
Efficient Algorithms for Computing Approximate
Equilibria in Bimatrix, Polymatrix and Lipschitz

Games

Thesis submitted in accordance with the requirements of
the University of Liverpool for the degree of Doctor in Philosophy

by
Argyrios Deligkas

July 2016

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Liverpool Repository

https://core.ac.uk/display/131149113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

In this thesis, we study the problem of computing approximate equilibria in sev-

eral classes of games. In particular, we study approximate Nash equilibria and

approximate well-supported Nash equilibria in polymatrix and bimatrix games

and approximate equilibria in Lipschitz games, penalty games and biased games.

We construct algorithms for computing approximate equilibria that beat the cur-

rent best algorithms for these problems.

In Chapter 3, we present a distributed method to compute approximate Nash

equilibria in bimatrix games. In contrast to previous approaches that analyze the

two payoff matrices at the same time (for example, by solving a single LP that

combines the two players’ payoffs), our algorithm first solves two independent

LPs, each of which is derived from one of the two payoff matrices, and then

computes an approximate Nash equilibrium using only limited communication

between the players.

In Chapter 4, we present an algorithm that, for every δ in the range 0 < δ ≤
0.5, finds a (0.5+δ)-Nash equilibrium of a polymatrix game in time polynomial in

the input size and 1
δ
. Note that our approximation guarantee does not depend on

the number of players, a property that was not previously known to be achievable

for polymatrix games, and still cannot be achieved for general strategic-form

games.

In Chapter 5, we present an approximation-preserving reduction from the

problem of computing an approximate Bayesian Nash equilibrium (ε-BNE) for a

two-player Bayesian game to the problem of computing an ε-NE of a polymatrix

game and thus show that the algorithm of Chapter 4 can be applied to two-player

Bayesian games. Furthermore, we provide a simple polynomial-time algorithm

for computing a 0.5-BNE.

In Chapter 5, we study games with non-linear utility functions for the players.

Our key insight is that Lipschitz continuity of the utility function allows us to

provide algorithms for finding approximate equilibria in these games. We begin

by studying Lipschitz games, which encompass, for example, all concave games

i

with Lipschitz continuous payoff functions. We provide an efficient algorithm for

computing approximate equilibria in these games. Then we turn our attention

to penalty games, which encompass biased games and games in which players

take risk into account. Here we show that if the penalty function is Lipschitz

continuous, then we can provide a quasi-polynomial time approximation scheme.

Finally, we study distance biased games, where we present simple strongly poly-

nomial time algorithms for finding best responses in L1, L2
2, and L∞ biased games,

and then use these algorithms to provide strongly polynomial algorithms that find

2/3, 5/7, and 2/3 approximations for these norms, respectively.

ii

Contents

Contents v

1 Introduction 1

1.1 Game Theory . 1

1.2 Existence of Equilibria . 4

1.3 Computation of Nash Equilibria 5

1.4 Overview of Results . 10

2 Preliminaries 17

2.1 Games, Strategies and Utility Functions 17

2.2 Solution Concepts . 18

2.3 Game Sizes . 19

3 Bimatrix Games 21

3.1 Bimatrix games preliminaries . 22

3.2 An Algorithm for Finding a 2
3
-WSNE 24

3.3 An Algorithm for Finding a 0.6528-WSNE 26

3.4 A Communication-Efficient Algorithm for Finding a 0.5-WSNE in

win-lose Bimatrix Games . 42

3.5 A Communication-Efficient Algorithm for

Finding a
(

3−
√

5
2

+ ε
)

-NE . 44

4 Computing Approximate Nash Equilibria in Polymatrix Games 47

4.1 Polymatrix games preliminaries 47

4.2 The TS Algorithm . 50

4.3 The Descent Algorithm . 50

4.4 The Function f and ε-Nash Equilibria 51

4.5 The Gradient . 51

4.6 The Algorithm . 54

4.7 Stationary Points of f . 56

iii

4.8 Time Complexity of the Algorithm 57

4.9 Open Questions . 67

5 Approximate Equilibria in Two Player Bayesian Games 68

5.1 Two player Bayesian games preliminaries 68

5.2 Reducing ε-BNE to ε-NE . 71

5.3 A Simple Algorithm for 0.5-BNE 73

6 Lipschitz Games 75

6.1 Lipschitz games preliminaries . 75

6.2 Classes of Lipschitz Games . 76

6.3 Comparison Between the Classes of Games 78

6.4 Approximate Equilibria in λp-Lipschitz Games 79

6.5 An Algorithm for Penalty Games 84

6.6 Distance Biased Games . 88

6.7 Open Questions . 103

7 Conclusions 105

Bibliography 113

iv

Acknowledgments

First, and foremost, I am indebted to my supervisor, Rahul Savani. He was a

mentor, a teacher, a friend. Rahul helped me to overcome all the difficulties I

faced during the four years I spent in Liverpool. The meetings with Rahul were

far away from the typical supervisor-student meetings. They were starting with

an equilibrium problem to solve, going to trading, music, politics, betting, and

ending to a solution to the original problem. And this was fun.

I am also indebted to Paul Spirakis and John Fearnley. The collaboration

with them made me a better researcher and a better person. Alongside with

Rahul, they formed a team such that at any point of the day, there was someone

to help me and answer my questions. The inputs of each member of the team

individually and of the team as a whole helped me to create my academic identity.

I want to thank my second supervisor Piotr Krysta and my advisors Giorgos

Christodoulou and Martin Gairing. They never failed to provide valuable advice

and guidance during my time here. I would also like to thank Martin and Carmine

Ventre for acting as my examiners and helping me to significantly improve the

presentation of my thesis.

I feel indebted to all my collaborators: Rahul, Paul, John, Artur Czumaj,

Michail Fasoulakis, Marcin Jurdziski, George Mertzios, Tobenna Peter Igwe,

Eleftherios Anastasiadis, Mingyu Guo. Mingyu deserves an honorable mention,

since he was my initial supervisor in Liverpool and he was the person that gave

me the opportunity to come to Liverpool in the first place.

I also want to thank my friends that were by me during all these years: Nikos,

Thanasis, Katerina, Katerina, Anastasia, Lefteris, Eleni, Alkmini, Dimitris, Yian-

nis, Themistoklis.

Last but not least, I am grateful to my family Giorgos, Angeliki and Kostas

for all their love and encouragement they provided me.

v

Chapter 1

Introduction

In this thesis, we study the problem of computing approximate equilibria in sev-

eral classes of games. In particular, we study approximate Nash equilibria and

approximate well supported Nash equilibria in polymatrix and bimatrix games

and approximate equilibria in Lipschitz games, penalty games and biased games.

We construct algorithms for computing approximate equilibria that beat the cur-

rent best algorithms that tackle these problems. In this chapter, we give an

overview of the problems we are considering, and the results that are obtained in

this thesis.

1.1 Game Theory

Game Theory is one of the most important mathematical fields established in the

20-th century. The seminal book, the Theory of Games and Economic Behavior,

of John von Neumann and Oskar Morgenstern [69] is considered the text that

established the modern Game Theory. Since then, many books have been written

on Game Theory or use Game Theory as a tool. As Roger Myerson states in his

book [59]

“Game theory has a very general scope, encompassing questions that

are basic to all of the social sciences. It can offer insights into any

economic, political, or social situation that involves individuals who

have different goals or preferences.”

As the quote above states, Game Theory studies mathematical models where

two or more individuals, or players as they are called in the game theoretic lan-

guage, interact with each other. The details and the rules of the interactions

between the players are called games. A game can be described by the players

that participate, the set of available actions each player can choose from, known

1

as strategies, and the utility every player gets from every possible outcome of the

game. The utility a player gets can be given implicitly by functions, or explicitly

by matrices if this is possible.

For example, Figure 1.1 demonstrates probably the most famous game; the

Prisoners’ Dilemma Game. In the Prisoners’ Dilemma Game there are two play-

ers, player I and player II, accused of committing a crime. Each player has two

choices:

1. denying the commitment of the crime, or “Quiet”,

2. confessing that the other player committed the crime, or “Fink”.

If both players deny the commitment of the crime, i.e. choose “Quiet”, then each

one of them will stay in prison for a year. If only one player chooses “Quiet” while

the other player “Fink”, then the player who choose “Quiet” will be sentenced

for five years whereas the other player will be set free. Finally, if both players

choose “Fink”, then each one of them will stay in prison for three years. The

utilities of the players for this game can be given by two 2 × 2 matrices or by

one table, Figure 1.1, that combines them. The interpretation of Figure 1.1 is

the following. Each cell corresponds to a possible outcome of the game and the

numbers correspond to the utility of the players for this outcome. The number in

the bottom-left corner of the cell corresponds to the utility of the player I, usually

called as the row player, while the number in the top-right corner corresponds to

the utility of the player II, usually called the column player.

In the game theoretic language the two-player games, that can be fully de-

scribed using two matrices, are known as bimatrix games.

@
@@
I

II

Quiet

Fink

Quiet Fink

−1 −5

−1 0

0 −3

−5 −3

Figure 1.1: The Prisoners’ Dilemma Game.

So, how can we study the Prisoners’ Dilemma Game? The objective is to

study the behavior of the players and argue about the outcome from their inter-

action. The major assumption in game theory is that the players are rational.

2

This means that each player chooses the strategy that maximizes his utility given

the chosen action of his opponent. In game theoretic terms the players are util-

ity maximizers. Thus, if player I chooses Quiet, then player II should choose

Fink. This is because given that player I chooses Quiet, player II gets utility −1

by choosing Quiet, whereas if he chooses Fink he gets utility 0. If the player I

chooses Fink, then player II gets utility −5 if he chooses Quiet and utility −3 if

he chooses Fink. Hence, under the assumption that both players are rational, the

player II will choose Fink. By symmetry, for the player I we can conclude that

the only stable pair of choices is when both players choose Fink and get utility −3

each. Neither player can increase their utility by changing strategy. We call this

pair of actions a pure Nash equilibrium of the game 1. In a pure equilibrium the

strategy for every player involves only one action from the actions available to

him. Intuitively, a collection of strategies is a pure Nash equilibrium for a game

if no player can increase their utility by unilaterally deviating from his chosen

strategy, given that the rest of the players do not change their strategies. Notice

though that in the Prisoners’ Dilemma Game the players could cooperate and

both choose Quiet and get utility -1, but this violates the assumption of ratio-

nality for the players.

The notion of pure Nash equilibrium is easy to understand and in bimatrix

games is easy to find. Note although that in other more complicated games like

hedonic games is hard to find [35]. However, pure Nash equilibria do not exist in

every game. Consider for example the Penalty Shot game described in Figure 1.2

played between a goalkeeper, player G and a kicker, player K.

@
@@
G
K

L

R

L R

−1 1

1 −1

1 −1

−1 1

Figure 1.2: The Penalty Shot Game.

The numerical values correspond to the following rules: if the goalkeeper and

the penalty kicker choose the same side (Left or Right) then the goalkeeper wins

1Actually, this pair of actions is a dominant strategy profile, since every player has to choose
the specified action irrespectively from the action his opponent chooses

3

one point and the penalty kicker loses one; if they choose different strategies, then

the goalkeeper loses a point and the penalty kicker wins one point. Note that for

each pair of pure strategies for the players the sum of their utilities adds up to

zero. These games are called zero sum games.

It is easy to see that there is no pure Nash equilibrium in the Penalty Shot

Game. So, what should be the outcome of a game that does not possess a pure

Nash equilibrium? Then, the players can randomize by selecting a probability

distribution over the set of their strategies and play mixed strategies. Suppose that

each player chooses Left with probability 1
2

and Right with probability 1
2
, i.e. the

players play uniformly at random their pure strategies, and communicate that to

their opponent. Then, no player can increase their expected utility by switching to

a different strategy (mixed or pure). The pair of uniform strategies of the players

is called mixed Nash equilibrium, or simply Nash equilibrium. Formally, the Nash

equilibrium is defined as a collection of mixed strategies, one for every player of

the game, such that none of the players can improve their expected utility by

unilaterally changing their strategy.

1.2 Existence of Equilibria

Although in the Prisoners’ Dilemma Game and in the Penalty Shot Game it is

easy to decide whether a Nash equilibrium exists, for larger games it was not

clear whether a Nash equilibrium exists or not.

John von Neumann [68] extended the work of Emile Borel [6] and showed that

any bimatrix zero sum game possesses at least one mixed Nash equilibrium. Later

it was understood that the existence of a Nash equilibrium in zero sum games

is equivalent to Linear Programming duality [17] and thus it is computationally

easy to find a Nash equilibrium in such games using the ellipsoid algorithm of

Khachiyan [51], or the interior point method of Karmakar [50].

John Nash [60] in his seminal paper showed that every game, with finite num-

ber of players and finite number of strategies available to each player, possesses

a mixed Nash equilibrium, irrespective from the structure of the utilities for the

players. These games are known as strategic form games.

Rosen in his seminal work [62] considered a more general setting of games,

with respect to the utilities of the players and the strategies available to each

player, called concave games. There, the available actions for each player corre-

spond to vectors from a convex set, thus each player can have infinite number of

4

strategies. The payoff of each player is specified by a function that satisfies the

following condition: if every other player’s strategy is fixed, then the payoff to a

player is a concave function over his strategy space. Rosen proved that concave

games always possess an equilibrium. A natural subclass of concave games, stud-

ied by Caragiannis, Kurokawa and Procaccia [10], is the class of biased games.

A biased game is defined by a strategic form game, a base strategy and a penalty

function. The players play the strategic form game as normal, but they all suffer

a penalty for deviating from their base strategy. This penalty can be a non-linear

function, such as the L2
2 norm.

1.3 Computation of Nash Equilibria

Although the existence of equilibria was understood, there were no efficient algo-

rithms for finding one. Nash’s proof was based on the Brouwer’s fixed point the-

orem and it was non constructive. This means that Nash’s proof did not provide

or imply an algorithm that computes a Nash equilibrium. Since then, the quest

of an efficient algorithm for computing Nash equilibria has started. Lemke [55]

gave an algorithm that computes a Nash equilibrium in bimatrix games. This

algorithm was fast in practice but its complexity remained unknown until 2004

when Savani and von Stengel [65] showed that there exist games in which the

algorithm needs exponential time to compute a Nash equilibrium.

In 1994 Papadimitriou [61] defined the complexity class PPAD in order to cap-

ture the complexity of the equilibrium computation problem. This class captures

problems that can be reduced to the end of line problem:

• Given a succinctly represented directed graph consisting of vertices with

indegree and outderee at most one and a vertex of outdegree one, find a

vertex with zero outdegree.

Ten years later, a line of work of Daskalakis, Goldberg and Papadimitriou [18],

and Chen, Deng and Teng [12] showed that computing an exact Nash equilib-

rium is PPAD-complete even for bimatrix games, and so there are unlikely to be

polynomial time algorithms for this problem. The hardness of computing exact

Nash equilibria has lead to the study of approximate Nash equilibria: while an

exact equilibrium requires that all players have no incentive to deviate from their

current strategy, an ε-approximate Nash equilibrium, simply ε-NE, requires only

5

that their incentive to deviate is less than ε, i.e. no player can increase their pay-

off more than ε by changing their strategy. However, in order the approximation

guarantee to have a consistent meaning over all games it is usually assumed that

the utilities of the players are in [0, 1], so ε ∈ [0, 1].

1.3.1 Bimatrix games

A fruitful line of work has developed studying the best approximations that can

be found in polynomial-time for bimatrix games. The most known and most

studied notion is that of approximate Nash equilibrium. There, after a number

of papers by Daskalakis, Mehta and Papadimitriou [19, 20], Bosse, Byrka and

Markakis [7], the best known algorithm was given by Spirakis and Tsaknakis [66]

who provided a polynomial time algorithm, known as TS algorithm, that finds

a 0.3393-NE. Although, it is not known whether the guarantee of TS algorithm

is tight, there are examples upon which the algorithm finds no better than a

0.3385-NE [31].

A different notion of approximation is the ε-well-supported Nash equilibrium.

An ε-well-supported Nash equilibrium (ε-WSNE) is a pair of strategies in which

both players only place probability on strategies whose payoff is within ε of the

maximum payoff. Every ε-WSNE is an ε-NE, but the converse does not hold. So,

ε-WSNE is a more restrictive notion. Although the computation of ε-NE received

a lot of attention the progress on computing ε-WSNE has been less forthcoming.

The first correct algorithm was provided by Kontogiannis and Spirakis [52] (KS

algorithm), who gave a polynomial time algorithm for finding a 2
3
-WSNE. This

was later slightly improved by Fearnley, Goldberg, Savani, and Sørensen [30]

who gave a new polynomial-time algorithm that extends the KS algorithm and

finds a 0.6608-WSNE; prior to this work, this was the best known approximation

guarantee for WSNEs. For the special case of symmetric games, i.e. bimatrix

games where the payoff matrix or the column player equals the transposed payoff

matrix of the row player, there is a polynomial-time algorithm for finding a 0.5-

WSNE [16].

The existence of a fully polynomial approximation scheme (FPTAS) was ruled

out by Chen, Deng and Teng [12] unless PPAD = P. Recently, Rubinstein proved

that there is no polynomial approximation scheme (PTAS) assuming the End of

Line problem requires exponential time [64]. There is however a quasi-polynomial

approximation scheme given by Lipton, Markakis and Mehta [56].

6

1.3.2 Many-player games

The study of ε-Nash equilibria in the context of many-player games has received

much less attention. A simple approximation algorithm for many-player games

can be obtained by generalising the algorithm of Daskalakis, Mehta and Papadim-

itriou [20] from the two-player setting to the n-player setting, which provides a

guarantee of ε = 1− 1
n
. This has since been improved independently by three sets

of authors [7, 8, 45]. They provide a method that converts a polynomial-time

algorithm for finding ε-Nash equilibria in (n− 1)-player games into an algorithm

that finds a 1
2−ε -Nash equilibrium in n-player games. Using the polynomial-time

0.3393 algorithm of Tsaknakis and Spirakis [66] for 2-player games as the base

case for this recursion, this allows us to provide polynomial-time algorithms with

approximation guarantees of 0.6022 in 3-player games, and 0.7153 in 4-player

games. These guarantees tend to 1 as n increases, and so far, no constant ε < 1

is known such that, for all n, an ε-Nash equilibrium of an n-player game can be

computed in polynomial time.

For n-player games, we have lower bounds for ε-Nash equilibria. More pre-

cisely, Rubinstein has shown that when the number of players is not constant

there exists a constant but very small ε such that it is PPAD-hard to compute

an ε-Nash equilibrium [63]. This is quite different from the bimatrix game set-

ting, where the existence of a quasi-polynomial time approximation scheme rules

out such a lower bound, unless all of PPAD can be solved in quasi-polynomial

time [57]. On the other hand for any number of players with constant number of

pure strategies per player and every ε > 0, Babichenko, Barman and Peretz [4]

showed that an ε-Nash equilibrium can be computed in quasi polynomial time.

1.3.3 Polymatrix games

Polymatrix games form a special class of many player games. In a polymatrix

game, the interaction between the players is specified by an n-vertex graph, where

each vertex represents one of the players. Each edge of the graph specifies a

bimatrix game that will be played by the two respective players, and thus a

player with degree d will play d bimatrix games simultaneously. More precisely,

each player picks a strategy, and then plays this strategy in all of the bimatrix

games that he is involved in. His payoff is then the sum of the payoffs that he

obtains in each of the games.

Polymatrix games form a class of succinctly represented n-player games: a

polymatrix game is specified by at most n2 bimatrix games, each of which can be

written down in quadratic space with respect to the number of strategies. This is

7

unlike general n-player strategic form games, which require a representation that

is exponential in the number of players.

The problem of computing exact Nash equilibria in polymatrix games can be

tackled in exponential time by Lemke’s algorithm [46]. For the special subclass

of generalized zero sum games on networks Cai and Daskalakis [9] showed that

a Nash equilibrium can be computed in polynomial time. On the other hand,

there has been relatively little work on polynomial time algorithms for computing

approximate Nash equilibria in polymatrix games. The approximation algorithms

for general games can be applied in this setting in an obvious way, but prior to

this work there have been no upper bounds that are specific to polymatrix games.

On the other hand, the lower bound of Rubinstein mentioned above is actually

proved by constructing polymatrix games. Thus, there is a constant but very

small ε such that it is PPAD-hard to compute an ε-Nash equilibrium [63], and

this again indicates that approximating equilibria in polymatrix games is quite

different to approximating equilibria in bimatrix games.

Polymatrix games have played a central role in the reductions that have been

used to show PPAD-hardness of games and other equilibrium problems [12, 13, 18,

27, 33]. Computing an exact Nash equilibrium in a polymatrix game is PPAD-

hard even when all the bimatrix games played are either zero-sum games or

coordination games [9].

Polymatrix games have been used in other contexts too. For example, Govin-

dan and Wilson proposed a (non-polynomial-time) algorithm for computing Nash

equilibria of an n-player game by approximating the game with a sequence of

polymatrix games [40]. Later, they presented a (non-polynomial) reduction that

reduces n-player games to polymatrix games while preserving approximate Nash

equilibria [41]. Their reduction introduces a central coordinator player, who in-

teracts bilaterally with every player.

1.3.4 Lipschitz games

The results for games that are not in strategic form are even scarcer. An excep-

tion is the class of games that the utility functions for the players are Lipschitz

continuous. Intuitively, in a Lipschitz game a small change in a player’s strat-

egy does not change significantly his or his opponents’ payoff. Several papers

have studied how the Lipschitz continuity of the players’ payoff functions affects

the existence, the quality, and the complexity of the equilibria of the underlying

game. Azriely and Shmaya [2] studied many player games and derived bounds

for the Lipschitz constant of the utility functions for the players that guaran-

8

tees the existence of a pure approximate equilibrium for the game. Daskalakis

and Papadimitriou [21] proved that anonymous games possess pure approximate

equilibria whose quality depends on the Lipschitz constant of the payoff func-

tions and the number of pure strategies the players have. They also proved that

this approximate equilibrium can be computed in polynomial time. Furthermore,

they gave a polynomial-time approximation scheme for anonymous games with

many players and constant number of pure strategies. Babichenko [3] presented

a best-reply dynamic for n players Lipschitz anonymous games with two strate-

gies which reaches an approximate pure equilibrium in O(n log n) steps. Deb and

Kalai [22] studied how some variants of the Lipschitz continuity of the utility

functions are sufficient to guarantee hindsight stability of equilibria.

1.3.5 Communication and Query Complexity of equilibria

Communication Complexity. Approximate Nash equilibria can also be stud-

ied from the communication complexity point of view, which captures the amount

of communication the players need to find a good approximate Nash equilibrium.

It models a natural scenario where the two players know their own payoff matrix,

but do not know their opponent’s payoff matrix. The players must then follow

a communication protocol that eventually produces strategies for both players.

The goal is to design a protocol that produces a sufficiently good ε-NE or ε-WSNE

while also minimizing the amount of communication between the two players.

Communication complexity of equilibria in games has been studied in previ-

ous works [14, 44]. The recent paper of Goldberg and Pastink [38] initiated the

study of communication complexity in the bimatrix game setting. There they

showed Θ(n2) communication, of the payoff matrices, is required to find an ex-

act Nash equilibrium of an n× n bimatrix game. Since these games have Θ(n2)

payoffs in total, this implies that there is no communication efficient protocol for

finding exact Nash equilibria in bimatrix games. For approximate equilibria, they

showed that one can find a 3
4
-Nash equilibrium without any communication, and

that in the no-communication setting, finding an 1
2
-Nash equilibrium is impossi-

ble. Motivated by these positive and negative results, they focused on the most

interesting setting, which allows only a polylogarithmic in the number of pure

strategies to be exchanged between the players. They demonstrated that one can

compute 0.438-NE and 0.732-WSNE in this setting.

Query Complexity. The payoff query model is motivated by practical appli-

cations of game theory. It is often the case that we know that there is a game

9

to be solved, but we do not know what the payoffs are, and in order to discover

the payoffs, we would have to play the game. This may be quite costly, so it is

natural to ask whether we can find an equilibrium of a game while minimizing

the number of experiments that we must perform.

Payoff queries model this situation. In the payoff query model we are told the

structure of the game, i.e., the strategy space, but we are not told the payoffs.

We can then make payoff queries, where we propose a pure strategy profile, and

we are told the payoff of each player under that strategy profile. Our task is

to compute an equilibrium of the game while minimizing the number of payoff

queries that we make.

The study of query complexity in bimatrix games was initiated by Fearnley,

Gairing, Goldberg and Savani [29], who gave a deterministic algorithm for finding

a 1
2
-NE using 2n−1 payoff queries. A subsequent paper of Fearnley and Savani [32]

showed a number of further results. Firstly, they showed an Ω(n2) lower bound

on the query complexity of finding an ε-NE with ε < 1
2
, which combined with

the result above, gives a complete view of the deterministic query complexity of

approximate Nash equilibria in bimatrix games. They then gave a randomized

algorithm that finds a (3−
√

5
2

+ ε)-NE using O(n·logn
ε2

) queries, and a randomized

algorithm that finds a (2
3

+ ε)-WSNE using O(n·logn
ε4

) queries.

1.4 Overview of Results

The contributions of this thesis are efficient algorithms for computing approximate

equilibria for several classes of games.

1.4.1 Bimatrix games

We introduce a distributed technique that allows us to efficiently compute ap-

proximate Nash equilibria and approximate well-supported Nash equilibria using

limited communication between the players.

Traditional methods for computing WSNEs have used an LP based approach

that, when used on a bimatrix game (R,C), solves the zero-sum game (R−C,C−
R), where R and C denote the payoff matrix for the row and column player

respectively. The Kontogiannis and Spirakis algorithm [53] (KS algorithm) uses

the fact that if there is no pure 2
3
-WSNE, then the solution to this zero-sum game

is a 2
3
-WSNE. The slight improvement of the algorithm of Fearnley, Goldberg,

Savani and Sørensen [30] (FGSS algorithm) to 0.6608 was obtained by adding

two further methods to the KS algorithm: if the KS algorithm does not produce

10

a 0.6608-WSNE, then either there is a 2 × 2 matching pennies sub-game that

is 0.6608-WSNE for the bimatrix game (R,C), or the strategies computed from

the zero-sum game can be improved by shifting the probabilities of both players

within their supports in order to produce a 0.6608-WSNE.

We take a different approach. We first show that the bound of 2
3

can be

matched using a pair of distributed LPs. Given a bimatrix game (R,C), we solve

the two zero-sum games (R,−R) and (−C,C), and then give a straightforward

procedure that we call the base algorithm, which uses the solutions to these games

to produce a 2
3
-WSNE of (R,C). Goldberg and Pastnik [38] also considered this

pair of LPs, but their algorithm only produces a 0.732-WSNE. We then show

that the base algorithm can be improved by applying the probability-shifting and

matching-pennies ideas from the FGSS-algorithm. That is, if the base algorithm

fails to find a 0.6528-WSNE, then a 0.6528-WSNE can be obtained either by

shifting the probabilities of one of the two players, or by identifying a 2× 2 sub-

game where its exact NE corresponds to a 0.6528-WSNE. This gives a polynomial

time algorithm that computes a 0.6528-WSNE, which provides the best known

approximate guarantees for WSNEs.

It is worth pointing out that, while these techniques are thematically similar to

the ones used by the FGSS-algorithm, the actual implementation is significantly

different. The FGSS-algorithm attempts to improve the strategies by shifting

probabilities within the supports of the strategies returned by the zero-sum game,

with the goal of reducing the other player’s payoff. In our algorithm, we shift

probabilities away from bad strategies in order to improve that player’s payoff.

This type of analysis is possible because the base algorithm produces a strategy

profile in which one of the two players plays a pure strategy, which makes the

analysis we need to carry out much simpler. On the other hand, the KS-algorithm

can produce strategies in which both players play many strategies, and so the

analysis used for the FGSS-algorithm is necessarily more complicated.

Since our algorithm solves the two LPs separately, it can be used to improve

upon the best known algorithms in the limited communication setting. This is

because no communication is required for the row player to solve (R,−R) and

the column player to solve (−C,C). The players can then carry out the rest of

the algorithm using only poly-logarithmic communication. Hence, we obtain a

randomized expected-polynomial-time algorithm that uses poly-logarithmic com-

munication and finds a 0.6528-WSNE. Moreover, the base algorithm can be im-

plemented as a communication efficient algorithm for finding a (0.5 + ε)-WSNE

in a win-lose bimatrix game, where all payoffs are either 0 or 1.

11

The algorithm can also be used to beat the best known bound in the query

complexity setting. It has already been shown by Goldberg and Roth [39] that

an ε-NE of a zero-sum game can be found by a randomized algorithm that uses

O(n logn
ε2

) payoff queries. Since the rest of the steps used by our algorithm can

also be carried out using O(n log n) payoff queries, this gives us a query efficient

algorithm for finding a 0.6528-WSNE.

We also show that the base algorithm can be adapted to find a 3−
√

5
2

-NE in a

bimatrix game, which matches the bound given for the first algorithm of Bosse et

al. [7]. Once again, this can be implemented in a communication efficient manner,

and so we obtain an algorithm that computes a (3−
√

5
2

+ ε)-NE (i.e., 0.382-NE)

using only poly-logarithmic communication.

1.4.2 Polymatrix games

Our main result is an algorithm that, for every δ in the range 0 < δ ≤ 0.5, finds

a (0.5 + δ)-NE of a polymatrix game in time polynomial in the input size and 1
δ
,

assuming every player has maximum payoff 1 and minimum payoff 0. Note that

our approximation guarantee does not depend on the number of players, which is

a property that was not previously known to be achievable for polymatrix games,

for any constant ε < 1, and still cannot be achieved for general strategic form

games.

We prove this result by adapting the algorithm of Tsaknakis and Spirakis [66],

(TS algorithm). They give a gradient descent algorithm for finding a 0.3393-Nash

equilibrium in a bimatrix game. We generalise their gradient descent techniques

to the polymatrix setting, and show that it always arrives at a (0.5 + δ)-Nash

equilibrium after a polynomial number of iterations.

In order to generalise the TS algorithm we had to overcome several issues.

Firstly, the TS algorithm makes the regrets of the two players equal in every

iteration, but there is no obvious way to achieve this in the polymatrix setting.

Instead, we show how gradient descent can be applied to a strategy profile where

the regrets are not necessarily equal. Secondly, the output of the TS algorithm

is either a point found by gradient descent, or a point obtained by modifying

the result of gradient descent. In the polymatrix game setting, it is not im-

mediately obvious how such a modification can be derived with a non-constant

number of players (without an exponential blowup). Thus, we apply a different

analysis, which proves that the point resulting from gradient descent always has

our approximation guarantee. It is an interesting open question whether a better

approximation guarantee can be achieved when there is a constant number of

12

players.

Furthermore, we show that our algorithm can be applied to two-player Bayesian

games. Rosenthal and Howson showed that the problem of finding an exact equi-

librium in a two-player Bayesian game is equivalent to finding an exact equilib-

rium in a polymatrix game [48]. We show that this correspondence also holds for

approximate equilibria: finding an ε-Nash equilibrium in these games can be re-

duced to the problem of finding an ε-Nash equilibrium in a polymatrix game, and

therefore, our algorithm can be used to efficiently find a (0.5+δ)-Nash equilibrium

of a two-player Bayesian game.

1.4.3 Lipschitz games

We study three classes of games that are not strategic form; Lipschitz games,

Penalty games and Distance Biased games.

Lipschitz games. This is a very general class of games, where each player’s

strategy space is continuous, is represented by a convex set of vectors, and where

the only restriction is that the payoff function is Lipschitz continuous. This class

encompasses, for example, every concave game in which the payoffs are Lipschitz

continuous. This class is so general that exact equilibria, and even approximate

equilibria may not exist. Nevertheless, we give an efficient algorithm that either

outputs an ε-equilibrium, or determines that the game has no exact equilibria.

More precisely, for M -player games that are λ-continuous in the Lp norm, for

p ≥ 2, and where γ = max ‖x‖p over all x in the strategy space, we either

compute an ε-equilibrium or determine that no exact equilibrium exists in time

O
(
MnMk+l

)
, where k = O

(
λ2Mpγ2

ε2

)
and l = O

(
λ2pγ2

ε2

)
. Observe that this is a

polynomial time algorithm when λ, p, γ, M , and ε are constant.

To prove this result, we utilize a recent result of Barman [5], which states

that for every vector in a convex set, there is another vector that is ε close to the

original in the Lp norm, and is a convex combination of b points on the convex

hull, where b depends on p and ε, but does not depend on the dimension. This

result and the Lipschitz continuity of the payoff functions allow us to reduce

the task of finding an ε-equilibrium to checking only a small number of strategy

profiles, and thus we get a brute-force algorithm that is reminiscent of the QPTAS

given by Lipton, Mehta and Markakis [56] for bimatrix games.

However, life is not so simple for us. Since we study a very general class of

games, verifying whether a given strategy profile is an ε-equilibrium is a non-

trivial task. It requires us to compute a regret for each player, which is the differ-

13

ence between the player’s best response payoff and their actual payoff. Computing

a best response in a bimatrix game is trivial, but for Lipschitz games, computing

a best response may be a hard problem. We get around this problem by instead

giving an algorithm to compute approximate best responses. Hence we find ap-

proximate regrets, and it turns out that this is sufficient for our algorithm to

work.

Penalty games. In these games, the players play a strategic form game, and

their utility is the payoff achieved in the game minus a penalty. The penalty

function can be an arbitrary function that depends on the player’s strategy. This

is a general class of games that encompasses a number of games that have been

studied before. The biased games studied in [10] are penalty games where the

penalty is determined by the amount each player deviates from a specified base

strategy. The biased model was studied in the past by psychologists [67] and it

is close to what they call anchoring [49, 11]. Anchoring is common in poker 2

and in fact there are several papers on poker that are reminiscent of anchoring

[36, 37, 47]. In their seminal paper, Fiat and Papadimitriou [34] introduced a

model for risk prone games. This model resembles penalty games since the risk

component can be encoded in the penalty function. Mavronicolas and Monien [58]

followed this line of research and provided results on the complexity of deciding

if such games possess an equilibrium.

We again show that Lipschitz continuity helps us to find approximate equilib-

ria. The only assumption that we make is that the penalty function is Lipschitz

continuous in an Lp norm with p ≥ 2. Again, this is a weak restriction and it does

not guarantee that exact equilibria exist. Even so, we give a quasi-polynomial

time algorithm that either finds an ε-equilibrium, or verifies that the game has

no exact equilibrium.

We take a similar approach, but since our games are more complicated, our

proof is necessarily more involved. In particular, in [56], proving that the sampled

strategies are an approximate equilibrium only requires showing that the expected

payoff is close the payoff of a pure best response. In penalty games, best response

strategies are not necessarily pure, and so the events that we must consider are

more complex.

Distance biased games. Biased games, are a subclass of penalty games that

have been studied recently by Caragiannis, Kurokawa and Procaccia [10]. They

2http://www.pokerology.com/articles/anchoring-bias/

14

showed that, under very mild assumptions on the bias function, biased games

always have an exact equilibrium. Furthermore, for the case where the bias

function is either the L1 norm, or the L2
2 norm, they give an exponential time

algorithm for finding an exact equilibrium.

Our results for penalty games already give a QPTAS for biased games, but we

are also interested in whether there are polynomial-time algorithms that can find

non-trivial approximations. We give a positive answer to this question for games

where the bias is the L1 norm, the L2
2 norm, or the L∞ norm. We follow the well-

known approach of Daskalakis, Mehta and Papadimitriou [20], who gave a simple

algorithm for finding a 0.5-approximate equilibrium in a bimatrix game. Their

approach is as follows: start with an arbitrary strategy x for player 1, compute

a best response j for player 2 against x, and then compute a best response i for

player 1 against j. Player 1 mixes uniformly between x and i, while player 2

plays j.

We show that this algorithm also works for biased games, although the gen-

eralisation is not entirely trivial. Again, this is because best responses cannot be

trivially computed in biased games. For the L1 and L∞ norms, best responses can

be computed via linear programming, and for the L2
2 norm, best responses can

be formulated as a quadratic program. It turns out that this particular QP can

be solved in polynomial time by the ellipsoid method. However, none of these

algorithms is strongly polynomial. We show that, for each of the norms, best

responses can be found by a simple strongly-polynomial combinatorial algorithm.

We then analyse the quality of approximation provided by the technique of [20].

We obtain a strongly polynomial algorithm for finding a 2/3 approximation in L1

and L∞ biased games, and a strongly polynomial algorithm for finding a 5/7 ap-

proximation in L2
2 biased games. For the latter result, in the special case where

the bias function is the inner product of the player’s strategy we find a 13/21

approximation.

15

Papers in the thesis

This thesis is primarily based on three papers published during my PhD studies.

Chapter 3 is based on the paper “Distributed Methods for Computing Ap-

proximate Equilibria” [15] published in WINE 2016: The 12-th Conference on

Web and Internet Economics.

Chapters 4 and 5 are based on the paper “ Computing approximate Nash

Equilibria in Polymatrix Games” [24] published in WINE 2014 and accepted for

publication in Algorithmica. The algorithm presented in Section 5.3 was derived

by Michail Fasoulakis who kindly agreed to add it in my thesis.

Chapter 6 is based on the paper “Lipschitz Continuity and Approximate Equi-

libria” [25] published in SAGT 2016: The 9th International Symposium on Algo-

rithmic Game Theory.

Furthermore, during my Phd studies I was a co-author in the following papers:

• “An Empirical Study on Computing Equilibria in Polymatrix Games” [23]

published in AAMAS 2016.

• “Inapproximability Results for Approximate Nash Equilibria” [28]

published in WINE 2016.

• “Increasing VCG Revenue by Decreasing the Quality of Items” [43]

published in AAAI 2014.

• “Revenue Maximization via Hiding Item Attributes” [42]

published in IJCAI 2013.

• “On the Complexity of Weighted Greedy Matchings” [26].

• “Minmax Heterogeneous Facility Location Games” [1].

16

Chapter 2

Preliminaries

In this Chapter we introduce the necessary notation that will be used throughout

this thesis.

2.1 Games, Strategies and Utility Functions

We start by fixing some notation. For each positive integer n we use [n] to denote

the set {1, 2, . . . , n}, and when a universe [n] is clear, we will use S̄ = {i ∈ [n], i /∈
S} to denote the complement of S ⊆ [n]. For an n-dimensional vector x, we use

x−S to denote the elements of x with indices in S̄, and in the case where S = {i}
has only one element, we simply write x−i for x−S. We use ∆n to denote the

(n − 1)-dimensional simplex, formally ∆n := {x : x ∈ Rn, x ≥ 0,
∑n

i=1 xi = 1}.
Furthermore, we use ‖x‖p to denote the p-norm of a vector x ∈ Rd, i.e. ‖x‖p =(∑

i∈[d] |xi|p
)1/p

. Given a set X = {x1, x2, . . . , xn} ⊂ Rd, we use conv(X) to

denote the convex hull of X. A vector y ∈ conv(X) is said to be k-uniform with

respect to X if there exists a size k multiset S of [n] such that y = 1
k

∑
i∈S xi.

When X is clear from the context we will simply say that a vector is k uniform

without mentioning that uniformity is with respect to X.

Games and strategies. A game with n players can be described by a set

of available actions for each player and a utility function for each player that

depends both on his chosen action and the actions the rest of the players chose.

Definition 1 (Game). An n-player game Γ is defined by

• a set of players N = [n],

• a set of available actions Si for every player i ∈ [n],

• a utility function ui : S1 × . . .× Sn → R for every player i ∈ [n].

17

Strategies. For each player i ∈ [n] we will call Si as strategy space. We will use

xi ∈ Si to denote a specific action chosen by player i and we will call it as the

strategy of player i. In order to play the game, all players simultaneously select a

strategy from their strategy set and we use X = (x1, . . . , xn) to denote a strategy

profile of the game. When player i ∈ [n] chooses an action deterministically from

his strategy space, we will say that player i plays a pure strategy. If the player

randomises over some actions according to a probability distribution, we will say

that he plays a mixed strategy. We use ui(X) = ui(xi,X−i) to denote the utility of

player i when he plays the strategy xi and the rest of the players play according

to the strategy profile X−i.

Best responses. A strategy x̂i is a best response against the strategy profile

X−i, if ui(x̂i,X−i) ≥ ui(xi,X−i) for all xi ∈ Si. The regret player i suffers under

a strategy profile X is the difference between the utility of his best response and

his utility under X, i.e. ui(x̂i,X−i)− ui(xi,X−i).

The Definition 1 above is quite general. If extra constraints are imposed on

the number of the players and/or on the utility functions, then several classes

of games can be constructed. In this thesis the following classes of games are

studied: bimatrix (or two player) games, polymatrix games, Bayesian two player

games, Lipschitz games, concave games, penalty games, biased games, and dis-

tance biased games. In each of the following chapters we will define explicitly

and study the aforementioned classes games.

2.2 Solution Concepts

The standard solution concept in game theory is the equilibrium. A strategy pro-

file is an equilibrium if no player can increase his utility by unilaterally changing

his strategy.

Definition 2 (Equilibrium). The strategy profile X is an equilibrium for an n-

player game Γ if and only if for all i ∈ [n] it holds that ui(xi,X−i) ≥ ui(x
′
i,X−i)

for all possible x′i ∈ ∆Si.

When we refer to bimatrix, polymatrix, or Bayesian two player games we will

call the equilibria as Nash equilibria, while for the rest of the classes we will call

them simply as equilibria. We make this distinction because Nash’s theorem [60]

does not hold for the classes of Lipschitz, concave, penalty, biased, and distance

biased games.

18

2.2.1 Approximate Equilibria

In this thesis we study a “relaxed” notion of equilibria which we call approximate

equilibria. More specifically, we study additive approximate equilibria. For any

ε > 0, an additive ε-approximate equilibrium, or simply ε-equilibrium, is a strat-

egy profile where no player can increase his payoff more than ε by unilaterally

changing his strategy.

Definition 3 (ε-equilibrium). Let ε > 0. The strategy profile X is an ε-equilibrium

for an n-player game if and only if for all players i ∈ [n] it holds that ui(xi,X−i) ≥
ui(x

′
i,X−i)− ε for all possible x′i ∈ ∆Si.

If under the strategy profile X a player can increase his payoff by ε by unilat-

erally changing his strategy xi, then we say that the player suffers ε regret.

2.2.2 Payoff rescaling

Observe that in order an ε-equilibrium to be a meaningful solution concept for a

game, it must have the same meaning for every player. Consider for example the

scenario of a strategy profile for a two player game where no player can increase

his payoff more than one. Assume furthermore that under this strategy profile

the first player gets utility zero, while the second player gets utility of a million.

The incentive for the first player to change his strategy is much stronger than the

incentive of the second player.

In order to overcome this inefficiency of the definition of ε-equilibrium we must

make some assumptions on the utility functions. The standard assumption in the

field of approximate equilibria is that the utility for every player is normalised in

[0, 1], thus the value of ε has the same effect in every player. This normalisation

does not affect the exact equilibria of the game and if it is applied carefully it does

not affect the approximate equilibria of the game either. In the following chapters,

if we do not mention how to normalise the utilities of the players we implicitly

assume that are already normalised in [0, 1]. In Chapter 4 and in Chapter 5 we

explain in detail how to normalise the utilities in polymatrix and Bayesian two

player games respectively.

2.3 Game Sizes

The size of a game is defined by the number of bits required in order to represent

it. In order to define the size of a game it is sufficient just to describe the utility

functions of the players that are involved in it. Notice that for an n-player game

19

if |Si| = s for all i ∈ [n], then there are sn different strategy profiles for the game.

This means that nsn payoffs have to be described in order to represent the game.

This is exponential in the number of players. In this thesis we focus only on

games with succint representation, i.e. the size of the game is polynomial in the

number of the players of the game.

Bimatrix games are succinctly represented games; when each player has s

pure strategies, then the size of the game is 2s2. Polymatrix games form a class

of succinctly represented n-player games: a polymatrix game is specified by at

most n2 bimatrix games, each of which can be written down in quadratic space

with respect to the number of strategies and Bayesian two-player games have a

succinct representation too, since such a game can be reduced to a polymatrix

game (we will explain these in detail in Chapters 4 and 5).

Observe though that we implicitly make an assumption on the payoffs repre-

sentation. We assume that each payoff needs at most polylogarithmic bits to be

described.

In games with concave utility functions the size of the game depends on how

the utility functions for the players are represented. Throughout this thesis we

will assume that the utility functions for all players have a succinct representation.

20

Chapter 3

Bimatrix Games

In this chapter we present a distributed method to compute approximate Nash

equilibria in bimatrix games. In contrast to previous approaches that analyze the

two payoff matrices at the same time (for example, by solving a single LP that

combines the two players’ payoffs), our algorithm first solves two independent

LPs, each of which is derived from one of the two payoff matrices, and then

computes an approximate Nash equilibrium using only limited communication

between the players.

Our method gives improved bounds on the complexity of computing ap-

proximate Nash equilibria in a number of different settings. Firstly, it gives a

polynomial-time algorithm for computing approximate well supported Nash equi-

libria (WSNE) that always finds a 0.6528-WSNE, beating the previous best guar-

antee of 0.6608. Secondly, since our algorithm solves the two LPs separately, it can

be applied to give an improved bound in the limited communication setting, giv-

ing a randomized expected-polynomial-time algorithm that uses poly-logarithmic

communication and finds a 0.6528-WSNE which beats the previous best known

guarantee of 0.732. It can also be applied to the case of approximate Nash equi-

libria, where we obtain a randomized expected-polynomial-time algorithm that

uses poly-logarithmic communication and always finds a 0.382-approximate Nash

equilibrium, which improves the previous best guarantee of 0.438. Finally, the

method can also be applied in the query complexity setting to give an algorithm

that makes O(n log n) payoff queries and always finds a 0.6528-WSNE, which

improves the previous best known guarantee of 2/3.

21

3.1 Bimatrix games preliminaries

An n ×m bimatrix game is a pair (R,C) of two n ×m matrices: R defines the

payoff for the row player, and C defines the payoff for the column player. Without

loss of generality and for notation simplicity, we will assume that m = n. We

note however that our algorithm works even if m 6= n. We make the standard

assumption that all payoffs lie in the range [0, 1]. So, each player has n pure

strategies. To play the game, the row player selects a row i ∈ [n], and the column

player selects a column j ∈ [n]. The row player then receives payoff Ri,j, and the

column player receives payoff Ci,j.

A mixed strategy is a probability distribution over [n]. We denote a mixed

strategy for the row player as a vector x of length n, such that xi is the probability

that the row player assigns to pure strategy i. A mixed strategy of the column

player is a vector y of length n, with the same interpretation. Given a mixed

strategy x for either player, the support of x is the set of pure strategies i with

xi > 0. If x and y are mixed strategies for the row and the column player,

respectively, then we call (x,y) a mixed strategy profile. The expected payoff

for the row player under the strategy profile (x,y) is given by xTRy and for the

column player by xTCy. We denote the support of a strategy x as supp(x), which

gives the set of pure strategies i such that xi > 0.

Nash equilibria. Let y be a mixed strategy for the column player. The set of

pure best responses against y for the row player is the set of pure strategies that

maximize the payoff against y. More formally, a pure strategy i ∈ [n] is a best

response against y if, for all pure strategies i′ ∈ [n] we have:
∑

j∈[n] yj · Ri,j ≥∑
j∈[n] yj ·Ri′,j. Column player best responses are defined analogously.

A mixed strategy profile (x,y) is a mixed Nash equilibrium if every pure

strategy in supp(x) is a best response against y, and every pure strategy in

supp(y) is a best response against x. Observe that in a Nash equilibrium, each

player’s expected payoff is equal to their best response payoff.

Approximate Equilibria. There are two commonly studied notions of ap-

proximate equilibrium, and we consider both of them in this chapter. The first

notion is of an ε-approximate Nash equilibrium (ε-NE), which weakens the re-

quirement that a player’s expected payoff should be equal to their best response

payoff. Formally, given a strategy profile (x,y), we define the regret suffered

by the row player to be the difference between the best response payoff and the

22

actual payoff:

max
i∈[n]

(
(R · y)i

)
− xT ·R · y.

Regret for the column player is defined analogously. We have that (x,y) is an

ε-NE if and only if both players have regret less than or equal to ε.

The other notion is of an ε-approximate-well-supported equilibrium (ε-WSNE),

which weakens the requirement that players only place probability on best re-

sponse strategies. Given a strategy profile (x,y) and a pure strategy j ∈ [n], we

say that j is an ε-best-response for the row player if:

max
i∈[n]

(
(R · y)i

)
− (R · y)j ≤ ε.

An ε-WSNE requires that both players only place probability on ε-best-responses.

Formally, the row player’s pure strategy regret under (x,y) is defined to be:

max
i∈[n]

(
(R · y)i

)
− min

i∈supp(x)

(
(R · y)i

)
.

Pure strategy regret for the column player is defined analogously. A strategy

profile (x,y) is an ε-WSNE if both players have pure strategy regret less than or

equal to ε.

Communication complexity. We consider the communication model for bi-

matrix games introduced by Goldberg and Pastink [38]. In this model, both

players know the payoffs in their own payoff matrix, but do not know the pay-

offs in their opponent’s matrix. The players then follow an algorithm that uses a

number of communication rounds, where in each round they exchange a single bit

of information. Between each communication round, the players are permitted to

perform arbitrary randomized computations (although it should be noted that, in

this chapter, the players will only perform polynomial-time computations) using

their payoff matrix, and the bits that they have received so far. At the end of

the algorithm, the row player outputs a mixed strategy x, and the column player

outputs a mixed strategy y.

The goal is to produce a strategy profile (x,y) that is an ε-NE or ε-WSNE for

a sufficiently small ε while limiting the number of communication rounds used by

the algorithm. The algorithms given in this chapter will use at most O(log2 n)

communication rounds.

23

Query complexity. In the query complexity setting, the algorithm knows that

the players will play an n×n game (R,C), but it does not know any of the entries

of R or C. These payoffs are obtained using payoff queries in which the algorithm

proposes a pure strategy profile (i, j), and then it is told the value of Rij and

Cij. After each payoff query, the algorithm can make arbitrary computations

(although, again, in this chapter the algorithms that we consider take polynomial

time) in order to decide the next pure strategy profile to query. After making a

sequence of payoff queries, the algorithm then outputs a mixed strategy profile

(x,y). Again, the goal is to ensure that this strategy profile is an ε-NE or ε-

WSNE, while minimizing the number of queries made overall.

3.2 An Algorithm for Finding a 2
3-WSNE

In this section, we introduce an algorithm that we call the base algorithm. This

algorithm provides a simple way to find a 2
3
-WSNE. We present this algorithm

separately for three reasons.

• We believe that the algorithm is interesting on its own right, since it provides

a relatively straightforward method for finding a 2
3
-WSNE that is quite

different from the technique used in the KS-algorithm.

• Our algorithm for finding a 0.6528-WSNE will replace the final step of the

algorithm with two more involved procedures, so it is worth understanding

this algorithm before we describe how it can be improved.

• We will show that this algorithm can be adapted to provide a communica-

tion efficient way to find a (0.5 + ε)-WSNE in win-lose games.

The algorithm. Our algorithm solves two zero-sum games. We say that the

strategy x secures value v for the row player, if xTRy ≥ v for every possible y.

24

Algorithm 1: The base algorithm

1. Solve the zero-sum games (R,−R) and (−C,C).

• Let (x∗,y∗) be a NE of (R,−R), and let (x̂, ŷ) be a NE of
(−C,C).

• Let vr be the value secured by x∗ in (R,−R), and let vc be
the value secured by ŷ in (−C,C). Without loss of generality
assume that vc ≤ vr.

2. If vr ≤ 2/3, then return (x̂,y∗).

3. If for all j ∈ [n] it holds that CT
j · x∗ ≤ 2/3, then return (x∗,y∗).

4. Otherwise:

• Let j∗ be a pure best response to x∗.

• Find a row i such that Rij∗ > 1/3 and Cij∗ > 1/3.

• Return (i, j∗).

We argue that this algorithm is correct. For that reason, we must prove that

the row i used in Step 4 actually exists, which we do in the following lemma.

Lemma 1. If Algorithm 1 reaches Step 4, then there exists a row i such that

Rij∗ > 1/3 and Cij∗ > 1/3.

Proof. Let i be a row sampled from x∗. We will show that there is a positive

probability that row i satisfies the desired properties.

We begin by showing that the probability Pr(Rij∗ ≤ 1
3
) is less than 0.5. Let

the random variable T = 1 − Rij∗ . Since vr >
2
3
, we have that E[T] < 1

3
. Thus,

applying Markov’s inequality we obtain:

Pr(T ≥ 2

3
) ≤ E[T]

2/3
< 0.5.

Since Pr(Rij∗ ≤ 1
3
) = Pr(T ≥ 2

3
) we can therefore conclude that Pr(Rij∗ ≤ 1

3
) <

0.5. The exact same technique can be used to prove that Pr(Cij∗ ≤ 1
3
) < 0.5, by

using the fact that CT
j∗ · x∗ > 2

3
.

We can now apply the union bound to argue that:

Pr(Rij∗ ≤
1

3
or Cij∗ ≤

1

3
) < 1.

Hence, there is positive probability that row i satisfies Rij∗ >
1
3

and Cij∗ >
1
3
, so

such a row must exist.

25

We now argue that the algorithm always produces a 2
3
-WSNE. There are

three possible strategy profiles that can be returned by the algorithm, which we

consider individually.

The algorithm returns in Step 2. Since vc ≤ vr by assumption, and since

vr ≤ 2
3
, we have that (R · y∗)i ≤ 2

3
for every row i, and ((x̂)T · C)j ≤ 2

3
for

every column j. So, both players can have pure strategy regret at most 2
3

in (x̂,y∗), and thus this profile is a 2
3
-WSNE.

The algorithm returns in Step 3. Much like in the previous case, when the

column player plays y∗, the row player can have pure strategy regret at

most 2
3
. The requirement that CT

j x∗ ≤ 2
3

also ensures that the column

player has pure strategy regret at most 2
3
. Thus, we have that (x∗,y∗) is a

2
3
-WSNE.

The algorithm returns in Step 4. Both players have payoff at least 1
3

under

(i, j∗) for the sole strategy in their respective supports. Hence, the maximum

pure strategy regret that can be suffered by a player is 1− 1
3

= 2
3
.

Observe that the zero-sum game solved in Step 1 can be solved via linear pro-

gramming, and so the algorithm runs in polynomial time. Therefore, we have

shown the following.

Theorem 1. Algorithm 1 always produces a 2
3
-WSNE in polynomial time.

3.3 An Algorithm for Finding a 0.6528-WSNE

In this section, we show how Algorithm 1 can be modified to produce a 0.6528-

WSNE. We begin by giving an overview of the techniques used, we then give the

algorithm, and finally we analyse the quality of WSNE that it produces.

Outline. The idea behind our algorithm is to replace Step 4 of Algorithm 1

with a more involved procedure. This procedure uses two techniques that both

find an ε-WSNE with ε < 2
3
.

Firstly, we attempt to turn (x∗, j∗) into a WSNE by shifting probabilities.

Observe that, since j∗ is a best response, the column player has a pure strategy

regret of 0 in (x∗, j∗). On the other hand, we have no guarantees about the row

player since x∗ might place a small amount of probability on strategies with payoff

26

strictly less than 1
3
. However, since x∗ achieves a high expected payoff, (due to

Step 2) it cannot place too much probability on these low payoff strategies. Thus,

the idea is to shift the probability that x∗ assigns to entries of j∗ with payoff less

than or equal to 1
3

to entries with payoff strictly greater than 1
3
, and thus ensure

that the row player’s pure strategy regret is below 2
3
. Of course, this procedure

will increase the pure strategy regret of the column player, but if it is also below 2
3

once all probability has been shifted, then we have found an ε-WSNE with ε < 2
3
.

If shifting probabilities fails to find an ε-WSNE with ε < 2
3
, then we show that

the game contains a matching pennies sub-game. More precisely, we show that

there exists a column j′, and rows b and s such that the 2× 2 sub-game induced

by j∗, j′, b, and s has the following form:

@
@@
I

II

b

s

j∗ j′

≈ 1 0

0 ≈ 1

0 ≈ 1

≈ 1 0

Thus, if both players play uniformly over their respective pair of strategies, then

j∗, j′, b, and s with have payoff ≈ 0.5, and so this yields an ε-WSNE with ε < 2
3
.

The algorithm. We now formalize this approach, and show that it always finds

an ε-WSNE with ε < 2
3
. In order to quantify the precise ε that we obtain, we

parametrise the algorithm by a variable z, which we constrain to be in [0, 1
24

).

With the exception of the matching pennies step, all other steps of the algo-

rithm will return a (2
3
− z)-WSNE, while the matching pennies step will return

a (1
2

+ f(z))-WSNE for some increasing function f . Optimising the tradeoff be-

tween 2
3
− z and 1

2
+ f(z) then allows us to determine the quality of WSNE found

by our algorithm.

Algorithm 2 presents the aforementioned. Observe that Steps 1, 2, and 3 are

versions of the corresponding steps from Algorithm 1 which have been adapted to

produce a (2
3
− z)-WSNE. Step 4 implements the probability shifting procedure,

while Step 5 finds a matching pennies sub-game.

Observe that the probabilities used in xmp and ymp are only well defined

when z ≤ 1
24

, because we have that 1−15z
2−39z

> 1 whenever z > 1
24

, which explains

our required upper bound on z.

27

Algorithm 2

1. Solve the zero-sum games (R,−R) and (−C,C).

• Let (x∗,y∗) be a NE of (R,−R), and let (x̂, ŷ) be a NE of
(C,−C).

• Let vr be the value secured by x∗ in (R,−R), and let vc be
the value secured by ŷ in (−C,C). Without loss of generality
assume that vc ≤ vr.

2. If vr ≤ 2/3− z, then return (x̂,y∗).

3. If for all j ∈ [n] it holds that CT
j x∗ ≤ 2/3− z, then return (x∗,y∗).

4. Otherwise:

• Let j∗ be a pure best response against x∗. Define:

S := {i ∈ supp(x∗) : Rij∗ < 1/3 + z}
B := supp(x∗) \ S

• Define the strategy xb as follows. For each i ∈ [n] we have:

(xb)i =

{
1

Pr(B)
· x∗i if i ∈ B

0 otherwise.

• If (xb
T · C)j∗ ≥ 1

3
+ z, then return (xb, j

∗).

5. Otherwise:

• Let j′ be a pure best response against xb.

• If there exists an i ∈ supp(x∗) such that (i, j∗) or (i, j′) is a pure
(2

3
− z)-WSNE, then return it.

• Find a row b ∈ B such that Rbj∗ > 1− 18z
1+3z

and Cbj′ > 1− 18z
1+3z

.

• Find a row s ∈ S such that Csj∗ > 1− 27z
1+3z

and Rsj′ > 1− 27z
1+3z

.

• Define the row player strategy xmp and the column player strat-
egy ymp as follows. For each i ∈ [n] we have:

xmpi =

1−24z
2−39z

if i = b,
1−15z
2−39z

if i = s,

0 otherwise.

ympi =

1−24z
2−39z

if i = j∗,
1−15z
2−39z

if i = j′,

0 otherwise.

• Return (xmp,ymp).

28

The correctness of Step 5. This step of the algorithm relies on the existence

of the rows b and s, which is not at all trivial. This is shown in the following

lemma. The proof of this lemma is quite lengthy, and is given in full detail in

Section 3.3.3.

Lemma 2. Suppose that the following conditions hold:

1. x∗ has payoff at least 2
3
− z against j∗.

2. j∗ has payoff at least 2
3
− z against x∗.

3. x∗ has payoff at least 2
3
− z against j′.

4. Neither j∗ or j′ contains a pure (2
3
− z)-WSNE (i, j) with i ∈ supp(x∗).

Then, both of the following are true:

• There exists a row b ∈ B such that Rbj∗ > 1− 18z
1+3z

and Cbj′ > 1− 18z
1+3z

.

• There exists a row s ∈ S such that Csj∗ > 1− 27z
1+3z

and Rsj′ > 1− 27z
1+3z

.

The lemma explicitly states the preconditions that need to hold because we

will reuse it in our communication complexity and query complexity results. Ob-

serve that the preconditions are indeed true if the Algorithm reaches Step 5. The

first and third conditions hold because, due to Step 2, we know that x∗ is a min-

max strategy that secures payoff at least vr >
2
3
− z. The second condition holds

because Step 3 ensures that the column player’s best response payoff is at least
2
3
− z. The fourth condition holds because Step 5 explicitly checks for these pure

strategy profiles.

Overview of the proof of Lemma 2. We now give an overview of the ideas

used in the proof which can be found in Section 3.3.3. The majority of the proof

is dedicated to proving four facts, which we outline below. First we determine

the structure of the row j∗. Here we use the fact that in the strategy profile

(x∗, j∗) both players have expected payoff close to 2
3
, but there does not exist a

row i ∈ supp(x∗) such that Rij∗ ≥ 1
3

+ z and Cij∗ ≥ 1
3

+ z (because such a row

would constitute a pure (2
3
− z)-WSNE.) The only way this is possible is when

both of the following facts hold.

1. Most of the probability assigned to B is placed on rows i with Rij∗ ≈ 1 and

Cij∗ ≈ 1
3
.

29

2. Most of the probability assigned to S is placed on rows i with Rij∗ ≈ 1
3

and

Cij∗ ≈ 1.

Moreover, x∗ must assign roughly half of its probability to rows in B and half of

its probability to rows in S.

Next, we observe that since Step 4 failed to produce a (2
3
− z)-WSNE, it must

be the case that j∗ is not a (2
3
− z)-best-response against xb, and the payoff of j∗

against xb is approximately 1
3
, it must be the case that the payoff of j′ against

xb is close to 1. The only way this is possible is if most column player payoffs

for rows in B are close to 1. However, if this is the case, then since j∗ does not

contain a pure (2
3
− z)-WSNE, we have that most row player payoffs in B must

be below 1
3

+ z. This gives us our third fact.

3. Most of the probability assigned to B is placed on rows i with Rij′ <
1
3

+ z

and Cij′ ≈ 1.

For the fourth fact, we recall that x∗ is a min-max strategy that guarantees

payoff at least vr >
2
3
− z, so the payoff of x∗ against j′ must be at least 2

3
− z.

However, since most rows i ∈ B have Rij′ <
1
3

+ z, and since x∗ places roughly

half its probability on B, it must be the case that most row player payoffs in S

are close to 1. This gives us our final fact.

4. Most of the probability assigned to S is placed on rows i with Rij′ ≈ 1.

Our four facts only describe the expected payoff of the rows in B and S for

the columns j∗ and j′. The final step of the proof is to pick out two particular

rows that satisfy the desired properties. For the row b we use Facts 1 and 3,

observing that if most of the probability assigned to B is placed on rows i with

Rij∗ ≈ 1, and on rows i with Cij∗ ≈ 1, then it must be the case that both of these

conditions can be simultaneously satisfied by a single row b. The existence of s

is proved by the same argument using Facts 2 and 4.

Quality of approximation. We now analyse the quality of WSNE that our

algorithm produces. Steps 2, 3, 4, 5 each return a strategy profile. Observe

that Steps 2 and 3 are the same as the respective steps in the base algorithm,

but with the threshold changed from 2
3

to 2
3
− z. Hence, we can use the same

reasoning as we gave for the base algorithm to argue that these steps always

return (2
3
− z)-WSNE. We now consider the other two steps.

The algorithm returns in Step 4. By definition all rows r ∈ B satisfy Rij∗ ≥
1
3

+z, so since supp(xb) ⊆ B, the pure strategy regret of the row player can

30

be at most 1−(1
3

+z) = 2
3
−z. For the same reason, since (xb

T ·C)j∗ ≥ 1
3

+z

holds, the pure strategy regret of the column player can also be at 2
3
− z.

Thus, the profile (xb, j
∗) is a (2

3
− z)-WSNE.

The algorithm returns in Step 5. Since Rbj∗ > 1− 18z
1+3z

, the payoff of b when

the column player plays ymp is at least:

1− 24z

2− 39z
·
(

1− 18z

1 + 3z

)
=

1− 39z + 360z2

2− 33z − 117z2

Similarly, since Rsj′ > 1 − 27z
1+3z

, the payoff of s when the column player

plays ymp is at least:

1− 15z

2− 39z
·
(

1− 27z

1 + 3z

)
=

1− 39z + 360z2

2− 33z − 117z2

In the same way, one can show that the payoffs of j∗ and j′ are also 1−39z+360z2

2−33z−117z2

when the row player plays xmp. Thus, we have that (xmp,ymp) is a (1 −
1−39z+360z2

2−33z−117z2
)-WSNE.

To find the optimal value for z, we need to find the largest value of z for which

the following inequality holds.

1− 1− 39z + 360z2

2− 33z − 117z2
≤ 2

3
− z.

Setting the inequality to an equality and rearranging gives the following cubic

polynomial equation.

117 z3 + 432 z2 − 30 z +
1

3
= 0.

Since the discriminant of this polynomial is positive, this polynomial has three

real roots, which can be found via the trigonometric method. Only one of these

roots lies in the range 0 ≤ z < 1
24

, which is the following:

z =
1

117

√
3

(
√

2434
√

3 cos

(
1

3
arctan

(
39

240073

√
9749
√

3

))

− 3
√

2434 sin

(
1

3
arctan

(
39

240073

√
9749
√

3

))
− 48

√
3

)
.

Thus, we get z ≈ 0.013906376, and as result we have found an algorithm that

always produces a 0.6528-WSNE. Hence, we have the following theorem.

Theorem 2. There is a polynomial time algorithm that, given a bimatrix game,

finds a 0.6528-WSNE.

31

3.3.1 Communication Complexity of the Algorithm

We claim that our algorithm can be adapted for the limited communication set-

ting. We make the following modification to our algorithm. In order to achieve

this, we use the following result of [38].

Lemma 3 (Goldberg and Pastink [38]). Given a mixed strategy x for the row

player and an ε > 0, there is a randomized expected-polynomial-time algorithm

that uses O(log2 n
ε2

)-communication to transmit a strategy xs to the column player

where |supp(xs)| ∈ O(logn
ε2

) and for every strategy i ∈ [n] we have:

|(xT ·R)i − (xTs ·R)i| ≤ ε.

The algorithm uses the well-known sampling technique of Lipton, Markakis,

and Mehta [56] to construct the strategy xs, so for this reason we will call the

strategy xs the sampled strategy from x. Since this strategy has a logarithmically

sized support, it can be transmitted by sending O(logn
ε2

) strategy indexes, each

of which can be represented using log n bits. By symmetry, the algorithm can

obviously also be used to transmit approximations of column player strategies to

the row player.

After Algorithm 2 computes x∗,y∗, x̂, and ŷ, we then use Lemma 3 to con-

struct and communicate the sampled strategies x∗s,y
∗
s , x̂s, and ŷs. These strate-

gies are communicated between the two players using 4 · (log n)2 bits of communi-

cation, and the players also exchange vr = (x∗s)
TRy∗s and vc = x̂Ts Cŷs using log n

rounds of communication. The algorithm then continues as before, except the

sampled strategies that are now used in place of their non-sampled counterparts.

Finally, in Steps 2 and 3, we test against the threshold 2
3
− z+ ε instead of 2

3
− z.

Observe that, when sampled strategies are used, all steps of the algorithm can

be carried out in at most (log n)2 communication. In particular, to implement

Step 4, the column player can communicate j∗ to the row player, and then the

row player can communicate Rij∗ for all rows i ∈ supp(x∗s) using (log n)2 bits of

communication, if we assume that the payoff entries have constant or polyloga-

rithmic length, which allows the column player to determine j′. Once j′ has been

determined, there are only 2 · log n payoffs in each matrix that are relevant to the

algorithm (the payoffs in rows i ∈ supp(x∗s) in columns j∗ and j′) and so the two

players can communicate all of these payoffs to each other, and then no further

communication is necessary.

Now, we must argue that this modified algorithm is correct. Firstly, we argue

that if the modified algorithm reaches Step 5, then the rows b and s exist. To do

this, we observe that the required preconditions of Lemma 2 are satisfied by x∗s,

32

j∗, and j′. Condition 2 holds because the modified Step 3 ensures that the column

player’s best response payoff is at least 2
3
− z + ε > 2

3
− z, while Condition 4

is ensured by the explicit check in Step 5. For Conditions 1 and 3, we use the

fact that (x∗,y∗) is an ε-Nash equilibrium of the zero-sum game (R,−R). The

following lemma shows that any approximate Nash equilibrium of a zero-sum

game behaves like an approximate min-max strategy.

Lemma 4. If (x,y) is an ε-NE of a zero-sum game (M,−M), then for every

strategy y′ we have:

xTMy′ ≥ xTMy − ε.

Proof. Let v = xTMy be the payoff to the row player under (x,y). Suppose, for

the sake of contradiction, that there exists a column player strategy y′ such that:

xTMy′ < v − ε.

Since the game is zero-sum, this means that the column player’s payoff under

(x,y′) is strictly larger than −v + ε, which then directly implies that the best

response payoff for the column player against x is strictly larger than −v + ε.

However, since the column player’s expected payoff under (x,y) is −v, this then

implies that (x,y) is not an ε-NE, which provides our contradiction.

Since Step 2 suggests that the row player’s payoff in (x∗,y∗) is at least 2
3
−z+ε,

Lemma 4 implies that x∗ secures a payoff of 2
3
− z no matter what strategy the

column player plays, which then implies that Conditions 1 and 3 of Lemma 2

hold.

Finally, we argue that the algorithm finds a (0.6528+ε). The modified Steps 2

and 3 now return a (2
3
− z + ε)-WSNE, whereas the approximation guarantees of

the other steps are unchanged. Thus, we can reuse our original analysis to obtain

the following theorem.

Theorem 3. For every ε > 0, there is a randomized expected-polynomial-time

algorithm that uses O
(

log2 n
ε2

)
communication and finds a (0.6528 + ε)-WSNE.

3.3.2 Query Complexity of the Algorithm

We now show that Algorithm 2 can be implemented in a payoff-query efficient

manner. There are two results that we will use for this setting. Goldberg and

Roth [39] have given a randomized algorithm that, with high probability, finds an

ε-NE of a zero-sum game using O(n·logn
ε2

) payoff queries. Given a mixed strategy

profile (x,y), an ε-approximate payoff vector for the row player is a vector v such

33

that, for all i ∈ [n] we have |vi − (R · y)i| ≤ ε. Approximate payoff vectors for

the column player are defined symmetrically. Fearnley and Savani [32] observed

that there is a randomized algorithm that when given the strategy profile (x,y),

finds approximate payoff vectors for both players using O(n·logn
ε2

) payoff queries

and that succeeds with high probability. We summarise these two results in the

following lemma.

Lemma 5 ([39, 32]). Given an n × n zero-sum bimatrix game, with probability

at least (1 − n−
1
8)(1 − 2

n
)2, we can compute an ε-Nash equilibrium (x,y), and

ε-approximate payoff vectors for both players under (x,y), using O(n·logn
ε2

) payoff

queries.

Let ε > 0 be a positive constant. We now outline the changes needed in the

algorithm.

• In Step 1 we use the algorithm of Lemma 5 to find ε
2
-NEs of (R,−R), and

(C,−C). We denote the mixed strategies found as (x∗a,y
∗
a) and (x̂a, ŷa),

respectively, and we use these strategies in place of their original counter-

parts throughout the rest of the algorithm. We also compute ε
2
-approximate

payoff vectors for each of these strategies, and use them whenever we need

to know the payoff of a particular strategy under one of these strategies. In

particular, we set vr to be the payoff of x∗a according to the approximate

payoff vector of y∗a, and we set vc to be the payoff of ŷa according to the

approximate payoff vector for x̂a.

• In Steps 2 and 3 we test against the threshold of 2
3
−z+ ε rather than 2

3
−z.

• In Step 4 we select j∗ to be the column that is maximal in the approximate

payoff vector against x∗a. We then spend n payoff queries to query every

row in column j∗, which allow us to proceed with the rest of this step as

before.

• In Step 5 we use the algorithm of Lemma 5 to find an approximate payoff

vector v for the column player against xb. We then select j′ to be a column

that maximizes v, and then spend n payoff queries to query every row in

j∗, which allows us to proceed with the rest of this step as before.

Observe that the query complexity of the algorithm is O(n·logn
ε2

), where the

dominating term arises due to the use of the algorithm from Lemma 5 to approx-

imate solutions to the zero-sum games.

34

We now argue that this modified algorithm produces a (0.6528 + ε)-WSNE.

Firstly, we need to reestablish the existence of the rows b and s used in Step 5. To

do this, we observe that the preconditions of Lemma 2 hold for x∗a. We start with

Conditions 1 and 3. Note that the payoff for the row player under (x∗a,y
∗
a) is at

least vr− ε
2

(since vr was estimated with approximate payoff vectors,) and Step 2

ensures that vr >
2
3
−z+ε. Hence, we can apply Lemma 4 to argue that x∗a secures

payoff at least 2
3
−z against every strategy of the column player, which proves that

Conditions 1 and 3 hold. Condition 2 holds because the check in Step 3, ensures

that the approximate payoff of j∗ against x∗ is at least 2
3
− z + ε, and therefore

the actual payoff of j∗ against x∗ is at least 2
3
− z+ ε

2
. Finally, Condition 4 holds

because pure strategy profiles of this form are explicitly checked for in Step 5.

Steps 2 and 3 in the modified algorithm return a (2
3
− z+ ε)-WSNE, while the

other steps provide the same approximation guarantee as the original algorithm.

So, we can reuse the analysis for the original algorithm to prove the following

theorem. Observe though that this time we get a randomized algorithm since we

use Lemma 5 which finds an ε-NE for zero sum games with high probability.

Theorem 4. There is a randomized algorithm that, with high probability, finds a

(0.6528 + ε)-WSNE using O(n·logn
ε2

) payoff queries.

3.3.3 Proof of Lemma 2

In this section we assume that Steps 1 through 4 of our algorithm did not return

a (2
3
− z)-WSNE, and that neither j∗ nor j′ contained a pure (2

3
− z)-WSNE.

We show that, under these assumptions, the rows b and s required by Step 5 do

indeed exist.

Probability bounds. We begin by proving bounds on the amount of proba-

bility that x∗ can place on S and B. The following lemma uses the fact that

x∗ secures an expected payoff of at least 2
3
− z to give an upper bound on the

amount of probability that x∗ can place on S. To simplify notation, we use Pr(B)

to denote the probability assigned by x∗ to the rows in B, and we use Pr(S) to

denote the probability assigned by x∗ to the rows in S.

Lemma 6. Pr(S) ≤ 1+3z
2−3z

.

Proof. We will prove our claim using Markov’s inequality. Consider the random

variable T = 1 − Rij∗ where i is sampled from x∗. Since by our assumption the

expected payoff of the row player is greater than 2/3 − z we get that E(T) ≤

35

1/3 + z. If we apply Markov’s inequality we get

Pr(T ≥ 2

3
− z) ≤ E(T)

2
3
− z
≤ 1 + 3z

2− 3z

which is the claimed result.

Next we show an upper bound on Pr(B). Here we use the fact that j∗ does not

contain a (2
3
− z)-WSNE to argue that all column player payoffs in B are smaller

than 1
3

+ z. Since we know that the payoff of j∗ against x∗ is at least 2
3
− z, this

can be used to prove a upper bound on the amount of probability that x∗ assigns

to B.

Lemma 7. Pr(B) ≤ 1+3z
2−3z

.

Proof. Since there is no i ∈ supp(x∗) such that (i, j∗) is a pure (2
3
− z)-WSNE ,

and since each row i ∈ B satisfies Rij∗ ≥ 1
3

+ z, we must have that Cij∗ <
1
3

+ z

for every i ∈ B. By assumption we know that CT
j∗x
∗ > 2/3− z. So, we have the

following inequality:

2

3
− z < Pr(B) · (1

3
+ z) +

(
1− Pr(B)

)
· 1.

Solving this inequality for Pr(B) gives the desired result.

Payoff inequalities for j∗. We now show properties about the average payoff

obtained from the rows in B and S. Recall that xb was defined in Step 4 of our

algorithm, and that it denotes the normalization of the probability mass assigned

by x∗ to rows in B. The following lemma shows that the expected payoff to the

row player in the strategy profile (xb, j
∗) is close to 1.

Lemma 8. We have (xb
T ·R)j∗ >

1−6z
1+3z

.

Proof. By definition we have that:

(xb
T ·R)j∗ =

1

Pr(B)
·
∑
i∈B

x∗i ·Rij∗ . (3.1)

We begin by deriving a lower bound for
∑

i∈B x∗i · Rij∗ . Using the fact that x∗

secures an expected payoff of at least 2/3 − z against j∗ and then applying the

bound from Lemma 6 gives:

2

3
− z <

∑
i∈B

x∗i ·Rij∗ + (
1

3
+ z) · Pr(S)

≤
∑
i∈B

x∗i ·Rij∗ + (
1

3
+ z) · 1 + 3z

2− 3z
.

36

Hence we can conclude that:∑
i∈B

x∗i ·Rij∗ >
2

3
− z − 1

3
· (1 + 3z)2

2− 3z

=
1− 6z

2− 3z
.

Substituting this into Equation (3.1), along with the upper bound on Pr(B) from

Lemma 7, allows us to conclude that:

(xb
T ·R)j∗ ≥

2− 3z

1 + 3z
·
∑
i∈B

x∗i ·Rij∗

>
2− 3z

1 + 3z
· 1− 6z

2− 3z

=
1− 6z

1 + 3z
.

Next we would like to show a similar bound on the expected payoff to the

column player of the rows in S. To do this, we define xs to be the normalisation

of the probability mass that x∗ assigns to the rows in S. More formally, for each

i ∈ [n], we define:

(xs)i =

{
1

Pr(S)
· x∗i if i ∈ S

0 otherwise.

The next lemma shows that the expected payoff to the column player in the

profile (xs, j
∗) is close to 1.

Lemma 9. We have (xs
T · C)j∗ >

1−6z
1+3z

.

Proof. By definition we have that:

(xs
T · C)j∗ =

1

Pr(S)
·
∑
i∈S

x∗i · Cij∗ . (3.2)

We begin by deriving a lower bound for
∑

i∈S x∗i · Cij∗ . By assumption, we know

that CT
j∗x
∗ > 2/3 − z. Moreover, since j∗ does not contain a (2

3
− z)-WSNE we

have that all rows i in B satisfy Cij∗ < 1/3 − z. If we combine these facts that

with Lemma 7 we obtain:

2

3
− z <

∑
i∈S

x∗i · Cij∗ + (
1

3
+ z) · Pr(B)

≤
∑
i∈S

x∗i · Cij∗ + (
1

3
+ z) · 1 + 3z

2− 3z
.

37

Hence we can conclude that:∑
i∈S

x∗i · Cij∗ >
2

3
− z − 1

3
· (1 + 3z)2

2− 3z

=
1− 6z

2− 3z
.

Substituting this into Equation (3.2), along with the upper bound on Pr(S) from

Lemma 7, allows us to conclude that:

(xb
T ·R)j∗ ≥

2− 3z

1 + 3z
·
∑
i∈B

x∗i ·Rij∗

>
2− 3z

1 + 3z
· 1− 6z

2− 3z

=
1− 6z

1 + 3z
.

Payoff inequalities for j′. We now want to prove similar inequalities for the

column j′. The next lemma shows that the expected payoff for the column player

in the profile (xb, j
′) is close to 1. This is achieved by first showing a lower bound

on the payoff to the column player in the profile (xb, j
∗), and then using the fact

that j∗ is not a (2
3
− z)-best-response against xb, and that j′ is a best response

against xb.

Lemma 10. We have (xb
T · C)j′ >

1−6z
1+3z

.

Proof. We first establish a lower bound on (xb
T · C)j∗ . By assumption, we know

that CT
j∗x
∗ > 2/3 − z. Using this fact, along with the bounds from Lemmas 6

and 7 gives:

2

3
− z < Pr(B) · (xb

T · C)j∗ + Pr(S) · 1

≤ 1 + 3z

2− 3z
· (xb

T · C)j∗ +
1 + 3z

2− 3z
.

Solving this inequality for (xb
T · C)j∗ yields:

(xb
T · C)j∗ >

1

3
· 1− 21z + 9z2

1 + 3z
.

38

Now we can prove the lower bound on (xb
T · C)j′ . Since j∗ is not a (2

3
− z)-

best-response against xb, and since j′ is a best response against xb we obtain:

(xb
T · C)j′ > (xb

T · C)j∗ +
2

3
− z

(xb
T · C)j′ >

1

3
· 1− 21z + 9z2

1 + 3z
+

2

3
− z

=
1− 6z

1 + 3z
.

The only remaining inequality that we require is a lower bound on the expected

payoff to the row player in the profile (xs, j
′). However, before we can do this,

we must first prove an upper bound on the expected payoff to the row player in

(xb, j
′), which we do in the following lemma. Here we first prove that most of

the probability mass of xb is placed on rows i where Cij′ >
1
3

+ z, which when

combined with the fact that there is no i ∈ supp(x∗) such that (i, j′) is a pure

(2
3
− z)-WSNE, is sufficient to provide an upper bound.

Lemma 11. We have (xb
T ·R)j′ <

1
3
· 1+33z+9z2

1+3z
.

Proof. We begin by proving an upper bound on the amount of probability mass

assigned by xb to rows i with Cij′ <
1
3

+ z. Let T = 1−Cij′ be a random variable

where the row i is sampled according to xb. Lemma 10 implies that:

E[T] = 1− 1− 6z

1 + 3z
=

9z

1 + 3z
.

Observe that Pr(T ≥ 1 − (1
3

+ z)) = Pr(T ≥ 2
3
− z) is equal to the amount

of probability that xb assigns to rows i with Cij′ <
1
3

+ z. Applying Markov’s

inequality then establishes our bound.

Pr(T ≥ 2

3
− z) ≤

9z
1+3z

2
3
− z

.

So, if p = 9z
(1+3z)(2/3−z) then we know that at least 1− p probability is assigned

by xb to rows i such that Cij′ >
1
3

+ z. Since we have assumed that there is no

i ∈ supp(x∗) such that (i, j′) is a pure (2
3
− z)-WSNE, we know that any such row

i must satisfy Rij′ <
1
3

+ z. Hence, we obtain the following bound:

(xb
T ·R)j′ < (1− p) · (1

3
+ z) + p

=
1

3
· 1 + 33z + 9z2

1 + 3z
.

39

Finally, we show that the expected payoff to the row player in the profile

(xs, j
′) is close to 1. Here we use the fact that x∗ is a min-max strategy along

with the bound from Lemma 11 to prove our lower bound.

Lemma 12. We have (xs
T ·R)j′ >

1−15z
1+3z

.

Proof. Since x∗ is a min-max strategy that secures a value strictly larger than
2
3
− z, we have:

2

3
− z < Pr(B) · (xb

T ·R)j′ + Pr(S) · (xs
T ·R)j′ .

Substituting the bounds from Lemmas 6, 7, and 11 then gives:

2

3
− z < 1 + 3z

2− 3z
· 1

3
· 1 + 33z + 9z2

1 + 3z
+

1 + 3z

2− 3z
· (xs

T ·R)j′ .

Solving for (xs
T ·R)j′ then yields the desired result.

Finding rows b and s. So far, we have shown that the expected payoff to the

row player in (xb, j
∗) is close to 1, and that the expected payoff to the column

player in (xb, j
′) is close to 1. We now show that there exists a row b ∈ B such

that Rbj∗ is close to 1, and Cbj′ is close to 1, and that there exists a row s ∈ S
in which Csj∗ and Rsj′ are both close to 1. The following lemma uses Markov’s

inequality to show a pair of probability bounds that will be critical in showing

the existence of b.

Lemma 13. We have:

• xb assigns strictly more than 0.5 probability to rows i with Rij∗ > 1− 18z
1+3z

.

• xb assigns strictly more than 0.5 probability to rows i with Cij′ > 1− 18z
1+3z

.

Proof. We begin with the first case. Consider the random variable T = 1− Rij∗

where i is sampled from xb. By Lemma 8, we have that:

E[T] < 1− 1− 6z

1 + 3z
=

9z

1 + 3z
.

We have that T ≥ 18z
1+3z

whenever Rij∗ ≤ 1 − 18z
1+3z

, so we can apply Markov’s

inequality to obtain:

Pr(T ≥ 18z

1 + 3z
) <

9z
1+3z
18z

1+3z

= 0.5.

The proof of the second case is identical to the proof given above, but uses

the (identical) bound from Lemma 10.

40

The next lemma uses the same techniques to prove a pair of probability bounds

that will be used to prove the existence of s.

Lemma 14. We have:

• xs assigns strictly more than 1
3

probability to rows i with Cij∗ > 1− 27z
1+3z

.

• xs assigns strictly more than 2
3

probability to rows i with Rij′ > 1− 27z
1+3z

.

Proof. We begin with the first claim. Consider the random variable T = 1−Cij∗
where i is sampled from xs. By Lemma 9, we have that:

E[T] < 1− 1− 6z

1 + 3z
=

9z

1 + 3z
.

We have that T ≥ 27z
1+3z

whenever Cij∗ ≤ 1 − 27z
1+3z

, so we can apply Markov’s

inequality to obtain:

Pr(T ≥ 27z

1 + 3z
) <

9z
1+3z
27z

1+3z

=
1

3
.

We now move on to the second claim. Consider the random variable T =

1−Rij∗ where i is sampled from xb. By Lemma 12, we have that:

E[T] < 1− 1− 15z

1 + 3z
=

18z

1 + 3z
.

We have that T ≥ 27z
1+3z

whenever Rij∗ ≤ 1 − 27z
1+3z

, so we can apply Markov’s

inequality to obtain:

Pr(T ≥ 27z

1 + 3z
) <

18z
1+3z
27z

1+3z

=
2

3
.

Finally, we can formally prove the existence of b and s, which completes the

proof of correctness for our algorithm.

Proof of Lemma 2. We begin by proving the first claim. If we sample a row b

randomly from xb, then Lemma 13 implies that probability that Rbj∗ ≤ 1− 18z
1+3z

is strictly less than 0.5 and that the probability that Cbj′ ≤ 1 − 18z
1+3z

is strictly

less than 0.5. Hence, by the union bound, the probability that at least one of

these events occurs is strictly less than 1. So, there is a positive probability that

neither of the events occurs, which implies that there exists at least one row b

that satisfies the desired properties.

The second claim is proved using exactly the same technique, but using the

bounds from Lemma 14, again observing that the probability that a randomly

sampled row from xs satisfies the desired properties with positive probability.

This completes the proof of Lemma 2.

41

3.4 A Communication-Efficient Algorithm for Find-

ing a 0.5-WSNE in win-lose Bimatrix Games

The base algorithm (Algorithm 1) can be adapted to provide a communication

efficient method for finding a (0.5 + ε)-WSNE in win-lose games; bimatrix games

where all the payoff entries for the matrices R and C are 0 or 1. In brief, the

algorithm can be modified to find a 0.5-WSNE in a win-lose game by making

Steps 2 and 3 check against the threshold of 0.5. It can then be shown that if

these steps fail, then there exists a pure Nash equilibrium in column j∗. This can

then be implemented as a communication efficient protocol using the algorithm

from Lemma 3.

Algorithm 3

1. Solve the zero-sum games (R,−R) and (−C,C).

• Let (x∗,y∗) be a NE of (R,−R), and let (x̂, ŷ) be a NE of
(C,−C).

• Let vr be the value secured by x∗ in (R,−R), and let vc be
the value secured by ŷ in (−C,C). Without loss of generality
assume that vc ≤ vr.

2. If vr ≤ 0.5, then return (x̂,y∗).

3. If for all j ∈ [n] it holds that CT
j · x∗ ≤ 0.5, then return (x∗,y∗).

4. Otherwise:

• Let j∗ be a pure best response to x∗.

• Find a row i such that Rij∗ = 1 and Cij = 1.

• Return (i, j∗).

We will show that this algorithm always finds a 0.5-WSNE in a win-lose game.

Firstly, we show that if the algorithm returns the strategy profile (i, j∗) in Step 4,

then this is a pure Nash equilibrium for (R,C). The following lemma is similar

to Lemma 1, but exploits the fact that the game is win-lose to obtain a stronger

conclusion.

Lemma 15. If Algorithm 3 is applied to a win-lose game, and it reaches Step 4,

then then there exists a row i ∈ supp(x∗) such that Rij∗ = 1 and Cij∗ = 1.

Proof. Let i be a row sampled from x∗. We will show that there is a positive

probability that row i satisfies the desired properties.

42

We begin by showing that the probability that Pr(Rij∗ = 0) < 0.5. Let the

random variable T = 1 − Rij∗ . Since vr >
1
2
, we have that E[T] < 0.5. Thus,

applying Markov’s inequality we obtain:

Pr(T ≥ 1) ≤ E[T]

1
< 0.5.

Since Pr(Rij∗ = 0) = Pr(T ≥ 1) we can therefore conclude that Pr(Rij∗ = 0) <

0.5. The exact same technique can be used to prove that Pr(Cij∗ = 0) < 0.5, by

using the fact that CT
j∗ · x∗ > 0.5.

We can now apply the union bound to argue that:

Pr(Rij∗ = 0 or Cij∗ = 0) < 1.

Hence, there is positive probability that row i satisfies Rij∗ > 0 and Cij∗ > 0, so

such a row must exist. The final step is to observe that, since the game is win-lose,

we have that Rij∗ > 0 implies Rij∗ = 1, and that Cij∗ > 0 implies Cij∗ = 1.

We now prove that the algorithm always finds a 0.5-WSNE. The reasoning is

very similar to the analysis of the base algorithm. The strategy profiles returned

by Steps 2 and 3 are 0.5-WSNEs by the same reasoning that was given for the

base algorithm. Step 4 always returns a pure Nash equilibrium.

3.4.1 Communication Complexity of the Algorithm

We now show that Algorithm 3 can be implemented in a communication efficient

way.

The zero-sum games in Step 1 can be solved by the two players independently

without any communication. Then, the players exchange vr and vs using O(log n)

rounds of communication. If both vr and vs are smaller than 0.5, then the algo-

rithm from Lemma 3 is applied to communicate x̂s to the row player, and y∗s to

the column player. Since the payoffs under the sampled strategies are within ε

of the originals, we have that all pure strategies have payoff less than or equal to

0.5 + ε under (x̂s,y
∗
s), so this strategy profile is a (0.5 + ε)-WSNE.

We will assume from now on that vr > vc. If the algorithm reaches Step 3,

then the row player uses the algorithm of Lemma 3 to communicate x∗s to the

column player. The column player then computes a best response j∗s against x∗s,

and checks whether the payoff of j∗s against x∗s is less than or equal to 0.5 + ε. If

so, then the players output (x∗s, j
∗
s), which is a 0.5 + ε-WSNE

Otherwise, we claim that there is a pure strategy i ∈ supp(x∗s) such that (i, j∗s)

is a pure Nash equilibrium. This can be shown by observing that the expected

43

payoff of x∗s against j∗s is at least 0.5 − ε, while the expected payoff of j∗s against

x∗s is at least 0.5 + ε. Repeating the proof of Lemma 15 using these inequalities

then shows that the pure Nash equilibrium does indeed exist. Since supp(x∗s)

has logarithmic size, the row player can simply transmit to the column player all

payoffs Rij∗s for which i ∈ supp(x∗s), and the column player can then send back a

row corresponding to a pure Nash equilibrium.

In conclusion, we have shown that a (0.5+ ε)-WSNE can be found in random-

ized expected-polynomial-time using O
(

log2 n
ε2

)
communication.

Theorem 5. For every win-lose game and every ε > 0, there is a randomized

expected-polynomial-time algorithm that uses O
(

log2 n
ε2

)
communication and finds

a (0.5 + ε)-WSNE.

3.5 A Communication-Efficient Algorithm for

Finding a
(

3−
√

5
2 + ε

)
-NE

We will study the following algorithm, which is inspired by the algorithm of

Bose, Byrka, and Markakis [7] and we will show that it finds a
(

3−
√

5
2

+ ε
)

-NE in

a communication efficient way.

Algorithm 4

1. Solve the zero-sum games (R,−R) and (−C,C).

• Let (x∗,y∗) be a NE of (R,−R), and let (x̂, ŷ) be a NE of
(C,−C).

• Let vr be the value secured by x∗ in (R,−R), and let vc be
the value secured by ŷ in (−C,C). Without loss of generality
assume that vc ≤ vr.

• If vr ≤ 3−
√

5
2

, return (x̂,y∗).

2. Otherwise:

• Let j be a best response for the column player against x∗.

• Let r be a best response for the row player against j.

• Define the strategy profile x′ = 1
2−vr · x

∗ + 1−vr
2−vr · r.

• Return (x′, j).

We show that this algorithm always produces a 3−
√

5
2

-NE. We start by con-

sidering the case the strategy profile by Step 1 is returned by our algorithm. The

44

maximum payoff that the row player can achieve against y∗ is vr, so the row

player’s regret can be at most vr in the bimatrix game (R,C). This is because

the strategy profile (x∗,y∗) is an NE for the zero-sum game (R,−R). So, X∗ is a

best response to y∗ and thus is a strategy that achieves the maximum payoff for

the row player against y∗. Similarly, the maximum payoff that the column player

can achieve against x̂ is vc ≤ vr, so the column player’s regret can be at most vr.

Step 1 only returns a strategy profile in the case where vr ≤ 3−
√

5
2

, so this step

always produces a 3−
√

5
2

-NE.

To analyse the quality of approximate equilibrium found by Step 2, we use

the following Lemma.

Lemma 16. The strategy profile (x′, j) is a 1−vr
2−vr -NE.

Proof. We start by analysing the regret of the row player. By definition, row

r is a best response against column j. So, the regret of the row player can be

expressed as:

Rrj − (x′ ·R)j = Rrj −
1

2− vR
· ((x∗)T ·R)j −

1− vR
2− vR

·Rrj

≤ 1

2− vR
·Rrj −

1

2− vR
· vR

≤ 1

2− vR
· 1− 1

2− vR
· vr

=
1− vR
2− vR

,

where in the first inequality we use the fact that x∗ is a min-max strategy that

secures payoff at least vr, and the second inequality uses the fact that Rrj ≤ 1.

We now analyse the regret of the column player. Let c be a best response for

the column player against x′. The regret of the column player can be expressed

as:

((x′)T · C)c − ((x′)T · C)j

=
1

2− vR
· ((x∗)T · C)c +

1− vR
2− vR

· Crc −
1

2− vR
· ((x∗)T · C)x∗j −

1− vR
2− vR

· Crj

≤ 1− vR
2− vR

· Crc −
1− vR
2− vR

· Crj

≤ 1− vR
2− vR

.

The first inequality holds since j is a best response against x∗, and therefore

((x∗)T · C)c ≤ ((x∗)T · C)j, and the second inequality holds since Crc ≤ 1 and

Crj ≥ 0. Thus, we have shown that both players have regret at most 1−vr
2−vr under

(x′, j), and therefore (x′, j) is a 1−vr
2−vr -NE.

45

Step 2 is only triggered in the case where vr >
3−
√

5
2

, and we have that 1−vr
2−vr =

3−
√

5
2

when vr = 3−
√

5
2

. Since 1−vr
2−vr decreases as vr increases, we therefore have

that Step 2 always produces a 3−
√

5
2

-NE. This completes the proof of correctness

for the algorithm.

3.5.1 Communication Complexity of the Algorithm

We now argue that, for every ε > 0 the Algorithm 4 can be used to find a(
3−
√

5
2

+ ε
)

-NE using O
(

log2 n
ε2

)
rounds of communication.

We begin by considering Step 1. Obviously, the zero-sum games can be solved

by the two players independently without any communication. Then, the players

exchange vr and vc using O(log n) rounds of communication. If both vr and vc are

smaller than 3−
√

5
2

, then the algorithm from Lemma 3 is applied to communicate

x̂s to the row player, and y∗s to the column player. Since the payoffs under

the sampled strategies are within ε of the originals, we have that (x̂s,y
∗
s) is a(

3−
√

5
2

+ ε
)

-NE.

If the algorithm reaches Step 2, then the row player uses the algorithm of

Lemma 3 to communicate x∗s to the column player. The column player then

computes a best response js against x∗s, and uses log n communication rounds to

transmit it to the row player. The row player then computes a best response rs

against js, then computes: x′s = 1
2−vr ·x

∗
s+ 1−vr

2−vr ·r, and the players output (x′s, js).

To see that this produces a
(

3−
√

5
2

+ ε
)

-NE, observe that x∗s secures a payoff of

at least vr − ε for the row player, and repeating the proof of Lemma 16 with this

weaker inequality gives that this strategy profile is a
(

1−vr
2−vr + ε

)
-NE.

Therefore, we have shown the following theorem.

Theorem 6. For every ε > 0, there is a randomized expected-polynomial-time

algorithm that uses O
(

log2 n
ε2

)
communication and finds a

(
3−
√

5
2

+ ε
)

-NE.

46

Chapter 4

Computing Approximate Nash
Equilibria in Polymatrix Games

In this chapter, we present an algorithm that, for every δ in the range 0 < δ ≤ 0.5,

finds a (0.5 + δ)-Nash equilibrium of a polymatrix game in time polynomial in

the input size and 1
δ
.

This result is proven by adapting the algorithm of Tsaknakis and Spirakis [66]

(henceforth referred to as the TS algorithm). They give a gradient descent algo-

rithm for finding a 0.3393-Nash equilibrium in a bimatrix game. We generalise

their gradient descent techniques to the polymatrix setting, and show that it

always arrives at a (0.5 + δ)-Nash equilibrium after a polynomial number of iter-

ations.

4.1 Polymatrix games preliminaries

An n-player polymatrix game is defined by an undirected graph G = (V,E)

with n vertices, where every vertex corresponds to a player. The edges of the

graph specify which players interact with each other. For each i ∈ [n], we use

N(i) = {j : (i, j) ∈ E} to denote the neighbors of player i. Each edge (i, j) ∈ E
specifies that a bimatrix game will be played between players i and j. Each

player i ∈ [n] has a fixed number of pure strategies mi, and the bimatrix game on

edge (i, j) ∈ E will therefore be specified by an mi ×mj matrix Aij, which gives

the payoffs for player i, and an mj ×mi matrix Aji, which gives the payoffs for

player j. Thus, on the edge (i, j) ∈ E the bimatrix game
(
Aij, Aji

)
is played. In

order to play the game, each player i chooses a strategy xi ∈ ∆mi and plays that

strategy simultaneously in all bimatrix games he participates in. The expected

payoff for a player is the sum of the expected payoffs over all the bimatrix games

he is involved. Formally, if X ∈ ∆ denotes a mixed strategy profile for the game,

47

where X = (x1, . . . , xn) and ∆ = ∆m1 × . . . × ∆mn , then the payoff of player i

under X is

ui(X) := xTi
∑
j∈N(i)

Aijxj.

We denote by ui(x
′
i,X) the payoff for player i when he plays x′i and the other

players play according to the strategy profile X. Let vi(X) be the vector of

payoffs for each pure strategy of player i when the rest of players play strategy

profile X. Formally:

vi(X) =
∑
j∈N(i)

Aijxj.

For each vector x ∈ Rm, we define suppmax(x) to be the set of indices that achieve

the maximum of x, that is, we define suppmax(x) = {i ∈ [m] : xi ≥ xj,∀j ∈ [m]}.
Then the pure best responses of player i against a strategy profile X (where only

X−i is relevant) is given by:

Bri(X) = suppmax

 ∑
j∈N(i)

Aijxj

 = suppmax(vi(X)). (4.1)

The corresponding best response payoff is given by:

u∗i (X) = max
k∈mi

(∑
j∈N(i)

Aijxj
)
k

 = max
k∈mi

{(
vi(X)

)
k

}
. (4.2)

4.1.1 Payoff Normalisation

It is common, when proving results about additive notions of approximate equi-

libria, to rescale the payoffs of the game. This is necessary in order for different

results to be comparable. For example, all results about additive approximate

equilibria in bimatrix games assume that the payoff matrices have entries in the

range [0, 1], and therefore an ε-Nash equilibrium always has a consistent meaning.

For the same reason, we must rescale the payoffs in a polymatrix in order to give

a consistent meaning to an ε-approximation.

An initial, naive, approach would be to specify that each of the individual

bimatrix games has entries in the range [0, 1]. This would be sufficient if we were

only interested in polymatrix games played on either complete graphs or regular

graphs. However, in this model, if the players have differing degrees, then they

also have differing maximum payoffs. This means that an additive approximate

48

equilibrium must pay more attention to high degree players, as they can have

larger regrets.

One solution to this problem is to apply degree based scaling, i.e. to rescale

according to the degree. That is, given a polymatrix game where each bimatrix

game has payoffs in the range [0, 1], if a player has degree d, then each of his

payoff matrices is divided by d. This transformation ensures that every player

has regret in the range [0, 1], and therefore low degree players are not treated

unfairly by additive approximations.

However, rescaling according to the degree assumes that each bimatrix game

actually uses the full range of payoffs in[0, 1]. In particular, some bimatrix games

may have minimum payoff strictly greater than 0, or maximum payoff strictly less

than 1. This issue arises, in particular, in our application of two-player Bayesian

games. Note that, unlike the case of a single bimatrix game, we cannot fix this

by rescaling individual bimatrix games in a polymatrix game, because we must

preserve the relationship between the payoffs in all of the bimatrix games that a

player is involved in.

To address this, we will rescale the games so that, for each player, the mini-

mum possible payoff is 0, and the maximum possible payoff is 1. For each player i,

we denote by Ui the maximum payoff he can obtain, and by Li the minimum pay-

off he can obtain. Formally:

Ui := max
p∈[mi]

 ∑
j∈N(i)

max
q∈[mj]

(
Aij(p, q)

) ,

Li := min
p∈[mi]

 ∑
j∈N(i)

min
q∈[mj]

(
Aij(p, q)

) .

Then, for all i and all j ∈ N(i) we will apply the following transformation, which

we call T (·), to all the entries z of payoff matrices Aij:

Ti(z) =
1

Ui − Li
·
(
z − Li

d(i)

)
.

Notice that in order the above normalisation to be well defined we need to assume

that Ui 6= Li. We argue that this is not a restriction to our normalisation. If

Ui = Li, then the player i gets the same payoff irrespectively from the strategy

profile played in the game, thus has regret zero. Hence, we can just do not

consider this player in the algorithm.

Observe that, since player i’s payoff is the sum of d(i) many bimatrix games,

it must be the case that after transforming the payoff matrices in this way, player

49

i’s maximum possible payoff is 1, and player i’s minimum possible payoff is 0. In

what follows, when we study polymatrix games, we will assume that the payoff

matrices given by Aij are rescaled in this way.

It is worth noting that this rescaling is stronger than degree-based rescaling:

every ε-NE under this rescaling is also an ε-NE under the degree-based rescaling,

but the converse does not hold.

4.2 The TS Algorithm

The TS algorithm was proposed for computing ε-Nash equilibria in bimatrix

games. The algorithm starts from an arbitrary strategy profile X and uses a

gradient descent like approach which iteratively decreases the maximum regret a

player suffer.

In the TS algorithm, when each player has m pure strategies, a function

f : ∆m ×∆m → [0, 1] defined. The value of f under the strategy profile (x,y) is

equal to the maximum regret a player suffers. In each iteration of the algorithm

the value of the function f , i.e. the maximum regret the players suffer, strictly

decreases. Firstly, if the regrets the players suffer are not equal, then the algo-

rithm equalizes them by computing an appropriate strategy profile using a linear

program. Next, when the regrets are equal, the algorithm computes the direction

that the gradient of the function f is minimized, that is a strategy profile (x′,y′)

which specifies the direction that the regret decreases with the highest rate. Then

it produces a new profile by combining the strategy profiles (x,y) and (x′,y′).

The algorithm stops when it reaches a stationary point of the function f , i.e. a

strategy profile (x∗,y∗) such that the maximum regret the players suffer weakly

increases in every possible direction (x′,y′). This is a stationary point for the

regret function.

Given a stationary point (x∗,y∗) computed by the procedure described above,

the algorithm derives another two strategies (x̃, ỹ) and (x̂, ŷ) that depend on

(x∗,y∗) and the best responses of each player against this strategy profile. It

is proven that every time one of these three strategy profiles is a 0.3393-Nash

equilibrium.

4.3 The Descent Algorithm

As in TS, we define a function f that is equal to the maximum regret the players

suffer under a strategy profile and we apply the steepest descent method in order

50

to compute an (approximate) stationary point of f .

In order to generalise the TS algorithm, we had to overcome several issues.

Firstly, the TS algorithm makes the regrets of the two players equal in every

iteration, but there is no obvious way to achieve this in the polymatrix setting.

Instead, we show how gradient descent can be applied to a strategy profile where

the regrets are not necessarily equal. Secondly, the output of the TS algorithm is

either a point found by gradient descent, or a point obtained by modifying the

result of gradient descent. In the polymatrix game setting, it is not immediately

obvious how such a modification can be derived with a non-constant number

of players (without an exponential blowup). Thus we apply a different analy-

sis, which proves that the point resulting from gradient descent always has our

approximation guarantee.

4.4 The Function f and ε-Nash Equilibria

As it is explained in Section 4.3, for the Descent algorithm we have to define

a function f : ∆ → [0, 1] that computes the maximum regret the players suffer

under any strategy profile X ∈ ∆.

The regret function fi : ∆→ [0, 1] is defined, for each player i, as follows:

fi(X) := u∗i (X)− ui(X). (4.3)

The maximum regret under a strategy profile X is given by the function f(X)

where:

f(X) := max{f1(X), . . . , fn(X)}. (4.4)

Notice that the value of f(X) is essentially the approximation guarantee of the

strategy profile X. Hence, X is an ε-approximate Nash equilibrium (ε-NE) if:

f(X) ≤ ε,

and X is an exact Nash equilibrium if f(X) = 0.

4.5 The Gradient

The goal is to apply gradient descent to the regret function f . In this section,

we formally define the gradient of f in Definition 4, and give a combinatorial

version of that definition in Lemma 5. In order to show that our gradient descent

method terminates after a polynomial number of iterations, we actually need to

51

use a slightly modified version, which we describe at the end of this section in

Definition 7.

Given a point X ∈ ∆, a feasible direction from X is defined by any other

point X′ ∈ ∆. This defines a line between X and X′, and formally speaking, the

direction of this line is X′ − X. In order to define the gradient of this direction,

we consider the function f((1 − ε) · X + ε · X′) − f(X) where ε lies in the range

0 ≤ ε ≤ 1. The gradient of this direction is given in the following definition.

Definition 4. Given profiles X,X′ ∈ ∆ and ε ∈ [0, 1], we define:

Df(X,X′, ε) := f((1− ε) · X + ε · X′)− f(X).

Then, we define the gradient of f at X in the direction X′ − X as:

Df(X,X′) = lim
ε→0

1

ε
Df(X,X′, ε). (4.5)

The gradient of f at any point X ∈ ∆ along a feasible direction specified

by another point X′ ∈ ∆ provides the rate of decrease, or increase, of the value

of f along that direction. At any point X we wish to find the direction such

that f decreases with the highest rate, that is, we want to find the point X′

that minimizes Df(X,X′), and move along the direction X′ − X, or to find that

X is a stationary point, i.e. Df(X,X′) ≥ 0 for all X′ ∈ ∆. Unfortunately,

Equation (4.5) cannot be used directly in a combinatorial algorithm. Instead,

in Definition 5 we provide a combinatorial version of the gradient that allows

us to compute the steepest descent direction, with respect to the combinatorial

gradient, via a linear program.

The intuition for the combinatorial version comes from Equation (4.5). Let us

define X̄ := (1− ε) ·X+ ε ·X′. From the natural gradient defined in Definition 4,

we get that:

Df(X,X′) = lim
ε→0

1

ε

(
f(X̄)− f(X)

)
= lim

ε→0

1

ε

(
max
i∈[n]

fi(X̄)− f(X)

)
= max

i∈[n]

(
lim
ε→0

1

ε

(
fi(X̄)− f(X)

))
. (4.6)

In the Section 4.8.1 we study the limit limε→0
1
ε

(
fi(X̄)− f(X)

)
, and we prove

that it is equal to the following combinatorial version. Before we state the result

we introduce some useful notation. Given profiles X and X′ let us denote:

Dfi(X,X′) = max
k∈Bri(X)

{(
vi(X′)

)
k

}
− ui(xi,X′) + ui(xi − x′i,X). (4.7)

52

The above expression arises from expanding fi(X̄)− f(X). The terms above are

all multiplied by ε in the expansion, whereas the remaining terms all tend to zero

when the limit is taken. The following lemma is proved in the Section 4.8.1:

Lemma 17. Let X be strategy profile and i ∈ [n]. If fi(X) = f(X), then:

lim
ε→0

1

ε

(
fi(X̄)− f(X)

)
= Dfi(X,X′)− f(X).

otherwise limε→0
1
ε

(
fi(X̄)− f(X)

)
= −∞.

Combining Equation (4.6) with Lemma 17 gives the following combinatorial

version of the gradient that we will use throughout the rest of the chapter.

Definition 5 (Combinatorial gradient). The gradient of f at point X along di-

rection X′ − X is:

Df(X,X′) = max
i∈[n]

Dfi(X,X′)− f(X).

In order to show that our gradient descent algorithm terminates after a poly-

nomial number of steps, we have to use a slight modification of the formula given

in Definition 5. More precisely, in Dfi(X,X′), we need to take the maximum over

the δ-best responses, rather than the best responses.

We begin by providing the definition of the δ-best responses.

Definition 6 (δ-best response). Let X ∈ ∆, and let δ ∈ (0, 0.5]. The δ-best

response set Brδi (x) for player i ∈ [n] is defined as:

Brδi (x) :=
{
j ∈ [mi] :

(
vi(X)

)
j
≥ u∗i (X)− δ

}
.

We now define the function Df δi (X,X′).

Definition 7. Let X,X′ ∈ ∆, let ε ∈ [0, 1], and let δ ∈ (0, 0.5]. We define

Df δi (X,X′) as:

Df δi (X,X′) := max
k∈Brδi (x)

{(
vi(X′)

)
k

}
− ui(xi,X′)− ui(x′i,X) + ui(xi,X). (4.8)

Furthermore, we define Df δ(X,X′) as:

Df δ(X,X′) = max
i∈[n]

Df δi (X,X′)− f(X). (4.9)

53

Our algorithm works by performing gradient descent using the function Df δ

as the gradient. Obviously, this is a different function to Df , and so we are not

actually performing gradient descent on the gradient of f . It is important to

note that all of our proofs are in terms of Df δ, and so this does not affect the

correctness of our algorithm. We prove Lemma 17 in order to explain where our

definition of the combinatorial gradient comes from, but the correctness of our

algorithm does not depend on the correctness of Lemma 17. Furthermore, we

will use some of the techniques used in the proof of Lemma 17 in order to prove

the running time of our algorithm.

4.6 The Algorithm

In this section, we describe our algorithm for finding a (0.5+ δ)-Nash equilibrium

in a polymatrix game by gradient descent. In each iteration of the algorithm, we

must find the direction of steepest descent with respect to Df δ.

The direction of steepest descent. We show that the direction of steepest

descent can be found by solving a linear program. Our goal is, for a given strat-

egy profile X, to find another strategy profile X′ so as to minimize the gradient

Df δ(X,X′). Recall that Df δ is defined in Equation (4.9) to be:

Df δ(X,X′) = max
i∈[n]

Df δi (X,X′)− f(X).

Note that the term f(X) is a constant with respect to X′ in this expression,

because it is the same for all directions X′. Thus, it is sufficient to formulate a

linear program in order to find the X′ that minimizes maxi∈[n] Df
δ
i (X,X′). Using

the definition of Df δi in Equation (4.8), we can do this as follows.

Definition 8 (Steepest descent linear program). Given a strategy profile X, the

steepest descent linear program is defined as follows. Find X′ ∈ ∆, l1, l2, . . . , ln,

and w such that:

minimize w

subject to
(
vi(X′)

)
k
≤ li ∀k ∈ Brδi (x), ∀i ∈ [n]

li − ui(xi,X′)− ui(x′i,X) + ui(X) ≤ w ∀i ∈ [n]

X′ ∈ ∆.

The li variables deal with the maximum in the term maxk∈Brδi (x)

{(
vi(X′)

)
k

}
,

while the variable w is used to deal with the maximum over the functions Df δi .

54

Since the constraints of the linear program correspond precisely to the definition of

Df δ, it is clear that, when we minimize w, the resulting X′ specifies the direction

of steepest descent. For each profile X, we define Q(X) to be the direction X′

found by the steepest descent LP for X.

Once we have found the direction of steepest descent, we then need to move

in that direction. More precisely, we fix a parameter δ and we define ε = δ
δ+2

which is used to determine how far we move in the steepest descent direction.

The choice of this value for ε ensures that in every iteration of our algorithm the

value of f is decreasing and moreover, as we will show in Section 4.8, leads to a

polynomial bound on the running time of our algorithm.

The algorithm. We can now formally describe our algorithm. The algorithm

takes a parameter δ ∈ (0, 0.5], which will be used as a tradeoff between running

time and the quality of approximation.

Descent algorithm

1. Choose an arbitrary strategy profile X ∈ ∆.

2. Solve the steepest descent linear program with input X to obtain X′ =
Q(X).

3. Set X := X + ε(X′ − X), where ε = δ
δ+2

.

4. If f(X) ≤ 0.5 + δ then stop, otherwise go to step 2.

A single iteration of this algorithm corresponds to executing steps 2, 3, and

4. Since this only involves solving a single linear program, it is clear that each

iteration can be completed in polynomial time.

The rest of this chapter is dedicated to showing the following theorem.

Theorem 7. Algorithm 1 finds a (0.5 + δ)-NE after at most O(1
δ2

) iterations.

To prove Theorem 7, we will show two properties. Firstly, in Section 4.7, we

show that our gradient descent algorithm never gets stuck in a stationary point

before it finds a (0.5 + δ)-NE. To do so, we define the notion of a δ-stationary

point, and we show that every δ-stationary point is at least a (0.5 + δ)-NE, which

then directly implies that the gradient descent algorithm will not get stuck before

it finds a (0.5 + δ)-NE.

Secondly, in Section 4.8, we prove the upper bound on the number of itera-

tions. To do this we show that, if an iteration of the algorithm starts at a point

55

that is not a δ-stationary point, then that iteration will make a large enough

amount of progress. This then allows us to show that the algorithm will find a

(0.5 + δ)-NE after O(1
δ2

) many iterations, and therefore the overall running time

of the algorithm is polynomial.

4.7 Stationary Points of f

Recall that Definition 8 gives a linear program for finding the direction X′ that

minimises Df δ(X,X′). Our steepest descent procedure is able to make progress

whenever this gradient is negative, and so a stationary point is any point X for

which Df δ(X,X′) ≥ 0 for every X′. In fact, our analysis requires us to consider

δ-stationary points, which we now define.

Definition 9 (δ-stationary point). Let X∗ be a mixed strategy profile, and let

δ > 0. We have that X∗ is a δ-stationary point if for all X′ ∈ ∆:

Df δ(X∗,X′) ≥ −δ.

We now show that every δ-stationary point of f(X) is a (0.5 + δ)-NE. Recall

from Definition 7 that:

Df δ(X,X′) = max
i∈[n]

Df δi (X,X′)− f(X).

Therefore, if X∗ is a δ-stationary point, we must have, for every direction X′:

f(X∗) ≤ max
i∈[n]

Df δi (X∗,X′) + δ. (4.10)

Since f(X∗) is the maximum regret under the strategy profile X∗, in order to

show that X∗ is a (0.5 + δ)-NE, we only have to find some direction X′ such that

maxi∈[n] Df
δ
i (X∗,X′) ≤ 0.5. We do this in the following lemma.

Lemma 18. For every point X, there exists a direction X′ such that:

max
i∈[n]

Df δi (X,X′) ≤ 0.5.

Proof. First, define X̄ to be a strategy profile in which each player i ∈ [n] plays

a best response against X. We will set X′ = X̄+X
2

. Then for each i ∈ [n], we have

56

that Df δi (X,X′), is less than or equal to:

max
k∈Brδi (X)

{(
vi(

X̄ + X
2

)
)
k

}
− ui(xi,

X̄ + X
2

)− ui(
x̄i + xi

2
,X) + ui(xi,X)

=
1

2
· max
k∈Brδi (X)

{(
vi(X̄ + X)

)
k

}
− 1

2
· ui(xi, X̄)− 1

2
· ui(x̄i,X)

≤ 1

2
·
(

max
k∈Brδi (X)

{(
vi(X̄)

)
k

}
+ max

k∈Brδi (X)

{(
vi(X)

)
k

}
− ui(xi, X̄)− ui(x̄i,X)

)
=

1

2
·
(

max
k∈Brδi (X)

{(
vi(X̄)

)
k

}
− ui(xi, X̄)

)
because x̄i is a b.r. to x

≤ 1

2
· max
k∈Brδi (X)

{(
vi(X̄)

)
k

}
≤ 1

2
.

Thus, the point X′ satisfies maxi∈[n] Df
δ
i (X,X′) ≤ 0.5.

We can sum up the results of the section in the following lemma.

Lemma 19. Every δ-stationary point X∗ is a (0.5 + δ)-Nash equilibrium.

4.8 Time Complexity of the Algorithm

In this section, we show that Algorithm 1 terminates after a polynomial number

of iterations. Let X be a strategy profile that is considered by Algorithm 1, and

let X′ = Q(X) be the solution of the steepest descent LP for X. These two profiles

will be fixed throughout this section.

We begin by proving a technical lemma that will be crucial for showing our

bound on the number of iterations. To simplify our notation, throughout this

section we define fnew := f(X + ε(X′ − X)) and f := f(X). Furthermore, we

define D = maxi∈[n] Df
δ
i (X,X′). The following lemma, which is proved in Sub-

section 4.8.2, gives a relationship between f and fnew.

Lemma 20. In every iteration of Algorithm 1 we have:

fnew − f ≤ ε(D − f) + ε2(1−D). (4.11)

In the next lemma we prove that, if we are not in a δ-stationary point, then

we have a bound on the amount of progress made in each iteration. We use this

in order to bound the number of iterations needed before we reach a point X
where f(X) ≤ 0.5 + δ.

57

Lemma 21. Fix ε = δ
δ+2

, where 0 < δ ≤ 0.5. Either X is a δ-stationary point

or:

fnew ≤

(
1−

(
δ

δ + 2

)2
)
f. (4.12)

Proof. Recall that by Lemma 20 the gain in every iteration of the steepest descent

is:

fnew − f ≤ ε(D − f) + ε2(1−D). (4.13)

We consider the following two cases:

a) D − f > −δ. Then, by definition, we are in a δ-stationary point.

b) D − f ≤ −δ. We have set ε = δ
δ+2

. If we solve for δ we get that δ = 2ε
1−ε .

Since D − f ≤ −δ, we have that (D − f)(1− ε) ≤ −2ε. Thus we have:

(D − f)(ε− 1) ≥ 2ε

0 ≥ (D − f)(1− ε) + 2ε

0 ≥ (D − f) + ε(2−D + f)

−εf − ε ≥ (D − f) + ε(1−D) (ε ≥ 0)

−ε2f − ε2 ≥ ε(D − f) + ε2(1−D).

Thus, since ε2 ≥ 0 we get:

−ε2f ≥ ε(D − f) + ε2(1−D)

≥ fnew − f According to (4.13).

Thus we have shown that:

fnew − f ≤− ε2f
fnew ≤(1− ε2)f.

Finally, using the fact that ε = δ
δ+2

, we get that

fnew ≤

(
1−

(
δ

δ + 2

)2
)
f.

So, when the algorithm has not reached yet a δ-stationary point, there is a

decrease on the value of f that is at least as large as the bound specified in (4.12)

in every iteration of the gradient descent procedure. In the following lemma we

prove that after O(1
δ2

) iterations of the steepest descent procedure the algorithm

finds a point X where f(X) ≤ 0.5 + δ.

58

Lemma 22. After O(1
δ2

) iterations of the steepest descent procedure the algorithm

finds a point X where f(X) ≤ 0.5 + δ.

Proof. Let X1, X2, . . . , Xk be the sequence of strategy profiles that are considered

by Algorithm 1. Since the algorithm terminates as soon as it finds a (0.5+δ)-NE,

we have f(Xi) > 0.5 + δ for every i < k. Therefore, for each i < k we we can

apply Lemma 19 to argue that Xi is not a δ-stationary point, which then allows

us to apply Lemma 21 to obtain:

f(Xi+1) ≤

(
1−

(
δ

δ + 2

)2
)
f(Xi).

So, the amount of progress made by the algorithm in iteration i is:

f(Xi)− f(Xi+1) ≥ f(Xi)−

(
1−

(
δ

δ + 2

)2
)
f(Xi)

=

(
δ

δ + 2

)2

f(Xi)

>

(
δ

δ + 2

)2

· 0.5.

Thus, each iteration of the algorithm decreases the regret by at least (δ
δ+2

)2 · 0.5.

The algorithm starts at a point X1 with f(X1) ≤ 1, and terminates when it

reaches a point Xk with f(Xk) ≤ 0.5 + δ. Thus the total amount of progress

made over all iterations of the algorithm can be at most 1− (0.5 + δ). Therefore,

the number of iterations used by the algorithm can be at most:

1− (0.5 + δ)(
δ
δ+2

)2 · 0.5
≤ 1− 0.5(

δ
δ+2

)2 · 0.5

=
(δ + 2)2

δ2
=
δ2

δ2
+

4δ

δ2
+

4

δ2
.

Since δ < 1, we have that the algorithm terminates after at most O(1
δ2

) iterations.

Lemma 22 implies that that after polynomially many iterations the algorithm

finds a point such that f(X) ≤ 0.5 + δ, and by definition such a point is a

(0.5 + δ)-NE. Thus we have completed the proof of Theorem 7.

59

4.8.1 Proof of Lemma 17

Before we begin with the proof, we introduce the following notation. For a player

i ∈ [n], given a strategy profile X and a subset of i’s pure strategies S ⊆ [mi], we

use Mi(X, S) for taking the maximum of the payoffs of i when the others play

according to X, and player i is restricted to pick elements from S:

Mi(X, S) := max
k∈S

(
vi(X)

)
k
.

In order to find the gradient, we have to calculate the variation of fi along

the direction X′ − X, by evaluating f(X̄) for points X̄ of the form

X̄ := X + ε(X′ − X) = (1− ε) · X + ε · X′.

Recall from (4.3), that for X̄ ∈ ∆ we have that fi(X̄) := u∗i (X̄)− ui(X̄). In order

to rewrite u∗i (X̄) we introduce notation Λi(X,X′, ε) as follows.

Definition 10. Given (X,X′, ε) and S = Bri(X) we define Λi(X,X′, ε) as:

Λi(X,X′, ε) := max

{
0,max

k∈S̄
{(vi(X̄))k} −max

l∈S
{(vi(X̄))l}

}
. (4.14)

In the following technical lemma we provide an expression for u∗i (X̄). In order

to rewrite u∗i (X̄), we use the following simple observation. Consider a multiset of

numbers {a1, . . . , an}, and the index sets S ⊆ [n] and S̄ = [n] \ S. We have the

following identity:

max{a1, . . . , an} ≡ max
j∈S
{aj}+ max

{
0, max

k∈S̄
{ak} −max

j∈S
{aj}

}
. (4.15)

In the following lemma, we use this identity with S = Bri(X) to rewrite u∗i (X̄).

We use this particular expression for u∗i (X̄)) because it helps us to compute

the limit when ε tends to zero. Moreover, the values Λi(X,X′, ε) will be used in

order to derive the value of ε that it is used in our algorithm.

Lemma 23. Given profiles X and X′ in ∆ and a player i ∈ [n], let S = Bri(X).

We have:

u∗i ((1− ε) · X + ε · X′)) = (1− ε) ·Mi(X, S) + ε ·Mi(X′, S) + Λi(X,X′, ε).
(4.16)

60

Proof.

u∗i (X̄) = u∗i ((1− ε) · X + ε · X′))
= max

k∈[mi]

{(
vi(X + ε(X′ − X))

)
k

}
By (4.2)

= max
k∈S

{(
vi(X + ε(X′ − X))

)
k

}
+ Λi(X,X′, ε) By (4.15) and (4.14)

= max
k∈S

{(
(1− ε) · vi(X) + ε · vi(X′)

)
k

}
+ Λi(X,X′, ε).

Since S = Bri(X), we know that for all k ∈ S we have that (vi(X))k are equal, so

we have the following:

max
k∈S

{(
(1− ε) · vi(X) + ε · vi(X′)

)
k

}
= max

k∈S

{(
(1− ε) · vi(X)

)
k

}
+ max

k∈S

{(
ε · vi(X′)

)
k

}
= (1− ε) ·Mi(X, S) + ε ·Mi(X′, S)

and we get the claimed result.

We will use the expression (4.16) for u∗i (X̄), along with the following reformu-

lation of ui(X̄):

ui(X̄) = ui(X + ε(X′ − X))

= ui(xi + ε(x′i − xi),X + ε(X′ − X))

= ui(xi,X) + ε · ui(xi,X′ − X) + ε · ui(x′i − xi,X) + ε2 · ui(x′i − xi,X′ − X)

= ui(X) + ε · ui(xi,X′)− ε · ui(xi,X) + ε · ui(x′i,X) + ε · ui(xi,X)− ε2 · ui(X′ − X)

= (1− ε) · ui(X) + ε
(
ui(xi,X′) + ui(x

′
i,X)− ui(X)

)
+ ε2 · ui(X′ − X). (4.17)

We now use these reformulations to prove the following lemma.

Lemma 24. We have that fi(X̄)− f(X) is equal to:

ε
(
Dfi(X,X′)− f(X)

)
+ Λi(X,X′, ε)− ε2ui(X′−X)− (1− ε) max

j∈[n]

{
fj(X)− fi(X)

}
.

Proof. Recall that S = Bri(X). For a given i ∈ [n], using Lemma 23 and the

reformulation for ui(X̄), we have:

fi(X̄)− f(X) = u∗i (X̄)− ui(X̄)− f(X)

= (1− ε) ·Mi(X, S) + ε ·Mi(X′, S) + Λi(X,X′, ε)
− (1− ε)ui(X) + ε

(
−ui(xi,X′)− ui(x′i,X) + ui(X)

)
− ε2ui(X′ − X)− f(X).

61

Recall from (4.3) that fi(X) = Mi(X, S) − ui(X), so the formula above is equal

to:

ε
(
Mi(X′, S)−ui(xi,X′)−ui(x′i,X)+ui(X)

)
+Λi(X,X′, ε)−ε2ui(X′−X)+(1−ε)fi(X)−f(X).

Now we can use (4.7) for Dfi(X,X′) so that the above formula becomes:

ε ·Dfi(X,X′) + Λi(X,X′, ε)− ε2ui(X′ − X) + (1− ε)fi(X)− f(X) =

ε ·Dfi(X,X′) + Λi(X,X′, ε)− ε2ui(X′ − X) + (1− ε)fi(X)− (1− ε)f(X)− εf(X) =

ε
(
Dfi(X,X′)− f(X)

)
+ Λi(X,X′, ε)− ε2ui(X′ − X)− (1− ε)

(
f(X)− fi(X)

)
.

Recall now that f(X) = maxj∈[n] fj(X). Thus the term f(X) − fi(X) can be

written as maxj∈[n]

{
fj(X)− fi(X)

}
. So, the expression above is equivalent to:

ε
(
Dfi(X,X′)− f(X)

)
+ Λi(X,X′, ε)− ε2ui(X′−X)− (1− ε) max

j∈[n]

{
fj(X)− fi(X)

}
.

We will now use Lemma 24 to study the limit limε→0(fi(X̄) − f(X)
)

for all

i ∈ [n]. Firstly, we deal with Λ(X,X′, ε). It is easy to see that limε→0

(
X + ε(X′ −

X)
)

= X. Then, when S = Bri(X) we have that:

lim
ε→0

(
max
k∈S̄
{(vi(X̄))k} −max

l∈S
{(vi(X̄))l}

)
< 0.

This is true from the definition of pure best response strategies. So, from Equation

(4.14) for Λi(X,X′, ε) it is true that limε→0 Λi(X,X′, ε) = 0.

Furthermore, the term ε2·ui(X′−X) when is divided by ε equals to ε·ui(X′−X),

thus limε→0

(
ε · ui(X′ − X)

)
= 0.

Moreover, the term:

lim
ε→0

(
−1− ε

ε
·max
j∈[n]

{
fj(X)− fi(X)

})
is either 0 when fi(X) = f(X), i.e player i has the maximum regret and maxj∈[n]

{
fj(X)−

fi(X)
}

= 0, or −∞ otherwise, because maxj∈[n]

{
fj(X)− fi(X)

}
> 0.

To sum up, if fi(X) achieves the maximum regret at point X′, then the limit

limε→0

(
fi(X̄)− f(X)

)
= Dfi(X,X′)− f(X), otherwise the limit equals −∞. This

completes the proof of Lemma 17.

62

4.8.2 Proof of Lemma 20

Throughout this proof, X,X′, X̄, and ε will be fixed as they are defined in Sec-

tion 4.8. In order to prove this lemma, we must show a bound on:

f(X̄)− f(X) = max
i∈[n]

fi(X̄)− f(X).

Before we start the analysis we need to redefine the term Λδ
i (X,X′, ε) in order

to prove an analogous version of Lemma 23 when δ-best responses are used.

Definition 11. We define Λδ
i (X,X′, ε) as:

Λδ
i (X,X′, ε) := max

{
0, max

k∈Brδi (x)

{(vi(X̄))k} − max
l∈Brδi (x)

{(vi(X̄))l}

}
. (4.18)

We now use this definition to prove the following lemma.

Lemma 25. We have:

u∗i ((1− ε) · X + ε · X′)) ≤ (1− ε) max
k∈Brδi (x)

(
vi(X))k + ε max

k∈Brδi (x)
(vi(X′)

)
k

+ Λδ
i (X,X′, ε).

(4.19)

Proof. We have:

u∗i ((1− ε) · X + ε · X′)) = max
k∈[mi]

(
vi((1− ε) · X + ε · X′)

)
k

= max
k∈Brδi (x)

(
vi((1− ε) · X + ε · X′)

)
k

+ Λδ
i (X,X′, ε) Using (4.15)

≤ (1− ε) max
k∈Brδi (x)

(
vi(X)

)
k

+ ε max
k∈Brδi (x)

(
vi(X′)

)
k

+ Λδ
i (X,X′, ε).

We will use the reformulation from Equation (4.17) for ui(X̄):

ui(X̄) = (1− ε) · ui(X) + ε
(
ui(xi,X′) + ui(x

′
i,X)− ui(X)

)
+ ε2 · ui(X′ − X).

(4.20)

The correctness of this was proved in Section 4.8.1. Now we use all the these

reformulations in order to prove the following lemma.

Lemma 26. We have that fi(X̄)− f(X) is less than or equal to:

ε
(
Df δi (X,X′)−f(X)

)
+Λδ

i (X,X′, ε)−ε2ui(X′−X)−(1−ε) max
j∈[n]
{fj − fi} . (4.21)

63

Proof. Recall that, by definition, we have that:

fi(X̄) = u∗i (X̄)− ui(X̄).

Thus, we can apply Lemma 25 along with the reformulation given in Equa-

tion (4.20) for ui(X̄) to prove that fi(X̄)− f(X) is less than or equal to:

(1− ε) max
k∈Brδi (x)

(
vi(X))k + ε max

k∈Brδi (x)
(vi(X′)

)
k

+ Λδ
i (X,X′, ε)

− (1− ε)ui(X) + ε
(
−ui(xi,X′)− ui(x′i,X) + ui(X)

)
− ε2ui(X′ − X)− f(X).

We can now use the fact that maxk∈Brδi (x)

(
vi(X)

)
k
−ui(X) = fi(X) and the defini-

tion of Df δi (X,X′) given in (4.8) to prove that the expression above is equivalent

to:

ε ·Df δi (X,X′) + Λδ
i (X,X′, ε)− ε2ui(X′ − X) + (1− ε)fi(X)− f(X)

= ε ·Df δi (X,X′) + Λδ
i (X,X′, ε)− ε2ui(X′ − X) + (1− ε)fi(X)− (1− ε)f(X)− εf(X)

= ε
(
Df δi (X,X′)− f(X)

)
+ Λδ

i (X,X′, ε)− ε2ui(X′ − X)− (1− ε)
(
f(X)− fi(X)

)
= ε
(
Df δi (X,X′)− f(X)

)
+ Λδ

i (X,X′, ε)− ε2ui(X′ − X)− (1− ε) max
j∈[n]

{
fj(X)− fi(X)

}
.

This completes the proof.

Having shown Lemma 26, we will now study each term of (4.21) and provide

bounds for each of them. To begin with, it is easy to see that for all i ∈ [n]

we have that maxj∈[n]

{
fj(X) − fi(X)

}
≥ 0, and since ε < 1, we have that (1 −

ε) maxj∈[n]

{
fj(X)− fi(X)

}
≥ 0. Thus, Equation (4.21) is less than or equal to:

ε
(
Df δi (X,X′)− f(X)

)
+ Λδ

i (X,X′, ε)− ε2ui(X′ − X). (4.22)

Next we consider the term Λδ
i (X,X′, ε). In the following technical lemma we

prove that Λδ
i (X,X′, ε) = 0 for all i ∈ [n].

Lemma 27. We have Λδ
i (X,X′, ε) = 0 for all i ∈ [n].

Proof. According to equation (4.18) for Λδ
i (X,X′, ε), we have:

Λδ
i (X,X′, ε) = max

{
0, max

k∈Brδi (x)

{(vi(X̄))k} − max
l∈Brδi (x)

{(vi(X̄))l}

}
.

We can rewrite this expression as follows. First define:

Z(X,X′, ε, k) = (vi(X̄))k − max
l∈Brδi (x)

{(vi(X̄))l}.

64

Then we have:

Λδ
i (X,X′, ε) = max

{
0, max

k∈Brδi (x)

{
Z(X,X′, ε, k)

}}
.

Our goal is to show that, for our chosen value of ε, we have Λδ
i (X,X′, ε) = 0. For

this to be the case, we must have that Z(X,X′, ε, k) ≤ 0 for all k ∈ Brδi (x). In

the rest of this proof, we will show that this is indeed the case.

By definition, we have that:

(vi(X̄))k =
(
vi(X) + ε(vi(X′)− vi(X))

)
k
. (4.23)

The term maxl∈Brδi (x){(vi(X̄))l} can be written as follows:

max
l∈Brδi (x)

{(vi((1− ε)X + εX′))l} ≥ max
l∈Brδi (x)

{(vi((1− ε)X))l}

= (1− ε) · max
l∈Brδi (x)

{(vi(X))l}

= max
l∈Brδi (x)

{(vi(X))l} − ε · max
l∈Brδi (x)

{(vi(X))l}. (4.24)

We now substitute these two bounds into the definition of Z(X,X′, ε, k). We have:

Z(X,X′, ε, k) ≤ vi(X)k− max
l∈Brδi (x)

{(vi(X))l}+ε
(
vi(X′)k−vi(X)k+ max

l∈Brδi (x)
{(vi(X))l}

)
.

(4.25)

From the definition of δ-best responses (Definition 6), we know that for all k ∈
Brδi (x):

vi(X)k − max
l∈Brδi (x)

{(vi(X))l} < −δ.

Furthermore, since we know that the maximum payoff for player i ∈ [n] is 1, we

have the following trivial bound for all k ∈ Brδi (x):

vi(X′)k − vi(X)k + max
l∈Brδi (x)

{(vi(X))l} ≤ 2.

Substituting these two bounds into Equation (4.25) gives, for all k ∈ Brδi (x):

Z(X,X′, ε, k) ≤ −δ + ε · 2.

Thus, for each k ∈ Brδi (x), we have that Z(X,X′, ε, k) ≤ 0 whenever:

−δ + ε · 2 ≤ 0,

and this is equivalent to:

ε ≤ δ

2
.

This inequality holds by the definition of ε, so we have Z(X,X′, ε, k) ≤ 0 for all

k ∈ Brδi (x), which then implies that Λδ
i (X,X′, ε) ≤ 0.

65

Next we consider the term ui(X′−X) in Equation (4.22). The following lemma

provides a simple lower bound for this term.

Lemma 28. For all i ∈ [n], we have Df δi (X,X′)− 1 ≤ ui(X′ − X).

Proof. For ui(X′ − X) we have the following:

ui(X′ − X) = ui(x
′
i − xi,X′ − X)

= ui(x
′
i,X′ − X)− ui(xi,X′ − X)

= ui(x
′
i,X′)− ui(x′i,X)− ui(xi,X′) + ui(xi,X). (4.26)

Recall from (4.8) that:

Df δi (X,X′) = max
k∈Brδi (x)

{(
vi(X′)

)
k

}
− ui(xi,X′)− ui(x′i,X) + ui(xi,X).

We can see that (4.26) and (4.8) differ only in terms ui(x
′
i,X′) and maxk∈Brδi (x)

{(
vi(X′)

)
k

}
respectively. We know that maxk∈Brδi (x)

{(
vi(X′)

)
k

}
≤ 1. Then, we can see that

Df δi (X,X′)− 1 ≤ ui(X′ − X).

Recall that D = maxi∈[n] Df
δ
i (X,X′) and fnew = f(X̄) and f = f(X). We

can now apply the bounds from Lemma 27 and Lemma 28 to Equation (4.22) to

obtain:

fnew − f ≤ max
i∈[n]

{
ε
(
Df δi (X,X′)− f(X)

)
− ε2

(
Df δi (X,X′)− 1

)}
≤ max

i∈[n]

{
ε
(
Df δi (X,X′)− f(X)

)
− ε2

(
D − 1

)}
= ε(D − f) + ε2(1−D).

This completes the proof of Lemma 20.

66

4.9 Open Questions

We have presented a polynomial-time algorithm that finds a (0.5 + δ)-Nash equi-

librium of a polymatrix game for any δ > 0. Recently it was shown [31] that

the performance guarantee that Tsaknakis and Spirakis proved for their algo-

rithm [66] is almost tight. An empirical study of our algorithm [23] showed that

Descent is fast and computes approximate Nash equilibria with very good accu-

racy far away from its theoretical guarantee. Though we do not have examples

that show that the approximation guarantee is tight for our algorithm, we do not

see an obvious approach to prove a better guarantee. The initial choice of strategy

profile affects our algorithm, and it is conceivable that one may be able to start

the algorithm from an efficiently computable profile with certain properties that

allow a better approximation guarantee. One natural special case is when there is

a constant number of players, which may allow one to derive new strategy profiles

from a stationary point as done by Tsaknakis and Sprirakis [66]. It may also be

possible to develop new techniques when the number of pure strategies available

to the players is constant, or when the structure of the graph is restricted in

some way. For example, in the games arising from two-player Bayesian games,

the graph is always bipartite.

In this chapter we considered ε-Nash equilibria, which are the most well-

studied type of approximate equilibria. However, ε-Nash equilibria have a draw-

back: since they only require that the expected payoff is within ε of a pure best

response, it is possible that a player could be required to place probability on

a strategy that is arbitrarily far from being a best response. Note, it has been

shown that there is a PTAS for finding ε-WSNE of bimatrix games if and only

if there is a PTAS for ε-Nash [18, 12]. For n-player games with n > 2 there has

been very little work on developing algorithms for finding ε-WSNE. This is a very

interesting direction, both in general and when n > 2 is a constant.

67

Chapter 5

Approximate Equilibria in Two
Player Bayesian Games

In this Chapter, we define two-player Bayesian games, and show how our al-

gorithm can be applied in order to efficiently find a (0.5 + δ)-Bayesian Nash

equilibrium. A two-player Bayesian game is played between a row player and a

column player. Each player has a set of possible types, and at the start of the

game, each player is assigned a type by drawing from a known joint probability

distribution. Each player learns his type, but not the type of his opponent. Our

task is to find an approximate Bayesian Nash equilibrium (BNE).

We show that this can be reduced to the problem of finding an ε-NE in a

polymatrix game, and therefore our algorithm from Chapter 4 can be used to

efficiently find a (0.5 + δ)-BNE of a two-player Bayesian game.

5.1 Two player Bayesian games preliminaries

Payoff matrices. We will use k1 to denote the number of pure strategies of the

row player and k2 to denote the number of pure strategies of the column player.

Furthermore, we will use m to denote the number of types of the row player, and

n to denote the number of types of the column player.

For each pair of types i ∈ [m] and j ∈ [n], there is a k1 × k2 bimatrix game

(R,C)ij := (Rij, Cij) that is played when the row player has type i and the

column player has type j. We assume that all payoffs in every matrix Rij and

every matrix Cij lie in the range [0, 1].

Types. The distribution over types is specified by a joint probability distribu-

tion: for each pair of types i ∈ [m] and j ∈ [n], the probability that the row

player is assigned type i and the column player is assigned type j is given by pij.

68

Obviously, we have that:
m∑
i=1

n∑
j=1

pij = 1.

We also define some useful shorthands: for all i ∈ [m] we denote by pRi (pCj) the

probability that row (column) player has type i ∈ [m] (j ∈ [n]). Formally:

pRi =
n∑
j=1

pij for all i ∈ [m],

pCj =
m∑
i=1

pij for all j ∈ [n].

Note that
∑m

i=1 p
R
i =

∑n
j=1 p

C
j = 1. Furthermore, we denote by pRi (j) the condi-

tional probability that type j ∈ [n] will be chosen for column player given that

type i is chosen for row player. Similarly, we define pCj (i) for the column player.

Formally:

pRi (j) =
pij
pRi

for all i ∈ [m],

pCj (i) =
pij
pCj

for all j ∈ [n].

We can see that for given type t = (i, j) we have that pij = pRi ·pRi (j) = pCj ·pCj (i).

Strategies. In order to play a Bayesian game, each player must specify a strat-

egy for each of their types. Thus, a strategy profile is a pair (x,y), where

x = (x1, x2, . . . , xm) such that each xi ∈ ∆k1 , and where y = (y1, y2, . . . , yn) such

that each yi ∈ ∆k2 . This means that, when the row player gets type i ∈ [m] and

the column player gets type j ∈ [n], then the game (Rij, Cij) will be played, and

the row player will use strategy xi while the column player will use strategy yj.

Given a strategy profile (x,y), we can define the expected payoff to both

players (recall that the players are not told their opponent’s type).

Definition 12 (Expected payoff). Given a strategy profile (x,y) and a type t =

(i, j), the expected payoff for the row player is given by:

uR(xi,y) =
n∑
j=1

pRi (j) · xTi Rijyj,

= xTi

n∑
j=1

pRi (j) ·Rijyj.

69

Similarly, for the column player the expected payoff is:

uC(x, yj) = yTj

m∑
i=1

pCj (i) · CT
ijxi.

Rescaling. Before we define approximate equilibria for two-player Bayesian

games, we first rescale the payoffs. Much like for polymatrix games, rescaling is

needed to ensure that an ε-approximate equilibrium has a consistent meaning.

Our rescaling will ensure that, for every possible pair of types, both player’s

expected payoff uses the entire range [0, 1].

For each type i of the row player, we use U i
R to denote the maximum expected

payoff for the row player when he has type i, and we use LiR to denote the

minimum expected payoff for the row player when he has type i. Formally, these

are defined to be:

U i
R = max

a∈[k1]

n∑
j=1

max
b∈[k2]

(
pRi (j) ·Rij

)
a,b
,

LiR = min
a∈[k1]

n∑
j=1

min
b∈[k2]

(
pRi (j) ·Rij

)
a,b
.

Then we apply the transformation T iR(·) to every element z of Rij, for all types j

of the column player, where:

T iR(z) :=
1

U i
R − LiR

·
(
z − LiR

n

)
. (5.1)

Similarly, we transform all payoff matrices for the column player using:

T jC(z) :=
1

U j
C − L

j
C

·

(
z − LjC

m

)
, (5.2)

where U j
C and LjC are defined symmetrically. Note that, after this transformation

has been applied, both player’s expected payoffs lie in the range [0, 1]. Moreover,

the full range is used: there exists a strategy for the column player against which

one of the row player’s strategies has expected payoff 1, and there exists a strategy

for the column player against which one of the row player’s strategies has expected

payoff 0. From now on we will assume that the payoff matrices have been rescaled

in this way.

We can now define approximate Bayesian Nash equilibria for a two-player

Bayesian game.

70

Definition 13 (Approximate Bayes Nash Equilibrium (ε-BNE)). Let (x,y) be a

strategy profile. The profile (x,y) is an ε-BNE iff the following conditions hold:

uR(xi,y) ≥ uR(x′i,y)− ε for all x′i ∈ ∆k1 for all i ∈ [m], (5.3)

uC(x, yj) ≥ uC(x, y′j)− ε for all y′j ∈ ∆k2 for all j ∈ [n]. (5.4)

5.2 Reducing ε-BNE to ε-NE

In this section we reduce in polynomial time the problem of computing an ε-BNE

for a two-player Bayesian game B to the problem of computing an ε-NE of a

polymatrix game P(B). We describe the construction of P(B) and prove that

every ε-NE for P(B) maps to an ε-BNE of B.

Construction. Let B be a two-player Bayesian game where the row player has

m types and k1 pure strategies and the column player has n types and k2 pure

strategies. We will construct a polymatrix game P(B) as follows.

The game has m + n players. We partition the set of players [m + n] into

two sets: the set K = {1, 2, . . . ,m} will represent the types of the row player in

B, while the set L = {m + 1,m + 2, . . . ,m + n} will represent the types of the

column player in B. The underlying graph that shows the interactions between

the players is a complete bipartite graph G = (K ∪ L,E), where every player in

K (respectively L) plays a bimatrix game with every player in L (respectively

K). The bimatrix game played between vertices vi ∈ K and vj ∈ L is defined to

be (R∗ij, C
∗
ij), where:

R∗ij := pRi (j) ·Rij, (5.5)

C∗ij := pCj (i) · Cij. (5.6)

for all i ∈ [m] and j ∈ [n].

Observe that, for each player i in the K, the matrices R∗ij all have the same

number of rows, and for each player j ∈ L, the matrices C∗ij all have the same

number of columns. Thus, P(B) is a valid polymatrix game. Moreover, we clearly

have that P(B) has the same size as the original game B. Note that, since we

have assumed that the Bayesian game has been rescaled, we have that for every

player in P(B) the minimum (maximum) payoff achievable under pure strategy

profiles is 0 (1), so no further scaling is needed in order to apply our algorithm.

We can now prove that every ε-NE of the polymatrix game is also an ε-BNE

of the original two-player Bayesian game, which is the main result of this section.

71

Theorem 8. Every ε-NE of P(B) is a ε-BNE for B.

Proof. Let z = (x1, . . . , xm, y1, . . . , yn) be an ε-NE for P(B). This means that no

player can gain more than ε by unilaterally changing his strategy. We define the

strategy profile (x,y) for B where x = (x1, . . . , xm) and y = (y1, . . . , yn), and we

will show that (x,y) is an ε-BNE for B.

Let i ∈ K be a player. Since, z is an ε-NE of P(B), we have:

ui(xi, z) ≥ ui(x
′
i, z)− ε for all x′i ∈ ∆k1 .

By construction, we can see that player i only interacts with the players from L.

Hence his payoff can be written as:

ui(xi, z) = xTi

n∑
j=1

R∗ijyj = uR(xi,y).

and since we are in an ε-NE, we have:

uR(xi,y) ≥ uR(x′i,y)− ε for all x′i ∈ ∆k1 . (5.7)

This is true for all i ∈ K, thus it is true for all i ∈ [m].

Similarly, every player j ∈ L interacts only with players form K, thus:

uC(x, yj) = yTj

m∑
i=1

(C∗ij)
Txi.

Since we are in an ε-NE we have:

uC(x, yj) ≥ uC(x, y′j)− ε for all y′j ∈ ∆k2 , (5.8)

and this is true for all j ∈ K, thus it is true for all j ∈ [n].

Combining now the fact that Equation (5.7) is true for all i ∈ [n] and that

Equation (5.8) is true for all j ∈ [m], it is easy to see that the strategy profile

(x,y) is an ε-BNE for B.

A direct corollary from Theorem ?? is that there is a polynomial time algo-

rithm that computes a (0.5 + δ)-approximate Bayes Nash Equilibrium. However,

as it is proved in the next section, there is a much simpler algorithm that com-

putes a 0.5-BNE for two player Bayesian games which can be applied in any

polymatrix game played on a bipartite graph.

72

5.3 A Simple Algorithm for 0.5-BNE

In this section we present a simple algorithm for computing a 0.5-BNE for Bayesian

two player games. The algorithm is a generalization of the well known DMP tech-

nique of Daskalakis, Mehta and Papadimitriou [20]. We will use the reduction

presented above that constructs a bipartite polymatrix game P(B). We will call

as left side players the players created for the types of the row player and as right

side players those created for the types of the column one. The crucial property

that allows us to generalise the DMP technique is that all players on the one side

of the graph can simultaneously play a best response against a strategy profile of

the players from the opposite side without affecting the rest of the players from

their side.

The algorithm proceeds as follows. Firstly, every player i in the left side

picks a (pure) strategy xi; we call that as left strategy profile and we denote it

by x = (x1, . . . , xm). Then, every player j in the right side computes a (pure)

best response yj against the left strategy profile x; we call this as right strategy

profile and we denote it by y∗ = (y1, . . . , yn). Finally, each player i in the left

side computes a (pure) best response x̂i against the right strategy profile y∗. Let

x∗i = xi+x̂i
2

and let x∗ = (x∗1, . . . , x
∗
n). The algorithm returns the strategy profile

z = (x∗,y∗).

The Algorithm for 0.5-BNE

1. Pick a pure left strategy profile x = (x1, . . . , xm).

2. For every i ∈ [n] compute a best response yi against x.

3. Define y∗ = (y1, . . . , yn) where yi is a best response against x.

4. Compute a best response x̂ against y∗.

5. Set x∗ = x+x̂
2

.

6. Return the strategy profile (x∗,y∗).

Lemma 29. The strategy profile (x∗,y∗) is a 0.5-NE for the game P(B).

Proof. We will study the regret each player suffers under the strategy profile

z = (x∗,y∗). First, we study the players from the left side. Let i be a player from

the left side and let x∗i = xi+x̂i
2

be the strategy computed by the algorithm for

that player. Since he interacts only with players from the right side, his regret

73

Ri(z) is

Ri(z) = max
n∑
j=1

R∗ijyj − x∗i ·
n∑
j=1

R∗ijyj

= x̂i ·
n∑
j=1

R∗ijyj − x∗i ·
n∑
j=1

R∗ijyj (since x̂i is a best response against y∗)

=
1

2
x̂i ·

n∑
j=1

R∗ijyj −
1

2
xi ·

n∑
j=1

R∗ijyj

≤ 1

2
x̂i ·

n∑
j=1

R∗ijyj

≤ 1

2
.

Thus, every player from the left side suffers regret at most 1
2
. Then we study the

regret Rj(z) a player j from the right side suffers under the profile z.

Rj(z) = max
m∑
i=1

C∗jix
∗
i − yj ·

m∑
i=1

C∗jix
∗
i

≤ 1

2

(
max

m∑
i=1

C∗jixi + max
m∑
i=1

C∗jix̂i

)
− yj ·

m∑
i=1

C∗jix
∗
i

=
1

2
max

m∑
i=1

C∗jix̂i −
1

2
yj ·

m∑
i=1

C∗jix̂i (since yj is a best response against x)

≤ 1

2
max

m∑
i=1

C∗jix̂i

≤ 1

2
.

Hence, all players suffer regret at most 1
2
. The claim follows.

Combining Lemma 29 with Theorem ?? we get the following Corollary.

Corollary 1. There is a polynomial time algorithm that computes a 0.5-BNE for

two player Bayesian games.

Note that the simple algorithm described above produces a better theoretical

approximation guarantee for Bayes Nash equilibria than the Descent. However,

it is easy to construct a tight for this generalisation of the DMP technique, while

we do not know whether the analysis for the Descent is tight. Nevertheless, the

strategy profile produced by this simple algorithm can be used as the starting

point for the Descent and increase its running time efficiency.

74

Chapter 6

Lipschitz Games

In this chapter we study games with Lipschitz continuous utility functions for

the players. Our key insight is that Lipschitz continuity of the utility function

allows us to provide algorithms for finding approximate equilibria in these games.

We first define formally Lipschitz games and explain how they differ from the

games we studied so far. Then, we provide efficient algorithms for computing

approximate equilibria for several subclasses of Lipschitz games.

6.1 Lipschitz games preliminaries

We start by fixing some notation. Some notions used in this chapter are already

been defined, but we redefine them again here for the self-containment of the

chapter.

For each positive integer n we use [n] to denote the set {1, 2, . . . , n}, we use

∆n to denote the (n−1)-dimensional simplex, and ‖x‖qp to denote the (p, q)-norm

of a vector x ∈ Rd, i.e. ‖x‖qp = (
∑

i∈[d] |xi|p)q/p. When q = 1, then we will omit it

for notation simplicity. Given a set X = {x1, x2, . . . , xn} ⊂ Rd, we use conv(X)

to denote the convex hull of X. A vector y ∈ conv(X) is said to be k-uniform

with respect to X if there exists a size k multiset S of [n] such that y = 1
k

∑
i∈S xi.

When X is clear from the context we will simply say that a vector is k-uniform

without mentioning that uniformity is with respect to X. We will use the notion

of the λp-Lipschitz continuity.

Definition 14 (λp-Lipschitz). A function f : A→ R, with A ⊆ Rd is λp-Lipschitz

continuous if for every x and y in A, it is true that

|f(x)− f(y)| ≤ λ · ‖x− y‖p.

75

Games and strategies. A game with M players can be described by a set

of available actions for each player and a utility function for each player that

depends both on his chosen action and the actions the rest of the players chose.

For each player i ∈ [M] we use Si to denote his set of available actions and we

call it his strategy space. We will use xi ∈ Si to denote a specific action chosen

by player i and we will call it the strategy of player i, we use X = (x1, . . . , xM) to

denote a strategy profile of the game, and we will use X−i to denote the strategy

profile where the player i is excluded, i.e. X−i = (x1, . . . , xi−1, xi+1, . . . , xM). We

use Ti(xi,X−i) to denote the utility of player i when he plays the strategy xi and

the rest of the players play according to the strategy profile X−i. A strategy x̂i

is a best response against the strategy profile X−i, if Ti(x̂i,X−i) ≥ Ti(xi,X−i)
for all xi ∈ Si. The regret player i suffers under a strategy profile X is the

difference between the utility of his best response and his utility under X, i.e.

Ti(x̂i,X−i)− Ti(xi,X−i).
Solution Concepts. A strategy profile is an equilibrium if no player can

increase his utility by unilaterally changing his strategy. A relaxed version of this

concept is the approximate equilibrium, or ε-equilibrium, in which no player can

increase his utility more than ε by unilaterally changing his strategy. Formally,

a strategy profile X is an ε-equilibrium if for every player i it holds that

Ti(xi,X−i) ≥ Ti(x
′
i,X−i)− ε for all x′i ∈ Si.

6.2 Classes of Lipschitz Games

In this section we define the classes of games studied in this chapter. We will study

λp-Lipschitz games, penalty games, biased games and distance biased games.

6.2.1 λp-Lipschitz games

This is a very general class of games, where each player’s strategy space is contin-

uous, and represented by a convex set of vectors, and where the only restriction

is that the payoff function is λp-Lipschitz continuous for some p ≥ 2. This class is

so general that exact equilibria, and even approximate equilibria may not exist.

Formally, an M -player λp-Lipschitz game L can be defined by the tuple

(M,n, λ, p, γ, T) where:

• the strategy space Si of player i is the convex hull of at most n vectors

y1, . . . , yn in Rd,

• T is a set of λp-Lipschitz continuous functions and each Ti(X) ∈ T ,

76

• and γ is a parameter that that intuitively shows how large the strategy

space of the players is, formally maxxi∈Si ‖xi‖p ≤ γ for every i ∈ [M].

In what follows in this chapter we will assume that the Lipschitz continuity

of a game λp is bounded by a constant. Observe that for normal form games this

is not the case, since there are bimatrix games that are not constant Lipschitz

continuous.

6.2.2 Two Player Penalty Games

In these games, the players play a strategic form game, and their utility is the

payoff achieved in the game minus a penalty. The penalty function can be an

arbitrary function that depends on the player’s strategy. Formally, a two-player

penalty game P is defined by a tuple
(
R,C, fr(x), fc(y)

)
, where (R,C) is a bi-

matrix game and fr(x) and fc(y) are the penalty functions for the row and the

column player respectively. The utilities for the players under a strategy profile

(x,y), denoted by Tr(x,y) and Tc(x,y), are given by Tr(x,y) = xTRy−fr(x) and

Tc(x,y) = xTCy− fc(y). In this chapter we will focus on games with λ-Lipschitz

penalty functions and we will use Pλ to denote this set. A special class of penalty

games is obtained when fr(x) = xTx and fc(y) = yTy. We call these games as

inner product penalty games.

We note that the class of penalty games is not contained in the class of λp-

Lipschitz games. In order to see that, observe that the “bimatrix” part of the

utility function may not be λp-Lipschitz continuous for any constant λp. So,

Tr(x,y) and Tc(x,y) are not λp-Lipschitz continuous.

6.2.3 Two Player Biased Games

This is a subclass of penalty games, where extra constraints are added to the

penalty functions fr(x) and fc(y) of the players. In this class of games there is a

base strategy and for each player and the penalty they receive is increasing with

the distance between the strategy they choose and their base strategy. Formally,

the row player has a base strategy p ∈ ∆n, the column player has a base strategy

q and their strictly increasing penalty functions are defined as fr(‖x− p‖st) and

fc(‖y − q‖lm) respectively.

77

6.2.4 Distance Biased Games

This is a special class of biased games where the penalty function is a frac-

tion of the distance between the base strategy of the player and his chosen

strategy. Formally, a two player distance biased game B is defined by a tuple(
R,C, br(x,p), bc(y,q), dr, dc

)
, where (R,C) is a bimatrix game, p ∈ ∆n is a

base strategy for the row player, q ∈ ∆n is a base strategy for the column player,

br(x,p) = ‖x− p‖st and bc(y,q) = ‖y − q‖lm

are the penalty functions for the row and the column player respectively.

The utilities for the players under a strategy profile (x,y), denoted by Tr(x,y)

and Tc(x,y), are given by

Tr(x,y) = xTRy − dr · br(x,p) and Tc(x,y) = xTCy − dc · bc(y,q),

where dr and dc are non negative constants.

6.3 Comparison Between the Classes of Games

Before we present our algorithms for computing approximate equilibria for Lip-

schitz games it would be useful to describe the differences between the classes

of games and to state what the current status of the equilibrium existence for

each one class. The Figure 6.3 shows the relation between the games’ classes.

It is well known that normal-form games possess an equilibrium [60], known as

Nash equilibrium. On the other hand, Fiat and Papadimitriou [34] initiated

the study of existence of equilibria in penalty games. They studied games with

penalty functions that capture risk, they showed that there exist games with no

equilibrium and they proved that it is NP-complete to decide whether a game

possess an equilibrium or not. Mavronicolas and Monien [58] followed the work

of [34] and proved that it is NP-complete to decide the existence of equilibria

for more families of penalty games. Caragiannis, Kurokawa and Proccacia [10]

studied biased games and proved that a large family of biased games possess an

equilirbium. Distance biased games fall in this family and thus always possess

an equilibrium. Finally, for λp-Lipschitz games it is an interesting open question

whether they possess always an equilibrium, or there are cases that do not possess

an equilibrium.

78

Penalty Games

Biased Games

Distance Biased Games

λp-Lipschitz Games Normal-form Games

No equilibrium Guaranteed equilibrium

Figure 6.1: A map that depicts the relations between the games studied in this
thesis and our current knowledge for the equilibrium existence for each class.

6.4 Approximate Equilibria in λp-Lipschitz Games

In this section, we give an algorithm for computing approximate equilibria in λp-

Lipschitz games. Recall that, as we have already mentioned λp-Lipschitz games

do not always possess an equilibrium. Nevertheless, our technique can be applied

irrespective of whether an exact equilibrium exists. If an exact equilibrium does

exist, then our technique will always find an ε-equilibrium. If an exact equilibrium

does not exist, then our algorithm either finds an ε-equilibrium or reports that

the game does not have an exact equilibrium.

In order to derive our algorithm we will utilize the following theorem that was

recently proved by Barman [5]. Intuitively, Barman’s theorem states that we can

approximate any point µ in the convex hull of n points using a uniform point µ′

that needs only “few” samples from µ to construct it.

Theorem 9 ([5]). Given a set of vectors X = {x1, x2, . . . , xn} ⊂ Rd, let conv(X)

denote the convex hull of X. Furthermore, let γ := maxx∈X ‖x‖p for some 2 ≤
p < ∞. For every ε > 0 and every µ ∈ conv(X), there exists an 4pγ2

ε2
uniform

vector µ′ ∈ conv(X) such that ‖µ− µ′‖p ≤ ε.

If we combine the Theorem 9 with the Definition 14 of the Lipschitz continuity,

79

we get the following lemma.

Lemma 30. Let X = {x1, x2, . . . , xn} ⊂ Rd, let f : conv(X) → R be a λp-

Lipschitz continuous function for some 2 ≤ p < ∞, let ε > 0 and let k = 4λ2pγ2

ε2
,

where γ := maxx∈X ‖x‖p. Furthermore, let f(x∗) be the optimum value of f .

Then we can compute a k-uniform point x′ ∈ conv(X) in time O(nk), such that

|f(x∗)− f(x′)| < ε.

Proof. From Theorem 9 we know that for the chosen value of k there exists a

k-uniform point x′ such that ‖x′ − x∗‖p < ε/λ. Since the function f(x) is λp-

Lipschitz continuous, we get that |f(x∗) − f(x′)| < ε. In order to compute this

point, we have to exhaustively evaluate the function f in all k-uniform points and

choose the point that maximizes/minimizes its value. Since there are
(
n+k−1

k

)
=

O(nk) possible k-uniform points, the theorem follows.

High level idea of our algorithm. Before we describe formally our algorithm,

let us give some intuition behind it. The high level idea of our algorithm is as

follows. We first prove that there exist uniform strategies that are ε-equilibria,

for every ε > 0, when the game possess an exact equilibrium. We prove this by

using the Theorem 9. Thus, in order to find an ε-equilibrium we discretize the

strategy space for each player and then we only have to consider the uniform

strategy profiles and pick the profile that it is an ε-equilibrium. However, in λp-

Lipschitz games it is not trivial to decide whether a strategy profile is an ε, or even

an exact, equilibrium. So, we show how we can efficiently decide whether a profile

is 3ε-equilibrium and thus we can use our algorithm to compute a 3ε-equilibrium.

In what follows we will study a λp-Lipschitz game L := (M,n, λ, p, γ, T).

Recall that M stands for the number of players, n for the number of points

whose convex hull defines the strategy space of each player, T is the space of the

λp-Lipschitz continuous utility functions and γ is the value that used in Theorem 9

that roughly shows how “large” is the strategy space of the players. Assuming the

existence of an exact Nash equilibrium, we establish the existence of a k-uniform

approximate equilibrium in the game L, where k depends on M,λ, p and γ. Note

that λ depends heavily on p and the utility functions for the players.

Since, by the definition of λp-Lipschitz games, the strategy space Si for every

player i is the convex hull of n vectors y1, . . . , yn in Rd, any xi ∈ Si can be written

as a convex combination of yj’s. Hence, xi =
∑n

j=1 αjyj, where αj > 0 for every

j ∈ [n] and
∑n

j=1 αj = 1. Then, α = (α1, . . . , αn) is a probability distribution

over the vectors y1, . . . , yn, i.e. vector yj is drawn with probability αj. Thus, we

can sample a strategy xi by the probability distribution α.

80

So, let X∗ be an equilibrium for L and let X′ be a sampled uniform strategy

profile from X∗. For each player i we define the following events

φi =
{
|Ti(x′i,X′−i)− Ti(x∗i ,X∗−i)| < ε/2

}
,

πi =
{
Ti(xi,X′−i) < Ti(x

′
i,X′−i) + ε

}
for all possible xi,

ψi =
{
‖x′i − x∗i ‖p <

ε

2Mλ

}
for some p > 0.

Notice that if all the events πi occur at the same time, then the sampled profile

X′ is an ε-equilibrium. We will show that if for a player i the events φi and
⋂
j ψj

hold, then the event πi has to be true too.

Lemma 31. For all i ∈ [M] it holds that
⋂
j∈[M] ψj ∩ φi ⊆ πi.

Proof. Suppose that both events φi and
⋂
j ψj∈[M] hold. We will show that the

event πi must be true too. Let xi be an arbitrary strategy, let X∗−i be a strategy

profile for the rest of the players, and let X′−i be a sampled strategy profile from

X∗−i. Since we assume that the events ψj is true for all j we get ‖X′−i − X∗−i‖p ≤∑
j 6=i ‖x′j − x∗j‖p we get that

‖X′−i − X∗−i‖p ≤
∑
j 6=i

‖x′j − x∗j‖p

≤
∑
j 6=i

ε

2Mλ

<
ε

2λ
.

Furthermore, since by assumption the utility functions for the players are λp-

Lipschitz continuous we have that∣∣Ti(xi,X′−i)− Ti(xi,X∗−i)∣∣ ≤ ε

2
.

This means that

Ti(xi,X′−i) ≤ Ti(xi,X∗−i) +
ε

2

≤ Ti(x
∗
i ,X∗−i) +

ε

2
(6.1)

where the last inequality holds since the strategy profile (x∗i ,X∗−i) is an equilibrium

of the game. Furthermore, since by assumption the event φi is true we get that

Ti(x
∗
i ,X∗−i) < Ti(x

′
i,X′−i) +

ε

2
. (6.2)

Hence, if we combine the inequalities (6.1) and (6.2) we get that Ti(xi,X′−i) <
Ti(x

′
i,X′−i) + ε for all possible xi. Thus, if the events φi and ψj for every j ∈ [M]

hold, then the event πi holds too.

81

We are ready to prove the main result of the section.

Theorem 10. Let L be a λp-Lipschitz game that possess an equilibrium. Then,

for any ε > 0, there is a k-uniform strategy profile, with k = 16M2λ2pγ2

ε2
that is an

ε-equilibrium for L.

Proof. In order to prove the claim, it suffices to show that there is a strategy

profile where every player plays a k-uniform strategy such that the events πi hold

for all i ∈ [M]. Since the utility functions in L are λp-Lipschitz continuous it

holds that
⋂
i∈[n] ψi ⊆

⋂
i∈[n] φi. Furthermore, combining that with the Lemma 31

we get that
⋂
i∈[n] ψi ⊆

⋂
i∈[n] πi. Thus, if the event ψi is true for every i ∈ [n],

then the event
⋂
i∈[n] πi is true as well.

From the Theorem 9 we get that for each i ∈ [M] there is a 16M2λ2pγ2

ε2
-uniform

point x′i such that the event ψi occurs with positive probability. The claim follows.

Theorem 10 establishes the existence of a k-uniform approximate equilibrium,

but this does not immediately give us our approximation algorithm. The obvious

approach is to perform a brute force check of all k-uniform strategies, and then

output the one that provides the best approximation. However, there is a problem

with this, since computing the quality of approximation requires us to compute

the regret for each player, which in turn requires us to compute a best response

for each player. Computing an exact best response in a Lipschitz game is a hard

problem in general, since we make no assumptions about the utility functions of

the players. Fortunately, it is sufficient to, instead, compute an approximate best

response for each player, and Lemma 30 can be used to do this. The following

Lemma is a consequence of Lemma 30.

Lemma 32. Let X be a strategy profile for a λp-Lipschitz game L, and let x̂i be

a best response for the player i against the profile X−i. There is a 4λ2pγ2

ε2
-uniform

strategy x′i that is an δ-best response against X−i, i.e. |Ti(x̂i,X−i)−Ti(x′i,X−i)| <
δ.

Proof. In order to compute a best response it is equal to maximize the function

Ti(xi,X−i) with respect to xi. Since we assume that Ti(·) is λp continuous we can

apply Lemma 30 and compute the optimal solution, i.e. the best response for the

player i.

Our goal is to approximate the approximation guarantee for a given strategy

profile. More formally, given a strategy profile X that is an ε-equilibrium, and a

82

constant δ > 0, we want an algorithm that outputs a number within the range

[ε − δ, ε + δ]. Lemma 32 allows us to do this. For a given strategy profile X,

we first compute δ-approximate best responses for each player, then we can use

these to compute δ-approximate regrets for each player. The maximum over the

δ-approximate regrets then gives us an approximation ε with a tolerance of δ.

This is formalised in the following algorithm.

Algorithm 6. Evaluation of approximation guarantee

Input: A strategy profile X for L, and a constant δ > 0.
Output: An additive δ-approximation of the approximation guarantee
α(X) for the strategy profile X.

1. Set l = 4λ2pγ2

δ2
.

2. For every player i ∈ [M]

(a) For every l-uniform strategy x′i of player i compute Ti(x
′
i,X−i).

(b) Set m∗ = maxx′i Ti(x
′
i,X−i).

(c) Set Ri(X) = m∗ − Ti(xi,X−i).

3. Set α(X) = δ + maxi∈[M]Ri(X).

4. Return α(X).

Utilising the above algorithm, we can now produce an algorithm to find an

approximate equilibrium in Lipschitz games. The algorithm checks all k-uniform

strategy profiles, using the value of k given by Theorem 10, and for each one,

computes an approximation of the quality approximation using the Algorithm 6

given above.

Algorithm 7. 3ε-equilibrium for λp-Lipschitz game L

Input: Game L and ε > 0.
Output: A 3ε-equilibrium for L.

1. Set k > 16λ2Mpγ2

ε2
.

2. For every k-uniform strategy profile X′

(a) Compute an ε-approximation of α(X′).
(b) If the ε-approximation of α(X′) is less than 2ε, return X′.

If the algorithm returns a strategy profile X, then it must be a 3ε equilibrium.

This is because we check that an ε-approximation of α(X) is less than 2ε, and

83

therefore α(X) ≤ 3ε. Secondly, we argue that if the game has an exact Nash

equilibrium, then this procedure will always output a 3ε-approximate equilibrium.

From Theorem 10 we know that if k > 16λ2Mpγ2

ε2
, then there is a k-uniform strategy

profile X that is an ε-equilibrium for L. When we apply our approximate regret

algorithm to X, to find an ε-approximation of α(X), the algorithm will return a

number that is less than 2ε, hence X will be returned by the algorithm.

To analyse the running time, observe that there are
(
n+k−1

k

)
= O(nk) possible

k-uniform strategies for each player, thus O(nMk) k-uniform strategy profiles.

Furthermore, our regret approximation algorithm runs in time O(Mnl), where

l = 4λ2pγ2

ε2
. Hence, we get the next theorem.

Theorem 11. Given a λp-Lipschitz game L that possess an equilibrium and

any ε > 0, a 3ε-equilibrium can be computed in time O
(
MnMk+l

)
, where k =

O
(
λ2Mpγ2

ε2

)
and l = O

(
λ2pγ2

ε2

)
.

Notice that it might be computationally hard to decide whether a game pos-

sesses an equilibrium or not. Nevertheless, our algorithm can be applied in any

λp-Lipschitz game, without being affected by the existence or not of an exact

equilibrium. If the game does not possesses an exact equilibrium then our al-

gorithm either finds an approximate equilibrium or fails to find an approximate

equilibrium. In the latter case the algorithm decides that the game does not

possess an exact equilibrium, since if it had one, it would have an ε-equilibrium

too.

Theorem 12. For any game λp-Lipschitz game L in time O
(
MnMk+l

)
, we can

either compute a 3ε-equilibrium, or decide that L does not possess an exact equi-

librium, where k = O
(
λ2Mpγ2

ε2

)
and l = O

(
λ2pγ2

ε2

)
.

6.5 An Algorithm for Penalty Games

In this section we study two-player penalty games that belong in the class Pλ,
i.e. penalty games with λ-Lipschitz continuous penalty functions. We present

an algorithm that, for any ε > 0, can compute an ε-equilibrium for any penalty

game in Pλ in quasi-polynomial time. This means that if N is the size of the

game, then our algorithm can compute an ε-equilibrium in time NO(logN). For

the algorithm, we take the same approach as we did in the previous section

for λp-Lipschitz games: We show that if an exact equilibrium exists, then a k-

uniform approximate equilibrium always exists too, and provide a brute-force

search algorithm for finding it. Once again, since best response computation may

84

be hard for this class of games, we must provide an approximation algorithm for

finding the quality of an approximate equilibrium. The majority of this section

is dedicated to proving an appropriate bound for k, to ensure that k-uniform

approximate equilibria always exist.

We first focus on penalty games that possess an exact equilibrium. So, let

(x∗,y∗) be an equilibrium of the game and let (x′,y′) be a k-uniform strategy

profile sampled from this equilibrium. We define the following four events:

φr =
{
|Tr(x′,y′)− Tr(x∗,y∗)| < ε/2

}
πr =

{
Tr(x,y

′) < Tr(x
′,y′) + ε

}
for all x

φc =
{
|Tc(x′,y′)− Tc(x∗,y∗)| < ε/2

}
πc =

{
Tc(x

′,y) < Tc(x
′,y′) + ε

}
for all y.

The events πr and πc ensure that under the k-uniform strategy profile (x′,y′)

no player can gain more than ε by changing his strategy, i.e. (x′,y′) is an ε-

equilibrium. The events φr and φc ensure that the payoffs the players get under

the profile (x′,y′) is at most ε-away from the payoffs the players get under the

exact equilibrium. The goal is to derive a value for k such that all the four events

above are true, or equivalently Pr(φr ∩ πr ∩ φc ∩ πr) > 0.

Note that in order to prove that (x′,y′) is an ε-equilibrium we only have to

consider the events πr and πc. Nevertheless, as we show in the Lemma 33, the

events φr and φc are crucial in our analysis. The proof of the main theorem boils

down to the events φr and φc. Furthermore, proving that there is a k-uniform

profile (x′,y′) that fulfills the events φr and φc too, proves that the approximate

equilibrium we compute approximates the utilities the players receive under an

exact equilibrium too.

In what follows, we will focus only on the row player, since similar analysis

can be applied for the column player. Firstly, we study the event πr and we show

how we can relate it with the event φr.

Lemma 33. For all penalty games it holds that Pr(πcr) ≤ n · e− kε
2

2 + Pr(φcr).

Proof. We begin by introducing the following auxiliary events for all i ∈ [n]

ψri =
{
Riy

′ < Riy
∗ +

ε

2

}
.

We prove how the events ψri and the event φr are related with the event πr.

Assume that the event φr and the events ψri for all i ∈ [n] are true. Let x be

any mixed strategy for the row player. Since by assumption Riy
′ < Riy

∗ + ε
2

and since x is a probability distribution, it holds that xTRy′ < xTRy∗ + ε
2
. If

85

we subtract fr(x) from each side we get that xTRy′− fr(x) < xTRy∗− fr(x) + ε
2
.

This means that Tr(x,y
′) < Tr(x,y

∗)+ ε
2

for all x. But we know that Tr(x,y
∗) ≤

Tr(x
∗,y∗) for all x ∈ ∆n, since (x∗,y∗) is an equilibrium. Thus, we get that

Tr(x,y
′) < Tr(x

∗,y∗) + ε
2

for all possible x. Furthermore, since the event φr

is true too, we get that Tr(x,y
′) < Tr(x

′,y′) + ε. Thus, if the events φr and

ψri for all i ∈ [n] are true, then the event πr must be true as well. Formally,

φr
⋂
i∈[n] ψri ⊆ πr. Thus, Pr(πcr) ≤ Pr(φcr) +

∑
i ψri. Using the Hoeffding bound,

we get that Pr(ψcri) ≤ e−
kε2

2 for all i ∈ [n]. Our claim follows.

With Lemma 33 in hand, we can see that in order to compute a value for k

it is sufficient to study the event φr. We introduce the following auxiliary events

that we will study seperately:

φru =
{
|x′TRy′ − x∗

T

Ry∗| < ε/4
}

φrb =
{
|fr(x′)− fr(x

∗)| < ε/4
}
.

It is easy to see that if both φrb and φru are true, then the event φr must be

true too, formally φrb ∩ φru ⊆ φr. Using the analysis from Lipton, Markakis and

Mehta [56] we can prove that Pr(φcru) ≤ 2e−
kε2

8 . Thus, it remains to study the

the event φcrb.

Lemma 34. Pr(φcrb) ≤
8λ
√
p

ε
√
k

.

Proof. Since we assume that the penalty function fr(x
′) is λp-Lipschitz continuous

the event φrb can be replaced by the event φrb′ =
{
‖x′−x∗‖p < ε/4λ

}
. It is easy

to see that φrb ⊆ φrb′ . Then, using the proof of Theorem 2 from [5] we get that

E[‖x′ − x∗‖p] ≤ 2
√
p√
k

. Thus, using Markov’s inequality we get that

Pr(‖x′ − x∗‖p ≥
ε

4λ
) ≤ E[‖x′ − x∗‖p]

ε
4λ

≤
8λ
√
p

ε
√
k
.

We are ready to prove our theorem.

Theorem 13. For any equilibrium (x∗,y∗) of a penalty game from the class Pλ,

any ε > 0, and any k ∈ Ω(λ2 logn)
ε2

, there exists a k-uniform strategy profile (x′,y′)

such that:

1. (x′,y′) is an ε-equilibrium for the game,

86

2. |Tr(x′,y′)− Tr(x∗,y∗)| < ε/2,

3. |Tc(x′,y′)− Tc(x∗,y∗)| < ε/2.

Proof. Let us define the event GOOD = φr ∩ φc ∩ πr ∩ πc. In order to prove our

theorem it suffices to prove that Pr(GOOD) > 0. Notice that for the events φc

and πc we can use the same analysis as for φr and πr and get the same bounds.

Thus, using Lemma 33 and the analysis for the events φru and φrb we get that

Pr(GOODc) ≤ Pr(φcr) + Pr(πcr) + Pr(φcc) + Pr(πcc)

≤ 2
(
Pr(φcr) + Pr(πcr)

)
≤ 2
(
2Pr(φcr) + n · e−

kε2

2

)
(from Lemma 33)

≤ 2
(
2Pr(φcru) + 2Pr(φcrb′) + n · e−

kε2

2

)
≤ 2
(
4e−

kε2

8 +
8λ
√
p

ε
√
k

+ n · e−
kε2

2

)
(from Lemma 34)

< 1 for the chosen value of k.

Thus, Pr(GOOD) > 0 and our claim follows.

Theorem 13 establishes the existence of a k-uniform strategy profile (x′,y′)

that is an ε-equilibrium. However, as with the previous section, we must provide

an efficient method for approximating the quality of approximation provided by

a given strategy profile. To do so, we first give the following lemma, which shows

that approximate best responses can be computed in quasi-polynomial time for

penalty games.

Lemma 35. Let (x,y) be a strategy profile for a penalty game Pλ, and let x̂ be a

best response against y. There is an l-uniform strategy x′, with l =
17λ2

√
p

ε2
, that

is an ε-best response against y, i.e. Tr(x̂,y) < Tr(x
′,y) + ε.

Proof. We will prove that |Tr(x̂,y)− Tr(x′,y)| < ε which implies our claim. Let

φ1 = {|x̂TRy − x′TRy| ≤ ε/2} and φ2 = {|fr(x̂) − fr(x
′)| < ε/2}. Notice that

Lemma 34 does not use anywhere the fact that x∗ is an equilibrium strategy,

thus it holds even if x∗ is replaced by x̂. Thus, Pr(φc2) ≤ 4λ
√
p

ε
√
k

. Furthermore,

using the analysis from [56] again, we can prove that Pr(φc1) ≤ 2e−
kε2

4 and using

similar arguments as in the proof of Theorem 13 it can be easily proved that for

the chosen value of l it holds that Pr(φc1) + Pr(φc2) < 1, thus the events φ1 and

φ2 occur with positive probability and our claim follows.

87

Having given this Lemma, we can reuse Algorithm 6, but with l set equal to
17λ2

√
p

ε2
, to provide an algorithm that aproximates the quality of approximation

of a given strategy profile. Then, we can reuse Algorithm 7 with k = Ω(λ2 logn)
ε2

to provide a quasi-polynomial time algorithm that finds approximate equilibia in

penalty games. Notice again that our algorithm can be applied in games that

it is computationally hard to verify whether an exact equilibrium exists. Our

algorithm either will compute an approximate equilibrium or it will fail to find

one, thus it will decide that the game does not posses an exact equilibrium.

Theorem 14. In any penalty game Pλ and any ε > 0, in time O(nk+l), where

k = Ω(λ2 logn)
ε2

and l =
17λ2

√
p

ε2
, we can either compute a 3ε-equilibrium, or decide

that Pλ does not possess an exact equilibrium.

6.6 Distance Biased Games

In this section, we focus on three particular classes of distance biased games, and

we provide polynomial-time approximation algorithms for these games. Recall

that distance biased games are penalty games with penalty function from a spe-

cific family of functions. More specifically, distance biased games have penalty

functions of the form

Tr(x,y) = xTRy − dr · br(x,p) and Tc(x,y) = xTCy − dc · bc(y,q),

where dr and dc are positive constants and p and q are “base” strategies for

the player. Intuitively, the players are penalized for deviating from their base

strategies. In this section we study the following three penalty functions:

• L1 penalty: br(x,p) = ‖x− p‖1 =
∑

i |xi − pi|.

• L2
2 penalty: br(x,p) = ‖x− p‖2

2 =
∑

i(xi − pi)
2.

• L∞ penalty: br(x,p) = ‖x− p‖∞ = maxi |xi − pi|.

Our approach is to follow the well-known technique of Daskalakis, Mehta and

Papadimitriou [20] that finds a 0.5-NE in a bimatrix game. The algorithm that

we will use for all three penalty functions is given below.

88

Algorithm 8. The Base Algorithm

1. Compute a best response y∗ against p.

2. Compute a best response x against y∗.

3. Set x∗ = δ · p + (1− δ) · x, for some δ ∈ [0, 1].

4. Return the strategy profile (x∗,y∗).

While this is a well-known technique for bimatrix games, note that it cannot

immediately be applied to penalty games. This is because the algorithm requires

us to compute two best response strategies, and while computing a best-response

is trivial in bimatrix games, this is not the case for penalty games. Best responses

for L1 and L∞ penalties can be computed in polynomial-time via linear program-

ming, and for L2
2 penalties, the ellipsoid algorithm can be applied. However, these

methods do not provide strongly polynomial algorithms.

In this section we develop simple combinatorial algorithms for computing

best response strategies for each of these penalties. Our algorithms are strongly

polynomial. Then, we determine the quality of the approximation given by the

base algorithm when our best response techniques are used. In what follows we

make the common assumption that the payoffs of the underlying bimatrix game

(R,C) are in [0, 1].

6.6.1 A 2/3-Approximation Algorithm for L1-Biased Games

We start by considering L1-biased games. Suppose that we want to compute a

best-response for the row player against a fixed strategy y of the column player.

We will show that best response strategies in L1-biased games have a very par-

ticular form: if b is the best response strategy in the (unbiased) bimatrix game

(R,C), then the best-response places all of its probability on b except for a certain

set of rows S where it is too costly to shift probability away from p. The rows

i ∈ S will be played with pi to avoid taking the penalty for deviating.

The characterisation for whether it is too expensive to shift away from p is

given by the following lemma.

Lemma 36. Let j be a pure strategy, let k be a pure strategy with pk > 0, and

let x be a strategy with xk = pk. The utility for the row player increases when we

shift probability from k to j if and only if Rjy −Rky − 2dr > 0.

Proof. Suppose that we shift δ probability from k to j, where δ ∈ (0,pk]. Then

the utility for the row player is equal to Tr(x,y) + δ · (Rjy − Rky − 2dr), where

89

the final term is the penalty for shifting away from k. Thus, the utility for the

row player increases under this shift if and only if Rjy −Rky − 2dr > 0.

Observe that, if we are able to shift probability away from a strategy k,

then we should obviously shift it to a best response strategy for the (unbiased)

bimatrix game, since this strategy maximizes the increase in our payoff. Hence,

our characterisation of best response strategies is correct. This gives us the

following simple algorithm for computing best responses.

Algorithm 9. Best Response Algorithm for L1 penalty

1. Set S = 0.

2. Compute a best response b against y in the unbiased bimatrix game
(R,C).

3. For each index i 6= b in the range 1 ≤ i ≤ n:

(a) If Rb · y −Ri · y − 2dr ≤ 0, then set xi = pi and S = S + pi.

(b) Otherwise set xi = 0

4. Set xb = 1− S.

5. Return x.

Our characterisation has a number of consequences. Firstly, it can be seen

that if dr ≥ 1/2, then there is no profitable shift of probability between any two

pure strategies, since 0 ≤ Riy ≤ 1 for all i ∈ [n]. Thus, we get the following

corollary.

Corollary 2. If dr ≥ 1/2, then the row player always plays the strategy p irre-

spectively from which strategy his opponent plays, i.e. p is a dominant strategy.

Moreover, since we can compute a best response in polynomial time we get

the next theorem.

Theorem 15. In biased games with L1 penalty functions and max{dr, dc} ≥ 1/2,

an equilibrium can be computed in polynomial time.

Proof. Assume that dr ≥ 1/2. Then from Corollary 2 the row player will play his

base strategy p. Then we can use Algorithm 9 to compute a best response against

p for the column player. Then, this profile will be an equilibrium for the game

since no player can increase his payoff by unilaterally changing his strategy.

90

Finally, using the characterization of best responses we can see that there

is a connection between the equilibria of the distance biased game and the well

supported Nash equilibria (WSNE) of the underlying bimatrix game.

Theorem 16. Let B =
(
R,C, br(x,p), bc(y,q), dr, dc

)
be a distance biased game

with L1 penalties and let d := max{dr, dc}. Any equilirbium of B is a 2d-WSNE

for the bimatrix game (R,C).

Proof. Let (x∗,y∗) be an equilibrium for B. From the best response Algorithm 9

we can see that x∗i > 0 if and only if Rb ·y∗−Ri ·y∗−2dr ≤ 0, where b is a pure best

response against y∗. This means that for every i ∈ [n] with x∗i > 0, it holds that

Ri ·y∗ ≥ maxj∈[n] Rj ·y∗−2d. Similarly, it holds that CT
i ·x∗ ≥ maxj∈[n] C

T
j ·x∗−2d

for all i ∈ [n] with y∗i > 0. This is the definition of a 2d-WSNE for the bimatrix

game (R,C).

Approximation Algorithm

We now analyse the approximation guarantee provided by the base algorithm for

L1-biased games. So, let (x∗,y∗) be the strategy profile that is returned by the

base algorithm. Since we have already shown that exact Nash equilibria can be

found in games with either dc ≥ 1/2 or dr ≥ 1/2, we will assume that both dc

and dr are less than 1/2, since this is the only interesting case.

We start by considering the regret of the row player. The following lemma

will be used in the analysis of all three of our approximation algorithms.

Lemma 37. Under the strategy profile (x∗,y∗) the regret for the row player is at

most δ.

Proof. Notice that for all i ∈ [n] we have

|δpi + (1− δ)xi − pi| = (1− δ)|xi − pi|,

hence ‖x∗−p‖1 = (1−δ)‖x−p‖1 and ‖x∗−p‖∞ = (1−δ)‖x−p‖∞. Furthermore,

notice that
∑

i

(
(1 − δ)xi + δpi − pi

)2
= (1 − δ)2‖x − p‖2

2, thus ‖x∗ − p‖2
2 ≤

(1− δ)‖x−p‖2
2. Hence, for the payoff of the row player it holds that Tr(x

∗,y∗) ≥
δ · Tr(p,y∗) + (1− δ) · Tr(x,y∗) and his regret under the strategy profile (x∗,y∗)

is

Rr(x∗,y∗) = max
x̃

Tr(x̃,y
∗)− Tr(x∗,y∗)

= Tr(x,y
∗)− Tr(x∗,y∗) (since x is a best response against y∗)

≤ δ
(
Tr(x,y

∗)− Tr(p,y∗)
)

≤ δ (since max
x

Tr(x,y
∗) ≤ 1 and Tr(p,y

∗) ≥ 0).

91

Next, we consider the regret of the column player. The following lemma will

be used for both the L1 case and the L∞ case. Observe that in the L1 case, the

precondition of dc ·bc(y∗,q) ≤ 1 always holds, since we have ‖y∗−q‖1 ≤ 2. Thus

dc · bc(y∗,q) ≤ 1 since we are only interested in the case where dc ≤ 1/2.

Lemma 38. If dc · bc(y∗,q) ≤ 1, then under strategy profile (x∗,y∗) the column

player suffers at most 2− 2δ regret.

Proof. The regret of the column player under the strategy profile (x∗,y∗) is

Rc(x∗,y∗) = max
y

Tc(x
∗,y)− Tc(x∗,y∗)

= max
y

{
(1− δ)Tc(x,y) + δTc(p,y)

)}
− (1− δ)Tc(x,y∗)− δTc(p,y∗)

≤ (1− δ)
(

max
y

Tc(x
∗,y)− Tc(x,y∗)

)
(since y∗ is a best response against p)

≤ (1− δ)(1 + dc · bc(y∗,q)) (since max
x

Tc(x
∗,y) ≤ 1)

≤ (1− δ) · 2 (since dc · bc(y∗,q) ≤ 1).

To complete the analysis, we must select a value for δ that equalises the two

regrets. It can easily be verified that setting δ = 2/3 ensures that δ = 2 − 2δ,

and so we have the following theorem.

Theorem 17. In biased games with L1 penalties a 2/3-equilibrium can be com-

puted in polynomial time.

6.6.2 A 5/7-Approximation Algorithm for L2
2-Biased Games

We now turn our attention to biased games with an L2
2 penalty. Again, we start

by giving a combinatorial algorithm for finding a best response. Throughout this

section, we fix y as a column player strategy, and we will show how to compute

a best response for the row player.

Best responses in L2
2-biased games can be found by solving a quadratic pro-

gram, and actually this particular quadratic program can be solved via the ellip-

soid algorithm [54]. We will give a simple combinatorial algorithm that uses the

Karush-Kuhn-Tucker (KKT) conditions, and produces a closed formula for the

solution. Hence, we will obtain a strongly polynomial time algorithm for finding

best responses.

92

Our algorithm can be applied on L2
2 penalty functions and any value dr, but

for notation simplicity we describe our method for dr = 1. Furthermore, we define

αi := Riy + 2pi and we call αi as the payoff of pure strategy i. Then, the utility

for the row player can be written as Tr(x,y) =
∑n

i=1 xi · αi −
∑n

i=1 x2
i − pTp.

Notice that the term pTp is a constant and it does not affect the solution of the

best response; so we can exclude it from our computations. Thus, a best response

for the row player against strategy y is the solution of the following quadratic

program

maximize
n∑
i=1

xi · αi −
n∑
i=1

x2
i

subject to
n∑
i=1

xi = 1

xi ≥ 0 for all i ∈ [n].

The Lagrangian function for this problem is

L(x,y, λ,u) =
n∑
i=1

xi · αi −
n∑
i=1

x2
i − λ(

n∑
i=1

xi − 1)−
n∑
i=1

uixi

and the corresponding KKT conditions

αi − λ− 2xi − ui = 0 for all i ∈ [n] (6.3)
n∑
i=1

xi = 1 (6.4)

xi ≥ 0 for all i ∈ [n] (6.5)

xi · ui = 0 for all i ∈ [n]. (6.6)

Constraints (6.3)-(6.5) are the stationarity conditions and (6.6) are the comple-

mentarity slackness conditions. We say that strategy x is a feasible response if it

satisfies the KKT conditions. The obvious way to compute a best response is by

exhaustively checking all 2n possible combinations for the complementarity con-

ditions and choose the feasible response that maximizes the utility for a player.

Next we prove how we can bypass the brute force technique and compute all best

responses in polynomial time.

In what follows, without loss of generality, we assume that α1 ≥ . . . ≥ αn.

That is, the pure strategies are ordered according to their payoffs. In the next

lemma we prove that in every best response, if a player plays the pure strategy

l with positive probability, then he must play every pure strategy k with k < l

with positive probability.

93

Lemma 39. In every best response x∗, if x∗l > 0 then x∗k > 0 for all k < l.

Proof. For the sake of contradiction suppose that there is a best response x∗

and a k < l such that x∗l > 0 and x∗k = 0. Let us denote M =
∑

i 6={l,k} αi ·
x∗i −

∑
i 6={l,k} x

∗2
i . Suppose now that we shift some probability, denoted by δ,

from pure strategy l to pure strategy k. Then the utility for the row player is

Tr(x
∗,y) = M + αl · (x∗l − δ) − (x∗l − δ)2 + αk · δ − δ2, which is maximized for

δ =
αk−αl+2x∗l

4
. Notice that δ > 0 since αk ≥ αl and x∗l > 0. Thus the row player

can increase his utility by assigning positive probability to pure strategy k, which

contradicts the fact that x∗ is a best response.

Lemma 39 implies that there are only n possible supports that a best response

can use. Indeed, we can exploit the KKT conditions to derive, for each candidate

support, the exact probability that each pure strategy would be played. We derive

the probability as a function of αi’s and of the support size. Suppose that the

KKT conditions produce a feasible response when we set the support to have size

k. From condition (6.3) we get that xi = 1
2
(αi − λ) for all 1 ≤ i ≤ k and zero

else. But we know that
∑k

j xj = 1. Thus we get that
∑k

j=1
1
2
(αj − λ) = 1 and if

we solve for λ, we get that λ =
∑k
j=1 αj−2

k
. This means that for all i ∈ [k] we get

xi =
1

2

(
αi −

∑k
j=1 αj − 2

k

)
. (6.7)

So, our algorithm does the following. It iterates through all n candidate

supports for a best response. For each one, it uses Equation (6.7) to determine

the probabilities, and then checks whether these satisfy the KKT conditions, and

thus, if this is a feasible response. If it is, then it is saved in a list of feasible

responses, otherwise it is discarded. After all n possibilities have been checked,

a feasible response with the highest payoff is then returned.

Algorithm 10. Best Response Algorithm for L2
2 penalty

1. For i = 1 . . . n

(a) Set x1 ≥ . . . ≥ xi > 0 and xi+1 = . . . = xn = 0.

(b) Check if there is a feasible response under these constraints.

(c) If so, add it to the list of feasible responses.

2. Among the feasible responses choose one with the highest utility.

We now show that the base algorithm gives a 5/7-approximation when applied

to L2
2-penalty games. For the row player’s regret, we can use Lemma 37 to show

94

that the regret is bounded by δ. However, for the column player’s regret, things

are more involved. We will show that the regret of the column player is at most

2.5− 2.5δ. That analysis depends on the maximum entry of the base strategy q

and more specifically on whether maxk{qk} ≤ 1/2 or not.

Lemma 40. If maxk{qk} ≤ 1/2, then the regret the column player suffers under

strategy profile (x∗,y∗) is at most 2.5− 2.5δ.

Proof. Note that when maxk{qk} ≤ 1/2, then bc = ‖y − p‖2
2 ≤ 1.5 for all

possible y. Then, using the analysis from Lemma 38, along with the fact that

dc · bc(y∗,q) ≤ 2 for L2
2 penalties, and since by assumption dc = 1, the claim

follows.

For the case where there is a k such that qk > 1/2 a more involved analysis

is needed. The first goal is to prove that under any strategy y∗ that is a best

response against p the pure strategy k is played with positive probability. In

order to prove that, first it is proven that there is a feasible response against

strategy p where pure strategy k is played with positive probability. In what

follows we denote αi := CT
i p + 2qi.

Lemma 41. Let qk > 1/2 for some k ∈ [n]. Then there is a feasible response

where pure strategy k is played with positive probability.

Proof. Note that αk > 1 since by assumption qk > 1/2. Recall from Equa-

tion (6.7) that, in a feasible response y, it holds that yi = 1
2

(
αi −

∑k
j=1 αj−2

k

)
.

In order to prove the claim it is sufficient to show that yk > 0 when in the

KKT conditions is set yi > 0 for all i ∈ [k]. Or equivalently, to show that

αk −
∑k
j=1 αj−2

k
= 1

k

(
(k − 1)αk + 2−

∑k−1
j=1 αj

)
> 0. But,

(k − 1)αk + 2−
k−1∑
j=1

αj > k + 1−
k−1∑
j=1

(
CTx + 2qi

)
(since αk > 1)

≥ k + 1− (k − 1)−
k−1∑
j=1

2qi

≥ 1 + qk (since q ∈ ∆n)

> 0.

The claim follows.

Next it is proven that the utility of the column player is increasing when he

adds pure strategies i in his support such that αi > 1.

95

Lemma 42. Let yk and yk+1 be two feasible responses with support size k and

k + 1 respectively, where αk+1 > 1. Then Tc(x,y
k+1) > Tc(x,y

k).

Proof. Let yk be a feasible response with support size k for the column player

against strategy p and let λ(k) :=
∑k
j=1 αj−2

2k
. Then the utility of the column

player when he plays yk can be written as

Tc(x,y
k) =

n∑
i=1

yki · αi −
n∑
i=1

(xki)
2 − qTq

=
k∑
i=1

yki
(
αi − yki

)
− qTq

=
k∑
i=1

(αi
2
− λ(k)

)(αi
2

+ λ(k)
)
− qTq

=
1

4

k∑
i=1

α2
i − k ·

(
λ(k)

)2 − qTq.

The goal now is to prove that Tc(x,y
k+1)−Tc(x,yk) > 0. By the previous analysis

for Tc(x,y
k) and if A :=

∑k
i=1 αi − 2, then

Tc(x,y
k+1)− Tc(x,yk) =

1

4

k+1∑
i=1

α2
i − (k + 1)

(
λ(k + 1)

)2 − 1

4

k∑
i=1

α2
i + k ·

(
λ(k)

)2

=
1

4

(
α2
k+1 +

A2

k
− (A+ αk+1)2

k + 1

)
=

1

4

(
α2
k+1 +

1

k + 1
(A2 − α2

k+1 − 2Aαk+1)

)
=

1

4(k + 1)

(
kα2

k+1 + A2 − 2Aαk+1

)
>

1

4(k + 1)

(
k + A2 − 2A

)
(since 1 < αk+1 ≤ 2 and A > k − 2)

>
1

4(k + 1)

(
k2 − 5k + 8

)
(since A > k − 2)

> 0.

Notice that αk ≥ 2pk > 1. Thus, the utility of the feasible response that

assigns positive probability to pure strategy k is strictly greater than the utility

of any feasible response that does not assign probability to k. Thus, strategy k

is always played in a best response. Hence, the next lemma follows.

96

Lemma 43. If there is a k ∈ [n] such that qk > 1/2, then in every best response

y∗ the pure strategy k is played with positive probability.

Using now Lemma 43 we can provide a better bound for the regret the column

player suffers, since in every best response y∗ the pure strategy k is played with

positive probability.

Lemma 44. Let y∗ be a best response when there is a pure strategy k with

qk > 1/2. Then the regret for the column player under strategy profile (x∗,y∗) is

bounded by 2− 2δ.

Proof. Recall from the analysis for the Algorithm 1 that the regret for the column

player is

Rc(x∗,y∗) ≤ (1− δ)
(

max
ỹ∈∆
{x̂TCỹ}+ 2ỹTqk − 2y∗

T

q + y∗
T

y∗
)

≤ (1− δ)
(
1 + 2qk − 2y∗

T

q + y∗
T

y∗
)
. (6.8)

We focus now on the term y∗
T
y∗−2y∗

T
q. It can be proven 1 that y∗

T
y∗−2y∗

T
q ≤

1− 2qk. Thus, from (6.8) we get that Rc(x∗,y∗) ≤ 2− 2δ.

Recall now that the regret for the row player is bounded by δ, so if we optimize

with respect to δ the regrets are equal for δ = 2/3. Thus, the next theorem

follows, since when there is a k with qk > 1/2 the Algorithm 1 produces a 2/3-

equilibrium. Hence, combining this with Lemma 40, the Theorem 18 follows for

δ = 5/7.

Theorem 18. In biased games with L2
2 penalties a 5/7-equilibrium can be com-

puted in polynomial time.

6.6.3 A 13/21-Approximation for Inner-Product Penalty
Games

We observe that we can also tackle the case where the penalty function is the

inner product of the strategy played, i.e. when the players have L2
2 penalties and

p = q = 0. For these games, that we call “inner product penalty games”, we

replace p as the starting point of the base algorithm with the fully mixed strategy

xn. Hence, for that case x∗ = δ · xn + (1− δ) · x for some δ ∈ [0, 1].

Again, the regret the row player suffers under strategy profile (x∗,y∗) is

bounded by δ.

1Section 6.6.5

97

Lemma 45. When the penalty function is the inner product of the strategy played,

then the regret for the row player under strategy profile (x∗,y∗) is bounded by δ.

Furthermore, using similar analysis as in Lemma 38, it can be proven that

the regret for the column player under strategy profile (x∗,y∗) is bounded by

(1 − δ)(1 + dc · y∗
T
y∗). For the column player we will distinguish between the

cases where dc ≤ 1/2 and dc > 1/2. For the first case where dc ≤ 1/2 it is

easy see that the algorithm produces a 0.6-equilibrium. For the other case, when

dc > 1/2, first it is proven that there is no pure best response.

Lemma 46. If the penalty for the column player is equal to yTy and dc >
1
2
,

then there is no pure best response against any strategy of the row player.

Proof. Let Cj to denote the payoff of the column player from his j-th pure strategy

against some strategy x played by the row player. For the sake of contradiction,

assume that there is a pure best response for the column player where, without

loss of generality, he plays only his first pure strategy. Suppose now that he shifts

some probability to his second strategy, that is, he plays the first pure strategy

with probability x and the second pure strategy with probability 1 − x. The

utility for the column player under this mixed strategy is x · C1 + (1− x) · C2 −
dc · (x2 + (1−x)2), which is maximized for x = 2dc+C1−C2

4dc
, where C1 and C2 stand

for the first and the second column respectively of the matrix C. Notice that

x > 0, which means that the column player can deviate from the pure strategy

and increase his utility. The claim follows.

With Lemma 46 in hand, it can be proven that when dc > 1/2 the column

player does not play any pure strategy with probability greater than 3/4.

Lemma 47. If dc > 1/2, then in y∗ no pure strategy is played with probability

greater than 3/4.

Proof. For the sake of contradiction suppose that there is a pure strategy i in

y∗ that is played with probability greater than 3/4. Furthermore, let k be the

support size of y∗. From Lemma 46, since dc > 1/2, we know that there is

no pure best response, thus k ≥ 2. Then using Equation (6.7) we get that
3
4
< 1

2

(
αi −

∑k
j=1 αj−2

k

)
. If we solve for αj we get that αi >

3k−4
2k−2

> 1 which is a

contradiction since, when q = 0, it holds that αi = CT
i x ≤ 1.

A direct corollary from Lemma 47 is that y∗
T
y∗ ≤ 5/8. Hence, we can prove

the following lemma.

98

Lemma 48. Under strategy profile (x∗,y∗) the regret for the column player is

bounded by 13
8

(1− δ).

Proof. Firstly, note that Tc(x
∗,y∗) = δxn

T
Cy∗+(1−δ)xTCy∗−y∗

T
y∗. Moreover,

maxỹ∈∆{xn
T
Cỹ− ỹT ỹ} − Tc(xn,y∗) = 0, since y∗ is a best response against xn.

Finally, notice that 0 ≤ yTy ≤ 1 for all y. Thus, the regret for the column player

is

Rc(x∗,y∗) = (1− δ)
(

max
ỹ∈∆
{xTCỹ − ỹT ỹ} − xTCy∗ + y∗

T

y∗
)

< (1− δ)
(
1 +

5

8

)
.

which matches the claimed result.

If we combine Lemmas 45 and 48 and solve for δ we can see that the regrets

are equal for δ = 13
21

. Thus, we get the following theorem for biased games where

q = 0.

Theorem 19. The strategy profile (x∗,y∗) is a 13
21

-equilibrium for biased games

with q = 0.

6.6.4 A 2/3-Approximation for L∞-Biased Games

Finally, we turn our attention to the L∞ penalty. We start by giving a combinato-

rial algorithm for finding best responses. Similar to the best response Algorithm

for the L1 penalty, the intuition is to start from the base strategy p of the row

player and shift probability from pure strategies with low payoff to pure strategies

with higher payoff. This time though, the shifted probability will be distributed

between the pure strategies with higher payoff.

Without loss of generality assume that R1y ≥ . . . ≥ Rny, ie., that the strate-

gies are ordered according to their payoff in the unbiased bimatrix game. The

set of pure strategies of the row player can be partitioned into three disjoint sets

according to the payoff they yield:

H := {i ∈ [n] : Riy = R1y}
M := {i ∈ ([n] \ H) : R1y −Riy − dr < 0}
L := {i ∈ [n] : R1y −Riy − dr > 0}.

Next we give an algorithm that computes a best response for L∞ penalty.

99

Algorithm 11. Best Response Algorithm for L∞ penalty

1. For all i ∈ L, set xi = 0.

2. If P ≤ |H| · pmax, then set xi = pi + P
|H| for all i ∈ H and xj = pj for

j ∈M.

3. Else if P < |H ∪M| · pmax, then

• Set xi = pi + pmax for all i ∈ H.

• Set k = bP−|H|·pmax

pmax
c.

• Set xi = pi + pmax for all i ≤ |H|+ k.

• Set x|H|+k+1 = p|H|+k+1 + P − (|H|+ k) · pmax.

• Set xj = pj for all |H|+ k + 2 ≤ j ≤ |H|+ |M|.

4. Else set xi = pi + P
|H∪M| for all i ∈ H ∪M.

Let pmax := maxi∈L pi and let P :=
∑

i∈L pi. Then for every best response

the following lemma holds.

Lemma 49. If L 6= ∅, then for any best response x of the row player against

strategy y it holds that ‖x− p‖∞ ≥ pmax. Else p is the best response.

Proof. Using similar arguments as in Lemma 36, it can be proven that if there

are no pure strategies i and k such that Rky − Riy − dr < 0 then any shifting

of probability decreases the utility of the row player. Thus, the best response

of the player is p. On the other hand, if there are strategies i and k such that

Rky−Riy−dr > 0, then the utility of the row player increases if all the probability

from strategy i is shifted to pure strategy k. The set L contains all these pure

strategies. Let j ∈ L be the pure strategy that defines pmax. Then, all the pmax

probability can be shifted from j to the a pure strategy in H, i.e. a pure strategy

that yields the highest payoff, and strictly increase the utility of the player. Thus,

the strategy j is played with zero probability and the claim follows.

In what follows assume that L 6= ∅, hence pmax > 0. From Lemma 49 follows

that there is a best response where the strategy with the highest payoff is played

with probability p1 + pmax. Hence, it can be shifted up to pmax probability from

pure strategies with lower payoff to each pure strategy with higher payoff, starting

from the second pure strategy etc. After this shift of probabilities there will be a

set of pure strategies that where each one is played with probability pi+pmax and

possibly one pure strategy j that is played with probability less or equal to pj.

100

The question is whether more probability should be shifted from the low payoff

strategies to strategies that yield higher payoff. The next lemma establishes that

no pure strategy form L is played with positive probability in any best response

against y.

Lemma 50. In every best response against strategy y all pure strategies i ∈ L
are played with zero probability.

Proof. Let K denote the set of pure strategies that are played with positive

probability after the first shifting of probabilities. Without loss of generality

assume that each strategy i ∈ K is played with probability pi + pmax. Then the

utility of the player under this strategy is equal to U =
∑

i∈K(pi+pmax)·Riy−dr ·
pmax. For the sake of contradiction, assume that there is one strategy j from L that

belongs to K. Suppose that probability δ is shifted from the strategy j to the first

pure strategy. Then the utility for the player is equal to U+δ(R1y−Rjy−dr) > U ,

since by the definition of L we have that R1y − Rjy − dr > 0. Thus, the utility

of the player is increasing if probability is shifted. Notice that the analysis holds

even if the penalty is pmax + δ instead of pmax, thus the claim follows.

Thus, all the probability P from strategies from L should be shifted to strate-

gies that yield higher payoff. The question now is what is the optimal way to

distribute that probability over the strategies with the higher payoff. It is not

hard to see that distributing this probability uniformly over the strategies in H
minimizes the penalty the player suffers. Furthermore, it is easy to see that the

maximum amount of probability is shifted to strategies in H. Next we prove that

if P ≥ pmax · (|H|+ |M|) then P is uniformly distributed over the pure strategies

in H ∪M.

Lemma 51. If P ≥ pmax · (|H| + |M|) then there is a best response where the

probability P is uniformly distributed over the pure strategies in H ∪M.

Proof. Let |H|+ |M| = k and S = P − k · pmax. Let

U =
∑

i∈H∪M

(pi + pmax +
S

k
)Riy − dr(pmax +

S

k
)

be the utility when the probability S is distributed uniformly over all pure strate-

gies inH∪M. Furthermore, let U ′ be the utility when δ > 0 probability is shifted

from a pure strategy j to the first pure strategy that yields the highest payoff.

Then U ′ = U + δ(R1y − Rjy − dr), but R1y − Rjy − dr ≤ 0 since j ∈ H ∪M.

The claim follows.

101

Approximation Algorithm

Using the previous analysis the correctness of the algorithm follows.

Note that, using similar arguments as in Lemma 36 the next lemma can be

proved.

Lemma 52. If dr ≥ 1, then p is a dominant strategy.

Furthermore, the combination of Lemma 52 with the fact that best responses

can be computed in polynomial time gives the next theorem.

Theorem 20. In biased games with L∞ penalty functions and max{dr, dc} ≥ 1,

an equilibrium can be computed in polynomial time.

Again, we can see that there is a connection between the equilibria of the

distance biased game and the well supported Nash equilibria (WSNE) of the

underlying bimatrix game. The following Theorem can be proven in a similar

way as the Theorem 16.

Lemma 53. Let B =
(
R,C, br(x,p), bc(y,q), dr, dc

)
be a distance biased game

with L∞ penalties and let d := max{dr, dc}. Any equilirbium of B is a d-WSNE

for the bimatrix game (R,C).

Approximation Algorithm

For the quality of approximation, we can reuse the results that we proved for

the L1 penalty. Lemma 37 applies unchanged. For Lemma 38, we observe that

dc · bc(y∗,q) ≤ 1 when the penalty bc(y
∗,q) is the L∞ norm, since for this case it

holds ‖y∗ − q‖∞ ≤ 1 and it is assumed that dc ≤ 1. Thus, we have the following

theorem.

Theorem 21. In biased games with L∞ penalties a 2/3-equilibrium can be com-

puted in polynomial time.

6.6.5 Proof that y∗
T

y∗ − 2y∗kqk ≤ 1− 2qk.

Proof. Notice from the Equation (6.7) that for all i we get yi = yk + 1
2
(αi − αk).

Using that, we can write the term yTy =
∑

i y
2
i as follows for a strategy y with

102

support size s.

s∑
i=1

y2
i = y2

i +
∑
i 6=k

y2
i

= y2
k +

∑
i 6=k

(
yk +

1

2
(αi − αk)

)2

= sy2
k +

(∑
i 6=k

(αi − αk)
)
yk +

1

4

∑
i 6=k

(αk − αi)2.

Then, we can see that y∗
T
y − 2y∗

T

k qk is increasing as y∗k increases, since we

know from Lemma 43 that y∗k > 0. This becomes clear if we take the partial

derivative of y∗
T
y∗ − 2y∗kqk with respect to y∗k which is equal to

2sy∗k +
∑
i 6=k

(αi − αk)− 2qk = 2sy∗k +
∑
i 6=k

2(y∗i − y∗k)− 2qk
(
since yi = yk +

1

2
(αi − αk)

)
= 2sy∗k + 2

∑
i 6=k

y∗i − 2(s− 1)y∗k − 2qk

= 2
s∑
i=1

y∗i − 2qk

= 2− 2qk

≥ 0 (since y∗k > 0).

Thus, the value of y∗
T
y∗ − 2y∗kqk is maximized when y∗k = 1 and our claim

follows.

6.7 Open Questions

Several open questions stem from this chapter. The most important one is to

understand the exact computational complexity of equilibrium computation in

Lipschitz and penalty games. Another interesting feature is that we cannot verify

efficiently in all penalty games whether a given strategy profile is an equilibrium,

and so it seems questionable whether PPAD can capture the full complexity of

penalty games. On the other side, for the distance biased games that we studied

in this chapter, we have shown that we can decide in polynomial time if a strategy

profile is an equilibrium. Is the equilibrium computation problem PPAD-complete

for the classes of games we studied? Are there any subclasses of penalty games,

e.g. when the underlying normal form game is zero sum, that are easy to solve?

Another obvious direction is to derive better polynomial time approximation

guarantees for distance biased games. We believe that the optimization approach

103

used by [66] and [24] might tackle this problem. Under the L1 penalties the

analysis of the steepest descent algorithm may be similar to [24] and therefore

we may be able to obtain a constant approximation guarantee similar to the

bound of 0.5 that was established in Chapter 4. The other known techniques

that compute approximate Nash equilibria [7] and approximate well supported

Nash equilibria [15, 30, 53] solve a zero sum bimatrix game in order to derive the

approximate equilibrium, and there is no obvious way to generalise this approach

in penalty games.

104

Chapter 7

Conclusions

In this thesis we studied algorithms for computing approximate equilibria in sev-

eral classes of games.

In Chapter 3 we have developed a new technique for computing approximate

Nash equilibria, and approximate well-supported Nash equilibria. This new tech-

nique has allowed us to improve upon the best known results in multiple settings.

For well-supported Nash equilibria, we have presented a polynomial-time algo-

rithm for finding a 0.6528-WSNE, and we have shown how to implement it in a

communication efficient manner, and a query efficient manner, improving upon

the best known results in those settings. For approximate Nash equilibria, our

techniques obtain a 0.382-NE and, again, we showed how this can be carried out

in a communication efficient manner, improving the best known results in that

setting. Several open questions stem from our paper. The most obvious one is

to improve the derived bounds. Another important question is to derive lower

bounds for all the problems studied in this chapter.

In Chapter 4 we presented a polynomial time algorithm that, for every δ in the

range 0 < δ ≤ 0.5, finds a (0.5+δ)-Nash equilibrium of a polymatrix game in time

polynomial in the input size and 1
δ
. Note that our approximation guarantee does

not depend on the number of players, which is a property that was not previously

known to be achievable for polymatrix games, and still cannot be achieved for

general strategic form games. As it was explained at the end of this Chapter,

there are several interesting open questions. Among the most interesting ones,

given the result of [63], is to derive a lower bound on the approximability of the

computation of approximate equilibria in polymatrix games.

In Chapter 6 we studied games with infinite action spaces, and non-linear pay-

off functions. We have shown that Lipschitz continuity of the payoff function can

be exploited to provide approximation algorithms. For Lipschitz games, Lipschitz

105

continuity of the payoff function allows us to provide an efficient algorithm for

finding approximate equilibria. For penalty games, Lipschitz continuity of the

penalty function allows us to provide a QPTAS. Finally, we provided strongly

polynomial algorithms for computing approximate equilibria for L1, L2
2, and L∞

distance biased games. Among all the open questions described in the end of

the Chapter, maybe the most interesting question is to pin down exactly the

computational complexity of these games.

106

Bibliography

[1] Eleftherios Anastasiadis and Argyrios Deligkas. Minmax heterogeneous fa-

cility location games. 2016. Working paper.

[2] Yaron Azrieli and Eran Shmaya. Lipschitz games. Mathematics of Operations

Research, 38(2):350–357, 2013.

[3] Yakov Babichenko. Best-reply dynamics in large binary-choice anonymous

games. Games and Economic Behavior, 81:130–144, 2013.

[4] Yakov Babichenko, Siddharth Barman, and Ron Peretz. Simple approximate

equilibria in large games. In ACM Conference on Economics and Computa-

tion, EC ’14, pages 753–770, 2014.

[5] Siddharth Barman. Approximating Nash equilibria and dense bipartite sub-

graphs via an approximate version of caratheodory’s theorem. In Proceedings

of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,

STOC 2015, pages 361–369, 2015.

[6] Emile Borel. La theorie du jeu at les equations integrales a noyau sym-

metrique. Comptes Rendus de l’Academie des Sciences, 173:1304–1308, 1921.

[7] Hartwig Bosse, Jaroslaw Byrka, and Evangelos Markakis. New algorithms

for approximate Nash equilibria in bimatrix games. Theoretical Computer

Science, 411(1):164–173, 2010.

[8] Patrick Briest, Paul W. Goldberg, and Heiko Röglin. Approximate equilibria

in games with few players. CoRR, abs/0804.4524, 2008.

[9] Yang Cai and Constantinos Daskalakis. On minmax theorems for multiplayer

games. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA, pages 217–234, 2011.

107

[10] Ioannis Caragiannis, David Kurokawa, and Ariel D. Procaccia. Biased games.

In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelli-

gence, pages 609–615, 2014.

[11] Gretchen B. Chapman and Eric J. Johnson. Anchoring, activation, and

the construction of values. Organizational Behavior and Human Decision

Processes, 79(2):115 – 153, 1999.

[12] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of

computing two-player Nash equilibria. Journal of the ACM, 56(3):14:1–14:57,

2009.

[13] Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of

non-monotone markets. In Symposium on Theory of Computing Conference,

STOC’13, pages 181–190, 2013.

[14] Vincent Conitzer and Tuomas Sandholm. Communication complexity as

a lower bound for learning in games. In Proceedings of the Twenty-first

International Conference on Machine Learning ICML, pages 185–192, 2004.

[15] Artur Czumaj, Argyrios Deligkas, Michail Fasoulakis, John Fearnley, Marcin

Jurdzinski, and Rahul Savani. Distributed methods for computing approxi-

mate equilibria. In Web and Internet Economics - 10th International Con-

ference, WINE, 2016.

[16] Artur Czumaj, Michail Fasoulakis, and Marcin Jurdzinski. Approximate

well-supported nash equilibria in symmetric bimatrix games. In Algorithmic

Game Theory - 7th International Symposium, SAGT, pages 244–254, 2014.

[17] George B. Dantzig. Linear Programming and Extensions. Princeton Univer-

sity Press, 1963.

[18] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou.

The complexity of computing a Nash equilibrium. SIAM Journal on Com-

puting, 39(1):195–259, 2009.

[19] Constantinos Daskalakis, Aranyak Mehta, and Christos H. Papadimitriou.

Progress in approximate nash equilibria. In Proceedings 8th ACM Conference

on Electronic Commerce (EC-2007), pages 355–358, 2007.

[20] Constantinos Daskalakis, Aranyak Mehta, and Christos H. Papadimitriou.

A note on approximate Nash equilibria. Theoretical Computer Science,

410(17):1581–1588, 2009.

108

[21] Constantinos Daskalakis and Christos H. Papadimitriou. Approximate nash

equilibria in anonymous games. Journal of Economic Theory, 156:207–245,

2015.

[22] Joyee Deb and Ehud Kalai. Stability in large Bayesian games with hetero-

geneous players. Journal of Economic Theory, 157(C):1041–1055, 2015.

[23] Argyrios Deligkas, John Fearnley, Tobenna Peter Igwe, and Rahul Savani. An

empirical study on computing equilibria in polymatrix games. In Proceedings

of the 2016 International Conference on Autonomous Agents & Multiagent

Systems, pages 186–195, 2016.

[24] Argyrios Deligkas, John Fearnley, Rahul Savani, and Paul Spirakis. Comput-

ing approximate Nash equilibria in polymatrix games. In Web and Internet

Economics - 10th International Conference, WINE, pages 58–71, 2014.

[25] Argyrios Deligkas, John Fearnley, and Paul G. Spirakis. Lipschitz continuity

and approximate equilibria. In 9th International Symposium on Algorithmic

Game Theory, SAGT, pages 15–26, 2016.

[26] Argyrios Deligkas, George B. Mertzios, and Paul G. Spirakis. On the com-

plexity of weighted greedy matchings. CoRR, abs/1602.05909, 2016.

[27] Kousha Etessami and Mihalis Yannakakis. On the complexity of nash equi-

libria and other fixed points. SIAM J. Comput., 39(6):2531–2597, 2010.

[28] Argyrios Deligkas John Fearnley and Rahul Savani. Inapproximability results

for approximate nash equilibria. In Web and Internet Economics - 10th

International Conference, WINE, 2016.

[29] John Fearnley, Martin Gairing, Paul W. Goldberg, and Rahul Savani. Learn-

ing equilibria of games via payoff queries. In ACM Conference on Electronic

Commerce, EC ’13, pages 397–414, 2013.

[30] John Fearnley, Paul W. Goldberg, Rahul Savani, and Troels Bjerre Sørensen.

Approximate well-supported Nash equilibria below two-thirds. In Inter-

national Symposium on Algorithmic Game Theory, SAGT, pages 108–119,

2012.

[31] John Fearnley, Tobenna Peter Igwe, and Rahul Savani. An empirical study

of finding approximate equilibria in bimatrix games. In Symposium on Ex-

perimental Algorithms, SEA, 2015.

109

[32] John Fearnley and Rahul Savani. Finding approximate Nash equilibria of

bimatrix games via payoff queries. In ACM Conference on Electronic Com-

merce, EC ’14, pages 657–674, 2014.

[33] Uriel Feige and Inbal Talgam-Cohen. A direct reduction from k-player to

2-player approximate Nash equilibrium. In International Symposium on Al-

gorithmic Game Theory, SAGT, pages 138–149, 2010.

[34] Amos Fiat and Christos H. Papadimitriou. When the players are not ex-

pectation maximizers. In International Symposium on Algorithmic Game

Theory, SAGT, pages 1–14, 2010.

[35] Martin Gairing and Rahul Savani. Computing stable outcomes in hedonic

games. In Symposium on Algorithmic Game Theory, SAGT, pages 174–185,

2010.

[36] Sam Ganzfried and Tuomas Sandholm. Game theory-based opponent model-

ing in large imperfect-information games. In 10th International Conference

on Autonomous Agents and Multiagent Systems, AAMAS ’11, pages 533–

540, 2011.

[37] Sam Ganzfried and Tuomas Sandholm. Safe opponent exploitation. In ACM

Conference on Electronic Commerce, EC ’12, pages 587–604, 2012.

[38] Paul W. Goldberg and Arnoud Pastink. On the communication complexity

of approximate Nash equilibria. Games and Economic Behavior, 85:19–31,

2014.

[39] Paul W. Goldberg and Aaron Roth. Bounds for the query complexity of

approximate equilibria. In ACM Conference on Electronic Commerce, EC

’14, pages 639–656, 2014.

[40] Srihari Govindan and Robert Wilson. Computing Nash equilibria by iterated

polymatrix approximation. Journal of Economic Dynamics and Control,

28(7):1229–1241, 2004.

[41] Srihari Govindan and Robert Wilson. A decomposition algorithm for n-

player games. Economic Theory, 42(1):97–117, 2010.

[42] Mingyu Guo and Argyrios Deligkas. Revenue maximization via hiding item

attributes. In IJCAI, Proceedings of the 23rd International Joint Conference

on Artificial Intelligence, pages 157–163, 2013.

110

[43] Mingyu Guo, Argyrios Deligkas, and Rahul Savani. Increasing VCG rev-

enue by decreasing the quality of items. In Proceedings of the 28th AAAI

Conference on Artificial Intelligence, pages 705–711, 2014.

[44] Sergiu Hart and Yishay Mansour. How long to equilibrium? the communica-

tion complexity of uncoupled equilibrium procedures. Games and Economic

Behavior, 69(1):107–126, 2010.

[45] Sébastien Hémon, Michel de Rougemont, and Miklos Santha. Approximate

nash equilibria for multi-player games. In International Symposium on Al-

gorithmic Game Theory, SAGT, pages 267–278, 2008.

[46] Joseph T. Howson. Equilibria of polymatrix games. Management Science,

18(5):pp. 312–318, 1972.

[47] Michael Johanson, Martin Zinkevich, and Michael Bowling. Computing ro-

bust counter-strategies. In J.C. Platt, D. Koller, Y. Singer, and S.T. Roweis,

editors, Advances in Neural Information Processing Systems 20, pages 721–

728. Curran Associates, Inc., 2008.

[48] Howson Joseph and Rosenthal Robert. Bayesian equilibria of finite two-

person games with incomplete information. Management Science, 21(3):pp.

313–315, 1974.

[49] Daniel Kahneman. Reference points, anchors, norms, and mixed feelings. Or-

ganizational Behavior and Human Decision Processes, 51(2):296–312, 1992.

[50] Narendra Karmarkar. A new polynomial-time algorithm for linear program-

ming. In Proceedings of the Sixteenth Annual ACM Symposium on Theory

of Computing, STOC ’84, pages 302–311, 1984.

[51] Leonid Khachiyan. A polynomial algorithm in linear programming. Doklady

Akademiia Nauk SSSR, 244:1093 – 1096, 1979.

[52] Spyros C. Kontogiannis and Paul G. Spirakis. Well supported approximate

equilibria in bimatrix games. Algorithmica, 57(4):653–667, 2010.

[53] Spyros C. Kontogiannis and Paul G. Spirakis. Well supported approximate

equilibria in bimatrix games. Algorithmica, 57(4):653–667, 2010.

[54] M.K. Kozlov, Sergei Tarasov, and Leonid Khachiyan. The polynomial solv-

ability of convex quadratic programming. {USSR} Computational Mathe-

matics and Mathematical Physics, 20(5):223 – 228, 1980.

111

[55] Carlton Lemke. Bimatrix equilibrium points and mathematical program-

ming. Management Science, 11(7):pp. 681–689, 1965.

[56] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large

games using simple strategies. In Conference on Electronic Commerce

(EC’03), pages 36–41, 2003.

[57] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large

games using simple strategies. In EC, pages 36–41, 2003.

[58] Marios Mavronicolas and Burkhard Monien. The complexity of equilibria for

risk-modeling valuations. Theoretical Computer Science, 634:67–96, 2016.

[59] Roger Myerson. Game Theory Analysis of Conflict. Princeton University

Press, 1997.

[60] John Nash. Non-cooperative games. The Annals of Mathematics, 54(2):286–

295, 1951.

[61] Christos H. Papadimitriou. On the complexity of the parity argument and

other inefficient proofs of existence. J. Comput. Syst. Sci., 48(3):498–532,

1994.

[62] J. B. Rosen. Existence and uniqueness of equilibrium points for concave

n-person games. Econometrica, 33(3):pp. 520–534, 1965.

[63] Aviad Rubinstein. Inapproximability of nash equilibrium. pages 409–418,

2015.

[64] Aviad Rubinstein. Settling the complexity of computing approximate two-

player nash equilibria. In Symposium on Foundations of Computer Science

FOCS, 2016. To appear.

[65] Rahul Savani and Bernhard von Stengel. Exponentially many steps for find-

ing a nash equilibrium in a bimatrix game. In 45th Symposium on Founda-

tions of Computer Science FOCS, pages 258–267, 2004.

[66] Haralampos Tsaknakis and Paul G. Spirakis. An optimization approach for

approximate Nash equilibria. Internet Mathematics, 5(4):365–382, 2008.

[67] Amos Tversky and Daniel Kahneman. Judgment under uncertainty: Heuris-

tics and biases. Science, 185(4157):1124–1131, 1974.

112

[68] John von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische

Annalen, 100(1):295–320, 1928.

[69] John von Neumann and Oskar Morgenstern. Theory of Games and Economic

Behavior. Princeton University Press, 1944.

113

	Contents
	Introduction
	Game Theory
	Existence of Equilibria
	Computation of Nash Equilibria
	Overview of Results

	Preliminaries
	Games, Strategies and Utility Functions
	Solution Concepts
	Game Sizes

	Bimatrix Games
	Bimatrix games preliminaries
	An Algorithm for Finding a 23-WSNE
	An Algorithm for Finding a 0.6528-WSNE
	A Communication-Efficient Algorithm for Finding a 0.5-WSNE in win-lose Bimatrix Games
	A Communication-Efficient Algorithm for Finding a (3 - 52 +)-NE

	Computing Approximate Nash Equilibria in Polymatrix Games
	Polymatrix games preliminaries
	The TS Algorithm
	The Descent Algorithm
	The Function f and -Nash Equilibria
	The Gradient
	The Algorithm
	Stationary Points of f
	Time Complexity of the Algorithm
	Open Questions

	Approximate Equilibria in Two Player Bayesian Games
	Two player Bayesian games preliminaries
	Reducing -BNE to -NE
	A Simple Algorithm for 0.5-BNE

	Lipschitz Games
	Lipschitz games preliminaries
	Classes of Lipschitz Games
	Comparison Between the Classes of Games
	Approximate Equilibria in p-Lipschitz Games
	An Algorithm for Penalty Games
	Distance Biased Games
	Open Questions

	Conclusions
	Bibliography

