2.3.4 Outcomes and perspectives 

 This systematic review of the literature suggests that important differences 

in bacterial flora may exist between mites with different lifestyles, since “house 

pests and allergens” displayed a particularly diverse microbiome enriched for 

several of the bacterial orders included in the analysis (with the notable exceptions 

of the Entomoplasmatales and Rickettsiales). A key priority for allergy research will 

be to determine whether these apparent associations are confirmed by further 

unbiased, high-throughput sequencing methods; and if so, the extent to which the 

bacterial flora of mite pests may modulate conditions such as atopic dermatitis 

(Sonesson et al. 2013). It would also be interesting to investigate the putative 

absence of Rickettsiales from this group of mites to reveal any potential barriers to 

colonization, especially as the Rickettsiales are clearly widespread in other mite 

categories. 
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Figure 2.4 Correspondence analysis of 10 mite superfamilies (Acar, Acaroidea; Anal, 

Analgoidea; Chey, Cheyletoidea; Derm, Dermanyssoidea; Glyc, Glycyphagoidea; 

Phyt, Phytoseioidea; Hemi, Hemisarcoptoidea; Sarc, Sarcoptoidea; Tetr, 

Tetranychoidea and Trom, Trombiculoidea) associated with the categorized 

bacterial groups (Sap, Saprophytes; OpPath, Opportunistic Pathogens; Path, 

Pathogens; Symb, Symbionts). 

 On the basis of the mite literature published to date, very few bacterial 

species have become uniquely adapted to mites, with only Orientia spp., R. akari 

and A. phytoseiuli contending as mite-specific symbionts. For the former 2 species, 

the possibility that they are not restricted to mites with a vertebrate parasite 

lifestyle should be considered. Indeed, other arthropod-transmitted human 

pathogens, such as Rickettsia felis, have been detected in non-biting arthropods 

(Thepparit et al. 2011). Our review of the literature also raises the hypothesis that 

Cardinium is so widely distributed in mites (Weeks et al. 2003) that it may be better 

adapted to this taxon [and perhaps other arachnids, Duron et al. (2008)] than it is to 

insects.  
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Figure 2.5 Analysis of differences in bacterial species richness among mite taxa with 

multiple pairwise comparisons after Kruskal–Wallis test (*p < 0.05, **p < 0.01, ***p 

< 0.001) for all bacterial species combined (A), Actinomycetales (B), Bacillales (C), 

Cytophagales (D), Entomoplasmatales (E), Pseudomonadales (F), Rhizobiales (G) and 

Rickettsiales (H).  
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 In conclusion, this review provides useful reference data of mite-associated 

bacteria for further research, with the intention to increase awareness of the 

potential for mites to transmit disease. A deeper understanding of the impact of 

symbionts on their arthropod hosts may also facilitate the development of 

intervention tools for vector and pest control, for which precedents for insects 

already exist (Jeffery et al. 2009; Iturbe-Ormaetxe et al. 2011). Manipulation of the 

microbiome could lead to future opportunities to decrease the medical, veterinary 

and agricultural impact of mites, although major challenges in the handling and 

colonization of many species lay ahead. 
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CHAPTER 3 

Chigger identification and diversity in Thailand 

3.1 Introduction 

3.1.1 Diversity of chiggers in Thailand 

 Thailand is located on the Indo-Chinese Peninsula, Southeast Asia - a region 

that is well recognised as an important biodiversity hotspot on the planet (Myers et 

al. 2000). A high chigger density and diversity is predicted and expected in this 

country. Trends in chigger research and published outputs for Thailand are linked to 

the vector role of chiggers for scrub typhus disease, with a focus in this area 

developing in the 1960s, primarily by researchers from the US Army Medical 

Research and Development Command and the Southeast Asian Treaty Organisation 

(SEATO) Medical Research Laboratory (Nadchatram & Lakshana 1965; Traub & 

Lakshana 1966; Traub et al. 1968). The first checklist of chiggers in Thailand was 

published several decades ago by the latter organisation (which has now been 

superseded by the Armed Forces Research Institute of Medical Sciences in Bangkok) 

and lists 85 recorded species (Gould et al. 1966; Lakshana 1973). Subsequently, the 

lists of chigger species in Thailand were updated to 147 species by Tanskul (1993). 

However, the checklist still contained dubious information, and the presence of 

several species could not be confirmed in the territory of Thailand, although they 

have been reported from neighbouring countries such as Malaysia and Myanmar. 
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 Accordingly, to update information on the diversity of chigger mites in 

Thailand as the main objective of this chapter, data obtained from the literature 

were re-examined. Following this, an intensive field collection across the country 

under CERoPath (Community Ecology of Rodents and their Pathogens in Southeast 

Asia: www.ceropath.org) and BioDivHealthSEA (Local impacts and perceptions of 

global changes: Health, biodiversity and zoonoses in Southeast Asia: 

www.biodivhealthsea.org) was organised, and using both approaches, the chigger 

status for Thailand was reassessed. 

 To ensure high accuracy and reliability during diversity studies of chiggers, 

taxonomic skills; i.e., sample handling, slide preparation and recognition of key 

characteristic features are essential to analyse the chigger samples from field 

collections. Accordingly, we provide here taxonomic information and a basic 

morphological method for chigger identification, particularly to subgenus level. 

3.2 Important taxonomic characters for identification 

 Taxonomic classification of trombiculid mites is based on larval morphology 

because only this stage is parasitic and easily found on hosts, compared to the 

nymphs or adults, which being free-living, are difficult to sample. Indeed, 

descriptions of nymphs and adults in the wild are very limited to date, and much of 

our understanding of chigger ecology is based on the larval stage. Chigger 

identification requires microscopic observation of morphology and morphometric 

analysis of external characteristics. In this respect, the most important feature for 

chigger examination is the scutum (a dorsal shield) and the scutal setae (tiny hairs), 
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particularly to obtain identifications to genus or subgenus level (Nadchatram & 

Dohany 1974). Observations on additional characteristics such as body shape and 

appendages (palps and legs) and on the chaetotaxy (the arrangements of the body 

and appendage setae) are essential for identification to the species level 

(Vercammen-Grandjean & Langston 1975). For the present work, morphological 

identification used the glossary of terminology and abbreviations published by Goff 

et al. (1982) alongside other established identification keys and criteria 

(Nadchatram & Dohany 1974; Vercammen-Grandjean & Langston 1975). 

3.2.1 Gnathosoma  

 The gnathosoma comprises the head and mouthparts, located anteriorly to 

the body (the idiosoma). It consists of three main parts formed of paired segmented 

appendages: (1) palps (pedipalps), (2) chelicerae (teeth or blades) and (3) galeae; all 

located at the base of gnathosoma (gnathobase). Importantly, these appendages 

bear sets of setae whose number and type (pilosity: whether the setae are barbed 

or nude) are very important for taxonomic diagnosis. 

 Palps of trombiculids are segmented appendages each consisting of a coxa 

(fused to form the gnathobase), femur, genu, tibia and a tarsus. Viewed dorsally, 

the femur and genu each support a seta. In addition, there are usually three setae 

located on the dorsal, dorsolateral and ventral surface of the tibia; whereas the 

tarsus has a variable number of ranging from three to seven. A combination of 

these setations, the specific arrangement of seta outlined above, can be expressed 

in the so-called “palpal pilous formula (fPp)” (Figure 3.1). 
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Figure 3.1 Dorsal and ventral view of the gnathosoma of Leptotrombidium deliense. 

The species has a single nude femoral seta (A), one nude genual seta (B), one 

barbed dorso-tibial (C1) and two nude dorsolateral and ventro-tibial setae (C2 and 

C3), and seven barbed palpotarsal setae, which collectively generate the palpal 

pilous formula (fPp) above. A single barbed galeal seta (Ga) is presented (E). 

 Galeae are appendages that extend ventrally from the gnathobase and curl 

dorsally around chelicerae. There is usually a barbed or nude seta called the galeal 

seta or galeala presented on each anterior surface. 

 Chelicerae are located at the perioral area of the mouthparts and are used 

to pierce the host skin. They consist of two parts: the cheliceral base, a fixed 

appendage attached on the dorsal of gnathobase; and a pair of chelostyles, blade-

liked moveable organs which are held by the cheliceral base. There are several 

differences in the shape of the chelostyle. The structure can be armed or unarmed 

with dorsal, ventral or apical minute teeth. In some genera, the tip of the blade 

always bears a unique triangular spike, called the “tricuspid” (see Figure 3.2). 
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Figure 3.2 Various forms of cheliceral blades: Babiangia (A); Gahrliepia (B); 

Leptotrombidium (C); Shoengastia (D); Odontacarus (E). Redrawn from  Goff et al. 

(1982); Nadchatram & Dohany (1974). 

3.2.2 Scutum 

 The scutum is a sclerotized plate located on the anterodorsal part of chigger 

body below the gnathosoma. In theory, the scutum acts as a dorsal shield 

protecting the area of the central nervous system of the mite (Vercammen-

Grandjean & Langston 1975). The general shape, dimensions and composition of 

scutal setae are characters of great diagnostic importance as they are usually 

constant at the genus or subgenus level. The shape of the scutum can be 

rectangular, trapezoid, pentagonal or shield-shaped with a slightly convex or 

undulated anterior/posterior margin. The scutum of Leeuwenhoekiinae and 

Apoloniinae possesses a unique antero-median appendix (nasus), which is absent in 

both Gahrliepiinae and Trombiculinae. 

 A set of scutal setae (usually five) is evident: two anterolateral (AL), two 

posterolateral (PL) and one anteromedian (AM). However, there are exceptions in 

some taxa; i.e., the AM seta is absent in the subfamily Gahrlipiinae, whereas a pair 

of AM setae presents in the subfamily Leeuwenhoekiinae. Comparison of these 

scutal setae lengths can be expressed in a scutal formula (fSc). For example in L. 
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deliense, the PL is longer than the AM, which in turn is longer than AL; the scutal 

formula (fSc) in this case will be fSc = PL>AM>AL. In some genera, particularly 

Gahrliepia and Schoengastiella, there are usually two or more extra post-

posterolateral setae called “usurped setae” present. These usurped setae are 

thought to be the first row of body setae that are incorporated into the elongated-

posterior part of the scutum (Goff et al. 1982). 

 In addition to the setae described above, the scutum also bears a pair of 

specialized sensory setae called “sensillae” planted in the scutal sensillary bases. 

Sensillae appear distinctly different from scutal setae, and also vary in shape. They 

may be unexpanded (filamentous) or expanded (lanceolate, clavate or globular) at 

the apical portion. The characteristic of these sensillae also play an important role in 

taxonomic identification (see Figure 3.3). 

 

Figure 3.3 Example of scutal variation in trombiculid genera: Odontacarus (A), 

Walchiella (B), Walchia (C) and Gahrliepia (D); N = nasus, AL = anterolateral setae, 

AM = anteromedian setae, PL = posterolateral setae, and S = sensillae. The variation 

of scutal sensillae shape can be unexpanded (E) or expanded (F). Redrawn from 

Nadchatram & Dohany (1974).  
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3.2.3 Body Chaetotaxy 

 The number and pattern of the arrangement of setae on the arthropod body 

cuticle is called “chaetotaxy”. In terms of trombiculid species identification, the 

body chaetotaxy is as important as the palpal pilosity formula (fPp) on the 

gnathosoma described earlier. There are numerous body setae on both the dorsal 

and ventral sides which are arranged in distinctive patterns of transverse rows. On 

the dorsal surface, the setae start posterior to the scutum, usually beginning with 

the first pair of dorsal setae on each side of the scutum called “humeral setae”, and 

followed by several rows of dorsal setae sequentially down to the posterior end of 

the body. The number of humeral setae and dorsal setae in each row, counting 

from anterior to posterior gives the “dorsal body setation formula” (fD). On the 

ventral side, the setae are sometimes not well arranged in distinct rows as are those 

on the dorsal surface, and sometimes it is difficult to count and assign ventral setae 

into specific rows. Ventral body setation formula (fV) involves only the setae 

presented after the third pair of coxa (legs). At the level of urogenital pore, the 

number of ventral setae on this row is indicated by “u” in the fV. The total number 

of body setae (NDV) is the sum of the number of dorsal (ND) and ventral setae (NV). 

This combined morphological data: fD, fV, ND, NV and NDV is commonly used as 

species identification criteria, shown below for L. deliense (Figure 3.4). 
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Figure 3.4 Dorsal (A) and ventral (B) aspects of L. deliense showing body chaetotaxy: 

dorsal body setation formula (fD), ventral body setation formula (fV), number of 

dorsal setae (ND = 28), number of ventral setae (NV = 20) and total number of body 

setae (NDV = ND + NV = 46); u = urogenital pore. 

3.2.4 Legs 

 Trombiculid larvae possess three pairs of legs (i.e., they are hexapods), 

nominated as leg I (anterior), leg II (median) and leg III (posterior). The fourth pair of 

legs is developed after the deutonymph stage. Legs are usually articulated by seven 

segments: coxa, trochanter, basifemur, telofemur, genu, tibia and tarsus. However, 

the number of segments can be six in some taxa, if the basifemur and telofemur are 

fused. Towards identification, the number of segments on each leg can be 

expressed in a leg segmentation formula (fsp). For example, genus Leptotrombidium 

has seven segments equally on leg I, II and III (fsp = 7.7.7), whereas genus Gahrliepia 
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has only six segments on leg II and III which is expressed by the fsp = 7.6.6. 

Additionally, the tip of the legs bears a pair of sickle-shaped claws with an 

empodium in the middle. 

 There are two types of setae on the leg segments: ordinary setae (barbed) 

and sensory setae (nude). The former appear on every segment, whereas the latter 

are usually located on the genu, tibia and tarsus: the so called “genuala”, “tibiala” 

and “tarsala” setae, respectively. A number of sensory leg setae types are named 

according to their shape, appearance or size; e.g. microgenualae (a small spur on 

genu), or mastitarsalae (a long whip-liked seta on the tarsus). The type and number 

of these nude sensory setae are of importance for systematic identification (Figure 

3.5). The number of ordinary setae on coxa I, II and III (fCx = coxal setation formula) 

are also helpful for diagnosis in certain specific genera; i.e., Walchia and Helenicula. 

 

Figure 3.5 Leg segmentation and setae of Leptotrombidium deliense: anterior (A), 

median (M) and posterior legs (P). Redrawn from Goff et al. (1982).  
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 In addition, the overall length of each leg: leg I (pa), leg II (pm) and leg III 

(pp), as well as the sum of the three legs’ length (index pedibus, Ip = pa + pm + pp) 

are furthermore used in taxonomic identification. 

3.3 Morphometry 

 Morphometry or morphometric analysis of the aforementioned important 

features of trombiculid larvae - scutum, setae, sensillae and legs are used for 

definitive taxonomic identification. In this section, the measurement methods of 

the key characteristics used in this thesis are followed mainly according to the 

description of Nadchatram & Dohany (1974) and Vercammen-Grandjean & 

Langston (1975). The measurements are given in microns, the standardised unit 

universally used in taxonomic and systematic studies of trombiculids. Methods of 

measuring and abbreviations are described in Figure 3.6 and Table 3.1.  

 As stated previously, chiggers have been identified based only on 

morphology and measurement of larval specimens, as development of molecular 

tools for taxonomic development is still very limited. This might be because there 

are several difficulties and limitations of the chigger sample itself, such as its 

miniscule size, which could potentially lead to too little DNA obtained from one 

individual sample to do molecular work. Moreover, the specimen requires 

preparation processes such as clearing in chemical agents to facilitate visualization 

of the chigger features. The clearing agents mainly used are lactophenol and 

Berlese’s fluid (gum chloral), which can damage the genetic material and 

subsequently might affect PCR amplification. Here, a molecular approach was 
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preliminarily applied, which aimed to validate the quality of extracted DNA from 

individual chiggers for further molecular analyses of the chigger microbiome 

(CHAPTER 5) and to introduce molecular identification methods to the chigger 

taxonomic research field. 

 

Figure 3.6 Measuring approach for the main features of trombiculid larvae: 

dimension and length of scutum and its setae (A, B and C); dimension and length of 

sensillae (D); length of the three legs (E). 
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Table 3.1 Abbreviations of taxonomic terms and morphometric formulae used in 

this thesis 

Abbreviation Description 

On Scutum   
AW Distance between bases of anterolateral setae  
PW Distance between bases of posterolateral setae 
SB Distance between bases of sensillae  

ASB Distance between a line connecting sensillae bases to 
anterior-most margin of scutum 

PSB Distance between a line connecting sensillae bases to 
posterior-most margin of scutum 

SD Scutal depth or ASB + PSB 
AP Distance between bases of anterolateral and posterolateral 

setae 
AM Length of anteromedian seta 
AL Length of anterolateral seta 
PL Length of posterolateral seta 

A-AL Distance from base of anterolateral seta to anterior lateral 
margin of scutum 

P-PL Distance from base of posterolateral setea to posterior 
margin of scutum 

SB-PL Distance between a line connecting sensillae bases and base 
of posterolateral seta  

PPW1 Distance between the bases of  1st pair of usurped setae 
PPW2 Distance between the bases of 2nd pair of usurped setae 
PPP1 Distance from base of the 1st pair of usurped setae to 

posterior margin of scutum 
PPP2 Distance from base of the 2st pair of usurped setae to 

posterior margin of scutum 
S Length of sensillae 

On legs  
Pa Length of anterior leg (leg I) 
Pm Length of median leg (Leg II) 
Pp Length of posterior leg (Leg III) 
Ip Index pedibus (pa + pm + pp) 

Formulae and others  
fPp Palpal pilous formula 
fSc Scutal formula 
fD Dorsal body setation formula 
fV Ventral body setation formula 

Fsp Leg segmentation formula 
fCx Coxal setation formula 
ND Number of dorsal setae 
NV Number of ventral setae 

NDV Total number of body setae (ND + NV) 
B or N Barbed (plumose) or nude 
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3.4 Materials and methods 

3.4.1 Animal trapping, location and habitat categorization 

 Through collaboration with the two mentioned projects above (CERoPath 

and BioDivHealthSEA), chiggers were collected from wild small mammal hosts: 

rodents (Muridae and Sciuridae) and insectivores (Erinaceomorpha and Scandentia). 

The animals were caught alive using live-traps or Sherman traps with choices of 

bait; e.g., maize, banana or cassava, as they are good attractants and can last for 

long periods when traps are set for a couple of days. Trapped animals were brought 

immediately to the mobile laboratory unit for processing. In addition, animals were 

also collected with the help of local hunters, and their experience in hunting skills 

increased the number of sampled rodents. Local hunters were also well informed 

about the objectives of the present research study. They were asked to provide 

information on the location of animal capture including habitat and type of land 

use, and Global Positioning System (GPS) locations were taken afterwards by a field 

team member. In the case of accidentally trapped animals unrelated to the study 

such as protected species, animals were released immediately at the captured place 

within the same day. 

 The trapping protocol followed that of Herbreteau et al. (2011). During 2008 

- 2015, animals were collected from 13 locations throughout Thailand: Buriram, 

Chantaburi, Chiangrai, Kalasin, Kanchanaburi, Loei, Nakornsawan, Nan (Pua, Tha 

Wang Pha and Bo Klue districts), Prachuab Kirikhan, Songkhla and Tak (Figure 3.7 

and Table 3.2). Within each location, 10 to 12 trapping days at a minimum of 100 
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traps per day (10 lines of 10 traps) were set within an area of approx. 10 km2. Each 

study site was sampled once during the dry (November – March) or wet season 

(June – July). At the level of the trapping line, GPS coordinates were recorded in the 

WGS84 datum system (as used in Google Earth) by Garmin Montana 600 (Garmin 

International Inc., Olathe, Kansas), except in Chantaburi and Nakornsawan, where 

the coordinates were determined through Google Earth software v. 7.1.2.2041 

(Google Inc., Mountain View, California). 

 

Figure 3.7 Map of Thailand showing the 13 study locations (1) Chiangrai, (2) Nan: Bo 

Klua, (3) Nan: Tha Wang Pha, (4) Nan: Pua, (5) Tak, (6) Loei, (7) Kalasin, (8) 

Nakornsawan, (9) Buriram, (10) Kanchanaburi, (11) Chantaburi, (12) Prachuab 

Kirikhan and (13) Songkhla 
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 For ecological analysis, trapping sites were divided equally into 4 different 

types of habitats with respect to human land use or human disturbed habitat 

(anthropization index in ecology), spanning low to high levels of disturbance 

(Herbreteau et al. 2011; Blasdell et al. 2015; Chaisiri, Siribat, et al. 2015). These 

were: 

 1. Forest: primary, secondary or community forest including mature 

plantations of timber woods (e.g., teak, rubber tree or eucalyptus) 

 2. Dry land: non-flooded agricultural land (e.g., cassava, maize, pineapple or 

dry rice) including fallow, grassland, dry field and shrub 

 3. Rain-fed land: flooded farm and cultivated land (e.g., rice field, legume, 

shrimp or fish farm) including other types of floodable land, swamp or marsh 

 4. Settlement: human built-up area (e.g., an isolated house, factory, market, 

village or city)        

3.4.2 Animal handling and euthanasia 

 Traps containing animals were carefully labelled to indicate place and date 

of capture, and then brought immediately from the field to a mobile laboratory unit 

within the same day. Consequently, animals were euthanized by cotton wool 

soaked in chloroform and placed in a closed container. The animals were only 

handled outside the trap after being completely euthanized. All the procedures on 

animal handling followed the guidelines of the American Society of Mammalogists 

and were also compliant with the European Union legislation guidelines (Directive 
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86/609/EEC). Local ethic approval was obtained from the Ethical Committee of 

Mahidol University, Bangkok, Thailand, No. 0517.1116/661. 

 Animal attributes such as weight, sex and maturity were collected. Gender 

was determined by the presentation of external reproductive organs: vulva opening 

and mammary teats for females; and the scrotal sac in males. In the case of juvenile 

animals, gender is unreliably discriminated from external appearance, so internal 

reproductive organs; i.e., ovary, uterus, testes or seminal vesicle were examined 

during dissection. Although the true age of animals could not always be 

determined, observations of sexual organs (e.g., prominent mammary teats, vaginal 

opening, the testes position inside or outside the body and development of the 

seminal vesicle) were highly informative for evaluation of animal maturity (juvenile 

or adult). 

 Measurements of individual animals (i.e., head-body, hind foot, ear, tail and 

skull length) were recorded for morphological identification using available 

identification keys (Lekagul & Jeffrey 1977; Aplin et al. 2003). For the problematic or 

cryptic species, molecular DNA barcoding (COI gene) was applied with the aid of 

“Rodent SEA Identification Tool” (www.ceropath.org/barcoding_tool/rodentsea). 

3.4.3 Chigger isolation and specimen preparation 

 The animal bodies were primarily checked by the naked eye for the presence 

of chiggers and other ectoparasites (Figure 3.8). Subsequently, the ears were 

removed and examined for chigger infestation under a stereomicroscope. The 

chigger samples collected from the ear and elsewhere on the body (particularly the 

http://www.ceropath.org/barcoding_tool/rodentsea
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axillary and perianal region) were fixed in 70 – 95% ethanol. In cases of excessive 

work load within a day, ears were preserved whole in 70 - 95% ethanol for later 

microscopic examination. 

 

Figure 3.8 Cluster of chiggers infesting the inside the ear (A), on the body (B), and 

macro photography of a chigger cluster in the inner ear pinna of an infested rodent 

(C). 

 Chiggers from the same animals were counted to estimate intensity of 

infestation and were harvested within the same tube. To identify and estimate 

chigger species richness, 10 - 20% of chiggers from each infested animal were 

intentionally selected by differences in observed sizes and microscopic appearance 

as subsamples representative for a specific animal. Selected fixed chiggers were 

relaxed in small petri-dishes containing ultra-pure water (PureLab Option-Q, ELGA, 

UK) for at least one hour, mounted (dorso-ventral orientated position) on glass 

slides with a small droplet of clearing agent, Berlese’s fluid (TCS Bioscience Ltd, UK), 

and then covered with 13 mm round-coverslips. Specimens were lightly pressed in 
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order to allow the mite to be stretched and flattened fully. This is a significant and 

essential step for the accuracy of sample morphometrics. Animal host ID number, 

location, number of sampled chiggers and date of preparation were carefully 

labelled. The prepared-slides were finally incubated for two days at 50oC in a hot air 

incubator before further examination. 

3.4.4 Chigger identification 

 In Liverpool, the main features of the specimens on slides were checked and 

measured as described previously using a ZEISS Axio Imager M2 microscope through 

ZEN 2011 imaging software (Carl ZEISS, Germany). Firstly, chiggers were identified 

to subgenera level following the pictorial identification key published by 

Nadchatram & Dohany (1974), whereas species identification was putatively 

achieved by following several original descriptions of particular genera or species 

(Traub & Morrow 1955; Traub & Nadchatram 1966; Traub et al. 1968; Nadchatram 

& Traub 1971; Vercammen-Grandjean & Langston 1975; Nadchatram & Dohany 

1980; Stekolnikov 2013). These chigger specimens were provisionally classified to 

different morphospecies and sent to Dr Alexandr Stekolnikov (Academy of Sciences, 

Universitetskaya Embankment, Saint Petersburg) for second opinion and 

confirmation of identification. 

3.4.5 Scanning electron microscopy to visualise ultrastructure of 

chiggers   

 Chigger samples collected in absolute ethanol from field collections were re-

fixed in 4% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M phosphate buffer 
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overnight, and adhered to 13 mm round-coverslips using Poly-L-Lysine solution. The 

samples were washed two times in 0.1 M phosphate buffer, pH 7.4, for 3 min. 

Subsequent fixation and staining were carried out in water using 2% osmium 

tetroxide for 1 hour, 1% tannic acid for 30 min, and 2% osmium tetroxide for 1 hour. 

Between each fixation and staining step, the samples were washed three times 

thoroughly with double-distilled water (ddH2O) for 3 min. Then, the mites were 

stained overnight with 1% uranyl acetate in water at 4C. After staining, the 

samples were washed five times with ddH2O for three min, and progressively 

dehydrated with a series of ethanol concentrations in water; i.e., 30%, 50%, 70%, 

90% and 100% for five min in each step. After dehydration, the samples were 

critical-point dried in CO2 (Quorum Technologies K850) and sputter-coated with 10 

nm of gold-palladium particles (Quorum Technologies Q150T). The samples on 

coverslips were adhered to SEM stubs with conductive silver epoxy and left to dry 

overnight. Finally, sample imaging was done at 10 kV with a FEI Quanta FEG 250 

electron microscope operating under xT microscope control software (v.6.2.7). All 

sample preparation processes and SEM imaging were done by Dr Alison Beckett 

(Biomedical EM Unit, School of Biomedical Sciences, University of Liverpool). 

3.4.6 Molecular procedures for individual chigger samples 

3.4.6.1 Microscopic observation of chigger specimens 

 Different chigger genera/species were selected from ethanol-preserved 

stocks. The chiggers were relaxed in ultra-pure water at least an hour before 

mounting on glass slides and covered with 13 mm round-coverslip. To avoid DNA 
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degradation, the specimens were quickly photographed and measured under the 

ZEISS Axio Imager M2 microscope using bright field mode and for a second time 

using a fluorescein isothiocyanate (FITC) filter without any fluorescent labelling. 

Using these images, the specimens were identified to subgenus level and then the 

same individuals were subsequently subjected to DNA extraction. 

3.4.6.2 Genetic analysis 

 DNA was extracted from whole individual chigger specimens using the 

DNeasy Blood & Tissue Kit (QIAGEN). The mites were crushed with pellet pestles 

(polypropylene sticks) in a 1.7 ml Eppendorf tube containing ATL buffer and 

proteinase K solution. The mixtures were incubated at 56C overnight, and then 

subsequent steps followed the manufacturer’s protocol. A minimal volume (30 µl) 

of nuclease-free water (AmbionTM) was used in the DNA elution step. DNA 

concentrations were quantified by a double-stranded DNA fluorescence-labelling 

method (Quant-iT Picogreen, InvitrogenTM) read in an Infinite F200 microplate 

fluorimeter (Magellan™ - Data Analysis Software, TECAN).  

 To assess DNA quality of the mite samples, the mitochondrial cytochrome 

oxidase I (COI) gene was selected for polymerase chain reaction (PCR) to amplify the 

gene target. The mitochondrial COI gene has been well-recognized as a potential 

molecular marker for phylogenetic analysis of Acari (Cruickshank 2002; Dabert 

2006). This mitochondrial gene is not only used for DNA quality assessment, but can 

also give insights as a genetic marker for chigger taxonomic studies. The primers 

used to amplify the COI gene were derived from Folmer et al. (1994), which yields a 
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PCR product size around 710 bp across invertebrate species (LCO1490: 5'-

GGTCAACAAATCATAAAGATATTGG-3' and HC02198: 5'-

TAAACTTCAGGGTGACCAAAAAATCA-3'). PCR amplification was carried out in 50-µl 

reactions containing 5 µl of DNA template, SensiMix SYBR mastermix (Bioline), and 

2 µl of each primer (0.4 µM final concentration). PCR was run with 40 cycles as 

follows: initial denaturation at 94oC for 1 min; 5 cycles of 94oC for 1 min, 45oC for 90 

sec, 72oC for 90 sec; 35 cycles of 94oC for 1 min, 50oC for 90 sec, 72oC for 1 min; 

concluding with a final extension at 72oC for 5 min. The PCR products were 

visualized by 1.2% agarose gel electrophoresis containing SYBR Safe dye 

(InvitrogenTM) at 120 V for 40 min. 

 PCR amplicon bands were excised from the gel and purified using the 

QIAquick Gel Extraction Kit (QIAGEN), then subjected to cloning in the pGEM-T Easy 

Vector System (Promega). PCR fragments were ligated overnight at 4Cc into the 

pGEM-T Easy plasmid with a 1:1 insert-plasmid ratio. The ligants were transformed 

into JM109 E. coli competent cells (Promega) by heat shock at 42oC for 45 sec, then 

supplemented with SOC medium and incubated at 37oC in a 200 rpm shaking 

incubator for two hours. The transformants were plated on LB/ampicillin/IPTG/X-gal 

agar, and incubated overnight at 37oC. After overnight incubation, the plates were 

stored at 4oC for three days allowing better recognition between blue and white 

colonies. White colonies (recombinant clones) were inoculated in LB ampicillin 

broth and incubated again overnight at 37oC in a 200 rpm shaking incubator. 

Plasmid DNA was extracted from the transformed cell pellets using the Wizard Plus 

SV Minipreps DNA Purification Kit (Promega), following the manufacturer’s 
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protocol. Finally, the plasmid DNA samples were sent for Sanger sequencing with 

pUC/M13 forward and reverse primers to Source Bioscience Ltd, UK. 

 Nucleotide Basic Local Alignment Search Tool with BLASTn online platform 

(https://blast.ncbi.nlm.nih.gov) was used to align and compare DNA sequences to 

the nucleotide collection database. DNA sequences were aligned with ClustalW 

multiple alignments and a phylogenetic tree was created with the Neighbor Joining 

(NJ) method using Mega software version 6.06 (Tamura et al. 2013). The 

mitochondrial COI sequence of Haemaphysalis flava (GenBank accession no 

AB075954.1) was used as an outgroup for the phylogenetic tree construction. 

3.4.7 Statistical analysis 

 Mean intensity or the mean number of conspecific chigger species living on 

an infested host and the range of chigger infestation on the small mammals were 

estimated. Chigger species richness (CSR; computed for observations of chigger 

diversity on each animal species) as well as Shannon’s index (H’) were calculated as 

chigger diversity estimators by using “BiodiversityR” package (Kindt & Coe 2005) 

implemented in the R freeware programming environment (R Core Team 2015). 

3.5 Results 

3.5.1 Chigger infestation on small mammals in Thailand 

 In total, 1,574 small animals were examined for chiggers from 13 locations 

(11 provinces) in Thailand. The host species were: Bandicota indica, Bandicota 

savilei, Berylmys berdmorei, Berylmys bowersi, Leopoldamys edwardsi, Leopoldamys 
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sabanus, Maxomys surifer, Mus caroli, Mus cervicolor, Mus cookii, Mus sp., 

Niviventer fulvescens , Rattus andamanensis, Rattus argentiventer, Rattus exulans, 

Rattus sakaeratensis, Rattus nitidus, Rattus tanezumi, Rattus sp. (Rodentia: 

Muridae), Hylomys suillus (Erinaceomorpha: Erinaceidae) and Tupaia glis 

(Scandentia: Tupaiidae). The overall infestation rate was 23.8% (ranging from 5.7 to 

95%) with the highest rate reported in Bo Kleu district (Nan) at 95%, followed by 

Hat Yai district (Songkhla), Tak Fah district (Nokornsawan) and Laem Singh district 

(Chantaburi) at 64.5, 48.2, and 46.1%, respectively. The lowest infestation rate 

(5.7%) was found in animals from Sai Yok district, Kanchanaburi (Table 3.2). 

 Oriental house rats, Rattus tanezumi and greater bandicoot rats, Bandicota 

indica, demonstrated the greatest chigger species richness (21); followed by 

Indochinese forest rats, Rattus andamanensis (12,) and common tree shrews, 

Tupaia glis (11). Greater white-toothed rats, Berylmys bowersi were parasitized with 

the highest mean chigger intensity (113.3) followed by T. glis (87.6) and R. 

andamanensis (62.7). Chigger infestation status and estimation of diversity indices 

are shown in Table 3.3. Among the infested animals (375 individuals), 

approximately one-half (190 individuals, 50.7%) were infested by a single chigger 

species, while the rest was infested with two (125 individuals, 33.3%) or multiple 

chigger species (60 individuals, 16%). Furthermore, large numbers of chiggers (up to 

645 individuals) were found parasitizing one animal (R. tanezumi), and as many as 

seven chigger species were recovered from an individual host (T. glis). 

 Of 16,761 isolated chiggers, 2,519 specimens (about 15%) were selected for 

slide preparation and identification, resulting in 38 trombiculid species belonging to 
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12 genera and three tribes being discovered. Ascoshoengastia indica was the 

dominant chigger found on the small mammals, with a prevalence of infestation of 

7.31%, followed by Leptotrombidium deliense (5.22%), Walchia micropelta (5.16%) 

and Walchia pingue (3.85%). W. micropelta and W. micuscuta parasitized the widest 

host range. Twelve host species were infested by these two chigger species, 

followed by W. kritochaeta, L. deliense and A. indica which were found on 11, 10, 

and 8 different host species, respectively. In addition, three new chigger species 

were found as well as 10 species recorded for the first time in Thailand (Table 3.4). 

Ultrastructure illustrations of selected chigger species are presented in Figure 3.9. 

 Three new chigger species from rodents were described: Helenicula 

naresuani, Trombiculindus kosapani and Walchai chavali. Formal descriptions of the 

three species were prepared by Alexandr Stekolnikov (see Chaisiri et al. 2016). The 

first one, H. naresuani, was found on B. indica and T. glis collected from a rubber 

tree plantation in Prachuab Kirikhan province and the backyard of a house close to a 

forest edge in Bo Kleu district, Nan province, respectively. The species has been 

named after King Naresuan of Ayutthaya Kingdom in A.D. 1590–1605, one of the 

most glorious Thai kings. This species is morphologically similar to Helenicula 

mutabilis, but differs by a larger scutum (AW = 58–59 vs. 45–50, PW = 75–79 vs 68–

72, and PSB = 16–18 vs 12–14) but shorter scutal setae (AM = 31–34 vs 36–42, AL = 

50–52 vs 55–64 and PL = 41–45 vs 50–56), longer legs (Ip = 801–806 vs 740– 745) 

and a fPp = B/B/BBB vs. B/B/BNB. 
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Table 3.2 Infestation status for chiggers on small mammals in 13 studied locations in Thailand during 2008 - 2015.  

Province District Year Season Latitude Longitude 
Number 

examined 
animal 

Number 
infested 
animal 

Infestation 
rate (%) 

Nan Pua 
2008, 
2010 

Dry & Wet 
19.12545 100.86202 

298 32 10.7 

Buriram Muang 2009 Wet 14.90311 103.11365 110 25 22.7 
Loei Muang 2009 Wet 17.45114 101.64634 232 46 19.8 
Kalasin Sahatsakhan 2010 Dry 16.29887 103.55315 186 29 15.6 
Kanchanaburi Sai Yok 2011 Wet 14.01667 99.53333 226 13 5.7 
Chiangrai Wiang Chai 2011 Dry 19.88956 99.95113 71 20 28.2 
Prachuap 
Khirikhan 

Muang 
2012 Dry 

11.76527 99.65642 
130 39 30.0 

Nakhonsawan Tak Fah 2013 Wet 15.34976 100.49193 87 42 48.2 
Songkhla Hat Yai 2013 Wet 7.00201 100.52691 76 49 64.5 
Tak Mae Sot 2013 Dry 16.80552 98.74550 37 16 43.2 
Nan Tha Wang Pha 2013 Dry 19.13926 100.71925 25 10 40.0 
Nan Bo Klua 2014 Dry 19.14333 101.15395 20 19 95.0 
Chantaburi Laem Singh 2015 Wet 12.50766 102.13257 76 35 46.1 

Total 1,574 375 23.8 

  

 

 

 



 
 

76 
 

Table 3.3 Infestation status, observed and estimated diversity (CSR = Chigger 

Species Richness, H’ = Shannon’s index) of chigger on small mammal species  

Small mammal Host 
Number 
infested 

host 

Chigger 
intensity 

Mean 
intensity 

Range CSR H’ 

Bandicota indica 87 3,297 37.9 2-238 21 2.62 
Bandicota savilei 3 180 60.0 32-109 6 1.74 
Berylmys berdmorei 6 141 23.5 3-76 7 1.83 
Berylmys bowersi 3 340 113.3 11-317 4 0.69 
Hylomys suilus 3 49 16.3 8-32 5 1.56 
Leopoldamys edwardsi 1 12 12.0 12 1 0 
Leopoldamys sabanus 2 30 15.0 3-27 2 0.63 
Maxomys surifer 20 615 30.6 3-82 9 1.69 
Mus caroli 8 422 52.6 15-156 2 0.58 
Mus cervicolor 14 703 50.2 7-266 3 0.67 
Mus cookie 10 292 29.2 3-73 4 1.26 
Mus sp. 2 120 60.0 24-96 1 0 
Niviventer fulvescens 7 103 14.7 2-34 4 1.31 
Rattus andamanensis 7 439 62.7 8-141 12 2.26 
Rattus argentiventer 6 165 27.5 10-46 4 1.33 
Rattus exulans 5 83 16.6 2-26 4 1.28 
Rattus sakaeratensis 25 921 36.8 4-115 10 1.87 
Rattus sp. 2 90 45.0 2-88 1 0 
Rattus tanezumi 161 8,496 52.7 1-645 21 2.34 
Tupaia glis 3 263 87.6 20-135 11 2.29 
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Table 3.4 The prevalence (%) and infestation details of 38 trombiculid species found 

on small mammals in Thailand    

Chigger species 
Number 

host species 
infested 

Number 
host individual 

infested 

Prevalence 
(%) 

Tribe Gahrliepiini    
     Gahrliepia elbeli 3 6 0.39 
     Gahrliepia fletcheri 1 4 0.26 
     Gahrliepia sp., cf. orientalis 2 2 0.13 
     Gahrliepia xiaowoi* 2 3 0.20 
     Schoengastiella ligula 3 18 1.17 
     Walchia chavali n. sp.** 3 9 0.59 
     Walchia dismina 7 13 0.85 
     Walchia kritochaeta  11 45 2.94 
     Walchia lupella 5 49 3.20 
     Walchia micropelta 12 79 5.16 
     Walchia minuscuta* 12 48 3.13 
     Walchia pingue 7 59 3.85 
     Walchia rustica 6 23 1.50 
     Walchia ventralis* 1 1 0.07 
Tribe Shoengastiini    
     Ascoschoengastia indica 8 112 7.31 
     Helenicula kohlsi 5 12 0.78 
     Helenicula naresuani n. sp.** 2 2 0.13 
     Helenicula pilosa* 3 11 0.72 
     Helenicula simena 3 8 0.52 
     Schoengastia propria 1 3 0.20 
     Schoutedenihia centralkwangtunga 1 2 0.13 
Tribe Trombiculini    
     Blankaartia acuscutellaris 3 24 1.57 
     Leptotrombidium deliense 10 80 5.22 
     Leptotrombidium elisbergi 1 1 0.07 
     Leptotrombidium imphalum 4 8 0.52 
     Leptotrombidium macacum 1 1 0.07 
     Leptotrombidium sialkotense* 1 1 0.07 
     Leptotrombidium sp., cf. guzhangense 1 5 0.33 
     Leptotrombidium sp., cf. maccacum 1 1 0.07 
     Leptotrombidium subangulare* 1 1 0.07 
     Leptotrombidium tenompaki* 2 6 0.39 
     Leptotrombidium turdicola* 3 7 0.46 
     Leptotrombidium yunlingense* 1 1 0.07 
     Lorillatum hekouensis* 1 1 0.07 
     Microtrombiula munda 1 3 0.20 
     Trombiculindus kosapani n. sp.** 1 2 0.13 
     Trombiculindus paniculatum 1 1 0.07 
     Trombiculindus variaculum 1 1 0.07 
*new record in Thailand, **newly described species 
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Figure 3.9 SEM micrographs show ultrastructural morphology of (A) whole aspect, 

(B) scutum and gnathosoma, (C) tarsus of anterior leg with tarsala, microtasala 

(short arrow) and subterminala (long arrow) of Leptotrombidium deliense; and 

scutum of (D) Walchia lupella and (E) Blankaartia acuscutellaris.   

 The second species, T. kosapani, was isolated from T. glis collected around a 

house in Bo Kleu district, Nan province. The species was dedicated to Mr. Kosa Pan 

or Foreign Minister Pan, a famous Siamese diplomat and minister, who headed the 

Thai embassy in France (A.D. 1686). This species is closely related to Trombiculindus 
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paniculatum, but the new species differs in fSc, (AM=PL >AL vs PL>AM>AL), shape of 

ALs and PLs (not expanded vs stout lanceolate) and fPp = N/N/BNN vs N/N/BNB. 

 The third new species, W. chavali was named after Mr. Yannick Chaval, a 

wildlife expert who contributed greatly to the CERoPath and BioDivHealthSEA 

projects and field studies. The species was found on several rodents, Maxomys 

surifer, Leopoldamys sabanus and Rattus tanezumi from evergreen forests in Hat Yai 

district, Songkhla province. W. chavali is similar to W. pingue, but can be easily 

differentiated by the palpal claw (two-pronged vs three-pronged) and peniscutum 

(PLs off to cuticle when scutum reduced) presented in the new species. 

3.5.2 Genetic analysis of mitochondrial COI from individual chigger DNA 

 From 18 DNA extracts from 3 chigger genera (Leptotrombidium, 

Ascoschoengastia and Walchia), there were 15 samples positive for COI PCR yielding 

an 83.3% PCR success rate. Six PCR positive samples (L. deliense, L. imphalum, two 

A. indica, W. kritochaeta and W. micropelta), which were able to be identified to 

species level using flourescence and bright field microscopy, were selected for gene 

cloning and Sanger sequencing. Five sequences showed BLASTn results similar to 

trombiculid mites and tick sequences deposited in the NCBI nucleotide database, 

whereas another sequence from L. imphalum was matched to the COI DNA of 

Bandicota indica, the same rodent host species that the mite actually fed on (see 

Table 3.5). This demonstrates that PCR can amplify host tissue contaminating the 

chigger sample.  
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 A phylogenetic tree of the five chiggers based on the mitochondrial COI gene 

sequence is presented in Figure 3.10. The tree clearly separated the three mite 

genera, Ascoschoengastia, Walchia and Leptotrombidium into different groups, 

whereas the outgroup, the tick Haemaphysalis flava, was more distant from the five 

chiggers. 

Table 3.5 NCBI BLASTn results of mitochondrial COI sequences of individual chigger 

species, only the best matching are presented. 

Chigger 
sample 

Product 
size (bp) 

BLASTn description E-value Identity 
(%) 

Accession 
no. 

A. indica 01 709 Ascoschoengastia sp. TATW-1 
mitochondrial DNA, complete 
genome, strain: TATW-1 
 

1.00E-170 82% AB300501.1 

A. indica 02 709 Neotrombicula microti voucher 
BIOUG01178-31 cytochrome 
oxidase subunit 1 (COI) gene, 
partial cds; mitochondrial 
 

3.00E-147 82% JX836578.1 

L. deliense 703 Leptotrombidium deliense 
mitochondrial DNA, complete 
genome 
 

0 85% AB194044.1 

L. imphalum 709 Bandicota indica voucher BI-1 
cytochrome oxidase subunit I 
(COI) gene, partial cds; 
mitochondria 
 

0 99% JQ307468.1 

W. kritochaeta 709 Walchia hayashii mitochondrial 
DNA, complete genome, strain: 
TWHW-1 
  

9.00E-167 82% AB300500.1 

W. micropelta 709 Rhipicephalus turanicus isolate 
Xinjiang cytochrome oxidase 
subunit I (COI) gene, partial cds; 
mitochondrial 

2.00E-108 77% JQ737086.1 
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Figure 3.10 Neighbour joining (NJ) phylogenetic tree of chigger mitochondrial COI 

sequences using the maximum composite likelihood method. A phylogeny test with 

bootstrap values based on 1,000 replicates are presented at the nodes. The scale 

bar measures evolutionary distance indicating substitution per nucleotide.    

 

 

Figure 3.11 Fluorescence microscopy of whole body and legs of L. deliense (A), 

dorsal setae of L. deliense (B), and coxal setae of Walchia micropelta (C). 
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Figure 3.12 Comparison of flourescence (left panel) and bright-field (right panel) 

microscopy of chigger scuta. Fluorescence microscopy enables enhanced 

visualization of scutum morphology for Walchia sp. (A), Schoengastiella sp. (B), 

Helenicula sp. (C) and Leptotrombidium sp. (D). 
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Table 3.6 List of trombiculid species and their geographical distribution in Thailand 

(N = Northern, NE = North-eastern, E = Eastern, C = Central, W = Western and S = 

Southern). The species that potentially found on small mammals are indicated with 

asterisk (*), (Traub & Morrow 1955; Nadchatram 1963a; Nadchatram 1963b; 

Lakshana 1969; Nadchatram & Traub 1971; Vercammen-Grandjean & Langston 

1975; Nadchatram et al. 1980; Suzuki 1980; Stekolnikov 2013) .  

Species 
Geographical region 

N NE E C W S 

Subfamily Trombiculinae       
Tribe Trombiculini       
     Babiangia parmifera No information 
     Blankaartia acuscutellaris* X X X X X  

     Chiroptella sandoshami  X      

     Grandjeana calva       X 

     Leptotrombidium Andrei X      

     Leptotrombidium arvinum*  X X   X  

     Leptotrombidium binbium*  X   X   

     Leptotrombidium burmense* No information 
     Leptotrombidium deliense* X X  X X X 

     Leptotrombidium dendrium  X     

     Leptotrombidium elisbergi*  X      

     Leptotrombidium fulleri*  X X     

     Leptotrombidium sp., cf. guzhangense*  X     

     Leptotrombidium hanseni*  X      

     Leptotrombidium harrisoni  X      

     Leptotrombidium imphalum* X    X  

     Leptotrombidium macacum* X      

     Leptotrombidium sp., cf. macacum*     X  

     Leptotrombidium peniculatum*  X     

     Leptotrombidium pilosum*   X     

     Leptotrombidium scanloni*  X X     

     Leptotrombidium scutellare*  X X     

     Leptotrombidium sialkotense* X      

     Leptotrombidium subangulare* X      

     Leptotrombidium tenompaki*     X X 

     Leptotrombidium turdicola* X      

     Leptotrombidium yunlingense*  X      

     Lorillatum hekouensis*   X     

     Lorillatum kianjoei*   X    X 

     Lorillatum mastigophorum*  X     

     Lorillatum panitae*  X      

     Microtrombicula chamlongi  X  X   
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Table 3.6 (continued) 

Species 
Geographical region 

N NE E C W S 

     Microtrombicula munda*   X   X  

     Miyatrombicula benensoni  X      

     Myotrombicula vercammeni  X     

     Neotrombicula scorpionis   X     

     Sasatrombicula siamensis X      

     Toritrombicula densipiliata     X   

     Trombiculindus armatum*    X    

     Trombiculindus atractimorphe*   X     

     Trombiculindus gateri*   X     

     Trombiculindus imbricatum*    X    

     Trombiculindus macrosphenum*   X    

     Trombiculindus manooni*  X      

     Trombiculindus kosapani sp. nov.* X      

     Trombiculindus paniculatum*  X X   X  

     Trombiculindus santasirii*  X      

     Trombiculindus sibynatum*     X   

     Trombiculindus thurmani*  X     

     Trombiculindus variaculum*  X      

Tribe Schoengastiini       
     Ascoschoengastia audyi* X X  X   

     Ascoschoengastia indica*  X X X X X X 

     Ascoschoengastia kittii  X      

     Ascoschoengastia leechi  X      

     Ascoschoengastia lorius*     X   

     Ascoschoengastia tafia* X      

     Cheladonta gouldi*  X X    

     Helenicula kohlsi*  X X   X  

     Helenicula mutabilis* X      

     Helenicula naresuani sp. nov.* X    X  

     Helenicula pilosa*  X    X  

     Helenicula scanloni*  X      

     Helenicula simena*  X      

     Herpetacarus cadigani   X     

     Herpetacarus leprochaeta  X     

     Neoschoengastia longipes X      

     Neoschoengastia solitus X      

     Schoengastia huxsolli*     X  

     Schoengastia kanhaensis*  X  X   

     Schoengastia propria*      X  

     Schoengastia vieta* No information 
     Schoutedenichia centralkwangtunga*  X    X  

     Susa prachongae*  X      
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Table 3.6 (continued) 

Species 
Geographical region 

N NE E C W S 

     Susa traubi*  X      

     Walchiella hanseni*  X      

     Walchiella harinastai*     X   

Subfamily Gahrliepiinae       
     Gahrliepia elbeli* X X   X  

     Gahrliepia fenestrulata*  X    X  

     Gahrliepia fletcheri*       X 

     Gahrliepia marshi*  X     

     Gahrliepia sp., cf. orientalis*  X      

     Gahrliepia starki*       X 

     Gahrliepia tylana*      X  

     Gahrliepia xiaowoi*  X      

     Schoengastiella ligula*  X    X  

     Walchia dismina*  X X     

     Walchia disparunguis*     X  

     Walchia khunyingi*  X      

     Walchia kritochaeta*  X X  X X  

     Walchia lupella*  X X X X X  

     Walchia micropelta*  X X  X X  

     Walchia minuscuta*  X X   X  

     Walchia pingue*  X X  X X X 

     Walchia rustica*  X X X  X X 

     Walchia suvajrai* X      

     Walchia chavali sp. nov.*      X 

     Walchia ventralis* X      

Subfamily Leeuwenhoekiinae       
     Odontacarus audyi  X      
     Whartonia dewitti X      

Total 60 37 8 15 26 10 

 

3.6 Discussion 

 The content of this chapter has been mainly published in Chaisiri et al. 

(2016), which includes a newly revised checklist of chigger species in Thailand, 

descriptions of the three new species and 10 records of endemic species found for 

the first time in the country. In addition to results published in the article, details of 

chigger infestation in each geographical location and host as well as a preliminary 
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application of a molecular taxonomic approach to this mite group are reported 

here. Alongside this data, micrographs of the chigger species from the field 

collections are given in the Appendix, providing taxonomic features, chigger images, 

and geographical distribution. 

 Considering previous chigger records as evidence for the existence of certain 

species in the territory of Thailand, which have been published in scientific journals 

or monographs (Nadchatram & Lakshana 1965; Gould et al. 1966; Traub & Lakshana 

1966; Traub et al. 1968; Lakshana 1973; Vercammen-Grandjean & Langston 1975; 

Tanskul 1993), and the data obtained from the field surveys in the present work, 99 

chigger species are listed in the revised checklist of Thailand. The complete list of 

chigger species distributed in six geographical regions of Thailand (the Northern, 

North-eastern, Western, Central, Eastern and Southern; National Geographical 

Committee of Thailand) is shown in Table 3.6. 

 The intensive surveys of small mammal hosts described here revealed a 

considerable diversity of chiggers comprising a total of 38 species (35 identifiable 

species and 3 unidentified: Leptotrombidium sp., cf. guzhangense, Leptotrombidium 

sp., cf. macacum, and Gahrliepia sp., cf. orientalis). There were 10 chigger species 

(Leptotrombidium sialkotense, Leptotrombidium subangulare, Leptotrombidium 

tenompaki, Leptotrombidium turdicola, Leptotrombidium yunlingense, Lorillatum 

hekouensis, Helenicula pilosa, Gahrliepia xiaowoi, Walchia minuscuta and Walchia 

ventralis) reported for the first time in Thailand after they were reported previously 

in neighbouring countries. For example, L. tenompaki from Songkhla, a border 

province between Thailand and Malaysia, was reported previously in Sabah State of 
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Malaysia (Vercammen-Grandjean & Langston 1975; Stekolnikov 2013); while G. 

xiaowoi and W. minuscuta found earlier in Yunnan province of south-western China 

(Wen 1984; Peng et al. 2015; Peng et al. 2016), were also discovered here in 

Chiangrai, the northernmost province of Thailand, which is not a long distance from 

Yunnan.        

 The most dominant genus is Leptotrombidium, for which at least 21 species 

were recorded. Leptotrombidium has been realized as the largest genus in the 

trombiculid family, containing around 340 estimated species worldwide except in 

South America (Stekolnikov 2013), and many of them are of importance as vectors 

of scrub typhus (Strickman 2001). The other prominent genera in Thailand were 

Trombiculindus and Walchia presenting 12 species each. The occurrence of several 

species that has never been found anywhere else; e.g., several species in Helenicula 

and Trombiculindus, suggests a high level of endemism. Moreover, co-existence of 

closely related species in the “mutabilis” group: H. mutabilis, H. scanloni, H. simena 

and H. naresuani n. sp., is potential evidence of a speciation origin of this group 

within Thailand. 

 In terms of the six geographical regions of Thailand, chigger diversities in the 

Northern (60 species), North-eastern (37 species) and Western (26 species) regions 

were rather high compared to the other three regions: Central (15 species), 

Southern (10 species) and Eastern (8 species). This might be because of biased 

sampling within the regions; the Central, Eastern, and Southern being examined 

with less rigour. In addition, some chigger species were ubiquitously found almost 

in all geographical regions such as Ascoshoengastia indica, Leptotrombidium 
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deliense (but still no evidence from the Eastern regions), Walchia lupella (absent in 

the Southern regions), Walchia pingue (absent in the Eastern) and Blankaartia 

acuscutellaris (absent in the Southern). Accordingly, further investigation in the 

Eastern and Southern regions may be particularly informative for updating the 

checklist. 

 Focusing on scrub typhus, certain chigger species from the list, notably A. 

indica, B. acuscutellaris, L. deliense, L. imphalum and Shoengastiella ligula, have 

been strongly implicated as potential vectors of the disease (Tanskul et al. 1994; 

Tanskul et al. 1998; Frances et al. 1999; Phasomkusolsil et al. 2009; Tilak et al. 2011; 

Phasomkusolsil et al. 2012; Vikrant et al. 2013; Takhampunya et al. 2014; 

Takhampunya et al. 2016). However, examination for the presence of Orientia 

tsutsugamushi infection in the other species is urgently required to identify the 

other potentially important scrub typhus vectors in order to gain a better 

understanding of the epidemiology of the disease in Thailand. 

 In the present study, the field surveys investigated chigger infestation only 

on small mammal hosts, whereas chigger communities on the other host groups 

such as birds, reptiles and large mammals, and their potential role in harbouring 

Orientia were not examined. Of course, birds could be a very important host 

contributing to spread of chiggers across a wide geographical distribution. Indeed, 

birds potentially have a wider foraging and roaming area than do terrestrial 

animals, particularly in the case of migratory species. They may act as a vehicle for 

chigger transportation, carrying a mite colony from one place to a new 

environment. For example, Blankaartia acuscutellaris is a chigger species that is 
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widely distributed across many continents (America, Europe, Africa and Asia), 

except Antarctica and Australia. In order to achieve this global distribution, 

migratory birds may be hypothesized as a potential host carrying and spreading B. 

acuscutellaris across these continents. In addition, we can also hypothesize that 

other potential hosts such as reptiles, bats and large mammals probably harbour 

their own chigger communities, and these have not been the subject of 

investigations for Orientia infection to date. Therefore, extensive surveys of chigger 

infestation on hosts other than small mammals are important for understanding 

chigger diversity, ecology and the epidemiology of scrub typhus disease in the 

future.                     

 Autofluorescence imaging (FITC filter mode) using the ZEISS Axio Imager 

microscope enabled enhanced visualization of some important characteristics for 

chigger identification, particularly the shape of the scutum, body setae and leg 

segmentation when compared to normal bright field mode (Figure 3.11 and 3.12). 

The novel idea that autofluorescence might accentuate certain morphological 

aspects for chigger imaging without using lactophenol or Berlese’s fluid to clarify 

the specimen was first raised by Dr Daniel H. Paris (Mahidol-Oxford Research Unit, 

Bangkok). The potential utility of this approach now forms a substantial part of the 

thesis of Rawadee Kumlert, a PhD student in the Paris laboratory, and the work on 

this aspect presented here represents an exploratory collaboration led by Dr Paris. 

The specimen preparation for autofluorescent imaging is very simple, requiring only 

that the sample is mounted in a drop of sterile water and covered with a coverslip. 

This offers considerable advantages to examine and measure the chigger specimen 



 
 

90 
 

without using any clearing agent that could affect genetic material, and the same 

individual specimen is able to be used for subsequent molecular taxonomic studies. 

Here, we identified chigger specimens with this method, and DNA of those same 

individuals was obtained, leading to successful amplification of the chiggers’ 

mitochondrial COI gene by PCR. The method could be applied further for molecular 

taxonomic studies of this mite family, enabling the development of a molecular 

barcoding tool, which would undoubtedly benefit the chigger biology and scrub 

typhus epidemiology research fields. 

 Finally, with the well-designed field study protocol of CERoPath and 

BioDivHealthSEA, chigger infestation data was collected systematically with the 

inclusion of different variables; i.e., hosts, geographical locations, habitats, season 

and human scrub typhus incidence. The findings described in this chapter formed 

the basis for an investigation into chigger parasite ecology, host-parasite infestation 

patterns and diversity of chigger species which may be used in relation to scrub 

typhus epidemiology in Thailand (CHAPTER 4). The chigger specimens obtained 

from our field collections were also subjected to molecular analysis and detection of 

O. tsutsugamushi and other chigger-associated bacteria, which are the subject of 

CHAPTER 5 of this thesis. 
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CHAPTER 4 

Ecology of chiggers and epidemiology of scrub typhus in Thailand 

4.1 Introduction 

 Parasite ecology is an integrative trend of modern ecology, which considers 

parasitism as one type of biological symbiosis in the environment, along the 

continuum of mutualism, commensalism and parasitism (Douglas 2010). This 

research field has gradually grown in the past decades from parasite systematics 

and taxonomy describing lifecycles and morphology, to understanding host-parasite 

interactions and evolution within ecological perspectives (Jaramillo 2011). Here, we 

used the latter approach to understand patterns in ecological parasitism between 

small mammals (the host) and their chiggers (the ectoparasite), together with links 

with human scrub typhus epidemiology in Thailand. 

 The first basic research question on chigger parasitism that we addressed 

was the species number and diversity of parasitic chigger species in Thailand, and to 

define ecological factors potentially driving the diversification of the ectoparasite. 

For diversity measurement, parasite species richness has been widely used as a 

fundamental parameter to determine the parasite burden in different types of 

hosts (Walther & Morand 1998; Morand & Poulin 2000; Poulin 2004; Bordes et al. 

2011; Cooper et al. 2012; Kamiya et al. 2014). Parasite species richness can vary by 

its host species in terms of phylogenetic relationships. If we imagine that host 

species act as “Biological Islands” for parasitic exploitation, then two nearby 
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“islands” or the two closely-related host taxa, are more likely to harbour similar 

parasite fauna than are more distant taxa. In other words, two closely related host 

taxa tend to be parasitized similarly in parasite assemblages than two less 

connected hosts (Poulin 2014). However, parasite species richness could be 

determined by some other host individual or population traits; i.e., body mass, 

immunity, longevity, home range, and density, as well as host-related 

biogeographical factors such as geographical distribution , latitudinal gradients or 

habitat types (Krasnov 2008; Kamiya et al. 2014; Poulin 2014; Morand 2015). These 

factors could be linked together with other abiotic or biotic environmental 

conditions. Focussing on the ectoparasite, determinant factors influencing 

ectoparasite diversity were mainly discovered in flea and mosquito models (Krasnov 

et al. 2004; Alfonzo et al. 2005; Schäfer et al. 2006; Krasnov 2008; Beketov et al. 

2010). Krasnov (2008) summarized in their review that flea assemblages on their 

small mammal hosts (mainly rodents) was influenced by determinants including 

host intrinsic factors, off-host abiotic factors and host-flea community structure. For 

example, in Central Europe, flea species on small mammals showed greater 

diversity on male hosts than onfemale hosts (Morand et al. 2014); flea assemblages 

of rodents were found to be positively correlated with the size of host geographical 

range in different host species (Krasnov et al. 2014); species richness of mosquito 

larvae assemblages depended on habitat and aquatic vegetation characteristics 

(Beketov et al. 2010); and diversity of mosquitoes was positively correlated with 

water permanence (area of permanent water bodies) and forest cover (Schäfer et 

al. 2006). For mites, very scarce information on species richness determinants are 

available, even for those mite vectors of medical importance, such as chiggers. 
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 Network analysis is becoming an alternative approach to study applied 

ecology in host-parasite interactions. There are two types of network analysis 

commonly used in parasite ecology: (1) in bipartite networks, hosts and parasites 

are treated as the interaction between two distinct types of nodes (hosts on one 

side and parasites on the other); whereas in (2) unipartite networks, only hosts or 

parasites are assigned as nodes which connect each other with interaction links 

(Poulin 2010); i.e., the same parasite species is shared between host nodes or the 

same host species is parasitized between parasite nodes. Host-parasite network 

analysis can be applied to study several epidemiological aspects, such as to examine 

the structure of host-parasite interactions through network topology parameters; 

i.e., nestedness, connectance and modularity; to visualize overall interactions 

between hosts and parasites; or to understand parasite transmission by identifying 

key host species in the population (Dormann et al. 2009; Godfrey 2013; Morand, 

McIntyre, et al. 2014). Here, both aspects of bipartite and unipartite network 

analyses were used to study interactions between small mammal hosts and their 

chigger ectoparasites in population study sites and at the whole country-wide 

community level in Thailand. 

 Geographical information for Thailand obtained from the Thai 

Meteorological Department (2014) and United Nations Thailand (2016) is 

summarized as follows: the northern and western parts are the most mountainous 

area of the country, with high forest density; the north-eastern is the largest and 

the most dry area comprising two main mountain ranges on the east and south of 

the region; the central part is mainly flatland, with the capital city, Bangkok, and 
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several other developed cities located in the bottom part of the region; the eastern 

part comprises short mountain ranges alternating with flatlands, and the coastal 

line in the south part of the region where trading ports and important industrial 

areas of the country are located; and the southern part is a narrow peninsula with 

tropical forest, bearing the Siam gulf on the east and Indian ocean on the west, 

descending to the equator line which experiences the highest rainfall and humidity 

compared to the other regions. Upper regions of Thailand; i.e., the northern, north-

eastern, western and central, usually experience subtropical inland climatic 

conditions, and are drier than the eastern and southern regions where tropical 

maritime characteristics generate a higher amount of rainfall and humidity, as well 

as lower seasonal and diurnal temperature variation. During the winter period, the 

effect of cool breezes from China occasionally reduces the temperature of the 

upper region, particularly in the north and north-eastern parts, to a very low level 

around 0C. 

 Deforestation and human land use alteration has rapidly increased during 

the past decades in Southeast-Asian countries, including Thailand, in line with 

national development strategy and population growth (Fox & Vogler 2005; Trisurat 

et al. 2010). This human disturbance has been blamed as the major threat to 

biodiversity loss in the region. Habitat changes in Thailand are usually associated 

with agricultural purposes, and therefore occur primarily in the areas of lower 

altitude closer to available water sources (streams, rivers or irrigation systems) and 

which are readily accessible from main roads (Trisurat et al. 2010). Therefore, 

human settlements are generally established in the lowland areas together with 
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short-lived annual crops such as legumes and rice, whereas land at higher 

elevations is used for dry land agricultural crops (e.g., cassava and maize) and some 

perennial plantations (e.g., teak and rubber tree) in the foothills. This generates 

human land-use transects or urbanization degrees from low human pressure 

(forests at high altitude) to agricultural land and human settlements at the lower 

elevations.  

 Scrub typhus is recognized as a tropical neglected disease, with its 

epidemiology linked with environmental factors for the chigger vector and wildlife 

reservoirs. Human cases are commonly reported from rural areas, particularly from 

areas of scrub vegetation and new agricultural land after forest clearing 

(Lerdthusnee et al. 2008; Tsai & Yeh 2013). In Thailand, the disease incidence has 

gradually increased and is drawing more national public health attention. The 

patient number rose from less than 100 cases annually before the 1980s to 750 - 

900 cases/year between 1988 – 1991 and has been as high as 5,000 cases/year after 

2001 (Suputtamongkol et al. 2009). Several serotypes based on serological assays; 

e.g., Karp, Kato, TA678, TA686, TA716, TA763 and TA1817, as well as the 56-KDa 

type-specific antigen (TSA) genotypes; e.g., SEA1, SEA2, SEA3, LA, TA, TH1, TH2, 

Gilliam-liked, Karp-like and Kato-like have been discovered in animals and humans 

in Thailand (Manosroi et al. 2006; D J Kelly et al. 2009; Ruang-areerate et al. 2011; 

Wongprompitak et al. 2015). Despite the fact that Thailand was reported as having 

the highest number of human scrub typhus cases recorded in Asian countries (Kelly 

et al. 2015), the majority of publications concerning scrub typhus in Thailand 

focused mainly on disease surveillance, clinical case reports, diagnostic features and 
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genotyping of the aetiological agent Orientia tsutsugamushi itself (Watt et al. 1996; 

Manosroi et al. 2003; Fournier et al. 2008; Rodkvamtook et al. 2013; Sriwongpan et 

al. 2013); hence, the epidemiological determination of factors explaining the 

occurrence of the disease are largely unstudied (but see Suputtamongkol et al. 

2009). In the final part of this chapter, we attempt to use the relevant parameters 

from an ecological study of chigger parasitism and host-chigger network analyses, 

as well as local environmental information obtained from field studies, to identify 

potential factors that explain human scrub typhus epidemiology in Thailand.  

 Here, the objectives of this chapter can be summarized as follows: (1) to 

determine chigger diversity on small mammal hosts in different biotypes (habitat, 

study site and season), and with respect to host traits (gender and maturity); (2) to 

examine patterns in habitat preference of the dominant chigger species; (3) to 

explore host-chigger interactions through ecological network analysis; and (4) to 

investigate potential determinant factors which may explain chigger species 

richness on the small mammal hosts and human scrub typhus epidemiology in 

Thailand. 

4.2 Materials and methods 

 Data obtained from the field survey of 13 sites in Thailand (as presented in 

CHAPTER 3), together with environmental data and scrub typhus incidence from 

Ministry of Public Health, Thailand, were linked in order to conduct an ecological 

and epidemiological study of chiggers and scrub typhus disease in the country. 
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4.2.1 Analysis of chigger diversity according to different habitats, 

season, site and host attributes 

 To estimate chigger diversity in Thailand, chigger species richness (CSR), 

first-ordered Jackknife (Jack1) and Shannon index (H’) were calculated across 

different habitat, season, study site and host attributes (sex and maturity) using 

“BiodiversityR” package (Kindt & Coe 2005) implemented in the R freeware (R Core 

Team 2015). CSR is the number of chigger species found on a given host species or 

individual, representing the actual observation of chigger species by simply counting 

the species number. The other two indices, Jack1 and H’, are used as the species 

richness and diversity estimators, respectively. The estimators help to reduce bias 

that may occur from sampling effort or the effect of under-sampling of the rare 

species (Smith & van Belle 1984; Colwell & Elsensohn 2014). Jack1 is a non-

parametric estimator producing the most precise and less biased estimation of 

species richness, realized as more suitable for analysing parasite data compared to 

other estimators (Walther & Morand 1998). H’ is widely used to estimate the 

diversity index in ecological research fields including parasite diversity; e.g., endo- 

and ectoparasite diversity of fish and small mammals (Korallo et al. 2007; Ponlet et 

al. 2011; Chapman et al. 2015). 

 Chigger species accumulation curves were generated for evaluation of 

rodent sample size adequacy, as well as to illustrate differences in chigger species 

richness among different factors. Nonparametric Kruskal–Wallis and multiple 

pairwise comparison tests were performed to investigate the effects of habitat on 

chigger species richness. 
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4.2.2 Association between dominant chigger species and habitat 

 The twelve selected chigger species that were included in this analysis were 

selected from chigger species which infested ≥10 individual hosts. To visualize the 

association between the chigger species and habitat types, correspondence analysis 

(CA) was performed by using “FactoMineR” package in R freeware (Husson et al. 

2007). CA is similar to principle component analysis (PCA), a statistical method to 

simplify the two categorical variables (chigger species and habitats in this case) in 

the dataset by reducing dimensionality of the dataset and to visualize the 

association of two particular variables through a two-dimensional CA plot, whereas 

PCA is used to analyse numerical variables (Lê et al. 2008). 

4.2.3 Network analysis of host-chigger interaction  

 Host-chigger network analysis was conducted to explore interactions 

through assessment of network architectures (properties) by focusing at both the 

level of host species (pooled host species and locations) and the host individual. 

4.2.3.1 Bipartite network analysis 

 To study the community ecology of host-chigger interactions, bipartite 

network analyses were conducted on both the community and individual basis of 

the host-ectoparasite interactions using “vegan” (Oksanen et al. 2015) and 

“bipartite” packages (Dormann et al. 2009) implemented in R freeware. A host-

chigger interaction matrix (presence/absence) of the pooled 13 study sites was 

created with host species as rows and chigger species as columns. The matrix was 
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visualized for bipartite network and nestedness patterns using “visweb” and 

“plotweb” functions, respectively. The chigger species specificity index was also 

computed by the “specieslevel” function to identify specialists or species with few 

links (fewer share the same chigger species with the others) and generalists or 

species with many links (sharing of several chigger species with the others) in the 

community. 

 Meanwhile, on the host individual basis, the same type of matrices was 

generated for each studied site/community. Subsequently, a number of network 

properties were estimated: (1) Nestedness is the degree of how many interactions 

realized by specialists belong to subset of those realized by generalists in the 

particular community. The NODF (Nestedness metric based on overlap and 

decreasing fill) was computed using “nestednodf” functions. The NODF ranges from 

0 - 100, where a value of 100 indicates perfect nestedness and 0 represents an 

absence of nestedness (Almeida-Neto et al. 2008). (2) Connectance is defined as the 

proportion of possible links between the realized species (Dunne et al. 2002); in 

other words, this can be described as the proportion of established interactions or 

network complexity in a particular community. (3) Links per species is the mean 

number of the same chigger species shared (links) per host. (4) Modularity is a 

measure of community structure/compartmentalization of a particular network. 

The higher the modularity, the more sub-communities dependently clustered in the 

network. In other words, sub-communities consist of species with many links among 

themselves and sparsely interact with species in other sub-communities (Fortuna et 

al. 2010). Network modularity of the 13 sites was computed by the 
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“computeModules” function, where each matrix of bipartite weighted graph is 

taken into account to compute the parameter. A repeat of 100,000 computational 

steps was applied by default to confirm that no better clustering than the current 

one could be identified (Dormann et al. 2009). 

4.2.3.2 Unipartite network analysis 

 Bipartite networks were transformed to unipartite networks using the “tnet” 

package (Opsahl 2009). Unipartite network plots illustrate the relative interaction 

patterns among hosts regarding the co-occurrence of chigger species shared within 

the particular community. An Eigen value of centrality was calculated using the 

“evcent” function from the “igraph” package (Csardi & Nepusz 2006). This centrality 

measurement was used to estimate the role of each host as a connector to other 

hosts with respect to the same shared chigger species. A higher value of centrality 

of a node (host) is associated with a higher connection to the other nodes (other 

hosts), suggesting a high number of parasite species co-occurred in the network 

(Morand, McIntyre, et al. 2014). 

4.2.4 Multiple regression models of independent variables explaining 

chigger species richness and scrub typhus incidence in the human 

population 

 Generalized linear models (GLM) were constructed in order to identify 

potential effects of host attributes (species, sex, maturity and body mass) and 

ecological factors (habitat, site and season) to explain chigger species richness at 
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the level of individual hosts. Linear regression models with “Poisson” family for 

chigger species richness count (skewed-data containing many zeros) were modelled 

in the “lme4” package (Bates et al. 2015) embedded in R freeware. A selection of 

models based on the likelihood-based method, Akaike’s Information Criterion 

(AICc), was adjusted for sample size using the “gmulti” package (Calcagno & de 

Mazancourt 2010) in R freeware. Model selection can sometimes produce an 

uncertain fit or implausible model in the output. Accordingly, the quality of various 

models was quantified by the model weight value (Akaike’s weight: Wr), which can 

be realized as the probability that a particular model is the best selection from the 

available data (Burnham & Anderson 2002). Delta AICc (∆AICc), the difference 

between the AICc value of a given model and a model with minimum AICc, was also 

calculated in order to facilitate the best model selection. Model-averaged 

Importance of Term (MaIT) was illustrated through histogram plotting to identify 

the significance of particular variables. MaIT is defined as the proportion of the best 

models in which each given candidate variable term appears after all possible 

models are computed (i.e., 150 models for chigger species richness and 250 models 

for scrub typhus incidence in the present analysis) (Sackton & Hartl 2013). The 

variables with an importance score with >80% proportion support (default in the 

“gmulti” package) were included in the final model. 

 The best selected model was evaluated from following criteria: low AICc 

score, clear ∆AICc difference from the substitute models, high Wr score, and 

explicative variables passing with 80% MaIT support. The best model was 

subsequently designated for an Analysis of Deviance table (ANOVA type II test) in 
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order to emphasize the role of explicative independent variables on individual 

chigger species richness. To identify the degree of multicollinearity among 

explicative variables, the variance inflation factor (VIF) was computed in the “car” 

package (Fox & Weisberg 2011) in R freeware. The higher the VIF value, the 

stronger the collinearity, and a VIF score >10 was used as a common cut-off 

threshold to indicate strong multicollinearity in a model (O’brien 2007). 

4.2.4.1 Data source  

 Data for scrub typhus human case numbers from the 13 studied sites was 

obtained from the Bureau of Epidemiology, Ministry of Public Health, Thailand 

(unpublished data). The human case data were selected for the particular districts 

and years when the field surveys of small mammals had been conducted. 

Geographical and environmental information; i.e., GPS coordinates (latitude-

longitude), elevation, and annual mean temperature of the studied sites were 

derived from the CERoPath project. The environmental information above and host-

chigger network properties were assigned as candidate independent variables to 

explain scrub typhus human case number across the country. 

 To examine pairwise relationships between those variables above and scrub 

typhus case number, the non-parametric Spearman’s rank with significance test was 

conducted in R freeware. Finally, in order to evaluate the best fit model and initially 

identify constitutive variables accounting for scrub typhus epidemiology in Thailand, 

GLM with “Poisson” family and model selection with AICc were applied as described 

above. 



 
 

104 
 

4.3 Results 

4.3.1 Chigger diversity in Thailand 

 High diversity of chiggers was discovered with 38 chigger species parasitizing 

18 small mammal species captured across Thailand. Information on chigger diversity 

among different habitats, seasons, study sites and host attributes are given in Table 

4.1. The cumulative number of chigger species in all examined hosts is illustrated 

through a species accumulation curve plot (Figure 4.1). The curve of chigger species 

richness was found to sharply increase in the initial phase (around the first 200 

hosts examined), then the rate of increase declined in the middle phase (between 

200 - 1,000 host examined), and finally stayed steady in the plateau phase (after 

1,000 host examined). This demonstrates that the host sample size is sufficient for 

chigger diversity estimation within the whole population.      

 There were differences in chigger diversity among the studied sites. Small 

mammal hosts from Nan-Bo Kleu, a site in northern Thailand, had the highest 

chigger species richness (20 species), followed by Chiangrai (northern), Nan-Pua 

(northern), Kalasin (north-eastern) and Tak (western), with 12, 12, 11 and 11 

chigger species, respectively. In contrast, hosts from Chantaburi (eastern) and 

Nakornsawan (central) were infested by the lowest number of chigger species, only 

4 chigger species were equally discovered from both sites (Table 4.1). At the whole 

country level, chigger species richness showed a positive significant correlation with 

the latitudinal gradient of the studied sites (Spearman’s rank correlation = 60.81, p 

= 0.0023); hosts from the upper regions of the country tend to be infested with a 
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higher chigger species richness than those from the other locations further south 

(Figure 4.2). 

 In term of habitat categorization focusing at an individual host level, chigger 

species richness varied significantly among the four habitat types: forest, dry land, 

rain-fed land and human settlement (Kruskal-Wallis chi-square = 91.29, df = 3, p < 

0.0001). At the whole population level, chigger species richness also differed among 

the habitats; hosts trapped in forest harboured significantly higher chigger species 

richness than those trapped in other habitats (Figure 4.3).  

 In term of habitat association, some chigger species appeared to be habitat 

generalists, tending to be present in many habitat types, such as some species in 

the genus Walchia (W. micropelta, W.rustica, W. pingue) and Ascoshoengastia 

indica, while some others were habitat specialists, occurring only in particular 

habitats. These included Helenicula kohlsi in human settlements, W. minuscuta, 

Schoengastiella ligula and Blankaartia acuscutellaris in rain-fed lowland, and H. 

pilosa in dry landscapes. Leptotrombidium deliense, the main vector of scrub typhus 

disease in Thailand, was present medially between dry land and forest; thus both 

are potential habitats for humans and biting chiggers which can transmit the 

causative agent of this disease. Details of habitat associations for the dominant 

chigger species are shown in Figure 4.4. 
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Table 4.1 Diversity observation and estimation of chigger infestation on small 

mammals in Thailand. Abbreviation: N = number of host examined, CSR = Chigger 

species richness, Jack1 = First-ordered Jackknife estimator, H’ = Shannon diversity 

index 

Parameter N CSR Jack1 H’ 

Habitat     
     Forest 122 29 39.9 2.8 
     Dryland 288 20 22.9 2.4 
     Rain-fed land 360 18 20.9 2.4 
     Settlement 371 16 20.9 2.1 
Season     
     Wet 832 15 15.9 2.4 
     Dry 563 36 45.9 2.9 
Location     
     Buriram 131 5 5.9 1.3 
     Chantaburi 76 4 4.9 0.6 
     Chiangrai 70 12 15.9 2.1 
     Kalasin 185 11 13.9 1.9 
     Kanchanaburi 214 6 7.9 1.5 
     Loei 206 10 10.9 1.9 
     Nakornsawan 87 4 4.0 1.0 
     Nan (Bo Kleu) 20 20 30.5 2.7 
     Nan (Pua) 138 12 13.9 2.2 
     Nan (Tha Wang Pha) 25 10 12.8 2.2 
     Prachuab Kirikhan   130 9 10.9 1.6 
     Songkhla 76 7 7 1.7 
     Tak 37 11 15.8 2.1 
Host gender     
     Female 717 28 33.9 2.7 
     Male 673 35 45.9 2.8 
Host maturity     
     Adult 955 30 35.9 2.7 
     Juvenile 431 29 38.9 2.8 
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Figure 4.1 Chigger species accumulation curve of an overall 1,395 examined small 

mammal hosts 

 

 

 

Figure 4.2 Bar plot showing positive correlation between chigger species richness in 

the 13 studied sites and latitudinal gradients in Thailand.   
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Figure 4.3 Effect of habitat types to chigger species richness: (A) species 

accumulation curves among different habitats and (B) Analysis of difference in 

mean chigger species richness on individual hosts among each habitat with multiple 

pairwise comparisons after Kruskal-Wallis with Bonferroni post hoc test. (**) p < 

0.01, (***) p < 0.001 

 Regarding the effect of season at individual host level, there was no 

significant difference in either chigger species richness (Mann-Whitney U test = 

165510, p = 0.421) or chigger abundance (Mann-Whitney U test = 163340, p = 
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0.757) when wet and dry seasons were compared. However, at the level of the 

whole country population, hosts captured in the dry season (November – March) 

were clearly infested with a higher chigger species richness than those from the wet 

season (April – October) (Table 4.1 and Figure 4.5).  

 

 

Figure 4.4 Correspondence Analysis (2D Plot) showing the association between the 

12 dominant chigger species (Aind = Ascoschoengastia indica, Bacu = Blankaartia 

acuscutellaris, Hkoh = Helenicula kohlsi, Hpil = Helenicula pilosa, Ldel = 

Leptotrombidium deliense, Slig = Schoengastiella ligula, Wdis = Walchia dismina, 

Wkri = Walchia kritochaeta, Wmic = Walchia micropelta, Wmin = Walchia 

minuscuta, Wpin = Walchia pingue, Wrus = Walchia rustica) within the four 

categorized habitats. The first and second dimensions explain 87% of the total 

variance. 
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Figure 4.5 Chigger species accumulation curves between dry (red) and wet season 

(blue)  

4.3.2 Host-chigger network analysis  

 Host-chigger interaction within population (study sites) and community 

(country) was explored through bipartite and unipartite network analysis 

approaches. At a whole community level, interactions between 18 small mammal 

hosts and 38 chigger species was determined for community structure, host 

specificity and species co-occurrence pattern through nestedness. While, at the 

population level, the interaction between individual hosts and chiggers was 

examined, and network properties as well as architecture within each studied site 

were reported. 

4.3.2.1 Network analysis in community level 

 Bipartite network of interaction between small mammal hosts and chiggers 

in Thailand was visualized through a matrix grid with host species in rows and 

chigger species in columns (Figure 4.6A), and the bipartite graph shows highly 

complex interactions between the host and parasite species (Figure 4.6B). 
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 On the host side, Bandicota indica and Rattus tanezumi were placed at the 

top rows of the bipartite matrix (Figure 4.6A), harbouring a great chigger species 

assemblage in the community. The two non-rodent small mammals, Hylomys suillus 

(Erinaceomorpha: Erinaceidae) and Tupaia glis (Scandentia: Tupaiidae) showed 

segregated species co-occurrence patterns, and were infested by different chigger 

species from the other murid rodent hosts. 

 On the chigger side, some chigger species (those in the leftmost columns) 

were broadly found on several host species (Figure 4.6A); e.g., Walchia micropelta, 

W. minuscuta, W. kritochaeta and the main vector of scrub typhus, L. deliense, 

could be determined as generalist species which were able to feed on a wide host 

range. More than half of chigger species were found on more than one host species, 

suggesting low host-specificity of their feeding habit. In addition, the species-

specificity index was calculated in order to quantify the degree of host specificity in 

each chigger species (Table 4.2). In the table, sampling effort bias was minimised by 

focusing only on the chigger species that infested >10 host individuals, and most of 

those chiggers showed a low species-specificity index (ranging from 0.171 – 0.542). 

 Unipartite network of chigger species co-occurrence among the hosts is 

presented in Figure 4.7. Again, the two rat species, B. indica and R. tanezumi 

appeared to be the most central hosts sharing chigger species with the other hosts 

in the network. 
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Figure 4.6 Nestedness matrix (A) and bipartite graph (B) of host-chigger associations 

based on presence-absence data. The number of individual hosts examined is 

shown in brackets. Color labelling in panel A indicates the presence (black) or 

absence (white) of interactions between animal hosts and chiggers.  
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Table 4.2 Species specificity index of trombiculid chiggers on small mammal hosts in 

Thailand 

Chigger 
No. host individuals 

infested 
Species 

specificity index 

Ascoschoengastia indica 112 0.304 
Blankaartia acuscutellaris 24 0.542 
Gahrliepia elbeli 6 0.542 
Gahrliepia fletcheri 4 1 
Gahrliepia sp., cf. orientalis 2 0.685 
Gahrliepia xiaowoi 3 0.685 
Helenicula kohlsi 12 0.391 
Helenicula naresuani (n. sp.) 2 0.685 
Helenicula simena 8 0.542 
Helenicula pilosa 11 0.542 
Leptotrombidium deliense 80 0.216 
Leptotrombidium elisbergi 1 1 
Leptotrombidium imphalum 8 0.453 
Leptotrombidium macacum 1 1 
Leptotrombidium sialkotense 1 1 
Leptotrombidium sp., cf. guzhangense 5 1 
Leptotrombidium sp., cf. maccacum 1 1 
Leptotrombidium subangulare 1 1 
Leptotrombidium tenompaki 6 0.685 
Leptotrombidium turdicola 7 0.542 
Leptotrombidium yunlingense 1 1 
Lorillatum hekouensis 1 1 
Microtrombiula munda 3 1 
Schoengastia propria 3 1 
Schoengastiella ligula 18 0.542 
Schoutedenihia centralkwangtunga 2 1 
Trombiculindus kosapani (n.sp.) 2 1 
Trombiculindus paniculatum 1 1 
Trombiculindus variaculum 1 1 
Walchia chavali (n.sp.) 9 0.542 
Walchia dismina 13 0.342 
Walchia kritochaeta  45 0.193 
Walchia lupella 49 0.391 
Walchia micropelta 79 0.171 
Walchia minuscuta 48 0.171 
Walchia pingue 59 0.304 
Walchia rustica 23 0.342 
Walchia ventralis 1 1 
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Figure 4.7 Unipartite network graph and Eigenvector centrality scores illustrate 

pattern of chigger sharing among 18 small mammal hosts in Thailand.  

4.3.2.2 Network analysis in population level                     

 In each studied site, bipartite network properties of host-chigger interaction 

including NODF, network connectance, links per species and network modularity 

were computed and are shown in Table 4.3. These network parameters allow us to 

differently investigate the structure of host-chigger interactions in the 13 study sites 

in Thailand. Among the sites, the highest NODF and connectance were found in the 

Nakhonsawan network, where chigger species richness was as low as four species; 

meanwhile the Chiangrai network showed rather high chigger species richness (12 

species), but was the lowest in NODF and connectance. In contrast, Chiangrai 

showed the highest modularity within the network, whereas the least network 

modularity was found in Prachuab Kirikhan. 

 After testing the relationship among network parameters, there was a 

significant negative correlation between chigger species richness and connectance 

(Spearman rank correlation = 558.91, p < 0.0001). The lower the chigger species 
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richness in a network, the higher the level of host-chigger network connectance 

(proportion of realized interactions) (Figure 4.8A). In addition, network modularity 

showed a significant negative correlation with NODF (Spearman rank correlation = 

462, p = 0.037); that is, when nestedness decreased the network tended to increase 

its modularity (becoming highly structured in compartments) (Figure 4.8B).  

Table 4.3 Bipartite network parameters of host-chigger interaction in the 13 studied 

sites in Thailand (Abbreviation: CSR = Chigger species richness; NODF = Nestedness 

metric based on overlap and decreasing fill) 

Location 
No. host 

examined 

No. 
host 

infested 
CSR NODF Connectance 

Links per 
species 

Modularity 

Buriram 131 25 5 32.97 0.296 1.233 0.468 
Chantaburi 76 35 4 15.16 0.271 0.974 0.263 
Chiangrai 70 20 12 14.97 0.129 0.968 0.646 
Kalasin 185 29 11 30.61 0.175 1.4 0.456 
Kanchanaburi 214 13 6 16.66 0.231 0.947 0.617 
Loei 206 46 10 32.81 0.176 1.446 0.372 
Nakhonsawan 87 42 4 56.18 0.416 1.521 0.319 
Nan (Bokleu) 20 19 20 22.36 0.131 1.282 0.536 
Nan (Pua) 138 32 12 22.09 0.158 1.386 0.492 
Nan (Tha Wang Pha) 25 10 10 25.1 0.21 1.05 0.517 
Prachuap Khirikhan 130 39 9 44.82 0.199 1.458 0.249 
Songkhla 76 49 7 40.74 0.259 1.589 0.293 
Tak 37 16 11 24.9 0.176 1.148 0.553 

  

 Additionally, we present a unipartite network plot based on individual hosts’ 

data in order to illustrate architectural patterns of host-chigger interaction in each 

of the studied sites (Figure 4.9A-4.9K). Some networks showed a clustering pattern 

(high modularity) in the population; e.g., the networks of Chiangrai, Kanchanaburi 

and Nan-Bo Kleu (Figure 4.9B, 4.9D, 4.9F), whereas some others showed a rather 

uniform network structure (lower modularity); e.g., the networks of Prachuab 

Kirikhan and Songkhla (Figure 4.9I, 4.9J). 
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Figure 4.8 Correlation plots showing relationship between: chigger species richness 

and network connectance (A); network modularity and nestedness NODF (B)  

 

 

Figure 4.9 Unipartite network graphs illustrate pattern of host-chigger community 

(individual host level) in the 11 studied sites in Thailand: Buriram (A), Chiangrai (B), 

Kalasin (C) and Kanchanaburi (D). Only the sites where hosts infested with ≥ 5 

chigger species are included. 
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Figure 4.9 (continued) Loei (E), Nan-Bo Kleu (F), Nan-Pua (G) and Nan-Tha Wang Pha 

(H) 
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Figure 4.9 (continued) Prachub Kirikhan (I), Songkhla (J) and Tak (K) 
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Table 4.4 Comparison of the generalized linear models (GLM) testing the effect of various independent variables on individual chigger species 

richness (GLM with Poisson distribution). Selection of the models was done using Akaike’s Information Criterion corrected for sample size 

(AICc). Only the first 10 models are showed. The initial model for AICc selection was Chigger species richness ~ Rodent Species + Sex + Maturity 

+ Weight + Site + Habitat + Season. Abbreviations: K = the number of estimated variables, Log-like = maximized value of the logarithm of the 

likelihood function, ∆AICc = the difference between AICc value of a given model and the model with minimum AICc and Wr  = Akaike weights. 

Analysis of Deviance (ANOVA type II test) significant level (* <0.05, ** < 0.01, *** <0.001). 

Model Dependent variable ~ Independent variables K Log-like AICc ∆AICc Wr 

1 Chigger species richness ~ Rodent Species*** + Maturity* + Site*** + Habitat*** 5 -1302.503 2683.754 0 0.32932 
       

2 Chigger species richness ~ Rodent Species*** + Maturity* + Site*** + Habitat*** + Body mass 6 -1302.291 2685.476 1.722 0.13921 
       

3 Chigger species richness ~ Rodent Species*** + Maturity* + Site*** + Habitat*** + Season 6 -1302.446 2685.786 2.032 0.11920 
       

4 Chigger species richness ~ Rodent Species*** + Sex + Maturity* + Site*** + Habitat*** 6 -1302.483 2685.86 2.106 0.11487 
       

5 
Chigger species richness ~ Rodent Species*** + Maturity* + Site*** + Habitat*** + Season + Body 
mass 

7 -1302.228 2687.502 3.748 0.05054 
       

6 Chigger species richness ~ Rodent Species*** + Sex + Maturity* + Site*** + Habitat*** + Body mass 7 -1302.271 2687.588 3.834 0.04842 
       

7 Chigger species richness ~ Rodent Species*** + Sex + Maturity* + Site*** + Habitat*** + Season 7 -1302.425 2687.896 4.142 0.04150 
       

8 Chigger species richness ~ Rodent Species*** + Site*** + Habitat*** + Body mass 5 -1304.674 2688.094 4.34 0.03759 
       

9 Chigger species richness ~ Rodent Species*** + Site*** + Habitat*** 4 -1305.758 2688.119 4.365 0.03712 
       

10 
Chigger species richness ~ Rodent Species*** + Sex + Maturity* + Site*** + Habitat*** + Season + 
Body mass 

8 -1302.208 2689.618 5.864 0.01755 
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Table 4.5 Generalized linear models of individual chigger species richness (with Poisson distribution). The best fit models were selected, and 

Analysis of Deviance Table (Type II tests) on the explicative independent variables was given. Only significant values are included. VIF = 

Variance Inflation Factor 

Dependent variable Explicative variables Category Log ratio Chi-square  
(df, P-value) 

Estimate Std. Error P-value VIF 

Individual chigger  
species richness 

Rodent Species  273.900 (21, < 0.0001)    1.051 

 B. indica vs B. savilei  -0.916 0.46 0.046  

  B. bowersi  -1.825 0.73 0.013  

  M. caroli  -1.726 0.34 < 0.0001  

  M. cervicolor  -2.159 0.27 < 0.0001  

  M. cookii  -1.445 0.34 < 0.0001  

  N. fulvescens  -1.172 0.42 0.005  

  R. exulans  -2.509 0.42 < 0.0001  

  T. glis  1.069 0.43 0.014  

 Maturity  8.179 (1, 0.004)    1.052 

 Adult vs Juvenile  -0.283 0.10 0.004  

 Site  50.443 (11, < 0.0001)    1.203 

 Buriram vs Chantaburi  -0.702 0.32 0.033  

  Nan (Bo Kleu)  1.006 0.39 0.010  

  Nan (Tha Wang Pha)  0.711 0.31 0.023  

  Songkhla  0.456 0.21 0.035  

 Habitat  55.420 (3, < 0.0001)    1.159 

 Forest vs Settlement   -1.074 0.17 < 0.0001  
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4.3.3 Independent variables explaining chigger species richness and 

scrub typhus epidemiology in Thailand  

4.3.3.1 Explicative variables for chigger species richness at the host individual level 

 For AICc model selection, seven independent variables derived from either 

small mammal host traits or environmental data (rodent species, sex, maturity, 

body mass, site, habitat, and season) were used in the initial (global) model 

determining chigger species richness at the individual host level. After 150 models 

fitted by AICc, the top 10 best selected models with relevant parameters are 

presented in Table 4.4. 

 Rodent species, site and habitat were the three variables which appeared in 

all of those 10 models, which implies they have a strong influential effect explaining 

chigger species richness. After examining the computed parameters (AICc, ∆AICc 

and Wr) and MaIT plot, the first model (Chigger species richness ~ Rodent species + 

Maturity + Site + Habitat) was picked for further discussion (Table 4.5), as the model 

showed a combination of lowest AICc score, an acceptable ∆AICc and Wr difference 

gap between the model itself and the runner-up, and all four independent variables 

passed the default 80% threshold cut-off in MaIT plot (Figure 4.10A). In addition, 

calculation of the variance inflation factor (VIF) gave a score lower than 10 

(common cut-off) for all of the variables (VIF: Rodent species = 1.051; Maturity = 

1.052; Site = 1.203; Habitat = 1.159), which means there is no serious 

multicollinearity effect produced among the variables. 
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 Bandicota indica was infested with significantly higher chigger species 

richness than the three Mus species (log odd estimate values less than 0); i.e., M. 

caroli (estimate = -1.726, p < 0.0001), M. cervicolor (estimate = -2.159, p < 0.0001) 

and M. cookii (estimate = -1.445, p < 0.0001); and also exceeded that of the other 

hosts in different genera: Berylmys bowersi (estimate = -1.825, p = 0.013), 

Niviventer fulvescens (estimate = -1.172, p = 0.005) and Rattus exulans (estimate = -

2.509, p < 0.0001). The chigger species richness was not quite as high (but still 

significantly higher than rodents from other genera) in B. savilei (estimate = -0.916, p 

= 0.046). Only a non-rodent host, Tupaia glis (Scandentia: Tupaiidae) harboured a 

significantly higher chigger species richness than B. indica (log odd estimate value 

more than 0; i.e., estimate = 1.069, p = 0.014), (Table 4.5). In terms of host 

attributes, adult hosts harboured a significantly greater chigger species richness 

than juveniles (estimate = -0.283, p = 0.004). However, there was no significant 

effect of gender; chigger species richness was not significantly different between 

male and female hosts. 

 In terms of impact of the environment, there were significant differences in 

chigger species richness between the studied sites. Also, we found again that 

chigger species richness was affected by habitat; animals captured in forest 

demonstrated significantly higher chigger species richness than those animals from 

human settlement habitats (estimate = -1.074, p < 0.0001), (Table 4.5). 
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Figure 4.10 Model-averaged importance terms of independent variables used to 

explain: (A) chigger species richness and (B) scrub typhus human cases. 

 

4.3.3.2 Explicative variables for human scrub typhus epidemiology in Thailand 

 Data on human scrub typhus cases were extracted at district level for each 

of the 13 studied sites (unpublished data; Bureau of Epidemiology, Ministry of 

Public Health Thailand). These human case data were taken from the same year in 

which each small mammal field survey was conducted, aiming to get as precise 

contemporary data as possible for epidemiological analysis. In addition, some 

environmental factors related to each site (latitude, elevation and annual mean 

temperature) were derived from the CERoPath project (Table 4.6). At the 

population (site) level, those environmental parameters in Table 4.6 and host-

chigger network properties (NODF, connectance, links per species and modularity) 

in Table 4.3 were included as candidate variables in an initial (global) model to 

predict human scrub typhus case number. Here, we took host-chigger network 

parameters into account, because small mammals are important maintenance hosts 

for chiggers. Thus, our hypothesis was that the pattern of host-chigger interaction 

within the same population where humans can be accidental hosts could potentially 

contribute as explicative variables for scrub typhus epidemiology. 
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 After 250 models were fitted by AICc, the top 10 best selected models with 

relevant parameters are presented in Table 4.7. From our data, chigger species 

richness and network connectance strongly influenced scrub typhus case number in 

the studied sites, as the two variables appeared in all top 10 selected models. 

Model 1 (Scrub typhus human case number ~ Chigger species richness + NODF + 

Network connectance) and Model 2 (Scrub typhus human case number ~ Chigger 

species richness + Network connectance) were apparently almost equivalent, with 

only slight differences in ∆AICc and Wr between the two models. Chigger species 

richness and network connectance passed the MaIT threshold, but not NODF 

(Figure 4.10B). Thus, we decided to pick Model 2 for further discussion, as including 

NODF does not much improve model performance. There was not a serious 

multicollinearity effect, as VIF of the two variables was lower than the threshold 

cut-off (VIF: Chigger species richness = 4.051 and Network connectance = 4.234). 

 In addition to the GLM, univariate analysis was also conducted and we found 

again that scrub typhus case number positively correlated with chigger species 

richness (Spearman rank correlation = 45.71, p = 0.0006) and negatively correlated 

with host-chigger network connectance (Spearman’s rank correlation = 485.45, p = 

0.011), (Figure 4.11).   
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Figure 4.11 Correlation plots showing relationship between scrub typhus human 

case and chigger species richness (A); network connectance (B). 

 

Table 4.6 Human scrub typhus case number and environmental information at the 

district level for 13 studied sites in Thailand   

Location District Latitude 
Elevation 

(m) 
Annual mean 

temp (
o
c) 

Scrub typhus 
case number 

(year) 

Buriram Muang 14.90311 141.9 25 1 (2009) 

Chantaburi Laem Singh 12.50766 25.73 26 1 (2015) 

Chiangrai Wiang Chai 19.88956 111.7 30 8 (2011) 

Kalasin Sahatsakhan 16.29887 279.5 27 21 (2010) 

Kanchanaburi Sai Yok 14.01667 279.5 26 1 (2011) 

Loei Muang 17.45114 56.26 28 7 (2009) 

Nakornsawan Tak Fah 15.34976 Na Na 2 (2013) 

Nan Bo Kleu 19.14333 447.3 20 209 (2014) 

Nan Pua 19.12545 144 26 20 (2010) 

Nan Tha Wang Pha 19.13926 176.3 27 37 (2013) 

Prachuap Khirikhan Muang 11.76527 111.7 26 4 (2012) 

Songkhla Hat Yai 7.00201 62.9 28 7 (2013) 

Tak Mae Sot 16.80552 371.6 23 20 (2013) 
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Table 4.7 Comparison of the general linear models (GLM) to test the effect of various independent variables to scrub typhus human case 

number (GLM with Poisson distribution). Selection of the models was done using Akaike’s Information Criterion corrected for sample size 

(AICc). Only the top 10 models are shown. The initial model for AICc selection was Scrub Typhus Human Case Number ~ CSR + Latitude + 

Elevation + Annual Mean Temp + Network Modularity + NODF + Links per species + Network Connectance. Abbreviations: K = the number of 

estimated variables, Log-like = maximized value of the logarithm of the likelihood function, ∆AICc = the difference between AICc value of a 

given model and the model with minimum AICc, Wr  = Akaike weights, CSR = Chigger Species Richness, NODF = Nestedness. Analysis of 

Deviance (ANOVA type II test) significant level (* <0.05, ** < 0.01, *** <0.001). 

Model Dependent variable ~ Independent variables K Log-like AICc ∆AICc Wr 

1 Scrub typhus human case number ~ CSR*** + NODF* + Network Connectance*** 4 -47.289 114.578 0 0.3244 
 

      

2 Scrub typhus human case number ~ CSR*** + Network Connectance*** 3 -50.626 114.966 0.388 0.2672 
 

      

3 Scrub typhus human case number ~ CSR*** + Links per species* + Network Connectance*** 4 -47.639 115.279 0.701 0.2285 
       

4 Scrub typhus human case number ~ CSR*** + Annual Mean Temperature +Network  Connectance** 4 -49.775 119.55 4.972 0.027 
       

5 Scrub typhus human case number ~ CSR*** + Network Modularity + Links per species** + Network 
Connectance*** 

5 -45.43 119.661 5.083 0.0255 
       

6 Scrub typhus human case number ~ CSR*** + Network Modularity + NODF** + Network  
Connectance*** 

5 -45.679 120.159 5.581 0.0199 
       

7 Scrub typhus human case number ~ CSR*** + Latitude + NODF** + Network Connectance*** 5 -45.78 120.36 5.782 0.0181 
       

8 Scrub typhus human case number ~ CSR*** + Elevation + Network Connectance*** 4 -50.349 120.699 6.121 0.0152 
       

9 Scrub typhus human case number ~ CSR*** + Latitude + Links per species** +Network  
Connectance*** 

5 -46.006 120.12 5.542 0.0143 
 

      

10 Scrub typhus human case number ~ CSR*** + Network Modularity + Netwrok Connectance*** 4 -50.565 121.13 6.552 0.0122 
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4.4 Discussion 

4.4.1 Chigger diversity in different habitats, season, site and host 

attributes 

 In intensive field surveys conducted by the CERoPath project in 13 sites 

across Thailand, high chigger diversity was discovered (38 species discovered on 18 

small mammal species in different habitats and seasons), yielding over one-third of 

the diversity reported in the revised chigger species checklist of Thailand (Chaisiri et 

al. 2016).  

 Chigger species richness differed among different geographical locations in 

Thailand; for example hosts from northern (Chiangrai and Nan) and western (Tak) 

provinces, where the sites include mountain ranges and higher forest density, tend 

to have the greatest chigger diversity compared to hosts from the eastern and 

central sites (Chantaburi and Nakhonsawan), which are mainly flatland with less 

vegetation. Accordingly, parasite diversity (chiggers in this case) could be mainly 

determined with regard to biogeographical conditions that change with different 

sites or regions (Morand 2015). 

  Of the biogeographical factors, latitudinal gradients have been 

hypothesized as the major determinant factor for parasite diversity because key 

bioclimatic conditions change with latitude; i.e., mean temperature, humidity and 

rainfall (Lindenfors et al. 2007; Bordes et al. 2010; Morand 2015). Parasite species 

richness is expected to follow the hypothesis that free-living host species are more 
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diversified at the lower latitude, closer to equator. Some evidence for this trend has 

been reported, for example in parasites and infectious disease of humans (Guernier 

et al. 2004), protozoans of primate species (Nunn et al. 2005), and microparasites 

(bacteria and viruses) of wild rodents (Bordes et al. 2011). But in contrast, our 

findings showed the opposite trend, and are in agreement with the result of other 

macroparasite studies: flea species richness on rodent hosts increased with an 

increase in latitude (Krasnov et al. 2004) and helminth diversity of carnivores 

increased with distance from the equator line (Lindenfors et al. 2007). Interestingly, 

chigger diversity in China showed a somewhat similar pattern with the present 

study in Thailand, as chigger diversity in Yunnan province increased gradually from 

the lower latitudes (21 - 24oN) until reaching a peak at around 25 - 26oN and then 

decreased (Peng et al. 2016). Perhaps because our study was conducted at lower 

latitudes (7 - 19oN), the trend of chigger diversity continually increased. While Peng 

et al. (2016) reported strikingly high chigger diversity; i.e, 274 species in small 

mammal hosts from Yunnan province, the diversity of chiggers in the same host 

group gradually decreases in more southery countries such as Thailand and 

Malaysia, with 79 and 65 species, respectively (see CHAPTER 3; Nadchatram 1970; 

Mohd Zain et al. 2015; Chaisiri et al. 2016). Thus, the results of these studies imply 

that chiggers are more diversified in temperate or sub-temperate than tropical 

zones. This pattern of increasing parasite diversity in upper latitudes still does not 

have a clear explanation. However, Morand (2015) provided a hypothesis linking 

geographical range of hosts and their parasite species richness. The size of host 

geographical range positively correlates with parasite species richness, because 

large geographical ranges offer a higher probability for a host to be infected by 
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many parasite species (Morand 2000). Accordingly, host species living at higher 

latitudes may have larger geographical distribution ranges, which may facilitate the 

accumulation of several parasite species compared with hosts that have smaller 

geographical distributions at lower latitudes. In addition, the effect of host 

population density on parasite species richness cannot be ruled out, and needs to 

be investigated in future studies. 

 In term of habitat, chigger species richness decreased gradually from forest, 

agricultural lands to human settlement habitats, suggesting that urbanization has a 

negative effect on chigger diversity. This finding is similar to that of McKinney 

(2008), and confirms the trend of diversity loss of both invertebrates and 

vertebrates when urbanization has taken place. Urbanization and deforestation for 

agricultural use result in a high rate of habitat fragmentation, which affects 

ecological processes such as animal movement patterns, plant dispersal, community 

dynamics, and reproduction of animal and plants as well as nutritional flows in food 

webs (Andreassen et al. 1998; Dooley & Bowers 1998; Collinge 2000). These 

changes potentially act as perturbations within a community, and may lead directly 

or indirectly to species loss in the community. 

 At the whole country level, hosts in dry season were clearly infested with 

higher chigger species richness than those captured in wet season. Seasonal 

distributions of chiggers, temperature and precipitation have been previously 

recognised as important factors determining chigger activity in temperate and 

tropical zones (Sasa 1961). Nevertheless, there is no clear pattern of seasonal 

occurrence in trombiculid mite species; some species being highly abundant in 
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summer whereas others appear in the autumn-winter period (Frances et al. 1999; 

Traub & Wisseman 1968; Kim et al. 2010; Lee et al. 2012). With respect to the 

findings presented here, we initially discovered that more chigger species infested 

small mammals during the dry period than in the rainy season. The majority of 

chigger species populations in Thailand are probably more active during the dry 

period (Lerdthusnee et al. 2008), as wet conditions may inhibit or delay activity in 

some chigger species. Environmental factors related to seasonal change; e.g., 

temperature, rainfall, humidity or soil condition could play a crucial role in shaping 

chigger behaviour, reproduction and population dynamics. Although there was an 

obvious difference between the two seasons regarding the results in the present 

study, a seasonal effect was not selected to explain chigger diversity in the 

multivariate GLM analysis. Our field studies were not designed to control the 

sampling strategy of the two seasons within the same studied site. Thus, additional 

data collection from the field is needed in order to answer the research questions 

on seasonal effects on chigger species richness. 

 Regarding to GLM analysis, chigger species richness could be strongly 

shaped by host intrinsic factors (i.e., host species and maturity) and extrinsic factors 

(i.e., habitat and geographical location). The effect of different host species on 

parasite species richness has been well documented, as it is a primary and intuitive 

observation unit to study variation of parasite species richness (Krasnov 2008; 

Poulin 2014). The variation could be due to various host traits of different taxa such 

as body mass, diet range, metabolic rate, immunogenetics, longevity or 

geographical distribution size (Nunn et al. 2003; Lindenfors et al. 2007; De Bellocq 
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et al. 2008; Kamiya et al. 2014; Morand 2015). Effects of maturity could be due to 

the fact that adult hosts live longer and roam further searching for food; therefore 

there is the opportunity for increased exposure to chigger foci in the environment 

compared to juvenile animals. Another consideration is that adults have a larger 

body mass than juveniles, thereby providing a larger surface area for different 

chigger species to feed on. This possibility has previously been suggested for fleas 

and their hosts (Krasnov 2008). 

 Host environmental factors could play important role in chigger species 

richness on small mammal hosts in Thailand. Unlike endoparasites which live inside 

their host, and whose species composition and richness tends to vary due to 

internal host factors (e.g., development of immunity; competition for nutrients), 

arthropod ectoparasites live outside on the fur or on the skin of the host’s body. As 

such, the species richness of ectoparasites is affected not only by host factors but 

also by off-host environmental conditions: landscape habitat and climate in 

particular also have an important impact (Krasnov 2008; Morand 2015). The 

ectoparasites in our study, the chigger larvae, were found mainly in the ear and 

occasionally on other parts of the host body. They have a short association with 

their host, as they feed once in their larval life remaining attached for just a few 

days to do so, before leaving to develop into the free-living stages in environment 

(Shatrov 1992). This suggests that chigger species richness may be rather influenced 

more by host environmental parameters than by host traits, in accordance with 

what was previously found in chiggers from China (Zhan et al. 2013) and in the case 

of the flea study by Krasnov et al. (2004). However, host intrinsic factors cannot be 
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ruled out, particularly host immune responses to ectoparasite infestation, as 

chiggers attach to the host skin for many days while feeding on host tissue. Studies 

of the effects of host immunity on chigger infestation at a population or community 

level would constitute a valuable contribution to further research on the ecology of 

chigger parasitism.      

4.4.2 Host-chigger interaction through ecological network analyses 

4.4.2.1 host-chigger interaction at community level  

 At the whole country level, bipartite network analysis exhibited complex 

interactions between host and chigger species. A network parameter, nestedness, 

was computed. Nestedness has become a parameter of choice now widely used to 

report species co-occurrence or species distribution patterns and network of 

species interactions in ecological studies (Almeida-Neto et al. 2008; Krasnov 2008; 

McQuaid & Britton 2013). To date, contradictory results on nested patterns have 

been reported in ecological network studies, particularly in host-parasite 

communities (Krasnov 2008). The definition of nestedness given by Wright & 

Reeves (1992) is the pattern that “the sites inhabited by fewer species tend to be 

subsets of the biotas of richer sites”. In our case, the hosts infested by fewer chigger 

species are subsets of the species assemblages of the hosts infested by richer 

chigger species. Our result showed a nestedness NODF = 45.17, which reflects a 

moderate level of chigger species nestedness pattern among the host species in the 

community (Figure 4.6A). In other words, this can be interpreted as the bipartite 

matrix revealing 45.17% co-occurrence of specialist species, with chiggers in the 
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right-hand columns and hosts in the lower rows overlapping with the generalist 

species (chiggers in leftmost columns and hosts in the upper rows, thus following 

(Ulrich et al. 2009). 

 There was a trend of segregation of chigger species assemblages between 

murine rodents and the two non-rodent small mammals, Hylomys suillus 

(Erinaceomorpha: Erinaceidae) and Tupaia glis (Scandentia: Tupaiidae) (Figure 

4.6A). Perhaps this could be explained by differences in their biology; e.g. activity 

patterns (nocturnal in murid rodents and H. suillus but diurnal in T. glis), foraging 

habitat or shelter type. 

 Most of the chigger species found in the present study parasitized a wide 

host range and showed a low species-specificity index (Figure 4.6B and Table 4.2). 

This confirms the low host-specificity of chigger feeding as previously reported 

(Shatrov & Kudryashova 2008; Zhang et al. 2013; Peng et al. 2015). This evidence of 

low host-specificity is important with respect to scrub typhus epidemiology, since 

chiggers may perhaps attach to and feed on any animals that occupy or pass 

through their territory, including humans. 

 Unipartite network of chigger species co-occurrence among the hosts is 

presented in Figure 4.7. This analysis allows computing of Eigenvector centrality, a 

mathematic vector in linear transformation that characterizes the whole projection 

of vertices (corners or points where lines meet) in a network graph (Borgatti 2005). 

In a general sense and for our application, this method computes the centrality of a 

node (host) as a function of the centralities of the other nearby nodes (other hosts). 
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The higher centrality score of a node, the more connections to the other nodes 

regarding parasite sharing. This concept can be applied to determine the role of 

each host species sharing their parasites within a network (Morand, McIntyre, et al. 

2014; Pilosof et al. 2015). Similar to previous findings using the bipartite matrix, B. 

indica and R. tanezumi appear to be the most central hosts in the network (Figure 

4.7), suggesting that the two rodent species play a greater role in host-chigger 

interaction as well as chigger distribution in the community. 

 Although Bandicota indica is reported as a rodent species with specialized 

habitat preferences, and is fairly prevalent in rain-fed lowland fields (Herbreteau et 

al. 2005; Palmeirim et al. 2014; Blasdell et al. 2015), this particular rodent is 

recognised as a main reservoir host for several pathogens and parasites in 

Southeast Asia. These include hantavirus, herpes viruses, Bartonella spp., Leptospira 

spp., Orientia tsutsugamushi, Babesia spp., Toxoplasma gondii, Trypanosoma spp., 

several intestinal helminths and various ectoparasites including lice, ticks, and mites 

(including species other than chiggers) (Tangkanakul et al. 2000; Hugot et al. 2006; 

Jittapalapong et al. 2010; Herbreteau et al. 2012; Chaisiri, Siribat, et al. 2015; 

Klangthong et al. 2015; Chaisiri et al. 2016). This reflects the possibility of 

substantial horizontal transmission between other hosts and B. indica to reach such 

high parasite diversity in this habitat type. For example, horizontal transmission of 

O. tsutsugamushi from one host to another probably occurs less frequently 

compared with transovarial and transstadial transmission within the mite 

(Phasomkusolsil et al. 2009; Kumar et al. 2010). One possibility is that chiggers 

might drop off a host due to movement or the grooming process, and then switch 
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feeding to a new host, which potentially could allow cross-transmission between 

hosts. In addition, bacterial transmission between mites might occur during co-

feeding of chiggers on a host (Frances et al. 2000), which could be hypothesized as 

one of the horizontal transmission routes. However, the precise mechanism needs 

to be clarified in further studies.        

 Rattus tanezumi was also found as another very central host in the network. 

This rat has been reported as a habitat generalist species (low habitat preference) 

which occurs in all types of habitat (Palmeirim et al. 2014; Blasdell et al. 2015). 

Because the species has adapted well to the changing environment of Southeast 

Asia (Morand et al. 2015), R. tanezumi may potentially act as a “bridge species” 

linking host-parasite communities, including chiggers, from forest to agricultural 

land and human household settings. 

4.4.2.2 host-chigger interaction at population level  

 Bipartite network properties of host-chigger interaction including NODF, 

network connectance, links per species and network modularity were computed in 

each studied site. Our result found that chigger species richness was negatively 

correlated with network connectance; lower chigger species richness in the network 

tended to have higher level of host-chigger network connectance (proportion of 

realized interactions). This pattern has been reported previously in studies on flea-

mammal networks, which means the diversity (phylogenetic effect) might influence 

in some way their interactions (Mouillot et al. 2008; Poisot et al. 2013).  
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 In addition, we also found a negative correlation between network 

modularity and nestedness; which means when nestedness decreased, the network 

tended to increase its modularity, becoming highly structured in compartments. 

Fortuna et al. (2010) studied the relationship between nestedness and modularity 

in plant-pollinator, plant-seed dispenser and host-parasite communities, and they 

found a significant correlation between the two network indices only in the plant-

pollinator model. They found also that network connectance affected the 

correlation trend (switching from a positive to negative trend and vice versa) of 

nestedness and modularity. In communities with low connectance, the higher the 

apparent nestedness and the stronger the modularity (positive trend); whereas in 

the high connectance community the opposite was seen: the higher the nestedness, 

the lower the modularity (negative trend). Our result was in accordance with the 

latter trend, suggesting that host-chigger communities in Thailand may interact at a 

high level of connectance.  

 Unipartite network plots were generated in each studied site illustrating 

architectural patterns of host-chigger interaction. Focusing at nodes or individual 

hosts in the networks, again, we found evidence that the role of R. tanezumi is one 

of a central species (connector) in the network of Buriram, Songkhla and Tak (Figure 

4.9A, 4.9J, 4.9K). This confirms and reinforces the importance of R. tanezumi in 

host-chigger interactions. 
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4.4.3 Effect of independent variables explaining scrub typhus 

epidemiology in Thailand 

 Human scrub typhus case numbers in Thailand were influenced by chigger 

species richness and host-chigger network connectance. Chigger species richness 

positively correlated with the disease case number, such that the higher the chigger 

species richness, the more human scrub typhus cases were registered in the area 

(Figure 4.11A). Chigger diversity has never been previously included in the scrub 

typhus epidemiological research field. Although a number of publications reported 

chigger diversity in their studies, none has been linked with human scrub typhus 

incidence within the areas (Lerdthusnee et al. 2008; Zhan et al. 2013; Lin et al. 

2014). Thus, our finding appears to be the first time that a relationship between 

species richness of chigger vectors and scrub typhus incidence has been reported. 

An increase in chigger species richness perhaps increases the chance for human 

exposure to several chigger species, which may include vectors of the causative 

scrub typhus agent, O. tsutsugamushi. 

 Network connectance, another variable explaining occurrences of the 

disease, correlated negatively with scrub typhus case number. The region with a 

lower network connectance tends to exhibit a higher number of disease cases 

(Figure 4.11B). One of many possible associations to explain this relationship is that 

high interactions among small mammal species or individuals themselves regarding 

chigger sharing could divert or reduce the risk of human exposure in such a 

community to the vectors of the disease, acting like a “dilution effect”. This is 

similar to the concept of “zooprophylaxis”, the diversion of disease arthropod 
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vectors from human to domestic animals or wildlife for feeding (WHO 1982; Ault 

1994), which could be applied as an optional strategy and ecological and 

epidemiological tool for disease vector control programmes (Saul 2003; Donnelly et 

al. 2015). 

 Alternatively, the influence of chigger species richness and network 

connectance to scrub typhus incidence could be explained if the sites where higher 

chigger species richness occurred have a greater diversity of small mammal hosts 

and less man-made environmental changes, or fewer humans present in that 

particular area. This might be another reason that humans are less likely to be 

exposed to the chigger vector of scrub typhus disease.      

4.5 Conclusion 

 In summary, chigger diversity on small mammals in Thailand differed among 

rodent species, geographical location, latitude, habitat, and urbanization. There is a 

habitat preference found in some chigger species, which facilitates not only to 

understand more about their ecology but also enabling identification of suitable 

habitats which support potential scrub typhus disease vectors. Most chigger species 

infest a wide host range, showing low host specificity. This catholic feeding habit 

may increase the probability of people being bitten. In host-chigger network 

analysis, B. indica and R. tanezumi was identified as key host species that share and 

distribute chigger species to the other hosts in the community. Finally, chigger 

species richness and host-chigger network connectance were identified as the main 

variables to explain human scrub typhus incidence in Thailand. 
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CHAPTER 5 

INVESTIGATION OF MICROBIOME PROFILE IN CHIGGERS USING A 16S 
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Chapter 5 

Investigation of microbiome profile in chiggers using a 16S rRNA 

amplicon sequencing approach  

5.1 Introduction 

 Scrub typhus is a neglected tropical disease that can cause severe fever and 

is potentially fatal if not treated promptly. The disease is caused by a bacterium, 

Orientia tsutsugamushi, which is transmitted by chiggers, the parasitic larval stage 

of trombiculid mites (Kelly et al. 2009; Santibáñez et al. 2015). The mites are also 

known to cause trombiculiasis, an itching dermatitis condition in humans and other 

animals due to the host’s allergic response to the chiggers’ saliva (Krantz & Walter 

2009). To date, the known vectorial role of chiggers for bacteria is still largely 

limited to scrub typhus disease, as almost all studies were conducted using Orientia-

specific detection (Chaisiri, McGarry, et al. 2015), whereas other bacteria have been 

largely ignored.  

 With the advent of modern molecular technology, the development of high 

throughput sequencing (HTS) has facilitated studies of the microbiome, allowing 

insights into the entire microorganism community from a particular sample 

(Turnbaugh et al. 2007; Hamady & Knight 2009). This allows bacteriologists to 

elucidate both culture-dependent and culture-independent bacteria in samples 

within days and within an affordable budget (Loman & Pallen 2015). HTS 
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technologies give effective and rapid generation of data by sequencing large 

numbers of samples in parallel.  

 Bacterial 16S ribosomal RNA (16S rRNA) gene amplicon sequencing has 

become a popular approach for microbiome studies, as it offers substantial 

advantages: it is fast, relatively inexpensive, reads are produced from a single gene 

target, and downstream analysis workflows are available and well standardized 

(Hamady & Knight 2009; Sanschagrin & Yergeau 2014). The 16S rRNA gene is a 

sequence of DNA that encodes the rRNA material of the small subunit of bacterial 

ribosomes in the cytoplasm. The gene is present in all bacteria, around 1,500 bp in 

length containing nine hypervariable regions (V1 – V9), which differ in 

discriminatory power for taxonomic classification (Chakravorty et al. 2007). With 

this characteristic, the gene has been recognized as the ideal molecular marker for 

taxonomic and phylogenetic studies, particularly the V4 region which has been 

identified as the most informative (Soergel et al. 2012; D’Amore et al. 2016). 

 A number of HTS bench-top sequencers for microbiome investigations are 

available on the market; e.g., Illumina MiSeq and HiSeq, Life Technologies Ion 

Torrent and Pacific Bioscience RSII. The Illumina Miseq is currently the most popular 

platform for microbiome analyses of various sample types; e.g., water, soil, 

arthropods as well as clinical samples of domestic animals and human (Kennedy et 

al. 2014; Rubin et al. 2014; Nelson et al. 2014; Cong et al. 2015; Jervis-Bardy et al. 

2015; Zhou et al. 2016). Several advantages have been recognised regarding 

Illumina MiSeq performance, such as  data quality, low error rate, long read length 

(2 x 300 bp), ease of 16S rRNA gene PCR preparation, and costs are manageable for 
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small- to medium-scale projects (Kozich et al. 2013; Nelson et al. 2014). Common 

principles of Illumina Miseq sequencing can be briefly outlined as follows: (1) DNA 

template library preparation involves the addition of MiSeq sequencing nucleotide 

adaptors to template fragments in order to immobilize the DNA templates onto 

solid surfaces of the sequencing flow cell; (2) sequencing reactions are performed 

under clonal amplification (PCR-based method) by DNA polymerase and ligase 

enzymes, generating batches of clonal amplicons; and (3) nucleotide base-calling is 

performed in a nucleotide-by-nucleotide stepwise fashion, leading to emission of 

fluorescence signals labelled on deoxynucleotide triphosphates (dNTPs) (Rizzo & 

Buck 2012; Illumina 2013; Loman & Pallen 2015).In light of the advantages above 

and as this platform is available at the in-house facility (Center for Genomic 

Research, University of Liverpool), the Illumina MiSeq was selected for use in the 

present study. 

 While deep sequencing of 16S rRNA gene amplicons is powerful for 

microbiome studies, there are important limitations to the technology which could 

result in microbiome profile distortion. Microbiome data producing from by HTS is 

unavoidably affected by contamination from laboratory procedures and molecular 

laboratory reagents (Salter et al. 2014). Accordingly, background controls from 

various stages of the experiment should be set up and sequenced alongside the 

samples to account for any contaminants or false-positive signals prior to data 

interpretation (Galan et al. 2016; Jousselin et al. 2016). In addition, positive controls 

such as an artificial microbial community (a “mock” community of known 

composition) becomes another recommended strategy used to reduce noise and 
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identify potential biases in microbiome studies (Misic et al. 2015; Tremblay et al. 

2015; D’Amore et al. 2016), which have recently become commercially available 

from companies; e.g., ZymoBIOMICS (Zymo Research 2016). 

 Recently, research on symbiotic bacteria in arthropods have gradually 

attracted more biologists’ attention because these bacteria have been recognized 

as major players driving their hosts’ traits, ecology and evolution (Moran et al. 

2008; Ferrari & Vavre 2011). Thus, a microbiome investigation of chiggers will not 

only be useful to increase awareness of the potential for the mites to transmit 

disease pathogens, but the identification of associated symbionts may also facilitate 

deeper understanding of the symbiont-chigger relationship, leading to further 

development of intervention tools for vector control. Due to their small size and the 

limited taxonomic descriptions available, the study of the chigger microbiome is 

extremely challenging and few molecular protocols have been published. Therefore, 

we initiated a microbiome study of chiggers focusing on the 16S rRNA gene with the 

HTS approach.  

 The objectives of this thesis chapter are: (1) to investigate for the first time 

the microbiome profile of chiggers parasitizing small mammals from Thailand; (2) to 

identify potentially pathogenic bacteria and arthropod symbionts in addition to O. 

tsutsugamushi; (3) to compare diversity and community composition of the 

microbiome among different chigger species and between environmental 

conditions. 



 
 

144 
 

5.2 Materials and methods 

5.2.1 Genomic DNA preparation of chigger samples 

5.2.1.1 Chigger sample selection and process 

 As described in CHAPTER 3 regarding chigger identification, a subsample of 

10 - 20% of the chiggers was selected from each small mammal host for 

identification. As reported in CHAPTER 3, hosts were infested with single, double or 

multiple chigger species. To ensure genetic material was obtained from the correct 

chigger species, only samples from single-species-infested hosts were selected for 

genomic preparation. The chigger specimens were microscopically checked again by 

mounting in ATL buffer (QIAGEN), confirming that the correct species materials 

were selected before continuing the further steps of DNA extraction. 

 Individual chiggers were picked from different species, habitats and sites in 

Thailand (see details of habitat and seasonal classification in CHAPTER 3). In 

addition, 50 individuals were pooled as representative of species, habitat (mixed 

species) and study site (mixed species). A pooled sample of 50 harvest mites, 

Neotrombicula autumnalis, collected on rodents from Preston Montford Field 

Studies Centre, Shrewsbury, UK, was included as an outgroup representing a 

different geographical region. The workflow diagram of sample selection for chigger 

genomic materials is presented in Figure 5.1. 

 Several studies applied surface sterilization of arthropod samples prior to 

DNA extraction (Ponnusamy et al. 2014; Sanders et al. 2014; Lawrence et al. 2015). 



 
 

145 
 

The sterilization step usually involves the usage of 0.1 - 0.5% bleach (sodium 

hypochlorite) to treat specimens, resulting not only in removal of contaminating 

bacteria on the surface, but potentially external symbiotic bacteria too. Hammer et 

al. (2015) reported that there was no significant effect of surface sterilization on 

community structure and the relative abundance of microbiome between sterile 

and non-sterile insects. On the other hand, too aggressive sterilization (perhaps due 

to damage of the arthropod’s external structures caused by handling) could reduce 

the abundance of internal microbiota, leading to biases in microbiome composition 

between samples. Therefore, because chigger specimens are very small and 

delicate, and might harbour both external and internal symbionts, surface 

sterilization was omitted in this study. 

5.2.1.2 DNA extraction and quantification 

 After species confirmation in ATL buffer, chigger individuals or pools were 

subsequently subjected to DNA extraction using the DNeasy Blood & Tissue Kit 

(QIAGEN). For mechanical disruption, the specimens were dried in 1.7 ml Eppendorf 

tubes and crushed with a sterile polypropylene pestle in ATL buffer and proteinase-

K. The mixtures were incubated at 56oC overnight (in a water bath or heating block; 

see below for the rationale for modifying the protocol) for enzymatic digestion, and 

then DNA preparation continued according to the manufacturer’s protocol. The 

DNA was finally eluted in 30 µl of nuclease-free water and stored at -20oC. 
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Figure 5.1 Schematic diagram shows selection of individual and pooled chigger 

samples for DNA extraction.   

 Soil samples were collected from two different provinces in Thailand, 

Chantaburi and Udonthani, during the CERoPath fieldtrip in 2015. In each site, the 

soil samples were collected from three different depths: surface, 25 cm and 50 cm. 

DNA from soil samples was extracted using the PowerSoil DNA Isolation Kit (MO BIO 

Laboratory Inc.) following the manufacturer’s protocol. In addition, some soil DNA 

samples from Lao PDR provided by Dr Sabine Dittrich (Oxford-Mahosot Wellcome 

Trust Unit in Laos) were included in the study. 
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 All DNA samples were quantified using a fluorescent labelling method, the 

Quant-iTTM Picogreen dsDNA kit (Invitrogen), and read in an Infinite F200 microplate 

fluorimeter with Magellan™ -Data Analysis Software (TECAN). DNA concentration 

was calculated by comparison to high-range (0 - 1,000 ng/ml) and low-range (0 - 

25,000 pg/ml) DNA standard curves. 

5.2.2 Library preparation and next generation sequencing of 16S rRNA 

gene for microbiome investigation 

5.2.2.1 Dual index nested PCR amplification of 16S rRNA gene for Illumina MiSeq 

sequencing 

 To prepare the DNA library for microbiome sequencing, a 16S rRNA dual-

index nested PCR protocol for MiSeq Illumina sequencing was applied (Caporaso et 

al. 2011; Kozich et al. 2013; Illumina 2013). The general concept of this library 

preparation method is that the first round PCR amplifies the V4 region of the 16S 

rRNA gene and incorporates Illumina sequence adaptors and nucleotide pads that 

do not match any 16S rRNA gene sequence at the position; these pads are also used 

to prevent hairpin formation of product amplicons. Subsequently, a second round 

PCR is performed to attach the barcode indices (Nextera XT DNA protocol, Illumina) 

and Illumina sequencing adaptors to the first-round amplicon products. There are 

eight forward index primers and 12 reverse index primers containing their own 

unique barcodes, which create 96 different combinations of the tagging process. 

This allows pooling of up to 96 samples to be read in a single Illumina MiSeq 
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sequencing run, increasing cost-effectiveness. The PCR primers used in the library 

preparation are presented in Table 5.1. 

 In this study, four Illumina MiSeq sequencing lanes were generated, 

comprising 96 samples in each run. The first three lanes aimed to investigate the 

microbiome profile of individual chiggers, whereas the final lane was used for the 

microbiome study of pooled chigger samples. Three types of negative controls were 

included on every lane in order to identify potential background contamination 

from sample manipulation equipment, DNA extraction kits and PCR reagents used 

in the library preparation steps. The background controls were: water in contact 

with equipment (i.e., glass slides, coverslips, paintbrushes, dissecting needles, 

gloves and working area) followed by DNA extraction (Control 1); nuclease-free 

water followed by DNA extraction (Control 2); and nuclease-free water without DNA 

extraction (Control 3). 
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Table 5.1 Primers for 16S rRNA nested PCR library preparation for microbiome investigations. The first round primers contain a 

conserved region of the 16S (V4) rRNA gene (in green), Illumina overhang adaptors (in blue) and nucleotide pad linkers (in yellow). The 

primers for the second round contain Illumina overhang adaptors (in blue) incorporated with products from the first round and eight 

unique nucleotides of barcode indices (in red) attached to Illumina sequencing adaptors (in purple).      

Primers Nested PCR 
stage 

Oligo sequence Size (bp) 

16sv4forward  1 5'-ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNGTGCCAGCMGCCGCGGTAA-3' 57 
16sv4reverse 1 5'-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGGACTACHVGGGTWTCTAAT-3' 54 
DI_N501For 2 5'-AATGATACGGCGACCACCGAGATCTACACTAGATCGCACACTCTTTCCCTACACGACGCTC-3' 61 
DI_N502For 2 5'-AATGATACGGCGACCACCGAGATCTACACCTCTCTATACACTCTTTCCCTACACGACGCTC-3' 61 
DI_N503For 2 5'-AATGATACGGCGACCACCGAGATCTACACTATCCTCTACACTCTTTCCCTACACGACGCTC-3' 61 
DI_N504For 2 5'-AATGATACGGCGACCACCGAGATCTACACAGAGTAGAACACTCTTTCCCTACACGACGCTC-3' 61 
DI_N505For 2 5'-AATGATACGGCGACCACCGAGATCTACACGTAAGGAGACACTCTTTCCCTACACGACGCTC-3' 61 
DI_N506For 2 5'-AATGATACGGCGACCACCGAGATCTACACACTGCATAACACTCTTTCCCTACACGACGCTC-3' 61 
DI_N507For 2 5'-AATGATACGGCGACCACCGAGATCTACACAAGGAGTAACACTCTTTCCCTACACGACGCTC-3' 61 
DI_N508For 2 5'-AATGATACGGCGACCACCGAGATCTACACCTAAGCCTACACTCTTTCCCTACACGACGCTC-3' 61 
DI_N701Rev 2 5'-CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTGACTGGAGTTCAGACGTGTGCTC-3' 57 
DI_N702Rev 2 5'-CAAGCAGAAGACGGCATACGAGATCTAGTACGGTGACTGGAGTTCAGACGTGTGCTC-3' 57 
DI_N703Rev 2 5'-CAAGCAGAAGACGGCATACGAGATTTCTGCCTGTGACTGGAGTTCAGACGTGTGCTC-3' 57 
DI_N704Rev 2 5'-CAAGCAGAAGACGGCATACGAGATGCTCAGGAGTGACTGGAGTTCAGACGTGTGCTC-3' 57 
DI_N705Rev 2 5'-CAAGCAGAAGACGGCATACGAGATAGGAGTCCGTGACTGGAGTTCAGACGTGTGCTC-3' 57 
DI_N706Rev 2 5'-CAAGCAGAAGACGGCATACGAGATCATGCCTAGTGACTGGAGTTCAGACGTGTGCTC-3' 57 
DI_N707Rev 2 5'-CAAGCAGAAGACGGCATACGAGATGTAGAGAGGTGACTGGAGTTCAGACGTGTGCTC-3' 57 
DI_N708Rev 2 5'-CAAGCAGAAGACGGCATACGAGATCCTCTCTGGTGACTGGAGTTCAGACGTGTGCTC-3' 57 
DI_N709Rev 2 5'-CAAGCAGAAGACGGCATACGAGATAGCGTAGCGTGACTGGAGTTCAGACGTGTGCTC-3' 57 
DI_N710Rev 2 5'-CAAGCAGAAGACGGCATACGAGATCAGCCTCGGTGACTGGAGTTCAGACGTGTGCTC-3' 57 
DI_N711Rev 2 5'-CAAGCAGAAGACGGCATACGAGATTGCCTCTTGTGACTGGAGTTCAGACGTGTGCTC-3' 57 
DI_N712Rev 2 5’-CAAGCAGAAGACGGCATACGAGATTCCTCTACGTGACTGGAGTTCAGACGTGTGCTC-3’ 57 
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 For the individual chigger samples (the first three lanes), the first round PCR 

was conducted in a 25 µl reaction containing 17.7 µl of nuclease-free water; 2.5 µl 

of GeneAmp 10X PCR buffer I; 1.2 µl of GeneAmp dNTPs (0.5 mM final 

concentration); 1.2 µl of each 16sv4forward and reverse primers (0.5 µM final 

concentration); 0.2 µl of AmpliTaq DNA Polymerase LD (1.25U); and 1 µl of DNA 

template. The PCR comprised initial denaturation at 94oC for 5 min, followed by 18 

cycles of denaturation at 94oC for 1 min, annealing at 56oC for 1 min, extension at 

72oC for 1 min and final extension at 72oC for 5 min. The whole amplicon products 

including the target gene and Illumina linker sequences were around 300 - 350 bp in 

size. Subsequently, PCR products were size-selected and purified using a Chroma 

SpinTM-200 column (Takara-Clontech) following the manufacturer’s protocol. Only 

DNA fragments >150 bp were retained and primer-dimers <50 bp were removed by 

this step after elution with 50 µl nuclease-free water. The size-selected PCR 

products were then used as the DNA templates for second round PCR. This round  

was performed in a 25 µl reaction containing 15.7 µl of nuclease-free water; 2.5 µl 

of GeneAmp 10X PCR buffer I; 1.2 µl of GeneAmp dNTPs (0.5 mM final 

concentration); 1.2 µl of each forward and reverse index barcoding primers (0.5 µM 

final concentration); 0.2 µl of AmpliTaq DNA Polymerase LD (1.25U); and 3 µl of 

DNA template. The PCR comprised initial denaturation at 94oC for 5 min, followed 

by 25 cycles of denaturation at 94oC for 1 min, annealing at 65oC for 1 min, 

extension at 72oC for 1 min and final extension at 72oC for 5 min. Both PCR 

amplification rounds were conducted in a T3 thermocycler (Biometra).  
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 For the pooled chigger samples in the final Illumina MiSeq sequencing lane, 

the protocol of 16S rRNA library preparation was slightly adapted from 

thatdescribed above. As the GeneAmp dNTPs (Applied Biosystems) was no longer 

supplied from the company, the PCR components used in the nested PCR were 

inevitably changed. PCR thermocycling conditions remained the same in both PCR 

amplification rounds as described above. For the PCR components, the first round 

PCR was conducted in 25 µl reactions containing 12 µl of microbial DNA-free water 

(QIAGEN); 10 µl 2X SensimixTM SYBR No-Rox kit (Bioline); 1 µl of each 16sv4forward 

and reverse primers (0.4 µM final concentration); and 1 µl of DNA template. The 

products were size-selected using a Chroma SpinTM-200 column (Takara-Clontech) 

following the manufacturer’s protocol and used as DNA template for the second 

round PCR. This round was conducted in a 25 µl reaction containing 10 µl of 

microbial DNA-free water (QIAGEN); 10 µl 2X SensimixTM SYBR No-Rox kit (Bioline); 

1 µl of each forward and reverse index barcoding primers (0.4 µM final 

concentration); and 3 µl of DNA template. 

5.2.2.2 Pooling strategy of 16S rRNA nested PCR products for Illumina MiSeq 

sequencing 

 The final PCR products (5 µl) were visualised on a 1.2% agarose gel 

incorporating SYBR Safe DNA gel stain and run at 120 V for 45 min in a Bio-Rad gel 

electrophoresis set. The gels were visualised using a G:Box Gel Documentation 

System (Syngene). The PCR products were purified individually using a QIAquick PCR 

Purification Kit (QIAGEN) following the manufacturer’s protocol, with 30 µl of 

nuclease-free water used the in elution step.  
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 For each sequencing lane, the 96 purified PCR products were pooled by 

adjusting the DNA volume on the basis of the band density in the gel images. A 

volume of 5, 10 or 15 µl was taken from the samples with high, medium and low 

band densities, respectively (see example in Figure 5.2). From the DNA pools, 3 

aliquots (30 µl each) were quantified for DNA concentration using the Quant-iTTM 

Picogreen dsDNA kit (Invitrogen), and the aliquots with the highest DNA 

concentration were submitted for Illumina MiSeq sequencing at the Centre for 

Genomic Research (CGR), University of Liverpool. A diagram of the library 

preparation and sequencing workflow is presented in Figure 5.3. 

 

 

Figure 5.2 Image of agarose gel electrophoresis presenting an example of variation 

of 16S rRNA product densities after the second round PCR in the library preparation 

step. H, M and L indicate high, medium and low band densities, respectively, for 

normalization strategy of amplicon pooling prior to Illumina MiSeq sequencing. 
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Figure 5.3 Schematic diagram shows 16S rRNA library preparation workflow of the 4 

plates of Illumina MiSeq sequencing. 

5.2.3 Post-sequencing bioinformatic processes 

5.2.3.1 Quality filtering of raw paired-end sequence data 

 In general, individual nucleotide sequences (reads) generated from next 

generation sequencing are longer than the expected size of the target fragment due 



 
 

154 
 

to the attachment of the sequencing adaptors and barcode indices on the 3’ or 5’ 

end. They should be removed from each read prior to downstream analysis, 

otherwise analysis errors will result. Here, quality filtering of the raw 16S rRNA 

reads was initially done by CGR. The reads in fastq format were trimmed with 

CUTADAPT v.1.2.1 (Martin 2011) and SICKLE v.1.200 (Joshi & Fass 2011), and the 

sequences with an average nucleotide base quality score lower than 20, as well as a 

length shorter than 10 bp after trimming, were discarded. This finally gave forward 

(R1) and reverse (R2) reads of the certain read pairs, whereas the singlet reads (R0), 

the only one of a read pair that passed the filtering, were excluded from the further 

steps. Subsequently, error correction of the reads was performed using 

BayesHammer algorithm in SPAdes v.3.1.0 (Bankevich et al. 2012; Nikolenko et al. 

2013). Then, the paired-reads (R1 and R2) were aligned using PANDAseq (Masella et 

al. 2012), generating assembled reads representative for the certain pairs. Only 

reads with a size between 270 - 300 bp were retained. Finally, the aligned reads 

from the four lanes of MiSeq sequencing were combined in a single fasta file. The 

file containing the whole dataset (millions of reads from 377 samples) was used for 

further microbiome analyses. The LINUX command line script for the quality 

filtering processes above was developed by A. Christina Gill (Institute of Infection & 

Global Health, University of Liverpool). 

5.2.3.2 Microbiome profiling  

 Analyses of 16S rRNA microbiome profile were performed using the 

Quantitative Insights into Microbial Ecology (QIIME) software package, version 

1.8.0, http://qiime.org (Caporaso et al. 2010). To define bacterial taxonomy, reads 

http://qiime.org/
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were grouped by sequence similarity called “OTUs” or Operational Taxonomic Units 

using an open-reference OTU picking approach with USEARCH61 method (Edgar 

2010). All reads were binned at 97% similarity against the Greengene database 

v.13_8 (McDonald et al. 2012). Any reads that did not match the reference database 

were subsequently clustered de novo against each other with the same similarity 

threshold. These steps were done through “pick_open_reference_otus.py”, in 

which bacterial taxonomic assignment with UCLUST against the Greengene 

database v.13_8 (Edgar 2010), sequence alignment with PyNAST (Caporaso et al. 

2009), and tree-building with FastTree v.2.1.3 (Price et al. 2010) were also 

generated in the outputs. Within an OTU, the most abundant read was selected as a 

representative sequence for that particular OTU. The OTU table (providing the 

taxonomic assignment and read count of 16S rRNA gene sequences in each OTU 

and sample) was created in biom format (Biological Observation Matrix). 

 Chimeric sequences were identified using “ChimeraSlayer” (Haas et al. 2011) 

and removed from the OTU table. Chimeras have been recognised as a common 

artefact produced from confounding processes during 16S rRNA gene amplification 

(Acinas et al. 2005; Ashelford et al. 2005; Haas et al. 2011). The chimeric molecules 

are created when a PCR amplicon is incompletely formed during the extension stage 

and the aborted product is incorporated in subsequent PCR cycles prior to 

annealing and synthesis of a new amplicon from the second DNA strand parent. If 

this chimeric sequence passes through subsequent taxonomic classification steps 

without checking, it may be identified as a novel sequence by the reference 
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database, causing a false positive bias. A new OTU table and phylogenetic tree were 

regenerated again after removal of chimeras. 

 To facilitate a manual investigation of microbiome profiles, the OTU table 

was filtered, aiming to discard any OTUs with a relative abundance (proportion of 

total read count) of <1% across samples, whereas the OTUs represented by ≥1% of 

reads were retained for further analyses. The OTUs with fewer than five read counts 

were identified as singletons and then removed from the OTU table. 

 There are several potential sources of errors and biases during the sample 

preparation and generation of 16S rRNA library; e.g., equipment and reagents used 

in specimen manipulation and DNA extraction kit and water contamination; 

producing substantial challenges for high-throughput sequencing experiments, 

particularly when dealing with low biomass microbiota samples (Salter et al. 2014; 

Galan et al. 2016). As our study dealt with such challenging specimens, very small 

DNA yields from individual chiggers were obtained, and these low biomass samples 

could fail to outcompete contaminating 16S rRNA gene sequences. Accordingly, a 

sample-control similarity check using the β-diversity approach (Bray-Curtis 

dissimilarity) was applied using the “ecodist” package (Goslee & Urban 2007) 

implemented in R freeware (R Core Team 2015). Any samples that exhibited a 

microbiome pattern (OTUs) to the background controls of >20% similarity were 

excluded, as about a 20 - 30% cut-off seemed acceptable in discriminate sample-

control similarity according to previous studies (Minard et al. 2015; Jervis-Bardy et 

al. 2015). We decided to remove low quality samples before conducting 

comparative analyses rather than subtracting contaminant OTUs of likely 
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background control origin, as the latter could affect the relative abundance in the 

samples. A summary of the post-sequencing bioinformatics workflow is presented 

in Figure 5.4. 

 

Figure 5.4 Schematic diagram showing post-sequencing bioinformatics workflow of 

data filtering and microbiome profiling with QIIME platform. 
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5.2.4 Comparative analyses of microbiome data 

5.2.4.1 Summary of bacterial communities by relative abundance 

 The OTU table was transformed to a bacterial taxonomy table with raw read 

counts of each OTU presented in columns and samples in rows. The read count data 

were normalized to relative abundance, using total sum scaling method or 

proportion. Bacterial communities were summarized with regard to sample groups 

(individuals and pools), selected chigger species and studied sites (mixed species), 

as well as soil samples from Thailand and Lao PDR. The dominant OTUs (the OTUs 

that presented proportionally ≥10% within a sample) were plotted as stack-bar 

charts; whereas the OTUs that showed <10% in a sample were combined together 

in “others”. This helped to visualize bacterial communities represented by the 

dominant OTUs within the samples.            

5.2.4.2 Alpha-diversity of the chigger-associated microbiome 

 First, the read count data in the OTU table was normalized by different 

rarefaction depths at 100, 1,000, 10,000 and 100,000 reads per sample in order to 

optimize the best value for data normalization prior to further comparative 

analyses. Rarefaction subsampling at 10,000 sequences depth was then applied as it 

showed the highest percentage of samples and OTU recovery compared to the 

others (Table 5.2). The diversity of bacterial OTUs among different sample groups 

(individual chiggers, pooled chiggers and soil) and categories (chigger species, 

habitats and study sites) was determined through richness and diversity estimators 

available as default in QIIME; i.e., observed richness, chao1 non-parametric richness 
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estimator, and whole-tree phylogenetic diversity (PD_whole_tree). Non-parametric 

Kruskal-Wallis (KW) tests with Bonferroni post-hoc comparisons were performed to 

compare the alpha-diversity of bacterial OTUs among the sample groups. 

5.2.4.3 Beta-diversity of bacterial composition 

 Similar to the alpha-diversity analysis, a rarefaction depth at 10,000 reads 

per sample was first applied in the data normalization step prior to beta-diversity 

analysis of bacterial composition among the sample groups. At the level of 

individual and pooled chiggers, beta-diversity of bacterial composition among 

different categories (chigger species, habitat and study site) was computed by 

QIIME defaulted unweighted and weighted UniFrac (Unique Fraction) phylogenetic-

based measurement methods. These methods take phylogenetic distance (that is, 

the fraction of tree length between sets of bacterial taxa) into account for 

calculation between pairs of samples in beta-diversity metrics (Lozupone & Knight 

2005). Principle Coordinate Analysis (PCoA) was used to transform complex 

multidimensional data in the metrics to a new set of data regarding different 

orthogonal axes, and plotted them to visualize clustering patterns of bacterial 

composition in the samples. Nonparametric ANOSIM method (Analysis of Similarity) 

with 1,000 permutations was used to test whether the clustering pattern of 

bacterial composition in the samples was statistically significant. 
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Table 5.2 Comparison of rarefaction statistics among different sequence depths 

(100 – 100,000 reads/sample); the asterisk (*) indicates the sequence depth 

selected for data normalization in further analyses in this study.      

Sequence depth 
(reads/sample) 

No. of 
sample 

Sample 
recovery 

(%) 

No. of 
OTUs 

OTUs 
recovery 

(%) 
Total read 

Table 
density 

Original OTU table 217 100 995 100 23,732,857 0.143 
Subsample 100 even 217 100 579 58.19 21,700 0.034 
Subsample 1,000 even 217 100 740 74.37 217,000 0.07 
Subsample 10,000 even* 208 95.41 817 82.11 2,080,000 0.114 
Subsample 100,000 even 102 47.01 779 78.29 10,200,000 0.165 

 

5.2.5 Verification of Geobacillus OTUs in chiggers and background 

controls 

 As Geobacillus spp., a genus of Gram-positive thermophilic bacteria, were 

dominant in individual chigger samples (see Results), quantitative PCR (qPCR) prior 

to Sanger sequencing of the PCR products was performed in order to investigate 

whether these Geobacillus were genuinely associated with the chiggers or acquired 

from some sort of contamination during laboratory procedures. 

5.2.5.1 Geobacillus specific primer design  

 A pair of PCR primers was designed aiming to specifically amplify a 16S rRNA 

gene portion for the genus Geobacillus. Ten representative sequences of Bacillales 

and Geobacillus OTUs derived from MiSeq sequencing lanes and additional 

sequences of Bacillus spp. (KC443093.1, AB501343.1, DQ207730.2, AF058766.1, 

HM470251.1, DQ906100.1 and AF233579.1) from the NCBI nucleotide database 

were aligned with ClustalW multiple alignments. To differentiate between 
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Geobacillus and Bacillus sequences, the primers were picked from regions 

containing sets of single nucleotide polymorphisms (SNPs) using Primer 3 v.4.0.0 

(Untergasser et al. 2012). The following primers, 16SGbF 

(GTCCGGAATTATTGGGCGTA) and 16SGbR (TACGCATTTCACCGCTACAC) were used in 

qPCR and conventional PCR, amplifying 150 bp of the DNA fragment. The full-length 

Geobacillus amplicon product was synthesized by Eurogenetec Ltd. as a single-

stranded oligonucleotide (Southampton, UK) and used as a standard control in the 

qPCR assay. 

5.2.5.2 Molecular laboratory procedures 

 For the qPCR assay, different types of DNA samples [individual, 25-pooled 

and 50-pooled chiggers, as well as water samples from the laboratory water bath 

and QIAGEN microbial DNA-free water (negative control)] were used in the 

experiment. DNA from chiggers and 10 µl of water bath samples were extracted 

using the DNeasy Blood & Tissue Kit (QIAGEN) as previously described in Chapter 3. 

Serial dilutions of DNA standard control from 5 x 106 to 10-1 copies were prepared 

for use on each plate. The qPCR was carried out in 20 µl reactions containing 1 µl of 

DNA template, 10 µl of 2X SensiMix SYBR (Bioline), 1 µl of each primer (0.2 µM final 

concentration), and 7 µl of microbial DNA-free water. The qPCR was run with 35 

cycles as follows: initial denaturation at 95oC for 10 min; 35 cycles of 95oC for 15 

sec, 55oC for 30 sec, 72oC for 15 sec; and finally melting curve analysis, increasing 

the temperature from 50oC to 95oC in 0.5oC increments. The PCR cycles were run in 

a MiniOpticon Real-Time PCR System (Bio-Rad), and quantitative data analysis was 

performed by CFX Manager Software v.3.1 (Bio-Rad). An analysis of variance 
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(ANOVA) with post-hoc Tukey HSD correction was performed in order to test 

differences in 16S rRNA gene sequence copies among the sample types. 

 To verify specificity of the primers in amplifying Geobacillus sequences, 

conventional PCR and Sanger sequencing of the products were applied in this step. 

In addition to the samples above, extracted DNA from soil (as previously described) 

was included in the experiment. The PCR components and cycle conditions were 

exactly the same as for qPCR, but without melting curve analysis. The amplicons 

were visualized by 1.2% agarose gel electrophoresis, incorporating SYBR Safe 

(Invitrogen), at 120 V for 40 min. PCR products were purified using QIAquick PCR 

Purification Kit (QIAGEN), then subjected to a cloning experiment in the pGEM-T 

Easy Vector System (Promega). PCR fragments were ligated overnight at 4oC into 

the pGEM-T Easy plasmid with 2:1 insert-plasmid ratio. The ligants were 

transformed into JM109 E.coli competent cells (Promega) by heat shock at 42oC for 

45 sec, then supplemented with SOC medium and incubated at 37oC in a 200 rpm 

shaking incubator for 2 hours. The transformants were plated on 

LB/ampicillin/IPTG/X-Gal agar, and incubated overnight at 37oC. After overnight 

incubation, the plates were stored at 4oC for 3 days to allow better differentiation 

between blue and white colonies. Ten white recombinant colonies of each sample 

were inoculated in LB ampicillin broth and grown overnight at 37oC in a shaking 

incubator at 200 rpm. Plasmid DNA was extracted from the transformed-cell pellets 

using Wizard Plus SV Minipreps DNA Purification Kit (Promega) following the 

manufacturer’s protocol. Finally, the plasmid DNA samples were sent for Sanger 
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sequencing with pUC/M13 forward and reverse primers at the Source Bioscience 

Company, UK. 

 DNA sequences were assigned for bacterial taxonomy using RDP Naive 

Bayesian rRNA Classifier Version 2.10 (Wang et al. 2007) on the website 

https://rdp.cme.msu.edu. The taxonomical hierarchy was accepted at a >80% 

confidence threshold (Soergel et al. 2012). DNA sequences were aligned with 

ClustalW multiple alignments, and phylogenetic tree construction was performed 

with the Maximum likelihood (ML) method using Mega software version 6.06 

(Tamura et al. 2013). To investigate the pattern of bacterial sequences in different 

sample types, a bicolor heat map based on positive/negative data was created using 

the “gplots” package (Warnes et al. 2016) in R freeware. 

5.2.6 Geobacillus culture from chigger specimens 

 To attempt to validate the Geobacillus 16S rRNA amplicon data, we 

attempted to grow the bacterial cells or spores that may exist in or on chiggers 

using TSB (Trypticase soy broth) and TSA (Trypticase soy agar) media with the aid of 

high-temperature incubation. Twenty mite samples (mixed species) freshly isolated 

from small mammal hosts in the field study (Tha Wang Pha, Nan) were submerged 

in TSB (1 mite in 150 µl) and incubated for five hours at room temperature. The 

samples were heated to 55oC for 10 min to reduce the viability of non-thermophilic 

bacteria, then stored at 4oC and transported to the Faculty of Tropical Medicine, 

Mahidol University, Bangkok. The bacteria in TSB samples were grown once again 

on TSA plates and incubated at either 37oC or 55oC overnight.          

https://rdp.cme.msu.edu/
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5.2.7 Determination of GC content in 16S rRNA sequences 

 Percentage of GC content in DNA template has been hypothesized as one of 

several sources of biases in HTS data from 16S rRNA-based microbiome studies 

(Pinto & Raskin 2012; Kennedy et al. 2014). Accordingly, we evaluated whether the 

influence of GC content differential affected data obtained from individual and 

pooled chiggers, which were the low and high DNA concentration templates, 

respectively. Representative sequences of the dominant bacterial OTUs from both 

individual and pooled chiggers were checked for GC content using “Oligo Calc”, an 

oligonucleotide properties calculator available at 

http://biotools.nubic.northwestern.edu/OligoCalc.html (Kibbe 2007). The mean GC 

contents of the dominant OTUs were compared between individual and pooled 

chiggers by a parametric two-sample T-test. 

5.3 Results  

5.3.1 Sequencing results 

 The total number of 16S rRNA reads from the whole set of 377 samples (275 

individual chiggers, 69 pooled chiggers, 18 soil samples and 15 background controls) 

after quality filtering, de-multiplexing and error correction was 51,896,654 (mean 

reads/sample = 137,656.91; SD = 69,521.87). After R1 - R2 paired alignment and size 

selection at 270 - 300 bp, the read number was reduced to 49,635,427 (mean 

reads/sample = 131,658.96; SD = 69,921.81), yielding around 94% average sequence 

recovery. 

http://biotools.nubic.northwestern.edu/OligoCalc.html


 
 

165 
 

 Following several steps of OTU clustering, OTU quality filtering at >1% 

relative abundance, bacterial composition similarity check between background 

controls and samples with the Bray-Curtis method, and chimera sequence removal, 

995 bacterial OTUs was identified from 217 retained samples with a total of 

23,732,857 reads. Regarding control-sample similarity checking using the 20% cut-

off, almost a half of samples (42.2%) was excluded. In particular, 56.4% of individual 

chigger samples failed to pass the cut-off, and were discarded from the dataset 

(Figure 5.5). This could be explained by the issue of low DNA template 

concentration of individual chiggers (mean = 0.026 ng DNA template added to the 

PCR reaction, n = 256 samples) compared to pooled chiggers and soil samples, 

where the mean DNA template added to the PCR was much higher at 1.136 ng (n = 

84 samples) and 6.983 ng (n = 12 samples), respectively. Thus, the low biomass 

individual chigger samples provided too little DNA template to compete with DNA in 

kit reagents and the water used in PCR library preparation (Tanner et al. 1998; 

Salter et al. 2014), resulting in a high similarity in bacteria composition between 

many of the samples and the background controls. However, although excluded 

samples represented a sizeable proportion of the total set, the retained data after 

this stringent filtering step were of higher quality for further downstream analyses.  

5.3.2 Microbiome profiling 

5.3.2.1 Dominant bacterial OTUs in chiggers 

 Bacterial profiles between individual and pooled chiggers differed regarding 

the relative abundance of dominant bacterial OTUs. Several Geobacillus 
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(Fermicutes: Bacillales) and Comamonadaceae (Betaproteobacteria: 

Burkholderiales) OTUs appeared as dominant bacteria in individual chiggers, 

occupying up to 80% and 60%, respectively, in a sample. The other subdominant 

OTUs of individual chiggers were Sphingobium (Alphaproteobacteria: 

Sphingoonadales) and Brevibacillus (Firmicutes: Bacillales), (Figure 5.6).  

 

Figure 5.5 The bar chart shows a comparison of sample removal among different 

sample groups (individual, pooled chiggers and soil samples) after sample-control 

similarity check (Bray-Curtis dissimilarity) at 10% and 20% cut-offs.   

 The dominant bacterial OTUs of pooled chiggers were the family 

Neisseriaceae (Betaproteobacteria: Neisseriales), genus Corynebacterium 

(Actinobacteria: Actinomycetales) and Staphylococcus (Firmicutes: Bacillales), which 

occupied up to 93%, 83%, and 53% of OTUs, respectively, in a sample (Figure 5.7 

and 5.8). Bacterial profiles of soil samples collected in Thailand and Lao PDR were 

clearly different. The dominant OTUs of soil from Thailand were 

Betaproteobacteria, Deltaproteobacteria, Nitrospirales and Bradyrhizobiaceae; 

whereas Acidobacteria, Actinocorallaria, Koribacteriaceae and 
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Thermogemmatisporaceae were the dominant bacteria found in soil samples from 

Lao PDR (Figure 5.9). 

5.3.2.2 Bacterial OTUs of public health importance, arthropod symbionts and 

potential contaminant OTUs from background controls  

 After data filtering, a number of potential pathogenic bacteria of public 

health importance; e.g., Borrelia, Mycobacterium and Orientia tsutsugamushi, as 

well as arthropod symbionts; e.g., Cardinium, Pseudonocardia, Rickettsiella and 

Wolbachia were selected for discussion. O. tsutsugamushi, the causative agent of 

scrub typhus disease was found in the chiggers. The bacterial sequences were 

detected in 13 pooled and three individual samples yielding a 20% and 2.75% 

prevalence rate, respectively, and occupying up to 18% of OTU proportion in a 

sample. Apart from O. tsutsugamushi, the other bacteria appear to be reported for 

the first time in trombiculid mite taxa. The spirochete Borrelia was detected in 32 

pooled chigger samples (49.23% positive rate), with a relative abundance of up to 

28.15% in a sample. Mycobacterium was found in 48 pooled chigger samples 

(73.85% positive rate), and also presented in all soil samples (100% positive rate) 

from Thailand and Lao PDR. The full list of the other selected OTUs is showed in 

Table 5.3. We were also able to count the number of infections and estimate 

prevalence rates of these bacteria in chigger populations. The number of positive 

samples for each bacterium was counted only for the samples that possessed more 

than five read counts (Razzauti et al. 2015). As the results show in Table 5.3, almost 

OTUs from individuals were a subset of OTUs from the pooled chiggers but not for 

Geobacillus and Brevibacillus. 
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Figure 5.6 Stacked bar charts show the relative abundance of bacterial OTUs in 

background controls and individual chiggers from (A) subfamily Gahrliepiinae and 

subfamily Trombiculinae: (B) tribe Schoengastiini and (C) tribe Trombiculini. The 

data is filtered; OTUs that represented <10% in a sample were combined in 

“Others” (grey portion). Orientia tsutsugamushi (black portion) was found only in L. 

deliense, marked with asterisks (*). 
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Figure 5.7 Stacked bar charts show relative abundance of bacterial OTUs in background controls and pooled samples of different chigger 

species. The data is filtered; OTUs that represented <10% in a sample were combined in “Others” (grey portion). 
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Figure 5.8 Stacked bar charts show relative abundance of bacterial OTUs in background controls and pooled samples of different study sites. 

The data is filtered, OTUs that represented <10% in a sample were combined in “Others” (grey portion). 
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Figure 5.9 Stacked bar charts show relative abundance of bacterial OTUs in background controls and soil samples from Thailand and Lao PDR. 

The data is filtered, OTUs that represented <10% in a sample were combined in “Others” (grey portion). 
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Table 5.3 Selected bacterial taxa of public health importance, potential symbionts of arthropods, and other dominant OTUs detected in 

individual and pooled chiggers in comparison to soil and background controls. Only the OTUs that presented with more than five reads and 

identified minimally to genus level are included.  

Bacterial taxa (OTU identify) 
Maximum  

OTU Proportion 
(%) 

Individual chigger Pooled chigger Soil Control 

No. of 
Samples 

(%) 
No. of 

samples 
(%) 

No. of 
samples 

(%) 
No. of 

samples 
(%) 

Opportunistic/Potential pathogens          
   Anaerococcus (504674) 1.85 5 (4.59) 3 (4.62) - - - - 
   Arcobacter (4455962) 1.17 2 (1.83) 4 (6.15) - - - - 
   Bacillus cereus (4463224) 1.37 4 (3.67) 31 (47.69) 11 (61.11) - - 
   Borrelia (New.Reference OTU7) 28.15 1 (0.92) 32 (49.23) - - - - 
   Campylobacter (New.CleanUp.ReferenceOTU30) 1.07 - - 3  (4.62) - - - - 
   Clostridium (New.ReferenceOTU2470) 2.48 - - 6 (9.23) - - - - 
   Corynebacterium (13485) 14.19 1 (0.92) 51 (78.46) - - 2 (13.33) 
   Haemophilus parainfluenzae (4473129) 1.92 8 (7.34) 11 (16.92) - - 1 (6.67) 
   Helicobacter (New.ReferenceOTU397) 4.53 - - 5 (7.69) - - - - 
   Moraxella (1127280) 1.27 - - 4 (6.15) - - - - 
   Mycobacterium (4448095) 3.35 13 (11.93) 48 (73.85) 18 (100) - - 
   Nocardia (102163) 17.41 5 (4.58) 35 (53.84) 1 (5.55) - - 
   Orientia tsutsugamushi (301131) 18.02 3 (2.75) 13 (20) - - - - 
   Staphylococcus (4446058) 55.99 9 (8.25) 62 (95.38) - - 6 (40) 

Potential arthropod symbionts          
   Candidatus Cardinium (New.ReferenceOTU10) 16.16 2 (1.83) 18 (27.69) - - - - 
   Pseudonocardia (4435518) 1.32 1 (0.92) 29 (44.62) 3 (16.67) - - 
   Rickettsiella (8028) 1.06 2 (1.83) 12 (18.46) - - - - 
   Wolbachia (New.ReferenceOTU2936) 1.78 - - 2  (3.08) - - - - 
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Table 5.3 (continued)  

Bacterial taxa (OTU identify) 
Maximum  

OTU Proportion 
(%) 

Individual  chigger Pooled chigger Soil Control 

No. of 
Samples 

(%) 
No. of 

samples 
(%) 

No. of 
samples 

(%) 
No. of 

Samples 
(%) 

Other outstanding OTUs          
    Acinetobacter rhizosphaerae (4334053) 6.13 4 (3.67) 33 (50.77) - - - - 
    Brevibacillus (3307468) 60.39 61 (55.96) - - - - - - 
   Burkholderia bryophila (4320353) 1.27 38 (34.86) 2 (3.07) - - - - 
   Geobacillus (New.ReferenceOTU5884) 10.73 82 (75.23) - - - - - - 
   Methylobacterium adhaesivum (4303249) 3.96 11 (10.09) 12 (18.46) - - - - 
   Nevskia (516554) 2.06 27 (24.77) 3 (4.61) 7 (38.88) - - 
   Sphingobacterium multivorum (4423201) 1.15 39 (35.78) 1 (1.54) - - 1 (6.67) 
   Sphingobium (4393057) 14.69 83 (76.14) 11 (16.92) 1 (5.55) - - 
   Streptomyces (821185) 59.26 2 (1.83) 14 (21.54) 1 (5.55) - - 
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 In addition, contaminant OTUs were identified from background controls 

which were processed alongside chigger samples in 16S rRNA gene library 

preparation. Thirty-four bacterial OTUs were possibly background contaminants 

based on more than 5% relative abundance (proportion) present in at least one 

control sample (Table 5.4). 

Table 5.4 The 34 dominant OTUs (more than 5% proportional read count in a single 

control) present in background controls. The highest OTU proportions in particular 

controls are showed in bold. The following OTUs were previously reported as 

potential contaminants in aTanner et al. (1998); bGrahn et al. (2003); cBarton et al. 

(2006); dSalter et al. (2014) and Galan et al. (2016).  

Bacterial taxa (OTU identify) 
Maximum proportion (%) 

All controls Control 1 Control 2 Control 3 

Species Luteibacter rhizovicinus (177555) 41.59 24.73 41.59 0.07 
Genus Flavobacterium (4438548)d 22.86 0.00 22.86 0.03 
Genus Fimbriimonas (New.ReferenceOTU3) 20.36 0.00 3.54 20.36 
Family Oxalobacteraceae (4476547) 19.15 4.64 12.50 19.15 
Genus Stenotrophomonas (2806353)a,b,d 18.02 14.22 3.30 18.02 
Species Bacillus thermoamylovorans 
(21214) 

14.97 - 14.97 - 

Family Comamonadaceae (4396454) 14.92 3.31 9.08 14.92 
Genus Sphingomonas (4423410)a,d 14.59 8.72 2.47 14.59 
Family Intrasporangiaceae (4432889) 13.81 7.95 1.22 13.81 
Genus Streptococcus (4473883)d,e 12.89 - 0.56 12.89 
Genus Hydrogenophilus (4317875) 12.85 - 12.85 0.03 
Genus Pseudomonas (4456891)b,d,e 12.49 11.64 5.59 12.49 
Genus Novosphingobium (581019)d 12.28 5.70 4.21 12.8 
Family Cytophagaceae (737260) 10.67 - 10.67 0.02 
Species Methylobacterium organophilum 
(New.ReferenceOTU2) 

10.56 10.56 10.15 0.03 

Family Caulobacteraceae (4353264) 10.41 6.76 10.41 4.80 
Phylum Cyanobacteria (98258) 10.06 - 0.04 10.06 
Genus Ochrobactrum (4388385)d 9.84 9.84 1.25 9.53 
Genus Rhodococcus (4468125)d 9.44 3.42 7.32 9.44 
Genus Wautersiella 
(New.ReferenceOTU2903)d 

8.92 - 8.92 - 

Genus Cloacibacterium (4154872) 8.64 - 8.64 - 
Family Methylophilaceae (101445) 7.87 1.85 0.41 7.87 
Genus Lactobacillus (619224) 7.32 - - 7.32 
Family Caulobacteraceae (4339358) 7.23 6.74 7.23 0.01 
Genus Thermicanus (439457) 7.14 - 7.14 - 
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Table 5.4 (continued) 

Bacterial taxa (OTU identify) 
Maximum proportion (%) 

All controls Control 1 Control 2 Control 3 

Genus Corynebacterium (942245)d,e 7.13 - 7.13 - 
Genus Acinetobacter (4482374)a,c,d,e 7.11 0.03 7.11 3.56 
Genus Fluviicola (646052) 6.91 - 6.91 0.03 
Class Alphaproteobacteria  
(New.CleanUp.ReferenceOTU210) 

6.07 - 6.07 0.03 

Family Microbacteriaceae (1109043) 6.06 - 6.06 - 
Family Caulobacteraceae (810889) 5.84 - 5.84 0.61 
Species Kocuria rhizophila (4477552) 5.49 3.35 5.49 2.00 
Family Bradyrhizobiaceae (4475561) 5.14 - 0.45 5.14 
Family Polyangiaceae 
(New.ReferenceOTU9) 

5.03 - 0.03 5.03 

 

5.3.2.3 GC content of 16S rRNA gene sequences between individual and pooled 

chigger samples.    

 The microbiome results showed a substantial difference in dominant 

bacterial OTUs between individual and pooled chigger samples. Probably, DNA 

template concentration and GC content, or combination of these, might play a 

critical role in PCR amplification bias. Here, after excluding the OTUs from the 

negative controls, the GC content (%) of dominant OTUs from individual (15 OTUs) 

and pooled chiggers (26 OTUs) were calculated and compared. The mean GC 

content of OTUs in individual samples was significantly higher than in pooled 

chiggers [two sample t-test (equal variance): t = 2.45, df = 39, p = 0.0094] (Figure 

5.10).  

5.3.3 Verification of Geobacillus in individual chiggers 

 Due to their thermophilic characteristics, Geobacillus vegetative cells grow 

optimally at a temperature between 45oC to 70oC (Nazina et al. 2001). During 
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chigger DNA preparation, individual samples were lysed in proteinase-K at 56oC in a 

water bath; a potential source of contaminating thermophilic bacteria. To 

determine if the water bath contained Geobacillus DNA that may have 

contaminated the chigger specimens, further controls were conducted as follows.  

 

Figure 5.10 Boxplot shows significant difference (two sample t-test) in mean GC 

content of 16S rRNA gene sequences between individual and pooled chigger 

samples. (**) p < 0.01 

 A pair of Geobacillus-specific primers targeting the 16S rRNA gene were 

designed and applied to both individual and pooled chiggers, as well as soil and 

water bath samples, by qPCR. The result showed 16S rRNA gene sequence copies 

significantly increased from the individual, 25-pooled and 50-pooled chigger 

samples, whereas water bath samples also yielded a high amount of sequence 

copies; ANOVA (F = 34.37, df = 4, p < 0.0001, with post hoc Tukey HSD correction) 

(Figure 5.11). However, although qPCR signals were obtained from water bath 

samples, it was not clear if the signals arose from Geobacillus or other bacteria until 

the specificity of the Geobacillus-specific primers was tested. To verify the primer 
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specificity, the PCR products (150 bp) were cloned and sent for Sanger sequencing. 

The sequencing results showed that not only Geobacillus was amplified by the 

primers but also several other taxa; e.g., Actinobacteria, Firmicutes and 

Proteobacteria, suggesting low primer specificity for genus Geobacillus 

amplification. 

 Regarding the amplicon sequences, bacterial communities among chigger, 

soil, and water bath samples were completely distinct from each other. Geobacillus 

clones were found only in individual chiggers, not pooled chigger samples or from 

the water bath. This is in accordance with the previous results from 16S rRNA gene 

Illumina MiSeq sequencing lanes. In addition, only the 22 sequences assigned to 

Phylum Firmicutes (to which Geobacillus belongs) were selected and analysed once 

again with multiple sequence alignment prior to phylogenetic construction using 

the Maximum Likelihood method. The tree clearly separated Geobacillus in chiggers 

from Bacillales and Paenibacillus in water bath samples (Figure 5.12), confirming 

that Geobacillus signals from chiggers did not originate from the water bath in the 

DNA preparation step.  

 In addition, a Geobacillus culture experiment was preliminarily conducted 

aiming to grow the bacteria directly from chigger samples collected in Nan province, 

one of the studied sites in Thailand. This could produce strong evidence to confirm 

if Geobacillus exists in chiggers. However, the culture experiment of 20 chigger 

samples failed to generate bacterial colonies on TSA media after incubation at 37oC 

and 55oC. 
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Figure 5.11 Boxplot showing analysis of differences in mean 16S rRNA gene copy 

among different sample groups as determined by qPCR (multiple pairwise 

comparisons after ANOVA with Tukey HSD correction post-hoc test). Numbers in 

brackets indicate the sample size of each group. (**) p < 0.01, (***) p < 0.001. 
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Figure 5.12 Maximum likelihood (ML) tree of partial 16S rRNA sequences among 

different sample groups (Red = waterbath samples, Green = individual chiggers, 

Blue = pooled chiggers and Orange = negative controls). Bacterial taxonomic 

assignment was given in each sequence with a confidence threshold of >80%. 

Sequences of Geobacillus stearothermaphilus (NR116987.1), Lactococcus lactis 

(NR103918.1), Melghiribacillus thermohalophilus (NR134761.1), Paenibacillus 

chondroitinus (NR113751.1) and Staphylococcus saprophyticus (NR074999.1) 

obtained from the nucleotide database (NCBI) were included for comparison. 

Phylogeny test with bootstrap values based on 1,000 replicates are presented at the 

nodes. The scale bar measures evolutionary distance indicating substitutions per 

nucleotide. 
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5.3.4 Bacterial diversity analyses 

5.3.4.1 Alpha-diversity among sample groups and categories 

 Alpha-diversity of bacterial OTUs among different sample groups (individual 

chigger, pooled chiggers and soil) and categories (chigger species, habitat and study 

site) was determined through the richness estimator, chao1, and whole-tree 

phylogenetic diversity index, the PD_whole_tree (Table 5.5). Bacterial diversity was 

significantly different among the sample groups (KW chi-square = 38.65, df = 3, p < 

0.0001). Individual chiggers showed significantly lower bacterial diversity than 

pooled chiggers and soil samples, but were not significant different when 

comparing to background controls (Figure 5.13). As stated previously, DNA template 

concentrations in individual samples were much lower than pooled chiggers and soil 

samples, even as low as the template of background controls in some cases. This 

could differential affect 16S rRNA PCR efficiency as pooled chiggers and soil 

potentially provided more diverse DNA templates in the PCR amplification. At both 

the individual and pool level, the results failed to show any significant difference in 

bacterial diversity among chigger species, habitats and sites. 

 5.3.4.2 Beta-diversity:  bacterial community clustering among sample groups and 

categories 

 In comparisons among sample groups, although some slight overlap in 

bacterial community clustering occurred between background controls and 

individual chigger samples, the bacterial compositions in almost of the samples 

were significantly separated (ANOSIM: R = 0.7997, p =0.001) into their own clusters 
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(Figure 5.14). This shows low background contamination in the data after the data 

filtering step (Bray-Curtis similarity check between samples and controls) was 

applied. 

 Again, we found that pooling of chigger samples showed a better relative 

effect on the bacterial community component among different sample categories 

than the individuals (see ANOSIM results in Figure 5.15). Bacterial communities 

were significantly clustered with respect to chigger species and study sites in both 

individual and pooled chiggers, whereas habitat failed to show a significant effect 

(Figure 5.14). Study site and chigger species had similar effects on bacterial 

composition, implying that geographical differences and host phylogeny might be 

correlated factors determining bacterial communities in chiggers. 

 

Figure 5.13 Boxplot shows analysis of difference in mean alpha diversity of bacterial 

OTUs (whole-tree phylogenetic diversity index) among different sample groups 

after non-parametric Kruskal-Wallis test with post-hoc Bonferroni correction. (***) 

p < 0.001 
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Table 5.5 Alpha-diversity estimation of bacterial OTUs among sample groups and 

categories  

Sample Group (n) Sample  Categories (n) 
Observed  

(SD) 
Chao1 
(SD) 

PD_whole_tree 
(SD) 

Individual chigger (109)  79.6 (14.7) 95.7 (18.7) 9.3 (1.5) 

Chigger species: A. indica (7) 90 (14.7) 111.1 (12.6) 10.1 (2.0) 
 B. acuscutellaris (7) 71.1 (8.9) 83.7 (12.5) 8.2 (1.1) 
 H. kohlsi (11) 73.5 (12.8) 89.4 (20.5) 9.3 (1.5) 
 H. pilosa (10) 85.3 (9.6) 102.0 (15.6) 9.9 (1.4) 
 L. deliense (39) 78.0 (16.2) 94.1 (20.1) 9.1 (1.4) 
 S. ligula (10) 78.0 (11.6) 92.1 (16.7) 8.4 (0.8) 
 W. kritochaeta (12) 76.8 (16.4) 96.2 (23.1) 8.9 (1.7) 
 W. micropelta (13) 87.9 (12.2) 101.6 (11.5) 10.7 (1.4) 

Habitat: Forest (9) 74.2 (8.1) 93.8 (14.8) 8.7 (0.7) 
 Dry land (48) 80.3 (15.2) 96.6 (19.2) 9.5 (1.5) 
 Rain-fed land (28) 78.4 (11.9) 93.7 (17.1) 9.0 (1.4) 
 Settlement (18) 79.9 (17.6) 96.0 (21.6) 9.3 (1.7) 

Site: Buriram (9) 89.6 (16.2) 103.3 (18.7) 10.5 (1.7) 
 Chiangrai (7) 78.1 (13.2) 91.6 (21.3) 8.6 (0.9) 
 Kalasin (12) 85.1 (14.1) 103.4 (20.9) 9.6 (1.2) 
 Kanchanaburi (2) 83.0 (1.4) 90.5 (0.4) 10.0 (0.1) 
 Loei (17) 80.9 (15.4) 95.7 (19.3) 9.5 (1.5) 
 Nakhonsawan (3) 67.0 (6.2) 82.2 (5.2) 7.8 (0.5) 
 Nan (10) 81.1 (16.8) 98.5 (20.5) 9.2 (2.3) 
 Prachuab Kirikhan (17) 73.0 (15.2) 92.7 (17.1) 8.9 (1.5) 
 Songkhla (15) 73.8 (13.2) 89.7 (17.1) 8.6 (1.1) 
 Tak (17) 82.2 (12.0) 97.6 (19.3) 9.9 (1.4) 

Pooled chigger (65)  108.8 (29.3) 132.2 (31.6) 11.3 (2.8) 

Chigger species: A. indica (8) 101.7 (33.7) 128.3 (38.9) 11.3 (3.8) 
 L. deliense (12) 87.9 (22.2) 114.9 (16.2) 9.7 (1.8) 
 W. micropelta (8) 124.2 (9.9) 151.2 (9.4) 12.7 (1.4) 
 W. minuscuta (2) 178.5 (48.8) 195.7 (47.1) 18.2 (3.4) 

Habitat: Forest (3) 74.0 (13.8) 104.7 (6.1) 8.2 (1.3) 
 Dry land (4) 130.0 (11.7) 147.4 (8.9) 13.2 (1.0) 
 Rain-fed land (7) 102.1 (18.1) 131.0 (19.7) 11.0 (1.6) 
 Settlement (4) 121.7 (29.5) 146.7 (30.7) 13.3 (3.2) 

Site: Buriram (5) 73.6 (13.7) 106.2 (24.5) 8.2 (1.3) 
 Chantaburi (3) 117.0 (12.1) 168.1 (23.2) 13.0 (1.5) 
 Chiangrai (3) 101.3 (18.1) 125.3 (23.2) 10.3 (2.2) 
 Kalasin (3) 97.6 (12.0) 108.4 (24.5) 9.8 (1.0) 
 Kanchanaburi (3) 90.3 (16.0) 102.8 (20.6) 9.5 (1.8) 
 Loei (3) 113.6 (11.0) 129.0 (10.8) 11.1 (0.3) 
 Nakhonsawan (3) 110.6 (13.7) 125.2 (18.2) 10.6 (1.3) 
 Nan (3) 165.6 (11.0) 182.1 (9.7) 16.1 (0.8) 
 Prachuab Kirikhan (3) 124.0 (13.0) 149.9 (7.8) 12.6 (1.3) 
 Songkhla (3) 97.3 (8.5) 123.2 (20.2) 10.1 (1.1) 
 Tak (3) 122.3 (9.5) 148.9 (16.9) 12.3 (0.9) 

Soil (12)  109.8 (34.3) 150.6 (38.6) 13.1  (3.0) 

Background control (15)  80.5 (33.7) 103.4 (40.9) 10.1 (3.8) 



 
 

183 
 

 

Figure 5.14 The PCoA plot was calculated from weighted UniFrac metric, and shows 

significant separation among sample groups (ANOSIM: R = 0.7997, p =0.001). 

 

5.3.5 Visualisation of bacteria on chiggers using scanning electron 

microscopy 

 As a preliminary method to visualise chigger-associated bacteria, scanning 

electron microscopy (see materials and methods described previously in CHAPTER 

3) was applied to 12 samples each of several chigger species (i.e., A. indica, B. 

acuscutellaris, L. deliense, W. lupella and W. pingue). There was some evidence of 

vegetative cells and clusters of bacteria on L. deliense, B. acuscutellaris as well as 

unidentified putative bacterial spores on the surface of W. pingue (Figure 5.16). 

These images demonstrate that a variety of bacteria are present externally on 

chiggers and that the adherence to the cuticle was sufficiently strong to withstand 

washing and fixation procedures. 
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Figure 5.15 The PCoA plots were calculated from the unweighted UniFrac metric 

showing bacterial community clustering of individual (left panels) and pooled 

chiggers (right panel) among different sample categories: (A - B) chigger species, (C - 

D) habitat and (E - F) study site. 
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Figure 5.16 SEM micrographs showing evidence of vegetative cells of bacteria on 

the body surface of L. deliense (A - B) and B. acuscutellaris (C); and putative 

bacterial spores on leg setae (D) and the postero-dorsal part of the idiosoma (E) of 

W. pingue.  
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5.4 Discussion 

5.4.1 Bacterial profiles between individual and pooled chigger species 

 The microbiome profile of trombiculid mites is poorly understood, as most 

of the bacteriological research on this mite taxon was focused only on the agent of 

scrub typhus disease,  O. tsutsugamushi (Chaisiri, McGARRY, et al. 2015). Here, to 

investigate intensively the chigger-associated bacteria and their OTU structure for 

the first time, analyses of both individual and pooled chigger samples were carried 

out and compared (Figure 5.6 to 5.8). In addition, as the chigger lifestyle off the 

host is largely associated with the ground surface and deeper soil niches, a bacterial 

investigation of soil samples from Thailand and Laos was performed alongside the 

chigger samples (Figure 5.9). 

5.4.1.1 Dominant bacteria in individual chiggers 

 In individual chiggers, several bacterial OTUs; i.e., Geobacillus, Sphingobium, 

Brevibacillus and Comamonadaceae were dominantly represented in the samples. 

These bacteria are apparently the free-living bacteria which chiggers may acquire 

from the environment. The role of these bacteria in internal or external symbiotic 

relationships with arthropods or other invertebrates is still unknown. However, 

these bacteria were reported in several arthropod-associated microbiome studies 

as follows. Jousselin et al. (2016) found OTUs assigned as Geobacillus, Brevibacillus 

and Commamonadaceae in a study of the aphid genus Cinara, and suggested that 

these water- and soil-borne bacteria are probably contaminants from the 

environment. Geobacillus were also reported as associated bacteria in wild sandflies 
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Lutzomyia longipalpis and ants Tetraponera penzigi (McCarthy et al. 2011; Seipke et 

al. 2013). Brevibacillus was found in the honey bee Apis mellifera and parasitoid 

wasp Asobara tabida (Evans & Armstrong 2006; Zouache et al. 2009), and some 

species in this genus; e.g., Brevibacillus laterosporus, are known as 

entomopathogenic bacteria used in insect pest control against house flies, black 

flies and mosquitos (Rivers et al. 1991; Ruiu et al. 2006; Ruiu et al. 2013). 

Sphingobium were reported in plant-feeding insects; e.g., the walking stick Ramulus 

artemis and the beetle Saperda vestita, and is thought to play a role in digestion of 

plant cellulose in the insect gut (Delalibera et al. 2005; Schloss et al. 2006; Shelomi 

et al. 2013). 

 Geobacillus is a genus of Gram-positive spore-forming thermophilic bacteria 

firstly described from a high-temperature oil field (Nazina et al. 2001). According to 

a review of the genus in Zeigler (2014), these bacteria are incredibly abundant and 

occur worldwide across all of the seven continents, as well as the  Pacific Ocean and 

Mediterranean Sea. Moreover, there is evidence for Geobacillus spores from 

>10,000 m height in the upper troposphere (DeLeon-Rodriguez et al. 2013) and as 

low as 3,000 m deep in oil wells and gold mines (Wang et al. 2006; Rastogi et al. 

2009). These bacteria are capable of metabolizing long-chain hydrocarbons, and 

play a role in opportunistic decomposition of polysaccharide organic substances in 

the environment (Zeigler 2014). Therefore, Geobacillus spores are potentially found 

almost everywhere on Earth, including at high densities in soil worldwide (Marchant 

et al. 2002; Al-Hassan et al. 2011; Zeigler 2014), perhaps explaining their association 

with trombiculid chiggers. On the basis of Geobacillus evidence in our chigger 
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samples (see Results), we can conclude that the appearance of Geobacillus OTUs in 

individual chiggers originated in Thailand, but further investigations are required to 

determine whether the interaction between these bacteria and chiggers is 

genuinely symbiotic or rather results from environmental contamination. 

 As our experiment failed to culture Geobacillus from chigger samples, this 

unsuccessful result could be interpreted as either: (1) the culture conditions; e.g., 

the temperature and duration of the incubation step were not suitable for the 

growth of the bacterial cells or spores; or (2) there was no Geobacillus in the 

chiggers collected from this particular location. 

 There were discernible patterns in bacterial OTUs between different chigger 

taxa. Geobacillus OTUs tended to be associated with chigger species from the 

subfamily Trombiculinae; i.e., Ascoschoengastia indica, Helenicula kohlsi, 

Blankaartia acuscutellais and Leptotrombidium deliense (Figure 5.6B and 5.6C); 

whereas chiggers in the subfamily Gahrliepiinae, particularly the two species in the 

genus Walchia (W. micropelta and W. kritochaeta), were associated with bacteria in 

the Comamonadaceae (Figure 5.6A). This could be due to two different scenarios as 

follows: (1) if the bacterial taxa are actually closely associated with their chigger 

hosts, the symbiotic relationships could diverge selectively by evolutionary process; 

or (2) there is no enduring symbiotic relationship, but the bacteria occurred 

differentially on the chigger host taxa due to geographic variation in the sources of 

environmental contamination.            
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5.4.1.2 Dominant bacteria in pooled chiggers 

  In pooled chiggers, the dominant bacterial OTUs were Neisseriaceae, 

Corynebacterium and Staphylococcus (Figure 5.7 and 5.8). Both Staphylococcus spp. 

and Corynebacterium spp. are widely recorded in the microbiota of animals, 

particularly on the skin and mucosal membranes (Rasmussen et al. 2000; Callewaert 

et al. 2013; Rodrigues Hoffmann et al. 2014; Misic et al. 2015), and also they are 

occasionally present as a small microbial component in the environment (Reche & 

Fiuza 2005; Hanson et al. 2016). Chiggers may have acquired these two bacterial 

genera from the skin of the small mammal host. Another interesting dominant OTU 

was the Neisseriaceae, as several genera from this family are known to associate 

with animals as normal flora or pathogens (Todar 2012). Snodgrassella alvi, a newly 

described bacterial symbiont discovered in bees, is also a member of the 

Neisseriaceae (Kwong & Moran 2013). Following this precedent, it could be 

hypothesized that the Neisseriaceae OTUs may represent a strong candidate for 

chigger symbionts, and need to be investigated in further studies. 

 There were differences in bacterial profiles both between chigger species 

and study sites. In terms of chigger species, Neisseriaceae clearly presented in L. 

deliense whereas different Corynebacterium OTUs were apparent in A. indica and 

Walchia minuscuta (Figure 5.7). Hence, host phylogeny might play some role in 

chigger-microbe interactions. Regarding geographical differences, the bacterial 

profile in harvest mites (Neotrombicula autumnalis from the UK) was completely 

distinct from that of the Thai chigger specimens. Conversely, along the 11 provinces 

of Thailand, the bacterial composition tended to be similar within the same study 
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sites (Figure 5.8). This indicates once more that apart from the effect of host 

phylogeny, the bacterial profile of chiggers could be influenced by geographical 

distribution. 

 From the observations above, bacterial profiles showed important 

differences between individual and pooled samples. Several sources of bias could 

explain this discrepancy, particularly during the PCR amplification step in 16S rRNA 

library preparation such as: (1) DNA template concentrations (Wu et al. 2010; 

Kennedy et al. 2014) – individual chiggers being much lower than pools; (2) PCR 

polymerases from different companies as stated in Materials & Methods (Wu et al. 

2010; Ahn et al. 2012); and (3) the GC content of the DNA template inducing 

preferential amplification (Pinto & Raskin 2012; Benítez-Páez et al. 2016). This 

makes the results difficult to compare across individuals and pools, but comparative 

analyses of the microbiome among categories (chigger species, habitat and site) 

should rather be performed separately within individual and pooled groups. 

5.4.1.3 Effect of GC content bias in microbiome data between individual and pooled 

samples 

 PCR amplification of high-GC DNA templates is usually less efficient 

compared to lower-GC targets. This amplification bias results from competitive 

annealing of primers to the templates (McDowell et al. 1998; Mamedov et al. 2008). 

The nucleotide bases G and C are paired with three hydrogen bonds, which are 

strongly stiffened and more difficult to separate during denaturation than the two 

hydrogen bonds between A and T. As showed in the results, the GC content of OTUs 
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from individual chiggers was higher compared to those from pooled chiggers; for 

example, the GC content between Geobacillus (59%) or Comamonadaceae (57%) 

from individuals was clearly higher than Staphylococcus (52%) or Neisseriaceae 

(53%). In pooled samples with high DNA template concentration, Geobacillus and 

Comamonadaceae probably failed to compete with the other lower-GC templates, 

but succeeded in individual samples with lesser competitors in the reaction. 

5.4.2 Potential pathogenic and symbiotic bacteria in chiggers        

 In addition to O. tsutsugamushi, some other potentially pathogenic bacteria; 

i.e., Borrelia and Mycobacterium were presented in chigger samples. In both 

individual and pooled samples, O. tsutsugamushi was strictly found in 

Leptotrombidium deliense, the main vector of scrub typhus in Thailand. Previous 

results on 56 kDa gene detection indicated that O. tsutsugamushi was widely 

distributed in various trombiculid genera e.g. Eushoengastia, Helenicula, 

Leptotrombidium, Neotrombicula and Walchia (Pham et al. 2001; Liu et al. 2004; 

Lee et al. 2011; Park et al. 2015), which is in contrast to our result. This might be 

because different molecular detection methods (gene targets 56 kDa versus 16S 

rRNA genes) were applied. In this case, it might be that either (1) The Orientia-

specific gene target (56 kDa) performs better in Orientia detection than universal 

16S rRNA gene targeting and/or (2) the O. tsutsugamushi infection status in Thai 

chiggers outside the genus Leptotrombidium was too low to be detected with the 

sample sizes we attained here.  
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 In addition, assessing the true prevalence of O. tsutsugamushi infection in 

chiggers is challenging, as almost all previous studies detected DNA of the bacterial 

infection from pooled chiggers (mass detection), with individual samples providing 

too little DNA. However, the number of chigger specimens testedvaried in different 

studies (e.g., 30, 50, or 100 chiggers in a pool), and could lead to biased calculations 

of prevalence. Therefore, the minimum positive rate (MPR), the number of mites in 

positive pooled samples divided by the total number of mites examined in all 

pooled samples, was then used to estimate O. tsutsugamushi infection rate in 

pooled chiggers (Tanskul et al. 1994; Shim et al. 2009). In the present study, from 65 

chigger pools (3,250 individuals) examined, O. tsutsugamushi was detected in 13 

pools (650 individuals). Thus, the MPR of O. tsutsugamushi infection was 0.2, 

slightly lower than previous studies, which varied from 0.5 to 1 in China, Korea, 

Malaysia and Thailand (Roberts et al. 1977; Tanskul et al. 1994; Shim et al. 2009; 

Zhang et al. 2013).  

 Apart from its pathogenicity causing disease in vertebrates, Orientia 

associates with their chigger hosts as a bacterial symbiont. There is strong evidence 

of vertical transmission from parent to the next generations (S P Frances et al. 2001; 

Shin et al. 2014). In addition, there are some reports showing the bacteria can act as 

reproductive manipulators by distorting sex-ratio (male-killing) and reducing egg 

productivity in female chiggers (Roberts et al. 1977; Phasomkusolsil et al. 2012).         

 Here, we report first time the evidence of Borrelia in trombiculid mites from 

Southeast Asia, although the bacteria have been reported previously in harvest 

mites (Neotrombicula autumnalis) from Germany and the Czech Republic (Kampen 
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et al. 2004; Literak et al. 2008). Several species of this genus are known as the 

causative agents of borrelliosis such as Lyme disease; e.g., B. burgdorferi and 

relapsing fever; e.g., B. hermsii (Schwan & Piesman 2002; Tilly et al. 2008). Small 

mammals, birds and lizards have been known as important reservoirs for these 

bacteria, and the knowledge of potential arthropod vector of these zoonotic disease 

agents was limited to ticks and lice (Masuzawa 2004; Norte et al. 2015). Although 

Borrelia infection is globally distributed in America, Africa, Europe, Eastern Asia and 

Australia, research information on these bacteria and borreliosis in Southeast Asia is 

still very limit (Masuzawa 2004; Lindgren & Jaenson 2006; Qiu et al. 2008; Mayne 

2011; Trape et al. 2013). Thus, our results indicate that chiggers could potentially 

play some role in Borrelia transmission, causing uncharacterized borrelliosis or 

febrile illness to humans and animals in Thailand and other countries in the region. 

 Mycobacterium spp. was another potential pathogenic bacterium found in 

chigger and soil samples in the present study. The bacteria in this genus are 

widespread in the environment (air, water and soil), and some of them are known 

as causative agents of serious diseases in humans and animals; e.g., M. tuberculosis, 

M. bovis and M. leprae causing human tuberculosis, cattle tuberculosis and leprosy, 

respectively (LoBue et al. 2010; Hruska & Kaevska 2012; Bratschi et al. 2015). 

Moreover, several species of non-tuberculous mycobacteria from the environment; 

e.g., M. avium complex, M. abscessus, M. kansasii, and M. simiae have been 

increasingly recognized worldwide as atypical mycobacteria causing pulmonary 

disease (Chan & Iseman 2013; Johnson & Odell 2014). Here, Mycobacterium was 

found to be highly abundant in all soil samples (100%) from Thailand and Lao PDR, 
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and was also well represented in 48 pooled chigger samples (73.85%). This result 

strongly suggests that chiggers gained Mycobacterium spp. from soil. Although the 

type of relationship between chiggers and Mycobacterium is unknown and further 

investigations are required, chiggers appear to be reservoirs of Mycobacterium and 

might play some role in bacterial transmission in the environment. 

 Similar to O. tsutsugamushi, these two bacterial genera, Borrelia and 

Mycobacterium, could be hypothesized to be potential symbionts of chiggers as 

they were highly abundant and prevalent in chigger samples (see Table 5.3). 

However, further studies are still needed to assess the effect of these bacteria on 

their chigger hosts.   

 For other potential arthropod symbionts, several bacteria were found in 

chiggers including: Candidatus Cardinium, Pseudonocardia, Rickettsiella and 

Wolbachia (Table 5.3). Cardinium and Wolbachia are the very well-studied 

symbionts of arthropod hosts (see more details in CHAPTER 2). These two bacteria 

have been known to alter their host reproduction in several ways; e.g., inducing 

cytoplasmic incompatibility, parthenogenesis, male killing and feminization (Gotoh 

et al. 2006; Hoy & Jeyaprakash 2008; Werren et al. 2008; Zhang et al. 2015). 

Pseudonocardia is the external symbiont associated with the complex symbiosis 

system of fungus-growing ants. The bacteria are housed in a specialized structure 

on the cuticle of the worker ants. The ants cultivate fungi in a specialized “garden” 

as their primary food source. At the same time, they have to compete with their 

natural enemy, microfungi Escovopsis, which is a fungal parasite exploiting the ant’s 

fungal cultivar. In this event, Psudonocardia provide antimycotics to supress the 
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parasitic fungus and thus help in garden defence, whereas the ants appear to 

provide nutrition for bacteria through glandular secretion (Cafaro et al. 2011; Marsh 

et al. 2013). The genus Rickettsiella is an intracellular bacterium associated with 

several arthropods such as ticks, mites and insects (Schütte & Dicke 2008; Simon et 

al. 2011; Bouchon et al. 2012; Leclerque & Kleespies 2012). Although the bacteria 

have been mostly recognized as an arthropod pathogen, there is a somewhat 

mutualistic interaction of a Rickettsiella with the pea aphid, Acyrthosiphon pisum, 

which has been reported to induce a change in the aphid’s body colour (Tsuchida et 

al. 2010).    

 The results of potential pathogenic bacteria reported alongside arthropod 

symbionts in this study shed new light on chigger-associated bacteria, and several of 

these bacterial taxa may become the focus of further studies. We suggest that apart 

from O. tsutsugamushi, chiggers could play a role as a vector or reservoir of Borrelia 

transmission in Thailand. As Borrelia can cause febrile symptoms similar to the 

other endemic bacterial pathogens; e.g., Orientia (scrub typhus) and Leptospira 

(leptospirosis) in Thailand, future epidemiological research should consider Borrelia 

as a potential agent for emerging febrile illness in humans. In addition to Cardinium, 

Pseudonocardia, Rickettsiella and Wolbachia, the other dominant bacterial OTUs; 

e.g., Geobacillus and Neisseriaceae, could also be candidates for characterization of 

chigger-symbiont relationships and perhaps application to a chigger vector control 

strategy in the future. 
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5.4.3 Potential contaminating OTUs from background controls 

 Potentially thirty-four bacterial contaminants were identified from the 

background controls as shown in Table 5.4. About one-third of those have been 

reported previously as potential contaminants in water and reagents used in DNA 

extraction and PCR amplification processes (Tanner et al. 1998; Grahn et al. 2003; 

Barton et al. 2006; Salter et al. 2014; Galan et al. 2016). The OTUs of genera 

Fimbriimonas, Streptococcus and Lactobacillus; families Bradyrhizobiaceae and 

Polyangiaceae; and Phylum Cyanobacteria were likely the source of nuclease-free 

water and PCR reagent contaminants, as they were dominant in control 3 (nuclease-

free water not passed through the DNA extraction process). Whereas, OTUs of the 

species Bacillus thermoamylovorans and Luteibacter rhizovicinus; genera 

Cloacibacterium, Corynebacterium, Flavobacterium, Fluviicola, Hydrogenophilus, 

Thermicanus and Wautersiella; and family Cytophagaceae were the potential source 

of contamination from the DNA extraction kit in control 2 (DNA extraction without 

chigger sample). However, control 1 (equipment and lab bench-washed water 

through DNA extraction process) did not show an informative result, as no OTUs 

uniquely presented in this control, although some of them (e.g., Methylobacterium 

organophilum and Ochrobactrum) rather appeared alongside control 2 and 3. 

5.5 Conclusions 

 In summary, the result of this microbiome investigation in trombiculid larvae 

showed different dominant bacteria between individual chiggers; i.e., Geobacillus 

and Comamonadaceae, and pooled chiggers; i.e., Corynebacterium and 
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Neisseriaceae. A substantial difference in DNA template concentrations between 

individual and pooled samples probably played a crucial role for this bias in PCR 

amplification of 16S rRNA library preparation prior to next generation sequencing. 

The GC content of the bacterial DNA template in samples was another important 

factor driving the bias between individuals and pools. Although pooled samples 

seem to exhibit potentially more reliable microbiome data, particularly in 

comparative analyses, some informative results from individuals should not be 

ignored. Here, we suggest that our studies combining individual and pooled samples 

benefited the microbiome survey by characterizing the full picture of chigger-

associated bacteria, whereas data from pooled samples are recommended for use 

in comparative analyses. In terms of bacterial communities in chiggers, we found 

that they appeared to differ due to influences from host phylogeny and 

geographical factors, but the relative contribution of each was difficult to separate. 

For the other chigger-associated bacteria, the causative agent of scrub typhus 

disease, O. tsutsugamushi was present in the samples as expected, whereas Borrelia 

and Mycobacterium appeared as the potential pathogens of humans and animals. 

Some other symbiotic bacteria of arthropods were also found in chiggers; e.g., 

Candidatus Cardinium, Pseudonocardia, Rickettsiella and Wolbachia. These 

preliminary findings should assist further surveillance of other potential emerging 

diseases transmitted by trombiculid chiggers in the region, and deeper 

understanding of chigger-symbiont relationships may also facilitate in development 

of biological tools for vector control. 
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PRELIMINARY STUDIES AND DIRECTIONS FOR FURTHER RESEARCH 
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CHAPTER 6 

Preliminary studies and directions for further research 

 There are some unfinished and inconclusive works that could be followed-up 

in the future, as well as other suggested perspectives for further studies after the 

thesis is completed. The three following works: (1) whole genome project of L. 

deliense, (2) DNA microsatellite characterization of L. deliense and (3) modified-in 

situ hybridization with TEM to detect intracellular bacteria have been started at the 

late stage of my PhD thesis. Unfortunately, it was not possible to complete these 

projects in the available timeframe. 

6.1 The draft genome of Leptotrombidium deliense 

 The whole genome project of L. deliense has been initially established as a 

collaborative work between Dr Ben Makepeace (my primary supervisor) and Dr 

Alistair Darby (Institute of Integrative Biology, University of Liverpool). In September 

2015, L. deliense were isolated from ground squirrels (Menetes berdmorei), 

captured in an extra field survey of the CERoPath project at Udonthani province, 

Thailand. Genomic DNA was extracted from 50 pooled chiggers using the DNeasy 

Blood & Tissue Kit (QIAGEN), and quantified using a fluorescent-labelling method, 

Quant-iTTM Picogreen dsDNA kit (Invitrogen) as described in CHAPTERS 3 and 5. 

Subsequently, the DNA sample was checked for size and intactness by running a 2% 

agarose gel at 100V for 1 hour (Figure 6.1) prior to submission for whole genome 

sequencing at the Centre for Genomic Research (CGR), University of Liverpool. 
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Figure 6.1 Gel electrophoresis illustrates genomic DNA of a 50-pooled L. deliense 

sample extracted using the DNeasy Blood & Tissue Kit (Lane 10). Lane 1 = DNA 

ladder; Lane 2 to 6 = 50-pooled Ascoschoengastia indica samples extracted using 

different DNA extraction kits. Lane 7 to 9 = rodent ear samples extracted using 

different DNA extraction kits.  

 Whole genome sequencing procedures and post-sequencing bioinformatic 

analyses were entirely done by CGR staff (Dr Luca Lenzi, Dr Anita Lucaci and 

Charlotte Nelson). The chigger DNA material was subjected to sequencing library 

preparation using the NEBNext Ultra DNA library Preparation Kit (Illumina). The 

sequencing was carried out on the Illumina MiSeq with 2 x 250 bp paired-end 

sequencing. After trimming, quality filter and error correction, the paired-end reads 

were assembled de novo using the Discovar platform, and the contigs shorter than 

500 bp in length were excluded. The genome of the thirteen-lined ground squirrel, 

Ictidomys tridecemlineatus (from http://www.ensembl.org/index.html), was used to 

screen potential DNA contamination from the host. The completeness of the final 
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genome assembly was assessed using CEGMA version 2.5 (Core Eukaryotic Genes 

Mapping Approach), in order to evaluate whether the genome is completely 

assembled by aligning the Key Orthologs for eukaryotic Genomes (KOGs) onto the 

assembly. 

  

6.2 DNA microsatellite characterization of Leptotrombidium deliense 

 DNA microsatellites or short tandem repeats (STRs) are nucleotide repeating 

units of 2 - 6 bp in length, widely present throughout the nuclear genome of 

eukaryotic organisms. Because of high DNA polymorphism and variation in repeat 

number (allele polymorphism), microsatellites have become a major group of 

genetic markers for population genetic inferences in a variety of species (Bhargava 

& Fuentes 2010; Putman & Carbone 2014; Queiros et al. 2015). As the chigger, L. 

deliense, has been recognized as the main vector of scrub typhus disease in 

Thailand and countries of Southeast Asia, understanding the population genetics of 

this mite species; e.g., genetic diversity, population structure, ecological speciation, 

phylogeography and population gene flow would be of major benefit to 

epidemiological studies of scrub typhus disease in the region.         

 Draft genome data from high throughput sequencing has been recognized as 

a potential source to identify microsatellite loci for population genetic studies 

(Castoe et al. 2012; Cwiklinski et al. 2015). To characterize DNA microsatellite 

markers, first STRs (di-, tri-, tetra- and penta-nucleotide repeats) were searched and 

identified throughout the 68 Mb draft genome sequence data of L. deliense using 

MSATCOMMANDER software (Faircloth 2008). In total, 5,501 tandem repeats were 
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initially identified in the whole genome data. To select microsatellites for further 

characterization, the tandem repeats were filtered following these criteria: (1) only 

tri- and tetra-microstaellites were included to avoid strand slippage problems; (2) 

only >10 repeat copies were included; (3) only perfect microsatellites (with a repeat 

sequence that is not interrupted by any base not belonging to the motif) were 

included; and (4) any compound/imperfect microsatellites  and microsatellites that 

were located very close to each other (<1,000 bp) on the same scaffold were 

excluded. With these filtering criteria, seventeen microsatellite loci were retained, 

and primer design aiming to amplify the flanking regions of the 17 microsatellites 

was done using Primer 3 web version 4.0 on the website http://primer3.ut.ee 

(Untergasser et al. 2012). Primer selection criteria were set to select the product 

size at Min = 150, Opt = 200, Max = 350 and the primer size at Min = 18, Opt = 20 

and Max = 23. Primer sequences of the 17 microsatellite loci are presented in Table 

6.1. 

6.3 Modified in-situ hybridization detecting intracellular bacteria of 

Leptotrombidium deliense with transmission electron microscopy    

 A combination of a modified in-situ hybridization technique and 

immunogold-labelling with transmission electron microscopy (TEM) were applied, 

aiming to detect intracellular bacteria in L. deliense (Lherminier et al. 1999; Thimm 

& Tebbe 2003; Kennaway et al. 2004; Anantasomboon et al. 2008). Chiggers were 

isolated from host skin and preserved immediately in a pre-cooled mixture of 4% 

paraformaldehyde and 0.1% glutaraldehyde dissolved in 0.2 M Millonig’s buffer at 

pH 7.4. Briefly, the preparation for ultrathin sectioning was as follows: the 

specimens were dehydrated in ethanol concentration gradients (i.e., 30%, 50%, 

http://primer3.ut.ee/
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70%, 90% and 100%) and embedded in LR White Resin prior to sectioning at 75 nm 

using a Leica UC6 UltraMicrotome (Leica Microsystems). Sections were collected on 

formvar coated 300 mesh copper grids. The sections were pre-digested with 50 

µg/ml pepsin glycine buffer for 5 min and hybridized in a hybridization buffer 

containing formamide (30%), 40 mM PIPES buffer, 0.1% FicoII 400, 0.2% SDS, 10 

mM EDTA, 0.1% bovine serum albumin, 0.14 M NaCl and 20 nmol of universal 

bacterial 16S rRNA oligonucleotide probe-labelled with biotin [Btn- 

GUACAAGGCCCGGGAACGUAUUCACCG-Btn (Greisen et al. 1994)] (Sigma-Aldrich) for 

2, 6, 8 or 12 hours in a 37oC hybridizing chamber. A random biotin-labelled 

oligonucleotide, not matching any 16S rRNA gene on the Ribosomal Database 

Project (RDP), was used as negative control probe (Btn-

ACCGAGACACACGCGACUGGUGACGUU-Btn). Following in-situ hybridization, the 

grids were immunogold-labelled. Grids were first washed in 0.1 M sodium 

phosphate buffer, blocked for 20 minutes with 0.1% BSA followed by a 4 hour 

incubation in goat anti-biotin 20 nm gold conjugate (BBI Solutions, Cardiff, UK) 

diluted 1:4 and 1:6 with 0.1% BSA at 36oC. The grids were washed in sterile water to 

remove unbound gold conjugate and subsequently stained with 4% aqueous uranyl 

acetate and Reynolds lead citrate. Finally, the sections were imaged using a FEI 

Tecnai G2 Spirit 120KV bioTWIN TEM equipped with a SIS Megaview III camera. A 

pellet of E. coli JM109 competent cells was processed alongside the chigger 

samples, and used as a positive control (with 16S rRNA oligonucleotide probe 

hybridization) and negative control (with random probe hybridization). Ultrathin 

sections of chigger and E. coli samples, immunogold labelling and TEM were 
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performed by Dr Alison Beckett at the Biomedical EM Unit, School of Biomedical 

Sciences, University of Liverpool. 

6.4 Results and Discussions 

 For the whole genome of L. deliense, the CEGMA result showed 73.39% and 

83.87% of complete and partial KOGs successfully aligned to the assembly, 

respectively. The final assembly was annotated using MAKER version 2.31.8 with 

transcripts and protein sequences of a bee mite (Tropilaelaps mercedesae), a spider 

mite (Tetranychus urticae), and a velvet mite (Dinothrombium tinctorium), as well as 

the Uniprot/Swissprot protein database as a reference for gene identification. In 

summary, the total size of the draft genome of L. deliense is around 68 Mb 

containing 28,287 scaffolds (size range, 500 - 66,176 bp). Protein analysis showed 

that 12,521 transcripts were predicted to contain known protein family domains.  

 In order to further optimise the assembly, the whole genome is currently 

being re-analysed by a PhD student, Xiaofeng Dong, under the supervision of Dr 

Alistair Darby, to improve the discrimination between contigs of mite and host 

origin. This ongoing project is the first to sequence the genome of a trombiculid 

mite, the vector of scrub typhus disease, and the genome will substantially benefit 

the future of chigger mite research. 

 For the characterization of microsatellite primers, PCR conditions of each 

primer set were initially optimised to amplify those microsatellite loci from 

individual L. deliense samples. However, preliminary attempts to amplify these loci 

failed and further optimisation was not possible within the available timeframe. 
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This is probably due to the challenges of the specimen itself; i.e., the very low DNA 

template concentration of individual mites (mean = 0.025 ng/µl, N = 125) or the 

quality of DNA templates, such as degradation and PCR inhibitor issues. 

 After an initial attempt to conduct in situ hybridization of 16S rRNA probe 

detecting universal bacteria on E. coli samples, immunogold labelling failed to 

produce an unambiguous bacterial signal. Gold beads were equally present in the 

bacteria cells and the background of both E. coli-positive (16S rRNA probe) and 

negative (random probe) controls. Also, we found that prolonged incubation during 

in situ hybridization (>6 hours) damaged cytomorphological structures of chiggers 

and E. coli samples. It was unclear whether the problem was caused by the 

incubation time or concentration and composition of reagents in the hybridization 

buffer. Accordingly, several steps obviously needed optimization, such as pepsin 

pre-digestion to facilitate probe accession into the samples; in-situ hybridizing 

conditions (e.g., concentration of formamide, salt and detergent), as well as 

temperature and time of incubation; immunogold labelling conditions; and all 

associated washing steps. 

 These three projects above produced important preliminary information 

after the initial attempts described here, but obtaining definitive results was not 

possible within the time constraints of this thesis. However, these three areas 

represent priorities for further exploration and set the scene for chigger research in 

the years ahead. 
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Table 6.1 Primer sequences of 17 L. deliense microsatellite loci designed from L. deliense draft whole genome sequencing data. 
 

Locus 
name 

Scaffold ID|size(bp) Repeat Copy 
Product 

(bp) 
FW primer (5'-3') 

Size 
(bp) 

Tm 
(oC) 

RV primer (5'-3') 
Size 
(bp) 

Tm 
(oC) 

Ldemic01 scaffold4838|3280 (GCT) 10 180 TGACAATGTGATACAGCAGCAG 22 59 GAATGATGTTGACCGATGTTGC 22 58.5 
Ldemic02 scaffold278|19996 (AAC) 15 183 AGGCAGCATCAAAACGAACA 20 58.6 CATCGTAGTTGTTGCCGTGT 20 58.8 
Ldemic03 scaffold213|22487 (AAC) 16 202 ACCGTGGGATCATACGTTGT 20 59.1 TTCTGCGTCGTTCAACATTG 20 57.3 
Ldemic04 scaffold38|39157 (AAC) 12 210 TGATGCGCGTATTGGAGAAC 20 58.1 TGCTGTTTATGTTGCTGCTGT 21 59 
Ldemic05 scaffold278|19996 (AGC) 11 216 ATTCGACGTAACGCAGCAAG 20 59.2 TGTTGTTGTGGTTGTGGCAA 20 59 
Ldemic06 scaffold373|17549 (AAC) 10 219 CGTGTCAACTCAGCACCAAT 20 58.7 TCTGCAATTTAGTGGTTGTTGC 22 58 
Ldemic07 scaffold1845|7216 (GTTT) 11 222 TCCAGCTGTTCGAACCTCAT 20 59 CGTTCCGTTCGCACTTATTG 20 57.8 
Ldemic08 scaffold73|32327 (AAG) 12 238 TGCGAAACGACCATGTTCAA 20 58.7 GCTCATCACACAACGAAAGC 20 58 
Ldemic09 scaffold8009|2050 (AAG) 12 255 GAGAAACGTTGCTGCAGTGT 20 59.3 GGTCCTCGATCAGCAGGTAA 20 58.8 
Ldemic10 scaffold819|12062 (GTT) 16 257 ATCTCATCGTTTCGGGCTTC 20 58 AGCTGCGCATTGAACAATCA 20 59.1 
Ldemic11 scaffold1029|10562 (ATC) 12 263 CAAAGCAACGCATTTCAGCA 20 58.1 AATGAAATTCGAACCGCCGT 20 58.8 
Ldemic12 scaffold385|17449 (GTT) 14 268 GGTGACGTCATTTGCGAAGT 20 59.1 TCACCGTCGGACAATTGGTA 20 59 
Ldemic13 scaffold985|10812 (GAT) 14 270 TGTGTGCGTGTGTGTTTGAA 20 59.1 AATCGTGTAACTCCATCGCA 20 57.3 
Ldemic14 scaffold23672|686 (ATT) 13 270 ACACACGACTAGAATCAACACG 22 58.6 AATGAGCAACGACGGAATGG 20 58.9 
Ldemic15 scaffold8009|2050 (AGC) 11 295 GGCAAACGCTACTACTTCGG 20 59 ACTTGCGTGCACTGTACTTG 20 59 
Ldemic16 scaffold278|19996 (GAT) 16 319 AAGCTCCGTTGAAAGCGTTT 20 58.9 CAACGTCGAAGCTTACGTGT 20 58.8 
Ldemic17 scaffold15490|1201 (AAT) 11 350 GCCAGCTTTATTTGTCGTGC 20 58.3 CCACAAAAGGCGGCATATCA 20 58.9 
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CHAPTER 7 

Final conclusion, perspectives and future work 

 This final chapter aims to synthesise the findings of this comprehensive 

research on trombiculid chiggers in Thailand. This thesis includes a variety of topics 

ranging across the biology and ecology of the parasitic larval mites on small 

mammal hosts, the host-chigger interaction, the role of chiggers in scrub typhus 

epidemiology and profiling the microbiome of chigger populations. These outcomes 

will be of benefit for the chigger research field, providing fundamental information 

for vector control and further epidemiological studies. The limitations and 

challenging points of the present study are noted and discussed. 

7.1 Final discussion and conclusions 

7.1.1 Diversity of chiggers in Thailand 

 In a combination of a literature review starting from the 1960s, and 

extensive field surveys of trombiculid mites parasitizing small mammals across 

Thailand, a high diversity of chiggers was reported in the country. The list of 

trombiculid species was updated to 99 species (two subfamilies and 27 genera), 

including 10 new records for the country, and three new species (i.e., Helenicula 

naresuani, Trombiculindus kosapani and Walchia chavali) were also described from 

materials obtained from the field surveys (CERoPath and BioDivHealthSEA project). 

Some dominant species such as Ascoschoengastia indica, Blankaartia acuscutellaris, 

Leptotrombidium deliense, Walchia lupella and Walchia pingue were widely 
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distributed in several geographical regions of Thailand. Leptotrombidium appeared 

to be the dominant genus with 21 recorded species, and several species in this 

genus have been recognized as the main vectors of scrub typhus in the disease-

endemic areas (Strickman 2001; Stekolnikov 2013). There was potential evidence of 

speciation of Helenicula originating in Thailand, as several closely related species in 

the genus showed a high level of endemism, and have never been reported outside 

the country (Chaisiri et al. 2016). 

 Although the present study provides a comprehensive species checklist of 

chiggers, the data are mainly focussed on the chiggers parasitizing small mammals; 

e.g., rodents and insectivores, whereas chigger communities on the other animal 

hosts such as birds, reptiles and large mammals as well as unfed chiggers in the 

environment are scarcely reported (but see Nadchatram & Lakshana 1965; 

Nadchatram 1967; Nadchatram & Kethley 1974; Tanskul 1991). Another important 

point is that the systematics and classification of chiggers is entirely based on the 

morphology of the larval stage (Vercammen-Grandjean et al. 1973), and adults and 

nymphs are rarely examined. A potential research question regarding phenotypic 

plasticity can be raised about the accuracy of the reported diversity of the mite 

taxa; that is, whether slight differences in morphology of some closely-related larval 

species (e.g., >300 species in the genus Leptotrombidium) develop to distinct or the 

same species at the adult stage. Thus, future surveys need to design research 

strategies covering those aspects in order to assess more accurately the diversity of 

chiggers in the region.                  
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7.1.2 Towards a combined morphometric and molecular approach to 

chigger identification 

 Information about the genetics of chiggers is very limited, particularly for 

specimens collected from the wild. A challenging point of chigger taxonomy is to 

link together phenotypic and genetic information. This is due to the limitations 

inherent in the nature of the chigger specimen itself. Due to their tiny size, 

specimens require microscopic examination to obtain a species identification. Slide 

preparation and specimen clearing in mounting medium are therefore inevitably 

involved prior to morphological identification. This causes difficulties in extracting 

genetic material from the same individual on the slide, as chemical agents used in 

the clearing step can damage genetic material.  

 Here, we found that using a fluorescent light source with a FITC filter during 

microscopy could be an alternative method enhancing visualization of chigger 

specimens in water without the use of any clearing agents. It was a great advantage 

to get genomic DNA from the same individual specimen, facilitating PCR 

amplification of chigger gene targets. Genomic data obtained from this promising 

procedure, with the aid of chigger genomic information on the NCBI database, e.g., 

mitochondrial and rRNA gene sequences, could lead to the rapid adoption of 

molecular approaches for chigger identification and population genetic studies, 

including DNA barcoding, multilocus sequence typing (MLST), and DNA 

microsatellite analysis.   
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7.1.3 Ecology of chigger parasitism and scrub typhus epidemiology in 

Thailand 

 In the present study, chigger diversity (species richness) was used as the 

main dependent variable to study the influence of ecological factors affecting 

chigger communities on small mammal hosts in Thailand. Here, we found that host 

phylogeny (host species) and some ecological factors (habitat, geographical 

location, latitudinal gradient and season) affected the diversity of trombiculid 

chiggers across the 13 study sites of the country. Chigger species richness 

significantly differed among the host species. Non-rodent species; e.g., the tree 

shrew (Tupaia glis) harboured a higher number of chigger species compared to 

rodents. Host maturity positively affected chigger species richness; that is, mature 

animals were infested with more diverse chigger species than the younger ones, 

whereas there was no effect of host sex. Habitat showed a strong effect on chigger 

diversity. While hosts from forest were infested with the highest chigger species 

richness, hosts in urban settlements harboured the least, reflecting that 

urbanization influences chigger diversity by reducing their species richness. There 

was a trend of habitat preference found in some chigger species; e.g., Blankaartia 

acuscutellaris, Schoengastiella ligula and Walchia minuscuta were habitat 

specialists found mainly in rain-fed lowland; Helenicula pilosa was found on dry 

lands; and Leptotrombidium deliense was found either in forest or on dry land. 

Chigger diversity was also determined by geographical locations with regard to 

different latitudinal gradients. Hosts from the study sites in the north at high 

latitudes harboured significantly greater chigger species richness than the sites in 
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the south. In addition, hosts trapped during the dry season were infested with much 

higher chigger species richness than hosts from the wet season. It seems that 

chigger communities in Thailand are more diversified in the upper latitude zones, 

where climatic conditions are drier, comparing to the lower zone, which is close to 

the equatorial line with higher humidity and more rainfall. These results suggest 

that diversification of chiggers in Thailand was determined by both biotic factors 

(i.e., host phylogeny and attributes) as well as abiotic factors (i.e., climatic and 

environmental conditions).                   

 Host-chigger interactions were studied using an ecological network analysis 

approach. At the population level (the whole country), chigger species assemblages 

among the small mammal hosts showed a moderate nestedness pattern; that is, a 

moderate level of co-occurrence among specialist and generalist chigger species in 

the population. Bipartite network analysis illustrated complex interactions between 

chigger assemblages and hosts. Almost all chigger species infested more than one 

host species, suggesting low host-specificity in host-chigger interactions. This is a 

crucial aspect in scrub typhus epidemiology, since low host-specificity allows 

chiggers to attack any animals that pass through their territory, including humans. 

In a unipartite network analysis, Bandicota indica (greater bandicoot rat) and Rattus 

tanezumi (oriental house rat) were identified as the central nodes (hosts) sharing 

chigger species to the other hosts in the network. As the latter species, R. tanezumi, 

is known as a habitat generalist, able to thrive in all habitat types (Palmeirim et al. 

2014; Blasdell et al. 2015), it could potentially play a key role in parasite dispersal 

from one habitat to the other communities. To investigate structure of host-chigger 
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interactions among the 13 study sites, a number of network properties; i.e., NODF 

(nestedness), connectance and modularity were computed. There were some 

associations between chigger diversity and network properties. For example, 

chigger species richness showed a negative correlation with network connectance 

(proportion of realized interactions within a network); that is, host-chigger 

interactions will increase when there is a decrease in chigger species richness in the 

community. Also, we found that nestedness negatively correlated with network 

modularity, which means that decreasing nestedness leads to increased clustering 

structures (modules/compartments) within the host-chigger network.                    

 Epidemiological determination factors of scrub typhus incidence in Thailand 

were characterized using a generalized linear model approach, taking into account 

the chigger diversity, host-chigger network properties, environmental parameters 

and human case numbers of scrub typhus disease in the 13 study sites in the 

analysis. With these available data, we found that chigger species richness and host-

chigger network connectance were the main variables to explain human scrub 

typhus incidence in Thailand. Higher scrub typhus incidence occurred in the sites 

that showed higher chigger diversity and lower connectance in small mammal host-

chigger interactions. High chigger diversity probably enhances in some way the 

circulation or transmission of scrub typhus agent, Orientia tsutsugamushi, in the 

communities; whereas high connectance or chigger sharing among small mammal 

species or individuals themselves may act like a “dilution effect”, potentially 

diverting or reducing the risk of human exposure to chiggers in such communities. 
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7.1.4 Chigger-associated microbiome 

 The microbiome of trombiculid chiggers was studied for the first time using 

a 16S rRNA gene amplicon sequencing approach in order to find other potential 

pathogenic bacteria or bacterial symbionts apart from Orientia tsutsugamushi. The 

investigation of chigger-associated microbiome was conducted based on both 

individual and pooled samples.  

 The microbiome profile of chiggers seemed to be largely associated with 

several dominant bacterial OTUs from the environment or host skin; i.e., 

Brevibacillus, Corynebacterium, Geobacillus, Sphingobium, Staphylococcus, 

Neisseriaceae and Comamonadaceae. The true symbiotic relationship between 

chiggers and these bacteria is unknown, and further investigations are still required 

to confirm whether there is a significant relationship between chiggers and the 

bacteria, or chiggers only acquired environmental bacteria by chance when 

traversing different environments. Apart from Orientia tsutsugamushi, some 

potential pathogenic bacteria were identified; e.g., Borrelia and Mycobacterium. 

These two genera were abundantly present in chigger samples and have been 

recognized as potential causes of borreliosis (Lyme disease and relapsing fever) and 

several types of tuberculosis in animals and humans, respectively (Tilly et al. 2008; 

Johnson & Odell 2014; Bratschi et al. 2015). Bacterial symbionts of arthropod also 

appeared in chigger samples; e.g., two potential reproductive manipulators of 

several arthropod species, Cardinium and Wolbachia (Gotoh et al. 2006; Werren et 

al. 2008); an external symbiont of fungus-growing ants, Pseudonocardia (Cafaro et 

al. 2011); and a potential intracellular pathogen of arthropods, Rickettsiella 
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(Bouchon et al. 2012). Other than pathogenicity in mammals, Orientia could play 

another role as a symbiont of trombiculid mites, as there are some reports showing 

effects on the mite’s development and reproduction, such as delayed 

metamorphosis period, reduce fecundity and distorted sex-ratios with male killing 

(Roberts et al. 1977; Frances et al. 2001; Phasomkusolsil et al. 2012). Those bacteria 

listed above could be prime candidates for future studies of interactions in chigger-

bacteria symbioses, and deeper understanding of symbiotic relationships might 

ultimately lead to development of novel vector control strategies. 

 In bacterial diversity analyses, the alpha-diversity of bacterial OTUs 

significantly differed among sample groups (individuals, pools and soil samples). The 

lowest bacterial diversity was observed in individuals, in accordance with the issue 

of small biomass compared to the other sample groups. On the other hand, we 

failed to see any significant difference in bacterial alpha-diversity among sample 

categories; i.e., chigger species, habitats and study sites. In terms of beta-diversity, 

there were significant differences in bacterial composition among sample 

categories; i.e., chigger species and sites, but not among habitats, suggesting that 

geographical conditions and host phylogeny might play some role in determining 

bacterial communities in chiggers.  

 There were contrary results between microbiome structures of individuals 

and pooled samples. The conflicting patterns are probably due to biases in 16S rRNA 

gene PCR amplification, when the sequencing libraries were generated. We found 

that dominant bacterial OTUs from individuals were significantly richer in GC 

content than the dominant OTUs from pools. DNA template concentrations 
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between individuals and pools were substantially different, being much lower in 

individuals due to their small size and very low biomass. Also, different sources of 

DNA polymerases were used between individuals and pools in PCR amplification. 

With those reasons, we can surmise that several sources of bias were associated 

with the PCR amplification; i.e., differences in concentration and GC content of DNA 

templates and DNA polymerase enzymes, potentially explaining the occurrence of 

contrary microbiome structures in the present study. These have been noted 

previously in several microbiome studies (Mamedov et al. 2008; Wu et al. 2010; 

Pinto & Raskin 2012; Kennedy et al. 2014; D’Amore et al. 2016). Mitigating the 

sources of biases associated with PCR is essential to ensure high quality and reliable 

microbiome results. 

 Another issue largely discussed in relation to 16S rRNA microbiome studies 

is the DNA contamination of laboratory kits and reagents in sample library 

preparation procedures. These contaminants affect the results of microbiota 

studies by producing false positive signals, particularly when dealing with low 

microbial biomass samples (Salter et al. 2014); e.g., chiggers. In order to identify 

contaminating signals, background controls representative for water, PCR reagents, 

DNA extraction kits and dissecting equipment were sequenced alongside chigger 

samples. In the present study, nearly half of the samples, particularly the individual 

chiggers, showed a bacterial composition similar to background controls (Bray-

Curtis dissimilarity), and were subsequently removed from the downstream 

analyses. Although a large number of samples were discarded, this ensured that 

only high-quality data were retained.   
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    With regard to the trombiculid’s life stages; i.e., free-living adults and 

nymphs versus parasitic larvae, differences in the microbiome of these stages could 

be hypothesized and investigated in future studies. Adult and nymph samples could 

be collected from the environment to determine if their microbiome composition 

and diversity are very different to those of larvae. In addition, the microbiome 

profile of chiggers could be studied regarding to their position on a host. Thus, the 

feeding position of chigger samples; e.g., within the ears, axillary region or the 

urogenital area, could be recorded in order to determine whether microbiome 

profiles differ depending on where they originate on the body. For example, 

chiggers collected around the urogenital area might be more associated with the 

host’s gut microbiota, whereas chiggers from the ear perhaps correlate with the 

bacterial flora from the upper respiratory tract. 

 Another interesting research question could be raised asking about the 

influence of Orientia on the other bacteria within their chigger host; that is, 

whether the microbiome varies in terms of diversity and composition between 

Orientia-positive and -negative mites. Unfortunately, from our microbiome results 

in CHAPTER 5, we had low number of Orientia-positive samples (only 13 pools and 

three individual chiggers), which is definitely insufficient to provide statistical power 

for comparative analysis. Therefore, more Orientia-positive samples obtained in 

future studies would help to answer this research question. 

7.2 Other future works and potential implications 

 Although systematics and taxonomy of trombiculid mites (Oudemans 1912) 

have been established over many decades and the mites are widely known as 
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vectors of scrub typhus disease, particularly since World War II (Browning & 

Raphael 1945; Kelly et al. 2009; Peterson 2009), classification of this mite taxon still 

depends on morphology (of larvae), while molecular taxonomy is definitely limited. 

Therefore, the development of molecular identification tools; i.e., DNA barcoding, 

would be of benefit not only to facilitate chigger identification, but also to 

significantly improve our understanding of the taxonomic arrangement and 

evolution of this mite taxon.               

 In terms of the epidemiology of scrub typhus in Southeast Asia, O. 

tsutsugamushi infection in human patients has been shown to have tremendous 

strain variability; i.e., high antigenic diversity of the 56 KDa surface protein gene and 

a high rate of genetic recombination (Kelly et al. 2009; Paris et al. 2013). Several 

human cases (approximately 8 - 25%) were infected by multiple O. tsutsugamushi 

strains, which may be because the patients were either bitten by several chiggers, 

or there were multiple strains in an individual chigger (Sonthayanon et al. 2010; 

Duong et al. 2013; Phetsouvanh et al. 2015). It is still unclear how the bacterial 

strains have become so diversified, and highly genetically recombined. Reservoir 

hosts (i.e., small mammals, birds and reptiles) could potentially play some role in 

boosting strain diversity and the recombination process of the bacterium. Also, 

multiple strain infections in chiggers perhaps occur when the mites feed on the 

same small mammal host bearing different O. tsutsugamushi strains. An even more 

complicated situation that the strain variation in hosts could involve accumulation 

of various strains transmitted to a host from different generations or populations of 

chiggers (Duong et al. 2013). It could be hypothesized that O. tsutsugamushi 
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infection and circulation in chiggers and vertebrate hosts are a critical force driving 

strain diversification and genetic recombination. Therefore, a comparison of O. 

tsutsugamushi strain/genotype variation among those main players within a local 

scale, together with the aid of population genetic or network analysis approaches; 

i.e., unipartite network analysis, could help deepen our understanding of the 

interactions and population structure of the bacterial strains circulating in vectors 

and hosts in a population. 

 From the microbiome results, a number of bacterial symbionts of 

arthropods; e.g., Cardinium, Pseudonocardia, Rickettsiella, Wolbachia and other 

dominant bacteria; e.g., Geobacillus, Neisseriaceae, Borrelia and Mycobacterium 

were initially discovered in chiggers. These provide a list of potential chigger-

associated bacteria for further experiments to deeper characterize the 

relationships, and to determine whether those bacteria have some phenotypic 

effect on their chigger hosts. Longer-read sequencing systems such as the Pacbio 

SMRT sequencing (Single Molecule Real-Time sequencing: Pacific Bioscience) could 

be applied to generate whole-length 16S rRNA sequences (~1,500 bp) of particular 

bacterial OTUs of interest. This would be a complementary approach to confirm the 

taxonomic assignment of certain bacteria in chigger samples. Experiments designed 

to assess the effect of these bacteria in laboratory-reared chiggers (i.e., 

reproductive and other physiological functions) as well as –omic approaches (e.g., 

transcriptomics and proteomics) could help deepen our understanding of how the 

bacteria interact with the chigger hosts. Finally, fluorescence in-situ hybridization of 

the bacteria in chiggers could be another technique to illustrate and localize 
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chigger-symbiont relationships. Potential effects of symbionts on chigger biology, 

for instance in reproductive manipulation or impacts on the transmission of O. 

tsutsugamushi by competition or facilitation, could ultimately lead to novel control 

strategies for scrub typhus vectors. 

 The findings of this study provide some useful information for 

implementation of scrub typhus prevention strategies. Hence, we found some other 

potential factors driving scrub typhus incidence in Thailand, such as higher chigger 

diversity in the area and low host-parasite network connectance, which are in 

addition to previously known epidemiological factors [i.e., most patients were 

found during the transitional time between late rainy to early winter season 

(October - December); and the majority of the cases were associated with 

occupational exposure to rodents or other animals in peridomestic habitats such as 

ricefields, gardens and plantations (Suputtamongkol et al. 2009)]. Those 

associations above could be applied to establish a prevention strategy and health 

educational campaign to facilitate control of scrub typhus disease in Thailand. In 

addition, our results revealed potential symbiotic bacteria of arthropods in the 

chigger microbiome study. The impact of bacterial symbionts on pathogen 

susceptibility is an emerging field which has led to many studies on the interaction 

between the arthropod microbiome and vectored pathogens. Several hypotheses 

have been put forward for whysymbionts might directly or indirectly reduce 

pathogen susceptibility in a host such as (1) symbionts release substances that have 

a negative effect on pathogen growth; and (2) symbionts compete in nutrient 

consumption, leading to poor growth of the pathogen (Gall et al. 2016). This idea 
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could be applied in the chigger research field, and a deeper understanding of 

symbionts and O. tsutsugamushi interactions might provide an alternative way to 

reduce the scrub typhus vector competence of chiggers using microbiome 

manipulation as a form of biological control.                         

 

REFERENCES  

Acinas, S.G. et al., 2005. PCR-induced sequence artifacts and bias: insights from 

comparison of two 16S rRNA clone libraries constructed from the same sample. 

Applied and Environmental Microbiology, 71(12), pp.8966–8969. 

Ahn, J.H. et al., 2012. Effects of PCR cycle number and DNA polymerase type on the 

16S rRNA gene pyrosequencing analysis of bacterial communities. Journal of 

Microbiology, 50(6), pp.1071–1074. 

Alberti, G., Gegner, A. & Witalinski, W., 2000. Fine structure of the spermatophore 

and spermatozoa in inseminated females of Pergamasus mites (Acari: Gamasida: 

Pergamasidae). Journal of Morphology, 245(1), pp.1–18. 

Alfonzo, D. et al., 2005. Ecological characterization of the aquatic habitats of 

mosquitoes (Diptera: Culicidae) in enzootic foci of Venezuelan equine encephalitis 

virus in western Venezuela. Journal of Medical Entomology, 42(3), pp.278–284.  

Al-Hassan, J.M. et al., 2011. Tryptophan oxidative metabolism catalyzed by 

Geobacillus stearothermophilus: a thermophile isolated from Kuwait soil 

contaminated with petroleum hydrocarbons. International Journal of Tryptophan 

Research, 4, pp.1–6.  

Almeida-Neto, M. et al., 2008. A consistent metric for nestedness analysis in 

ecological systems: reconciling concept and measurement. Oikos, 117(8), pp.1227–

1239.  



 
 

222 
 

Anantasomboon, G. et al., 2008. Low viral loads and lymphoid organ spheroids are 

associated with yellow head virus (YHV) tolerance in whiteleg shrimp Penaeus 

vannamei. Developmental and Comparative Immunology, 32(6), pp.613–626. 

Andreassen, H.P., Hertzberg, K. & Ims, R.A., 1998. Space-Use Responses to habitat 

fragmentation and connectivity in the root vole Microtus oeconomus. Ecology, 

79(4), pp.1223–1235.  

Aplin, K.P. et al., 2003. Field methods for rodent studies in Asia and the Indo-Pacific, 

Canberra: ACIAR Monograph No. 100. 

Arlian, L.G., Vyszenski-Moher, D.L. & Morgan, M.S., 2003. Mite and mite allergen 

removal during machine washing of laundry. Journal of Allergy and Clinical 

Immunology, 111, pp.1269–1273. 

Ashelford, K.E. et al., 2005. At least 1 in 20 16S rRNA sequence records currently 

held in  public repositories is estimated to contain substantial anomalies. Applied 

and Environmental Microbiology, 71(12), pp.7724–7736. 

Audy, J.R., 1961. The ecology of scrub typhus. In J. M. May, ed. Studies in disease 

ecology. New York: Hafner, pp. 389–432. 

Audy, J.R., 1958. The role of mite vectors in the natural history of scrub typhus. In 

Proceedings of the 10th International Congress of Entomology. Montreal, pp. 639–

650. 

Ault, S.K., 1994. Environmental management: a re-emerging vector control strategy. 

American Journal of Tropical Medicine and Hygiene, 50. 

Balcells, M.E. et al., 2011. Endemic scrub typhus–like illness, Chile. Emerging 

Infectious Disease Journal, 17(9), p.1659.  

Bankevich, A. et al., 2012. SPAdes: A new genome assembly algorithm and its 

applications to single-cell sequencing. Journal of Computational Biology, 19(5), 

pp.455–477.  



 
 

223 
 

Barton, H.A. et al., 2006. DNA extraction from low-biomass carbonate rock: an 

improved method with reduced contamination and the low-biomass contaminant 

database. Journal of Microbiological Methods, 66(1), pp.21–31.  

Bates, D. et al., 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of 

Statistical Software, 67, pp.1–48. 

Baumann, P., 2005. Biology of bacteriocyte-associated endosymbionts of plant sap-

sucking insects. Annual Review of Microbiology, 59, pp.155–189. 

Beketov, M.A. et al., 2010. What environmental factors are important determinants 

of structure, species richness, and abundance of mosquito assemblages? Journal of 

Medical Entomology, 47(2), pp.129–139.  

De Bellocq, G., Charbonel, N. & Morand, S., 2008. Coevolutionary relationship 

between helminth diversity and MHC class II polymorphism in rodents. Journal of 

Evolutionary Biology, 21(4), pp.1144–1150.  

Benítez-Páez, A., Portune, K.J. & Sanz, Y., 2016. Species-level resolution of 16S rRNA 

gene amplicons sequenced through the MinIONTM portable nanopore sequencer. 

GigaScience, 5(1), pp.1–9.  

Bhargava, A. & Fuentes, F.F., 2010. Mutational dynamics of microsatellites. 

Molecular Biotechnology, 44(3), pp.250–266.  

Bitam, I., 2012. Vectors of rickettsiae in Africa. Ticks and tick-borne diseases, 3(5-6), 

pp.382–386.  

Blasdell, K. et al., 2015. Progress on research on rodents and rodent-borne zoonoses 

in South-east Asia. Wildlife Research, 42(2), pp.98–107.  

Bordes, F. et al., 2010. Parasite diversity and latitudinal gradients in terrestrial 

mammals. In S. Morand & B. Krasnov, eds. The Biogeography of Host-Parasite 

Interactions. New York: Oxford University Press, pp. 89–98. 



 
 

224 
 

Bordes, F., Guégan, J.F. & Morand, S., 2011. Microparasite species richness in 

rodents is higher at lower latitudes and is associated with reduced litter size. Oikos, 

120(12), pp.1889–1896. 

Borgatti, S.P., 2005. Centrality and network flow. Social Networks, 27(1), pp.55–71.  

Bouchon, D., Cordaux, R. & Pierre, G., 2012. Rickettsiella, intracellular pathogens of 

arthropods. In E. Zchori-Fein & K. Bourtzis, eds. Manipulative tenants: bacteria 

associated with arthropods. Florida: CRC Press, Boca Raton, pp. 127–148. 

Bradley, J.M., Mascarelli, P.E., Trull, C.L., Maggi, R.G. & Breitschwerdt, E.B. 2014. 

Bartonella henselae infections in an owner and two Papillon dogs exposed to 

tropical rat mites (Ornithonyssus bacoti). Vector-borne and Zoonoti Diseases, 

14(10), pp.703-709. 

Brännström, S., Hansson, I. & Chirico, J., 2010. Experimental study on possible 

transmission of the bacterium Erysipelothrix rhusiopathiae to chickens by the 

poultry red mite, Dermanyssus gallinae. Experimental and Applied Acarology, 50(4), 

pp.299–307.  

Bratschi, M.W. et al., 2015. Current knowledge on Mycobacterium leprae 

transmission: a systematic literature review. Leprosy review, 86(2), pp.142–155. 

Breeuwer, J.A. & Jacobs, G., 1996. Wolbachia: intracellular manipulators of mite 

reproduction. Experimental & Applied Acarology, 20(8), pp.421–434. 

Brennan, J.M. & Goff, M.L., 1977. Keys to the Genera of Chiggers of the Western 

Hemisphere (Acarina: Trombiculidae). The Journal of Parasitology, 63(3), pp.554–

566.  

Brouqui, P. & Raoult, D., 2006. Arthropod-borne diseases in homeless. Annals of the 

New York Academy of Sciences, 1078, pp.223–235. 

 



 
 

225 
 

Brown, W.A., 1992. Description of six new species of the genus Leptotrombidium 

from mindanao island and notes on the medically important genera of chiggers 

(Acari:  Trombiculidae) of the Philippine islands. Journal of Medical Entomology, 

29(2), pp.284–292.  

Brown, W.A., 2002. Two new species of chiggers (Acari: Trombiculidae) in 

Ascoschoengastia and Microtrombicula from hyrax (Hyracoidea) in Serengeti, 

Tanzania, Africa. Journal of Vertebrate Paleontology, 22, p.90. 

Browning, J.S. & Raphael, M., 1945. Scrub-typhus. The American Journal of Tropical 

Medicine and Hygiene, 25, pp.481–492. 

Burnham, K.P. & Anderson, D.R., 2002. Model selection and multimodel inference: a 

practical information-theoretic approach 2nd ed., NewYork: Springer International 

Publishing. 

Cafaro, M.J. et al., 2011. Specificity in the symbiotic association between fungus-

growing ants and protective Pseudonocardia bacteria. Proceedings. Biological 

Sciences The Royal Society, 278(1713), pp.1814–1822. 

Calcagno, V. & de Mazancourt, C., 2010. glmulti: An R package for easy automated 

model  selection with (Generalized) linear models. Journal of Statistical Software; 

Vol 1, Issue 12 (2010).  

Callewaert, C. et al., 2013. Characterization of Staphylococcus and Corynebacterium 

clusters in the human axillary region. PLoS ONE, 8(8), pone.0070538. 

Caporaso, J.G. et al., 2011. Global patterns of 16S rRNA diversity at a depth of 

millions of sequences per sample. Proceedings of the National Academy of Sciences, 

108(Supplement 1), pp.4516–4522.  

Caporaso, J.G. et al., 2009. PyNAST: a flexible tool for aligning sequences to a 

template alignment. Bioinformatics, 26(2), pp.266–267.  

 



 
 

226 
 

Caporaso, J.G. et al., 2010. QIIME allows analysis of high-throughput community 

sequencing data. Nature methods, 7(5), pp.335–336. 

Castoe, T.A. et al., 2012. Rapid microsatellite identification from Illumina paired-end 

genomic sequencing in two birds and a snake. PLoS ONE, 7(2), pone.0030953. 

Chaisiri, K. et al., 2016. A revised checklist of chigger mites (Acari: Trombiculidae) 

from Thailand, with the description of three new species. Journal of Medical 

Entomology, 53(2), pp.321-342.  

Chaisiri, K., Siribat, P., et al., 2015. Potentially zoonotic helminthiases of murid 

rodents from the Indo-Chinese peninsula: impact of habitat and the risk of human 

infection. Vector borne and zoonotic diseases, 15(1), pp.73–85. 

Chaisiri, K. et al., 2015. Symbiosis in an overlooked microcosm: a systematic review 

of the bacterial flora of mites. Parasitology, 142(09), pp.1152–1162.  

Chakravorty, S. et al., 2007. A detailed analysis of 16S ribosomal RNA gene 

segments for the diagnosis of pathogenic bacteria. Journal of Microbiological 

Methods, 69(2), pp.330–339.  

Chan, E.D. & Iseman, M.D., 2013. Underlying host risk factors for nontuberculous 

mycobacterial lung disease. Seminars in Respiratory and Critical Care Medicine, 

34(1), pp.110–123. 

Chan, T.F. et al., 2015. The draft genome, transcriptome, and microbiome of 

Dermatophagoides farinae reveal a broad spectrum of dust mite allergens. The 

Journal of Allergy and Clinical Immunology, 135(2), pp.539–48.  

Chapman, J.M. et al., 2015. Variation in parasite communities and health indices of 

juvenile Lepomis gibbosus across a gradient of watershed land-use and habitat 

quality. Ecological Indicators, 57, pp.564–572.  

 



 
 

227 
 

Chigira, A. & Miura, K., 2005. Detection of `Candidatus Cardinium’ bacteria from the 

haploid host Brevipalpus californicus (Acari: Tenuipalpidae) and effect on the host. 

Experimental and Applied Acarology, 37(1), pp.107–116.  

Chirico, J. et al., 2003. The poultry red mite, Dermanyssus gallinae, a potential 

vector of Erysipelothrix rhusiopathiae causing erysipelas in hens. Medical and 

Veterinary Entomology, 17(2), pp.232–234. 

Choi, Y.J. et al., 2007. Molecular detection of various rickettsiae in mites (acari: 

trombiculidae) in southern Jeolla Province, Korea. Microbiology and Immunology, 

51(3), pp.307–312. 

Collinge, S.K., 2000. Effects of grassland fragmentation on insect species loss, 

colonisation, and movement patterns. Ecology, 81(8), p.2211. 

Colwell, R.K. & Elsensohn, J.E., 2014. EstimateS turns 20: statistical estimation of 

species richness and shared species from samples, with non-parametric 

extrapolation.  Ecography, 37(6), pp.609–613.  

Cong, J. et al., 2015. Analyses of soil microbial community compositions and 

functional genes reveal potential consequences of natural forest succession. 

Scientific Reports, 5, srep10007. 

Cooper, N., Kamilar, J.M. & Nunn, C.L., 2012. Host longevity and parasite species 

richness in mammals. PLoS ONE, 7(8), pone.0042190. 

Cottew, G.S. & Yeats, F.R., 1982. Mycoplasmas and mites in the ears of clinically 

normal goats. Australian Veterinary Journal, 59(3), pp.77–81. 

Crotti, E. et al., 2010. Acetic acid bacteria, newly emerging symbionts of insects. 

Applied and Environmental Microbiology, 76(21), pp.6963–6970. 

Cruickshank, R.H., 2002. Molecular markers for the phylogenetics of mites and ticks. 

Systematic and Applied Acarology, 7, pp.3–14. 



 
 

228 
 

Csardi, G. & Nepusz, T., 2006. The igraph software package for complex network 

research. , p.9. Available at: http://igraph.org. 

Cwiklinski, K. et al., 2015. Characterisation of a novel panel of polymorphic 

microsatellite  loci for the liver fluke, Fasciola hepatica, using a next generation 

sequencing approach. Journal of Molecular Epidemiology and Evolutionary Genetics 

in Infectious Diseases, 32, pp.298–304. 

D’Amore, R. et al., 2016. A comprehensive benchmarking study of protocols and 

sequencing platforms for 16S rRNA community profiling. BMC Genomics, 17(1), 

pp.1–20.  

Dabert, M., 2006. DNA markers in the phylogenetics of the Acari. Biological Letter, 

43(2), pp.97–107. 

Daniel, M. & Stekol’nikov, A.A., 2004. Chigger mites of the genus Eutrombicula 

ewing, 1938 (Acari: Trombiculidae) from Cuba, with the description of three new 

species. Folia Parasitologica, 51(4), pp.359–366. 

Delalibera, I.J., Handelsman, J. & Raffa, K.F., 2005. Contrasts in cellulolytic activities 

of gut microorganisms between the wood borer, Saperda vestita (Coleoptera: 

Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis 

(Coleoptera: Curculionidae). Environmental Entomology.  

DeLeon-Rodriguez, N. et al., 2013. Microbiome of the upper troposphere: Species 

composition and prevalence, effects of tropical storms, and atmospheric 

implications. Proceedings of the National Academy of Sciences, 110(7), pp.2575–

2580.  

DiBlasi, E. et al., 2011. New Spiroplasma in parasitic Leptus mites and their 

Agathemera walking stick hosts from Argentina. Journal of Invertebrate Pathology, 

107(3), pp.225–228.  

 



 
 

229 
 

Dohany, A.L. et al., 1978. Identification and antigenic typing of Rickettsia 

tsutsugamushi in naturally infected chiggers (Acarina: Trombiculidae) by direct 

immunofluorescence. The American Journal of Tropical Medicine and Hygiene, 

27(6), pp.1261–1264. 

Donnelly, B. et al., 2015. A systematic, realist review of zooprophylaxis for malaria 

control. Malaria Journal, 14(1), pp.1–16.  

Dooley, J.L. & Bowers, M.A., 1998. Demographic responses to habitat 

fragmentation: experimental tests at the landscape and patch scale. Ecology, 79(3), 

pp.969–980.  

Dormann, C.F. et al., 2009. Indices, graphs and null models: analyzing bipartite 

ecological networks. The Open Ecology Journal, 2(1), pp.7–24. 

Douglas, A.E., 2010. The Symbiotic Habit, New Jersey: Princeton University Press. 

Dray, S. & Dufour, A.-B., 2007. The ade4 package: implementing the duality diagram 

for ecologists. Journal of Statistical Software, 1(4). Available at: 

https://www.jstatsoft.org/index.php/jss/article/view/v022i04. 

Dunne, J.A., Williams, R.J. & Martinez, N.D., 2002. Food-web structure and network 

theory: The role of connectance and size. Proceedings of the National Academy of 

Sciences, 99(20), pp.12917–12922.  

Duong, V. et al., 2013. Molecular epidemiology of Orientia tsutsugamushi in 

Cambodia and Central Vietnam reveals a broad region-wide genetic diversity. 

Infection, Genetics and Evolution, 15, pp.35–42. 

Duron, O. et al., 2008. High incidence of the maternally inherited bacterium 

Cardinium in spiders. Molecular Ecology, 17(6), pp.1427–1437. 

Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. 

Bioinformatics., 26. Available at: http://dx.doi.org/10.1093/bioinformatics/btq461. 



 
 

230 
 

Enigl, M. & Schausberger, P., 2007. Incidence of the endosymbionts Wolbachia, 

Cardinium and Spiroplasma in phytoseiid mites and associated prey. Experimental 

and Applied Acarology, 42(2), pp.75–85. 

Evans, J.D. & Armstrong, T.N., 2006. Antagonistic interactions between honey bee 

bacterial symbionts and implications for disease. BMC Ecology, 6(1), pp.1–9.  

Ewing, H.E., 1949. The origin and classification of the trombiculid mites or 

Trombiculidae. Journal of the Washington Academy of Science, 39, pp.229–237. 

Faircloth, B.C., 2008. msatcommander: detection of microsatellite repeat arrays and 

automated, locus-specific primer design. Molecular Ecology Resources, 8(1), pp.92–

94.  

Fernandez-Soto, P., Perez-Sanchez, R. & Encinas-Grandes, A., 2001. Molecular 

detection of Ehrlichia phagocytophila genogroup organisms in larvae of 

Neotrombicula autumnalis (Acari: Trombiculidae) captured in Spain. The Journal of 

Parasitology, 87(6), pp.1482–1483. 

Ferrari, J. & Vavre, F., 2011. Bacterial symbionts in insects or the story of 

communities affecting communities. Philosophical Transactions of the Royal Society 

of London B: Biological Sciences, 366(1569), pp.1389–1400.  

Ferri, E. et al., 2011. New insights into the evolution of Wolbachia infections in 

filarial nematodes inferred from a large range of screened species. PloS one, 6(6), 

pone.0020843. 

Finnegan, S., 1945. Acari as agents transmitting typhus in India, Australasia and the 

Far East, London: Printed by order of the Trustees of the British museum. 

Folmer, O. et al., 1994. DNA primers for amplification of mitochondrial cytochrome 

c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology 

and Biotechnology, 3(5), pp.294–299. 

 



 
 

231 
 

Fortuna, M.A. et al., 2010. Nestedness versus modularity in ecological networks: 

two sides of the same coin? The Journal of Animal Ecology, 79(4), pp.811–817.  

Fournier, P.E. et al., 2008. Detection of new genotypes of Orientia tsutsugamushi 

infecting humans in Thailand. Clinical Microbiology and Infection, 14(2), pp.168–

173. 

Fox, J. & Vogler, J.B., 2005. Land-use and land-cover change in montane mainland 

Southeast Asia. Environmental Management, 36(3), pp.394–403.  

Fox, J. & Weisberg, S., 2011. An {R} Companion to Applied Regression, second 

edition. Available at: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion. 

Frances, S.P. et al., 2001. Investigation of the role of Blankaartia acuscutellaris 

(Acari:  Trombiculidae) as a vector of scrub typhus in central Thailand. Southeast 

Asian Journal of Tropical Medicine and Public Health, 32(4), pp.863–866. 

Frances, S.P. et al., 1999. Seasonal occurrence of Leptotrombidium deliense (Acari: 

Trombiculidae) attached to sentinel rodents in an orchard near Bangkok, Thailand. 

Journal of Medical Entomology, 36(6), pp.869–874. 

Frances, S.P., Watcharapichat, P. & Phulsuksombati, D., 2000. Development and 

persistence of antibodies to Orientia tsutsugamushi in the roof rat, Rattus rattus 

and laboratory mice following attachment of naturally infected Leptotrombidium 

deliense. Acta Tropica, 77(3), pp.279–285. 

Frances, S.P., Watcharapichat, P. & Phulsuksombati, D., 2001. Vertical transmission 

of Orientia tsutsugamushi in two lines of naturally infected Leptotrombidium 

deliense (Acari: Trombiculidae). Journal of Medical Entomology, 38(1), pp.17–21. 

Franzolin, M.R. et al., 1999. Interaction between toxigenic Aspergillus flavus Link 

and mites (Tyrophagus putrescentiae Schrank) on maize grains: effects on fungal 

growth and aflatoxin production. Journal of Stored Products Research, 35(3), 

pp.215–224. 



 
 

232 
 

Galan, M. et al., 2016. 16S rRNA amplicon sequencing for epidemiological surveys of 

bacteria in wildlife: the importance of cleaning post-sequencing data before 

estimating positivity, prevalence and co-infection. bioRxiv. Available at: 

http://biorxiv.org/content/early/2016/02/17/039826.abstract. 

Gall, C.A., et al., 2016. The bacterial microbiome of Dermacentor andersoni ticks 

influences pathogen susceptibility. The ISME Journal, 10, pp.1846–1855. 

Ghorbani, R.P. et al., 1997. A case of scrub typhus probably acquired in Africa. 

Clinical Infectious Diseases, 25(6), pp.1473–1474.  

Giorgini, M. et al., 2009. Feminization and the collapse of haplodiploidy in an 

asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity, 

102(4), pp.365–371. 

Glowska, E. et al., 2015. New Wolbachia supergroups detected in quill mites (Acari: 

Syringophilidae). Journal of Molecular Epidemiology and Evolutionary Genetics in 

Infectious Diseases, 30, pp.140–146.  

Godfrey, S.S., 2013. Networks and the ecology of parasite transmission: A 

framework for wildlife parasitology. International Journal for Parasitology: Parasites 

and Wildlife, 2(1), pp.235–245. 

Goff, M.L. et al., 1982. A glossary of chigger terminology (Acari: Trombiculidae). 

Journal of Medical Entomology, 19(3), pp.221–238.  

Goslee, S.C. & Urban, D.L., 2007. The ecodist package for dissimilarity-based analysis 

of ecological data. Journal of Statistical Software, 1(7). Available at: 

http://www.jstatsoft.org/index.php/jss/article/view/v022i07. 

Gotoh, T. et al., 2005. Wolbachia and nuclear-nuclear interactions contribute to 

reproductive incompatibility in the spider mite Panonychus mori (Acari: 

Tetranychidae). Heredity, 94(2), pp.237–246. 

 



 
 

233 
 

Gotoh, T., Noda, H. & Ito, S., 2007. Cardinium symbionts cause cytoplasmic 

incompatibility in spider mites. Heredity, 98(1), pp.13–20. 

Gould, D.J. et al., 1966. SEATO Medical research study on ectoparasites. In Annual 

Progress Report, US Army Medical Component, SEATO. pp. 90–93.  

Grabrarev, P.A. et al., 2009. Experimental study of the inoculative transmission of 

Rickettsia typhi by Gamasid mites (Gamasidae). Medicinskaâ parazitologiâ i 

parazitarnye bolezni, (2), pp.47–49.  

Grahn, N. et al., 2003. Identification of mixed bacterial DNA contamination in broad-

range PCR amplification of 16S rDNA V1 and V3 variable regions by pyrosequencing 

of cloned amplicons. FEMS Microbiology Letters, 219(1), pp.87–91.  

Greisen, K. et al., 1994. PCR primers and probes for the 16S rRNA gene of most 

species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. 

Journal of Clinical Microbiology, 32(2), pp.335–351.  

Groot, T.V.M. & Breeuwer, J.A.J., 2006. Cardinium symbionts induce haploid 

thelytoky in most clones of three closely related Brevipalpus species. Experimental 

and Applied Acarology, 39(3-4), pp.257–271. 

Guernier, V., Hochberg, M.E. & Guégan, J.F., 2004. Ecology drives the worldwide 

distribution of human diseases. PLoS Biology, 2(6), p.e141.  

Gunduz, E.A. & Douglas, A.E., 2009. Symbiotic bacteria enable insect to use a 

nutritionally inadequate diet. Proceedings. Biological Sciences The Royal Society, 

276(1658), pp.987–991. 

Haas, B.J. et al., 2011. Chimeric 16S rRNA sequence formation and detection in 

Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 21(3), pp.494–

504. 

 



 
 

234 
 

Hadi, T.R. & Carney, W.P., 1977. Two New Trombiculid Mites from Mammals of 

South Vietnam, With Locality Records for Six Additional Species (Acarina: 

Trombiculidae). Journal of Medical Entomology, 14(4), pp.455–460.  

Hahn, J. & Ascerno, M., 2008. Control of scabies and chiggers on humans. University 

of Minnesota Extension. Available at: 

http://www.extension.umn.edu/garden/insects/find/scabies-and-chiggers/ 

[Accessed July 1, 2015]. 

Halliday, R.B., 1998. Mites of Australia: A Checklist and Bibliography, Collingwood, 

Australia: Publisher: CSIRO Publishing. 

Halliday, R.B., O Connor, B.M. & Baker, A.S., 2000. Global diversity of mites. In P. H. 

Raven & T. Williams, eds. Nature and Human Society: The Quest for a Sustainable 

World:  Proceedings of the 1997 Forum on Biodiversity. Washington DC: National 

Academy Press, pp. 192–212. 

Hamady, M. & Knight, R., 2009. Microbial community profiling for human 

microbiome projects: Tools, techniques, and challenges. Genome Research, 19(7), 

pp.1141–1152.  

Hammer, T.J., Dickerson, J.C. & Fierer, N., 2015. Evidence-based recommendations 

on storing and handling specimens for analyses of insect microbiota. PeerJ, 3, 

peerj.1190. 

Hanson, B. et al., 2016. Characterization of the bacterial and fungal microbiome in 

indoor  dust and outdoor air samples: a pilot study. Environmental Science: 

Processes & Impacts. C5EM00639B. 

Harrison, J.L., 1953. Malaysian parasites-X-Feeding times of trombiculid mites. 

Studies of Institute for Medical Research (Malaya) 26, pp.171–183. 

Hase, T. et al., 1978. Stylostome formation by Leptotrombidium mites (Acari: 

Trombiculidae). The Journal of Parasitology, 64(4), pp.712–718. 



 
 

235 
 

Herbreteau, V. et al., 2005. Mapping the potential distribution of Bandicota indica, 

vector of zoonoses in Thailand, by use of remote sensing and geographic 

information systems (a case of Nakhon Pathom Province). Natural History Journal of 

Chulalongkorn University, 5(2), pp.61–67.  

Herbreteau, V. et al., 2011. Protocols for field and laboratory rodent studies 1st ed. 

V. Herbreteau et al., eds., Bangkok: Kasetsart University Press. ird-00714514. 

Herbreteau, V. et al., 2012. Rodent-borne diseases in Thailand: targeting rodent 

carriers and risky habitats. Infection Ecology &amp; Epidemiology, 2 (Supplm). 

Hogg, J.C. & Lehane, M.J., 1999. Identification of bacterial species associated with 

the sheep scab mite (Psoroptes ovis) by using amplified genes coding for 16S rRNA. 

Applied and Environmental Microbiology, 65(9), pp.4227–4229. 

Hogg, J.C. & Lehane, M.J., 2001. Microfloral diversity of cultured and wild strains of 

Psoroptes ovis infesting sheep. Parasitology, 123(5), pp.441–446. 

Hong, X.-Y., Gotoh, T. & Nagata, T., 2002. Vertical transmission of Wolbachia in 

Tetranychus kanzawai Kishida and Panonychus mori Yokoyama (Acari: 

Tetranychidae). Heredity, 88(3), pp.190–196. 

Hoy, M.A. & Jeyaprakash, A., 2005. Microbial diversity in the predatory mite 

Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae 

(Acari:  Tetranychidae). Biological Control, 32(3), pp.427–441.  

Hoy, M.A. & Jeyaprakash, A., 2008. Symbionts, including pathogens, of the 

predatory mite Metaseiulus occidentalis: current and future analysis methods. 

Experimental and Applied Acarology, 46(1-4), pp.329–347. 

Hruska, K. & Kaevska, M., 2012. Mycobacteria in water, soil, plants and air: a review. 

Veterinarni Medicina (Czech Republic). Available at: http://agris.fao.org/agris-

search/search.do?recordID=CZ2013000200#.V0w22NCD-J0.mendeley [Accessed 

May 30, 2016]. 



 
 

236 
 

Hubert, J. et al., 2015. Carpoglyphus lactis (Acari: Astigmata) from various dried 

fruits differed in associated micro-organisms. Journal of Applied Microbiology, 

118(2), pp.470–484. 

Hubert, J. et al., 2012. Detection and identification of species-specific bacteria 

associated with synanthropic mites. Microbial Ecology, 63(4), pp.919–928. 

Hubert, J. et al., 2004. Mites and fungi in heavily infested stores in the Czech 

Republic. Journal of Economic Entomology, 97(6), pp.2144–2153. 

Hugenholtz, P., Goebel, B.M. & Pace, N.R., 1998. Impact of culture-independent 

studies on the emerging phylogenetic view of bacterial diversity. Journal of 

Bacteriology, 180(18), pp.4765–4774.  

Hugot, J.P. et al., 2006. Genetic analysis of Thailand hantavirus in Bandicota indica 

trapped in Thailand. Virology Journal, 3(1), pp.1–9.  

Husson, F. et al., 2007. FactoMineR: Factor analysis and data mining with R. 

Available at: http://cran.r-project.org/package=FactoMineR. 

Illumina, 2013. 16S Metagenomic sequencing library preparation guide. Available 

at:http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_

preparation.html [Accessed May 3, 2016]. 

Iturbe-Ormaetxe, I., Walker, T. & O’ Neill, S.L., 2011. Wolbachia and the biological 

control of mosquito-borne disease. EMBO reports, 12(6), pp.508–518. 

Izzard, L. et al., 2010. Isolation of a novel Orientia species (O. chuto sp. nov.) from a 

patient infected in Dubai. Journal of Clinical Microbiology, 48(12), pp.4404–4409.  

Jaramillo, A.G., 2011. Understanding parasite ecology and evolution in the light of 

immunology. Trends in Ecology & Evolution, 26(11), pp.559–560.  

 

 



 
 

237 
 

Jeffery, J.A.L. et al., 2009. Characterizing the Aedes aegypti population in a 

Vietnamese village in preparation for a Wolbachia-based mosquito control strategy 

to eliminate dengue. PLoS Negleced Tropical Diseases, 3(11), pntd.0000552. 

Jensenius, M., Fournier, P.E. & Raoult, D., 2004. Rickettsioses and the international 

traveler. Clinical Infectious Diseases, 39(10), pp.1493–1499. 

Jervis-Bardy, J. et al., 2015. Deriving accurate microbiota profiles from human 

samples with low bacterial content through post-sequencing processing of Illumina 

MiSeq data. Microbiome, 3(1), pp.1–11. 

Jittapalapong, S. et al., 2010. Toxoplasmosis in rodents: ecological survey and first 

evidences in Thailand. Vector-Borne and Zoonotic Diseases, 11(3), pp.231–237.  

Johnson, M.M. & Odell, J.A., 2014. Nontuberculous mycobacterial pulmonary 

infections. Journal of Thoracic Disease, 6(3), pp.210–220.  

Jones, B.M., 1951. The growth of the harvest mite, Trombicula autumnalis Shaw. 

Parasitology, 41(3-4), pp.229–248. 

Jones, K.E. et al., 2008. Global trends in emerging infectious diseases. Nature, 

451(7181), pp.990–993. 

Joshi, N.A. & Fass, J.N., 2011. Sickle: A sliding-window, adaptive, quality-based 

trimming tool  for FastQ files, Available at: citeulike-article-id:13260426. 

Jousselin, E. et al., 2016. Assessment of a 16S rRNA amplicon Illumina sequencing 

procedure for studying the microbiome of a symbiont-rich aphid genus. Molecular 

Ecology Resources, 16(3), pp.628–640.  

Juckett, G., 2013. Arthropod bites. American family physician, 88(12), pp.841–847. 

Kabeya, H. et al., 2009. Detection of Bartonella tamiae DNA in ectoparasites from 

rodents in Thailand and their sequence similarity with bacterial cultures from Thai 

patients. Vector-Borne and Zoonotic Diseases, 10(5), pp.429–434.  



 
 

238 
 

Kamani, J. et al., 2013. Prevalence and diversity of Bartonella species in commensal 

rodents and ectoparasites from Nigeria, West Africa. PLoS neglected tropical 

diseases, 7(5),  pntd.0002246. 

Kamiya, T. et al., 2014. What determines species richness of parasitic organisms? A 

meta-analysis across animal, plant and fungal hosts. Biological Reviews, 89(1), 

pp.123–134.  

Kampen, H. et al., 2004. Neotrombicula autumnalis (Acari, Trombiculidae) as a 

vector for Borrelia burgdorferi sensu lato? Experimental and Applied Acarology, 

33(1-2), pp.93–102. 

Kaufmann, T. & Traub, R., 1966. Preliminary notes on parthenogenesis in a species 

of Trombiculid mite, Leptotrombidium arenicola Traub, 1960 (Acarina: 

Trombiculidae). Journal of Medical Entomology, 3(3-4), pp.256–258.  

Kelly, D.J. et al., 1994. Detection and characterization of Rickettsia tsutsugamushi 

(Rickettsiales: Rickettsiaceae) in infected Leptotrombidium (Leptotrombidium) 

fletcheri chiggers (Acari: Trombiculidae) with the polymerase chain reaction. Journal 

of Medical Entomology, 31(5), pp.691–699. 

Kelly, D.J. et al., 2009. Scrub typhus: the geographic distribution of phenotypic and 

genotypic variants of Orientia tsutsugamushi. Clinical Infecteous Diseases, 48(Suppl 

3), pp.203–230. 

Kelly, D.J., Foley, D.H. & Richards, A.L., 2015. A spatiotemporal database to track 

human scrub typhus using the vector map application. PLoS Neglected Tropical 

Diseases, 9(12), pntd.0004161. 

Kennaway, G.M., Baker, A.S. & Ball, A.D., 2004. A method for preparing lightly 

sclerotized mites for examination by transmission electron microscopy. Systematic 

and Applied Acarology, 9, pp.3–9. 

Kennedy, K. et al., 2014. Evaluating bias of Illumina-based bacterial 16S rRNA gene 

profiles. Applied and Environmental Microbiology. AEM.01451-14. 



 
 

239 
 

Kettle, D.S., 1984. Medical and Veterinary Entomology, Bristol: Mackays of Chatham 

Ltd. 

Khuntirat, B. et al., 2003. Characterization of Orientia tsutsugamushi isolated from 

wild-caught rodents and chiggers in northern Thailand. Annals of the New York 

Academy of Sciences, 990, pp.205–212. 

Kibbe, W.A., 2007. OligoCalc: an online oligonucleotide properties calculator. 

Nucleic Acids Research, 35(suppl 2), pp.43–46.  

Kim, H.C. et al., 2010. Serosurveillance of scrub typhus in small mammals collected 

from military training sites near the DMZ, Northern Gyeonggi-do, Korea, and 

analysis of the relative abundance of chiggers from mammals examined. The Korean 

Journal of Parasitology, 48(3), pp.237–243. 

Kindt, R. & Coe, R., 2005. Tree diversity analysis. A manual and software for 

common statistical methods for ecological and biodiversity studies. Available at: 

http://www.worldagroforestry.org/resources/databases/tree-diversity-analysis. 

Kitaoka, M., Asanuma, K. & Otsuji, J., 1974. Transmission of Rickettsia orientalis to 

man by Leptotrombidium akamushi at a scrub typhus endemic area in Akita 

Prefecture, Japan. The American journal of tropical medicine and hygiene, 23(5), 

pp.993–999. 

Klangthong, K. et al., 2015. The distribution and diversity of Bartonella species in 

rodents and their ectoparasites across Thailand. PLoS ONE, 10(10), pone.0140856. 

Kocianova, E., 1989. Nest ectoparasites (gamasid mites) as vectors for rickettsia 

under experimental conditions. Trudy Instituta Imeni Pastera, 66, pp.89–94,172. 

Kohls, G.M. et al., 1954. Studies on tsutsugamushi disease (scrub typhus, mite-bome 

typhus) in New Guinea and adjacent islands: Further observations on epidemiology 

and etiology. American Journal of Epidemiology, 41, pp.374–396. 

 



 
 

240 
 

Kopecký, J., Nesvorná, M. & Hubert, J., 2014. Bartonella-like bacteria carried by 

domestic mite species. Experimental and Applied Acarology, 64(1), pp.21–32.  

Korallo, N.P. et al., 2007. Are there general rules governing parasite diversity? Small 

mammalian hosts and gamasid mite assemblages. Diversity and Distributions, 13(3), 

pp.353–360.  

Kosoy, M. et al., 2008. Bartonella tamiae sp. nov., a newly recognized pathogen 

isolated from three human patients from Thailand. Journal of Clinical Microbiology, 

46(2), pp.772–775.  

Kozich, J.J. et al., 2013. Development of a dual-Index sequencing strategy and 

curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina 

sequencing platform. Applied and Environmental Microbiology, 79(17), pp.5112–

5120.  

Krantz, G.W. & Walter, D.E., 2009. A Manual of Acarology 3rd editio. G. W. Krantz & 

D. E. Walter, eds., Texas: Texas Tech University Press. 

Krasnov, B.R. et al., 2004. Flea species richness and parameters of host body, host 

geography and host “milieu.” Journal of Animal Ecology, 73(6), pp.1121–1128.  

Krasnov, B.R., 2008. Functional and evolutionary ecology of fleas, a model for 

ecological parasitology B. R. Krasnov, ed., New York: Cambridge University Press. 

Kudryashova, N.I., 1998. Chigger mites (Acariformes, Trombiculidae) of East 

Palearctics N. I. Kudryashova, ed., Moscow: KMK Scientific Press Ltd. 

Kuo, C.C., Huang, C.L. & Wang, H.C., 2011. Identification of potential hosts and 

vectors of scrub typhus and tick-borne spotted fever group rickettsiae in eastern 

Taiwan. Medical and Veterinary Entomology, 25, pp.169–177. 

 

 



 
 

241 
 

Kwong, W.K. & Moran, N.A., 2013. Cultivation and characterization of the gut 

symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. 

nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and 

Gilliamella apicola gen. nov., sp. nov., a memb. International Journal of Systematic 

and Evolutionary Microbiology, 63(6), pp.2008–2018.  

Lakshana, P., 1973. A Checklist of the Trombiculid Mites of Thailand (Prostigmata: 

Trombiculidae)., United States Army Medical Component, South East Asia Treaty 

Organization.  

Lakshana, P., 1969. Susa Audy & Nadchatram, A subgenus of Cheladonta Lipovsky et 

al., (New Status), with descriptions of two new species of Cheladonta from Thailand. 

Journal of Medical Entomology, 6(2), pp.135–139.  

Lawrence, A.L. et al., 2015. Evaluation of the bacterial microbiome of two flea 

species using  different DNA isolation techniques provides insights into flea host 

ecology. FEMS Microbiology Ecology. femsec.fiv134. 

Lê, S., Josse, J. & Husson, F., 2008. FactoMineR: An R Package for Multivariate 

Analysis. Journal of Statistical Software; Vol 1(1). Available at: 

https://www.jstatsoft.org/index.php/jss/article/view/v025i01. 

Leclerque, A. & Kleespies, R.G., 2012. A Rickettsiella bacterium from the hard tick, 

Ixodes  woodi: molecular taxonomy combining multilocus sequence typing (MLST) 

with significance testing. PLoS ONE, 7(5), pone.0038062. 

Lee, H.I. et al., 2011. Detection of Orientia tsutsugamushi, the causative agent of 

scrub typhus, in a novel mite species, Eushoengastia koreaensis, in Korea. Vector 

borne and zoonotic diseases (Larchmont, N.Y.), 11(3), pp.209–214. 

Lee, S.H. et al., 2012. Monthly occurrence of vectors and reservoir rodents of scrub 

typhus in an endemic area of Jeollanam-do, Korea. Korean Journal of Parasitology, 

50(4), pp.327–331.  

 



 
 

242 
 

Lekagul, B. & Jeffrey, A.M., 1977. Mammals of Thailand 1st ed. B. Lekagul & A. M. 

Jeffrey, eds., Bangkok: Sahakarnbhat Co. 

Lerdthusnee, K. et al., 2002. Efficiency of Leptotrombidium chiggers (Acari: 

Trombiculidae) at transmitting Orientia tsutsugamushi to laboratory mice. Journal 

of Medical Entomology, 39(3), pp.521–525. 

Lerdthusnee, K. et al., 2008. Surveys of rodent-borne disease in Thailand with a 

focus on scrub typhus assessment. Integrative Zoology, 3(4), pp.267–273. 

Lherminier, J. et al., 1999. Oligodeoxynucleotides as probes for in situ hybridization 

with transmission electron microscopy to specifically localize phytoplasma in plant 

cells. Molecular and Cellular Probes, 13(1), pp.41–47. 

Lin, P.R. et al., 2014. Field assessment of Orientia tsutsugamushi infection in small 

mammals and its association with the occurrence of human scrub typhus in Taiwan. 

Acta Tropica, 131, pp.117–123. 

Lindenfors, P. et al., 2007. Parasite species richness in carnivores: effects of host 

body mass, latitude, geographical range and population density. Global Ecology and 

Biogeography, 16(4), pp.496–509.  

Lindgren, E. & Jaenson, T.G., 2006. Lyme borreliosis in Europe: influences of climate 

and climate change, epidemiology, ecology and adaptation measures, Copenhagen. 

Lipovsky, L.J., 1954. Studies of the food habits of postlarval stages of chiggers 

(Acarina, Trombiculidae), University of Kansas. 

Lipovsky, L.J., Byers, G.W. & Kardos, E.H., 1957. Spermatophores: the mode of 

insemination of chiggers (Acarina: Trombiculidae). The Journal of Parasitology, 

43(3), pp.256–262.  

Lipovsky, L.J. & Schell, S.C., 1951. Collembola as food for chiggers (Acarina: 

Trombiculidae). The Journal of Parasitology, 37(3), pp.324–326.  



 
 

243 
 

Literak, I. et al., 2008. Larvae of chigger mites Neotrombicula spp. (Acari: 

Trombiculidae) exhibited Borrelia but no Anaplasma infections: a field study 

including birds from the Czech Carpathians as hosts of chiggers. Experimental and 

Applied Acarology, 44(4), pp.307–314.  

Liu, Y.X. et al., 2004. Characterization of Orientia tsutsugamushi strains isolated in 

shandong province, China by immunofluorescence and restriction fragment length 

polymorphism (RFLP) analyses. Southeast Asian Journal of Tropical Medicine and 

Public Health, 35(2), pp.353–357. 

Liu, Y.-X. et al., 2013. Consistency of the key genotypes of Orientia tsutsugamushi in 

scrub typhus patients, rodents, and chiggers from a new endemic focus of northern 

China. Cell Biochemistry and Biophysics, 67(3), pp.1461–1466. 

Liu, Z. & Hsu, P., 1985. Experimental ecology of chiggers: parthenogenesis of 

Trombicula akamushi var. deliensis Walch, 1922. Annual Bulletin of the Society of 

Parasitology, Guangdong Province, 7, pp.206–207. 

Loan, H.K. et al., 2015. Bartonella species and trombiculid mites of rats from the 

Mekong delta of Vietnam. Vector-Borne and Zoonotic Diseases, 15(1), pp.40–47.  

LoBue, P.A., Enarson, D.A. & Thoen, C.O., 2010. Tuberculosis in humans and 

animals: an overview. The International Journal of Tuberculosis and Lung Disease, 

14(9), pp.1075–1078. 

Loman, N.J. & Pallen, M.J., 2015. Twenty years of bacterial genome sequencing. 

Nature Review Microbiology, 13(12), pp.787–794.  

Loomis, R.B., 1956. The chigger mites of Kansas (Acarina, Trombiculidae). University 

of Kansas Science Bulletin, 37(19), pp.1195–1443. 

Lopatina, I.V. et al., 1999. An experimental study of the capacity of the rat mite 

Ornithonyssus bacoti (Hirst, 1913) to ingest, maintain and transmit Borrelia. 

Meditsinskaia Parazitologiia i Parazitarnye Bolezni, 2, pp.26–30. 



 
 

244 
 

Lozupone, C. & Knight, R., 2005. UniFrac: a new phylogenetic method for comparing 

microbial communities. Applied and Environmental Microbiology, 71(12), pp.8228–

8235.  

Lysy, J. et al., 1979. Isolation of Francisella tularensis from mites Haemogamasus 

nidi and Laelaps hilaris in western slovakia. Zentralblatt fur Bakteriologie, 

Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe 

A: Medizinische Mikrobiologie und Parasitologie, 244(2-3), pp.324–326. 

Mamedov, T.G. et al., 2008. A fundamental study of the PCR amplification of GC-rich 

DNA templates. Computational Biology and Chemistry, 32(6), pp.452–457.  

Manosroi, J. et al., 2006. Determination and geographic distribution of Orientia 

tsutsugamushi serotypes in Thailand by nested polymerase chain reaction. 

Diagnostic Microbiology and Infectious Disease, 55(3), pp.185–190. 

Manosroi, J. et al., 2003. Early diagnosis of scrub typhus in Thailand from clinical 

specimens by nested polymerase chain reaction. The Southeast Asian Journal of 

Tropical Medicine and Public Health, 34(4), pp.831–838. 

Marchant, R. et al., 2002. The frequency and characteristics of highly thermophilic 

bacteria in cool soil environments. Environmental Microbiology, 4(10), pp.595–602. 

Marsh, S.E. et al., 2013. Association between Pseudonocardia symbionts and Atta 

leaf-cutting ants suggested by improved isolation methods. International 

Microbiology, 16(1), pp.17–25. 

Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput 

sequencing reads. EMBnet.Journal, 17(1): Next Generation Sequencing Data 

Analysis. 

Martin, O.Y. et al., 2012. Infections with Wolbachia and Spiroplasma in the 

Scathophagidae and other Muscoidea. Journal of Molecular Epidemiology and 

Evolutionary Genetics in Infectious Diseases, 12(2), pp.315–323.  



 
 

245 
 

Martinson, V.G. et al., 2011. A simple and distinctive microbiota associated with 

honey bees and bumble bees. Molecular Ecology, 20(3), pp.619–628. 

Masella, A.P. et al., 2012. PANDAseq: paired-end assembler for Illumina sequences. 

BMC Bioinformatics, 13(1), pp.1–7.  

Masuzawa, T., 2004. Terrestrial distribution of the Lyme borreliosis agent Borrelia 

burgdorferi sensu lato in East Asia. Japanese Journal of Infectious Diseases, 57(6), 

pp.229–235. 

Mathieson, B.R.F. & Lehane, M.J., 1996. Isolation of the Gram-negative bacterium, 

Serratia marcescens, from the sheep scab mite, Psoroptes ovis. Veterinary Record, 

138(9), pp.210–211.  

Mayne, P., 2011. Emerging incidence of Lyme borreliosis, babesiosis, bartonellosis, 

and granulocytic ehrlichiosis in Australia. International Journal of General Medicine, 

4, pp.845–852.  

McCarthy, C.B., Diambra, L.A. & Rivera Pomar, R. V, 2011. Metagenomic analysis of 

taxa associated with Lutzomyia longipalpis, vector of visceral Leishmaniasis, using 

an unbiased high-throughput approach. PLoS Neglected Tropical Diseases, 5(9), 

PMC3167787. 

McDonald, D. et al., 2012. An improved Greengenes taxonomy with explicit ranks 

for ecological and evolutionary analyses of bacteria and archaea. ISME J., 6. 

ismej.2011.139. 

McDowell, D.G., Burns, N.A. & Parkes, H.C., 1998. Localised sequence regions 

possessing high melting temperatures prevent the amplification of a DNA mimic in 

competitive PCR. Nucleic Acids Research, 26(14), pp.3340–3347. 

McKinney, M.L., 2008. Effects of urbanization on species richness: A review of plants 

and animals. Urban Ecosystems, 11(2), pp.161–176.  

 



 
 

246 
 

McQuaid, C.F. & Britton, N.F., 2013. Host-parasite nestedness: A result of co-

evolving trait- values. Ecological Complexity, 13, pp.53–59. 

Melvin, R., Smith, C.L. & Graham, O.H., 1943. Some Observations on Chiggers. 

Journal of Economic Entomology, 36(6), p.940.  

Minard, G. et al., 2015. French invasive Asian tiger mosquito populations harbor 

reduced bacterial microbiota and genetic diversity compared to Vietnamese 

autochthonous relatives. Frontiers in Microbiology, 6. fmicb.2015.00970. 

Misic, A.M. et al., 2015. The shared microbiota of humans and companion animals 

as evaluated from Staphylococcus carriage sites. Microbiome, 3(1), pp.1–19.. 

Mohd Zain, S.N. et al., 2015. Ectoparasites of murids in peninsular Malaysia and 

their associated diseases. Parasites & Vectors, 8, p.254.  

Moniuszko, H. & Mąkol, J., 2016. Host-parasite association in trombiculid mites 

(Actinotrichida: Trombiculidae) of temperate zone - the case of Hirsutiella 

zachvatkini (Schluger, 1948); are we dealing with prolonged contact with the host? 

Parasites & Vectors, 9(1), pp.1–9.  

Moran, N.A., McCutcheon, J.P. & Nakabachi, A., 2008. Genomics and evolution of 

heritable bacterial symbionts. Annual Review of Genetics, 42, pp.165–190. 

Morand, S., 2015. (macro-) Evolutionary ecology of parasite diversity: From 

determinants of parasite species richness to host diversification. International 

Journal for Parasitology. Parasites and Wildlife, 4(1), pp.80–87.  

Morand, S. et al., 2015. Global parasite and Rattus rodent invasions: The 

consequences for rodent-borne diseases. Integrative Zoology, 10(5), pp.409-423.  

Morand, S., Goüy de Bellocq, J., Stanko, M. & Miklisova, D., 2004. Is sex-biased 

ectoparasitism related to sexual size dimorphism in small mammals of central 

Europe? Parasitology, 129, pp. 505—510. 



 
 

247 
 

Morand, S., Jittapalapong, S., et al., 2014. Infectious diseases and their outbreaks in 

Asia-Pacific: biodiversity and its regulation loss matter. PLoS ONE, 9(2), 

pone.0090032. 

Morand, S., 2000. Wormy world: comparative tests of theoretical hypotheses on 

parasite species richness. In R. Poulin, S. Morand, & A. Skorping, eds. Evolutionary 

Biology of Host-Parasite Relationships: Theory Meets Reality. Amsterdam: Elesvier, 

pp. 63–79. 

Morand, S., McIntyre, K.M. & Baylis, M., 2014. Domesticated animals and human 

infectious diseases of zoonotic origins: Domestication time matters. Infection, 

Genetics and Evolution, 24, pp.76–81. 

Morand, S. & Poulin, R., 2000. Nematode parasite species richness and the 

evolution of spleen size in birds. Canadian Journal of Zoology, 78(8), pp.1356–1360.  

Morishita, T. & Nakamatsu, M., 1958. A new method of rearing Trombicula fuji, 

Tokyo:  Nihon Iji Shinpo. 

Mouillot, D. et al., 2008. Connectance and parasite diet breadth in flea-mammal 

webs.  Ecography, 31, pp.16–20. 

Murillo, N., Aubert, J. & Raoult, D., 2014. Microbiota of Demodex mites from 

rosacea patients and controls. Microbial Pathogenesis, 71-72, pp.37–40.  

Myers, N. et al., 2000. Biodiversity hotspots for conservation priorities. Nature, 

403(6772), pp.853–858. 

Nadchatram, M., 2006. A review of endoparasitic acarines of Malaysia with special 

reference to novel endoparasitism of mites in amphibious sea snakes and 

supplementary notes on ecology of chiggers. Tropical biomedicine, 23(1), pp.1–22. 

Nadchatram, M., 1970. Correlation of habitat, environment and color of chiggers, 

and their potential significance in the epidemiology of scrub typhus in Malaya 

(Prostigmata: Trombiculidae). Journal of Medical Entomology, 7(2), pp.131–144.  



 
 

248 
 

Nadchatram, M., 1989. Descriptions of five new species of Gahrliepia Ousemans 

(Acari:  Prostigmata: Trombiculidae) from north Sumatra, Indonesia. Raffles Bulletin 

of Zoology, 37(1&2), pp.3–15. 

Nadchatram, M., 1963a. Lorillatum, a new subgenus of Leptotrombidium, with 

description of a new species (Acarina: Trombiculidae). Pacific Insects, 5(2), pp.473–

477. 

Nadchatram, M., 1967. Notes on the genus Toritrombicula (Sasa et al.) with 

designation of neotype, description of nymph and redescription of larva of tori. 

Densipiliata (Walch), and descriptions of two new species from Southeast Asia 

(Acarina : Trombiculidae). Journal of Medical Entomology, 4(4), pp.401–415.  

Nadchatram, M., 1963b. The larva an nymph of Odontacarus audyi (Radford) 

(Acarina: Trombiculidae). Pacific Insects, 5(3), pp.535–540. 

Nadchatram, M. & Dohany, A.L., 1974. A pictorial key to the subfamilies, genera and 

subgenera of Southeast Asian chiggers (Acari, Prostigmata, Trombiculidae), Kuala 

Lumpur: Institute for Medical Research. 

Nadchatram, M. & Dohany, A.L., 1980. Leptotrombidium (Leptotrombidium) 

umbricola, new species, a probable vector of scrub typhus in Peninsular Malaysia. 

Japanese Journal of Medical Science & Biology, 33(5), pp.277–282. 

Nadchatram, M., Goff, M.L. & Thanalukshumi, P., 1980. The genus Schoengastia 

(Acari:  Trombiculidae) in the Asiatic-Pacific region. Journal of Medical Entomology, 

17(3), pp.268–281.  

Nadchatram, M. & Kethley, J., 1974. A collection of reptilian chiggers from Thailand 

with descriptions of three new species (Acari, Prostigmata, Trombiculidae) and 

preliminary notes on their biologies [Herpetacarus leprochaeta, Microtrombicula 

chamlongi, Herpetacarus cadigani]. Journal of Medical Entomology.  

Nadchatram, M. & Lakshana, P., 1965. Two new Schoengastiine chiggers from 

Thailand (Acarina: Trombiculidae). Journal of Medical Entomology, 1(4), pp.329–34.  



 
 

249 
 

Nadchatram, M. & Traub, R., 1971. Chiggers of the genus Helenicula of the Old 

World including descriptions of 9 new species (Acarina: Prostigmata, 

Trombiculidae). Journal of Medical Entomology, 8(5), pp.562–597. 

Nagayo, M. et al., 1917. On the nymph and prosopon of the tsutsugamushi, 

Leptotrombidium akamushi, n. sp. (Trombidium akamushi Brumpt), carrier of the 

tsutsugamushi disease. The Journal of Experimental Medicine, 25(2), pp.255–272. 

Nazina, T.N. et al., 2001. Taxonomic study of aerobic thermophilic bacilli: 

descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus 

uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus 

stearothermophilus, Bacillus  thermocatenulatus. International Journal of 

Systematic and Evolutionary Microbiology, 51(2), pp.433–46.  

Neal, T.J. & Barnett, H.C., 1961. The life cycle of the scrub typhus chigger mite, 

Trombicula akamushi. Annals of the Entomological Society of America, 54(2), 

pp.196–203.  

Nelson, M.C. et al., 2014. Analysis, optimization and verification of Illumina-

generated 16S rRNA gene amplicon surveys. PLoS ONE, 9(4), pone.0094249. 

Netusil, J. et al., 2005. Presence of Borrelia burgdorferi sensu lato in mites 

parasitizing small rodents. Vector Borne and Zoonotic Diseases (Larchmont, N.Y.), 

5(3), pp.227–232. 

Netusil, J. et al., 2013. The occurrence of Borrelia burgdorferi sensu lato in certain 

ectoparasites (Mesostigmata, Siphonaptera) of Apodemus flavicollis and Myodes 

glareolus in chosen localities in the Czech Republic. Acta Parasitologica, 58(3), 

pp.337–341. 

Nikolenko, S.I., Korobeynikov, A.I. & Alekseyev, M.A., 2013. BayesHammer: Bayesian 

clustering for error correction in single-cell sequencing. BMC Genomics, 14(1), pp.1–

11.  

 



 
 

250 
 

Norte, A.C. et al., 2015. The importance of lizards and small mammals as reservoirs 

for Borrelia lusitaniae in Portugal. Environmental Microbiology Reports, 7(2), 

pp.188–193.  

Novelli, V.M. et al., 2008. Effects of radiation (Cobalt-60) on the elimination of 

Brevipalpus phoenicis (Acari: Tenuipalpidae) Cardinium endosymbiont. Experimental 

and Applied Acarology, 45(3-4), pp.147–153. 

Nunn, C.L. et al., 2003. Comparative tests of parasite species richness in primates. 

The American Naturalist, 162(5), pp.597–614.  

Nunn, C.L. et al., 2005. Latitudinal gradients of parasite species richness in primates. 

Diversity and Distributions, 11(3), pp.249–256.  

O’brien, R.M., 2007. A Caution regarding rules of thumb for variance inflation 

factors. Quality and Quantity, 41(5), pp.673–690.  

Ogawa, M. & Ono, T., 2008. Epidemiological characteristics of tsutsugamushi 

disease in Oita prefecture, Japan: yearly and monthly occurrences of its infections 

and serotypes of its causative agent, Orientia tsutsugamushi, during 1984-2005. 

Microbiology Immunology, 52, pp.135–143. 

Ohashi, N. et al., 1992. Diversity of immunodominant 56-kDa type-specific antigen 

(TSA) of Rickettsia tsutsugamushi. Sequence and comparative analyses of the genes 

encoding TSA homologues from four antigenic variants. Journal of Biological 

Chemistry, 267(18), pp.12728–12735. 

Oksanen, J. et al., 2015. vegan: Community ecology package. R package version 2.3-

1. Available at: http://cran.r-project.org/package=vegan. 

Oldfield, G.N., Hobza, R.F. & Wilson, N.S., 1970. Discovery and characterization of 

spermatophores in the Eriophyoidea (Acari). Annals of the Entomological Society of 

America, 63(2), pp.520–526.  

 



 
 

251 
 

Opsahl, T., 2009. Structure and evolution of weighted networks., pp.104–122. 

Available at: http://toreopsahl.com/tnet/. 

Osuga, K. et al., 1991. A case of tsutsugamushi disease probably contracted in 

Africa. European Journal of Clinical Microbiology and Infectious Diseases, 10(2), 

pp.95–96.  

Oudemans, A.C., 1912. Die bis jetzt bekannten Larven von Thrombidiidae und 

Erythraeidae. Zoologische Jahrbücher. Jena. Supplement, 14(1), pp.1–223. 

Palmeirim, M. et al., 2014. Helminth parasite species richness in rodents from 

Southeast Asia: role of host species and habitat. Parasitology Research, 113(10), 

pp.3713–3726.  

Paris, D.H. et al., 2013. Unresolved problems related to scrub typhus: a seriously 

neglected life-threatening disease. The American Journal of Tropical Medicine and 

Hygiene, 89(2), pp.301–307. 

Park, S.W. et al., 2015. Urbanization of scrub typhus disease in South Korea. PLoS 

Neglected Tropical Diseases, 9(5), pntd.0003814. 

Peng, P.Y. et al., 2015. Faunal analysis of chigger mites (Acari: Prostigmata) on small 

mammals in Yunnan province, southwest China. Parasitology Research, pp.1–19.  

Peng, P.Y. et al., 2016. Species diversity of ectoparasitic chigger mites (Acari: 

Prostigmata) on small mammals in Yunnan Province, China. Parasitology Research, 

pp.1–14.  

Perrucci, S. et al., 2005. Relationship between Psoroptes cuniculi and the internal 

bacterium Serratia marcescens. Experimental and Applied Acarology, 36(3), pp.199–

206. 

Peterson, R.K.D., 2009. The Real Enemy: Scrub typhus and the invasion of Sansapor. 

American Entomologist, 55(2), pp.91–94.  



 
 

252 
 

Petrov, V.G., 1971. On the role of mite Ornithonyssus bacoti Hirst in the 

preservation of the causal agent of tularemia and transmission to white mice. 

Parazitologiia, 5, pp.7–14. 

Pham, X.D. et al., 2001. Detection of Orientia tsutsugamushi (Rickettsiales: 

Rickettsiaceae) in unengorged chiggers (Acari: Trombiculidae) from Oita prefecture, 

Japan, by nested polymerase chain reaction. Journal of Medical Entomology, 38(2), 

pp.308–311.  

Phasomkusolsil, S. et al., 2012. Influence of Orientia tsutsugamushi infection on the 

developmental biology of Leptotrombidium imphalum and Leptotrombidium 

chiangraiensis ( Acari : Trombiculidae ). Journal of Medical Entomology, 49(6), 

pp.1270-1275. 

Phasomkusolsil, S. et al., 2009. Transstadial and transovarial transmission of 

Orientia tsutsugamushi in Leptotrombidium imphalum and Leptotrombidium 

chiangraiensis (Acari: Trombiculidae). Journal of Medical Entomology, 46(6), 

pp.1442–1445.  

Phetsouvanh, R. et al., 2015. The diversity and geographical structure of Orientia 

tsutsugamushi strains from scrub typhus patients in Laos. PLoS Neglected Tropical 

Diseases, 9(8), pntd.0004024. 

Pilosof, S. et al., 2015. Potential parasite transmission in multi-host networks based 

on parasite sharing A. J. Yates, ed. PLoS ONE, 10(3), PMC4352066. 

Pinto, A.J. & Raskin, L., 2012. PCR biases distort bacterial and archaeal community 

structure in Pyrosequencing datasets. PLoS ONE, 7(8). pone.0043093. 

Pogacnik, M. & Kansky, A., 1998. Trombidiosis. Acta Dermatovenerologica APA, 7(3-

4), pp.173–177. 

Poisot, T. et al., 2013. Facultative and obligate parasite communities exhibit 

different network properties. Parasitology, 140(11), pp.1340–1345.  



 
 

253 
 

Ponlet, N. et al., 2011. Incorporating parasite systematics in comparative analyses of 

variation in spleen mass and testes sizes of rodents. Parasitology, 138(Special Issue 

13), pp.1804–1814.  

Ponnusamy, L. et al., 2014. Diversity of Rickettsiales in the microbiome of the Lone 

star tick, Amblyomma americanum. Applied and Environmental Microbiology, 80(1), 

pp.354–359.  

Poulin, R., 2010. Network analysis shining light on parasite ecology and diversity. 

Trends in Parasitology, 26(10), pp.492–498. 

Poulin, R., 2014. Parasite biodiversity revisited: frontiers and constraints. 

International Journal for Parasitology, 44(9), pp.581–589.  

Poulin, R., 2004. Parasite species richness in New Zealand fishes: a grossly 

underestimated component of biodiversity? Diversity and Distributions, 10(1), 

pp.31–37.  

Price, M.N., Dehal, P.S. & Arkin, A.P., 2010. FastTree 2 ? Approximately maximum-

likelihood trees for large alignments. PLoS ONE, 5(3), pone.0009490. 

Pukall, R. et al., 2006. Acaricomes phytoseiuli gen. nov., sp. nov., isolated from the 

predatory mite Phytoseiulus persimilis. International Journal of Systematic and 

Evolutionary Microbiology, 56(2), pp.465–469. 

Putman, A.I. & Carbone, I., 2014. Challenges in analysis and interpretation of 

microsatellite data for population genetic studies. Ecology and Evolution, 4(22), 

pp.4399–4428.  

Qiu, W.-G. et al., 2008. Wide distribution of a high-virulence Borrelia burgdorferi 

clone in Europe and North America. Emerging Infectious Diseases, 14(7), pp.1097–

1104.  

 



 
 

254 
 

Queiros, J. et al., 2015. Effect of microsatellite selection on individual and 

population genetic inferences: an empirical study using cross-specific and species-

specific amplifications. Molecular Ecology Resources, 15(4), pp.747–760. 

R Core Team, 2015. R: A language and environment for statistical computing. 

Available at: https://www.r-project.org/. 

Rapmund, G., 1984. Rickettsial diseases of the Far East: New perspectives. Journal 

of Infectious Diseases, 149(3), pp.330–338.  

Rapmund, G. et al., 1972. Transovarial transmission of Rickettsia tsutsugamushi in 

Leptotrombidium (Leptotrombidium) arenicola Traub (Acarina: Trombiculidae). 

Journal of Medical Entomology, 9(1), pp.71–72.  

Rasmussen, T.T. et al., 2000. Resident aerobic microbiota of the adult human nasal 

cavity.  APMIS : Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 

108(10), pp.663–675. 

Rastogi, G. et al., 2009. Isolation and characterization of cellulose-degrading 

bacteria from  the deep subsurface of the Homestake gold mine, Lead, South 

Dakota, USA. Journal  of Industrial Microbiology & Biotechnology, 36(4), pp.585–

598.  

Razzauti, M. et al., 2015. A comparison between transcriptome sequencing and 16S 

metagenomics for detection of bacterial pathogens in wildlife. PLoS Neglected 

Tropical Diseases, 9(8), pntd.0003929. 

Reche, M.H.L.R. & Fiuza, L.M., 2005. Bacterial diversity in rice-field water in Rio 

Grande do Sul. Brazilian Journal of Microbiology, 36, pp.253–257. 

Ree, H.I., Lee, I.Y. & Cho, M.K., 1992. Study on vector mites of tsutsugamushi 

disease in Cheju Island, Korea. The Korean Journal of Parasitology, 30(4), pp.341–

348. 

 



 
 

255 
 

Reeves, W.K. et al., 2007. Rickettsial pathogens in the tropical rat mite 

Ornithonyssus bacoti  (Acari: Macronyssidae) from Egyptian rats (Rattus spp.). 

Experimental and Applied Acarology, 41(1-2), pp.101–107. 

Reeves, W.K., Dowling, A.P.G. & Dasch, G.A., 2006. Rickettsial agents from parasitic 

dermanyssoidea (Acari: Mesostigmata). Experimental and Applied Acarology, 38(2-

3), pp.181–188. 

Rivera, A. et al., 2013. Spiroplasma infectious agents of plants. European Journal of 

Experimental Biology, 3, pp.583–591. 

Rivers, D.B. et al., 1991. Mosquitocidal activity of Bacillus laterosporus. Journal of 

Invertebrate Pathology, 58(3), pp.444–447.  

Rizzo, J.M. & Buck, M.J., 2012. Key principles and clinical applications of “Next-

Generation” DNA sequencing. Cancer Prevention Research, 5(7), pp.887–900.  

Roberts, L.W., Muul, I. & Robinson, D.M., 1977. Numbers of Leptotrombidium 

(Leptotrombidium) deliense (Acarina: Trombiculidae) and prevalence of Rickettsia 

tsutsugamushi in adjacent habitats of peninsular Malaysia. Southeast Asian Journal 

of Tropical Medicine and Public Health, 8, pp.207–213. 

Roberts, L.W., Rapmund, G. & Gadigan, F.G., 1977. Sex ratios in Rickettsia 

tsutsugamushi-infected and noninfected colonies of Leptotrombidium (Acari: 

Trombiculidae). Journal of Medical Entomology, 14(1), pp.89–92.  

Rodkvamtook, W. et al., 2013. Scrub typhus outbreak, Northern Thailand, 2006-

2007. Emerging Infectious Diseases, 19(5), pp.774–777. 

Rodrigues Hoffmann, A. et al., 2014. The skin microbiome in healthy and allergic 

dogs. PLoS ONE, 9(1), pone.0083197. 

Ros, V.I.D. et al., 2012. Diversity and recombination in Wolbachia and Cardinium 

from Bryobia spider mites. BMC Microbiology, 12(Suppl 1), pp.13. PMC3287510. 



 
 

256 
 

Ruang-areerate, T. et al., 2011. Genotype diversity and distribution of Orientia 

tsutsugamushi causing scrub typhus in Thailand. Journal of Clinical Microbiology, 

49(7), pp.2584–2589. 

Rubin, B.E.R. et al., 2014. DNA extraction protocols cause differences in 16S rRNA 

amplicon sequencing efficiency but not in community profile composition or 

structure. Microbiology Open, 3(6), pp.910–921.  

Ruiu, L. et al., 2006. Lethal and sublethal effects of Brevibacillus laterosporus on the 

housefly (Musca domestica). Entomologia Experimentalis et Applicata, 118(2), 

pp.137–144.  

Ruiu, L., Satta, A. & Floris, I., 2013. Emerging entomopathogenic bacteria for insect 

pest management. Bulletin of Insectology, 66(2), pp.181–186. 

Sackton, T.B. & Hartl, D.L., 2013. Meta-analysis reveals that genes regulated by the 

Y chromosome in Drosophila melanogaster are preferentially localized to repressive 

chromatin. Genome Biology and Evolution, 5(1), pp.255–266.  

Salter, S. et al., 2014. Reagent contamination can critically impact sequence-based 

microbiome analyses. BMC Biology, 12, pp.87. 

Sanders, J.G. et al., 2014. Stability and phylogenetic correlation in gut microbiota: 

lessons from ants and apes. Molecular Ecology, 23(6), pp.1268–83.  

Sanschagrin, S. & Yergeau, E., 2014. Next-generation sequencing of 16S ribosomal 

RNA gene amplicons. Journal of Visualized Experiments : JoVE, 90, p.e51709.  

Santibáñez, P. et al., 2015. The role of chiggers as human pathogens. In A. Samie, 

ed. An  Overview of Tropical Diseases. InTech, Chapters published online. 

Sasa, M., 1961. Biology of chiggers. Annual Review of Entomology, 6(1), pp.221–244.  

 

 



 
 

257 
 

Sasa, M. et al., 1957. Notes on the bionomics of unengorged larvae of Trombicula 

scutellaris and Trombicula akamushi, with special references to the mechanisms of 

cluster  formation and reaction to carbon dioxide expired by the hosts. Studies on 

Tsutsugamushi. 90. The Japanese Journal of Experimental Medicine, 27(1-2), pp.31–

43. 

Saul, A., 2003. Zooprophylaxis or zoopotentiation: the outcome of introducing 

animals on vector transmission is highly dependent on the mosquito mortality while 

searching. Malaria Journal, 2(1), pp.1–18.  

Scarborough, C.L., Ferrari, J. & Godfray, H.C.J., 2005. Aphid protected from 

pathogen by endosymbiont. Science, 310(5755), p.1781. 

Schäfer, M.L. et al., 2006. Influence of landscape structure on mosquitoes (Diptera: 

Culicidae) and dytiscids (Coleoptera: Dytiscidae) at five spatial scales in Swedish 

wetlands. Wetlands, 26(1), pp.57–68.  

Schipper, J. et al., 2008. The status of the world’s land and marine mammals: 

diversity, threat, and knowledge. Science, 322(5899), pp.225–230. 

Schloss, P.D. et al., 2006. Bacteria associated with the guts of two Wood-boring 

beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). 

Environmental Entomology.  

Schulert, G.S. & Gigante, J., 2014. Summer penile syndrome: an acute 

hypersensitivity reaction. The Journal of Emergency Medicine, 46(1), pp.21–22.  

Schütte, C. et al., 2008. Novel bacterial pathogen Acaricomes phytoseiuli causes 

severe  disease symptoms and histopathological changes in the predatory mite 

Phytoseiulus persimilis (Acari, Phytoseiidae). Journal of Invertebrate Pathology, 

98(2), pp.127– 135.  

Schütte, C. & Dicke, M., 2008. Verified and potential pathogens of predatory mites 

(Acari:  Phytoseiidae). Experimental and Applied Acarology, 46(1-4), pp.307–328.  



 
 

258 
 

Schwan, T.G. & Piesman, J., 2002. Vector interactions and molecular adaptations of 

Lyme disease and relapsing fever spirochetes associated with transmission by ticks. 

Emerging Infectious Disease Journal, 8(2), p.115.  

Seipke, R.F. et al., 2013. Analysis of the bacterial communities associated with two 

ant–plant symbioses. Microbiology Open, 2(2), pp.276–283.  

Seto, J. et al., 2013. Proposed vector candidate: Leptotrombidium palpale for 

Shimokoshi type Orientia tsutsugamushi. Microbiology and Immunology, 57(2), 

pp.111–117.  

Shah, D.H. et al., 2005. Identification of Salmonella gallinarum virulence genes in a 

chicken infection model using PCR-based signature-tagged mutagenesis. 

Microbiology, 151(12), pp.3957–3968. 

Shatrov, A., 2015. Comparative morphology and ultrastructure of the prosomal 

salivary glands in the unfed larvae Leptotrombidium orientale (Acariformes, 

Trombiculidae), a possible vector of tsutsugamushi disease agent. Experimental and 

Applied Acarology, 66(3), pp.347–367.  

Shatrov, A.B., 1992. The origin of parasitism in trombiculid mites (Acariformes: 

Trombiculidae). Parazitologiia, 26(1), pp.3–12. 

Shatrov, A.B., 2009. Stylostome formation in trombiculid mites (Acariformes: 

Trombiculidae). Experimental and Applied Acarology, 49(4), pp.261–280. 

Shatrov, A.B. & Kudryashova, N.I., 2008. Taxonomic ranking of major trombiculid 

subtaxa with remarks on the evolution of host-parasite relationships (Acariformes: 

Parasitengona: Trombiculidae). Annales Zoologici, 58(2), pp.279–287.  

Shatrov, A.B. & Kudryashova, N.I., 2006. Taxonomy, life cycles and the origin of 

parasitism in trombiculid mites. In S. Morand, B. R. Krasnov, & R. Poulin, eds. 

Micromammals and Macroparasites From Evolutionary Ecology to Management. 

Tokyo: Springer Japan, pp. 119–140. 



 
 

259 
 

Shatrov, A.B. & Stekolnikov, A.A., 2011. Redescription of a human-infesting 

European trombiculid mite Kepkatrombicula desaleri (Acari: Trombiculidae) with 

data on its mouthparts and stylostome. International Journal of Acarology, 

37(Supplement 1), pp.176–193. 

Shelomi, M. et al., 2013. Analysis of the gut microbiota of walking sticks 

(Phasmatodea). BMC Research Notes, 6(1), pp.1–10.  

Shim, S.K. et al., 2009. Characterisation of Orientia tsutsugamushi genotypes from 

wild rodents and chigger mites in Korea. Clinical Microbiology and Infection, 15 

(Suppl 2), pp.311–312. 

Shin, E.H. et al., 2014. Transovarial transmission of Orientia tsutsugamushi in 

Leptotrombidium palpale (Acari: Trombiculidae). PLoS ONE, 9(4). pone.0088453. 

Shirai, A. et al., 1982. Serological analysis of Rickettsia tsutsugamushi isolates from 

North Queensland. The Australian Journal of Experimental Biology and Medical 

Science, 60(2), pp.203–205. 

Simon, J.C. et al., 2011. Facultative Symbiont Infections Affect Aphid Reproduction. 

PLoS ONE, 6(7), pone.0021831. 

Skaljac, M. et al., 2013. Diversity and localization of bacterial symbionts in three 

whitefly species (Hemiptera: Aleyrodidae) from the east coast of the Adriatic Sea. 

Bulletin of Entomological Research, 103(1), pp.48–59. 

Smith, E.P. & van Belle, G., 1984. Nonparametric estimation of species richness. 

Biometrics, 40(1), pp.119–129.  

Soergel, D.A.W. et al., 2012. Selection of primers for optimal taxonomic 

classification of environmental 16S rRNA gene sequences. The ISME Journal, 6(7), 

pp.1440–1444. 

 



 
 

260 
 

Sonesson, A. et al., 2013. Sensitization to skin-associated microorganisms in adult 

patients with atopic dermatitis is of importance for disease severity. Acta Dermato-

Venereologica, 93(3), pp.340–345. 

Sonthayanon, P. et al., 2010. High rates of homologous recombination in the mite 

endosymbiont and opportunistic human pathogen Orientia tsutsugamushi. PLoS 

Neglected Tropical Diseases, 4(7). pntd.0000752.   

Sriwongpan, P. et al., 2013. Clinical indicators for severe prognosis of scrub typhus. 

Risk Management and Healthcare Policy, 6, pp.43–49. 

Stekolnikov, A.A. et al., 2014. Neotrombicula inopinata (Acari: Trombiculidae) - a 

possible causative agent of trombiculiasis in Europe. Parasites & Vectors, 7, p.90.  

Stekolnikov, A.A., 2014. A new genus and two new species of chigger mites (Acari: 

Trombiculidae) from the Laotian rock-rat Laonastes aenigmamus Jenkins, Kilpatrick, 

Robinson & Timmins (Rodentia: Diatomyidae). Systematic Parasitology, 87(1),pp.21. 

Stekolnikov, A.A., 2013. Leptotrombidium (Acari: Trombiculidae) of the World. 

Zootaxa, 3728(1). zootaxa.3728.1.1. 

Stouthamer, R., Breeuwer, J.A. & Hurst, G.D., 1999. Wolbachia pipientis: microbial 

manipulator of arthropod reproduction. Annual Review of Microbiology, 53, pp.71–

102. 

Strickman, D., 2001. Scrub typhus. In M. W. Service, ed. The encyclopedia of 

arthropod-transmitted infections. New York: CABI Publishing, pp. 456–462. 

Suh, E. et al., 2015. Inter-population variation for Wolbachia induced reproductive 

incompatibility in the haplodiploid mite Tetranychus urticae. Experimental and 

Applied Acarology, 65(1), pp.55–71. 

Suputtamongkol, Y. et al., 2009. Epidemiology and clinical aspects of rickettsioses in 

Thailand. Annals of the New York Academy of Sciences, 1166, pp.172–179. 



 
 

261 
 

Suzuki, H., 1980. Studies on the parasite fauna of Thailand, Five new species of 

trombiculid mites found in Thailand (Prostigmata : Trombiculidae). Tropical 

Medicine, 22(2), pp.75–87. 

Takahashi, M. et al., 1997. Occurrence of high ratio of males after introduction of 

minocycline in a colony of Leptotrombidium fletcheri infected with Orientia 

tsutsugamushi. European Journal of Epidemiology, 13(1), pp.19–23.  

Takahashi, M., Takahashi, K. & Misumi, H., 2012. Neotrombicula teuriensis (Acari: 

Trombiculidae): a new species of chigger mite collected from the nesting grounds of 

the Rhinoceros Auklet Cerorhinca monocerata (Pallas, 1811) on Teuri Island, 

Northwestern Hokkaido, Japan. Medical Entomology and Zoology, 63(2), pp.109–

112,133. 

Takahashi, T. et al., 2000. A serological survey on erysipelas in chickens by growth 

agglutination test. Journal of Veterinary Medicine. B, Infectious Diseases and 

Veterinary Public Health, 47(10), pp.797–799. 

Takhampunya, R. et al., 2014. Characterization based on the 56-Kda type-specific 

antigen gene of Orientia tsutsugamushi genotypes isolated from Leptotrombidium 

mites and the rodent host post-infection. The American Journal of Tropical Medicine 

and Hygiene, 90(1), pp.139–146. 

Takhampunya, R. et al., 2016. Transovarial transmission of co-existing Orientia 

tsutsugamushi genotypes in laboratory-reared Leptotrombidium imphalum. Vector-

Borne and Zoonotic Diseases, 16(1), pp.33–41.  

Tamura, A. et al., 1995. Classification of Rickettsia tsutsugamushi in a new genus, 

Orientia gen. nov., as Orientia tsutsugamushi comb. nov. International journal of 

systematic bacteriology, 45(3), pp.589–591. 

Tamura, A. et al., 2000. Isolation of Orientia tsutsugamushi from Leptotrombidium 

fuji and its characterization. Microbiology and Immunology, 44(3), pp.201–204. 

 



 
 

262 
 

Tamura, K. et al., 2013. MEGA6: Molecular evolutionary genetics analysis version 

6.0. Molecular Biology and Evolution, 30, pp.2725–2729. 

Tang, V. et al., 2013. Skin-associated Bacillus, staphylococcal and micrococcal 

species from the house dust mite, Dermatophagoides pteronyssinus and 

bacteriolytic enzymes. Experimental and Applied Acarology, 61(4), pp.431–447. 

Tangkanakul, W. et al., 2000. Risk factors associated with leptospirosis in 

northeastern Thailand, 1998. The American Journal of Tropical Medicine and 

Hygiene, 63(3), pp.204–208.  

Tanner, M.A. et al., 1998. Specific ribosomal DNA sequences from diverse 

environmental settings correlate with experimental contaminants. Applied and 

Environmental Microbiology, 64(8), pp.3110–3113. 

Tanskul, P. et al., 1998. A new ecology for scrub typhus associated with a focus of 

antibiotic resistance in rice farmers in Thailand. Journal of Medical Entomology, 

35(4), pp.551–555.  

Tanskul, P., 1991. A new species of Leptotrombidium (Acari: Trombiculidae) 

collected from black plates in Thailand. Journal of Medical Entomology, 28(1), 

pp.139–141. 

Tanskul, P., 1993. Appendix H. Trombiculids reported from Thailand. In Disease 

vector  ecology profile, Thailand. Washington DC: Diane Publishing, pp. 25–26.  

Tanskul, P. et al., 1994. Rickettsia tsutsugamushi in chiggers (Acari: Trombiculidae) 

associated with rodents in central Thailand. Journal of Medical Entomology, 31(2), 

pp.225–230.  

Tanskul, P. & Linthicum, K.J., 1997. A new species of Leptotrombidium 

(Acari:Trombiculidae)  collected in active rice fields in northern Thailand. Journal of 

Medical Entomology, 34(3), pp.368–371. 

 



 
 

263 
 

Taylor, G.P. et al., 2011. The host range of the male-killing symbiont Arsenophonus 

nasoniae in filth fly parasitioids. Journal of Invertebrate Pathology, 106(3), pp.371–

379.  

Thai Meteorological Department, 2014. The Climate of Thailand. Available at: 

http://www.tmd.go.th/en/archive/thailand_climate.pdf [Accessed March 31, 2016]. 

Thepparit, C. et al., 2011. Isolation of a Rickettsial pathogen from a non-

hematophagous arthropod. PLoS ONE, 6(1), pone.0016396. 

Thimm, T. & Tebbe, C.C., 2003. Protocol for rapid fluorescence in situ hybridization 

of bacteria in cryosections of microarthropods. Applied and Environmental 

Microbiology, 69(5), pp.2875–2878. 

Tilak, R. et al., 2011. Emergence of Schoengastiella ligula as the vector of scrub 

typhus  outbreak in Darjeeling: has Leptotrombidium deliense been replaced? Indian 

Journal of Public Health, 55(2), pp.92–99. 

Tilly, K., Rosa, P.A. & Stewart, P.E., 2008. Biology of infection with Borrelia 

burgdorferi. Infectious Disease Clinics of North America, 22(2), pp.217–234.  

Timofeeva, G.Y., 1964. Experimental study of the transmission and harbouring of 

the tularaemia agent by the mite Hirstonysus musculi Johnst. Medskaya 

Parazitology, 33, pp.184–187. 

Tinsley, M.C. & Majerus, M.E.N., 2006. A new male-killing parasitism: Spiroplasma 

bacteria infect the ladybird beetle Anisosticta novemdecimpunctata (Coleoptera: 

Coccinellidae). Parasitology, 132(6), pp.757–765. 

Todar, K., 2012. Todar’s Online Textbook of Bacteriology. Available at: 

http://textbookofbacteriology.net/index.html [Accessed May 27, 2016]. 

Trape, J.F. et al., 2013. The epidemiology and geographic distribution of relapsing 

fever borreliosis in West and North Africa, with a review of the Ornithodoros 

erraticus complex (Acari: Ixodida). PLoS ONE, 8(11), pone.0078473. 



 
 

264 
 

Traub, R. & Lakshana, P., 1966. Some chiggers of the subgenus Leptotrombidium 

from Thailand, with descriptions of new species (Acarina, Trombiculidae). Journal of 

Medical Entomology, 3(3-4), pp.271–292.  

Traub, R. & Morrow, M. Lou, 1955. A revision of the chiggers of the subgenus 

Gahrliepia (Acarina: Trombiculidae), Washington DC: Smithsonian Institution. 

Traub, R. & Nadchatram, M., 1966. Notes on chiggers of the genus Microtrombicula 

Ewing,  1950 (Acarina, Trombiculidae), from Pakistan and India, with descriptions of 

five new species. Journal of Medical Entomology, 3(3-4), pp.305–321.  

Traub, R., Nadchatram, M. & Lakshana, P., 1968. New species of chiggers of the 

subgenus Trombiculindus from Thailand (Acarina, Trombiculidae Leptotrombidium). 

Journal of Medical Entomology, 5(3), pp.363–374.  

Traub, R. & Wisseman, C., 1968. Ecological considerations in scrub typhus. II. Vector 

species. Bulletin of the World Health Organization, 39(2), pp.219–230.  

Traub, R. & Wisseman, C.L., 1974. Review article: the ecology of chigger-borne 

rickettsiosis (scrub typhus). Journal of Medical Entomology, 11(3), pp.237–303.  

Traub, R., Wisseman, C.L. & Ahmad, N., 1967. The occurrence of scrub typhus 

infection in unusual habitats in West Pakistan. Transactions of The Royal Society of 

Tropical Medicine and Hygiene, 61(1), pp.23–53.  

Tremblay, J. et al., 2015. Primer and platform effects on 16S rRNA tag sequencing. 

Frontiers in Microbiology, 6. doi.10.3389/fmicb.2015.00771. 

Trisurat, Y., Alkemade, R. & Verburg, P.H., 2010. Projecting land-use change and its 

consequences for biodiversity in northern Thailand. Environmental Management, 

45(3), pp.626–639.  

 

 



 
 

265 
 

Tsai, P.J. & Yeh, H.C., 2013. Scrub typhus islands in the Taiwan area and the 

association between scrub typhus disease and forest land use and farmer 

population density: geographically weighted regression. BMC Infectious Diseases, 

13, p.191.  

Tsuchida, T. et al., 2010. Symbiotic bacterium modifies aphid body color. Science, 

330(6007), pp.1102–1104.  

Tsui, P.Y. et al., 2007. Molecular detection and characterization of spotted fever 

group rickettsiae in Taiwan. The American Journal of Tropical Medicine and Hygiene, 

77(5), pp.883–890. 

Turnbaugh, P.J. et al., 2007. The human microbiome project. Nature, 449(7164), 

pp.804–810.  

Ulrich, W., Almeida-Neto, M. & Gotelli, N.J., 2009. A consumer’s guide to 

nestedness analysis. Oikos, 18, pp.3–17. 

United Nation Thailand, 2016. Thailand Info. Available at: 

http://un.or.th/thailand/geography.html [Accessed March 31, 2016]. 

Untergasser, A. et al., 2012. Primer3--new capabilities and interfaces. Nucleic Acids 

Research, 40(15), doi:10.1093/nar/gks596. 

Urakami, H. et al., 1994. An ultrastructural study of vertical transmission of 

Rickettsia tsutsugamushi during oogenesis and spermatogenesis in 

Leptotrombidium pallidum. The American Journal of Tropical Medicine and Hygiene, 

50(2), pp.219–228. 

Urakami, H. et al., 1999. Decreased prevalence of Orientia tsutsugamushi in 

trombiculid mites and wild rodents in the Primorye region, Far East Russia. 

Microbiology and Immunology, 43(10), pp.975–978. 

 



 
 

266 
 

Valiente Moro, C. et al., 2009. Bacterial taxa associated with the hematophagous 

mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE 

fingerprinting. Research in Microbiology, 160(1), pp.63–70.  

Valiente Moro, C. et al., 2011. Diversity, geographic distribution, and habitat-

specific variations of microbiota in natural populations of the chicken mite, 

Dermanyssus gallinae. Journal of Medical Entomology, 48(4), pp.788–796. 

Valiente Moro, C. et al., 2009. The poultry red mite (Dermanyssus gallinae): a 

potential vector of pathogenic agents. Experimental and Applied Acarology, 48(1-2), 

pp.93–104. 

Vercammen-Grandjean, P.H. & Langston, R., 1975. The chigger mites of the world 

(Acarina : Trombiculidae & Leeuwenhoekiidae) 1st ed. P. H. Vercammen-Grandjean 

& R. Langston, eds., San Francisco: George Williams Hooper Foundation, University 

of California. 

Vercammen-Grandjean, P.H., Langston, R.L. & Audy, J.R., 1973. Tentative 

nepophylogeny of trombiculids. Folia Parasitologica, 20(1), pp.49–66. 

Vikrant, S. et al., 2013. Scrub typhus associated acute kidney injury-a study from a 

tertiary care hospital from western Himalayan State of India. Renal Failure, 35(10), 

pp.1338–1343.  

Wales, A.D. et al., 2010. Review of the carriage of zoonotic bacteria by arthropods, 

with special reference to Salmonella in mites, flies and litter beetles. Zoonoses and 

Public Health, 57(5), pp.299–314. 

Walther, B.A. & Morand, S., 1998. Comparative performance of species richness 

estimation methods. Parasitology, 116 (4), pp.395–405. 

Wang, L. et al., 2006. Isolation and characterization of a novel thermophilic Bacillus 

strain degrading long-chain n-alkanes. Extremophiles, 10(4), pp.347–356.  

 



 
 

267 
 

Wang, Q. et al., 2007. Naïve Bayesian classifier for rapid assignment of rRNA 

sequences into the new bacterial taxonomy. Applied and Environmental 

Microbiology, 73(16),  pp.5261–5267.  

Warnes, G.R. et al., 2016. gplots: Various R programming tools for plotting data. 

Available at: https://cran.r-project.org/web/packages/gplots/index.html. 

Watt, G. et al., 1996. Scrub typhus infections poorly responsive to antibiotics in 

northern Thailand. Lancet, 348(9020), pp.86–89. 

Watt, G. & Parola, P., 2003. Scrub typhus and tropical rickettsioses. Current Opinion 

in Infectious Diseases, 16(5), pp.429-436. 

Weeks, A.R. & Breeuwer, J.A., 2001. Wolbachia-induced parthenogenesis in a genus 

of phytophagous mites. Proceedings of the Royal Society B: Biological Sciences, 

268(1482), pp.2245–2251.  

Weeks, A.R., Velten, R. & Stouthamer, R., 2003. Incidence of a new sex-ratio-

distorting endosymbiotic bacterium among arthropods. Proceedings of the Royal 

Society B: Biological Sciences, 270(1526), pp.1857–1865.  

Wen, T., 1984. Sand mites of China (Acariformes: Trombiculidae & 

Leeuwenhoekiidae), Shanghai: Xue Lin Publishing House. 

Werren, J.H., Baldo, L. & Clark, M.E., 2008. Wolbachia: master manipulators of 

invertebrate biology. Nature Reviews Microbiology, 6(10), pp.741–751.  

Wharton, G.W., 1952. A Manual of the Chiggers: The Biology, Classification, 

Distribution and Importance to Man of the Larvae of the Family Trombiculidae 

(Acarina), Entomological Society of Washington.  

Wharton, G.W., 1947. Studies on North American chiggers; the subfamilies and 

Womersia strandtmani n.g., n.sp. The Journal of parasitology, 33(4), pp.380–384. 

 



 
 

268 
 

Wharton, G.W. et al., 1951. The terminology and classification of trombiculid mites 

(Acarina: Trombiculidae). The Journal of Parasitology, 37(1), pp.13–31.  

Wharton, G.W. & Carver, R.K., 1946. Food of nymphs and adults of Neoschöngastia 

indica (Hirst 1915). Science, 104(2691), pp.76–77.  

WHO, 1982. Manual on environmental management for mosquito control, Geneva. 

Available at: http://apps.who.int/iris/handle/10665/37329. [Accessed March 31, 

2016].  

Womersley, H. & Heaslip, W.G., 1943. The Trombiculinae (Acarina) or itch-mites of 

the Austro-Malayan and oriental regions. Transactions of The Royal Society of South 

Australia, 67(1), pp.68–142. 

Wongprompitak, P. et al., 2015. Orientia tsutsugamushi, agent of scrub typhus, 

displays a single metapopulation with maintenance of ancestral haplotypes 

throughout continental South East Asia. Journal of Molecular Epidemiology and 

Evolutionary Genetics in Infectious Diseases, 31, pp.1–8. 

World Health OrganizationDepartment of Communicable Disease & Response, S. 

and, 1999. WHO Recommended Surveillance Standards, Vol 2, Geneva. Available at: 

http://apps.who.int/iris/handle/10665/65517. [Accessed March 31, 2016]. 

Wright, D.H. & Reeves, J.H., 1992. On the meaning and measurement of nestedness 

of species assemblages. Oecologia, 92(3), pp.416–428. 

Wu, J.Y. et al., 2010. Effects of polymerase, template dilution and cycle number on 

PCR based 16 S rRNA diversity analysis using the deep sequencing method. BMC 

Microbiology, 10(1), pp.1–7.  

Yu, M.-Z. et al., 2011. Effects of Wolbachia on mtDNA variation and evolution in 

natural populations of Tetranychus urticae Koch. Insect molecular biology, 20(3), 

pp.311–321. 

 



 
 

269 
 

Yu, X. & Tesh, R.B., 2014. The role of mites in the transmission and maintenance of 

hantaan virus (Hantavirus: Bunyaviridae). Journal of Infectious Diseases, 210(11), 

pp.1693–1699.  

Yun, J.H. et al., 2014. Insect gut bacterial diversity determined by environmental 

habitat, diet, developmental stage, and phylogeny of host. Applied and 

Environmental Microbiology, 80(17), pp.5254–5264. 

Zeigler, D.R., 2014. The Geobacillus paradox: why is a thermophilic bacterial genus 

so prevalent on a mesophilic planet? Microbiology, 160(1), pp.1–11. 

Zeman, P. et al., 1982. Potential role of Dermanyssus gallinae De Geer, 1778 in the 

circulation of the agent of pullurosis-typhus in hens. Folia Parasitologica, 29(4), 

pp.371–374. 

Zemskaya, A.A. & Pchelnika, A.A., 1968. On the infection of various species of 

Gamasidae mites with Rickettsia burnetii in natural foci of Q fever. Zhurnal 

Mikrobiologii Epidemiologii I Immunobiologii, 45, pp.130–132. 

Zhan, Y.Z. et al., 2013. Abundances and host relationships of chigger mites in 

Yunnan Province, China. Medical and Veterinary Entomology, 27(2), pp.194–202. 

Zhang, M. et al., 2013. Molecular epidemiology of Orientia tsutsugamushi in 

chiggers and ticks from domestic rodents in Shandong, northern China. Parasites 

and Vectors, 6(1). doi.10.1186/1756-3305-6-312. 

Zhang, S. et al., 2010. Scrub typhus in previously unrecognized areas of endemicity 

in China. Journal of Clinical Microbiology, 48(4), pp.1241–1244.  

Zhang, Y. et al., 2003. Detection of hantaan virus from gamasid mite and chigger 

mite by molecular biological methods. Chinese Journal of Experimental and Clinical 

Virology, 17(2), pp.107–111. 

 



 
 

270 
 

Zhang, Y.K. et al., 2015. How do hosts react to endosymbionts? A new insight into 

the molecular mechanisms underlying the Wolbachia-host association. Insect 

Molecular Biology, 24(1), pp.1–12. 

Zhao, D.X., Chen, D.S., et al., 2013. Multiple infections with Cardinium and two 

strains of Wolbachia in the spider mite Tetranychus phaselus Ehara: revealing new 

forces driving the spread of Wolbachia. PLoS ONE, 8(1), pone.0054964. 

Zhao, D.-X., Zhang, X.-F. & Hong, X.-Y., 2013. Host-symbiont interactions in spider 

mite Tetranychus truncates doubly infected with Wolbachia and Cardinium. 

Environmental Entomology, 42(3), pp.445–452. 

Zhou, X. et al., 2016. Cecal microbiota of Tibetan Chickens from five geographic 

regions were determined by 16S rRNA sequencing. Microbiology Open. 

doi.10.1002/mbo3.367. 

Zhu, L.Y. et al., 2012. Wolbachia strengthens Cardinium-induced cytoplasmic 

incompatibility in the spider mite Tetranychus piercei McGregor. Current 

Microbiology, 65(5), pp.516–523. 

Zindel, R. et al., 2013. The role of the bacterial community in the nutritional ecology 

of the  bulb mite Rhizoglyphus robini (Acari: Astigmata: Acaridae). The Federation of 

American Societies for Experimental Biology, 27(4), pp.1488–1497. 

Zouache, K. et al., 2009. Composition of bacterial communities associated with 

natural and laboratory populations of Asobara tabida infected with Wolbachia. 

Applied and Environmental Microbiology, 75(11), pp.3755–3764.  

Zucchi, T.D., Prado, S.S. & Cônsoli, F.L., 2012. The gastric caeca of pentatomids as a 

house for actinomycetes. BMC Microbiology, 12(1), pp.1–7.  

Zuevskii, A.P., 1976. Role of gamasids in the epizootiology of tularemia. 

Parazitologiia, 10(6),  pp.531–535. 

 



 
 

271 
 

Zug, R. & Hammerstein, P., 2012. Still a host of hosts for Wolbachia: Analysis of 

recent data suggests that 40% of terrestrial arthropod species are infected. PLoS 

ONE, 7(6), pone.0038544. 

Zymo Research, 2016. ZymoBIOMIC Microbial community standards. Available at: 

http://www.zymoresearch.com/beta-test/zymobiomics-standards. 



 
 

272 
 

 

 

 

 

 

 

 

 

APPENDIX 

 

 

 

 

 

 

 

 

 

 



 
 

273 
 

 

Ascoschoengastia indica (Hirst, 1915) 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe 

Schoengastiini > Genus Ascoschoengastia > Species Ascoschoengastia indica 

Diagnosis: 

fPp = B/B/NBB + 6B   Ga = 1N  fSc = PL > AM > AL 

fD = 2H + 8.6.6.6(5).4.2.(2); ND = 33-36   fV = varied; NV = 32-40  NDV = 65-76  

fsp = 7.7.7 fCx = 1N.1N.1N Sensillae dimension = 32 (29-36) x 10 (9-10) 

 AW PW SB ASB PSB SD AP AM AL PL S H Pa Pm pp Ip 

Min 36 55 22 21 19 40 22 22 18 27 29 29 177 151 172 502 
Max 52 66 27 25 23 47 28 31 22 34 36 36 200 174 203 571 

Mean 46 60 24 23 21 44 25 27 19 46 32 34 191 164 189 544 

 Based on 15 specimens 

Distribution: 

Australia, Car Nicobar Island, Guam, India, Indonesia, 

Malaysia, Maldives, Myanmar, Papua New Guinea, 

Philippines, Sri Lanka 

In Thailand: Bangkok, Buriram, Chanthaburi, 

Chiangrai, Kalasin, Kanchanaburi, Loei, Nan, 

Nonthaburi, Phitsanulok, Prachuap Khirikhan, 

Songkhla, Tak (see map). 

Host in this study: 

Bandicota indica, B. savilei, Rattus andamanensis,     

R. argentiventer, R. sakaeratensis, R. tanezumi, 

Tupaia glis 

Scutum photo:  
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Blankaartia acuscutellaris (Walch, 1922) 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Blankaartia > Species Blankaartia acuscutellaris 

Diagnosis: 

fPp = B/B/NNB + 7B   Ga = 1N  fSc = PL > AM > AL 

fD = 2H + 6.6.6.4.2; ND = 26  fV = 6.2.2.2U.4(2).2; NV = 18(16)  NDV = 44(42)  

fsp = 7.7.7  fCx = 1B.1B.1B 

 AW PW SB ASB PSB SD AP AM AL PL S H Pa pm pp Ip 

Min 73 75 29 28 38 67 25 49 32 70 71 64 309 287 353 949 
Max 79 85 34 36 47 81 31 59 44 82 85 81 371 334 396 1,091 

Mean 76 80 32 33 43 76 28 54 38 77 77 74 338 314 373 1,025 

 Based on 12 specimens 

Distribution: 

Azerbaijan, Cameroon, Central African Republic, 

China, Congo, Guam, Hungary, India, Indonesia, 

Kazakhstan, Malaysia, Maldives, Myanmar, Moldova, 

Philippines, Russia, Spain, Sri Lanka, Ukraine  

In Thailand: Chanthaburi, Chiangrai, Kalasin, 

Kanchanaburi, Loei, Nakhonsawan, Nan and 

Phitsanulok, Prachuap Khirikhan (see map). 

Host in this study: 

Bandicota indica, R. sakaeratensis, R. tanezumi 

Scutum photo:  
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Gahrliepia elbeli Traub and Morrow, 1955 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Gahrliepia > Species Gahrliepia elbeli 

Diagnosis: 

fPp = B/B/NNN + 4B      Ga = 1N     fSc = PL ≥ AL  Usurped setae = 4 

fD = 2H + 6.8(6).8.6.4.4(2).2; ND = 38-40      fV = varied; NV = 44-50    NDV = 82-90 

fsp = 7.6.6  fCx = 1B.1B.1B   

 AW PW SB ASB PSB SD AP AL PL PPW1 PPW2 H pa pm pp Ip 

Min 45 75 46 21 113 135 36 30 35 53 43 36 215 191 228 634 
Max 50 78 48 23 123 146 37 33 38 55 47 39 238 208 244 681 

Mean 48 76 47 22 119 141 37 32 36 54 45 38 228 201 237 666 

 Based on 6 specimens 

 

Distribution: 

In Thailand: Loei, Nan, Prachuap Khirikhan (see map). 

 

Host in this study: 

Bandicota indica, Maxomys surifer, Rattus tanezumi  

 

 

Scutum photo:  
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Gahrliepia fletcheri Gater, 1932 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Gahrliepia > Species Gahrliepia fletcheri 

Diagnosis: 

fPp = B/B/NNN + 4B       Ga = 1N          fSc = PL ≥ AL        Usurped setae = 8-12 

fD = 2H + 4.4.6.6.then varied; ND = 30-34 fV = varied; NV = 50-75     NDV = 80-109 

fsp = 7.6.6  fCx = 1B.1B.1B   

 AW PW SB ASB PSB SD AP AL PL PPW1 PPW2 H pa pm Pp Ip 

Min 47 75 43 20 153 176 38 34 35 - - 33 214 190 238 647 
Max 51 81 48 27 180 208 42 40 42 - - 46 245 218 261 725 

Mean 49 78 46 24 161 185 40 37 38 - - 42 232 202 244 679 

 Based on 8 specimens 

 

Distribution: 

India, Malaysia, Myanmar 

In Thailand: Songkhla (see map). 

 

Host in this study: 

Rattus tanezumi  

 

Scutum photo:  
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Gahrliepia sp., cf. orientalis  Wen and Xiang, 1984 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Gahrliepia > Species Gahrliepia sp., cf. orientalis 

Diagnosis: 

fPp = B/B/NNN + 4B   Ga = 1N fSc = PL > AL      Usurped setae = 6 

fD = 2H + 8.6.8.8.6.4.2; ND = 44   fV = varied; NV = 48-68  NDV = 92-112  

fsp = 7.6.6 fCx = 1B.1B.1B   Sensillae dimension = 35 (34-38) x 11 (10-11) 

 AW PW SB ASB PSB SD AP AL PL PPW1 PPW2 H pa pm Pp Ip 

Min 45 68 41 21 121 142 37 32 41 46 26 40 185 160 218 583 
Max 46 70 45 23 124 147 38 33 43 47 26 47 211 185 238 621 

Mean 45 69 43 22 122 144 37 33 41 46 26 44 200 177 227 605 

 Based on 3 specimens 

 

Distribution: 

In Thailand: Nan (see map). 

 

Host in this study: 

Maxomys surifer, Rattus andamanensis  

 

 

Scutum photo:  
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Gahrliepia xiaowoi Wen and Xiang, 1984 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Gahrliepia > Species Gahrliepia xiaowoi 

Diagnosis: 

fPp = B/B/NNN + 4B        Ga = 1N         fSc = PL > AL  Usurped setae = 8 

fD = 2H + 10.6.8.8.then varied; ND = 30-38 fV = varied; NV = 58-72    NDV = 88-110 

fsp = 7.6.6  fCx = 1B.1B.1B   

 AW PW SB ASB PSB SD AP AL PL PPW1 PPW2 H pa pm Pp Ip 

Min 45 77 43 21 112 133 41 36 37 53 26 32 202 180 212 596 
Max 49 80 47 24 122 145 42 39 45 55 27 44 245 209 252 706 

Mean 47 78 46 22 117 140 42 37 41 54 27 41 225 199 239 664 

 Based on 4 specimens 

 

Distribution: 

China 

In Thailand: Chiangrai and Nan (see map). 

 

Host in this study: 

Bandicota indica, Rattus tanezumi  

 

Scutum photo:  
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Helenicula kohlsi (Philip and Woodward, 1946) 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe 

Schoengastiini > Genus Helenicula > Species Helenicula kohlsi 

Diagnosis: 

fPp = B/B/BNB + 4B   Ga = 1B  fSc = AL > PL > AM 

fD = 14.12.10(11).10.10.then varied; ND = 65-87 fV = varied; NV = 44-64      

NDV = 109-151                     fsp = 7.7.7 fCx = 1B.1B.1B   

Sensillae dimension = 20 (19-21) x 16 (14-17) 

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 49 59 8 26 8 37 17 22 41 31 34 219 177 215 612 
Max 54 72 12 31 12 42 21 28 53 38 42 244 201 237 682 

Mean 51 66 10 28 11 40 19 24 47 34 37 234 193 229 657 

 Based on 8 specimens 

Distribution: 

Australia, China, India, Iran, Nepal, Pakistan, 

Philippines, Vietnam  

In Thailand: Chiangrai, Kalasin, Kanchanaburi, Loei, 

Nan, Prachuap Khirikhan, Tak (see map). 

Host in this study: 

Bandicota indica, Rattus andamanensis, R.exulans,                 

R. tanezumi, Tupaia glis    

Scutum photo:  
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Helenicula naresuani n. sp. Stekolnikov, 2016 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe 

Schoengastiini > Genus Helenicula > Species Helenicula naresuani 

Diagnosis: 

fPp = B/B/BBB + 5B   Ga = 1N  fSc = AL > PL > AM 

fD = 4H+6(5).6.8.2 then varied; ND = 38-42 fV = varied; NV = 40     NDV = 78-82 

fsp = 7.7.7  fCx = 1B.1B.4B   

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 57 75 11 27 17 45 30 31 47 44 41 279 229 256 756 
Max 61 82 13 31 20 51 31 35 58 47 44 300 239 287 822 

Mean 59 78 12 28 19 48 30 34 53 46 42 291 236 272 797 

 Based on 3 specimens 

 

Distribution: 

In Thailand: Nan, Prachuap Khirikhan (see map). 

 

Host in this study: 

Bandicota indica, Tupaia glis    

 

 

Scutum photo:  

 

 

 

 

 

 

 
 



 
 

281 
 

 

Helenicula pilosa (Abonnenc and Taufflieb, 1957) 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe 

Schoengastiini > Genus Helenicula > Species Helenicula pilosa 

Diagnosis: 

fPp = B/B/BBB + 4B   Ga = 1B  fSc = AL > PL > AM 

fD = varied; ND = 98-110           fV = varied; NV = 81-94           NDV = 179-204 

fsp = 7.7.7    fCx = 1B.1B.1B  Sensillae dimension = 22 (19-26) x 17 (16-18) 

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 51 67 10 29 14 44 23 22 56 36 40 241 203 245 691 
Max 56 75 13 34 17 49 27 30 64 42 46 273 227 274 760 

Mean 53 70 11 31 15 46 25 26 60 39 43 257 216 261 735 

 Based on 11 specimens 

Distribution: 

Chad, Nepal 

In Thailand: Nan, Tak (see map). 

 

Host in this study: 

Bandicota indica, Rattus tanezumi, Tupaia glis    

 

 

Scutum photo:  
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Helenicula simena (Hsu and Chen, 1957) 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe 

Schoengastiini > Genus Helenicula > Species Helenicula simena 

Diagnosis: 

fPp = B/B/BBB + 5B   Ga = 1N  fSc = AL > PL > AM 

fD = 10.(9-11).(9-10) then varied; ND = 53-61      fV = varied; NV = 52-60        

NDV = 105-121                                   fsp = 7.7.7  fCx = 1B.1B.5(6)B  

Sensillae dimension = 28 (25-31) x 17 (16-18) 

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 55 69 11 28 12 41 27 24 62 45 40 244 209 250 704 
Max 58 72 13 30 18 47 28 32 66 51 45 259 221 259 738 

Mean 56 69 12 29 15 44 27 29 63 47 42 253 214 253 721 

 Based on 5 specimens 

Distribution: 

China, Hong Kong, Vietnam 

In Thailand: Nan (see map). 

Host in this study: 

Niviventer fulvescens, Rattus andamanensis,     

Tupaia glis    

 

Scutum photo:  
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Leptotrombidium deliense (Walch, 1922) 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Leptotrombidium > Species Leptotrombidium deliense 

Diagnosis: 

fPp = N/N/BNN + 7B   Ga = 1B  fSc = PL ≥ AM > AL 

fD = 2H + 8.6.6.4.2; ND = 28      fV = 6.4.4u.4.2(4); NV = 20 (22) NDV = 48 (50)  

fsp = 7.7.7  fCx = 1B.1B.1B 

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 56 66 26 23 13 37 24 42 34 44 52 43 194 190 225 609 
Max 64 78 34 29 16 44 32 52 43 53 72 56 256 219 256 731 

Mean 60 72 29 26 15 40 28 47 39 48 59 48 233 208 243 685 

 Based on 52 specimens 

Distribution: 

China, India, Indonesia, Laos, Malaysia, Maldives, 

Papua New Guinea, Philippines, Solomon Islands, 

Taiwan 

In Thailand: Kanchanaburi, Loei, Nan, Nonthaburi, 

Prachuap Khirikhan, Phitsanulok and Songkhla       

(see map). 

Host in this study: 

Bandicota indica, B. savilei, Berylmys berdmorei, 

Hylomys suillus, Maxomys surifer, Rattus 

andamanensis, R. argentiventer, R. sakaeratensis,    

R. tanezumi, Tupaia glis    

Scutum photo:  
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Leptotrombidium elisbergi Traub and Lakshana, 1966 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Leptotrombidium > Species Leptotrombidium elisbergi 

Diagnosis: 

fPp = B/B/BBN + 7B   Ga = 1B  fSc = PL ≥ AM >> AL 

fD = 2H + 8.6.6.4.2; ND = 28     fV = 8.6.4u.4.2; NV = 24  NDV = 52 (50)  

fsp = 7.7.7  fCx = 1B.1B.1B 

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 70 87 39 29 16 46 24 57 40 56 - 59 260 232 267 762 
Max 77 90 41 30 18 48 29 58 41 58 - 63 265 238 273 772 

Mean 74 88 40 29 17 47 26 57 40 57 - 60 262 235 270 768 

 Based on 3 specimens 

 

Distribution: 

In Thailand: Chiangmai, Nan (see map). 

 

Host in this study: 

Hylomys suilus 

 

 

Scutum photo:  
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Leptotrombidium imphalum Vercammen-Grandjean and Langston, 

1976 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Leptotrombidium > Species Leptotrombidium imphalum 

Diagnosis: 

fPp = N/N/BNN + 7B   Ga = 1B  fSc = PL ≥ AM > AL 

fD = 2H + 8.6.6.4(6).2; ND = 28(30)  fV = 8(6).4(6).4u.4.4.2; NV = 26 (24-28) 

NDV = 54 (52-58)  fsp = 7.7.7  fCx = 1B.1B.1B 

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 56 66 25 25 13 39 28 43 41 50 57 51 244 215 264 735 
Max 66 76 29 30 15 45 32 58 49 57 68 56 270 246 293 810 

Mean 59 70 27 28 14 42 30 52 44 53 61 53 255 231 276 763 

 Based on 14 specimens 

Distribution: 

India, Malaysia, Myanmar, Taiwan 

In Thailand: Chiangrai, Nan, Tak (see map). 

 

Host in this study: 

Bandicota indica, Hylomys suilus,                           

Rattus andamanensis, Tupaia glis 

 

Scutum photo:  
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Leptotrombidium macacum (Womersley, 1952) 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Leptotrombidium > Species Leptotrombidium macacum 

Diagnosis: 

fPp = N/N/BNB + 7B   Ga = 1B  fSc = AM > PL ≥ AL 

fD = 2H + 10(11).10.10(11).8.6.4; ND = 50 (52)   fV = 8.6.6.6u then varied; NV = 40-44 

NDV = 94 (90-96)  fsp = 7.7.7  fCx = 1B.1B.1B 

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 62 77 32 27 13 41 27 46 39 37 65 41 230 200 241 671 
Max 65 81 32 29 14 42 28 51 41 40 65 42 235 208 248 692 

Mean 64 79 32 28 13 41 27 48 40 39 65 41 233 205 244 684 

 Based on 3 specimens 

 

Distribution: 

India, Nepal 

In Thailand: Nan (see map). 

 

Host in this study: 

Tupaia glis 

 

Scutum photo:  

 

 

 

 

 

 

 
 



 
 

287 
 

 

Leptotrombidium sialkotense Vercammen-Grandjean and Langston, 

1976 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Leptotrombidium > Species Leptotrombidium sialkotense 

Diagnosis: 

fPp = N/N/BNN + 7B   Ga = 1B  fSc = AM > PL > AL 

fD = 2H + 8.6.6.6.2; ND = 30  fV = varied; NV = 40       NDV = 70 

fsp = 7.7.7  fCx = 1B.1B.1B 

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min - - - - - - - - - - - - - - - - 
Max - - - - - - - - - - - - - - - - 

Mean 61 71 27 29 14 43 31 52 43 48 - 49 266 218 265 749 

 Based on 1 specimens 

 

Distribution: 

Pakistan 

In Thailand: Nan (see map). 

 

Host in this study: 

Tupaia glis 

 

Scutum photo:  
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Leptotrombidium sp., cf. guzhangense Wang, Li and Tian, 1985 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Leptotrombidium > Species Leptotrombidium sp., cf. guzhangense 

Diagnosis: 

fPp = N/N/BNN + 7B   Ga = 1B  fSc = PL > AM > AL 

fD = 2H + 8.6.6.4.2; ND = 28     fV = 8(10).8.4u.4.2.2; NV = 28 (30)       NDV = 56 (58) 

fsp = 7.7.7  fCx = 1B.1B.1B 

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 58 63 25 22 12 35 23 39 34 48 44 45 208 199 222 634 
Max 66 71 27 25 14 39 26 43 37 52 55 47 230 219 238 688 

Mean 60 66 26 24 13 37 24 42 35 49 50 46 221 206 229 657 

 Based on 10 specimens 

 

Distribution: 

In Thailand: Kalasin (see map). 

 

Host in this study: 

Rattus tanezumi 

 

 

Scutum photo:  
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Leptotrombidium sp., cf. macacum (Womersley, 1952) 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Leptotrombidium > Species Leptotrombidium sp., cf. macacum 

Diagnosis: 

fPp = N/N/BNB + 7B   Ga = 1B  fSc = AM > PL ≥ AL 

fD = 2H + 10(11).8.8.10.4.2; ND = 44 (45)  fV = varied; NV = 44-46   

NDV = 88-90  fsp = 7.7.7  fCx = 1B.1B.1B 

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 63 77 28 28 13 42 29 54 41 45 57 49 240 221 262 730 
Max 70 85 40 31 15 44 31 56 45 48 75 51 258 229 272 760 

Mean 65 80 32 29 14 43 30 56 43 46 64 50 249 225 267 742 

 Based on 4 specimens 

 

Distribution: 

In Thailand: Tak (see map). 

 

Host in this study: 

Bandicota indica 

 

 

Scutum photo:  
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Leptotrombidium subangulare Wen and Xiang, 1984 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Leptotrombidium > Species Leptotrombidium subangulare 

Diagnosis: 

fPp = N/N/BNN + 7B   Ga = 1B  fSc = PL > AM > AL 

fD = 2H + 8.6.6.4.2; ND = 28  fV = 6.4.4u.4.2; NV = 20     NDV = 48 

fsp = 7.7.7  fCx = 1B.1B.1B 

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 66 74 30 30 13 43 25 59 41 64 93 63 283 250 292 828 
Max 66 77 30 30 14 44 28 60 45 66 95 65 297 250 294 839 

Mean 66 75 30 30 13 42 26 59 43 65 94 64 290 250 293 833 

 Based on 2 specimens 

 

Distribution: 

China 

In Thailand: Nan (see map). 

 

Host in this study: 

Rattus andamanensis 

 

Scutum photo:  
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Leptotrombidium tenompaki Stekolnikov, 2013 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Leptotrombidium > Species Leptotrombidium tenompaki 

Diagnosis: 

fPp = N/N/BNN + 7B   Ga = 1B  fSc = PL ≥ AM > AL 

fD = 2H + 8.6.6.4.2; ND = 28  fV = 6.4.4u.4.2; NV = 20      NDV = 48 

fsp = 7.7.7  fCx = 1B.1B.1B 

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 63 74 29 27 14 42 29 52 46 55 64 53 250 213 253 724 
Max 66 78 31 30 15 45 30 58 48 60 80 62 260 230 269 771 

Mean 65 77 30 28 14 43 30 55 47 56 73 57 257 222 258 739 

 Based on 2 specimens 

Distribution: 

Malaysia 

In Thailand: Prachuab Kirikhan, Songkhla (see map). 

 

Host in this study: 

Bandicota indica, Rattus tanezumi 

 

Scutum photo:  
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Leptotrombidium turdicola Vercammen-Grandjean and Langston, 1976 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Leptotrombidium > Species Leptotrombidium turdicola 

Diagnosis: 

fPp = N/N/BNN + 7B   Ga = 1B  fSc = PL ≥ AM > AL 

fD = 2H + 10.10.10.8.4.2; ND = 46 fV = varied; NV = 38-40        NDV = 84-86 

fsp = 7.7.7  fCx = 1B.1B.1B 

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 68 79 30 32 14 47 30 47 45 56 75 54 253 233 285 771 
Max 79 94 36 35 19 52 34 65 54 72 83 66 273 251 301 818 

Mean 74 85 32 33 16 49 31 58 49 63 80 61 266 241 292 801 

 Based on 5 specimens 

Distribution: 

Malaysia 

In Thailand: Nan (see map). 

 

Host in this study: 

Berylmys bowersi, Rattus andamanensis, R. tanezumi 

 

Scutum photo:  
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Leptotrombidium yunlingense Yu, Yang, Zhang and Hu, 1981 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Leptotrombidium > Species Leptotrombidium yunlingense 

Diagnosis: 

fPp = N/N/BNB + 7B   Ga = 1B  fSc = AM ≥ PL > AL 

fD = 2H + 13.10.8.11.10; ND = 54   fV = varied; NV = 63         NDV = 117 

fsp = 7.7.7  fCx = 1B.1B.1B 

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min - - - - - - - - - - - - - - - - 
Max - - - - - - - - - - - - - - - - 

Mean 70 83 33 32 16 48 33 50 45 49 - 52 263 232 270 765 

 Based on 1 specimens 

Distribution: 

China 

In Thailand: Nan (see map). 

 

Host in this study: 

Tupaia glis 

 

 

Scutum photo:  
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Lorillatum hekouensis Yu, Chen and Lin, 1996 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Lorillatum > Species Lorillatum hekouensis 

Diagnosis: 

fPp = N/N/NNB + 7B   Ga = 1B  fSc = PL >> AM > AL 

fD = 2H + 8.8.8.6.4.4; ND = 40     fV = varied; NV = 38            NDV = 78 

fsp = 7.7.7    fCx = 1B.1B.1B  Leg sensillae: Mastitibiala & Mastitarsala  

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min - - - - - - - - - - - - - - - - 
Max - - - - - - - - - - - - - - - - 

Mean 69 84 29 41 14 55 32 56 45 86 80 59 441 360 423 1224 

 Based on 1 specimens 

Distribution: 

China 

In Thailand: Kalasin (see map). 

 

Host in this study: 

Rattus tanezumi 

 

 

Scutum photo:  
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Microtrombicula munda (Gater, 1932) 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Microtrombicula > Species Microtrombicula munda 

Diagnosis: 

fPp = B/B/BBB + 6B   Ga = 1N  fSc = PL > AM > AL 

fD = 2H + 6.6.4.4.2(3); ND = 24 (25)          fV = 4.4.2.4.4U.4.2(4); NV = 24 (26)     

NDV = 48-51                               fsp = 7.7.7  fCx = 1N.1N.1N   

Leg sensillae: Mastitibiala & Mastitarsala  

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 31 43 10 18 19 38 19 20 17 27 29 29 172 146 166 488 
Max 32 45 12 20 23 43 20 21 23 28 29 30 176 155 173 501 

Mean 31 44 11 19 20 40 19 21 20 28 29 29 174 152 170 498 

 Based on 3 specimens 

Distribution: 

Malaysia, Sri Lanka 

In Thailand: Kalasin, Tak (see map). 

 

Host in this study: 

Rattus tanezumi 

 

Scutum photo:  
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Schoengastia propria Audy and Womersley, 1957 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Schoengastia > Species Schoengastia propria 

Diagnosis: 

fPp = B/B/NNB + 7B   Ga = 1N  fSc = AL > PL >> AM 

fD = 2H + 10(9-11).8.6.4.4.2; ND =  36 (35-37)     fV = varied; NV = 40-43           

NDV = 75-80    fsp = 7.7.7   fCx = 1B.1B.1B   

Sensillae dimension = 31 (31-32) x 16  Cheliceral blade with row of 5 denticles 

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 46 68 14 28 24 54 24 23 61 56 41 312 272 296 883 
Max 51 73 17 31 26 55 25 25 70 61 44 324 274 320 917 

Mean 49 71 15 29 25 54 24 24 66 58 43 319 273 310 903 

 Based on 3 specimens 

Distribution: 

India 

In Thailand: Kanchanaburi, Tak (see map). 

 

Host in this study: 

Bandicota indica 

 

Scutum photo:  
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Schoutedenichia centralkwangtunga (Mo, Chen, Ho and Li, 1959) 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Schoutedenichia > Species Schoutedenichia centralkwangtunga 

Diagnosis: 

fPp = N/N/NNN + 4B   Ga = 1N  fSc = PL > AM > AL 

fD = 4H + 4(5).10(8-9).8 then varied; ND =  48 (47-50)         fV = varied; NV = 40           

NDV = 87-90    fsp = 7.7.7   fCx = 1B.1B.1B   

Sensillae dimension = 28 (26-31) x 12   

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 52 75 42 23 17 41 37 23 18 29 34 204 175 191 559 
Max 55 79 44 25 18 43 39 25 19 30 37 212 178 200 587 

Mean 53 77 43 24 17 42 38 24 18 30 35 206 177 196 576 

 Based on 3 specimens 

Distribution: 

China, Vietnam 

In Thailand: Kalasin, Nan, Tak (see map). 

 

Host in this study: 

Bandicota indica 

 

Scutum photo:  
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Schoengastiella ligula Radford, 1946 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Schoengastiella > Species Schoengastiella ligula 

Diagnosis: 

fPp = N/N/NNN + 4B   Ga = 1N  fSc = AL > PL 

fD = 2H + 6(8).8.then varied; ND = 48-52    fV = varied; NV = 48-56   NDV = 96-108  

fsp = 7.6.6  fCx = 1B.1B.1B Sensillae dimension = 31 (30-32) x 14 (13-14) 

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 36 50 33 25 56 81 42 - 38 36 30 38 216 197 234 648 
Max 38 57 37 27 69 96 47 - 45 41 32 45 241 213 243 691 

Mean 37 52 35 26 61 87 44 - 41 39 31 42 230 207 239 676 

 Based on 11 specimens 

 

Distribution: 

China, India, Myanmar, Nepal 

In Thailand: Chiangrai, Nan, Tak (see map). 

 

Host in this study: 

Bandicota indica, Rattus andamanensis, R. tanezumi 

 

Scutum photo:  
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Trombiculindus kosapani n. sp. Stekolnikov, 2016 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Trombiculindus > Species Trombiculindus kosapani 

Diagnosis: 

fPp = N/N/BNN + 7B   Ga = 1B  fSc = AM = PL > AL 

fD = 2H + 8.6.6.4.2; ND = 28       fV = 8(9).4.4u.4.2; NV = 22 (23)         NDV = 50 (51) 

fsp = 7.7.7  fCx = 1B.1B.1B    

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 63 74 32 26 14 41 17 43 35 44 - 46 216 200 235 652 
Max 65 76 33 28 15 43 20 48 39 48 - 46 236 214 241 691 

Mean 64 75 32 27 14 42 19 45 37 46 - 46 228 208 238 676 

 Based on 3 specimens 

 

Distribution: 

In Thailand: Nan (see map). 

 

Host in this study: 

Tupaia glis 

 

 

Scutum photo:  
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Trombiculindus paniculatum (Traub, Nadchatram and Lakshana, 1968) 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Trombiculindus >  Species Trombiculindus paniculatum 

Diagnosis: 

fPp = N/N/BNB + 7B   Ga = 1B  fSc = PL > AL > AM 

fD = 2H + 8.6.6.4.2; ND = 28     fV = 8.4.4u.4.2; NV = 22             NDV = 50 

fsp = 7.7.7  fCx = 1B.1B.1B    

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min 65 77 35 28 16 44 15 38 41 55 - 54 242 220 256 721 
Max 67 78 36 31 17 47 16 41 45 58 - 61 255 233 271 759 

Mean 65 77 35 29 16 45 15 39 43 56 - 56 248 224 261 734 

 Based on 3 specimens 

Distribution: 

In Thailand: Kanchanaburi, Khon Kaen, Loei, Nan 

(see map). 

 

Host in this study: 

Hylomys suillus 

 

 

Scutum photo:  
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Trombiculindus variaculum (Traub and Nadchatram, 1967) 

Classification: Family Trombiculidae > Subfamily Trombiculinae > Tribe Trombiculini 

> Genus Trombiculindus > Species Trombiculindus variaculum 

Diagnosis: 

fPp = N/N/BNN + 7B   Ga = 1B  fSc = n/a 

fD = 2H + 8.6.6.4.2; ND = 28     fV = 6.4.4.4u.2; NV = 22                 NDV = 48 

fsp = 7.7.7  fCx = 1B.1B.1B    

 AW PW SB ASB PSB SD AP AM AL PL S H pa pm pp Ip 

Min - - - - - - - - - - - - - - - - 
Max - - - - - - - - - - - - - - - - 

Mean 64 75 40 32 14 46 16 - - 64 - 56 212 214 245 671 

 Based on 1 specimens 

 

Distribution: 

Malaysia 

In Thailand: Nan (see map). 

 

Host in this study: 

Hylomys suillus 

 

Scutum photo:  
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Walchia chavali n. sp. Stekolnikov, 2016 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Walchia > Species Walchia chavali 

Diagnosis: 

fPp = N/N/NNN + 4B     Ga = 1N  fSc = PL > AL  (peniscutum) 

fD = 2H + 6.6.(6–8).6.4.2.2; ND = 33-36      fV = varied; NV = 40-51     NDV = 74-87  

fsp = 7.6.6    fCx = 1B.1B.3B Sensillae dimension = 31 (28-33) x 13 (12-13) 

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 30 56 23 20 32 53 36 - 19 30 28 230 200 234 669 
Max 34 83 27 23 40 64 46 - 23 34 34 247 213 254 715 

Mean 32 67 25 21 37 58 41 - 21 32 30 238 208 242 689 

 Based on 15 specimens 

 

Distribution: 

In Thailand: Songkhla (see map). 

 

Host in this study: 

Leopoldamys sabanus, Maxomys surifer,            

Rattus tanezumi 

 

Scutum photo:  
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 Walchia dismina (Schluger, Grochovskaja, Ngu, Hoe and Tung, 1960) 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Walchia > Species Walchia dismina 

Diagnosis: 

fPp = N/N/NNN + 4B   Ga = 1N  fSc = PL > AL  

fD = 2H + 6.6.6.6.4 then varied; ND = 34-38 fV = varied; NV = 44-60       NDV = 78-98 

fsp = 7.6.6         fCx = 1B.1B.2B  Sensillae dimension = 29 (28-30) x 12 

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 31 38 21 19 34 54 31 - 20 27 28 240 202 236 641 
Max 35 44 24 21 41 62 37 - 24 32 32 257 224 257 738 

Mean 33 41 23 20 37 58 34 - 22 30 30 248 216 245 702 

 Based on 6 specimens 

Distribution: 

Vietnam 

In Thailand: Chiangrai, Loei, Nan (see map). 

Host in this study: 

Bandicota indica, Berylmys berdmorei,          

Maxomys surifer, Mus sp., M. cervicolor, M. cookii, 

Rattus sakaeratensis 

 

Scutum photo:  

 

 

 

 

 

 

 

     
 



 
 

304 
 

 

Walchia kritochaeta (Traub and Evans, 1957) 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Walchia > Species Walchia kritochaeta 

Diagnosis: 

fPp = N/N/NNN + 4B   Ga = 1N  fSc = PL > AL  

fD = 2H + 6.6.6(4) then varied; ND = 35-40 fV = varied; NV = 54-62    NDV = 89-102 

fsp = 7.6.6    fCx = 1B.1B.1B Sensillae dimension = 31 (30-32) x 12 (11-12) 

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 29 40 22 18 35 53 32 - 19 24 29 198 174 204 580 
Max 33 49 25 20 42 61 34 - 22 28 32 215 188 216 617 

Mean 31 44 24 19 38 58 33 - 20 26 31 205 181 211 598 

 Based on 7 specimens 

Distribution: 

China 

In Thailand: Buriram, Chiangrai, Kalasin, Loei, Nakhon 

Ratchasima, Nan, Phitsanulok, Tak (see map). 

Host in this study: 

Bandicota indica, Berylmys berdmorei, Maxomys 

surifer, Mus caroli, M. cervicolor, M. cookii, 

Niviventer fulvescens, Rattus andamanensis,              

R. exulans, R. sakaeratensis, R. tanezumi 

Scutum photo:  
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Walchia lupella (Traub and Evans, 1957) 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Walchia > Species Walchia lupella 

Diagnosis: 

fPp = N/N/NNN + 4B   Ga = 1N  fSc = PL ≥ AL  

fD = 2H + 6.6.6 then varied; ND = 36-40 fV = varied; NV = 50-56       NDV = 86-96 

fsp = 7.6.6    fCx = 1B.1B.2B    Sensillae dimension = 26 (24-28) x 12 (11-12) 

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 31 48 26 19 33 53 34 - 22 24 27 166 149 175 494 
Max 34 55 30 22 43 64 37 - 27 27 31 185 170 194 542 

Mean 32 52 28 21 39 60 35 - 24 26 29 176 158 187 522 

 Based on 7 specimens 

Distribution: 

India 

In Thailand: Chaiyaphum, Chantaburi,               

Nakhon Ratchasima, Nakhonsawan, Nan, 

Phitsanulok, Prachuab Kirikhan (see map). 

Host in this study: 

Bandicota indica, Berylmys berdmorei, Rattus 

argentiventer, R. sakaeratensis, R. tanezumi 

 

Scutum photo:  

 

 

 

 

 

 

 
 



 
 

306 
 

 

Walchia micropelta (Traub and Evans, 1957) 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Walchia > Species Walchia micropelta 

Diagnosis: 

fPp = N/N/NNN + 4B   Ga = 1N  fSc = PL > AL  

fD = 2H + 6.6.6.6.4(5-6).2.2; ND = 34-36       fV = varied; NV = 46-54       NDV = 80-90 

fsp = 7.6.6    fCx = 1B.1B.2B   Sensillae dimension = 18 (16-19) x 12 (12-13) 

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 20 22 17 14 25 40 25 - 13 17 19 121 110 133 372 
Max 24 29 21 16 33 48 31 - 17 19 23 144 117 142 402 

Mean 23 25 19 15 28 44 28 - 14 18 22 135 114 137 387 

 Based on 19 specimens 

Distribution: 

China, Vietnam 

In Thailand: Buriram, Chaiyaphum, Chiangrai, Kalasin, 

Kanchanaburi, Loei, Nakhonsawan, Nan, Phitsanulok, 

Prachuab Kirikhan, Tak (see map). 

Host in this study: 

Bandicota indica, B. savilei, Berylmys berdmorei, 

Maxomys surifer, Mus caroli, M. cervicolor, M. cookii, 

Rattus andamanensis, R. argentiventer, R. exulans,  

R. sakaeratensis, R. tanezumi 

Scutum photo:  
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Walchia minuscuta Chen, 1978 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Walchia > Species Walchia minuscuta 

Diagnosis: 

fPp = N/N/NNN + 4B   Ga = 1N  fSc = PL > AL  

fD = 2H + 6.6.6.8(6-7).4(5-6).2.2; ND = 34-38     fV = varied; NV = 48-54   NDV = 82-92 

fsp = 7.6.6     fCx = 1B.1B.2B   Sensillae dimension = 23 (19-26) x 13 (12-14) 

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 25 30 22 17 33 50 32 - 17 21 22 160 138 167 471 
Max 30 39 24 20 38 57 35 - 20 25 28 185 163 189 536 

Mean 28 34 23 18 35 53 33 - 18 22 26 172 150 177 500 

 Based on 10 specimens 

Distribution: 

China 

In Thailand: Chiangrai, Kanchanaburi, Loei, Nan    

(see map). 

Host in this study: 

Bandicota indica, B. savilei, Berylmys berdmorei,      

B. bowersi, Leopoldamys edwardsi, Maxomys surifer, 

Mus cookii, Niviventer fulvescens,                         

Rattus andamanensis, R. exulans, R. sakaeratensis,  

R. tanezumi 

Scutum photo:  
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Walchia pingue Gater, 1932 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Walchia > Species Walchia pingue 

Diagnosis: 

fPp = N/N/NNN + 4B   Ga = 1N  fSc = PL ≥ AL  

fD = 2H + 6.6.6.8(6).4.2.2; ND = 34-36       fV = varied; NV = 40-57       NDV = 74-93  

fsp = 7.6.6    fCx = 1B.1B.2B Sensillae dimension = 26 (26-27) x 11 (11-12) 

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 25 41 23 19 38 57 33 - 20 21 24 167 145 169 482 
Max 35 48 31 23 42 64 39 - 25 26 28 191 160 196 547 

Mean 32 45 29 20 40 60 37 - 23 24 26 178 154 180 513 

 Based on 9 specimens 

Distribution: 

Malaysia 

In Thailand: Buriram, Chiangrai, Kalasin, 

Kanchanaburi, Loei, Nakhonsawan, Nan, Phitsanulok, 

Songkhla (see map). 

Host in this study: 

Bandicota indica, B. savilei, Leopoldamys sabanus, 

Maxomys surifer, Niviventer fulvescens,              

Rattus sakaeratensis, R. tanezumi 

 

Scutum photo:  
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Walchia rustica (Gater, 1932) 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Walchia > Species Walchia rustica 

Diagnosis: 

fPp = N/N/NNN + 4B   Ga = 1N  fSc = AL > PL  

fD = 2H + 6.6.6.6(8).4.4.2; ND = 36-38         fV = varied; NV = 42-50           NDV = 78-88 

fsp = 7.6.6      fCx = 1B.1B.1B     Sensillae dimension = 30 (26-33) x 11 (11-12) 

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 47 59 38 24 55 80 39 - 31 29 34 195 171 202 571 
Max 50 66 41 26 64 89 46 - 36 32 39 217 179 213 607 

Mean 48 62 39 25 59 84 42 - 33 31 37 203 174 207 585 

 Based on 6 specimens 

Distribution: 

China, India, Malaysia, Myanmar, Vietnam,  

In Thailand: Chantaburi, Chiangrai, Kanchanaburi, 

Loei, Nakhon Ratchasima, Nan, Ratchaburi, Songkhla 

(see map). 

Host in this study: 

Bandicota indica, B. savilei, Berylmys berdmorei,       

B. bowersi, Rattus sakaeratensis, R. tanezumi 

 

Scutum photo:  
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Walchia ventralis (Womersley, 1952) 

Classification: Family Trombiculidae > Subfamily Gahrliepiinae > Tribe Gahrliepiini >     

Genus Walchia > Species Walchia ventralis 

Diagnosis: 

fPp = N/N/NNN + 4B   Ga = 1N  fSc = PL > AL  

fD = 4H + 6.8.6 then varied; ND = 35-36 fV = varied; NV = 41-46       NDV = 76-82 

fsp = 7.6.6  fCx = 1B.1B.1B   

 AW PW SB ASB PSB SD AP AM AL PL H pa pm pp Ip 

Min 31 41 29 23 47 70 40 - 29 37 39 237 216 244 699 
Max 32 44 31 25 51 75 44 - 31 39 40 259 231 260 751 

Mean 31 42 30 24 49 73 41 - 30 37 39 251 224 254 730 

 Based on 4 specimens 

 

Distribution: 

Malaysia  

In Thailand: Nan (see map). 

 

Host in this study:  

Berylmys bowersi 

 

Scutum photo:  

 

 

 

 

 

 

    
 


